WO2018168447A1 - Sludge dehydrating agent and sludge dehydrating method - Google Patents

Sludge dehydrating agent and sludge dehydrating method Download PDF

Info

Publication number
WO2018168447A1
WO2018168447A1 PCT/JP2018/007354 JP2018007354W WO2018168447A1 WO 2018168447 A1 WO2018168447 A1 WO 2018168447A1 JP 2018007354 W JP2018007354 W JP 2018007354W WO 2018168447 A1 WO2018168447 A1 WO 2018168447A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mol
sludge
monomer
cationic
Prior art date
Application number
PCT/JP2018/007354
Other languages
French (fr)
Japanese (ja)
Inventor
詩歩子 関口
哲 竹林
佐藤 茂
渡辺 実
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017163494A external-priority patent/JP6737439B2/en
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to EP18766957.7A priority Critical patent/EP3597609B1/en
Priority to CN201880012569.6A priority patent/CN110337421A/en
Priority to KR1020197023848A priority patent/KR20190124710A/en
Priority to US16/489,127 priority patent/US20190375665A1/en
Publication of WO2018168447A1 publication Critical patent/WO2018168447A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5272Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently

Definitions

  • the present invention relates to a sludge dewatering agent suitable for the dewatering treatment of sludge, particularly sludge that is difficult to dewater, and a sludge dewatering method using the sludge dewatering agent.
  • cationic polymer flocculants are used for dewatering sludge mainly composed of excess sludge generated in food factories, chemical factories, human waste processing plants, and the like.
  • dewatering is progressing, and improvement of dewatering effects such as gravity filterability is strongly demanded.
  • Patent Document 1 describes that an ionic water-soluble polymer having a charge inclusion rate of 35 to 90%, which is obtained by granulating a water-in-oil emulsion liquid through a drying process, is used for sludge dewatering treatment.
  • Patent Documents 2 and 3 describe that an aggregating agent combining two types of cross-linkable water-soluble ionic polymers having a high charge inclusion rate and a low charge inclusion rate is applied as a sludge dehydrating agent. Yes.
  • Patent Document 4 discloses a sludge dehydrating agent based on a mixture of an amidine polymer, a crosslinked cationic polymer, and a non-crosslinked cationic polymer
  • Patent Document 5 discloses an amphoteric polymer flocculant after adding an inorganic flocculant. A sludge treatment method in which is added is disclosed.
  • the present inventors have repeatedly studied focusing on the relationship between the molecular spread of the crosslinkable polymer and the coagulation effect on sludge. As a result, it was found that a specific polymer exhibits an excellent dehydrating effect with a small addition amount.
  • an object of the present invention is to provide a sludge dewatering agent excellent in dewatering effect, in particular, floc-forming ability and gravity filterability, and a sludge dewatering method using the sludge dewatering agent even if the amount added is small. .
  • the present invention is based on the finding that a dehydrating agent containing a specific cross-linked polymer and having a specific intrinsic viscosity exhibits excellent floc-forming ability and gravity filterability with a small addition amount. .
  • the present invention provides the following [1] to [5].
  • [1] It contains one or more crosslinked polymers selected from the following polymers A, B and C, and the crosslinked polymer has an intrinsic viscosity at 30 ° C. in a 1.0 N sodium nitrate aqueous solution of 0.5 to 5 A sludge dewatering agent of 0.0 dL / g.
  • Polymer A Crosslink in which the monomer composition of the polymer structural unit is 1-100 mol% of a cationic monomer represented by the following general formula (1) and 0-99 mol% of a nonionic monomer polymer (In the formula (1), R 1 represents .R 2 and R 3 is a hydrogen atom or a methyl group are each independently an alkyl or alkoxy group having 1 to 3 carbon atoms, or .R 4 is a benzyl group , A hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, or a benzyl group, A is an oxygen atom or NH group, B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms, X - is an anion).
  • Polymer B Crosslink in which the monomer composition of the polymer structural unit is 1 to 100 mol% of a cationic monomer represented by the following general formula (2) and 0 to 99 mol% of a nonionic monomer polymer (In Formula (2), R 5 and R 6 are each independently a hydrogen atom or a methyl group. X ⁇ is an anion.)
  • Polymer C Anionic monomer having a monomer composition of a polymer constituent unit of 1 to 99 mol% of the cationic monomer represented by the general formula (1) and the following general formula (3) Crosslinked polymer comprising 1 to 99 mol% and nonionic monomer 0 to 98 mol% (In the formula (3), R 7 is a hydrogen atom or CH 2 COOY.
  • R 8 is a hydrogen atom, a methyl group or COOY.
  • Q is SO 3 ⁇ , C 6 H 4 SO 3 ⁇ , CONHC (CH 3 ) 2 CH 2 SO 3 - or COO - is .
  • Y is a hydrogen atom or a cation).
  • a sludge dewatering method in which the sludge dewatering agent according to [1] or [2] is added to sludge to dewater the sludge.
  • the monomer composition of the polymer constituent unit is a cationic monomer represented by the general formula (1) and a cation represented by the general formula (2).
  • the present invention even if the addition amount is small, it is possible to provide a sludge dewatering agent that is excellent in the dewatering effect, in particular, the flock-forming ability and the gravity filterability.
  • an efficient sludge dewatering method using the sludge dewatering agent can be provided.
  • (meth) acryl means “acryl” and / or “methacryl (methacryl)”, and includes “(meth) acrylate” and “(meth) acrylo”. The same applies to the notation.
  • the sludge dehydrating agent of the present invention contains one or more cross-linked polymers selected from Polymer A, Polymer B and Polymer C.
  • the crosslinked polymer has an intrinsic viscosity of 0.5 to 5.0 dL / g at 30 ° C. in a 1.0 N sodium nitrate aqueous solution.
  • Such a sludge dehydrating agent exhibits a dehydrating effect such as excellent floc-forming ability and gravity filterability with an addition amount equal to or less than that of a conventional sludge dehydrating agent.
  • the reason why an excellent dehydrating effect can be obtained is considered to be due to the following mechanisms (1) and (2).
  • the crosslinked polymer having the intrinsic viscosity as described above is highly crosslinked and has a structure in which the molecule is rigid, and thus is not easily distorted. For this reason, the entire surface of the sludge particle is covered by strongly bonding to a plurality of crosslinked polymer molecules without covering the entire surface of the particle surface with one molecule of the crosslinked polymer. As a result, high-density bonds are formed between the sludge particles via the crosslinked polymer, and it is possible to form a hard floc that can withstand a strong share such as stirring.
  • the crosslinked polymer has a cationic charge trapped inside a highly crosslinked structure, and when a physical force such as stirring is applied, the trapped cationic charge is gradually released to the outside. Coarse flocs are easily formed by the sequential reaction between the cationic charge and the sludge particle surface.
  • the crosslinked polymer used for the sludge dehydrating agent is one or more selected from the following polymers A, B, and C. Among these, it may be used alone or in combination of two or more. Among these, it is preferable that the polymer A is included from the viewpoint of obtaining a more excellent dehydration effect.
  • the cross-linked polymer is more preferably polymer A.
  • the sludge dehydrating agent may contain, for example, one or more compounds selected from the group consisting of powder acids such as sulfamic acid and salts such as sodium sulfate.
  • the content of the crosslinked polymer in the sludge dehydrating agent is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more. It is preferable that it is 100 mass%.
  • Polymer A has a monomer composition of a polymer structural unit represented by the following general formula (1): a cationic monomer (hereinafter simply referred to as “cationic monomer (1)”) 1 It is a crosslinked polymer composed of ⁇ 100 mol% and nonionic monomer 0 to 99 mol%.
  • the method for polymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
  • the said crosslinking agent is not contained in the monomer composition of the polymer structural unit said by this invention.
  • R ⁇ 1 > is a hydrogen atom or a methyl group.
  • R 2 and R 3 are each independently an alkyl group or alkoxy group having 1 to 3 carbon atoms, or a benzyl group.
  • R 4 is a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, or a benzyl group.
  • A is an oxygen atom or NH group, and B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms.
  • X ⁇ represents an anion, and preferably chlorine, bromine, iodine, 1 ⁇ 2 ⁇ SO 4 — or CH 3 SO 4 — .
  • Examples of the cationic monomer (1) include (meth) acryloyloxyalkyl groups such as 2-((meth) acryloyloxy) ethyltrimethylammonium chloride and 2-((meth) acryloyloxy) ethyldimethylbenzylammonium chloride. Quaternary ammonium salts; (meth) acryloyloxyalkyl tertiary amine salts such as 2-((meth) acryloyloxy) ethyldimethylamine sulfate or hydrochloride, 3-((meth) acryloyloxy) propyldimethylamine hydrochloride, etc.
  • (meth) acryloylaminoalkyl quaternary ammonium salts such as 3-((meth) acryloylamino) propyltrimethylammonium chloride and 3-((meth) acryloylamino) propyltrimethylammonium methyl sulfate It is. Among these, it may be used alone or in combination of two or more. Of these, (meth) acryloyloxyalkyl quaternary ammonium salts are preferable, and 2- (acryloyloxy) ethyltrimethylammonium chloride is particularly preferable because it is excellent in polymerizability and easily obtains a crosslinked polymer having a strong structure. .
  • the cationic monomer (1) is contained in an amount of 1 to 100 mol% as a polymer structural unit. That is, the polymer A may be all of the constituent monomer may be the cationic monomer (1), or the cationic monomer (1) may be non-ionic with 1 mol% or more and less than 100 mol%. It may be a copolymer composed of 99 mol% or less of a functional monomer. However, since the polymer in which the cationic monomer (1) is 100 mol% has high hygroscopicity, the polymer A is preferably a copolymer from the viewpoint of the dewatering effect and handling properties of the sludge dehydrating agent.
  • the proportion of the cationic monomer (1) in the polymer constituent unit of the copolymer is preferably 30 to 95 mol%, more preferably 50 to 90 mol%, and still more preferably 55 to 85 mol%. %.
  • nonionic monomer examples include amides such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide; vinyl cyanide compounds such as (meth) acrylonitrile; methyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as ethyl (meth) acrylate; vinyl esters such as vinyl acetate; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and p-methylstyrene.
  • These nonionic monomers may be used individually by 1 type, or may use 2 or more types together.
  • acrylamide is preferable because it is excellent in water solubility, can easily adjust the monomer composition ratio in the polymer, and can easily obtain a crosslinked polymer having a strong structure.
  • the monomer composition of the polymer structural unit is a cationic monomer represented by the following general formula (2) (hereinafter simply referred to as “cationic monomer (2)”) 1 It is a crosslinked polymer composed of ⁇ 100 mol% and nonionic monomer 0 to 99 mol%.
  • the method for polymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
  • R 5 and R 6 are each independently a hydrogen atom or a methyl group.
  • X ⁇ is an anion, which is the same as in the general formula (1).
  • Examples of the cationic monomer (2) include diallyldimethylammonium chloride and dimethallyldimethylammonium chloride. Among these, it may be used alone or in combination of two or more.
  • the cationic monomer (2) is contained in an amount of 1 to 100 mol% as a polymer structural unit. That is, the polymer B may be all of the constituent monomer may be the cationic monomer (2), or alternatively, the cationic monomer may be 1 mol% or more and less than 100 mol%. It may be a copolymer composed of 99 mol% or less of a monomer. From the viewpoint of the dewatering effect of the sludge dewatering agent, the polymer B is preferably a copolymer.
  • the proportion of the cationic monomer (2) in the polymer constituent unit of the copolymer is preferably 30 to 95 mol%, more preferably 50 to 90 mol%, and still more preferably 55 to 85 mol%. %.
  • the nonionic monomer is the same as that for the polymer A described above.
  • Polymer C has a polymer composition unit monomer composition of 1 to 99 mol% of the cationic monomer (1) and an anionic monomer represented by the following general formula (3) (hereinafter referred to as “anion”). This is a cross-linked polymer composed of 1 to 99 mol% and nonionic monomer 0 to 98 mol%.
  • the method of copolymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
  • R 7 is a hydrogen atom or CH 2 COOY.
  • R 8 is a hydrogen atom, a methyl group or COOY.
  • Q is SO 3 ⁇ , C 6 H 4 SO 3 ⁇ , CONHC (CH 3 ) 2 CH 2 SO 3 — or COO ⁇ .
  • Y is a hydrogen atom or a cation. Examples of the cation include alkali metal ions.
  • anionic monomer (3) examples include vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, (meth) acrylic acid, itaconic acid, maleic acid, and alkali metals thereof. Salt. Among these, it may be used alone or in combination of two or more. Of these, acrylic acid is preferred.
  • the polymer C may be a copolymer of the cationic monomer (1) and the anionic monomer (3), or in addition to these monomers, nonionic monomers may also be used. It may be a copolymer as a polymer structural unit.
  • the proportion of the cationic monomer (1) in the polymer constituent units of these copolymers is preferably 30 to 98 mol%, more preferably 50 to 97 mol%, and still more preferably 55 to 95 mol%.
  • the proportion of the anionic monomer (3) is preferably 2 to 70 mol%, more preferably 3 to 50 mol%, still more preferably 5 to 45 mol%.
  • the polymer C is a copolymer of the cationic monomer (1) and the anionic monomer (3), among the polymer constituent units of the copolymer, the cationic monomer (1)
  • the ratio is preferably 30 to 98 mol%, more preferably 50 to 97 mol%, still more preferably 55 to 95 mol%.
  • the polymer C is a copolymer of a cationic monomer (1), an anionic monomer (3), and a nonionic monomer
  • the ratio of the nonionic monomer is 1 to 65. It is preferably mol%, more preferably 5 to 50 mol%, still more preferably 10 to 35 mol%.
  • Particularly preferred ratio ranges of the cationic monomer (1), the anionic monomer (3) and the nonionic monomer are 55 to 80 mol%, 5 to 15 mol%, and 10 to 30 respectively. Mol%.
  • the nonionic monomer is the same as that for the polymer A described above.
  • the crosslinked polymer constituting the sludge dehydrating agent of the present invention has an intrinsic viscosity of 0.5 to 5.0 dL / g at 30 ° C. in a 1.0 N sodium nitrate aqueous solution. Intrinsic viscosity is also an index of molecular weight, and the higher the molecular weight of the polymer, the higher the intrinsic viscosity. However, since the intrinsic viscosity is affected by the structure of the monomer that is a polymer constituent unit, polymerization conditions, and the like, it does not always correspond to the magnitude of the molecular weight. In the present invention, among the crosslinked polymers, those having a specific intrinsic viscosity are used.
  • the intrinsic viscosity of the crosslinked polymer is preferably 0.8 to 4.9 dL / g, more preferably 1.0 to 4.5 dL / g, and still more preferably 1.2 to 4.5 dL / g.
  • the intrinsic viscosity is represented by [ ⁇ ] and is a value calculated using the following Huggins equation.
  • Huggins formula: ⁇ SP / C [ ⁇ ] + k ′ [ ⁇ ] 2 C
  • k ′ Huggins constant
  • C polymer solution concentration
  • ⁇ rel relative viscosity.
  • the cross-linked polymer can be produced by mixing and polymerizing a monomer that becomes a polymer constituent unit, a polymerization initiator, and a cross-linking agent as necessary.
  • polymerization initiator examples include persulfates such as ammonium persulfate and potassium persulfate; organic oxides such as benzoyl peroxide; azobisisobutyronitrile, azobiscyanovaleric acid, 2,2′-azobis ( And azo compounds such as 2-amidinopropane) dihydrochloride and 2,2′-azobis (2,4-dimethylvaleronitrile).
  • persulfates such as ammonium persulfate and potassium persulfate
  • organic oxides such as benzoyl peroxide
  • azobisisobutyronitrile azobiscyanovaleric acid
  • 2,2′-azobis ( And azo compounds such as 2-amidinopropane) dihydrochloride and 2,2′-azobis (2,4-dimethylvaleronitrile).
  • the amount of the polymerization initiator used is usually about 0.001 to 0.1 mol% with respect to the total monomer amount.
  • crosslinking agent examples include N, N′-methylenebis (meth) acrylamide, triallylamine, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and the like. Can be mentioned.
  • the addition amount of the crosslinking agent is adjusted so that the intrinsic viscosity of the crosslinked polymer is within the above range. Usually, it is preferably 50 to 500 ppm, more preferably 80 to 300 ppm, still more preferably 100 to 200 ppm based on the total monomer mass excluding the crosslinking agent.
  • the aspect of the polymerization method is not particularly limited, and examples thereof include an aqueous solution polymerization method, an emulsion polymerization method, and a suspension polymerization method.
  • a production method obtained as an emulsion liquid is preferable, and a water-in-oil emulsion (W / O emulsion) is obtained by emulsion polymerization. It is more preferable to obtain a crosslinked polymer as a liquid.
  • a mixed aqueous solution containing a monomer and water as a polymer constituent unit of a cross-linked polymer and a cross-linking agent as necessary is added to an oil layer mixture containing a surfactant and an oily solvent. It can be carried out by stirring and mixing to emulsify and adding a polymerization initiator thereto. By such a method, a crosslinked polymer is obtained as a W / O emulsion liquid.
  • the oily solvent for example, mineral oil such as kerosene and light oil and their refined products such as normal paraffin, isoparaffin, naphthenic oil, etc. can be used, and synthetic oils and vegetable oils having properties equivalent to these oils can be used.
  • animal oils or mixtures thereof can also be used.
  • the surfactant include sorbitan fatty acid esters such as sorbitan monooleate and sorbitan monostearate; and nonionic surfactants such as polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and pentaoxyethylene oleyl ether. Preferably used.
  • the crosslinked polymer obtained as such an emulsion liquid may be granulated or powdered by spray drying using a spray dryer or the like to obtain a dried granulated body or powder. If it is set as such a form, the handleability of a sludge dehydrating agent can be improved.
  • the sludge dewatering method of the present invention is a method in which the sludge is dehydrated by adding the sludge dehydrating agent to sludge such as excess sludge and mixed sludge from food factories, chemical factories, human waste treatment plants, and the like. Since the sludge dewatering agent of the present invention can exhibit an excellent dewatering effect even in a small amount, the amount added to the sludge can be suppressed, and the operability of the dewatering treatment can be improved and the cost can be reduced.
  • the amount of the sludge dehydrating agent added is preferably 20 to 1600 mg / L, more preferably 50 to 1200 mg / L. More preferably, it is 60 to 800 mg / L.
  • the method for adding the sludge dehydrating agent to the sludge is not particularly limited, and a known method for adding the sludge dehydrating agent can be applied.
  • the sludge dehydrating agent is added to the sludge as an aqueous solution or aqueous dispersion having a cross-linked polymer concentration of 0.01 to 0.5% by mass, preferably 0.03 to 0.3% by mass. In some cases, it may be added in a solid form such as powder.
  • the sludge dewatering agent and a polymer other than the crosslinked polymer may be used in combination.
  • the other polymer used in combination include a polymer having a cationic functional group or an anionic polymer.
  • the polymer having a cationic functional group includes not only a cationic polymer but also an amphoteric polymer.
  • the other polymer that can be used in combination may be a crosslinked type or a non-crosslinked type such as a straight chain, but from the viewpoint of sufficiently exerting the dewatering effect of the sludge dewatering agent, Those are preferred.
  • These other polymers are also preferably added to the sludge as an aqueous solution or aqueous dispersion having a polymer concentration of 0.01 to 0.5% by mass, like the cross-linked polymer of the sludge dehydrating agent, more preferably 0.03 to 0.3% by mass. In some cases, it may be added in the form of a solid such as a powder.
  • the monomer composition of the polymer structural unit is one or more cationic monomers selected from the cationic monomers (1) and (2) ( Hereinafter, it is expressed as “cationic monomer (1) / (2)”.) 1 to 100 mol%, nonionic monomer 0 to 99 mol%, and anionic monomer (3) A polymer composed of 0 to 50 mol% can be used.
  • the polymer may be a linear polymer, or may be a crosslinked polymer having an intrinsic viscosity outside the range of the intrinsic viscosity of the crosslinked polymer described above.
  • all of the constituent monomers may be cationic monomers (1) and (2).
  • the copolymer may be composed of 1 mol% or more and less than 100 mol%, nonionic monomer 0 to 99 mol%, and anionic monomer (3) 0 to 50 mol%.
  • cationic monomers (1) and (2) in the polymer having the cationic functional group include 2-((meth) acryloyloxy, similar to those mentioned for the polymer A or the polymer B. ) (Meth) acryloyloxyalkyl quaternary ammonium salts such as ethyltrimethylammonium chloride, 2-((meth) acryloyloxy) ethyldimethylbenzylammonium chloride; 2-((meth) acryloyloxy) ethyldimethylamine sulfate or hydrochloric acid Salts, (meth) acryloyloxyalkyl tertiary amine salts such as 3-((meth) acryloyloxy) propyldimethylamine hydrochloride; 3-((meth) acryloylamino) propyltrimethylammonium chloride, 3-((meth) Acryloylamino) Pills trimethylammonium (meth) acryl
  • (meth) acryloyloxyalkyl quaternary ammonium salts or (meth) acryloyloxyalkyl tertiary amine salts are preferred.
  • nonionic monomer in the polymer having a cationic functional group examples include, for example, (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like, as described for the polymer A.
  • it may be used alone or in combination of two or more. Of these, acrylamide is preferred.
  • anionic monomer (3) in the polymer having a cationic functional group examples include, for example, vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido-2, as described for the polymer C. -Methylpropanesulfonic acid, (meth) acrylic acid, itaconic acid, maleic acid, and alkali metal salts thereof. Among these, it may be used alone or in combination of two or more. Of these, acrylic acid is preferred.
  • the polymer having a cationic functional group may be mixed with the sludge dewatering agent and added as a single solution, or may be added separately from the sludge dewatering agent simultaneously or sequentially. Good.
  • the mass ratio of the sludge dehydrating agent to be used in combination with the polymer having a cationic functional group is preferably 20:80 to 80:20, more preferably 25:75 to 75:25, and still more preferably 30:70. ⁇ 70: 30.
  • anionic polymer examples include sodium polyacrylate, polyacrylamide partial hydrolyzate, a copolymer of sodium acrylate and acrylamide, partially sulfomethylated polyacrylamide, acrylamide and (2-acrylamide) -2-methylpropanesulfone. And a terpolymer of acrylamide, sodium acrylate, and (2-acrylamide) -2-methylpropanesulfonate.
  • a polyacrylamide partial hydrolyzate or a copolymer of sodium acrylate and acrylamide is preferable.
  • the anionic polymer When used in combination with the sludge dewatering agent, it is preferably added after the sludge dewatering agent is added to the sludge.
  • the mass ratio of the sludge dehydrating agent and the anionic polymer used in combination is preferably 50:50 to 95: 5, more preferably 60:40 to 90:10, and still more preferably 65:35 to 80:20. It is.
  • a mixed aqueous solution of 388 g of 80% by mass aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA), 28 g of acrylamide (AAM), 0.04 g of N, N′-methylenebisacrylamide as a crosslinking agent, and 222 g of pure water was added to the oil layer mixture and emulsified by stirring with a homogenizer. This was adjusted to 50 ° C. with stirring, and nitrogen gas was blown into the liquid for 30 minutes.
  • DAA 2- (acryloyloxy) ethyltrimethylammonium chloride
  • AAM acrylamide
  • N, N′-methylenebisacrylamide as a crosslinking agent
  • Synthesis Example 2 Synthesis of Polymer (A2)
  • the amount of N, N′-methylenebisacrylamide added was 0.06 g, and spray drying with a spray dryer was not performed.
  • a crosslinked polymer (A2) was obtained as a W / O emulsion liquid.
  • Synthesis Example 3 Synthesis of Polymer (A3)
  • AAM 2- (acryloyloxy) ethyltrimethylammonium chloride
  • AAM acrylamide
  • N, N′-methylenebisacrylamide was changed to 0.05 g.
  • A3 crosslinked polymer
  • Synthesis Example 4 Synthesis of Polymer (A4)
  • the amount of N, N′-methylenebisacrylamide added was 0.035 g, and the rest was the same as Synthesis Example 1 except that the water content was 5% by mass or less.
  • a crosslinked polymer (A4) was obtained.
  • Synthesis Example 8 Synthesis of Polymer (Z1)
  • 0.03 g of N, N′-methylenebisacrylamide and 2,2′-azobis (2, The 4-mass toluene solution of 4-dimethylvaleronitrile) was changed to 1.5 g, and other than that was carried out in the same manner as in Synthesis Example 2 to obtain a crosslinked polymer (Z1) as a W / O emulsion liquid.
  • the W / O emulsion liquid was added to a large excess of acetone for precipitation purification, and this precipitate was vacuum dried. The powder was subjected to intrinsic viscosity measurement.
  • (3-1) For polymers (A1) to (A5), (B1), (C1), (Z1) to (Z4), (Z6) and (Z8), 50 mL of 2N sodium nitrate aqueous solution was added to 50 mL of the filtrate.
  • a 1N sodium nitrate aqueous solution having a polymer concentration of 0.1% by mass was obtained, and this was diluted with a 1N sodium nitrate aqueous solution to be in the range of 0.02 to 0.1% by mass.
  • Polymer sample solutions having 5 levels of concentration were prepared.
  • a 1N sodium nitrate aqueous solution (1N-NaNO 3 ) was used as a blank solution.
  • Z5 For the polymer (Z5), a polymer sample solution was prepared using the 0.2N or 0.1N sodium chloride aqueous solution in place of the 2N or 1N sodium nitrate aqueous solution in the above (3-1).
  • a 0.1N sodium chloride aqueous solution (0.1N-NaCl) was used as a blank solution.
  • a polymer sample solution was prepared using the 2N or 1N sodium chloride aqueous solution instead of the 2N or 1N sodium nitrate aqueous solution in the above (3-1).
  • a 1N sodium chloride aqueous solution (1N-NaCl) was used as a blank solution.
  • Five viscometers were vertically attached in a constant temperature water bath adjusted to a temperature of 30 ° C. (within ⁇ 0.02 ° C.).
  • Table 2 shows the properties of various sludges used in the evaluation test.
  • the abbreviation of each component in the property of sludge and the measuring method are as follows. Further, “%” in the unit notation of each component amount in Table 2 means mass%.
  • SS Suspended Solid: Suspended matter; 100 mL of sludge is centrifuged at 3000 rpm for 10 minutes to remove the supernatant, and the precipitate is poured into a weighed crucible while washing with water, and the mass after drying at 105 to 110 ° C. It is shown as a mass ratio to sludge.
  • VSS Volatile suspended solids: Loss of ignition of suspended solids; After the suspended matter is weighed, the crucible containing suspended matter is ignited at a temperature within the range of 600 ⁇ 25 ° C, weighed after standing to cool, before and after ignition The difference in mass was expressed as a mass ratio with respect to suspended matter.
  • TS Total solids
  • evaporation residue 100 mL of sludge was placed in a weighed crucible, and the mass after drying at 105 to 110 ° C. was shown as a mass ratio to the sludge.
  • VTS Volatile Total Solids: Loss on ignition; after weighing the evaporation residue, the crucible containing the evaporation residue is ignited at a temperature within a range of 600 ⁇ 25 ° C. The difference was expressed as a mass ratio with respect to the evaporation residue.
  • Fiber content 100 mL of sludge was filtered through a 100-mesh sieve, the residue on the sieve was poured into a crucible while washing with water, and the crucible after drying at 105 to 110 ° C. was weighed. Thereafter, the mixture was ignited in a temperature range of 600 ⁇ 25 ° C., allowed to cool and weighed, and the difference in mass before and after ignition was shown as a mass ratio with respect to the suspended matter.
  • Example 1 A 0.2 mass% aqueous solution of polymer (A1) and a 0.2 mass% aqueous solution of polymer (Z4) were mixed at a mass ratio of 50:50 to prepare a sludge dehydrating agent sample (polymer aqueous solution).
  • This sludge dewatering agent sample is added to 1200 mL of sludge 1 collected in a 300 mL beaker at a polymer addition amount of 120 mg / L (0.9 mass% / SS), and stirred at 180 rpm for 30 seconds to form a coagulated floc. It was.
  • Example 2 Examples 2 to 24 and Comparative Examples 1 to 24
  • Example 3 the type of sludge, the type of polymer used, and the amount added were changed as shown in Table 3 below. Otherwise, a sludge dehydrating agent sample was prepared and added to the sludge in the same manner as in Example 1. Thus, an agglomerated floc was formed.
  • Example 25 To 200 mL of sludge 5 collected in a 300 mL beaker, a 0.2 mass% aqueous solution of polymer (A1) was added at a polymer addition amount of 90 mg / L (0.4 mass% / SS), and stirred at 180 rpm for 30 seconds. A 0.1% by mass aqueous solution of polymer (Z9) (anionic polymer) was added at a polymer addition amount of 35 mg / L (0.15% by mass / SS), and further stirred at 180 rpm for 20 seconds to form an aggregated floc. I let you.
  • Example 25 In Example 25, the polymer (Z3) was used in place of the polymer (A1), and other than that, aggregated flocs were formed in the same manner as in Example 25.
  • the evaluation test items and the evaluation method for the sludge dewatering agent sample are as follows. These evaluation results are summarized in Tables 3 and 4 below.
  • ⁇ 20-second filtration rate> A Buchner funnel having an inner diameter of 80 mm and a hole diameter of about 1 mm was placed on a 200 mL measuring cylinder, and a polyvinyl chloride tube having a diameter of 50 mm was placed thereon. In this cylinder, the agglomerated sludge after measuring the floc diameter as described above was poured at once, and the filtration amount after 20 seconds from the injection was read from the scale of the graduated cylinder and measured. It can be said that the greater the amount of filtration, the better the gravity filterability and the better the dehydration effect.
  • ⁇ SS leak amount> After the measurement of the filtration amount for 20 seconds, the solid content of sludge that passed through the Buchner funnel 60 seconds after the injection was read as SS leak amount from the scale of the graduated cylinder and measured. It can be said that the smaller the SS leak amount, the better the floc aggregation performance of the formed floc and the better the dehydration effect.
  • ⁇ Moisture content of cake> After the above SS leak amount measurement, the aggregate remaining on the Buchner funnel was packed in a polyvinyl chloride column having a diameter of 30 mm and a height of 17.5 mm. The column was removed and squeezed at 0.1 MPa for 60 seconds to obtain a dehydrated cake.
  • the mass of the dehydrated cake and the mass after the dehydrated cake was dried at 105 ° C. were measured, and the moisture content of the cake was calculated by regarding the reduced amount as the water content of the dehydrated cake.
  • the moisture content of the cake is about 80 to 85% by mass, the dehydrated cake can be handled in the same manner as in the past, and a lower value is preferable from the viewpoint of drying treatment and the like.
  • the floc diameter is large, the filtration amount is large for 20 seconds, and the SS leak amount is small. Moreover, the moisture content of the cake could be reduced. That is, it was confirmed that the sludge dewatering agent of the present invention is excellent in the dewatering effect. Moreover, when the sludge dehydrating agent of the present invention and other polymers other than that were used in combination, the floc diameter was increased and a tendency to exhibit good cohesiveness was observed.

Abstract

Provided are: a sludge dehydrating agent having an excellent dehydrating effect, in particular, an excellent flocculation ability and gravity filtration property, even if an amount added is small; and a sludge dehydrating method using said sludge dehydrating agent. The present invention provides a sludge dehydrating agent and a sludge dehydrating method using the same, the sludge dehydrating agent comprising at least one crosslinked polymer selected from a polymer A, a polymer B, and a polymer C, which contain a monomer represented by a specific structural formula, wherein the crosslinked polymer has an intrinsic viscosity of 0.5-5.0 dL/g, as measured with 1.0 N sodium nitrate.

Description

汚泥脱水剤及び汚泥脱水方法Sludge dewatering agent and sludge dewatering method
 本発明は、汚泥、特に難脱水性の汚泥の脱水処理に適した汚泥脱水剤、及び該汚泥脱水剤を用いた汚泥脱水方法に関する。 The present invention relates to a sludge dewatering agent suitable for the dewatering treatment of sludge, particularly sludge that is difficult to dewater, and a sludge dewatering method using the sludge dewatering agent.
 食品工場や化学工場、し尿処理場等で発生する余剰汚泥を主体とした汚泥の脱水処理には、一般的に、カチオン性高分子凝集剤が使用されている。しかしながら、近年の汚泥発生量の増加や汚泥性状の変化に伴い、難脱水化が進んでおり、重力ろ過性等の脱水効果の向上が強く求められている。 In general, cationic polymer flocculants are used for dewatering sludge mainly composed of excess sludge generated in food factories, chemical factories, human waste processing plants, and the like. However, with the recent increase in the amount of sludge generated and changes in sludge properties, dewatering is progressing, and improvement of dewatering effects such as gravity filterability is strongly demanded.
 従来、汚泥に添加するカチオン性高分子凝集剤としては、ジメチルアミノエチル(メタ)アクリレート又はその塩化メチル四級化物等が主として用いられていたが、さらなる脱水効果の改善のために、このようなカチオン性高分子凝集剤による処理以外に、例えば、特許文献1~5に示すような提案がなされている。 Conventionally, as a cationic polymer flocculant to be added to sludge, dimethylaminoethyl (meth) acrylate or its methyl chloride quaternized product has been mainly used, but in order to further improve the dehydration effect, In addition to treatment with a cationic polymer flocculant, for example, proposals as shown in Patent Documents 1 to 5 have been made.
 特許文献1には、油中水滴型エマルション状液体を、乾燥工程を経て造粒した電荷内包率35~90%のイオン性水溶性高分子を汚泥の脱水処理に用いることが記載されている。
 また、特許文献2及び3には、電荷内包率が高いものと低いものとの2種類の架橋性水溶性イオン性高分子を組み合せた凝集処理剤を汚泥脱水剤として適用することが記載されている。
 また、特許文献4には、アミジン系ポリマーと架橋型カチオン性ポリマーと非架橋型カチオン性ポリマーとの混合物による汚泥脱水剤、特許文献5には、無機凝集剤を添加した後に両性高分子凝集剤を添加する汚泥処理方法が開示されている。
Patent Document 1 describes that an ionic water-soluble polymer having a charge inclusion rate of 35 to 90%, which is obtained by granulating a water-in-oil emulsion liquid through a drying process, is used for sludge dewatering treatment.
Patent Documents 2 and 3 describe that an aggregating agent combining two types of cross-linkable water-soluble ionic polymers having a high charge inclusion rate and a low charge inclusion rate is applied as a sludge dehydrating agent. Yes.
Patent Document 4 discloses a sludge dehydrating agent based on a mixture of an amidine polymer, a crosslinked cationic polymer, and a non-crosslinked cationic polymer, and Patent Document 5 discloses an amphoteric polymer flocculant after adding an inorganic flocculant. A sludge treatment method in which is added is disclosed.
特開2009-280649号公報JP 2009-280649 A 特開2005-144346号公報JP 2005-144346 A 国際公開第2008/015769号公報International Publication No. 2008/015769 特開2011-224420号公報JP 2011-224420 A 特開昭63-158200号公報Japanese Unexamined Patent Publication No. 63-158200
 しかしながら、上記のような従来の技術では、形成されるフロックが小さい、あるいは2種類の薬剤の添加バランスの調整が煩雑である等、汚泥の脱水処理を必ずしも効率的に行うことはできなかった。
 また、特許文献3には、架橋ポリマーは、架橋により水中での分子の広がりが抑制され、「密度の詰まった」分子形態として存在するため、汚泥を凝集させるために必要となる汚泥脱水剤の添加量が多くなるとの問題点が挙げられている。このことは、汚泥脱水剤の分子の広がりが抑制された状態、すなわち、固有粘度が低い場合には、汚泥の凝集効果に劣ることを意味すると考えられる。
 しかしながら、汚泥脱水剤である高分子の水中での分子の広がりと、脱水効果との関係についての機構等は十分には明らかになっていない。
However, in the conventional techniques as described above, the sludge dehydration treatment cannot always be efficiently performed because the formed flocs are small or the adjustment of the addition balance of two kinds of chemicals is complicated.
Further, in Patent Document 3, since the cross-linked polymer is suppressed in molecular spreading in water due to cross-linking and exists in a “dense-packed” molecular form, a sludge dehydrating agent necessary for aggregating sludge is disclosed. There is a problem that the amount of addition increases. This is considered to mean that when the molecular spread of the sludge dehydrating agent is suppressed, that is, when the intrinsic viscosity is low, the sludge aggregation effect is inferior.
However, the mechanism of the relationship between the molecular spread of the polymer, which is a sludge dewatering agent, in water and the dehydration effect has not been fully clarified.
 そこで、本発明者らは、架橋性高分子の分子の広がりと、汚泥に対する凝集効果との関係性に着目して検討を重ねた。その結果、特定の高分子が、少ない添加量で優れた脱水効果を発揮することを見出した。 Therefore, the present inventors have repeatedly studied focusing on the relationship between the molecular spread of the crosslinkable polymer and the coagulation effect on sludge. As a result, it was found that a specific polymer exhibits an excellent dehydrating effect with a small addition amount.
 すなわち、本発明は、添加量が少なくても、脱水効果、特にフロック形成力及び重力ろ過性に優れた汚泥脱水剤、及び該汚泥脱水剤を用いた汚泥脱水方法を提供することを目的とする。 That is, an object of the present invention is to provide a sludge dewatering agent excellent in dewatering effect, in particular, floc-forming ability and gravity filterability, and a sludge dewatering method using the sludge dewatering agent even if the amount added is small. .
 本発明は、特定の架橋ポリマーを含み、かつ特定の固有粘度を有する脱水処理剤が、少ない添加量で、優れたフロック形成力及び重力ろ過性を発揮することを見出したことに基づくものである。 The present invention is based on the finding that a dehydrating agent containing a specific cross-linked polymer and having a specific intrinsic viscosity exhibits excellent floc-forming ability and gravity filterability with a small addition amount. .
 すなわち、本発明は、以下の[1]~[5]を提供する。
[1]下記ポリマーA、ポリマーB及びポリマーCのうちから選ばれる1種以上の架橋ポリマーを含み、前記架橋ポリマーは、1.0N硝酸ナトリウム水溶液における30℃での固有粘度が0.5~5.0dL/gである、汚泥脱水剤。
 ポリマーA:ポリマー構成単位の単量体組成が、下記一般式(1)で表されるカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマー
Figure JPOXMLDOC01-appb-C000004

(式(1)中、R1は水素原子又はメチル基である。R2及びR3は、それぞれ独立に、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。R4は、水素原子、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。Aは酸素原子又はNH基である。Bは炭素数2~4のアルキレン基又はアルコキシレン基である。X-は陰イオンである。)
 ポリマーB:ポリマー構成単位の単量体組成が、下記一般式(2)で表されるカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマー
Figure JPOXMLDOC01-appb-C000005

(式(2)中、R5及びR6は、それぞれ独立に、水素原子又はメチル基である。X-は陰イオンである。)
 ポリマーC:ポリマー構成単位の単量体組成が、前記一般式(1)で表されるカチオン性単量体1~99モル%と、下記一般式(3)で表されるアニオン性単量体1~99モル%と、非イオン性単量体0~98モル%とからなる架橋ポリマー
Figure JPOXMLDOC01-appb-C000006

(式(3)中、R7は水素原子又はCH2COOYである。R8は水素原子、メチル基又はCOOYである。QはSO3 -、C64SO3 -、CONHC(CH32CH2SO3 -又はCOO-である。Yは水素原子又は陽イオンである。)
[2]エマルション状液体、又はその乾燥造粒体もしくは粉体である、上記[1]に記載の汚泥脱水剤。
That is, the present invention provides the following [1] to [5].
[1] It contains one or more crosslinked polymers selected from the following polymers A, B and C, and the crosslinked polymer has an intrinsic viscosity at 30 ° C. in a 1.0 N sodium nitrate aqueous solution of 0.5 to 5 A sludge dewatering agent of 0.0 dL / g.
Polymer A: Crosslink in which the monomer composition of the polymer structural unit is 1-100 mol% of a cationic monomer represented by the following general formula (1) and 0-99 mol% of a nonionic monomer polymer
Figure JPOXMLDOC01-appb-C000004

(In the formula (1), R 1 represents .R 2 and R 3 is a hydrogen atom or a methyl group are each independently an alkyl or alkoxy group having 1 to 3 carbon atoms, or .R 4 is a benzyl group , A hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, or a benzyl group, A is an oxygen atom or NH group, B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms, X - is an anion).
Polymer B: Crosslink in which the monomer composition of the polymer structural unit is 1 to 100 mol% of a cationic monomer represented by the following general formula (2) and 0 to 99 mol% of a nonionic monomer polymer
Figure JPOXMLDOC01-appb-C000005

(In Formula (2), R 5 and R 6 are each independently a hydrogen atom or a methyl group. X is an anion.)
Polymer C: Anionic monomer having a monomer composition of a polymer constituent unit of 1 to 99 mol% of the cationic monomer represented by the general formula (1) and the following general formula (3) Crosslinked polymer comprising 1 to 99 mol% and nonionic monomer 0 to 98 mol%
Figure JPOXMLDOC01-appb-C000006

(In the formula (3), R 7 is a hydrogen atom or CH 2 COOY. R 8 is a hydrogen atom, a methyl group or COOY. Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 - or COO - is .Y is a hydrogen atom or a cation).
[2] The sludge dehydrating agent according to the above [1], which is an emulsion liquid, or a dry granulated body or powder thereof.
[3]上記[1]又は[2]に記載の汚泥脱水剤を汚泥に添加して、前記汚泥を脱水する、汚泥脱水方法。
[4]前記汚泥脱水剤と、前記架橋ポリマー以外の他のポリマーとを併用し、前記他のポリマーが、カチオン性官能基を有するポリマー又はアニオン性ポリマーである、上記[3]に記載の汚泥脱水方法。
[5]前記カチオン性官能基を有するポリマーは、ポリマー構成単位の単量体組成が、前記一般式(1)で表されるカチオン性単量体及び前記一般式(2)で表されるカチオン性単量体のうちから選ばれる1種以上のカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%と、前記一般式(3)で表されるアニオン性単量体0~50モル%とからなる、上記[4]に記載の汚泥脱水方法。
[3] A sludge dewatering method in which the sludge dewatering agent according to [1] or [2] is added to sludge to dewater the sludge.
[4] The sludge according to [3], wherein the sludge dehydrating agent is used in combination with another polymer other than the crosslinked polymer, and the other polymer is a polymer having a cationic functional group or an anionic polymer. Dehydration method.
[5] In the polymer having a cationic functional group, the monomer composition of the polymer constituent unit is a cationic monomer represented by the general formula (1) and a cation represented by the general formula (2). 1 to 100 mol% of one or more cationic monomers selected from the ionic monomers, 0 to 99 mol% of the nonionic monomers, and the anionic property represented by the general formula (3) The sludge dewatering method according to [4] above, comprising from 0 to 50 mol% of a monomer.
 本発明によれば、添加量が少なくても、脱水効果、特にフロック形成力及び重力ろ過性に優れた汚泥脱水剤を提供することができる。また、前記該汚泥脱水剤を用いた効率的な汚泥脱水方法を提供することができる。 According to the present invention, even if the addition amount is small, it is possible to provide a sludge dewatering agent that is excellent in the dewatering effect, in particular, the flock-forming ability and the gravity filterability. In addition, an efficient sludge dewatering method using the sludge dewatering agent can be provided.
 以下、本発明の汚泥脱水剤、及び該汚泥脱水剤を用いた汚泥脱水方法を詳細に説明する。
 なお、本明細書において、「(メタ)アクリル」とは、「アクリル」及び/又は「メタアクリル(メタクリル)」を意味するものであり、「(メタ)アクリレート」、「(メタ)アクリロ」との表記についても同様である。
Hereinafter, the sludge dewatering agent of the present invention and the sludge dewatering method using the sludge dewatering agent will be described in detail.
In the present specification, “(meth) acryl” means “acryl” and / or “methacryl (methacryl)”, and includes “(meth) acrylate” and “(meth) acrylo”. The same applies to the notation.
[汚泥脱水剤]
 本発明の汚泥脱水剤は、ポリマーA、ポリマーB及びポリマーCのうちから選ばれる1種以上の架橋ポリマーを含むものである。そして、前記架橋ポリマーは、1.0N硝酸ナトリウム水溶液における30℃での固有粘度は0.5~5.0dL/gである。
 このような汚泥脱水剤は、従来の汚泥脱水剤と同等もしくはより少ない添加量で、優れたフロック形成力及び重力ろ過性等の脱水効果を発揮する。優れた脱水効果が得られる要因は、下記の(1)及び(2)のような機構によるものと考えられる。
(1)上記のような固有粘度を有する架橋ポリマーは、高度に架橋しており、分子が剛直化しているため、歪を生じ難い構造である。このため、汚泥粒子表面は、前記架橋ポリマー1分子で該粒子表面の全面が覆われることなく、複数の架橋ポリマー分子と強く結合することにより、全面が覆われる。その結果、汚泥粒子間で前記架橋ポリマーを介して高密度の結合が形成され、撹拌等の強いシェアにも耐え得る固いフロックを形成することが可能となる。
(2)また、前記架橋ポリマーは、高度な架橋構造の内部にカチオン電荷が閉じ込められ、撹拌等の物理的な力が加わることにより、閉じ込められたカチオン電荷が外部に徐々に放出されて、該カチオン電荷と汚泥粒子表面との逐次反応により、粗大なフロックが形成されやすくなる。
[Sludge dewatering agent]
The sludge dehydrating agent of the present invention contains one or more cross-linked polymers selected from Polymer A, Polymer B and Polymer C. The crosslinked polymer has an intrinsic viscosity of 0.5 to 5.0 dL / g at 30 ° C. in a 1.0 N sodium nitrate aqueous solution.
Such a sludge dehydrating agent exhibits a dehydrating effect such as excellent floc-forming ability and gravity filterability with an addition amount equal to or less than that of a conventional sludge dehydrating agent. The reason why an excellent dehydrating effect can be obtained is considered to be due to the following mechanisms (1) and (2).
(1) The crosslinked polymer having the intrinsic viscosity as described above is highly crosslinked and has a structure in which the molecule is rigid, and thus is not easily distorted. For this reason, the entire surface of the sludge particle is covered by strongly bonding to a plurality of crosslinked polymer molecules without covering the entire surface of the particle surface with one molecule of the crosslinked polymer. As a result, high-density bonds are formed between the sludge particles via the crosslinked polymer, and it is possible to form a hard floc that can withstand a strong share such as stirring.
(2) Further, the crosslinked polymer has a cationic charge trapped inside a highly crosslinked structure, and when a physical force such as stirring is applied, the trapped cationic charge is gradually released to the outside. Coarse flocs are easily formed by the sequential reaction between the cationic charge and the sludge particle surface.
(架橋ポリマー)
 前記汚泥脱水剤に用いられる架橋ポリマーは、下記に示すポリマーA、ポリマーB、及びポリマーCのうちから選ばれる1種以上である。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、より優れた脱水効果を得る観点から、ポリマーAを含むことが好ましい。前記架橋ポリマーは、より好ましくはポリマーAである。
(Crosslinked polymer)
The crosslinked polymer used for the sludge dehydrating agent is one or more selected from the following polymers A, B, and C. Among these, it may be used alone or in combination of two or more. Among these, it is preferable that the polymer A is included from the viewpoint of obtaining a more excellent dehydration effect. The cross-linked polymer is more preferably polymer A.
 前記汚泥脱水剤には、前記架橋ポリマー以外に、例えば、スルファミン酸等の粉末酸や硫酸ナトリウム等の塩類等からなる群から選択される1種以上の化合物等が含まれていてもよい。ただし、脱水効果の観点から、汚泥脱水剤中の前記架橋ポリマーの含有量は、90質量%以上であることが好ましく、より好ましくは95質量%以上、さらに好ましくは98質量%以上であり、特に100質量%であることが好ましい。 In addition to the crosslinked polymer, the sludge dehydrating agent may contain, for example, one or more compounds selected from the group consisting of powder acids such as sulfamic acid and salts such as sodium sulfate. However, from the viewpoint of the dehydration effect, the content of the crosslinked polymer in the sludge dehydrating agent is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more. It is preferable that it is 100 mass%.
<ポリマーA>
 ポリマーAは、ポリマー構成単位の単量体組成が、下記一般式(1)で表されるカチオン性単量体(以下、単に、「カチオン性単量体(1)」と表記する。)1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマーである。これらの単量体を重合して架橋ポリマーとする方法は、特に限定されるものではないが、必要に応じて、架橋剤を用いる。
 なお、本発明で言うポリマー構成単位の単量体組成には、前記架橋剤は含まない。
<Polymer A>
Polymer A has a monomer composition of a polymer structural unit represented by the following general formula (1): a cationic monomer (hereinafter simply referred to as “cationic monomer (1)”) 1 It is a crosslinked polymer composed of ˜100 mol% and nonionic monomer 0 to 99 mol%. The method for polymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
In addition, the said crosslinking agent is not contained in the monomer composition of the polymer structural unit said by this invention.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記式(1)中、R1は水素原子又はメチル基である。R2及びR3は、それぞれ独立に、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。R4は、水素原子、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。Aは酸素原子又はNH基であり、Bは炭素数2~4のアルキレン基又はアルコキシレン基である。X-は陰イオンであり、好ましくは、塩素、臭素、ヨウ素、1/2・SO4 -又はCH3SO4 -である。 In said formula (1), R < 1 > is a hydrogen atom or a methyl group. R 2 and R 3 are each independently an alkyl group or alkoxy group having 1 to 3 carbon atoms, or a benzyl group. R 4 is a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, or a benzyl group. A is an oxygen atom or NH group, and B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms. X represents an anion, and preferably chlorine, bromine, iodine, ½ · SO 4 or CH 3 SO 4 .
 カチオン性単量体(1)としては、例えば、2-((メタ)アクリロイルオキシ)エチルトリメチルアンモニウムクロライド、2-((メタ)アクリロイルオキシ)エチルジメチルベンジルアンモニウムクロライド等の(メタ)アクリロイルオキシアルキル第四級アンモニウム塩;2-((メタ)アクリロイルオキシ)エチルジメチルアミン硫酸塩又は塩酸塩、3-((メタ)アクリロイルオキシ)プロピルジメチルアミン塩酸塩等の(メタ)アクリロイルオキシアルキル第三級アミン塩;3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムクロライド、3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムメチルサルフェート等の(メタ)アクリロイルアミノアルキル第四級アンモニウム塩等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、(メタ)アクリロイルオキシアルキル第四級アンモニウム塩が好ましく、特に、重合性に優れ、強固な構造を有する架橋ポリマーを得やすいことから、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライドが好ましい。 Examples of the cationic monomer (1) include (meth) acryloyloxyalkyl groups such as 2-((meth) acryloyloxy) ethyltrimethylammonium chloride and 2-((meth) acryloyloxy) ethyldimethylbenzylammonium chloride. Quaternary ammonium salts; (meth) acryloyloxyalkyl tertiary amine salts such as 2-((meth) acryloyloxy) ethyldimethylamine sulfate or hydrochloride, 3-((meth) acryloyloxy) propyldimethylamine hydrochloride, etc. And (meth) acryloylaminoalkyl quaternary ammonium salts such as 3-((meth) acryloylamino) propyltrimethylammonium chloride and 3-((meth) acryloylamino) propyltrimethylammonium methyl sulfate It is. Among these, it may be used alone or in combination of two or more. Of these, (meth) acryloyloxyalkyl quaternary ammonium salts are preferable, and 2- (acryloyloxy) ethyltrimethylammonium chloride is particularly preferable because it is excellent in polymerizability and easily obtains a crosslinked polymer having a strong structure. .
 ポリマーAにおいて、カチオン性単量体(1)は、ポリマー構成単位として1~100モル%含まれる。すなわち、ポリマーAは、その構成単量体すべてがカチオン性単量体(1)であってもよく、あるいはまた、カチオン性単量体(1)1モル%以上100モル%未満と、非イオン性単量体99モル%以下とからなる共重合体であってもよい。ただし、カチオン性単量体(1)が100モル%であるポリマーは吸湿性が高いため、汚泥脱水剤の脱水効果及び取り扱い性等の観点から、ポリマーAは共重合体であることが好ましい。この共重合体のポリマー構成単位のうち、カチオン性単量体(1)の割合は、30~95モル%であることが好ましく、より好ましくは50~90モル%、さらに好ましくは55~85モル%である。 In the polymer A, the cationic monomer (1) is contained in an amount of 1 to 100 mol% as a polymer structural unit. That is, the polymer A may be all of the constituent monomer may be the cationic monomer (1), or the cationic monomer (1) may be non-ionic with 1 mol% or more and less than 100 mol%. It may be a copolymer composed of 99 mol% or less of a functional monomer. However, since the polymer in which the cationic monomer (1) is 100 mol% has high hygroscopicity, the polymer A is preferably a copolymer from the viewpoint of the dewatering effect and handling properties of the sludge dehydrating agent. The proportion of the cationic monomer (1) in the polymer constituent unit of the copolymer is preferably 30 to 95 mol%, more preferably 50 to 90 mol%, and still more preferably 55 to 85 mol%. %.
 前記非イオン性単量体としては、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド類;(メタ)アクリロニトリル等のシアン化ビニル系化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸アルキルエステル類;酢酸ビニル等のビニルエステル類;スチレン、α-メチルスチレン、p-メチルスチレン等の芳香族ビニル系化合物等が挙げられる。これらの非イオン性単量体は、1種単独で用いても、2種以上を併用してもよい。これらのうち、水溶性に優れ、ポリマー中の単量体組成比の調整が容易であり、また、強固な構造を有する架橋ポリマーを得やすいことから、アクリルアミドが好ましい。 Examples of the nonionic monomer include amides such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide; vinyl cyanide compounds such as (meth) acrylonitrile; methyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as ethyl (meth) acrylate; vinyl esters such as vinyl acetate; aromatic vinyl compounds such as styrene, α-methylstyrene, and p-methylstyrene. These nonionic monomers may be used individually by 1 type, or may use 2 or more types together. Among these, acrylamide is preferable because it is excellent in water solubility, can easily adjust the monomer composition ratio in the polymer, and can easily obtain a crosslinked polymer having a strong structure.
<ポリマーB>
 ポリマーBは、ポリマー構成単位の単量体組成が、下記一般式(2)で表されるカチオン性単量体(以下、単に、「カチオン性単量体(2)」と表記する。)1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマーである。これらの単量体を重合して架橋ポリマーとする方法は、特に限定されるものではないが、必要に応じて、架橋剤を用いる。
<Polymer B>
In the polymer B, the monomer composition of the polymer structural unit is a cationic monomer represented by the following general formula (2) (hereinafter simply referred to as “cationic monomer (2)”) 1 It is a crosslinked polymer composed of ˜100 mol% and nonionic monomer 0 to 99 mol%. The method for polymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記式(2)中、R5及びR6は、それぞれ独立に、水素原子又はメチル基である。X-は陰イオンであり、前記一般式(1)についてと同様である。 In the formula (2), R 5 and R 6 are each independently a hydrogen atom or a methyl group. X is an anion, which is the same as in the general formula (1).
 カチオン性単量体(2)としては、ジアリルジメチルアンモニウムクロライド、ジメタリルジメチルアンモニウムクロライド等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。 Examples of the cationic monomer (2) include diallyldimethylammonium chloride and dimethallyldimethylammonium chloride. Among these, it may be used alone or in combination of two or more.
 ポリマーBにおいて、カチオン性単量体(2)は、ポリマー構成単位として1~100モル%含まれる。すなわち、ポリマーBは、その構成単量体すべてがカチオン性単量体(2)であってもよく、あるいはまた、前記カチオン性単量体1モル%以上100モル%未満と、非イオン性単量体99モル%以下とからなる共重合体であってもよい。汚泥脱水剤の脱水効果の観点から、ポリマーBは共重合体であることが好ましい。この共重合体のポリマー構成単位のうち、カチオン性単量体(2)の割合は、30~95モル%であることが好ましく、より好ましくは50~90モル%、さらに好ましくは55~85モル%である。
 前記非イオン性単量体は、上述したポリマーAについてと同様である。
In the polymer B, the cationic monomer (2) is contained in an amount of 1 to 100 mol% as a polymer structural unit. That is, the polymer B may be all of the constituent monomer may be the cationic monomer (2), or alternatively, the cationic monomer may be 1 mol% or more and less than 100 mol%. It may be a copolymer composed of 99 mol% or less of a monomer. From the viewpoint of the dewatering effect of the sludge dewatering agent, the polymer B is preferably a copolymer. The proportion of the cationic monomer (2) in the polymer constituent unit of the copolymer is preferably 30 to 95 mol%, more preferably 50 to 90 mol%, and still more preferably 55 to 85 mol%. %.
The nonionic monomer is the same as that for the polymer A described above.
<ポリマーC>
 ポリマーCは、ポリマー構成単位の単量体組成が、前記カチオン性単量体(1)1~99モル%と、下記一般式(3)で表されるアニオン性単量体(以下、「アニオン性単量体(3)」と表記する。)1~99モル%と、非イオン性単量体0~98モル%とからなる架橋ポリマーである。これらの単量体を共重合して架橋ポリマーとする方法は、特に限定されるものではないが、必要に応じて、架橋剤を用いる。
<Polymer C>
Polymer C has a polymer composition unit monomer composition of 1 to 99 mol% of the cationic monomer (1) and an anionic monomer represented by the following general formula (3) (hereinafter referred to as “anion”). This is a cross-linked polymer composed of 1 to 99 mol% and nonionic monomer 0 to 98 mol%. The method of copolymerizing these monomers to form a crosslinked polymer is not particularly limited, but a crosslinking agent is used as necessary.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 前記式(3)中、R7は水素原子又はCH2COOYである。R8は水素原子、メチル基又はCOOYである。QはSO3 -、C64SO3 -、CONHC(CH32CH2SO3 -又はCOO-である。Yは水素原子又は陽イオンである。前記陽イオンとしては、例えば、アルカリ金属イオンが挙げられる。 In the formula (3), R 7 is a hydrogen atom or CH 2 COOY. R 8 is a hydrogen atom, a methyl group or COOY. Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO . Y is a hydrogen atom or a cation. Examples of the cation include alkali metal ions.
 アニオン性単量体(3)としては、例えば、ビニルスルホン酸、ビニルベンゼンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリル酸、イタコン酸、マレイン酸、及びこれらのアルカリ金属塩が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、アクリル酸が好ましい。 Examples of the anionic monomer (3) include vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, (meth) acrylic acid, itaconic acid, maleic acid, and alkali metals thereof. Salt. Among these, it may be used alone or in combination of two or more. Of these, acrylic acid is preferred.
 ポリマーCは、カチオン性単量体(1)とアニオン性単量体(3)との共重合体であってもよく、あるいはまた、これらの単量体以外に、非イオン性単量体もポリマー構成単位とする共重合体であってもよい。こられの共重合体のポリマー構成単位のうち、カチオン性単量体(1)の割合は、30~98モル%であることが好ましく、より好ましくは50~97モル%、さらに好ましくは55~95モル%である。また、アニオン性単量体(3)の割合は、2~70モル%であることが好ましく、より好ましくは3~50モル%、さらに好ましくは5~45モル%である。
 ポリマーCが、カチオン性単量体(1)とアニオン性単量体(3)との共重合体である場合、この共重合体のポリマー構成単位のうち、カチオン性単量体(1)の割合は、30~98モル%であることが好ましく、より好ましくは50~97モル%、さらに好ましくは55~95モル%である。
 ポリマーCが、カチオン性単量体(1)とアニオン性単量体(3)と非イオン性単量体との共重合体である場合、非イオン性単量体の割合は、1~65モル%であることが好ましく、より好ましくは5~50モル%、さらに好ましくは10~35モル%である。カチオン性単量体(1)とアニオン性単量体(3)と非イオン性単量体との特に好ましい割合の範囲は、それぞれ、55~80モル%、5~15モル%、10~30モル%である。
 前記非イオン性単量体は、上述したポリマーAについてと同様である。
The polymer C may be a copolymer of the cationic monomer (1) and the anionic monomer (3), or in addition to these monomers, nonionic monomers may also be used. It may be a copolymer as a polymer structural unit. The proportion of the cationic monomer (1) in the polymer constituent units of these copolymers is preferably 30 to 98 mol%, more preferably 50 to 97 mol%, and still more preferably 55 to 95 mol%. The proportion of the anionic monomer (3) is preferably 2 to 70 mol%, more preferably 3 to 50 mol%, still more preferably 5 to 45 mol%.
When the polymer C is a copolymer of the cationic monomer (1) and the anionic monomer (3), among the polymer constituent units of the copolymer, the cationic monomer (1) The ratio is preferably 30 to 98 mol%, more preferably 50 to 97 mol%, still more preferably 55 to 95 mol%.
When the polymer C is a copolymer of a cationic monomer (1), an anionic monomer (3), and a nonionic monomer, the ratio of the nonionic monomer is 1 to 65. It is preferably mol%, more preferably 5 to 50 mol%, still more preferably 10 to 35 mol%. Particularly preferred ratio ranges of the cationic monomer (1), the anionic monomer (3) and the nonionic monomer are 55 to 80 mol%, 5 to 15 mol%, and 10 to 30 respectively. Mol%.
The nonionic monomer is the same as that for the polymer A described above.
(固有粘度)
 本発明の汚泥脱水剤を構成する架橋ポリマーは、1.0N硝酸ナトリウム水溶液における30℃での固有粘度が0.5~5.0dL/gである。
 固有粘度は、分子量の指標ともなり、ポリマーの分子量が大きいほど、固有粘度が高い傾向にある。ただし、固有粘度は、ポリマー構成単位である単量体の構造や重合条件等による影響も受けるため、必ずしも分子量の大小に対応するとは限らない。
 本発明においては、前記架橋ポリマーのうち、特定の固有粘度を有するものを用いる。
(Intrinsic viscosity)
The crosslinked polymer constituting the sludge dehydrating agent of the present invention has an intrinsic viscosity of 0.5 to 5.0 dL / g at 30 ° C. in a 1.0 N sodium nitrate aqueous solution.
Intrinsic viscosity is also an index of molecular weight, and the higher the molecular weight of the polymer, the higher the intrinsic viscosity. However, since the intrinsic viscosity is affected by the structure of the monomer that is a polymer constituent unit, polymerization conditions, and the like, it does not always correspond to the magnitude of the molecular weight.
In the present invention, among the crosslinked polymers, those having a specific intrinsic viscosity are used.
 固有粘度が上記範囲外である場合は、形成されるフロック径が大きくなりにくく、重力ろ過性に劣り、十分な脱水効果が得られない傾向にある。より優れた脱水効果を得る観点から、架橋ポリマーの固有粘度は、0.8~4.9dL/gであることが好ましく、より好ましくは1.0~4.5dL/gであり、さらに好ましくは1.2~4.5dL/gである。 When the intrinsic viscosity is out of the above range, the formed floc diameter is hardly increased, the gravity filterability is inferior, and sufficient dehydration effect tends not to be obtained. From the viewpoint of obtaining a more excellent dehydrating effect, the intrinsic viscosity of the crosslinked polymer is preferably 0.8 to 4.9 dL / g, more preferably 1.0 to 4.5 dL / g, and still more preferably 1.2 to 4.5 dL / g.
 固有粘度は[η]で表され、下記のHugginsの式を用いて算出された値とする。
  Hugginsの式: ηSP/C=[η]+k’[η]2
 上記式において、ηSP:比粘度(=ηrel-1)、k’:Huggins定数、C:ポリマー溶液濃度、ηrel:相対粘度を表す。
 異なる濃度の架橋ポリマーの溶液を調製し、各濃度の溶液に対して比粘度ηSPを求めて、ηSP/C対Cの関係をプロットし、Cを0に外挿した切片の値が固有粘度[η]である。
 比粘度ηSPは、下記実施例に示すような方法により求められる。
The intrinsic viscosity is represented by [η] and is a value calculated using the following Huggins equation.
Huggins formula: η SP / C = [η] + k ′ [η] 2 C
In the above formula, η SP : specific viscosity (= η rel −1), k ′: Huggins constant, C: polymer solution concentration, η rel : relative viscosity.
Prepare solutions of cross-linked polymers of different concentrations, determine specific viscosity η SP for each concentration of solution, plot the relationship of η SP / C versus C, and the value of the intercept extrapolating C to 0 is unique Viscosity [η].
The specific viscosity η SP is determined by a method as shown in the following examples.
[架橋ポリマーの製造方法]
 前記架橋ポリマーは、ポリマー構成単位となる単量体と、重合開始剤と、必要に応じて架橋剤とを混合して、重合させることにより製造することができる。
[Method for producing crosslinked polymer]
The cross-linked polymer can be produced by mixing and polymerizing a monomer that becomes a polymer constituent unit, a polymerization initiator, and a cross-linking agent as necessary.
 重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩;過酸化ベンゾイル等の有機化酸化物;アゾビスイソブチロニトリル、アゾビスシアノバレリン酸、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。
 重合開始剤の使用量は、通常、全単量体量に対して0.001~0.1モル%程度である。
Examples of the polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate; organic oxides such as benzoyl peroxide; azobisisobutyronitrile, azobiscyanovaleric acid, 2,2′-azobis ( And azo compounds such as 2-amidinopropane) dihydrochloride and 2,2′-azobis (2,4-dimethylvaleronitrile).
The amount of the polymerization initiator used is usually about 0.001 to 0.1 mol% with respect to the total monomer amount.
 架橋剤としては、例えば、N,N’-メチレンビス(メタ)アクリルアミド、トリアリルアミン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート等が挙げられる。
 架橋剤の添加量は、架橋ポリマーの固有粘度が上記範囲内となるように調整される。通常、架橋剤を除く、全単量体質量に対して50~500ppmであることが好ましく、より好ましくは80~300ppm、さらに好ましくは100~200ppmである。
Examples of the crosslinking agent include N, N′-methylenebis (meth) acrylamide, triallylamine, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and the like. Can be mentioned.
The addition amount of the crosslinking agent is adjusted so that the intrinsic viscosity of the crosslinked polymer is within the above range. Usually, it is preferably 50 to 500 ppm, more preferably 80 to 300 ppm, still more preferably 100 to 200 ppm based on the total monomer mass excluding the crosslinking agent.
 重合方法の態様は、特に限定されるものではなく、例えば、水溶液重合法、乳化重合法、懸濁重合法等が挙げられる。これらのうち、得られた架橋ポリマーの取り扱い容易性や汚泥への溶解性等の観点から、エマルション状液体として得られる製造方法が好ましく、乳化重合法により油中水滴型エマルション(W/O型エマルション)状液体として架橋ポリマーを得ることがより好ましい。
 乳化重合は、例えば、界面活性剤と油性溶媒とを含む油層混合物中に、架橋ポリマーのポリマー構成単位となる単量体と水と、必要に応じて架橋剤等を含む混合水溶液を添加して撹拌混合して乳化させ、これに重合開始剤を添加することにより行うことができる。このような方法により、W/O型エマルション状液体として架橋ポリマーが得られる。
 前記油性溶媒としては、例えば、灯油、軽油等の鉱物油及びこれらの精製品であるノルマルパラフィン、イソパラフィン、ナフテン油等を使用することができ、また、これらと同等の性状を有する合成油、植物油、動物油又はそれらの混合物も使用することができる。
 前記界面活性剤としては、例えば、ソルビタンモノオレート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル;ポリオキシエチレンラウリルエーテル、ペンタオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル等の非イオン性界面活性剤が好適に用いられる。
The aspect of the polymerization method is not particularly limited, and examples thereof include an aqueous solution polymerization method, an emulsion polymerization method, and a suspension polymerization method. Among these, from the viewpoint of easy handling of the obtained crosslinked polymer and solubility in sludge, a production method obtained as an emulsion liquid is preferable, and a water-in-oil emulsion (W / O emulsion) is obtained by emulsion polymerization. It is more preferable to obtain a crosslinked polymer as a liquid.
In emulsion polymerization, for example, a mixed aqueous solution containing a monomer and water as a polymer constituent unit of a cross-linked polymer and a cross-linking agent as necessary is added to an oil layer mixture containing a surfactant and an oily solvent. It can be carried out by stirring and mixing to emulsify and adding a polymerization initiator thereto. By such a method, a crosslinked polymer is obtained as a W / O emulsion liquid.
As the oily solvent, for example, mineral oil such as kerosene and light oil and their refined products such as normal paraffin, isoparaffin, naphthenic oil, etc. can be used, and synthetic oils and vegetable oils having properties equivalent to these oils can be used. Animal oils or mixtures thereof can also be used.
Examples of the surfactant include sorbitan fatty acid esters such as sorbitan monooleate and sorbitan monostearate; and nonionic surfactants such as polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and pentaoxyethylene oleyl ether. Preferably used.
 また、このようなエマルション状液体として得られた架橋ポリマーを、スプレードライヤー等を用いた噴霧乾燥により造粒又は粉末化し、乾燥造粒体や粉体としてもよい。このような形態とすれば、汚泥脱水剤の取り扱い容易性を向上させることができる。 Further, the crosslinked polymer obtained as such an emulsion liquid may be granulated or powdered by spray drying using a spray dryer or the like to obtain a dried granulated body or powder. If it is set as such a form, the handleability of a sludge dehydrating agent can be improved.
[汚泥脱水方法]
 本発明の汚泥脱水方法は、食品工場や化学工場、し尿処理場等からの余剰汚泥や混合汚泥等の汚泥に、前記汚泥脱水剤を添加して、前記汚泥を脱水する方法である。
 本発明の汚泥脱水剤は、少量でも優れた脱水効果を発揮し得ることから、汚泥に対する添加量を抑制することができ、脱水処理の操作性の向上やコスト低減を図ることができる。例えば、浮遊物質(SS)濃度が0.4~4.0質量%程度である場合、前記汚泥脱水剤の添加量は20~1600mg/Lであることが好ましく、より好ましくは50~1200mg/L、さらに好ましくは60~800mg/Lである。
[Sludge dewatering method]
The sludge dewatering method of the present invention is a method in which the sludge is dehydrated by adding the sludge dehydrating agent to sludge such as excess sludge and mixed sludge from food factories, chemical factories, human waste treatment plants, and the like.
Since the sludge dewatering agent of the present invention can exhibit an excellent dewatering effect even in a small amount, the amount added to the sludge can be suppressed, and the operability of the dewatering treatment can be improved and the cost can be reduced. For example, when the suspended solid (SS) concentration is about 0.4 to 4.0% by mass, the amount of the sludge dehydrating agent added is preferably 20 to 1600 mg / L, more preferably 50 to 1200 mg / L. More preferably, it is 60 to 800 mg / L.
 汚泥に対する前記汚泥脱水剤の添加方法は、特に限定されるものではなく、公知の汚泥脱水剤の添加方法を適用することができる。一般的には、前記汚泥脱水剤中の架橋ポリマー濃度が0.01~0.5質量%、好ましくは0.03~0.3質量%の水溶液又は水分散液として、汚泥に添加する。場合によっては、粉末等の固形状で添加してもよい。 The method for adding the sludge dehydrating agent to the sludge is not particularly limited, and a known method for adding the sludge dehydrating agent can be applied. In general, the sludge dehydrating agent is added to the sludge as an aqueous solution or aqueous dispersion having a cross-linked polymer concentration of 0.01 to 0.5% by mass, preferably 0.03 to 0.3% by mass. In some cases, it may be added in a solid form such as powder.
(他のポリマーとの併用)
 本発明の汚泥脱水剤を用いた汚泥脱水方法においては、前記汚泥脱水剤と、前記架橋ポリマー以外の他のポリマーとを併用することもできる。併用する他のポリマーとしては、カチオン性官能基を有するポリマー又はアニオン性ポリマーが挙げられる。カチオン性官能基を有するポリマーには、カチオン性ポリマーのみならず、両性ポリマーも含まれる。また、併用できる他のポリマーは、架橋型であっても、直鎖状等の非架橋型であってもよいが、前記汚泥脱水剤の脱水効果を十分に発揮させる観点から、直鎖状のものが好ましい。
 これらの他のポリマーも、前記汚泥脱水剤の架橋ポリマーと同様に、ポリマー濃度が0.01~0.5質量%の水溶液又は水分散液として、汚泥に添加することが好ましく、より好ましくは、0.03~0.3質量%である。また、場合によっては、粉末等の固形状で添加してもよい。
(Combination with other polymers)
In the sludge dewatering method using the sludge dewatering agent of the present invention, the sludge dewatering agent and a polymer other than the crosslinked polymer may be used in combination. Examples of the other polymer used in combination include a polymer having a cationic functional group or an anionic polymer. The polymer having a cationic functional group includes not only a cationic polymer but also an amphoteric polymer. Further, the other polymer that can be used in combination may be a crosslinked type or a non-crosslinked type such as a straight chain, but from the viewpoint of sufficiently exerting the dewatering effect of the sludge dewatering agent, Those are preferred.
These other polymers are also preferably added to the sludge as an aqueous solution or aqueous dispersion having a polymer concentration of 0.01 to 0.5% by mass, like the cross-linked polymer of the sludge dehydrating agent, more preferably 0.03 to 0.3% by mass. In some cases, it may be added in the form of a solid such as a powder.
<カチオン性官能基を有するポリマー>
 カチオン性官能基を有するポリマーとしては、例えば、ポリマー構成単位の単量体組成が、前記カチオン性単量体(1)及び(2)のうちから選ばれる1種以上のカチオン性単量体(以下、「カチオン性単量体(1)・(2)」と表記する。)1~100モル%と、非イオン性単量体0~99モル%と、前記アニオン性単量体(3)0~50モル%とからなるポリマーを用いることができる。前記ポリマーは、直鎖状ポリマーであっても、あるいはまた、上述した架橋ポリマーの固有粘度の範囲外の固有粘度を有する架橋型のポリマーであってもよい。
 前記カチオン性官能基を有するポリマーは、その構成単量体が、すべてカチオン性単量体(1)・(2)であってもよく、あるいはまた、カチオン性単量体(1)・(2)1モル%以上100モル%未満と、非イオン性単量体0~99モル%と、アニオン性単量体(3)0~50モル%からなる共重合体であってもよい。
<Polymer having cationic functional group>
As the polymer having a cationic functional group, for example, the monomer composition of the polymer structural unit is one or more cationic monomers selected from the cationic monomers (1) and (2) ( Hereinafter, it is expressed as “cationic monomer (1) / (2)”.) 1 to 100 mol%, nonionic monomer 0 to 99 mol%, and anionic monomer (3) A polymer composed of 0 to 50 mol% can be used. The polymer may be a linear polymer, or may be a crosslinked polymer having an intrinsic viscosity outside the range of the intrinsic viscosity of the crosslinked polymer described above.
In the polymer having a cationic functional group, all of the constituent monomers may be cationic monomers (1) and (2). Alternatively, the cationic monomers (1) and (2 The copolymer may be composed of 1 mol% or more and less than 100 mol%, nonionic monomer 0 to 99 mol%, and anionic monomer (3) 0 to 50 mol%.
 前記カチオン性官能基を有するポリマーにおけるカチオン性単量体(1)・(2)の具体例としては、前記ポリマーA又は前記ポリマーBについて挙げたものと同様に、2-((メタ)アクリロイルオキシ)エチルトリメチルアンモニウムクロライド、2-((メタ)アクリロイルオキシ)エチルジメチルベンジルアンモニウムクロライド等の(メタ)アクリロイルオキシアルキル第四級アンモニウム塩;2-((メタ)アクリロイルオキシ)エチルジメチルアミン硫酸塩又は塩酸塩、3-((メタ)アクリロイルオキシ)プロピルジメチルアミン塩酸塩等の(メタ)アクリロイルオキシアルキル第3級アミン塩;3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムクロライド、3-((メタ)アクリロイルアミノ)プロピルトリメチルアンモニウムメチルサルフェート等の(メタ)アクリロイルアミノアルキル第四級アンモニウム塩、ジアリルジメチルアンモニウムクロライド、ジメタクリルジメチルアンモニウムクロライド等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、(メタ)アクリロイルオキシアルキル第四級アンモニウム塩又は(メタ)アクリロイルオキシアルキル第3級アミン塩が好ましい。 Specific examples of the cationic monomers (1) and (2) in the polymer having the cationic functional group include 2-((meth) acryloyloxy, similar to those mentioned for the polymer A or the polymer B. ) (Meth) acryloyloxyalkyl quaternary ammonium salts such as ethyltrimethylammonium chloride, 2-((meth) acryloyloxy) ethyldimethylbenzylammonium chloride; 2-((meth) acryloyloxy) ethyldimethylamine sulfate or hydrochloric acid Salts, (meth) acryloyloxyalkyl tertiary amine salts such as 3-((meth) acryloyloxy) propyldimethylamine hydrochloride; 3-((meth) acryloylamino) propyltrimethylammonium chloride, 3-((meth) Acryloylamino) Pills trimethylammonium (meth) acryloyl amino alkyl quaternary ammonium salts such as methyl sulfate, diallyl dimethyl ammonium chloride, di methacrylate dimethyl ammonium chloride. Among these, it may be used alone or in combination of two or more. Of these, (meth) acryloyloxyalkyl quaternary ammonium salts or (meth) acryloyloxyalkyl tertiary amine salts are preferred.
 前記カチオン性官能基を有するポリマーにおける非イオン性単量体の具体例としては、前記ポリマーAについて挙げたものと同様に、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド類;(メタ)アクリロニトリル等のシアン化ビニル系化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸アルキルエステル類;酢酸ビニル等のビニルエステル類;スチレン、α-メチルスチレン、p-メチルスチレン等の芳香族ビニル系化合物等が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、アクリルアミドが好ましい。 Specific examples of the nonionic monomer in the polymer having a cationic functional group include, for example, (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like, as described for the polymer A. Amides; vinyl cyanide compounds such as (meth) acrylonitrile; (meth) acrylic acid alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate; vinyl esters such as vinyl acetate; styrene, α -Aromatic vinyl compounds such as methyl styrene and p-methyl styrene. Among these, it may be used alone or in combination of two or more. Of these, acrylamide is preferred.
 前記カチオン性官能基を有するポリマーにおけるアニオン性単量体(3)の具体例としては、前記ポリマーCについて挙げたものと同様に、例えば、ビニルスルホン酸、ビニルベンゼンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリル酸、イタコン酸、マレイン酸、及びこれらのアルカリ金属塩が挙げられる。これらのうち、1種単独で用いても、2種以上を併用してもよい。これらのうち、アクリル酸が好ましい。 Specific examples of the anionic monomer (3) in the polymer having a cationic functional group include, for example, vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido-2, as described for the polymer C. -Methylpropanesulfonic acid, (meth) acrylic acid, itaconic acid, maleic acid, and alkali metal salts thereof. Among these, it may be used alone or in combination of two or more. Of these, acrylic acid is preferred.
 前記カチオン性官能基を有するポリマーは、前記汚泥脱水剤と混合して1液として添加してもよく、あるいはまた、前記汚泥脱水剤と別々に同時に添加しても、逐次的に添加してもよい。併用する前記汚泥脱水剤とカチオン性官能基を有するポリマーとの質量比は、20:80~80:20であることが好ましく、より好ましくは25:75~75:25、さらに好ましくは30:70~70:30である。 The polymer having a cationic functional group may be mixed with the sludge dewatering agent and added as a single solution, or may be added separately from the sludge dewatering agent simultaneously or sequentially. Good. The mass ratio of the sludge dehydrating agent to be used in combination with the polymer having a cationic functional group is preferably 20:80 to 80:20, more preferably 25:75 to 75:25, and still more preferably 30:70. ~ 70: 30.
<アニオン性ポリマー>
 アニオン性ポリマーとしては、例えば、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、アクリル酸ナトリウムとアクリルアミドとの共重合体、部分スルホメチル化ポリアクリルアミド、アクリルアミドと(2-アクリルアミド)-2-メチルプロパンスルホン酸塩との共重合体、アクリルアミドとアクリル酸ナトリウムと(2-アクリルアミド)-2-メチルプロパンスルホン酸塩との三元共重合体等が挙げられる。これらのうち、ポリアクリルアミド部分加水分解物、又はアクリル酸ナトリウムとアクリルアミドとの共重合体が好ましい。
<Anionic polymer>
Examples of the anionic polymer include sodium polyacrylate, polyacrylamide partial hydrolyzate, a copolymer of sodium acrylate and acrylamide, partially sulfomethylated polyacrylamide, acrylamide and (2-acrylamide) -2-methylpropanesulfone. And a terpolymer of acrylamide, sodium acrylate, and (2-acrylamide) -2-methylpropanesulfonate. Among these, a polyacrylamide partial hydrolyzate or a copolymer of sodium acrylate and acrylamide is preferable.
 前記アニオン性ポリマーを前記汚泥脱水剤と併用する場合には、前記汚泥脱水剤を汚泥に添加した後に、添加することが好ましい。併用する前記汚泥脱水剤とアニオン性ポリマーとの質量比は、50:50~95:5であることが好ましく、より好ましくは60:40~90:10、さらに好ましくは65:35~80:20である。 When the anionic polymer is used in combination with the sludge dewatering agent, it is preferably added after the sludge dewatering agent is added to the sludge. The mass ratio of the sludge dehydrating agent and the anionic polymer used in combination is preferably 50:50 to 95: 5, more preferably 60:40 to 90:10, and still more preferably 65:35 to 80:20. It is.
 以下、実施例に基づいて本発明を説明するが、本発明は下記実施例により制限されるものではない。
[ポリマーの準備]
 実施例で用いるポリマー(A1)~(A5)、(B1)及び(C1)を、それぞれ、下記合成例1~7により製造した。また、下記比較例で用いるポリマー(Z1)及び(Z2)を、それぞれ、下記合成例8及び9により製造した。
 また、実施例及び比較例では、市販品であるポリマー(Z3)~(Z9)も用いた。なお、ポリマー(Z7)はポリアミジン系凝集剤である。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not restrict | limited by the following Example.
[Preparation of polymer]
Polymers (A1) to (A5), (B1) and (C1) used in the examples were produced by the following synthesis examples 1 to 7, respectively. Further, the polymers (Z1) and (Z2) used in the following comparative examples were produced by the following synthesis examples 8 and 9, respectively.
In Examples and Comparative Examples, commercially available polymers (Z3) to (Z9) were also used. The polymer (Z7) is a polyamidine flocculant.
(合成例1)ポリマー(A1)の合成
 撹拌機、冷却管、窒素導入管及び温度計を付した1L4ツ口セパラブルフラスコに、ノルマルパラフィン312g、ペンタオキシエチレンオレイルエーテル25g、及びソルビタンモノオレート25gを仕込み、撹拌混合し、油層混合物を調製した。
 次いで、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド(DAA)の80質量%水溶液388g、アクリルアミド(AAM)28g、架橋剤としてN,N’-メチレンビスアクリルアミド0.04g、及び純水222gの混合水溶液を前記油層混合物に添加して、ホモジナイザー撹拌により乳化させた。これを、撹拌下で50℃に調整し、窒素ガスを30分間液中に吹き込んだ。窒素ガスを気相に流しながら、2,2’-アゾビス(2,4-ジメチルバレロニトリル)の4質量%トルエン溶液2gを加え、45~55℃で8時間重合させ、W/O型エマルション状液体として架橋ポリマーを得た。
 このエマルション状液体を卓上型スプレードライヤーにて噴霧乾燥させ、水分が5質量%以下の粉体として架橋ポリマー(A1)を得た。
(Synthesis Example 1) Synthesis of Polymer (A1) In a 1 L 4-neck separable flask equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer, 312 g of normal paraffin, 25 g of pentaoxyethylene oleyl ether, and 25 g of sorbitan monooleate Was stirred and mixed to prepare an oil layer mixture.
Next, a mixed aqueous solution of 388 g of 80% by mass aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA), 28 g of acrylamide (AAM), 0.04 g of N, N′-methylenebisacrylamide as a crosslinking agent, and 222 g of pure water Was added to the oil layer mixture and emulsified by stirring with a homogenizer. This was adjusted to 50 ° C. with stirring, and nitrogen gas was blown into the liquid for 30 minutes. While flowing nitrogen gas in the gas phase, 2 g of a 2 mass% toluene solution of 2,2′-azobis (2,4-dimethylvaleronitrile) was added and polymerized at 45 to 55 ° C. for 8 hours to form a W / O emulsion. A crosslinked polymer was obtained as a liquid.
This emulsion liquid was spray-dried with a desktop spray dryer to obtain a crosslinked polymer (A1) as a powder having a water content of 5% by mass or less.
(合成例2)ポリマー(A2)の合成
 合成例1において、N,N’-メチレンビスアクリルアミドの添加量を0.06gとし、また、スプレードライヤーによる噴霧乾燥は行わず、それ以外は合成例1と同様にして、W/O型エマルション状液体として架橋ポリマー(A2)を得た。
(Synthesis Example 2) Synthesis of Polymer (A2) In Synthesis Example 1, the amount of N, N′-methylenebisacrylamide added was 0.06 g, and spray drying with a spray dryer was not performed. In the same manner as above, a crosslinked polymer (A2) was obtained as a W / O emulsion liquid.
(合成例3)ポリマー(A3)の合成
 合成例1において、油層混合物に添加する原料配合組成のうち、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド(DAA)の80質量%水溶液を349g、アクリルアミド(AAM)を68g、及びN,N’-メチレンビスアクリルアミドを0.05gに変更し、それ以外は合成例1と同様にして、水分が5質量%以下の粉体として架橋ポリマー(A3)を得た。
(Synthesis Example 3) Synthesis of Polymer (A3) In Synthesis Example 1, 349 g of an 80% by mass aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA) among the raw material composition added to the oil layer mixture, acrylamide ( AAM) was changed to 68 g, and N, N′-methylenebisacrylamide was changed to 0.05 g. Otherwise, the same procedure as in Synthesis Example 1 was carried out to obtain a crosslinked polymer (A3) as a powder having a moisture content of 5 mass% or less. It was.
(合成例4)ポリマー(A4)の合成
 合成例1において、N,N’-メチレンビスアクリルアミドの添加量を0.035gとし、それ以外は合成例1と同様にして、水分が5質量%以下の粉体として架橋ポリマー(A4)を得た。
(Synthesis Example 4) Synthesis of Polymer (A4) In Synthesis Example 1, the amount of N, N′-methylenebisacrylamide added was 0.035 g, and the rest was the same as Synthesis Example 1 except that the water content was 5% by mass or less. As a powder, a crosslinked polymer (A4) was obtained.
(合成例5)ポリマー(A5)の合成
 合成例1と同様にして、油層混合物を調製した。
 次いで、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド(DAA)の80質量%水溶液349g、アクリルアミド(AAM)68g、架橋剤としてN,N’-メチレンビスアクリルアミド0.065g、重合開始剤として2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩0.26g、及び純水222gの混合水溶液を前記油層混合物に添加して、ホモジナイザー撹拌により乳化させた。これを、撹拌下で50℃に調整し、窒素ガスを30分間液中に吹き込んだ。窒素ガスを気相に流しながら、45~55℃で8時間重合させ、W/O型エマルション状液体として架橋ポリマー(A5)を得た。
(Synthesis Example 5) Synthesis of Polymer (A5) In the same manner as in Synthesis Example 1, an oil layer mixture was prepared.
Next, 349 g of an 80% by mass aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA), 68 g of acrylamide (AAM), 0.065 g of N, N′-methylenebisacrylamide as a crosslinking agent, and 2,2 as a polymerization initiator A mixed aqueous solution of 0.26 g of '-azobis (2-methylpropionamidine) dihydrochloride and 222 g of pure water was added to the oil layer mixture and emulsified by stirring with a homogenizer. This was adjusted to 50 ° C. with stirring, and nitrogen gas was blown into the liquid for 30 minutes. While flowing nitrogen gas in the gas phase, polymerization was carried out at 45 to 55 ° C. for 8 hours to obtain a crosslinked polymer (A5) as a W / O emulsion liquid.
(合成例6)ポリマー(B1)の合成
 合成例1において、前記油層混合物に添加する混合水溶液の配合組成を、ジアリルジメチルアンモニウムクロライド(DADMAC)の70質量%水溶液370g、アクリルアミド(AAM)76g、純水192g、及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)の4質量%トルエン溶液1gに変更し、それ以外は合成例1と同様にして、水分が5質量%以下の粉体として架橋ポリマー(B1)を得た。
(Synthesis Example 6) Synthesis of Polymer (B1) In Synthesis Example 1, the composition of the mixed aqueous solution added to the oil layer mixture was 370 g of 70% by weight aqueous solution of diallyldimethylammonium chloride (DADMAC), 76 g of acrylamide (AAM), pure 192 g of water and 1 g of a 4% by weight toluene solution of 2,2′-azobis (2,4-dimethylvaleronitrile), except that the powder having a water content of 5% by weight or less was the same as in Synthesis Example 1. As a result, a crosslinked polymer (B1) was obtained.
(合成例7)ポリマー(C1)の合成
 合成例1と同様にして、油層混合物を調製した。
 次いで、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド(DAA)の80質量%水溶液363g、アクリルアミド(AAM)28g、アクリル酸(AA)7.2g、架橋剤としてN,N’-メチレンビスアクリルアミド0.04g、及び純水240gの混合水溶液を前記油層混合物に添加して、ホモジナイザー撹拌により乳化させた。これを、撹拌下で50℃に調整し、窒素ガスを30分間液中に吹き込んだ。その後、窒素ガスを気相に流しながら、2,2’-アゾビス(2,4-ジメチルバレロニトリル)の4質量%トルエン溶液2gを加え、45~55℃で8時間重合させ、W/O型エマルション状液体として架橋ポリマー(C1)を得た。
(Synthesis Example 7) Synthesis of Polymer (C1) In the same manner as in Synthesis Example 1, an oil layer mixture was prepared.
Next, 363 g of an 80% by weight aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA), 28 g of acrylamide (AAM), 7.2 g of acrylic acid (AA), and N, N′-methylenebisacrylamide as a cross-linking agent were added in an amount of 0.3 g. A mixed aqueous solution of 04 g and 240 g of pure water was added to the oil layer mixture and emulsified by stirring with a homogenizer. This was adjusted to 50 ° C. with stirring, and nitrogen gas was blown into the liquid for 30 minutes. Thereafter, 2 g of a 4% by weight toluene solution of 2,2′-azobis (2,4-dimethylvaleronitrile) was added while flowing nitrogen gas in the gas phase, and the mixture was polymerized at 45 to 55 ° C. for 8 hours to obtain W / O type. A crosslinked polymer (C1) was obtained as an emulsion liquid.
(合成例8)ポリマー(Z1)の合成
 合成例2において、油層混合物に添加する原料配合組成のうち、N,N’-メチレンビスアクリルアミドを0.03g、及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)の4質量%トルエン溶液を1.5gに変更し、それ以外は合成例2と同様にして、W/O型エマルション状液体として架橋ポリマー(Z1)を得た。
(Synthesis Example 8) Synthesis of Polymer (Z1) In Synthesis Example 2, 0.03 g of N, N′-methylenebisacrylamide and 2,2′-azobis (2, The 4-mass toluene solution of 4-dimethylvaleronitrile) was changed to 1.5 g, and other than that was carried out in the same manner as in Synthesis Example 2 to obtain a crosslinked polymer (Z1) as a W / O emulsion liquid.
(合成例9)ポリマー(Z2)の合成
 合成例1の油層混合物に添加する原料配合組成のうち、2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド(DAA)の80質量%水溶液を349g、アクリルアミド(AAM)を68g、N,N’-メチレンビスアクリルアミドを0.05g、及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)の4質量%トルエン溶液を4.5gに変更し、それ以外は合成例1と同様にして、水分が5質量%以下の粉体として架橋ポリマー(Z2)を得た。
(Synthesis Example 9) Synthesis of Polymer (Z2) Of the raw material composition added to the oil layer mixture of Synthesis Example 1, 349 g of an 80% by mass aqueous solution of 2- (acryloyloxy) ethyltrimethylammonium chloride (DAA), acrylamide (AAM) ), 68 g of N, N′-methylenebisacrylamide, and 4.5 g of a 4% by weight toluene solution of 2,2′-azobis (2,4-dimethylvaleronitrile). In the same manner as in Synthesis Example 1, a crosslinked polymer (Z2) was obtained as a powder having a water content of 5% by mass or less.
[固有粘度測定]
 上記の各ポリマーについて、以下のようにして、固有粘度を求めた。
(1)キャノンフェンスケ粘度計(株式会社草野化学製No.75)5本をガラス器具用中性洗剤に1日以上浸漬後、脱イオン水で十分洗浄し、乾燥させた。
(2)精秤したポリマー0.3gを脱イオン水に、マグネティックスターラーにて500rpmでの撹拌下で加え、2時間撹拌後、15~24時間静置して0.2質量%水溶液を調製した。その後、500rpmで30分間撹拌した後、3G2グラスフィルターで全量ろ過した。
 なお、ポリマー(A2)、(A5)、(C1)及び(Z1)については、W/O型エマルション状液体を大過剰のアセトンに添加して析出精製を行い、この析出物を真空乾燥して粉体として、固有粘度測定に供した。
(3-1)ポリマー(A1)~(A5)、(B1)、(C1)、(Z1)~(Z4)、(Z6)及び(Z8)については、ろ液50mLに2N硝酸ナトリウム水溶液50mLを加え、マグネティックスターラーにて500rpmで20分間撹拌した後、ポリマー濃度0.1質量%の1N硝酸ナトリウム水溶液を得、これを1N硝酸ナトリウム水溶液で希釈して0.02~0.1質量%の範囲内の5段階の濃度のポリマー試料溶液を調製した。なお、1N硝酸ナトリウム水溶液(1N-NaNO3)をブランク液とした。
(3-2)ポリマー(Z5)については、前記(3-1)において、2N又は1N硝酸ナトリウム水溶液の代わりに0.2N又は0.1N塩化ナトリウム水溶液を用いて、ポリマー試料溶液を調製した。なお、0.1N塩化ナトリウム水溶液(0.1N-NaCl)をブランク液とした。
(3-3)ポリマー(Z7)及び(Z9)については、前記(3-1)において、2N又は1N硝酸ナトリウム水溶液の代わりに2N又は1N塩化ナトリウム水溶液を用いて、ポリマー試料溶液を調製した。なお、1N塩化ナトリウム水溶液(1N-NaCl)をブランク液とした。
(4)温度30℃(±0.02℃以内)に調整した恒温水槽内に、前記粘度計5本を垂直に取り付けた。各粘度計にホールピペットにてブランク液10mLを入れた後、温度を一定にするために約30分間静置した。その後、スポイト栓を用いて液を吸い上げ、自然落下させて、標線を通過する時間をストップウォッチで1/100秒単位まで測定した。この測定を、各粘度計について5回繰り返し、平均値をブランク値(t0)とした。
(5)上記で調製した5段階の濃度のポリマー試料溶液各10mLを、ブランク液の測定を行った粘度計5本に入れ、温度を一定にするために約30分間静置した。その後、ブランク液の測定と同様の操作を3回繰り返し、濃度ごとの通過時間の平均値を測定値(t)とした。
(6)前記ブランク値t0及び測定値t、及びポリマー試料溶液の濃度C[質量/体積%](=C[g/dL])から、相対粘度ηrel、比粘度ηSP、及び還元粘度ηSP/C[dL/g]を下記の関係式により求めた。
  ηrel=t/t0
  ηSP=(t-t0)/t0=ηrel-1
 これらの値から、上述したHugginsの式に基づく固有粘度の求め方に従って、各ポリマーの固有粘度[η]を算出した。
[Intrinsic viscosity measurement]
About each said polymer, the intrinsic viscosity was calculated | required as follows.
(1) Five Cannon Fenceke viscometers (No. 75 manufactured by Kusano Chemical Co., Ltd.) were immersed in a neutral detergent for glassware for 1 day or longer, then thoroughly washed with deionized water and dried.
(2) 0.3 g of precisely weighed polymer was added to deionized water with stirring at 500 rpm with a magnetic stirrer, stirred for 2 hours, and then allowed to stand for 15 to 24 hours to prepare a 0.2 mass% aqueous solution. . Then, after stirring for 30 minutes at 500 rpm, the whole amount was filtered with a 3G2 glass filter.
For the polymers (A2), (A5), (C1) and (Z1), the W / O emulsion liquid was added to a large excess of acetone for precipitation purification, and this precipitate was vacuum dried. The powder was subjected to intrinsic viscosity measurement.
(3-1) For polymers (A1) to (A5), (B1), (C1), (Z1) to (Z4), (Z6) and (Z8), 50 mL of 2N sodium nitrate aqueous solution was added to 50 mL of the filtrate. In addition, after stirring with a magnetic stirrer at 500 rpm for 20 minutes, a 1N sodium nitrate aqueous solution having a polymer concentration of 0.1% by mass was obtained, and this was diluted with a 1N sodium nitrate aqueous solution to be in the range of 0.02 to 0.1% by mass. Polymer sample solutions having 5 levels of concentration were prepared. A 1N sodium nitrate aqueous solution (1N-NaNO 3 ) was used as a blank solution.
(3-2) For the polymer (Z5), a polymer sample solution was prepared using the 0.2N or 0.1N sodium chloride aqueous solution in place of the 2N or 1N sodium nitrate aqueous solution in the above (3-1). A 0.1N sodium chloride aqueous solution (0.1N-NaCl) was used as a blank solution.
(3-3) For the polymers (Z7) and (Z9), a polymer sample solution was prepared using the 2N or 1N sodium chloride aqueous solution instead of the 2N or 1N sodium nitrate aqueous solution in the above (3-1). A 1N sodium chloride aqueous solution (1N-NaCl) was used as a blank solution.
(4) Five viscometers were vertically attached in a constant temperature water bath adjusted to a temperature of 30 ° C. (within ± 0.02 ° C.). After putting 10 mL of blank liquid into each viscometer with a whole pipette, it was allowed to stand for about 30 minutes in order to keep the temperature constant. Thereafter, the liquid was sucked up using a dropper stopper, allowed to drop naturally, and the time for passing through the marked line was measured to 1/100 second unit with a stopwatch. This measurement was repeated 5 times for each viscometer, and the average value was defined as a blank value (t 0 ).
(5) Each 10 mL of the polymer sample solution having the five levels of concentration prepared above was put into five viscometers where the blank solution was measured, and was allowed to stand for about 30 minutes in order to keep the temperature constant. Thereafter, the same operation as the measurement of the blank solution was repeated three times, and the average value of the transit time for each concentration was taken as the measurement value (t).
(6) Relative viscosity η rel , specific viscosity η SP , and reduced viscosity from the blank value t 0 and measured value t, and the concentration C [mass / volume%] (= C [g / dL]) of the polymer sample solution η SP / C [dL / g] was determined by the following relational expression.
η rel = t / t 0
η SP = (t−t 0 ) / t 0 = η rel −1
From these values, the intrinsic viscosity [η] of each polymer was calculated according to the method for obtaining the intrinsic viscosity based on the Huggins equation described above.
 各ポリマーについての固有粘度の測定結果を下記表1に示す。
 なお、表1の単量体組成における略称は以下のとおりである。
・カチオン性単量体(1)
  DAA:2-(アクリロイルオキシ)エチルトリメチルアンモニウムクロライド
  DAM:2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド
  DAM(Bz):2-(メタクリロイルオキシ)エチルジメチルベンジルアンモニウムクロライド
  DAM(硫酸):2-(メタクリロイルオキシ)エチルジメチルアミン硫酸塩
・非イオン性単量体
  AAM:アクリルアミド
・カチオン性単量体(2)
  DADMAC:ジアリルジメチルアンモニウムクロライド
・アニオン性単量体(3)
  AA:アクリル酸
  NaA:アクリル酸ナトリウム
The measurement results of intrinsic viscosity for each polymer are shown in Table 1 below.
In addition, the abbreviation in the monomer composition of Table 1 is as follows.
・ Cationic monomer (1)
DAA: 2- (acryloyloxy) ethyltrimethylammonium chloride DAM: 2- (methacryloyloxy) ethyltrimethylammonium chloride DAM (Bz): 2- (methacryloyloxy) ethyldimethylbenzylammonium chloride DAM (sulfuric acid): 2- (methacryloyloxy) ) Ethyldimethylamine sulfate / nonionic monomer AAM: Acrylamide / cationic monomer (2)
DADMAC: diallyldimethylammonium chloride anionic monomer (3)
AA: Acrylic acid NaA: Sodium acrylate
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[汚泥脱水評価]
 上記表1に示す各種ポリマーを用いた汚泥脱水剤試料について、各種汚泥に対する汚泥脱水の評価試験を行った。なお、下記評価試験で用いた各ポリマーの水溶液のポリマー濃度は、ポリマー(Z9)以外は0.2質量%、ポリマー(Z9)は0.1質量%とした。
[Sludge dewatering evaluation]
The sludge dewatering agent samples using the various polymers shown in Table 1 were subjected to an evaluation test of sludge dewatering for various sludges. In addition, the polymer concentration of the aqueous solution of each polymer used in the following evaluation test was 0.2% by mass except for the polymer (Z9), and the polymer (Z9) was 0.1% by mass.
 下記表2に、評価試験に用いた各種汚泥の性状を示す。なお、汚泥の性状における各成分の略称及び測定方法(下水道試験法に準拠)は下記のとおりである。また、表2中の各成分量の単位表記の「%」は、質量%を意味する。
  SS(Suspended Solid):浮遊物質;汚泥100mLを3000rpmで10分間遠心分離して上澄み液を除去し、沈殿物を水洗しながら秤量済みのルツボに流し込み、105~110℃で乾燥した後の質量を汚泥に対する質量割合で示した。
  VSS(Volatile suspended solids):浮遊物質の強熱減量;浮遊物質を秤量した後の浮遊物質入りのルツボを600±25℃の範囲内の温度で強熱し、放冷後秤量して、強熱前後の質量の差を浮遊物質に対する質量割合で示した。
  TS(Total solids);蒸発残留物;汚泥100mLを秤量済みのルツボに入れ、105~110℃で乾燥した後の質量を汚泥に対する質量割合で示した。
  VTS(Volatile Total Solids):強熱減量;蒸発残留物を秤量した後の蒸発残留物入りのルツボを600±25℃の範囲内の温度で強熱し、放冷後秤量して、強熱前後の質量の差を蒸発残留物に対する質量割合で示した。
  繊維分:汚泥100mLを100メッシュのふるいでろ過し、ふるい上の残留物を水洗しながらルツボに流し込み、105~110℃で乾燥した後のルツボを秤量した。その後、600±25℃の温度範囲で強熱し、放冷後秤量して、強熱前後の質量の差を浮遊物質に対する質量割合で示した。
Table 2 below shows the properties of various sludges used in the evaluation test. In addition, the abbreviation of each component in the property of sludge and the measuring method (based on the sewer test method) are as follows. Further, “%” in the unit notation of each component amount in Table 2 means mass%.
SS (Suspended Solid): Suspended matter; 100 mL of sludge is centrifuged at 3000 rpm for 10 minutes to remove the supernatant, and the precipitate is poured into a weighed crucible while washing with water, and the mass after drying at 105 to 110 ° C. It is shown as a mass ratio to sludge.
VSS (Volatile suspended solids): Loss of ignition of suspended solids; After the suspended matter is weighed, the crucible containing suspended matter is ignited at a temperature within the range of 600 ± 25 ° C, weighed after standing to cool, before and after ignition The difference in mass was expressed as a mass ratio with respect to suspended matter.
TS (Total solids); evaporation residue; 100 mL of sludge was placed in a weighed crucible, and the mass after drying at 105 to 110 ° C. was shown as a mass ratio to the sludge.
VTS (Volatile Total Solids): Loss on ignition; after weighing the evaporation residue, the crucible containing the evaporation residue is ignited at a temperature within a range of 600 ± 25 ° C. The difference was expressed as a mass ratio with respect to the evaporation residue.
Fiber content: 100 mL of sludge was filtered through a 100-mesh sieve, the residue on the sieve was poured into a crucible while washing with water, and the crucible after drying at 105 to 110 ° C. was weighed. Thereafter, the mixture was ignited in a temperature range of 600 ± 25 ° C., allowed to cool and weighed, and the difference in mass before and after ignition was shown as a mass ratio with respect to the suspended matter.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例1)
 ポリマー(A1)の0.2質量%水溶液とポリマー(Z4)の0.2質量%水溶液とを質量比50:50で混合し、汚泥脱水剤試料(ポリマー水溶液)を調製した。
 この汚泥脱水剤試料を、300mLビーカーに採取した汚泥1 200mLに、120mg/L(0.9質量%/SS)のポリマー添加量で添加し、180rpmで30秒間撹拌して、凝集フロックを形成させた。
Example 1
A 0.2 mass% aqueous solution of polymer (A1) and a 0.2 mass% aqueous solution of polymer (Z4) were mixed at a mass ratio of 50:50 to prepare a sludge dehydrating agent sample (polymer aqueous solution).
This sludge dewatering agent sample is added to 1200 mL of sludge 1 collected in a 300 mL beaker at a polymer addition amount of 120 mg / L (0.9 mass% / SS), and stirred at 180 rpm for 30 seconds to form a coagulated floc. It was.
(実施例2~24及び比較例1~24)
 実施例1において、汚泥の種類、使用するポリマーの種類及び添加量を下記表3に示すように変更し、それ以外は実施例1と同様にして、汚泥脱水剤試料を調製し、汚泥に添加して、凝集フロックを形成させた。
(Examples 2 to 24 and Comparative Examples 1 to 24)
In Example 1, the type of sludge, the type of polymer used, and the amount added were changed as shown in Table 3 below. Otherwise, a sludge dehydrating agent sample was prepared and added to the sludge in the same manner as in Example 1. Thus, an agglomerated floc was formed.
(実施例25)
 300mLビーカーに採取した汚泥5 200mLに、ポリマー(A1)の0.2質量%水溶液を90mg/L(0.4質量%/SS)のポリマー添加量で添加し、180rpmで30秒間撹拌した後、ポリマー(Z9)(アニオン性ポリマー)の0.1質量%水溶液を35mg/L(0.15質量%/SS)のポリマー添加量で添加し、さらに180rpmで20秒間撹拌して、凝集フロックを形成させた。
(Example 25)
To 200 mL of sludge 5 collected in a 300 mL beaker, a 0.2 mass% aqueous solution of polymer (A1) was added at a polymer addition amount of 90 mg / L (0.4 mass% / SS), and stirred at 180 rpm for 30 seconds. A 0.1% by mass aqueous solution of polymer (Z9) (anionic polymer) was added at a polymer addition amount of 35 mg / L (0.15% by mass / SS), and further stirred at 180 rpm for 20 seconds to form an aggregated floc. I let you.
(比較例25)
 実施例25において、ポリマー(A1)に代えてポリマー(Z3)を用い、それ以外は実施例25と同様にして、凝集フロックを形成させた。
(Comparative Example 25)
In Example 25, the polymer (Z3) was used in place of the polymer (A1), and other than that, aggregated flocs were formed in the same manner as in Example 25.
 汚泥脱水剤試料についての評価試験項目及びその評価方法は、以下のとおりである。これらの評価結果を下記表3及び4にまとめて示す。
<フロック径>
 上記実施例及び比較例で形成した凝集フロックについて、ビーカーの上から観察できる約100個のフロック径をメジャーで目視にて測定し、おおよその平均サイズを求めた。
 このフロック径が大きいほど、汚泥脱水剤のフロック形成力が高く、脱水効果に優れていると言える。
<20秒ろ過量>
 200mLメスシリンダー上に内径80mm、孔径約1mmのブフナーロートを設置し、その上に直径50mmのポリ塩化ビニル製の筒を設置した。この筒内に、上記でフロック径を測定した後の凝集した汚泥を一気に注いで、注液から20秒後のろ過量をメスシリンダーの目盛から読み取って測定した。
 このろ過量が多いほど、重力ろ過性に優れ、脱水効果に優れていると言える。
<SSリーク量>
 上記の20秒ろ過量測定後、注液から60秒後にブフナーロートを通過した汚泥の固形分量をSSリーク量としてメスシリンダーの目盛から読み取って測定した。
 SSリーク量は、少ないほど、形成されたフロックの凝集性能に優れ、脱水効果に優れていると言える。
<ケーキ含水率>
 上記のSSリーク量測定の後、ブフナーロート上に残った凝集物を、直径30mm、高さ17.5mmのポリ塩化ビニル製カラムに詰めた。カラムを外し、0.1MPaで60秒間圧搾し、脱水ケーキを得た。この脱水ケーキの質量と、該脱水ケーキを105℃で乾燥させた後の質量とを測定し、減量分を脱水ケーキの含水量とみなしてケーキ含水率を算出した。
 ケーキ含水率が80~85質量%程度であれば、該脱水ケーキを従来と同様に取り扱うことができ、乾燥処理等の観点から、値が低い方が好ましい。
The evaluation test items and the evaluation method for the sludge dewatering agent sample are as follows. These evaluation results are summarized in Tables 3 and 4 below.
<Flock diameter>
About the aggregated flocs formed in the above examples and comparative examples, about 100 floc diameters that can be observed from the top of the beaker were visually measured with a measure to obtain an approximate average size.
It can be said that the larger the floc diameter, the higher the floc-forming ability of the sludge dewatering agent and the better the dewatering effect.
<20-second filtration rate>
A Buchner funnel having an inner diameter of 80 mm and a hole diameter of about 1 mm was placed on a 200 mL measuring cylinder, and a polyvinyl chloride tube having a diameter of 50 mm was placed thereon. In this cylinder, the agglomerated sludge after measuring the floc diameter as described above was poured at once, and the filtration amount after 20 seconds from the injection was read from the scale of the graduated cylinder and measured.
It can be said that the greater the amount of filtration, the better the gravity filterability and the better the dehydration effect.
<SS leak amount>
After the measurement of the filtration amount for 20 seconds, the solid content of sludge that passed through the Buchner funnel 60 seconds after the injection was read as SS leak amount from the scale of the graduated cylinder and measured.
It can be said that the smaller the SS leak amount, the better the floc aggregation performance of the formed floc and the better the dehydration effect.
<Moisture content of cake>
After the above SS leak amount measurement, the aggregate remaining on the Buchner funnel was packed in a polyvinyl chloride column having a diameter of 30 mm and a height of 17.5 mm. The column was removed and squeezed at 0.1 MPa for 60 seconds to obtain a dehydrated cake. The mass of the dehydrated cake and the mass after the dehydrated cake was dried at 105 ° C. were measured, and the moisture content of the cake was calculated by regarding the reduced amount as the water content of the dehydrated cake.
When the moisture content of the cake is about 80 to 85% by mass, the dehydrated cake can be handled in the same manner as in the past, and a lower value is preferable from the viewpoint of drying treatment and the like.
 なお、比較例3及び12については、凝集フロックのろ過及び圧搾を行うことできなかった。また、比較例11、14、18、19、21及び22については、凝集フロックの圧搾を行うことできなかった。 In addition, about the comparative examples 3 and 12, aggregation floc could not be filtered and squeezed. Moreover, about Comparative Examples 11, 14, 18, 19, 21, and 22, it was not possible to squeeze the aggregated floc.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3及び4に示した結果から分かるように、所定の固有粘度の架橋ポリマーを含む本発明の汚泥脱水剤によれば、フロック径が大きくなり、20秒ろ過量が多く、SSリーク量が少なくなり、また、ケーキ含水率を低下させることができた。すなわち、本発明の汚泥脱水剤は、脱水効果に優れていることが確認された。
 また、本発明の汚泥脱水剤とそれ以外の他のポリマーを併用した場合は、フロック径がより大きくなり、良好な凝集性を示す傾向が見られた。
As can be seen from the results shown in Tables 3 and 4, according to the sludge dewatering agent of the present invention containing a crosslinked polymer having a predetermined intrinsic viscosity, the floc diameter is large, the filtration amount is large for 20 seconds, and the SS leak amount is small. Moreover, the moisture content of the cake could be reduced. That is, it was confirmed that the sludge dewatering agent of the present invention is excellent in the dewatering effect.
Moreover, when the sludge dehydrating agent of the present invention and other polymers other than that were used in combination, the floc diameter was increased and a tendency to exhibit good cohesiveness was observed.

Claims (5)

  1.  下記ポリマーA、ポリマーB及びポリマーCのうちから選ばれる1種以上の架橋ポリマーを含み、前記架橋ポリマーは、1.0N硝酸ナトリウム水溶液における30℃での固有粘度が0.5~5.0dL/gである、汚泥脱水剤。
     ポリマーA:ポリマー構成単位の単量体組成が、下記一般式(1)で表されるカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマー
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、R1は水素原子又はメチル基である。R2及びR3は、それぞれ独立に、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。R4は、水素原子、炭素数1~3のアルキル基もしくはアルコキシ基、又はベンジル基である。Aは酸素原子又はNH基である。Bは炭素数2~4のアルキレン基又はアルコキシレン基である。X-は陰イオンである。)
     ポリマーB:ポリマー構成単位の単量体組成が、下記一般式(2)で表されるカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%とからなる架橋ポリマー
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、R5及びR6は、それぞれ独立に、水素原子又はメチル基である。X-は陰イオンである。)
     ポリマーC:ポリマー構成単位の単量体組成が、前記一般式(1)で表されるカチオン性単量体1~99モル%と、下記一般式(3)で表されるアニオン性単量体1~99モル%と、非イオン性単量体0~98モル%とからなる架橋ポリマー
    Figure JPOXMLDOC01-appb-C000003

    (式(3)中、R7は水素原子又はCH2COOYである。R8は水素原子、メチル基又はCOOYである。QはSO3 -、C64SO3 -、CONHC(CH32CH2SO3 -又はCOO-である。Yは水素原子又は陽イオンである。)
    The polymer contains one or more crosslinked polymers selected from the following polymers A, B and C, and the crosslinked polymer has an intrinsic viscosity at 30 ° C. in a 1.0 N sodium nitrate aqueous solution of 0.5 to 5.0 dL / Sludge dewatering agent which is g.
    Polymer A: Crosslink in which the monomer composition of the polymer structural unit is 1-100 mol% of a cationic monomer represented by the following general formula (1) and 0-99 mol% of a nonionic monomer polymer
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 1 represents .R 2 and R 3 is a hydrogen atom or a methyl group are each independently an alkyl or alkoxy group having 1 to 3 carbon atoms, or .R 4 is a benzyl group , A hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, or a benzyl group, A is an oxygen atom or NH group, B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms, X - is an anion).
    Polymer B: Crosslink in which the monomer composition of the polymer structural unit is 1 to 100 mol% of a cationic monomer represented by the following general formula (2) and 0 to 99 mol% of a nonionic monomer polymer
    Figure JPOXMLDOC01-appb-C000002

    (In Formula (2), R 5 and R 6 are each independently a hydrogen atom or a methyl group. X is an anion.)
    Polymer C: Anionic monomer having a monomer composition of a polymer constituent unit of 1 to 99 mol% of the cationic monomer represented by the general formula (1) and the following general formula (3) Crosslinked polymer comprising 1 to 99 mol% and nonionic monomer 0 to 98 mol%
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (3), R 7 is a hydrogen atom or CH 2 COOY. R 8 is a hydrogen atom, a methyl group or COOY. Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 - or COO - is .Y is a hydrogen atom or a cation).
  2.  エマルション状液体、又はその乾燥造粒体もしくは粉体である、請求項1に記載の汚泥脱水剤。 The sludge dewatering agent according to claim 1, which is an emulsion liquid, or a dry granulated body or powder thereof.
  3.  請求項1又は2に記載の汚泥脱水剤を汚泥に添加して、前記汚泥を脱水する、汚泥脱水方法。 A sludge dewatering method in which the sludge dewatering agent according to claim 1 or 2 is added to sludge to dewater the sludge.
  4.  前記汚泥脱水剤と、前記架橋ポリマー以外の他のポリマーとを併用し、前記他のポリマーが、カチオン性官能基を有するポリマー又はアニオン性ポリマーである、請求項3に記載の汚泥脱水方法。 The sludge dewatering method according to claim 3, wherein the sludge dehydrating agent is used in combination with another polymer other than the crosslinked polymer, and the other polymer is a polymer having a cationic functional group or an anionic polymer.
  5.  前記カチオン性官能基を有するポリマーは、ポリマー構成単位の単量体組成が、前記一般式(1)で表されるカチオン性単量体及び前記一般式(2)で表されるカチオン性単量体のうちから選ばれる1種以上のカチオン性単量体1~100モル%と、非イオン性単量体0~99モル%と、前記一般式(3)で表されるアニオン性単量体0~50モル%とからなる、請求項4に記載の汚泥脱水方法。 In the polymer having a cationic functional group, the monomer composition of the polymer constituent unit is a cationic monomer represented by the general formula (1) and a cationic monomer represented by the general formula (2). 1 to 100 mol% of one or more cationic monomers selected from the body, 0 to 99 mol% of nonionic monomers, and an anionic monomer represented by the general formula (3) The sludge dewatering method according to claim 4, comprising 0 to 50 mol%.
PCT/JP2018/007354 2017-03-14 2018-02-27 Sludge dehydrating agent and sludge dehydrating method WO2018168447A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18766957.7A EP3597609B1 (en) 2017-03-14 2018-02-27 Sludge dehydrating method
CN201880012569.6A CN110337421A (en) 2017-03-14 2018-02-27 Sludge dehydrating agent and mud dewatering method
KR1020197023848A KR20190124710A (en) 2017-03-14 2018-02-27 Sludge dehydrator and sludge dewatering method
US16/489,127 US20190375665A1 (en) 2017-03-14 2018-02-27 Sludge dehydrating agent and sludge dehydrating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-048782 2017-03-14
JP2017048782 2017-03-14
JP2017-163494 2017-08-28
JP2017163494A JP6737439B2 (en) 2017-03-14 2017-08-28 Sludge dewatering agent and sludge dewatering method

Publications (1)

Publication Number Publication Date
WO2018168447A1 true WO2018168447A1 (en) 2018-09-20

Family

ID=63523824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007354 WO2018168447A1 (en) 2017-03-14 2018-02-27 Sludge dehydrating agent and sludge dehydrating method

Country Status (2)

Country Link
TW (1) TWI743324B (en)
WO (1) WO2018168447A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112219A1 (en) * 2019-12-06 2021-06-10 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method
KR20220002281A (en) * 2019-04-24 2022-01-06 쿠리타 고교 가부시키가이샤 Sludge Dewatering Agent and Sludge Dewatering Method
AT525429A4 (en) * 2022-04-14 2023-04-15 Kahr Gottfried Process for drying sewage sludge

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158200A (en) 1986-12-22 1988-07-01 Dia Furotsuku Kk Dehydration of sludge
JP2005034787A (en) * 2003-07-17 2005-02-10 Mole Kogyo:Kk Dehydrating agent for muddy water and treatment method of muddy water
JP2005144346A (en) 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
JP2007029766A (en) * 2005-07-22 2007-02-08 Sanyo Chem Ind Ltd Organic coagulant and method for treating waste water or sludge
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
WO2008015769A1 (en) 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2009280649A (en) 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, process for producing it, and its usage
JP2011224420A (en) 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012210579A (en) * 2011-03-31 2012-11-01 Sanyo Chem Ind Ltd Polymer flocculant
JP2014233706A (en) * 2013-06-05 2014-12-15 三洋化成工業株式会社 Organic coagulant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW223080B (en) * 1992-10-12 1994-05-01 Nat Science Committee A amphoteric and chelated copolymer with coagulative power
US20040087717A1 (en) * 2002-11-04 2004-05-06 Ge Betz, Inc. Modified polymeric flocculants with improved performance characteristics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158200A (en) 1986-12-22 1988-07-01 Dia Furotsuku Kk Dehydration of sludge
JP2005034787A (en) * 2003-07-17 2005-02-10 Mole Kogyo:Kk Dehydrating agent for muddy water and treatment method of muddy water
JP2005144346A (en) 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
JP2007029766A (en) * 2005-07-22 2007-02-08 Sanyo Chem Ind Ltd Organic coagulant and method for treating waste water or sludge
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
WO2008015769A1 (en) 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2009280649A (en) 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, process for producing it, and its usage
JP2011224420A (en) 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012210579A (en) * 2011-03-31 2012-11-01 Sanyo Chem Ind Ltd Polymer flocculant
JP2014233706A (en) * 2013-06-05 2014-12-15 三洋化成工業株式会社 Organic coagulant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002281A (en) * 2019-04-24 2022-01-06 쿠리타 고교 가부시키가이샤 Sludge Dewatering Agent and Sludge Dewatering Method
EP3960266A4 (en) * 2019-04-24 2022-06-15 Kurita Water Industries Ltd. Sludge dehydrating agent and sludge dehydration method
KR102582204B1 (en) 2019-04-24 2023-09-22 쿠리타 고교 가부시키가이샤 Sludge dehydrator and sludge dehydration method
WO2021112219A1 (en) * 2019-12-06 2021-06-10 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method
JPWO2021112219A1 (en) * 2019-12-06 2021-12-02 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method
AT525429A4 (en) * 2022-04-14 2023-04-15 Kahr Gottfried Process for drying sewage sludge
AT525429B1 (en) * 2022-04-14 2023-04-15 Kahr Gottfried Process for drying sewage sludge

Also Published As

Publication number Publication date
TWI743324B (en) 2021-10-21
TW201834976A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018168447A1 (en) Sludge dehydrating agent and sludge dehydrating method
JP6737439B2 (en) Sludge dewatering agent and sludge dewatering method
KR102493838B1 (en) Sludge dewatering agent and sludge dewatering method
JP6839979B2 (en) A polymer flocculant and a method for producing the same, a method for dehydrating sludge using the polymer flocculant, and a method for evaluating the flocculation performance of the polymer flocculant.
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP6892041B1 (en) Sludge dewatering agent and sludge dewatering method
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP6819718B2 (en) Sludge dewatering agent and sludge dewatering method
JP2020025939A (en) Sludge dewatering method
JP2019209321A (en) Sludge dehydrating agent, and sludge dewatering method
JP4660896B2 (en) Sludge dewatering method
JP5940881B2 (en) Amphoteric polymer flocculant, method for producing the same and sludge dewatering method using the same
JP7226418B2 (en) Sludge dewatering agent and sludge dewatering method
JP6973682B2 (en) Sludge dewatering agent and sludge dewatering method
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP2015217343A (en) Coagulation treatment agent, and dewatering method of sludge using the same
JP2022021369A (en) Method for dehydrating papermaking sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023848

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018766957

Country of ref document: EP

Effective date: 20191014