WO2018168444A1 - 情報処理装置、および情報処理方法、並びにプログラム - Google Patents
情報処理装置、および情報処理方法、並びにプログラム Download PDFInfo
- Publication number
- WO2018168444A1 WO2018168444A1 PCT/JP2018/007265 JP2018007265W WO2018168444A1 WO 2018168444 A1 WO2018168444 A1 WO 2018168444A1 JP 2018007265 W JP2018007265 W JP 2018007265W WO 2018168444 A1 WO2018168444 A1 WO 2018168444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- information
- user
- recommendation
- recommendation information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- the present disclosure relates to an information processing apparatus, an information processing method, and a program. More specifically, the present invention relates to an information processing apparatus, an information processing method, and a program for executing processing for providing content recommendation information suitable for a user.
- multi-viewpoint images taken by a multi-view camera consisting of a plurality of cameras, all-sky images shot by a omnidirectional camera, or panoramic images, free viewpoint images whose gaze direction can be changed are displayed.
- the number of services provided is increasing.
- a free-viewpoint video can be viewed using a head-mounted display that is worn on the head.
- a photographing system for photographing a wide-angle image wider than a display image that is actually displayed is provided, and a display image to be viewed by the user is cut out based on the position information of the user's head detected by the rotation angle sensor. Proposals have been made regarding a head-mounted display system for display (see, for example, Patent Document 1).
- interactive viewing service can be realized by applying bi-directional communication to free viewpoint video distribution service. For example, it is possible to respond to various needs by distributing videos in which the viewpoint position and the line-of-sight direction are switched for each user (see, for example, Patent Document 2).
- Free viewpoint video can be used as entertainment content such as sports, games, concerts, and theater.
- instructions, teaching, guidance, and work support can be performed from the content viewer to the photographer through bidirectional communication between the shooting site and the viewer.
- an object of the present disclosure is to provide an information processing apparatus, an information processing method, and a program for recommending content suitable for each user to various users.
- Another object of the present disclosure is to provide an information processing apparatus, an information processing method, and a program that provide information on optimum recommended content for each user by using the content viewing log of the user. To do.
- the first aspect of the present disclosure is an information processing apparatus including a recommendation information generation unit that generates recommendation information regarding a plurality of contents that are captured by a plurality of content providing users and distributed via a network.
- the recommendation information generation unit acquires a feedback log including operation information for a content output device of a content viewing user who views at least one of the plurality of contents, and generates the recommendation information based on the acquired feedback log To do.
- the second aspect of the present disclosure is an information processing method for controlling at least one information processing apparatus.
- the information processing method includes at least a feedback log including operation information for a content output device of a content viewing user who views at least one of a plurality of contents captured by a plurality of content providing users and distributed via a network. Acquiring with one information processing device and controlling the at least one information processing device to generate recommendation information based on the acquired feedback log.
- the third aspect of the present disclosure is a program including a plurality of instructions for causing information processing to be executed in at least one information processing apparatus.
- the program includes a feedback log including operation information for a content output device of a content viewing user who views at least one of a plurality of contents imaged by a plurality of content providing users and distributed via a network.
- the program of the present disclosure is a program that can be provided by, for example, a storage medium or a communication medium provided in a computer-readable format to an information processing apparatus or a computer system that can execute various program codes.
- a program in a computer-readable format, processing corresponding to the program is realized on the information processing apparatus or the computer system.
- system is a logical set configuration of a plurality of devices, and is not limited to one in which the devices of each configuration are in the same casing.
- a content viewing user can select an optimal viewing content from a plurality of content. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
- FIG. 1 is a diagram illustrating a configuration example of a content distribution system 100.
- FIG. It is a figure which shows the structural example of the content provision apparatus 101.
- FIG. 2 is a diagram illustrating a configuration example of a content output device 104.
- FIG. It is a figure which shows the example of user profile information. It is a figure which shows the example of the display information displayed on the content output device side. It is a figure which shows the example of the display information displayed on the content output device side. It is a figure which shows the example of the display information displayed on the content output device side. It is a figure which shows the example of the display information displayed on the content output device side. It is a figure explaining the structural example of a content recommendation server. It is a figure explaining the example of the storage data of a content meta information storage part.
- FIG. 25 is a diagram for describing an example hardware configuration of an information processing device.
- FIG. 1 is a diagram illustrating a configuration example of a content distribution system 100 that is an example of an information processing system using the information processing apparatus of the present disclosure.
- the content distribution system 100 is configured as a free viewpoint video distribution system, for example.
- Captured image information such as a free viewpoint video acquired using the content providing apparatus 101 (for example, an imaging apparatus such as a multi-view camera or an all-sky camera) is transmitted to the content distribution server 102 via the network 110a.
- the content providing apparatus 101 for example, an imaging apparatus such as a multi-view camera or an all-sky camera
- Captured image information is transmitted to the content distribution server 102 via the network 110a.
- the content providing apparatus 101 for example, an imaging apparatus such as a multi-view camera or an all-sky camera
- FIG. 1 for simplicity, only one content providing apparatus 101 is illustrated, but it is assumed that a large number of content providing apparatuses 101 serving as a supply source of captured image information are scattered in the real world.
- the content providing apparatus 101 only needs to be able to acquire captured image information in a space where a content providing user (body) who is a content photographer by the imaging apparatus exists, and various apparatus configurations can be employed.
- the content providing apparatus 101 is worn by a photographer like a head-mounted display equipped with a photographing device such as a camera or an imager in addition to a general camera device, a multi-viewpoint camera, and an all-sky camera. It may take the form of a wearable device.
- a user who performs content acquisition processing using the content providing apparatus 101 is referred to as a content providing user (body).
- a content providing user body
- a user who views the content acquired by the content providing user (body) is called a content viewing user (Gost).
- the photographer as the content providing user is actually called “Body” because he / she is actually active with his / her body at the shooting site (that is, the body actually exists at the site).
- the photographer is a mobile device such as a vehicle (including a vehicle that is manually driven by a person and a vehicle that is automatically or unattended), a ship, an airplane, a robot, or a drone. It is also assumed that there is.
- a user who views content displayed via a screen of a smartphone, a PC, etc. without actually being at the shooting site is called “Gost”.
- the content viewing user does not act with the body at the site, but can be aware of the site by viewing the video viewed from the viewpoint of the photographer who is the content providing user.
- the content viewing user is referred to as “Gost” because there is only consciousness at the site.
- the names of body and ghost are names for distinguishing each user.
- the space in which the content providing user (body) exists is basically a real space, but can be defined as a virtual space instead of the real space.
- “real space” or “virtual space” may be simply referred to as “space”.
- the captured image information acquired by the content providing apparatus 101 can also be referred to as content information associated with the content providing user's space.
- the captured image information acquired by the content providing apparatus 101 is also referred to as “content”.
- a large number of photographers as content providing users visit POI (Point Of Interest: a place that someone thinks useful or interested), and each content providing device 101 is used there. Assume that you are shooting.
- POI Point Of Interest: a place that someone thinks useful or interested
- the viewer side which will be described later, can select any one of a plurality of viewpoint positions with the same POI and view a free viewpoint video at that viewpoint position.
- examples of the POI include a tourist attraction, a commercial facility, each store in the commercial facility, a stadium where a sports competition such as baseball and soccer is held, a hall, a concert venue, and a theater.
- the shooting location is not limited to POI.
- the content distribution server 102 accumulates the content transmitted from each content providing apparatus 101 in the content storage unit 111. In addition, the content distribution server 102 distributes the real-time (live video) content transmitted from each content providing apparatus 101 to each viewer of the free viewpoint video via the network 110b. Alternatively, the content distribution server 102 may read past recorded (archived) content stored in the content storage unit 111 and perform streaming distribution to each viewer of the free viewpoint video via the network 110b. .
- the network 110b may be a part of a wide area network together with the network 110a, or may be a network independent of the network 110a.
- the content viewing user views the content acquired by the content providing apparatus 101 via the content output apparatus 104.
- the content output device 104 is configured by a device such as a PC, a smartphone, a head-mounted display, or a combination of a PC and a head-mounted display, for example.
- the content output device 104 is a device capable of viewing, for example, a VR (Virtual Reality) video.
- the content output device 104 such as a head-mounted display is capable of self-position estimation by mounting a stereo camera, a 9 DoF (Degrees of Freedom) sensor, and the like.
- the content output device 104 such as a head-mounted display detects the line of sight of the content viewing user who is the viewer using a pupil cornea reflection method or the like, and the rotation center position of the left and right eyeballs and the direction of the visual axis (and It is assumed that the viewing direction of the content viewing user can be obtained from the head posture).
- the forward direction may be handled as the line-of-sight direction of the content viewing user based on the head posture measured or estimated by head tracking.
- the head-mounted display acquires its own position and line-of-sight direction, and sequentially transmits the acquired information to the PC.
- the PC receives a content stream of free viewpoint video from the content distribution server 102 via the network 110b.
- the PC renders the free viewpoint video with the self-position received from the head mounted display and a prescribed FoV (Field of View).
- the rendering result is displayed on the display of the head mounted display.
- the viewer can freely control the viewpoint position and the line-of-sight direction by changing his / her head posture.
- the head mounted display can be directly connected to the network 110b without a PC.
- the free-viewpoint video that has been rendered may be displayed on a monitor display mounted on a PC or smartphone without using a head-mounted display so that the viewer can view it.
- a UI User Interface
- recommendation information including a content list is displayed on the screen of the content output device 104, and the content viewing user can select the content through the operation of the UI screen.
- Various screen configurations of the UI for displaying the recommendation information are possible. For example, it may be a list of content titles or thumbnails of representative images, or may be a display of a free viewpoint video shooting location (location of the content providing device 101 or location of the content providing user), It may be a list of user names (including nicknames and handle names) of content providing users who are photographers and thumbnails of face images.
- the framework of the interaction when the content viewing user views the content acquired by the content providing user is also referred to as “JackIn (connection)”.
- the content viewing user can view the content associated with the space of the connected content providing user.
- the content providing user when connected to the content viewing user, distributes the content associated with his / her space.
- a content viewing user aims to simply view content associated with a space in which he / she does not exist or content of interest (for example, watching a sports game taken by the content providing user), as well as providing content
- the user is connected to a content providing user for the purpose of teaching or supporting the user.
- the content providing user aims to publish the content acquired by the content providing apparatus 101 simply (free of charge or for a fee) and receive teaching and work support from the content viewing user who views the content.
- the user is connected to a content viewing user as an object.
- a connection destination candidate is recommended to a content providing user or a content viewing user using a recommendation system.
- a recommendation system is installed in the content distribution system 100 or outside the content distribution system 100. For example, when a candidate for a content providing user who recommends connection to a content viewing user (or a candidate for content recommended for viewing) is obtained based on the matching processing result of the recommendation system, the recommended information including information on the candidate is displayed as content. It is presented on the UI screen of the output device 104.
- the content output device 104 sends an access request to the content providing user (or the content associated with the content providing user's space) selected by the content viewing user through the above-described UI screen operation via the network 110b. 102.
- the content output apparatus 104 may directly transmit the access request to the corresponding content providing apparatus 101.
- FIG. 2 shows a configuration example of the content providing apparatus 101.
- the content providing apparatus 101 includes a control unit 121, an input unit 122, a sensor 123, an output unit 124, an imaging unit 125, a communication unit 126, and a storage unit 127.
- the control unit 121 controls various processes executed in the content providing apparatus 101. For example, the control is executed according to a program stored in the storage unit 127.
- the input unit 122 includes an input of operation information by a user, a voice input unit (microphone) for inputting voice information, and the like.
- the audio input unit may be either a monaural microphone or a stereo microphone, but collects the voice of the content providing user at the time of shooting, the voice generated by the subject being shot by the content providing apparatus 101, and the like.
- the sensor 123 is a sensor that detects a situation in the vicinity of the content providing user, and various environments for detecting information related to the weather in the space where the content providing user exists (or at the time of shooting) such as temperature, humidity, atmospheric pressure, and illuminance. Includes sensors.
- the sensor 123 may include a biosensor that detects a photographer's biometric information such as body temperature, pulse, sweat, exhalation, and brain waves. Furthermore, the sensor 123 shoots the content providing user who is the photographer and the photographer's companion, and acquires the information of the user or the companion through processing such as face detection and face recognition. Other imaging devices may be provided.
- the sensor 123 may include a position sensor that measures the current position of the content providing apparatus 101 or the content providing user.
- the position sensor receives, for example, a GNSS signal (for example, a GPS signal from a Global Positioning System (GPS) satellite) from a GNSS (Global Navigation Satellite System) satellite, performs positioning, and calculates the latitude, longitude, and altitude of the vehicle. Generate positional information including.
- the position sensor may specify the current position based on the measurement information from the wireless access point using PlaceEngine (registered trademark) or the like.
- the sensor information detected by the sensor 123 can be handled as information associated with the content providing user's space. It can also be handled as information associated with the content acquisition period.
- an output unit 124 capable of presenting information to the content providing user who is a photographer through video display or audio output is provided.
- a UI including recommendation information including a list of content distribution destinations (content viewing users who request access to the content) is displayed.
- the content distribution destination may be selected through the above operation.
- the output unit 124 may be equipped with a configuration that performs output such as vibration, light electrical stimulation, and haptic (tactile sense) in addition to video and audio output.
- the output unit 124 may include a device such as an exoskeleton device that can support or restrain at least a part of the limbs of the content providing user and teach the operation to the content providing user.
- the output unit 124 can be used to provide information feedback from the content viewing user who is the content viewer, instructions to the content providing user from the content viewing user, and work support.
- the imaging unit 125 is an imaging unit that captures an image.
- the communication unit 126 is connected to the network 110a, and transmits AV content including content acquired by the content providing apparatus 101 and sound at the time of imaging collected by the input unit 122, and reception of information to be output by the output unit 124. To do. Further, the communication unit 126 may transmit environment information measured by the sensor unit 123 and the like. Further, the communication unit 126 can receive an access request (or connection request) for content from a content viewing user directly or indirectly through the content distribution server 102.
- the storage unit 127 is used as a storage area for processing programs executed by the control unit 121 and the like, and a captured image, for example. Further, it is also used as a parameter used in various processes, a work area for various processes, and the like.
- FIG. 3 shows a configuration example of the content output device 104.
- the content output device 104 is basically used for displaying content acquired by a content providing user as a photographer (or viewing by a content viewing user).
- the content output device 104 has a UI function in addition to the content display function, and can display information related to the content recommended by the recommendation system (described above) and can perform a content selection operation by the content viewing user. To do.
- the content output device 104 includes a control unit 141, an input unit 142, a sensor 143, an output unit 144, a display unit 145, a communication unit 146, and a storage unit 147.
- the control unit 141 executes control of processing executed in the content output device 104. For example, the control is executed according to a program stored in the storage unit 147.
- the input unit 142 includes various devices such as a voice input unit (microphone) for inputting voice information, a camera for photographing a content viewing user and a companion, an input device such as a keyboard, and a coordinate input device such as a mouse and a touch panel. .
- voice, character information, coordinate information, and the like generated by a content viewing user or a companion while viewing a free viewpoint video are captured via the input unit 142.
- the input unit 142 may include a type that is used by being worn on the viewer's body, such as gloves or clothes, for example, an input device that can directly input the movement of the fingertip or torso.
- a content viewing user who is viewing real-time content can input an instruction (work support or the like) to a content providing user who is a photographer of the content through the input unit 142.
- an instruction from the content viewing user is output from the output unit 124 in the content providing user space.
- a sensor 143 for detecting a situation in the vicinity of the content viewing user that dynamically changes such as a viewing environment includes various environmental sensors that detect information related to the weather in the space where the content viewing user exists (or when viewing the content), such as temperature, humidity, atmospheric pressure, and illuminance.
- the sensor 143 may include a biological sensor that detects viewer's biological information such as body temperature, pulse, sweating, expiration, and brain waves.
- the sensor 143 includes a photographing device that photographs the viewer who is the content viewing user and his / her companion, and acquires information on the user and the companion through processing such as face detection and face recognition on the captured image. It may be.
- the sensor 143 may include a content output device 104 or a position sensor that measures the current position of the content viewing user.
- the position sensor receives a GNSS signal from a GNSS satellite, performs positioning, and generates position information including the latitude, longitude, and altitude of the vehicle.
- the position sensor may specify the current position based on the measurement information from the wireless access point using PlaceEngine (registered trademark) or the like.
- Sensor information detected by the sensor 143 can be handled as information associated with the content viewing user's space. Also, the sensor information detected by the sensor 143 during the period when the received content is displayed on the content output device 104 (or while the content viewing user is viewing the content) is associated with the content viewing period. Can also be handled as information.
- an output unit 144 is provided in the space where the content output device 104 or the content viewing user exists.
- the output unit 144 performs output processing such as voice.
- the output unit 144 is preferably configured to output environment information for creating various viewing environments in addition to audio. For example, you can adjust the temperature and humidity, blow wind (light breeze, headwind, air blast) and splashes (water blast) to the viewer, touch the viewer ’s body (pricking back effect, To control the environment of the content viewer ’s space by applying vibration, applying a slight electrical stimulus, or giving a scent or scent (or Multimodal interface).
- the output unit 144 may be driven based on environmental information measured by the sensor 123 on the content providing apparatus 101 side, for example, so that the viewer can have a realistic and realistic experience similar to the shooting location. it can.
- the output unit 144 may be driven based on the analysis result of the content displayed on the content output device 104 to add an effect to the content viewing user who views the content.
- the output unit 144 is equipped with a sound output device such as a speaker, and the sound of the subject collected at the shooting site (or the content providing user's space) where the content is acquired, or the content providing user takes a picture. It is assumed that an audio signal integrated with the video stream, such as an audio generated sometimes, is output as audio.
- This audio output device may be composed of a multi-channel speaker so that the sound image can be localized.
- the display unit 145 is used for content display, user interface (UI) display, and the like.
- the communication unit 146 performs information transmission via the network 110b.
- the communication unit 146 can transmit a content providing user or an access request for the content directly to the content providing apparatus 101 or indirectly through the content distribution server 102.
- the communication unit 146 can transmit the input information input to the input unit 142 while the content viewing user is viewing the video to the content providing apparatus 101 side via the network 110b. Further, the communication unit 146 can receive the output information via the network 110b and output the output information to the content viewing user from the output unit 144.
- the storage unit 147 is used as, for example, a storage area for a program for processing executed in the control unit 141 and the like, and parameters used in various processing. It is also used for work areas for various processes.
- Examples of information related to the content viewing user on the content output device 104 include demographic information of the user, history information regarding the content viewing user's behavior and state, and the content viewing user detected by the sensor 143 while viewing the content. There are biometric information, companion information for viewing content together with the content viewing user, and environmental information for viewing free viewpoint video. Such user information is called a “user profile”.
- the user profile for each viewer or each viewing time is stored in the memory (storage unit 147) inside the content output device 104.
- a user profile for each viewer or each viewing time is stored in the user profile storage unit 113 constructed on the network 110b. A detailed example of the user profile will be described below.
- a user profile that is user information for each viewer or for each viewing time is stored in the user profile storage unit 113.
- a content profile that is content information for each photographer of the content or for each content is stored in the content profile storage unit 112.
- FIG. 4 illustrates information elements that constitute user profile information stored in the user profile storage unit 113.
- User profile information includes socioeconomic information such as the photographer's or viewer's individual gender, age, height / weight, address (residence or work location), birthplace, income, occupation, or company name, educational background, and family composition. Includes demographic information consisting of typical characteristic data. Demographic information generally consists of static information with a fixed value or moderate change. In addition, demographic information is known in the field of socio-economics that it is strongly linked to consumer behavior such as purchasing and using products, and is also widely used in the field of information technology.
- the user profile information may include history information related to the actions and states of the photographer and viewers such as behavior history, purchase history, viewing history, medical history, and system usage history.
- the action history includes, for example, information such as a place where the photographer or viewer has visited in the past and a moving route.
- the viewing history is a viewing history of commercial contents such as movies and TV programs.
- the system usage history includes a history that the user has used the content distribution system 100 in the past.
- “Use” here refers to a history in which a certain user has transmitted content such as a free viewpoint video acquired by the content providing apparatus 101 as a content providing user to the content distribution server 102 or the content viewing user, and as a content viewing user. This includes both the history of receiving and viewing content such as free viewpoint video by requesting access to the content providing user.
- the system usage history as a content providing user includes a shooting location (or a location where the content is acquired), date and time, shooting parameters, content transmission history, and the like.
- the system usage history as a content viewing user includes content access history, attribute information of content that has been viewed (content name, content storage location, information for identifying the content providing user who photographed, etc.), content Reproduction history (reproduction section, self-position and line-of-sight direction during reproduction, displayed angle of view), and the like.
- the profile information further includes the environment information measured by the sensors 123 around the content providing apparatus 101, the biometric information of the content providing user, the accompanying person information accompanying the photographing, and the like from moment to moment in the content providing apparatus 101 or the photographer.
- Dynamic information that changes may be included.
- the information associated with the content information acquisition period changes from time to time in real time.
- the information associated with the content information acquisition period dynamically changes for each playback section of the content stream.
- the profile information changes every moment in the content output device 104 or the viewer, such as environmental information measured by the sensors 143 around the content output device 104, biological information of the viewer, companion information accompanying the viewer. Dynamic information (that is, information associated with the viewing period of the content information) may be included.
- Demographic information includes information with high personal identification and personal information related to privacy even without personal identification.
- the history information and the dynamic information also include personal information related to privacy and information that is not related to privacy but that the photographer and viewers do not want to leak out. For this reason, it is necessary to be careful when handling profile information.
- the content profile information stored in the content profile storage unit 112 will be described in the description of the configuration and processing of the content recommendation server 103 described below.
- the content recommendation server 103 provides information related to recommended content to the content viewing user on the content output device 104 side.
- the content providing user is, for example, a photographer of content such as a free viewpoint video
- the content viewing user is a user who uses the content distribution system 100 by viewing the content.
- FIG. 1 only one content providing user and one content viewing user are drawn for simplification, but it is assumed that there are actually many content providing users and content viewing users.
- the content viewing user is more motivated to use the content distribution system 100 again if he / she can find the content he / she wants to see.
- One content provider also wants to continue providing shooting content in the future when the content that he / she has taken is viewed by many content viewing users or viewed by the content viewing user Increased motivation. Therefore, in order to further develop the content distribution system 100, it is extremely important to encourage the content viewing user to recommend an appropriate content and encourage viewing.
- the content recommendation server 103 performs recommended content selection processing by matching processing.
- the matching process for example, the content profile that is the attribute information of the content of the free viewpoint video captured by the content providing apparatus 101 and the user profile that is the attribute information when using the content on the viewer side can be used. . Furthermore, log information including operation information of content viewing users, similarity information between contents, and the like can be used.
- the similarity of profile information is calculated, and a user or content whose similarity is higher or exceeds a predetermined value is found as a candidate. Then, recommendation information including information regarding one or more candidates is presented to the user.
- the “recommended content” mentioned here includes both real-time content currently photographed by the photographer and content archived in the content storage unit 111 in the past.
- the former content list can include both real-time content that is currently being shot and content that has been shot in the past and stored in the content storage unit 111.
- the latter list of connection destinations can include both content providing users who are currently shooting and content providing users who have shot in the past.
- the candidate list is displayed on the UI screen. Then, the content viewing user can select the content to be viewed or the connection destination by the UI operation.
- a plurality of content providing users or content viewing users can be selected from the content viewing users.
- CBF Content-based Filtering: based on content
- CF Cold- Filtering
- CBF is a method of selecting information based on the content of recommended information. For example, the information requested by the user can be selected by comparing the content of the information with the user's request.
- the content of information corresponds to the content profile on the content providing user side
- the user request corresponds to the user profile on the content viewing user side
- the content conforms to the preference of the content viewing user
- the providing user or the content taken by the content providing user
- the similarity between the content viewing user profile and the content providing user, or the content profile of the content is calculated, and the content providing user or the content whose similarity is higher or exceeds a predetermined value, It can be found as a candidate close to the content viewing user's preference. For example, a content viewing user who frequently views tourism-related content can be recommended as a content providing user having a tourism-related profile or content captured by such a content providing user.
- the CBF-like recommendation method by calculating the similarity of content profiles between content providing users (or between contents), another content providing user similar to an arbitrary content providing user (or , Content acquired by the content providing user) and other content similar to arbitrary content can be found as candidates. For example, it is possible to recommend another content providing user having a profile similar to a content providing user who has been viewed by the content viewing user in the past, or a content providing user having a profile similar to a favorite content providing user. .
- CBF approach (1-1) A photographer having profile information close to the viewer is recommended. (1-2) A photographer having profile information close to an arbitrary photographer is recommended.
- CF is a method of selecting information based on user information. For example, information requested by a user can be selected using information of other users with similar preferences.
- the user information corresponds to a user profile on the content viewing user side, and based on the information of other content viewing users similar to a certain content viewing user, the content providing user (or , The content provided by the content providing user).
- a content providing user (or a user who has taken a content that has been viewed by another content viewing user with a similar preference by performing similarity calculation of user profiles between content viewing users, or (or , Content acquired by the content providing user) can be found as candidates. For example, it is assumed that the viewer A views each content photographed by the photographers 1, 2, 3, 4 and the viewer B views each content photographed by the photographers 1, 2, 3, and so on. Since viewer A and viewer B have similar preferences (content viewing history), the photographer 4 (or content captured by the photographer 4) is recommended to the viewer B.
- another content providing user (or content obtained by photographing by the content providing user) viewed by another content viewing user who viewed the content photographed by an arbitrary content providing user ) Can be recommended.
- the viewer A and the viewer B both watch the content photographed by the photographer 1, the viewer 2 recommends the viewer B for the other content that the viewer A has further viewed.
- the matching process has been described in the case where the content viewing user who is the viewer selects the content providing user or the content in an initiative.
- the recommendation information of the viewer can be similarly presented by the CBF approach or the CF approach.
- Example 1 Example in which content viewing user (ghost) selects content providing user (body) (Example 2)
- Example in which recommended information is generated by matching between content viewing users (ghosts) Example 3)
- Example of performing recommended information generation process combining CBF application process and CF application process Example of performing recommended information generation process considering newly arrived content
- Example 1 Example in which content viewing user (ghost) selects content providing user (body)
- Example 1 Example in which a content viewing user (ghost) selects a content providing user (body) will be described.
- Specific use cases (examples) in the first embodiment include the following use cases, for example.
- Example 1 One content viewing user (ghost) selects one content providing user (body) that suits him / her from a plurality of content providing users (body).
- Example 2 One content viewing user (ghost) selects a content providing user (body) related to an arbitrary content providing user (body).
- Example 1 A content providing user (body) having metadata close to the preference of a content viewing user (ghost) is presented. For example, a process of selecting and presenting a content providing user (body) that provides travel-related content to a user who frequently experiences a travel-related content providing user (body).
- Example 2 A content providing user (body) whose meta information is close to a specific content providing user (body) is presented.
- the content viewing user (ghost) selects and presents a list of contents of a content providing user (body) similar to the content providing user (body) A who has viewed in the past.
- Example 1 Another content viewing user (ghost) whose preference is close to the content viewing user (ghost) selects and presents a content providing user (body) that provides content viewed in the past.
- content viewing user (ghost) A views content provided by content providing users (body) 1, 2, 3, 4 and content viewing user (ghost) B is content providing user (body) 1, 2,
- the actions of Mr. A and Mr. B are determined to be similar ( ⁇ preference is close), and the content providing user (body) 4 is selected and recommended to Mr. B.
- Example 2 Another content providing user (body) experienced by a person who has experienced any content providing user (body) is presented. For example, another viewer who has viewed the content providing user (body) A selects the content providing user (body) who has viewed in the past and presents it as recommended information.
- FIGS. 5 to 7 show three examples of UIs in which a content viewing user (ghost) can select a content providing user (body can be selected).
- Display example 1 (UI example 1) shown in FIG. 5 is an example of recommended content displayed on the content output device 104. As an output message, “Recommended body (content providing user)” is displayed. Below this message, an image of the recommended content is displayed.
- images of content provided by a plurality of content providing users (body) A, B, C... are displayed.
- the display content is real-time content
- the video is displayed as it is.
- the digest of the content is displayed.
- the display example 1 (UI example 1) shown in FIG. 5 can be executed, for example, as a process of displaying information selected using the above-described CBF or CF. For example, it can be executed as a process of presenting a content providing user (body) having metadata close to the content viewing user (ghost) preference.
- the content viewing user can select one content image from a plurality of images displayed on the content output device 104 shown in FIG. 5, and the selection information is transmitted to the content distribution server via the network 110b. 102 is notified, and distribution of the selected content is executed.
- display example 2 (UI example 2) shown in FIG. 6 will be described.
- display example 2 (UI example 2) shown in FIG. 6
- “(1) body selected by user (content providing user)” is displayed as an output message, and this content viewing user (ghost) is displayed below this message.
- the content image of the content providing user (body) A who has viewed in the past is displayed.
- “(2) The body below is also similar to the selected body (user A)” is displayed as the output message, and the content providing user similar to the content providing user (body) A in the upper row is displayed below this message.
- Body D and E content images are displayed.
- the display example 2 (UI example 2) shown in FIG. 6 is also executed as a process of displaying the information selected using the above-described CBF or CF.
- display example 3 (UI example 3) shown in FIG. 7 will be described.
- display example 3 (UI example 3) shown in FIG. 7
- “(1) body selected by you (content providing user)” is displayed as an output message, and this content viewing user (ghost) is displayed below this message.
- the content image of the content providing user (body) A who has viewed in the past is displayed.
- “(2) The user who selected the above body (user A) also sees the following body” is displayed as the output message, and the content providing user (body) A is selected below this message.
- the content images of the content providing users (body) D and E viewed in the past by other users are displayed.
- the display example 3 (UI example 3) shown in FIG. 7 is also executed as a process of displaying the information selected using the above-described CBF or CF. For example, it can be executed as a process of selecting and presenting a content providing user (body) that provides past viewing content of another content viewing user (ghost) who has a similar preference to the content viewing user (ghost).
- FIGS. 5 to 7 are typical display examples, and various types of recommended information are also displayed.
- a configuration example of the content recommendation server 103 that generates such recommendation information and provides the content output device 104 will be described with reference to FIG.
- the content recommendation server 103 includes a content meta information acquisition unit 201, a content meta information storage unit 202, a content profile generation unit 203, a user profile generation unit 204, a feedback log analysis unit 205, a feedback log storage unit 206, A user preference analysis unit 207, a user preference information storage unit 208, a recommendation information generation unit 209, a content profile storage unit 112, and a user profile storage unit 113 are included.
- the content profile storage unit 112 and the user profile storage unit 113 are shown as components of the content recommendation server 103. These storage units are the content profile storages shown in the content distribution system 100 shown in FIG. Unit 112 and user profile storage unit 113, and may be set to be accessible via a network without being a component of content recommendation server 103.
- the 8 receives the user information 211 via the content output device 104, for example, generates a user profile, and stores the user profile in the user profile storage unit 113.
- the information stored in the user profile storage unit 113 is as described above with reference to FIG. 4.
- gender, age, height / weight, address (residence or work location), hometown Includes demographic information consisting of socio-economic attributes such as income, occupation or company name, educational background, and family composition.
- the content meta information acquisition unit 201 acquires meta information of content acquired by the content providing apparatus 101, for example, content such as a photographed image, and stores it in the content meta information storage unit 202.
- An example of the meta information stored in the content meta information storage unit 202 is shown in FIG.
- the content meta information includes, for example, the following data.
- Content identification information (itemid) Genre information (genre) Content length information
- Content atmosphere information Content photographer (body) information (body)
- Content upload date / time information (upload time)
- Content release date / time information (published time)
- the content meta information acquisition unit 201 acquires or generates the meta information based on content acquired by the content providing apparatus 101, for example, content such as a photographed image, and stores the meta information in the content meta information storage unit 202.
- the content profile generation unit 203 illustrated in FIG. 8 acquires the content acquired by the content providing apparatus 101 and the content meta information acquired by the content meta information acquisition unit 201 and stored in the content meta information storage unit 202. Profile information is generated, and the generated content profile information is stored in the content profile storage unit 112.
- FIG. 10 An example of the content profile information generated by the content profile generation unit 203 and stored in the content profile storage unit 112 is shown in FIG.
- the content profile is configured as data corresponding to the following data.
- Item type ID Item ID Feature items (category, person, mood, keyword 7)
- the score shown in each item of the feature item is a value indicating the reflection degree of the feature of each content.
- An item with a high score is an item that clearly shows the feature of the content.
- the feedback log analysis unit 205 inputs the user operation information 212 of the content viewing user for the content output device 104, analyzes the input information, generates a feedback log, and stores it in the feedback log storage unit 206.
- FIG. 11 An example of data stored in the feedback log storage unit 206 is shown in FIG. As shown in FIG. 11, for example, the following data is stored in the feedback log storage unit 206 in association with each other.
- User identifier userId
- ContentId ContentId
- FeedbackType Time stamp information
- the user identifier is an identifier of the viewer of the content output to the content output device 104.
- the content identifier is an identifier of the content output to the content output device 104.
- the feedback type information is feedback information such as a viewer's impression of the content output to the content output device 104.
- the time stamp information is input date information of feedback information.
- the user preference analysis unit 207 inputs the content profile information (see FIG. 10) stored in the content profile storage unit 112 and the feedback log information (see FIG. 11) stored in the feedback log storage unit 206. Based on the user information, the preference information of each content viewing user is analyzed, and the user preference information corresponding to each user is generated and stored in the user preference information storage unit 208 as the analysis result.
- FIG. 12 An example of user preference information generated by the user preference analysis unit 207 and stored in the user preference information storage unit 208 is shown in FIG. As shown in FIG. 12, the user preference information is configured as correspondence data of the following data.
- Item type ID Item ID Feature items (category, person, mood, keyword %)
- the item ID corresponds to the identifier of each user.
- Data indicating the feature of the content such as a category, a person, a mood, and a keyword is recorded as the feature item.
- an item having a high score is an item that is determined that each user has a high degree of interest.
- the user preference analysis unit 207 inputs the content profile information (see FIG. 10) stored in the content profile storage unit 112 and the feedback log information (see FIG. 11) stored in the feedback log storage unit 206, and inputs these Based on the information, the preference information of each content viewing user is analyzed, and the user preference information corresponding to each user, that is, the user preference information shown in FIG. 12 is generated as the analysis result.
- This preference information is generated by, for example, machine learning processing.
- An example of user preference information generation processing executed by the user preference analysis unit 207 will be described with reference to FIG.
- the user preference analysis unit 207 includes content profile information (see FIG. 10) stored in the content profile storage unit 112 and feedback log information (see FIG. 11) stored in the feedback log storage unit 206. Enter.
- the user preference analysis unit 207 estimates the degree of influence on each user preference of the user operation information 212 input from the content output device 104 by a learning process using machine learning. Further, using the degree of influence corresponding to each user operation obtained as a learning result and the content feature amount included in the content profile information (see FIG. 10) stored in the content profile storage unit 112, the following expression (1) ) To calculate the user preference.
- User preference ⁇ (content feature amount i ⁇ influence ⁇ ) (Expression 1)
- the above (Expression 1) is an expression for calculating a value indicating a user's preference degree for content having a certain content feature amount i.
- the user who calculates the user preference performs a browsing operation on the content in the same category as the content having the feature amount a1, and the user performs a browsing operation on the content having the feature amount a2. It is assumed that the user performs a purchase operation on content having The user preference in this case is calculated by the following calculation formula.
- User preference a1 ⁇ 1 + a2 ⁇ 3 + a3 ⁇ 4
- the feature amount is a feature amount corresponding to each feature item registered in the content profile storage unit 112.
- the user operation includes, for example, not only content browsing, reference, and purchase processing, but also operation information such as operations at the time of content viewing, such as viewing start, stop, fast-forward operation, and skip operation.
- the user preference analysis unit 207 analyzes the user operation information 212 input from the content output device 104 to estimate the relevance, that is, the degree of influence between these user operations and the user preference.
- the user preference is calculated based on Equation 1).
- the user preference analysis unit 207 inputs the content profile information (see FIG. 10) stored in the content profile storage unit 112 and the feedback log information (see FIG. 11) stored in the feedback log storage unit 206. Based on these information, the preference information of each content viewing user is analyzed, and the user preference information corresponding to each user configured by the data described above with reference to FIG. It is stored in the preference information storage unit 208.
- the recommendation information generation unit 209 inputs the content profile information (see FIG. 10) stored in the content profile storage unit 112 and the user preference information (see FIG. 12) stored in the user preference information storage unit 208.
- the recommendation information 213 based on the input information is generated and output to the content output device 104.
- the display example of the recommendation information is the display example (UI example) described above with reference to FIGS.
- the recommendation information generation unit 209 generates a vector (feature amount vector) having the setting values of each feature item as elements for each content of the content profile information (see FIG. 10) stored in the content profile storage unit 112.
- the recommendation information generation unit 209 generates a content feature amount vector for each content including a feature amount vector of the content A, a feature amount vector of the content B, a feature amount vector of the content C, and the like.
- the recommendation information generation unit 209 further acquires user preference information of a content viewing user (user A) on the content output device side that outputs the recommendation information 213 from the user preference information storage unit 208 (see FIG. 12). Also for the acquired user preference information, a vector (user preference vector) having the setting value of each feature item as an element is generated.
- the recommendation information generation unit 209 verifies the proximity (similarity) between the generated user preference vector of the user A and the generated feature vector of each content.
- the user preference vector of the user A and the feature amount vectors of the contents A to C are shown as vectors extending from one origin O.
- the feature vector closest to the user preference vector of user A is the feature vector of content A.
- the recommendation information generation unit 209 determines that the content A is content having characteristics closest to the user preference.
- the order of content having a feature amount close to the user preference vector of user A is content A, content B, and content C.
- the recommendation information generation unit 209 generates display information (UI) in which content images are arranged in this order, that is, the content A, the content B, and the content C in this order, and the generated information is used as the recommendation information 213.
- UI display information
- the recommendation information generation unit 209 further includes Alternatively, the user profile information (see FIG. 4) stored in the user profile storage unit 113 may be input, and the recommended content may be selected in consideration of the user profile. For example, the recommended content is selected in consideration of the user's age, sex, and the like.
- FIG. 15 shows the configuration of the content recommendation server 103 that executes this processing.
- the content recommendation server 103 illustrated in FIG. 15 includes a content meta information acquisition unit 201, a content meta information storage unit 202, a content profile generation unit 203, a user profile generation unit 204, a feedback log analysis unit 205, a feedback log storage unit 206, and content related information.
- the content recommendation server 103 shown in FIG. 15 deletes the user preference analysis unit 207 and the user preference information storage unit 208 from the components of the content recommendation server 103 described above with reference to FIG.
- the generation unit 221 and the content relevance information storage unit 222 are added.
- Other configurations are the same as the configuration of the content recommendation server 103 described above with reference to FIG.
- the processing executed by the content relevance information generation unit 221 of the content recommendation server 103 shown in FIG. 15 will be described with reference to FIG.
- the content relevance information generation unit 221 generates a vector (feature amount vector) having each feature item set value as an element for each content of the content profile information (see FIG. 10) stored in the content profile storage unit 112. .
- the content relevance information generation unit 221 generates a content feature vector for each content including a feature vector for content A, a feature vector for content B, a feature vector for content C, and the like.
- the content relevance information generation unit 221 verifies the proximity (similarity) of the generated feature vector of each content.
- the feature amount vectors of the contents A to C are shown as vectors extending from one origin O.
- the content relevance information generation unit 221 quantifies the closeness of each of these vectors, and calculates a relevance score (Relation Score). The closer the vector is, the higher the relevance score (Relation Score) value is.
- the proximity of the feature vector of each content is verified, this relevance score is calculated, and the calculated score is stored in the content relevance information storage unit 222.
- An example of data stored in the content relevance information storage unit 222 is shown in FIG.
- the content relevance information storage unit 222 identifiers of two contents to be verified for relevance, [fromContents (ID)], [toContents (ID)], and these two contents
- the relevance score of [Relation Score] is stored.
- the recommendation information generation unit 209 generates and outputs the recommendation information 213 based on the relevance score [Relation Score] of the two contents stored in the content relevance information storage unit 222.
- the recommendation information 213 that recommends content similar to the viewing content A is generated. To do.
- data in the content relevance information storage unit 222 storing the data shown in FIG. 17 is used.
- content with a high relevance score [Relation Score] with content A is selected as the recommended content.
- content having the similar feature quantity vector described above with reference to FIG. 16 is selected as the recommended content.
- the recommendation information generation unit 209 further includes content profile information (see FIG. 10) stored in the content profile storage unit 112, user preference information (see FIG. 12) stored in the user preference information storage unit 208, User profile information (see FIG. 4) stored in the user profile storage unit 113 may be input, and recommended content may be selected in consideration of such information. For example, the recommended content is selected in consideration of the user's age, sex, and the like.
- Example 2 Embodiment in which recommended information is generated by matching content viewing users (ghosts)
- Example 2 an example in which recommendation information is generated by matching between content viewing users (ghosts) will be described.
- a specific use case (example) in the second embodiment is, for example, a use case as shown in FIG.
- a plurality of content viewing users (ghosts) enjoy viewing (Jack-in) the content provided by one content providing user (body).
- joint viewing is performed from the viewpoint of one content providing user (body) while communicating among a plurality of content viewing users (ghosts).
- the excitement can be expected by joint viewing with people with similar tastes and sensibilities.
- Display example 1 (UI example 1) shown in FIG. 20 is an example of recommended content displayed on the content output device 104, and displays “Recruiting co-viewing members (coast members)” as an output message. Below is a list of recommended co-viewing members and a selection box.
- Display example 1 (UI example 1) shown in FIG. 20 can be executed, for example, as a process of displaying information selected using the above-described CBF or CF. For example, it is possible to perform matching processing for content viewing users (ghosts) with similar preferences using CBF. In addition, it is possible to perform matching processing for content viewing users (ghosts) with similar behavior patterns using CF.
- FIG. 21 shows the configuration of the content recommendation server 103 that executes processing for generating recommendation information based on matching between content viewing users (ghosts) according to the second embodiment.
- the content recommendation server 103 illustrated in FIG. 21 includes a content meta information acquisition unit 201, a content meta information storage unit 202, a content profile generation unit 203, a user profile generation unit 204, a feedback log analysis unit 205, a feedback log storage unit 206, and user-related information.
- the content recommendation server 103 shown in FIG. 21 deletes the user preference analysis unit 207 and the user preference information storage unit 208 from the components of the content recommendation server 103 described above with reference to FIG.
- the generation unit 231 and the user relevance information storage unit 232 are added.
- Other configurations are the same as the configuration of the content recommendation server 103 described above with reference to FIG.
- the user relevance information generation unit 231 inputs operation information of each user stored in the feedback log storage unit 206 (see FIG. 11).
- the user relevance information generation unit 231 calculates the similarity of the feedback information of each user based on the input information, and generates user relevance information in which the relevance score is set higher as the similarity is higher.
- the generated information is stored in the user relevance information storage unit 232.
- FIG. 17 shows an example of data stored in the user relevance information storage unit 232.
- identifiers of two users to be verified for relevance [fromUser (ID)], [toUser (ID)], and these two people
- the relevance score [Relation Score] of the user is stored.
- the recommendation information generation unit 209 generates and outputs recommendation information 213 based on the relevance score [Relation Score] of the two users stored in the user relevance information storage unit 232.
- the recommended information generation unit 209 is illustrated as a configuration in which the stored information in the two storage units of the user relevance information storage unit 232 and the user relevance information storage unit 232 is used.
- the unit 209 can generate the recommendation information 213 based on any one of the storage unit storage data.
- the recommendation information generating unit 209 further includes content profile information (see FIG. 10) stored in the content profile storage unit 112, user preference information (see FIG. 12) stored in the user preference information storage unit 208, User profile information (see FIG. 4) stored in the user profile storage unit 113 may be input, and recommended content may be selected in consideration of such information. For example, the recommended content is selected in consideration of the user's age, sex, and the like.
- a modification of the second embodiment will be described with reference to FIG.
- a plurality of content viewing users (ghosts) view and enjoy (Jack-in) the content provided by one content providing user (body) in music live or sports watching.
- This is the same as the basic configuration example of the second embodiment described above.
- a plurality of N content viewing users are set as one virtual content viewing user (ghost) for processing.
- the same processing as in the first embodiment described above can be performed.
- FIG. 26 shows a display example (UI example) of recommended information output to the content output device 104 on the content viewing user (ghost) side in the modification of the second embodiment.
- Display example 2 (UI example 2) shown in FIG. 26 is an example of recommended content displayed on the content output device 104, and displays “Recruiting co-viewing members (coast members)” as an output message. Below is a list of recommended co-viewing members and a selection box. Up to this point, the basic configuration is the same as that of the second embodiment described above with reference to FIG.
- a recommended body (content providing user) for this member is further displayed, and contents provided by a plurality of bodies (content providing users) and selection boxes are displayed.
- This display corresponds to the display information according to the first embodiment described above with reference to FIG.
- the lower display information is generated by setting a plurality of N content viewing users (ghosts) as one content viewing user (ghost) and performing the same processing as in the first embodiment described above. Applied recommendation information.
- display information as shown in FIG. 26 can be presented to the content viewing user.
- CBF is a method of selecting information based on the content of recommended information such as content. For example, the information requested by the user can be selected by comparing the content of the information with the user's request.
- CF is a method for selecting information based on user information. For example, information requested by a user can be selected using information of other users with similar preferences.
- the recommendation information generation unit 209 illustrated in FIG. 27 is the content recommendation server 103 illustrated in FIGS. 8 and 15 described as the first embodiment, or the content recommendation server 103 illustrated in FIG. 21 described as the second embodiment.
- This is a recommendation information generation unit 209 that can be configured inside. That is, the process executed by the recommendation information generation unit 209 according to the third embodiment described below is a process that can be executed in place of the recommendation information generation process in the first or second embodiment. .
- the recommended information generation unit 209 shown in FIG. 27 includes a CF recommendation information generation unit 301, a CBF recommendation information generation unit 302, and a combined recommendation information generation unit 303, as shown in the figure.
- the CF recommendation information generation unit 301 generates recommendation information based on the CF.
- CF is a method of selecting information based on user information. For example, processing is performed such as obtaining user preference and behavior information, selecting provision information (content or body) that matches the information, and providing the selection information as recommendation information.
- CBF recommendation information generation unit 302 generates recommendation information based on CBF.
- CBF is a method of selecting information based on the content of recommended information. For example, content and body information that is provided information is acquired, this information is compared with a user request, provision information (content and body) that matches the user request is selected, and selection information is provided as recommendation information Perform processing.
- the combination recommendation information generation unit 303 combines the recommendation information generated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using different methods, and finally outputs the recommendation information 213 to the content output device 104. Is generated and output.
- the CF recommendation information generation unit 301 generates recommendation information based on the CF.
- the CF recommendation information generation unit 301 selects items a, b, and c as recommended items (contents and content providing users (body)) as shown in the figure.
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CF.
- the item score is a value in the range of 0 to 1.0 indicating the preference and behavior of the content viewing user (ghost) and the matching level of each content. The closer to 1, the higher the matching rate, It indicates that the content is suitable for the content viewing user (ghost) and is an item with a high recommendation level.
- the CBF recommendation information generation unit 302 generates recommendation information based on CBF.
- the CBF recommendation information generation unit 302 selects items a, b, c, and d as recommended items (contents and content providing users (body)) as shown in the figure.
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CBF.
- the item score is a value in the range of 0 to 1.0 indicating the matching level between the information such as the feature amount acquired from the provided information a to d and the user request. The closer to 1, the higher the matching rate, and the content viewing user This is content that meets the (ghost) requirement and indicates that the item has a high recommendation level.
- the combination recommendation information generation unit 303 inputs the items and item scores selected and calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 by applying CF and CBF, respectively, Finally, recommendation information 213 to be output to the content output device 104 is generated and output.
- FIG. 27 shows an example of processing executed by the composite recommendation information generation unit 303.
- the combined recommendation information generation unit 303 adds the item scores calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using CF and CBF, respectively, using a pre-defined weight coefficient, A new item score is calculated.
- the combined recommendation information generation unit 303 calculates a new item score by adding the item scores calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using this weighting coefficient. That is, the following score calculation process is performed.
- the combined recommendation information generation unit 303 uses the itam score calculated according to the above equations as a score for determining the final recommendation level of each item.
- the result is as follows. a, b, c, d
- the composite recommendation information generation unit 303 generates recommendation information 213 in which items (contents or content providing users (body)) are arranged in the order of the scores, for example, and outputs the recommendation information 213 to the content output device 104.
- the item score used in the process described with reference to FIG. 27 is a value indicating the matching level between the user and the content.
- the recommendation information generation unit 209 illustrated in FIG. 28 has the same configuration as described with reference to FIG. 27, and includes a CF recommendation information generation unit 301, a CBF recommendation information generation unit 302, and a combined recommendation information generation unit 303.
- the CF recommendation information generation unit 301 generates recommendation information based on the CF.
- CF is a method of selecting information based on user information.
- the CBF recommendation information generation unit 302 generates recommendation information based on CBF.
- CBF is a method of selecting information based on the content of recommended information.
- the combination recommendation information generation unit 303 combines the recommendation information generated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using different methods, and finally outputs the recommendation information 213 to the content output device 104. Is generated and output.
- the matching level between contents is set as an item score, and the recommended information is generated by selecting the content close to the content (content X) that the user has seen in the past.
- the CF recommendation information generation unit 301 generates recommendation information based on the CF.
- the CF recommendation information generation unit 301 selects items m, l, and n as recommended items (contents and content providing users (body)) as shown in the figure.
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CF.
- the item score is 0 indicating the matching level between the content or body (content X or body X) seen in the past by the user who provides the recommendation information 213 and the other content (or body). It is a value in the range of -1.0. The closer to 1, the higher the matching rate, the content (or body) that is close to the content (or body) that the user has seen in the past, and that the item has a high recommendation level. Show.
- the CBF recommendation information generation unit 302 generates recommendation information based on CBF.
- the CBF recommendation information generation unit 302 selects items m, l, and p as recommended items (contents and content providing users (body)).
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CBF.
- the item score is 0 indicating the matching level between the content or body (content X or body X) seen by the user who provides the recommendation information 213 in the past and other content (or body) m, l, and p. It is a value in the range of -1.0. The closer to 1, the higher the matching rate, the content (or body) that is close to the content (or body) that the user has seen in the past, and that the item has a high recommendation level. Show.
- the combination recommendation information generation unit 303 inputs the items and item scores selected and calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 by applying CF and CBF, respectively, Finally, recommendation information 213 to be output to the content output device 104 is generated and output.
- FIG. 28 shows an example of processing executed by the composite recommendation information generation unit 303.
- the combined recommendation information generation unit 303 adds the item scores calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using CF and CBF, respectively, using a pre-defined weight coefficient, A new item score is calculated.
- the combined recommendation information generation unit 303 calculates a new item score by adding the item scores calculated by the CF recommendation information generation unit 301 and the CBF recommendation information generation unit 302 using this weighting coefficient. That is, the following score calculation process is performed.
- the combined recommendation information generation unit 303 uses the itam score calculated according to the above equations as a score for determining the final recommendation level of each item.
- the result is as follows. m, p, l, n
- the composite recommendation information generation unit 303 generates recommendation information 213 in which items (contents or content providing users (body)) are arranged in the order of the scores, for example, and outputs the recommendation information 213 to the content output device 104.
- CBF is a method of selecting information based on the content of recommended information. For example, the information requested by the user can be selected by comparing the content of the information with the user's request.
- CF is a method for selecting information based on user information. For example, information requested by a user can be selected using information of other users with similar preferences.
- Embodiment 4 described below is an embodiment that solves this problem, and is an embodiment that performs recommended information generation processing in consideration of newly arrived content.
- the recommendation information generation unit 209 illustrated in FIG. 29 is the content recommendation server 103 illustrated in FIGS. 8 and 15 described as the first embodiment, or the content recommendation server 103 illustrated in FIG. 21 described as the second embodiment.
- This is a recommendation information generation unit 209 that can be configured inside. That is, the process executed by the recommendation information generation unit 209 according to the fourth embodiment described below is a process that can be executed in place of the recommendation information generation process in the first and second embodiments described above. .
- the recommendation information generation unit 209 shown in FIG. 29 includes a first-stage recommendation information generation unit 311 and a combined recommendation information generation unit 312 as shown in the figure.
- the first-stage recommendation information generation unit 311 generates recommendation information based on CF or CBF.
- CF is a method of selecting information based on user information.
- CBF is a method of selecting information based on the content of recommended information.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CF or CBF.
- the item score is a value in the range of 0 to 1.0 indicating the preference and behavior of the content viewing user (ghost) and the matching level of each content. The closer to 1, the higher the matching rate, It indicates that the content is suitable for the content viewing user (ghost) and is an item with a high recommendation level.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- FIG. 29 illustrates an example of processing executed by the composite recommendation information generation unit 312.
- the composite recommendation information generation unit 312 calculates a new item score (itemScorenew) according to the following formula.
- itemScore new itemScore old xe -at
- itemScore old is the item score calculated by the first-stage recommendation information generating unit 311; a is a specified constant, t is the time elapsed since the item was uploaded (sec) It is.
- FIG. 30 shows the items a to z, Elapsed time after upload, itemScore old (the item score calculated by the first-stage recommendation information generating unit 311), itemScore new (item score calculated by the combined recommendation information generation unit 312), Normalization item Score new (normalize the item score calculated by the composite recommendation information generation unit 312 (normalize with the maximum value)), These are shown in association with each other.
- the combined recommendation information generation unit 312 uses each of the scores of “itemScore new ”, which is an item score calculated by the combined recommendation information generation unit 312, or “normalized itemScore new ”, which is a score after normalization, for each item.
- the final recommendation level is determined as a score.
- the items shown in FIG. 30 are arranged in descending order of final item scores as follows. z, a, c, b
- the item z is the latest item with a short elapsed time after upload, and (itemScore new ), that is, the item score calculated by the composite recommendation information generation unit 312 is the highest and is set as the top of the recommended item.
- the item score used in the process described with reference to FIG. 29 is a value indicating the matching level between the user and the content.
- the recommendation information generation unit 209 illustrated in FIG. 29 has the same configuration as described with reference to FIG. 29, and includes a first-stage recommendation information generation unit 311 and a combined recommendation information generation unit 312.
- the first-stage recommendation information generation unit 311 generates recommendation information based on CF or CBF.
- CF is a method of selecting information based on user information.
- CBF is a method of selecting information based on the content of recommended information.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- These recommended items and item scores are items and item scores selected and calculated by matching processing based on CF or CBF.
- the item score is 0 indicating the matching level between the content or body (content X or body X) seen in the past by the user who provides the recommendation information 213 and the other content (or body). It is a value in the range of -1.0. The closer to 1, the higher the matching rate, the content (or body) that is close to the content (or body) that the user has seen in the past, and that the item has a high recommendation level. Show.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- FIG. 31 shows an example of processing executed by the composite recommendation information generation unit 312.
- the composite recommendation information generation unit 312 calculates a new item score (itemScorenew) according to the following formula.
- itemScore new itemScore old xe -at
- itemScore old is the item score calculated by the first-stage recommendation information generating unit 311; a is a specified constant, t is the time elapsed since the item was uploaded (sec) It is.
- FIG. 32 shows the items a to z. Elapsed time after upload, itemScore old (the item score calculated by the first-stage recommendation information generating unit 311), itemScore new (item score calculated by the combined recommendation information generation unit 312), Normalization item Score new (normalize the item score calculated by the composite recommendation information generation unit 312 (normalize with the maximum value)), These are shown in association with each other.
- the combined recommendation information generation unit 312 uses each of the scores of “itemScore new ”, which is an item score calculated by the combined recommendation information generation unit 312, or “normalized itemScore new ”, which is a score after normalization, for each item.
- the final recommendation level is determined as a score.
- the items shown in FIG. 32 are arranged in descending order of final item score as follows. z, a, b
- the item z is the latest item with a short elapsed time after upload, and (itemScore new ), that is, the item score calculated by the composite recommendation information generation unit 312 is the highest and is set as the top of the recommended item.
- hybrid type recommendation information 213 combining recommendation information based on CF or CBF and recommendation information based on a new arrival item is generated and output to content output apparatus 104 is shown. Will be described.
- the first-stage recommendation information generation unit 311 generates recommendation information based on CF or CBF.
- CF is a method of selecting information based on user information.
- CBF is a method of selecting information based on the content of recommended information.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- These recommended items and item scores are items and item scores selected and calculated by a matching process based on CF or CBF.
- the item score is a value in the range of 0 to 1.0 indicating the preference and behavior of the content viewing user (ghost) and the matching level of each content. Yes, the closer the value is to 1, the higher the matching rate, and the content conforming to the preference of the content viewing user (ghost), indicating that the item has a high recommendation level.
- the composite recommendation information generation unit 312 receives the recommendation information generated by the first-stage recommendation information generation unit 311 and further inputs the content meta information, specifically the content upload time, from the content meta information storage unit 202. Based on the input information, the recommendation information 213 to be finally output to the content output device 104 is generated and output.
- FIG. 33 shows an example of processing executed by the composite recommendation information generation unit 312.
- the composite recommendation information generation unit 312 is a hybrid type recommendation information 213 that combines the recommendation information generated by the first-stage recommendation information generation unit 311, that is, recommendation information based on CF or CBF, and recommendation information based on a new arrival item.
- a configuration example of generating and outputting to the content output device 104 will be described.
- the recommendation information based on newly arrived items is a configuration that preferentially recommends newer items, and in the example shown in the figure, the recommendation information is preferentially recommended in the order of items x, y, and z.
- FIG. 34 shows an example of display information (UI) displayed on the content output apparatus 104 that has received the hybrid type recommendation information 213 generated as a result of this processing.
- UI display information
- FIG. 34 shows an example of display information (UI) displayed on the content output apparatus 104 that has received the hybrid type recommendation information 213 generated as a result of this processing.
- “A body recommended for you (content providing user)” is displayed, and an image of recommended content is displayed below this message.
- This display information is the same display information as the display information shown in FIG. 5 described in the first embodiment.
- This display information is display information generated according to the recommendation information generated by the first-stage recommendation information generation unit 311.
- “New arrival body (content providing user)” is displayed below the display information shown in FIG. 34, and an image of recommended content is displayed below this message.
- These are display information generated based on the recommendation information generated based on the item upload time acquired by the composite recommendation information generation unit 312 from the content meta information storage unit 202.
- the item score calculated by the first-stage recommendation information generation unit 311 is similar to the configuration described with reference to FIG. 29.
- the value indicating the matching level of each content has been described.
- the first-stage recommendation information generation unit 311 may have the same configuration as that described above with reference to FIG.
- the first-stage recommendation information generation unit 311 sets the matching level between the content or body (content X or body X) that the user who is the target of providing the recommendation information 213 has seen in the past and other content (or body).
- An item score having a value in the range of 0 to 1.0 shown may be calculated.
- the combined recommendation information generation unit 312 generates and outputs hybrid recommendation information 213 obtained by combining the recommendation information based on the item score and the recommendation information corresponding to the order of arrival.
- the hardware described with reference to FIG. 35 includes a content providing apparatus 101 that configures the content distribution system described above with reference to FIG. 1, an information processing apparatus that configures the content output apparatus 104, and a content distribution server.
- 102 is an example of a hardware configuration of an information processing apparatus constituting the content recommendation server 103.
- a CPU (Central Processing Unit) 501 functions as a control unit or a data processing unit that executes various processes according to a program stored in a ROM (Read Only Memory) 502 or a storage unit 508. For example, processing according to the sequence described in the above-described embodiment is executed.
- a RAM (Random Access Memory) 503 stores programs executed by the CPU 501 and data.
- the CPU 501, ROM 502, and RAM 503 are connected to each other by a bus 504.
- the CPU 501 is connected to an input / output interface 505 via a bus 504.
- An input unit 506 including various switches, a keyboard, a mouse, a microphone, and a sensor, and an output unit 507 including a display and a speaker are connected to the input / output interface 505.
- the CPU 501 executes various processes in response to a command input from the input unit 506 and outputs a processing result to the output unit 507, for example.
- the input unit 506 includes an imaging unit.
- the storage unit 508 connected to the input / output interface 505 includes, for example, a hard disk and stores programs executed by the CPU 501 and various data.
- a communication unit 509 functions as a transmission / reception unit for Wi-Fi communication, Bluetooth (BT) communication, and other data communication via a network such as the Internet or a local area network, and communicates with an external device.
- BT Bluetooth
- the drive 510 connected to the input / output interface 505 drives a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory such as a memory card, and executes data recording or reading.
- a removable medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory such as a memory card
- the technology disclosed in this specification can take the following configurations. (1) having a recommendation information generation unit that generates recommendation information related to a plurality of contents captured by a plurality of content providing users and distributed via a network; The recommendation information generation unit acquires a feedback log including operation information for a content output device of a content viewing user who views at least one of the plurality of contents, and generates the recommendation information based on the acquired feedback log Information processing apparatus. (2) The information processing apparatus further includes a user preference analysis unit that generates user preference information related to a preference of the content viewing user based on a content profile including a feature amount of each of the plurality of contents and the feedback log.
- the information processing apparatus wherein the recommendation information generation unit generates recommendation information including content close to the preference of the content viewing user as recommended content.
- the recommendation information generation unit A content feature amount that performs similarity determination between a content feature amount vector generated based on the content profile and a user preference vector generated based on the user preference information and has a high degree of similarity with the user preference vector.
- the information processing apparatus according to (2), wherein the recommendation information including content having a vector as recommended content is generated.
- the recommendation information includes at least one of recommendation information of the plurality of contents and recommendation information of the content providing user.
- the information processing apparatus further includes a content relevance information generation unit that generates content relevance information indicating the relevance of the plurality of contents based on a content profile including a feature amount of each of the plurality of contents.
- the information processing apparatus according to any one of (1) to (4).
- the recommendation information generation unit generates recommendation information including content similar to content viewed by the content providing user in the past as recommended content based on the content relevance information and the feedback log (5) The information processing apparatus described in 1.
- the content relevance information generation unit Determining the similarity of the content feature vector of each of the plurality of contents generated based on a content profile including the feature of each of the plurality of contents, and calculating a relevance score corresponding to the determined similarity
- the information processing apparatus according to (5), wherein the set content relevance information is generated.
- the content viewing user includes a plurality of content viewing users
- the information processing device calculates the similarity of the feedback information of the plurality of content viewing users based on the feedback log of each of the plurality of content viewing users, and the relevance score increases as the calculated similarity increases.
- the information processing apparatus according to any one of (1) to (7), further including a user relevance information generation unit configured to generate set user relevance information.
- the recommendation information generation unit relates to at least one of the plurality of content viewing users having the relatively high relevance score based on the user relevance information and one of the plurality of contents.
- the information processing apparatus according to (8), wherein recommendation information for recommending joint viewing is generated.
- the content viewing user includes a plurality of content viewing users including at least a first content viewing user and a second content viewing user, The information processing apparatus sends one of the plurality of contents to the first content viewing user based on the feedback log of the first content viewing user and the feedback log of the second content viewing user.
- the information processing apparatus according to any one of (1) to (9), wherein recommendation information for recommending joint viewing with the second content viewing user is generated.
- the recommended information generation unit performs a recommended content selection process based on application of at least one of CBF (Content-based Filtering) and CF (Collaborative Filtering) to the plurality of contents ( The information processing apparatus according to any one of 1) to (10).
- CBF Content-based Filtering
- CF Cold- Filtering
- the recommendation information generation unit A CF recommendation information generating unit that generates CF application recommendation information including a recommendation score in units of content calculated by applying CF to the plurality of contents; A CBF recommendation information generation unit for generating CBF application recommendation information including a recommendation score in units of content calculated by a process of applying CBF to the plurality of contents; Any one of (1) to (11), further comprising: a combined recommendation information generation unit configured to combine the CF application recommendation information with the CBF application recommendation information and generate output recommendation information to be output to the content output device.
- the combined recommendation information generation unit is a final value obtained by multiplying a recommendation score included in the CF recommendation information and a recommendation score included in the CBF recommendation information by multiplying by a preset weighting factor.
- the information processing apparatus wherein the recommendation information is generated based on the recommendation score.
- the recommendation information generation unit CF application recommendation information including a recommendation score of a content unit calculated by a process of applying CF to the plurality of contents, or a CBF application recommendation including a recommendation score of a content unit calculated by a process of applying CBF to the plurality of contents
- a first-stage recommendation information generating unit that generates one of the information;
- the information processing according to any one of (1) to (13), further including a combined recommendation information generation unit configured to generate recommendation information based on a recommendation score obtained by applying a predetermined conversion formula to the generated recommendation score. apparatus.
- the information processing apparatus wherein the conversion formula is a score calculation formula that has a higher score as the elapsed time from the upload time of each of the plurality of contents is shorter.
- the recommendation information generation unit CF application recommendation information including a recommendation score of a content unit calculated by a process of applying CF to the plurality of contents, or a CBF application recommendation including a recommendation score of a content unit calculated by a process of applying CBF to the plurality of contents
- a first-stage recommendation information generation unit that generates any of the information; Recommendation information including first recommendation information based on the recommendation score and second recommendation information in which at least one content that has elapsed from the upload time is relatively short among the plurality of contents as recommended content.
- the information processing apparatus according to any one of (1) to (15), further including a combined recommendation information generation unit to generate.
- An information processing method comprising: acquiring by a processing device; and controlling the at least one information processing device to generate recommendation information based on the acquired feedback log.
- a program including a plurality of instructions for causing information processing to be executed in at least one information processing apparatus, A feedback log including operation information for a content output device of a content viewing user who views at least one of a plurality of contents captured by a plurality of content providing users and distributed via a network is stored in the at least one information processing. Instructions to be acquired by the device; An instruction for causing the at least one information processing apparatus to generate recommendation information based on the acquired feedback log. (19) having a recommendation information generation unit that generates content recommendation information; The recommendation information generation unit is an information processing apparatus that acquires a feedback log including operation information for a content output apparatus of a user who views content, and generates recommendation information based on the acquired feedback log.
- the information processing apparatus includes a recommendation information generation unit that generates content recommendation information; An information processing method in which the recommendation information generation unit acquires a feedback log including operation information for a content output device of a user who views content, and generates recommendation information based on the acquired feedback log.
- the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
- the program recording the processing sequence is installed in a memory in a computer incorporated in dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It can be installed and run.
- the program can be recorded in advance on a recording medium.
- the program can be received via a network such as a LAN (Local Area Network) or the Internet and installed on a recording medium such as a built-in hard disk.
- the various processes described in the specification are not only executed in time series according to the description, but may be executed in parallel or individually according to the processing capability of the apparatus that executes the processes or as necessary.
- the system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to being in the same casing.
- a configuration in which a feedback log including operation information on a content output device of a content viewing user is acquired and recommendation information is generated based on the acquired log is realized.
- a recommendation information generation unit that generates content recommendation information acquires a feedback log including operation information for a content output device of a user who views the content, and recommends the recommendation information based on the acquired feedback log.
- Generate For example, according to (a) a content profile including the feature amount of each content, (b) a feedback log, and user preference information generated using the data (a) and (b), content close to the user preference is obtained. Recommendation information included as recommended content is generated.
- a configuration in which a feedback log including operation information for a content output user's content output device is acquired and recommendation information is generated based on the acquired log is realized.
- DESCRIPTION OF SYMBOLS 100 Content distribution system 101 Content provision apparatus 102 Content distribution server 103 Content recommendation server 104 Content output apparatus 110 Network 111 Content storage part 112 Content profile storage part 113 User profile storage part 121 Control part 122 Input part 123 Sensor 124 Output part 125 Imaging part 126 communication unit 127 storage unit 141 control unit 142 input unit 143 sensor 144 output unit 145 display unit 146 communication unit 147 storage unit 201 content meta information acquisition unit 202 content meta information storage unit 203 content profile generation unit 204 user profile generation unit 205 feedback Log analysis unit 206 Feedback log storage unit 207 User preference analysis unit 208 User preference information Storage unit 209 Recommendation information generation unit 211 User information 212 User operation information 213 Recommendation information 221 Content relevance information generation unit 222 Content relevance information storage unit 231 User relevance information generation unit 232 User relevance information storage unit 301 CF recommendation information generation Unit 302 CBF recommendation information generation unit 303 synthesis recommendation information generation unit 311 first-stage recommendation information generation unit 312 synthesis recommendation information generation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
【課題】コンテンツ視聴ユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得ログに基づいて推薦情報を生成する構成を提供する。 【解決手段】 情報処理装置は、複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツに関する推薦情報を生成する推薦情報生成部を有する。前記推薦情報生成部は、前記複数のコンテンツうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、前記取得したフィードバックログに基づいて前記推薦情報を生成する。
Description
本開示は、情報処理装置、および情報処理方法、並びにプログラムに関する。さらに詳細には、ユーザに適したコンテンツの推薦情報を提供する処理を実行する情報処理装置、および情報処理方法、並びにプログラムに関する。
昨今、インターネット等のネットワークを介したコンテンツの配信、および視聴が盛んに行われている。ネット上には膨大な数のコンテンツがあり、視聴するユーザは、これら膨大な数のコンテンツから、見たいコンテンツを選択して視聴することが必要となる。
また、最近、例えば複数のカメラからなる多視点カメラで撮影された多視点映像や、全天周カメラで撮影された全天周映像、もしくはパノラマ映像など、視線方向を変更可能な自由視点映像を提供するサービスが増えつつある。
例えば、頭部に装着して使用するヘッド・マウント・ディスプレイを用いて、自由視点映像を視聴することができる。例えば、実際に表示される表示画像よりも広角の広角画像を撮影する撮影系を備え、回転角センサで検出されたユーザの頭部の位置情報に基づいて、ユーザが見るべき表示画像を切り出して表示する頭部装着型表示システムに関する提案がなされている(例えば、特許文献1を参照のこと)。
また、自由視点映像の配信サービスに双方向通信を適用することで、インタラクティブな視聴サービスを実現することができる。例えば、ユーザ毎に視点位置や視線方向を切り替えた映像を配信して、多様なニーズに応えることができる(例えば、特許文献2を参照のこと)。
自由視点映像は、例えばスポーツやゲーム、コンサート、演劇などのエンターテインメント系のコンテンツとして利用することができる。また、撮影現場と視聴者との双方向通信により、コンテンツの視聴者から撮影者に対する指示や教示、案内、作業支援を行なうこともできる。
このような自由視点映像コンテンツを含め、ネット上には膨大な数のコンテンツがあり、ユーザは、これらの膨大な数のコンテンツから視聴コンテンツを選択することが必要となる。
本開示は、例えば、様々なユーザに、各ユーザに適したコンテンツの推薦を行う情報処理装置、および情報処理方法、並びにプログラムを提供することを目的とする。また、本開示の一実施例においては、ユーザのコンテンツ視聴ログを用いて、各ユーザに対する最適な推薦コンテンツの情報を提供する情報処理装置、および情報処理方法、並びにプログラムを提供することを目的とする。
本開示の第1の側面は、複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツに関する推薦情報を生成する推薦情報生成部を有する情報処理装置である。前記推薦情報生成部は、前記複数のコンテンツうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、前記取得したフィードバックログに基づいて前記推薦情報を生成する。
本開示の第2の側面は、少なくとも1つの情報処理装置を制御する情報処理方法である。前記情報処理方法は、複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを少なくとも1つの情報処理装置で取得すること、および前記取得したフィードバックログに基づいて推薦情報を生成するよう前記少なくとも1つの情報処理装置を制御すること、を含む。
本開示の第3の側面は、少なくとも1つの情報処理装置において情報処理を実行させるための複数の指示を含むプログラムである。前記プログラムは、複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを、前記少なくとも1つの情報処理装置に取得させる指示と、前記取得したフィードバックログに基づいて推薦情報を前記少なくとも1つの情報処理装置に生成させる指示と、を含む。
なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。
本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
本開示の一実施例の構成によれば、コンテンツ視聴ユーザは複数のコンテンツから最適な視聴コンテンツを選択することが可能となる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
以下、図面を参照しながら本開示の情報処理装置、および情報処理方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
1.システム構成
2.プロファイル情報
3.コンテンツ推薦サーバの構成と実行する処理について
3-1.マッチング処理の概要について
3-2.(実施例1)コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例
3-3.(実施例2)コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例
3-4.(実施例3)CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例
3-5.(実施例4)新着コンテンツを考慮した推薦情報生成処理を行う実施例
4.情報処理装置のハードウェア構成例について
5.本開示の構成のまとめ
1.システム構成
2.プロファイル情報
3.コンテンツ推薦サーバの構成と実行する処理について
3-1.マッチング処理の概要について
3-2.(実施例1)コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例
3-3.(実施例2)コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例
3-4.(実施例3)CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例
3-5.(実施例4)新着コンテンツを考慮した推薦情報生成処理を行う実施例
4.情報処理装置のハードウェア構成例について
5.本開示の構成のまとめ
[1.システム構成]
図1は、本開示の情報処理装置を利用した情報処理システムの一例であるコンテンツ配信システム100の構成例を示す図である。コンテンツ配信システム100は、具体的には、例えば、自由視点映像配信システムとして構成される。
図1は、本開示の情報処理装置を利用した情報処理システムの一例であるコンテンツ配信システム100の構成例を示す図である。コンテンツ配信システム100は、具体的には、例えば、自由視点映像配信システムとして構成される。
コンテンツ提供装置101(例えば、多視点カメラや全天周カメラなどの撮像装置)を用いて取得した自由視点映像などの撮像画像情報は、ネットワーク110a経由でコンテンツ配信サーバ102に送信される。図1では簡素化のため、1台のコンテンツ提供装置101しか描いていないが、撮像画像情報の供給源となる多数のコンテンツ提供装置101が現実世界に散在していることを想定している。
コンテンツ提供装置101は、例えば撮像装置によるコンテンツ撮影者であるコンテンツ提供ユーザ(ボディ)が存在する空間において、撮像画像情報を取得できればよく、種々の装置構成が採用され得る。例えば、コンテンツ提供装置101は、一般的なカメラ装置や多視点カメラ、全天周カメラの他に、カメラ、もしくはイメージャなどの撮影手段を装備した、ヘッド・マウント・ディスプレイのように撮影者が着用するウェアラブル装置という形態をとることもある。
なお、コンテンツ提供装置101を用いてコンテンツ取得処理を行うユーザをコンテンツ提供ユーザ(ボディ(Body))と呼ぶ。一方、コンテンツ提供ユーザ(ボディ)の取得したコンテンツを視聴するユーザをコンテンツ視聴ユーザ(ゴースト(Gohst))と呼ぶ。
コンテンツ提供ユーザとしての撮影者は、実際に撮影の現場において、自らの身体を以って活動している(すなわち、身体が現場に実在する)ことから、「ボディ(Body)」と呼ぶ。なお、撮影者は、人(自然人)である以外に、車両(人が手動運転する車両、並びに自動運転、または無人運転する車両を含む)や船舶、飛行機、ロボット、ドローンなどの移動体装置であることも想定される。
一方、実際に撮影の現場にいることなく、スマホやPC等の画面を介して表示されるコンテンツを視聴するユーザを「ゴースト(Gohst)」と呼ぶ。コンテンツ視聴ユーザは、現場で身体を以って活動する訳ではないが、コンテンツ提供ユーザである撮影者の視点から見た映像を視聴することによって現場に対する意識を持つことができる。このように、コンテンツ視聴ユーザは、現場には意識のみがある存在であることから、「ゴースト(Gohst)」と呼ぶ。ボディ、ゴーストの呼称は、各ユーザを区別するための呼称である。
なお、コンテンツ提供ユーザ(ボディ)が存在する空間は、基本的には実空間であるが、実空間に代えて仮想空間として定義することもできる。以下では、「実空間」、または「仮想空間」を単に「空間」として言及する場合がある。また、コンテンツ提供装置101で取得された撮影画像情報は、コンテンツ提供ユーザの空間に関連付けられたコンテンツ情報と言うこともできる。以下では、コンテンツ提供装置101で取得された撮影画像情報を「コンテンツ」とも呼ぶ。
本実施形態では、コンテンツ提供ユーザとしての多数の撮影者が、それぞれPOI(Point Of Interest:誰かが便利、あるいは興味があると思った場所)に出向いて、そこで各々のコンテンツ提供装置101を用いて撮影作業を行なっていることを想定している。また、1つのPOIに複数の撮影者が同時に存在し、同じPOIにおいて複数の視点位置で取得された複数のコンテンツがコンテンツ配信サーバ102に送信される場合もある。このような場合、後述する視聴者側では、同じPOIでも複数の視点位置の中からいずれかを選択して、その視点位置における自由視点映像を視聴することが可能となる。
ここで言うPOIとして、例えば観光名所、商業施設、もしくは商業施設内の各店舗、野球やサッカーなどのスポーツ競技が行なわれるスタジアム、ホール、コンサート会場、劇場などを挙げることができる。但し、撮影場所はPOIなどに限定される訳ではない。
コンテンツ配信サーバ102は、各コンテンツ提供装置101から送られてきたコンテンツを、コンテンツ記憶部111に蓄積する。また、コンテンツ配信サーバ102は、各コンテンツ提供装置101から送られてきたリアルタイム(ライブ映像)のコンテンツを、ネットワーク110b経由で自由視点映像の各視聴者に向けてストリーミング配信する。あるいは、コンテンツ配信サーバ102は、コンテンツ記憶部111に蓄積されている過去の録画(アーカイブ)されたコンテンツを読み出して、ネットワーク110b経由で自由視点映像の各視聴者に向けてストリーミング配信する場合もある。なお、ネットワーク110bは、ネットワーク110aとともに広域ネットワークの一部であっても、ネットワーク110aとは独立したネットワークであってもよい。
コンテンツ視聴ユーザ(コースト)は、コンテンツ出力装置104を介して、コンテンツ提供装置101において取得されたコンテンツを視聴する。コンテンツ出力装置104は、例えばPC、スマホ、ヘッド・マウント・ディスプレイ等の装置、あるいは例えばPCとヘッド・マウント・ディスプレイの組み合わせ等によって構成される。コンテンツ出力装置104は、例えばVR(Virtual Reality)映像を視聴可能な装置である。
例えば、ヘッド・マウント・ディスプレイ等のコンテンツ出力装置104は、ステレオカメラや9DoF(Degrees of Freedom)センサなどを搭載して自己位置推定が可能である。また、ヘッド・マウント・ディスプレイ等のコンテンツ出力装置104は、瞳孔角膜反射法などを用いて視聴者であるコンテンツ視聴ユーザの視線を検出し、左右の眼球の回転中心位置と視軸の向き(および頭部姿勢)から、コンテンツ視聴ユーザの視線方向を求めることができるものとする。あるいは、単にヘッド・トラッキングで測定、または推定した頭部の姿勢に基づいて、前方をコンテンツ視聴ユーザの視線方向として扱うようにしてもよい。
例えば、コンテンツ出力装置104が、PCとヘッド・マウント・ディスプレイによって構成される場合、ヘッド・マウント・ディスプレイが自己位置と視線方向を取得して、取得情報を、遂次、PCへ送信する。PCは、ネットワーク110b経由でコンテンツ配信サーバ102から自由視点映像のコンテンツ・ストリームを受信する。そして、PCは、ヘッド・マウント・ディスプレイから受信した自己位置と、規定のFoV(Field of View:視界)で自由視点映像をレンダリングする。そして、そのレンダリング結果は、ヘッド・マウント・ディスプレイのディスプレイに表示される。視聴者は、自分の頭部姿勢を変えることで、視点位置と視線方向を自由にコントロールすることができる。
なお、PCではなくヘッド・マウント・ディスプレイ内で、視聴者の自己位置および視線方向に基づく自由視点映像のレンダリング処理を行なうように構成することもできる。また、PCが介在せず、ヘッド・マウント・ディスプレイが直接ネットワーク110bに接続するように構成することもできる。あるいは、ヘッド・マウント・ディスプレイを使用せず、PCやスマホに装備されたモニター・ディスプレイにレンダリング処理された自由視点映像を表示して、これを視聴者が視聴するようにしてもよい。
さらに、コンテンツ出力装置104の画面には、コンテンツのリストなどからなる推薦情報を含んだUI(User Interface)が表示され、コンテンツ視聴ユーザはこのUI画面の操作を通じてコンテンツを選択することが可能となる。
推薦情報を表示するUIの画面構成は様々な構成が可能である。例えば、コンテンツのタイトルや代表画像のサムネイルの一覧であってもよいし、自由視点映像の撮影場所(コンテンツ提供装置101の設置場所、もしくはコンテンツ提供ユーザの居場所)の表示であってもよいし、撮影者であるコンテンツ提供ユーザのユーザ名(ニックネームやハンドル名を含む)や顔画像のサムネイルの一覧であってもよい。
推薦情報を表示するUIの画面構成は様々な構成が可能である。例えば、コンテンツのタイトルや代表画像のサムネイルの一覧であってもよいし、自由視点映像の撮影場所(コンテンツ提供装置101の設置場所、もしくはコンテンツ提供ユーザの居場所)の表示であってもよいし、撮影者であるコンテンツ提供ユーザのユーザ名(ニックネームやハンドル名を含む)や顔画像のサムネイルの一覧であってもよい。
本明細書では、コンテンツ提供ユーザ側で取得されたコンテンツをコンテンツ視聴ユーザが視聴する際のインタラクションの枠組みのことを、「JackIn(接続)」とも呼ぶ。コンテンツ視聴ユーザは、接続したコンテンツ提供ユーザの空間に関連付けられたコンテンツを視聴することができる。コンテンツ提供ユーザは、コンテンツ視聴ユーザに接続されると、自分の空間に関連付けられたコンテンツを配信する、と言い換えることもできる。
ユーザ同士が接続を行なう目的はさまざまである。例えば、コンテンツ視聴ユーザは、自分が存在しない空間に関連付けられたコンテンツや興味のあるコンテンツを単純に視聴すること(例えば、コンテンツ提供ユーザ側で撮影されたスポーツ観戦)を目的とする他、コンテンツ提供ユーザに対して教示や作業支援を行なうことを目的として、コンテンツ提供ユーザに接続する場合もある。また、コンテンツ提供ユーザは、コンテンツ提供装置101で取得したコンテンツを単純に(無償、または有償で)公開することを目的とする他、コンテンツを視聴するコンテンツ視聴ユーザから教示や作業支援を受けることを目的として、コンテンツ視聴ユーザに接続される場合もある。
本実施形態では、推薦システムを利用して、コンテンツ提供ユーザ、またはコンテンツ視聴ユーザに対して接続先の候補を推薦することを想定している。このような推薦システムは、コンテンツ配信システム100内、もしくはコンテンツ配信システム100外に装備されている。例えば、推薦システムのマッチング処理結果によって、コンテンツ視聴ユーザに接続を勧めるコンテンツ提供ユーザの候補(、もしくは、視聴を薦めるコンテンツの候補)が得られると、その候補に関する情報を含んだ推薦情報が、コンテンツ出力装置104のUI画面に提示される。
コンテンツ出力装置104は、上記のUI画面の操作によってコンテンツ視聴ユーザが選択したコンテンツ提供ユーザ(、もしくは、コンテンツ提供ユーザの空間に関連付けられたコンテンツ)へのアクセス要求を、ネットワーク110bを通じて、コンテンツ配信サーバ102に送信する。あるいは、コンテンツ出力装置104は、アクセス要求を該当するコンテンツ提供装置101に向けて直接送信するようにしてもよい。
図2には、コンテンツ提供装置101の構成例を示している。コンテンツ提供装置101は、制御部121、入力部122、センサ123、出力部124、撮像部125、通信部126、記憶部127を有する。
制御部121は、コンテンツ提供装置101において実行する様々な処理の制御を実行する。例えば、記憶部127に格納されたプログラムに従って制御を実行する。入力部122は、ユーザによる操作情報の入力、音声情報を入力する音声入力部(マイク)等によって構成される。音声入力部は、モノラルマイク、またはステレオマイクのいずれでもよいが、撮影時におけるコンテンツ提供ユーザの音声や、コンテンツ提供装置101で撮影している被写体が発生する音声などを集音する。
センサ123は、コンテンツ提供ユーザ近辺の状況を検出するセンサであり、気温や湿度、気圧、照度など、コンテンツ提供ユーザが存在する空間(、もしくは、撮影時)の天候に関する情報を検出する各種の環境センサ類を含んでいる。また、センサ123は、体温や脈拍、発汗、呼気、脳波など撮影者の生体情報を検出する生体センサを含んでいてもよい。さらに、センサ123は、撮影者であるコンテンツ提供ユーザ本人や撮影者の同行者を撮影して、顔検出や顔認識などの処理を通じてユーザ本人、または同行者の情報を取得する、コンテンツ提供装置101以外の撮影装置を備えていてもよい。
また、センサ123は、コンテンツ提供装置101、もしくはコンテンツ提供ユーザの現在位置を計測する位置センサを含んでいてもよい。位置センサは、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度および高度を含む位置情報を生成する。あるいは、位置センサは、PlaceEngine(登録商標)などを利用して無線アクセスポイントからの電測情報に基づいて現在位置を特定してもよい。
センサ123が検出したセンサ情報は、コンテンツ提供ユーザの空間に対応付けた情報として扱うことができる。また、コンテンツの取得期間に対応付けた情報として扱うこともできる。
コンテンツ提供装置101、もしくはコンテンツ提供ユーザが存在する空間には、撮影者であるコンテンツ提供ユーザに対して映像の表示や音声出力などを通じて情報提示を行なうことができる出力部124が備えられる。出力部124が装備する表示画面には、コンテンツの配信先(コンテンツへのアクセスを要求するコンテンツ視聴ユーザ)のリストなどからなる推薦情報を含んだUIが表示され、コンテンツ提供ユーザは個のUI画面の操作を通じてコンテンツの配信先を選択するようにしてもよい。
また、出力部124は、映像や音声出力の他に、振動や軽度の電気刺激、ハプティック(触覚)といった出力を行なうような構成を装備してもよい。さらに、出力部124は、外骨格装置のような、コンテンツ提供ユーザの四肢の少なくとも一部を支持、または拘束して、コンテンツ提供ユーザに動作を教示することができる装置を含んでいてもよい。出力部124は、コンテンツの視聴者であるコンテンツ視聴ユーザ側からの情報フィードバックや、コンテンツ視聴ユーザからのコンテンツ提供ユーザに対する指示や作業支援を行なうために活用することができる。
撮像部125は、画像撮影を行う撮像部である。通信部126は、ネットワーク110aに接続され、コンテンツ提供装置101で取得したコンテンツおよび入力部122で集音した撮像時の音声などからなるAVコンテンツの送信や、出力部124で出力すべき情報の受信を行なう。また、通信部126は、センサ部123で計測された環境情報などを送信するようにしてもよい。また、通信部126は、コンテンツ視聴ユーザからのコンテンツに対するアクセス要求(、もしくは、接続要求)を、直接的に、あるいはコンテンツ配信サーバ102を介して間接的に受信することができる。
記憶部127は、例えば制御部121等において実行する処理のプログラムや、撮影画像等の記憶領域として利用される。さらに、各種処理において利用されるパラメータや、様々な処理のためのワークエリア等としても利用される。
図3には、コンテンツ出力装置104の構成例を示している。コンテンツ出力装置104は、基本的には、撮影者としてのコンテンツ提供ユーザ側で取得されたコンテンツの表示(、もしくは、コンテンツ視聴ユーザによる視聴)のために使用される。コンテンツ出力装置104は、コンテンツ表示機能に加えて、UI機能を備えており、推薦システム(前述)が推薦するコンテンツに関連する情報の表示やコンテンツ視聴ユーザによるコンテンツ選択操作を行なうことができるものとする。
図3に示すように、コンテンツ出力装置104は、制御部141、入力部142、センサ143、出力部144、表示部145、通信部146、記憶部147を有する。制御部141は、コンテンツ出力装置104において実行する処理の制御を実行する。例えば、記憶部147に格納されたプログラムに従って制御を実行する。
入力部142は、音声情報を入力する音声入力部(マイク)、コンテンツ視聴ユーザやその同伴者を撮影するカメラ、キーボード等の入力装置、マウスやタッチパネルなどの座標入力装置といった、各種の装置からなる。例えば、自由視点映像を視聴中にコンテンツ視聴ユーザやその同伴者が発生した音声や文字情報、座標情報などが入力部142を介して取り込まれる。
なお、入力部142として、手袋や衣服のように視聴者の身体に装着して用いるタイプ、例えば、指先や胴体の動きを直接入力できるタイプの入力装置を含んでいてもよい。リアルタイムのコンテンツを視聴中のコンテンツ視聴ユーザは、そのコンテンツの撮影者であるコンテンツ提供ユーザに対する指示(作業支援など)を、入力部142で入力することができる。入力部142に取り込まれた入力情報のうち少なくとも一部がコンテンツ提供装置101側に送信されると、コンテンツ提供ユーザの空間では、コンテンツ視聴ユーザからの指示が出力部124で出力される。
また、コンテンツ出力装置104、もしくはコンテンツ視聴ユーザが存在する空間には、視聴環境など動的に変化するコンテンツ視聴ユーザ近辺の状況を検出するセンサ143が備えられている。センサ143は、気温や湿度、気圧、照度など、コンテンツ視聴ユーザが存在する空間(、もしくは、コンテンツ視聴時)の天候に関する情報を検出する各種の環境センサ類を含んでいる。また、センサ143は、体温や脈拍、発汗、呼気、脳波など視聴者の生体情報を検出する生体センサを含んでいてもよい。さらに、センサ143は、視聴者であるコンテンツ視聴ユーザ本人やその同伴者を撮影する撮影装置を備え、その撮像画像に対する顔検出や顔認識などの処理を通じてユーザ本人や同伴者の情報を取得するようにしてもよい。
また、センサ143は、コンテンツ出力装置104、もしくはコンテンツ視聴ユーザの現在位置を計測する位置センサを含んでいてもよい。位置センサは、例えば、GNSS衛星からのGNSS信号を受信して測位を実行し、車両の緯度、経度および高度を含む位置情報を生成する。あるいは、位置センサは、PlaceEngine(登録商標)などを利用して無線アクセスポイントからの電測情報に基づいて現在位置を特定してもよい。
センサ143が検出したセンサ情報は、コンテンツ視聴ユーザの空間に対応付いた情報として扱うことができる。また、コンテンツ出力装置104で受信コンテンツを表示している期間中(、もしくは、コンテンツ視聴ユーザがコンテンツを視聴している期間中)においてセンサ143が検出したセンサ情報を、コンテンツの視聴期間に対応付いた情報として扱うこともできる。
また、コンテンツ出力装置104、もしくはコンテンツ視聴ユーザが存在する空間には、出力部144が備えらる。出力部144は、音声他の出力処理を行う。例えば、出力部144は、音声の他、様々な視聴環境を作りだすための環境情報の出力を行う構成とすることが好ましい。例えば、温度や湿度を調整したり、視聴者に風(微風や向かい風、エア・ブラスト)や水しぶき(ウォター・ブラスト)を吹き付けたり、視聴者の身体に触覚(背中をつつくような効果、首筋や足元に何かが触れるような感覚など)や振動を印加したり、軽度の電気刺激を与えたり、匂いや香りを与えたりして、コンテンツ視聴ユーザの空間の環境をコントロールする手段(、もしくは、マルチモーダルなインタフェース)である。
出力部144は、例えばコンテンツ提供装置101側のセンサ123で計測された環境情報に基づいて駆動して、視聴者にも撮影場所と同じようなリアルで臨場感のある体験をしてもらうことができる。また、出力部144は、コンテンツ出力装置104で表示するコンテンツを解析した結果に基づいて駆動して、コンテンツを視聴するコンテンツ視聴ユーザに対するエフェクトを加えるようにしてもよい。
また、出力部144は、スピーカなどの音声出力装置を装備しており、コンテンツを取得した撮影現場(、もしくは、コンテンツ提供ユーザの空間)で集音された被写体の音声や、コンテンツ提供ユーザが撮影時に発した音声など、映像ストリームと一体となった音声信号を音声出力するものとする。この音声出力装置を多チャンネル・スピーカで構成して、音像を定位できるようにしてもよい。
表示部145は、コンテンツの表示、ユーザインタフェース(UI)の表示等に利用される。通信部146は、ネットワーク110b経由での情報伝送を行なう。例えば、通信部146は、コンテンツ提供ユーザ、またはコンテンツに対するアクセス要求を、コンテンツ提供装置101に直接的に、あるいはコンテンツ配信サーバ102を介して間接的に送信することができる。
また、通信部146は、コンテンツ視聴ユーザが映像の視聴中に入力部142に入力された入力情報を、ネットワーク110b経由でコンテンツ提供装置101側に送信することができる。また、通信部146は、出力情報をネットワーク110b経由で受信して、出力部144からコンテンツ視聴ユーザに対して出力することができる。
記憶部147は、例えば制御部141等において実行する処理のプログラム、各種処理において利用されるパラメータの記憶領域として利用される。さらに様々な処理のためのワークエリア等にも利用される。
コンテンツ出力装置104側のコンテンツ視聴ユーザに関する情報には、例えば、ユーザのデモグラフィック情報や、コンテンツ視聴ユーザの行動や状態などに関する履歴情報、コンテンツの視聴中にセンサ143で検出されるコンテンツ視聴ユーザの生体情報、コンテンツ視聴ユーザとともにコンテンツを視聴する同伴者情報、自由視点映像を視聴している環境情報がある。これらのユーザ情報は、「ユーザプロファイル」と呼ばれる。
視聴者毎、もしくは視聴時毎のユーザプロファイルは、コンテンツ出力装置104内部のメモリ(記憶部147)に記憶される。あるいは、ネットワーク110b上に構築されたユーザプロファイル記憶部113内に、視聴者毎、もしくは視聴時毎のユーザプロファイルが格納される。ユーザプロファイルの詳細例について、以下において説明する。
[2.プロファイル情報]
視聴者毎、もしくは視聴時毎のユーザ情報であるユーザプロファイルはユーザプロファイル記憶部113に格納される。なお、コンテンツ提供装置101において取得されたコンテンツについても、そのコンテンツの撮影者毎、またはコンテンツ毎のコンテンツ情報であるコンテンツプロファイルが、コンテンツプロファイル記憶部112に格納される。
視聴者毎、もしくは視聴時毎のユーザ情報であるユーザプロファイルはユーザプロファイル記憶部113に格納される。なお、コンテンツ提供装置101において取得されたコンテンツについても、そのコンテンツの撮影者毎、またはコンテンツ毎のコンテンツ情報であるコンテンツプロファイルが、コンテンツプロファイル記憶部112に格納される。
図4には、ユーザプロファイル記憶部113に格納されるユーザプロファイル情報を構成する情報要素を例示している。
ユーザプロファイル情報は、撮影者、もしくは視聴者個人の性別や年齢、身長・体重、住所(居住地、または勤務地)、出身地、収入、職業、または会社名、学歴、家族構成といった、社会経済的な特質データからなるデモグラフィック(人口統計学的)情報を含む。デモグラフィック情報は、一般に、固定値、もしくは変化が緩やかな静的な情報からなる。また、デモグラフィック情報は、商品の購買や使用など消費者行動との連動が強いことが社会経済学の分野で知られており、情報技術の分野においても広く活用されている。
また、ユーザプロファイル情報は、行動履歴や購買履歴、視聴履歴、病歴、システム利用履歴といった、撮影者や視聴者の行動や状態などに関わる履歴情報を含んでいてもよい。行動履歴は、例えば撮影者、または視聴者が過去に訪れたことのある場所や移動経路などの情報を含む。また、視聴履歴は、映画やテレビ番組などの商用コンテンツの視聴履歴である。
システム利用履歴は、ユーザが過去にコンテンツ配信システム100を利用した履歴を含む。ここで言う「利用」は、あるユーザが、コンテンツ提供ユーザとしてコンテンツ提供装置101で取得した自由視点映像などのコンテンツを、コンテンツ配信サーバ102、またはコンテンツ視聴ユーザに送信した履歴と、コンテンツ視聴ユーザとしてコンテンツ提供ユーザにアクセス要求して、自由視点映像などのコンテンツを受信・視聴した履歴の双方を含む。
コンテンツ提供ユーザとしてのシステム利用履歴には、撮影場所(、もしくは、コンテンツを取得した場所)や日時、撮影パラメータ、コンテンツの送信履歴などが含まれる。また、コンテンツ視聴ユーザとしてのシステム利用履歴には、コンテンツへのアクセス履歴、視聴したことのあるコンテンツの属性情報(コンテンツ名やコンテンツの格納場所、撮影したコンテンツ提供ユーザを特定する情報など)、コンテンツの再生履歴(再生区間、再生時の自己位置および視線方向、表示した画角)などである。
プロファイル情報は、さらに、コンテンツ提供装置101の周辺のセンサ123で計測される環境情報やコンテンツ提供ユーザの生体情報、撮影に同行する同行者情報など、コンテンツ提供装置101、または撮影者において時々刻々と変化する動的情報(すなわち、コンテンツ情報の取得期間に対応付いた情報)を含んでいてもよい。コンテンツ提供装置101から送信中のリアルタイムのコンテンツの場合、コンテンツ情報の取得期間に対応付いた情報は、リアルタイムで時々刻々と変化する。また、コンテンツ記憶部111から配信される録画コンテンツの場合、コンテンツ情報の取得期間に対応付いた情報は、コンテンツ・ストリームの再生区間毎に動的に変化する。
また、プロファイル情報は、コンテンツ出力装置104の周辺のセンサ143で計測される環境情報や視聴者の生体情報、視聴に同伴する同伴者情報など、コンテンツ出力装置104、または視聴者において時々刻々と変化する動的情報(すなわち、コンテンツ情報の視聴期間に対応付いた情報)を含んでいてもよい。
デモグラフィック情報の中には、個人識別性が高い情報や、個人識別性がなくともプライバシーに関わる個人情報が含まれる。また、履歴情報や動的情報の中にも、プライバシーに関わる個人情報や、プライバシーに関わるとは言えないが撮影者と視聴者にとっては外部に流出されたくない情報が含まれる。このため、プロファイル情報の取り扱いには十分注意する必要がある。
なお、コンテンツプロファイル記憶部112に格納されるコンテンツプロファイル情報については、次に説明するコンテンツ推薦サーバ103の構成と処理の説明の項目において説明する。
[3.コンテンツ推薦サーバの構成と実行する処理について]
次に、図1に示すコンテンツ配信システム100の構成要素であるコンテンツ推薦サーバ103の構成と実行する処理について説明する。コンテンツ推薦サーバ103は、コンテンツ出力装置104側のコンテンツ視聴ユーザに対して、推薦コンテンツに関する情報を提供する。
次に、図1に示すコンテンツ配信システム100の構成要素であるコンテンツ推薦サーバ103の構成と実行する処理について説明する。コンテンツ推薦サーバ103は、コンテンツ出力装置104側のコンテンツ視聴ユーザに対して、推薦コンテンツに関する情報を提供する。
[3-1.マッチング処理の概要について]
まず、コンテンツ推薦サーバ103による推薦コンテンツの選択処理において実行されるマッチング処理の概要について説明する。図1に示すコンテンツ配信システム100において、コンテンツ提供ユーザは、例えば、自由視点映像などのコンテンツの撮影者であり、コンテンツ視聴ユーザは、コンテンツを視聴することでコンテンツ配信システム100を利用するユーザである。図1では簡素化のためコンテンツ提供ユーザおよびコンテンツ視聴ユーザをそれぞれ1人ずつしか描いていないが、実際には多数のコンテンツ提供ユーザおよびコンテンツ視聴ユーザが存在することが想定される。
まず、コンテンツ推薦サーバ103による推薦コンテンツの選択処理において実行されるマッチング処理の概要について説明する。図1に示すコンテンツ配信システム100において、コンテンツ提供ユーザは、例えば、自由視点映像などのコンテンツの撮影者であり、コンテンツ視聴ユーザは、コンテンツを視聴することでコンテンツ配信システム100を利用するユーザである。図1では簡素化のためコンテンツ提供ユーザおよびコンテンツ視聴ユーザをそれぞれ1人ずつしか描いていないが、実際には多数のコンテンツ提供ユーザおよびコンテンツ視聴ユーザが存在することが想定される。
コンテンツ視聴ユーザは、自分が見たいコンテンツに巡り合うことができれば、また次もコンテンツ配信システム100を利用したいという意欲が増す。一方のコンテンツ提供ユーザも、自分が撮影したコンテンツが多数のコンテンツ視聴ユーザによって視聴される、あるいは、見てほしいコンテンツ視聴ユーザに視聴されると、今後も撮影活動を継続してコンテンツを提供したいという意欲が増す。したがって、コンテンツ視聴ユーザに的確なコンテンツを推薦して視聴を促すことが、コンテンツ配信システム100をさらに発展させていく上で極めて重要である。
コンテンツ推薦サーバ103は、マッチング処理による推薦コンテンツの選択処理を行う。マッチング処理には、例えば、上述した、コンテンツ提供装置101で撮影した自由視点映像のコンテンツの属性情報であるコンテンツプロファイルと、視聴者側のコンテンツ利用時における属性情報であるユーザプロファイルを用いることができる。さらに、コンテンツ視聴ユーザの操作情報等を含むログ情報や、コンテンツ間の類似度情報等も用いることが可能である。
マッチング処理では、例えば、プロファイル情報の類似度計算を行ない、類似度が上位、もしくは所定値を超えるユーザ、またはコンテンツが候補として発見される。そして、1以上の候補に関する情報を含んだ推薦情報がユーザに提示される。
例えば、コンテンツを視聴するコンテンツ視聴ユーザに対しては、推薦システムのマッチング処理によって得られた、お薦めのコンテンツに関する情報がUI画面として提示される。ここで言う「お薦めのコンテンツ」は、撮影者が現在撮影しているリアルタイムのコンテンツと、過去に撮影されコンテンツ記憶部111にアーカイブされているコンテンツの双方を含むものとする。
コンテンツ視聴ユーザに推薦情報を提示する形式として、コンテンツの候補リストを提示する形式と、接続先となるコンテンツ提供ユーザの候補リストを提示する形式が挙げられる。前者のコンテンツのリストには、現在撮影が行なわれているリアルタイムのコンテンツと、過去に撮影されコンテンツ記憶部111に蓄積されているコンテンツの両方を含めることができる。また、後者の接続先のリストには、現在撮影を行なっているコンテンツ提供ユーザと、過去に撮影を行なったコンテンツ提供ユーザの両方を含めることができる。候補リストは、UI画面上で表示される。そして、コンテンツ視聴ユーザは、UI操作により視聴したいコンテンツ、もしくは接続先を選択することができる。
また、コンテンツ視聴ユーザが主導的な(もしくは、コンテンツ視聴ユーザに対して推薦情報を提示するための)マッチング処理を行なうユースケースとして、複数のコンテンツ提供ユーザ、またはコンテンツの中から、コンテンツ視聴ユーザに合ったコンテンツ提供ユーザ、またはコンテンツを選ぶ場合と、任意のコンテンツ提供ユーザ、またはコンテンツに関連した他のコンテンツ提供ユーザを選ぶ場合の2通りを挙げることができる。後者は、コンテンツ視聴ユーザが例えば過去に視聴したことがあるコンテンツに関連したコンテンツや、過去に視聴したことがあるコンテンツを撮影したコンテンツ提供ユーザに関連した他のコンテンツ提供ユーザ(、または、関連したコンテンツ提供ユーザの撮影によるコンテンツ)を選ぶユースケースである。
また、上記の各ユースケースにおけるマッチング処理、具体的には、例えばコンテンツ視聴者に推薦するアイテム(コンテンツまたはボディ)の選択処理(フィルタリング)の実現方法として、CBF(Content-based Filtering:内容に基づくフィルタリング)と、CF(Collaborative Filtering:協調フィルタリング)の2つの方法を利用することができる。CBFおよびCFの各手法自体は当業界で広く知られているので、手法の詳細については説明を省略する。
CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。例えば、情報の内容とユーザの要求を比較してユーザが求める情報を選別することができる。コンテンツ配信システム100においてCBFを適用する場合、情報の内容はコンテンツ提供ユーザ側のコンテンツプロファイルに相当し、ユーザの要求はコンテンツ視聴ユーザ側のユーザプロファイルに相当し、コンテンツ視聴ユーザの嗜好に適合するコンテンツ提供ユーザ(、または、そのコンテンツ提供ユーザの撮影によるコンテンツ)を取捨選択する。
CBF的な推薦方法の一例として、コンテンツ視聴ユーザのユーザプロファイルとコンテンツ提供ユーザ、またはコンテンツのコンテンツプロファイルを類似度計算して、類似度が上位、または所定値を超えるコンテンツ提供ユーザ、またはコンテンツを、コンテンツ視聴ユーザの嗜好に近い候補として発見することができる。例えば、ツーリズム系のコンテンツを頻繁に視聴するコンテンツ視聴ユーザに対しては、ツーリズムに関するプロファイルを持つコンテンツ提供ユーザ、またはそのようなコンテンツ提供ユーザが撮影したコンテンツを候補として推薦することができる。
CBF的な推薦方法の他の例として、コンテンツ提供ユーザ間(、もしくは、コンテンツ間)のコンテンツプロファイルの類似度計算を行なうことで、任意のコンテンツ提供ユーザに類似する他のコンテンツ提供ユーザ(、または、そのコンテンツ提供ユーザの撮影によるコンテンツ)や、任意のコンテンツに類似する他のコンテンツを候補として発見することができる。例えば、コンテンツ視聴ユーザが過去に視聴したことがあるコンテンツ提供ユーザに類似するプロファイルを持つ他のコンテンツ提供ユーザ、または、お気に入りのコンテンツ提供ユーザに類似するプロファイルを持つコンテンツ提供ユーザを推薦することができる。
(1)CBF的アプローチ
(1-1)視聴者に近いプロファイル情報を持つ撮影者を推薦する。
(1-2)任意の撮影者に近いプロファイル情報を持つ撮影者を推薦する。
(1-1)視聴者に近いプロファイル情報を持つ撮影者を推薦する。
(1-2)任意の撮影者に近いプロファイル情報を持つ撮影者を推薦する。
一方、CFは、ユーザの情報に基づいて情報を取捨選択する方法である。例えば、嗜好の類似した他のユーザの情報を用いてユーザが求める情報を選別することができる。コンテンツ配信システム100においてCFを適用する場合、ユーザの情報はコンテンツ視聴ユーザ側のユーザプロファイルに相当し、あるコンテンツ視聴ユーザに類似する他のコンテンツ視聴ユーザの情報に基づいて、コンテンツ提供ユーザ(、または、そのコンテンツ提供ユーザの撮影によるコンテンツ)を取捨選択する。
CF的な推薦方法の一例として、コンテンツ視聴ユーザ間でユーザプロファイルの類似度計算を行なって、嗜好が近い他のコンテンツ視聴ユーザが過去に視聴したことのあるコンテンツを撮影したコンテンツ提供ユーザ(、または、そのコンテンツ提供ユーザの撮影によるコンテンツ)を候補として発見することができる。例えば、視聴者Aが撮影者1、2、3、4により撮影された各コンテンツを視聴し、視聴者Bが撮影者1、2、3により撮影された各コンテンツを視聴したとする。視聴者Aと視聴者Bは嗜好(コンテンツの視聴履歴)が類似するので、視聴者Bに撮影者4(、または、撮影者4の撮影によるコンテンツ)を推薦する。
CF的な推薦方法の他の例として、任意のコンテンツ提供ユーザが撮影したコンテンツを視聴した他のコンテンツ視聴ユーザが視聴している別のコンテンツ提供ユーザ(、または、そのコンテンツ提供ユーザの撮影によるコンテンツ)を推薦することができる。例えば、視聴者Aと視聴者Bがともに撮影者1が撮影したコンテンツを視聴した場合に、視聴者Aがさらに視聴した他のコンテンツの撮影者2を視聴者Bに推薦する。
(2)CF的アプローチ
(2-1)嗜好が近い他の視聴者が過去に視聴した撮影者を推薦する。
(2-2)任意の撮影者を視聴した視聴者が視聴している他の撮影者を推薦する。
(2-1)嗜好が近い他の視聴者が過去に視聴した撮影者を推薦する。
(2-2)任意の撮影者を視聴した視聴者が視聴している他の撮影者を推薦する。
なお、上記では、視聴者であるコンテンツ視聴ユーザが主導的にコンテンツ提供ユーザ、またはコンテンツを選択する場合に即してマッチング処理について説明した。勿論、撮影者であるコンテンツ提供ユーザが主導的にコンテンツ視聴ユーザを選択する場合であっても、同様にCBF的アプローチやCF的アプローチにより視聴者の推薦情報を提示することができる。
以下、コンテンツ推薦サーバ103による推薦コンテンツ情報の生成と提供処理例について、以下の複数の実施例について、順次、説明する。
(実施例1)コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例
(実施例2)コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例
(実施例3)CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例
(実施例4)新着コンテンツを考慮した推薦情報生成処理を行う実施例
(実施例1)コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例
(実施例2)コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例
(実施例3)CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例
(実施例4)新着コンテンツを考慮した推薦情報生成処理を行う実施例
[3-2.(実施例1)コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例]
まず、実施例1として、コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例について説明する。
まず、実施例1として、コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例について説明する。
この実施例1における具体的なユースケース(事例)は、例えば以下のようなユースケースがある。
(例1)1人のコンテンツ視聴ユーザ(ゴースト)が、複数のコンテンツ提供ユーザ(ボディ)から、自分にあった1人のコンテンツ提供ユーザ(ボディ)を選択する。
(例2)1人のコンテンツ視聴ユーザ(ゴースト)が、任意のコンテンツ提供ユーザ(ボディ)に関連したコンテンツ提供ユーザ(ボディ)を選択する。
(例1)1人のコンテンツ視聴ユーザ(ゴースト)が、複数のコンテンツ提供ユーザ(ボディ)から、自分にあった1人のコンテンツ提供ユーザ(ボディ)を選択する。
(例2)1人のコンテンツ視聴ユーザ(ゴースト)が、任意のコンテンツ提供ユーザ(ボディ)に関連したコンテンツ提供ユーザ(ボディ)を選択する。
なお、上記(1),(2)のユースケースのいずれも、先に説明した推薦アイテム(コンテンツまたはボディ)の選択処理手法(フィルタリング)であるCBFとCFを適用して実現可能である。
例えば、CBFを利用して、上記(例1)、(例2)を実現するための具体的処理は、以下のような処理となる。
(例1)コンテンツ視聴ユーザ(ゴースト)の嗜好に近いメタデータを持ったコンテンツ提供ユーザ(ボディ)を提示する。
例えば、旅行系のコンテンツ提供ユーザ(ボディ)を頻繁に体験するユーザに,旅行に関するコンテンツを提供するコンテンツ提供ユーザ(ボディ)を選択して提示する処理等である。
例えば、旅行系のコンテンツ提供ユーザ(ボディ)を頻繁に体験するユーザに,旅行に関するコンテンツを提供するコンテンツ提供ユーザ(ボディ)を選択して提示する処理等である。
(例2)特定のコンテンツ提供ユーザ(ボディ)にメタ情報が近いコンテンツ提供ユーザ(ボディ)を提示する。
例えば、コンテンツ視聴ユーザ(ゴースト)が、過去に視聴したコンテンツ提供ユーザ(ボディ)Aに似たコンテンツ提供ユーザ(ボディ)のコンテンツの一覧を選択して提示する処理である。
例えば、コンテンツ視聴ユーザ(ゴースト)が、過去に視聴したコンテンツ提供ユーザ(ボディ)Aに似たコンテンツ提供ユーザ(ボディ)のコンテンツの一覧を選択して提示する処理である。
また、CFを利用して、上記(例1)、(例2)を実現するための具体的処理は、以下のような処理となる。
(例1)コンテンツ視聴ユーザ(ゴースト)に嗜好が近い他のコンテンツ視聴ユーザ(ゴースト)が、過去に視聴したコンテンツを提供するコンテンツ提供ユーザ(ボディ)を選択して提示する。
例えば、コンテンツ視聴ユーザ(ゴースト)Aが、コンテンツ提供ユーザ(ボディ)1,2,3,4の提供コンテンツを視聴し、コンテンツ視聴ユーザ(ゴースト)Bが、コンテンツ提供ユーザ(ボディ)1,2,3の提供コンテンツを視聴している場合、Aさん,Bさんの行動は類似(≒嗜好が近い)と判断し、Bさんに対して、コンテンツ提供ユーザ(ボディ)4を選択して推薦する。
例えば、コンテンツ視聴ユーザ(ゴースト)Aが、コンテンツ提供ユーザ(ボディ)1,2,3,4の提供コンテンツを視聴し、コンテンツ視聴ユーザ(ゴースト)Bが、コンテンツ提供ユーザ(ボディ)1,2,3の提供コンテンツを視聴している場合、Aさん,Bさんの行動は類似(≒嗜好が近い)と判断し、Bさんに対して、コンテンツ提供ユーザ(ボディ)4を選択して推薦する。
(例2)任意のコンテンツ提供ユーザ(ボディ)を体験した人が体験している他のコンテンツ提供ユーザ(ボディ)を提示する。
例えば、コンテンツ提供ユーザ(ボディ)Aを視聴した他の視聴者が、過去に視聴したコンテンツ提供ユーザ(ボディ)を選択して推薦情報として提示する。
例えば、コンテンツ提供ユーザ(ボディ)Aを視聴した他の視聴者が、過去に視聴したコンテンツ提供ユーザ(ボディ)を選択して推薦情報として提示する。
本実施例1、すなわち、コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディ)を選択する実施例において、コンテンツ視聴ユーザ(ゴースト)側のコンテンツ出力装置104に出力する推薦情報の表示例(UI例)について、図5以下を参照して説明する。図5~図7には、コンテンツ視聴ユーザ(ゴースト)が、コンテンツ提供ユーザ(ボディを選択可能としたUIの3つの例を示している。
図5に示す表示例1(UI例1)は、コンテンツ出力装置104に表示される推薦コンテンツの一例であり、出力メッセージとして、「あなたにおススメのボディ(コンテンツ提供ユーザ)」を表示し、このメッセージ以下に推薦コンテンツの画像を表示している。
推薦コンテンツとして、複数のコンテンツ提供ユーザ(ボディ)A,B,C・・が提供するコンテンツの画像を表示している。なお、表示コンテンツは、例えば、リアルタイムコンテンツの場合は、その映像をそのまま表示し、過去のコンテンツであれば、コンテンツのダイジェストを表示する等の処理とする。
この図5に示す表示例1(UI例1)は、例えば、上述のCBFやCFを利用して選択した情報を表示する処理として実行可能である。例えば、コンテンツ視聴ユーザ(ゴースト)の嗜好に近いメタデータを持ったコンテンツ提供ユーザ(ボディ)を提示する処理として実行可能である。
なお、コンテンツ視聴ユーザ(ゴースト)は、図5に示すコンテンツ出力装置104に表示される複数の画像から1つのコンテンツ画像を選択することが可能であり、選択情報がネットワーク110bを介してコンテンツ配信サーバ102に通知され、選択コンテンツの配信が実行される。
次に、図6に示す表示例2(UI例2)について説明する。図6に示す表示例2(UI例2)は、出力メッセージとして、「(1)あなたが選択したボディ(コンテンツ提供ユーザ)」が表示され、このメッセージ以下に、このコンテンツ視聴ユーザ(ゴースト)が過去に視聴したコンテンツ提供ユーザ(ボディ)Aのコンテンツ画像を表示している。さらに、出力メッセージとして、「(2)以下のボディも選択したボディ(ユーザA)に似ています」を表示し、このメッセージ以下に、上段のコンテンツ提供ユーザ(ボディ)Aに類似するコンテンツ提供ユーザ(ボディ)D,Eのコンテンツ画像を表示している。
この図6に示す表示例2(UI例2)も上述のCBFやCFを利用して選択した情報を表示する処理として実行される。
次に、図7に示す表示例3(UI例3)について説明する。図7に示す表示例3(UI例3)は、出力メッセージとして、「(1)あなたが選択したボディ(コンテンツ提供ユーザ)」が表示され、このメッセージ以下に、このコンテンツ視聴ユーザ(ゴースト)が過去に視聴したコンテンツ提供ユーザ(ボディ)Aのコンテンツ画像を表示している。さらに、出力メッセージとして、「(2)上記ボディ(ユーザA)を選択したユーザは、以下のボディも見ています」を表示し、このメッセージ以下に、上段のコンテンツ提供ユーザ(ボディ)Aを選択した他のユーザがに過去に見たコンテンツ提供ユーザ(ボディ)D,Eのコンテンツ画像を表示している。
この図7に示す表示例3(UI例3)も上述のCBFやCFを利用して選択した情報を表示する処理として実行される。例えば、コンテンツ視聴ユーザ(ゴースト)に嗜好が近い他のコンテンツ視聴ユーザ(ゴースト)の過去視聴コンテンツを提供するコンテンツ提供ユーザ(ボディ)を選択して提示する処理等として実行可能である。
なお、図5~図7に示す表示例(UI例)は、代表的な表示例であり、この他にも様々な推薦情報の表示がなされる。次に、このような推薦情報を生成して、コンテンツ出力装置104に提供するコンテンツ推薦サーバ103の構成例について、図8を参照して説明する。
図8に示すようにコンテンツ推薦サーバ103は、コンテンツメタ情報取得部201、コンテンツメタ情報記憶部202、コンテンツプロファイル生成部203、ユーザプロファイル生成部204、フィードバックログ解析部205、フィードバックログ記憶部206、ユーザ嗜好解析部207、ユーザ嗜好情報記憶部208、推薦情報生成部209、コンテンツプロファイル記憶部112、ユーザプロファイル記憶部113を有する。
なお、図8において、コンテンツプロファイル記憶部112、ユーザプロファイル記憶部113をコンテンツ推薦サーバ103の構成要素として示しているが、これらの記憶部は、図1に示すコンテンツ配信システム100に示すコンテンツプロファイル記憶部112、ユーザプロファイル記憶部113であり、コンテンツ推薦サーバ103の構成要素とすることなく、ネットワークを介してアクセス可能な定としてもよい。
図8に示すユーザプロファイル生成部204は、例えばコンテンツ出力装置104を介して、ユーザ情報211を受信し、ユーザプロファイルを生成してユーザプロファイル記憶部113に格納する。ユーザプロファイル記憶部113に格納される情報については、先に図4を参照して説明した通りであり、例えば、性別や年齢、身長・体重、住所(居住地、または勤務地)、出身地、収入、職業、または会社名、学歴、家族構成といった、社会経済的な特質データからなるデモグラフィック(人口統計学的)情報を含む。
コンテンツメタ情報取得部201は、コンテンツ提供装置101の取得するコンテンツ、例えば撮影画像等のコンテンツのメタ情報を取得してコンテンツメタ情報記憶部202に格納する。
コンテンツメタ情報記憶部202に格納されるメタ情報の例を図9に示す。
コンテンツメタ情報記憶部202に格納されるメタ情報の例を図9に示す。
図9に示すようにコンテンツメタ情報には、例えば以下のデータが含まれる。
コンテンツ識別情報(itemid)
ジャンル情報(genre)
コンテンツ長さ情報
コンテンツの雰囲気情報
コンテンツ撮影者(ボディ)情報(body)
コンテンツアップロード日時情報(upload time)
コンテンツ公開日時情報(published time)
コンテンツメタ情報取得部201は、コンテンツ提供装置101の取得するコンテンツ、例えば撮影画像等のコンテンツに基づいて、これらのメタ情報を取得、または生成して、コンテンツメタ情報記憶部202に格納する。
コンテンツ識別情報(itemid)
ジャンル情報(genre)
コンテンツ長さ情報
コンテンツの雰囲気情報
コンテンツ撮影者(ボディ)情報(body)
コンテンツアップロード日時情報(upload time)
コンテンツ公開日時情報(published time)
コンテンツメタ情報取得部201は、コンテンツ提供装置101の取得するコンテンツ、例えば撮影画像等のコンテンツに基づいて、これらのメタ情報を取得、または生成して、コンテンツメタ情報記憶部202に格納する。
図8に示すコンテンツプロファイル生成部203は、コンテンツ提供装置101の取得するコンテンツ、および、コンテンツメタ情報取得部201が取得してコンテンツメタ情報記憶部202に格納されたコンテンツメタ情報を取得してコンテンツプロファイル情報を生成して、生成したコンテンツプロファイル情報をコンテンツプロファイル記憶部112に格納する。
コンテンツプロファイル生成部203が生成し、コンテンツプロファイル記憶部112に格納するコンテンツプロファイル情報の一例を図10に示す。図10に示すように、コンテンツプロファイルは、以下の各データの対応データとして構成される。
アイテムタイプID
アイテムID
特徴項目(カテゴリ、人物、ムード、キーワード・・・)
特徴項目の各項目に示す点数は、各コンテンツの特徴の反映度を示す値である。
点数の高い項目が、そのコンテンツの特徴をよく示す項目である。
アイテムタイプID
アイテムID
特徴項目(カテゴリ、人物、ムード、キーワード・・・)
特徴項目の各項目に示す点数は、各コンテンツの特徴の反映度を示す値である。
点数の高い項目が、そのコンテンツの特徴をよく示す項目である。
アイテムタイプIDは、アイテムタイプの識別子であり、例えばアイテム=コンテンツの場合[0002]が格納される。アイテムIDは、各コンテンツの識別子に相当する。特徴項目として、カテゴリ、人物、ムード、キーワード等のコンテンツの特徴を示すデータが記録される。
フィードバックログ解析部205は、コンテンツ出力装置104に対するコンテンツ視聴ユーザのユーザ操作情報212等を入力し、入力情報の解析を行い、フィードバックログを生成して、フィードバックログ記憶部206に格納する。
フィードバックログ記憶部206に格納されるデータの例を図11に示す。図11に示すように、フィードバックログ記憶部206には、例えば以下のデータが対応付けられて格納される。
ユーザ識別子(userId)
コンテンツ識別子(contentId)
フィードバックタイプ情報(feedbackType)
タイムスタンプ情報(timestamp)
ユーザ識別子(userId)
コンテンツ識別子(contentId)
フィードバックタイプ情報(feedbackType)
タイムスタンプ情報(timestamp)
ユーザ識別子(userId)は、コンテンツ出力装置104に出力されたコンテンツの視聴者の識別子である。コンテンツ識別子(contentId)は、コンテンツ出力装置104に出力されたコンテンツの識別子である。フィードバックタイプ情報(feedbackType)は、コンテンツ出力装置104に出力されたコンテンツの視聴者の感想等のフィードバック情報である。タイムスタンプ情報(timestamp)は、フィードバック情報の入力日時情報である。
ユーザ嗜好解析部207は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、フィードバックログ記憶部206に格納されたフィードバックログ情報(図11参照)を入力し、これらの情報に基づいて、コンテンツ視聴ユーザ各々の嗜好情報を解析し、解析結果として、各ユーザ対応のユーザ嗜好情報を生成してユーザ嗜好情報記憶部208に格納する。
ユーザ嗜好解析部207が生成し、ユーザ嗜好情報記憶部208に格納するユーザ嗜好情報の一例を図12に示す。図12に示すように、ユーザ嗜好情報は、以下の各データの対応データとして構成される。
アイテムタイプID
アイテムID
特徴項目(カテゴリ、人物、ムード、キーワード・・・)
アイテムタイプID
アイテムID
特徴項目(カテゴリ、人物、ムード、キーワード・・・)
アイテムタイプIDは、アイテムタイプの識別子であり、例えばアイテム=ユーザの場合[0001]が格納される。アイテムIDは、各ユーザの識別子に相当する。特徴項目として、カテゴリ、人物、ムード、キーワード等のコンテンツの特徴を示すデータが記録される。特徴項目の各項目中、点数が高い項目が、各ユーザの興味度が高いと判定される項目である。
ユーザ嗜好解析部207は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、フィードバックログ記憶部206に格納されたフィードバックログ情報(図11参照)を入力して、これらの情報に基づいて、コンテンツ視聴ユーザ各々の嗜好情報を解析し、解析結果として、各ユーザ対応のユーザ嗜好情報、すなわち、図12に示すユーザ嗜好情報を生成する。
この嗜好情報の生成は、例えば、機械学習処理によって行われる。図13を参照して、ユーザ嗜好解析部207の実行するユーザ嗜好情報の生成処理例について説明する。
図13に示すように、ユーザ嗜好解析部207は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、フィードバックログ記憶部206に格納されたフィードバックログ情報(図11参照)を入力する。
ユーザ嗜好解析部207は、コンテンツ出力装置104から入力するユーザ操作情報212の各々のユーザ嗜好に対する影響度を機械学習による学習処理によって推定する。さらに、この学習結果として得られる各ユーザ操作対応の影響度と、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)に含まれるコンテンツ特徴量を用いて、以下に示す(式1)に従って、ユーザ嗜好を算出する。
ユーザ嗜好=Σ(コンテンツ特徴量i×影響度α)・・・(式1)
上記(式1)は、あるコンテンツ特徴量iを持つコンテンツに対するユーザの嗜好度を示す値を算出する式である。コンテンツ特徴量iに乗算する影響度αは、様々なユーザ操作(α=1,2,3・・・)対応の影響度である。
上記(式1)は、あるコンテンツ特徴量iを持つコンテンツに対するユーザの嗜好度を示す値を算出する式である。コンテンツ特徴量iに乗算する影響度αは、様々なユーザ操作(α=1,2,3・・・)対応の影響度である。
ユーザが行う様々なユーザ操作に対して予め影響度αが既定される。例えば以下の設定等である。
(1)コンテンツ特徴量iを持つカテゴリのコンテンツ閲覧操作:影響度α=1
(2)コンテンツ特徴量iの閲覧操作:影響度α=3
(3)コンテンツ特徴量iを持つコンテンツの購入操作:影響度α=5
(1)コンテンツ特徴量iを持つカテゴリのコンテンツ閲覧操作:影響度α=1
(2)コンテンツ特徴量iの閲覧操作:影響度α=3
(3)コンテンツ特徴量iを持つコンテンツの購入操作:影響度α=5
具体的な計算例について説明する。ユーザ嗜好算出対象のユーザが、特徴量a1を持つコンテンツと同じカテゴリのコンテンツに対して、ユーザが閲覧操作を行い、特徴量a2を持つコンテンツに対して、ユーザが閲覧操作を行い、特徴量a3を持つコンテンツに対して、ユーザが購入操作を行ったものとする。この場合のユーザ嗜好は、以下の計算式によって算出される。
ユーザ嗜好=a1×1+a2×3+a3×4
ユーザ嗜好=a1×1+a2×3+a3×4
なお、特徴量は、コンテンツプロファイル記憶部112に登録された特徴項目各々に対応する特徴量である。また、ユーザ操作は、例えば、コンテンツの閲覧、参照、購入処理のみならず、コンテンツ視聴時の操作、例えば視聴開始、停止、早送り操作、スキップ操作等の操作情報も含まれる。
ユーザ嗜好解析部207は、コンテンツ出力装置104から入力するこれらのユーザ操作情報212を解析して、これらのユーザ操作とユーザ嗜好との関連性、すなわち影響度を推定し、この推定値および上記(式1)に基づいて、ユーザ嗜好を算出する。
このように、ユーザ嗜好解析部207は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、フィードバックログ記憶部206に格納されたフィードバックログ情報(図11参照)を入力し、これらの情報に基づいて、コンテンツ視聴ユーザ各々の嗜好情報を解析し、解析結果として、先に図12を参照して説明したデータによって構成される各ユーザ対応のユーザ嗜好情報を生成してユーザ嗜好情報記憶部208に格納する。
次に、図8に示すコンテンツ推薦サーバ103の推薦情報生成部209の実行する処理について説明する。推薦情報生成部209は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、ユーザ嗜好情報記憶部208に格納されたユーザ嗜好情報(図12参照)を入力して、これらの入力情報に基づく推薦情報213を生成してコンテンツ出力装置104に出力する。この推薦情報の表示例が、先に図5~図7を参照して説明した表示例(UI例)である。
推薦情報生成部209の実行する処理例について、図14を参照して説明する。推薦情報生成部209は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)のコンテンツ各々について、各特徴項目の設定値を要素としたベクトル(特徴量ベクトル)を生成する。
すなわち、推薦情報生成部209は、コンテンツAの特徴量ベクトル、コンテンツBの特徴量ベクトル、コンテンツCの特徴量ベクトル等を含む、コンテンツ各々のコンテンツ特徴量ベクトルを生成する。
推薦情報生成部209は、さらに、推薦情報213を出力するコンテンツ出力装置側のコンテンツ視聴ユーザ(ユーザAとする)のユーザ嗜好情報をユーザ嗜好情報記憶部208(図12参照)から取得する。取得したユーザ嗜好情報についても、各特徴項目の設定値を要素としたベクトル(ユーザ嗜好ベクトル)を生成する。
推薦情報生成部209は、生成したユーザAのユーザ嗜好ベクトルと、生成した各コンテンツの特徴量ベクトルの近さ(類似度)を検証する。図14には、ユーザAのユーザ嗜好ベクトルと、コンテンツA~Cの特徴量ベクトルを、1つの原点Oから延びるベクトルとして示している。
図14に示す例では、ユーザAのユーザ嗜好ベクトルに最も近い特徴量ベクトルは、コンテンツAの特徴量ベクトルである。この結果、推薦情報生成部209は、コンテンツAが、ユーザ嗜好に最も近い特徴を有するコンテンツであると判定する。
ユーザAのユーザ嗜好ベクトルに近い特徴量を持つコンテンツの順番は、コンテンツA、コンテンツB、コンテンツC、となる。推薦情報生成部209は、例えば、この順番、すなわち、コンテンツA、コンテンツB、コンテンツCの順にコンテンツ画像を配列した表示情報(UI)を生成し、生成した情報を推薦情報213として、コンテンツ出力装置104に出力する。
なお、推薦情報生成部209は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)と、ユーザ嗜好情報記憶部208に格納されたユーザ嗜好情報(図12参照)に加え、さらに、ユーザプロファイル記憶部113に格納されたユーザプロファイル情報(図4参照)を入力して、ユーザプロファイルを考慮して推薦コンテンツの選択を行ってもよい。例えば、ユーザの年齢や、性別等を考慮した推薦コンテンツの選定である。
次に、コンテンツ推薦サーバ103のもう一つの処理例として、異なる複数のコンテンツの関連性を判定して推薦コンテンツを決定する処理例について説明する。この処理を実行するコンテンツ推薦サーバ103の構成を図15に示す。
図15に示すコンテンツ推薦サーバ103は、コンテンツメタ情報取得部201、コンテンツメタ情報記憶部202、コンテンツプロファイル生成部203、ユーザプロファイル生成部204、フィードバックログ解析部205、フィードバックログ記憶部206、コンテンツ関連性情報生成部221、コンテンツ関連性情報記憶部222、推薦情報生成部209、コンテンツプロファイル記憶部112、ユーザプロファイル記憶部113を有する。
この図15に示すコンテンツ推薦サーバ103は、先に図8を参照して説明したコンテンツ推薦サーバ103の構成要素から、ユーザ嗜好解析部207、ユーザ嗜好情報記憶部208を削除し、コンテンツ関連性情報生成部221、コンテンツ関連性情報記憶部222を追加した構成となる。その他の構成は、先に図8を参照して説明したコンテンツ推薦サーバ103の構成と同様である。
図15に示すコンテンツ推薦サーバ103のコンテンツ関連性情報生成部221の実行する処理について、図16を参照して説明する。コンテンツ関連性情報生成部221は、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)のコンテンツ各々について、各特徴項目の設定値を要素としたベクトル(特徴量ベクトル)を生成する。
すなわち、コンテンツ関連性情報生成部221は、コンテンツAの特徴量ベクトル、コンテンツBの特徴量ベクトル、コンテンツCの特徴量ベクトル等を含む、コンテンツ各々のコンテンツ特徴量ベクトルを生成する。
コンテンツ関連性情報生成部221は、生成したこれらの各コンテンツの特徴量ベクトルの近さ(類似度)を検証する。図16には、コンテンツA~Cの特徴量ベクトルを、1つの原点Oから延びるベクトルとして示している。
コンテンツ関連性情報生成部221は、これらの各ベクトルの近さを数値化して、関連性スコア(Relation Score)を算出する。ベクトルが近いほど関連性スコア(Relation Score)の値が高くなる設定である。
各コンテンツの特徴量ベクトルの近さを検証して、この関連性スコアを算出し、算出したスコアをコンテンツ関連性情報記憶部222に格納する。コンテンツ関連性情報記憶部222に格納されるデータの例を図17に示す。
図17に示すように、コンテンツ関連性情報記憶部222には、関連性の検証対象となる2つのコンテンツの識別子、[fromContents(ID)]、[toContents(ID)]と、これらの2つのコンテンツの関連性スコア[Relation Score]が格納される。
次に、図18を参照して、図15に示すコンテンツ推薦サーバ103の推薦情報生成部209の実行する処理について説明する。推薦情報生成部209は、コンテンツ関連性情報記憶部222に格納された2つのコンテンツの関連性スコア[Relation Score]に基づいて、推薦情報213を生成して出力する。
例えば、フィードバックログ記憶部206に格納された情報に基づいて、ユーザの過去の視聴コンテンツがコンテンツAであることが確認された場合、その視聴コンテンツAに類似するコンテンツを推薦する推薦情報213を生成する。この処理には、図17に示すデータを格納したコンテンツ関連性情報記憶部222のデータが利用される。
すなわち、コンテンツAとの関連性スコア[Relation Score]の高いコンテンツが推薦コンテンツとして選択される。具体的には、先に図16を参照して説明したコンテンツの特徴量ベクトルが近いコンテンツが推薦コンテンツとして選択されることになる。
なお、推薦情報生成部209は、さらに、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)や、ユーザ嗜好情報記憶部208に格納されたユーザ嗜好情報(図12参照)や、ユーザプロファイル記憶部113に格納されたユーザプロファイル情報(図4参照)を入力して、これらの情報を考慮して推薦コンテンツの選択を行ってもよい。例えば、ユーザの年齢や、性別等を考慮した推薦コンテンツの選定である。
[3-3.(実施例2)コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例]
次に、実施例2として、コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例について説明する。
次に、実施例2として、コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例について説明する。
この実施例2における具体的なユースケース(事例)は、例えば、図19に示すようなユースケースである。音楽ライブやスポーツ観戦において,複数のコンテンツ視聴ユーザ(ゴースト)が1人のコンテンツ提供ユーザ(ボディ)の提供コンテンツを視聴(Jack-in)して楽しむ。例えば、複数のコンテンツ視聴ユーザ(ゴースト)同士でコミュニケーションを取りながら1人のコンテンツ提供ユーザ(ボディ)の目線で共同視聴をする。嗜好や感性が似ている者同士で共同視聴することで盛り上がりが期待できる。
本実施例2、すなわち、コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する実施例において、コンテンツ視聴ユーザ(ゴースト)側のコンテンツ出力装置104に出力する推薦情報の表示例(UI例)を図20に示す。
図20に示す表示例1(UI例1)は、コンテンツ出力装置104に表示される推薦コンテンツの一例であり、出力メッセージとして、「共同視聴メンバー(コーストメンバー)募集中」を表示し、このメッセージ以下に推薦する共同視聴メンバーのリストと、選択ボックスを表示している。
この図20に示す表示例1(UI例1)は、例えば、上述のCBFやCFを利用して選択した情報を表示する処理として実行可能である。例えば、CBFを利用して、嗜好の似たコンテンツ視聴ユーザ(ゴースト)のマッチング処理を行うことが可能である。また、CFを利用して、行動パターンの似たコンテンツ視聴ユーザ(ゴースト)のマッチング処理を行うことが可能である。
本実施例2、コンテンツ視聴ユーザ(ゴースト)同士のマッチングによる推薦情報を生成する処理を実行するコンテンツ推薦サーバ103の構成を図21に示す。
図21に示すコンテンツ推薦サーバ103は、コンテンツメタ情報取得部201、コンテンツメタ情報記憶部202、コンテンツプロファイル生成部203、ユーザプロファイル生成部204、フィードバックログ解析部205、フィードバックログ記憶部206、ユーザ関連性情報生成部231、ユーザ関連性情報記憶部232、推薦情報生成部209、コンテンツプロファイル記憶部112、ユーザプロファイル記憶部113を有する。
この図21に示すコンテンツ推薦サーバ103は、先に図8を参照して説明したコンテンツ推薦サーバ103の構成要素から、ユーザ嗜好解析部207、ユーザ嗜好情報記憶部208を削除し、ユーザ関連性情報生成部231、ユーザ関連性情報記憶部232を追加した構成となる。その他の構成は、先に図8を参照して説明したコンテンツ推薦サーバ103の構成と同様である。
図21に示すコンテンツ推薦サーバ103のユーザ関連性情報生成部231の実行する処理について、図22を参照して説明する。ユーザ関連性情報生成部231は、フィードバックログ記憶部206に格納された各ユーザの操作情報等(図11参照)を入力する。ユーザ関連性情報生成部231は、入力情報に基づいて、各ユーザのフィードバック情報の類似度を算出し、高類似度ほど関連性スコア(Relation Score)を高く設定したユーザ関連性情報を生成し、生成情報をユーザ関連性情報記憶部232に格納する。
ユーザ関連性情報記憶部232に格納されるデータの例を図17に示す。図23に示すように、ユーザ関連性情報記憶部232には、関連性の検証対象となる2人のユーザの識別子、[fromUser(ID)]、[toUser(ID)]と、これらの2人のユーザの関連性スコア[Relation Score]が格納される。
次に、図24を参照して、図21に示すコンテンツ推薦サーバ103の推薦情報生成部209の実行する処理について説明する。推薦情報生成部209は、ユーザ関連性情報記憶部232に格納された2人のユーザの関連性スコア[Relation Score]に基づいて、推薦情報213を生成して出力する。
例えば、フィードバックログ記憶部206に格納された各ユーザのフィードバック情報の類似度に基づいて、類似度の高いユーザ(コンテンツ視聴ユーザ(ゴースト))を、共同視聴メンバー(ゴーストメンバー)に選択した推薦情報213を生成して出力する。
なお、図24には、推薦情報生成部209にユーザ関連性情報記憶部232と、ユーザ関連性情報記憶部232の2つの記憶部の格納情報を力する構成として示しているが、推薦情報生成部209は、いずれか一方の記憶部格納データに基づいて推薦情報213を生成することが可能である。
また、推薦情報生成部209は、さらに、コンテンツプロファイル記憶部112に格納されたコンテンツプロファイル情報(図10参照)や、ユーザ嗜好情報記憶部208に格納されたユーザ嗜好情報(図12参照)や、ユーザプロファイル記憶部113に格納されたユーザプロファイル情報(図4参照)を入力して、これらの情報を考慮して推薦コンテンツの選択を行ってもよい。例えば、ユーザの年齢や、性別等を考慮した推薦コンテンツの選定である。
次に、本実施例2の変形例について、図25を参照して説明する。この実施例2の変形例のユースケースも、音楽ライブやスポーツ観戦において,複数のコンテンツ視聴ユーザ(ゴースト)が1人のコンテンツ提供ユーザ(ボディ)の提供コンテンツを視聴(Jack-in)して楽しむという点では、前述した実施例2の基本構成例と同様である。
この変形例では、例えばN人の複数のコンテンツ視聴ユーザ(ゴースト)を仮想的な1人のコンテンツ視聴ユーザ(ゴースト)として設定して処理を行う。このように、1人のコンテンツ視聴ユーザ(ゴースト)として設定することで、先に説明した実施例1と同様の処理も可能となる。
この本実施例2の変形例において、コンテンツ視聴ユーザ(ゴースト)側のコンテンツ出力装置104に出力する推薦情報の表示例(UI例)を図26に示す。
図26に示す表示例2(UI例2)は、コンテンツ出力装置104に表示される推薦コンテンツの一例であり、出力メッセージとして、「共同視聴メンバー(コーストメンバー)募集中」を表示し、このメッセージ以下に推薦する共同視聴メンバーのリストと、選択ボックスを表示している。ここまでは、先に図20を参照して説明した実施例2の基本構成と同じである。
本変形例では、さらに、「このメンバーにおススメのボディ(コンテンツ提供ユーザ)」を表示して、複数のボディ(コンテンツ提供ユーザ)の提供するコンテンツと選択ボックスを表示している。この表示は、先に図5を参照して説明した実施例1に従った表示情報に相当する。この下段の表示情報は、N人の複数のコンテンツ視聴ユーザ(ゴースト)を、1人のコンテンツ視聴ユーザ(ゴースト)として設定して、先に説明した実施例1と同様の処理を行うことで生成される推薦情報を適用したものである。
このように、実施例1の処理と実施例2の処理を組み合わせることで、図26に示すような表示情報をコンテンツ視聴ユーザに提示することが可能となる。
[3-4.(実施例3)CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例]
次に、実施例3として、推薦情報生成部209が、CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例について説明する。
次に、実施例3として、推薦情報生成部209が、CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例について説明する。
先に説明したように、CBFは、コンテンツ等の推薦情報の内容に基づいて情報を取捨選択する方法である。例えば、情報の内容とユーザの要求を比較してユーザが求める情報を選別することができる。一方、CFは、ユーザの情報に基づいて情報を取捨選択する方法である。例えば、嗜好の類似した他のユーザの情報を用いてユーザが求める情報を選別することができる。
しかし、CBFやCFを適用した場合の問題点として、以下の問題がある。CBFの場合は過去にユーザが視聴したことのあるコンテンツに近い物が選択されやすく斬新なコンテンツが推薦されにくい問題がある。一方でCFは必ずしも過去に視聴したコンテンツに似たものが選択されるとは限らず、より新鮮味のあるコンテンツを出すことが可能である。そのため、CBFとCFを組み合わせた推薦を適用することが有効であると考えられる。以下に説明する実施例3は、この状況を考慮した構成であり、CBF適用処理と、CF適用処理を組み合わせた推薦情報生成処理を行う実施例である。
図27を参照して本実施例3の推薦情報生成部209の構成と処理の一例について説明する。なお、図27に示す推薦情報生成部209は、先に実施例1として説明した図8、および図15に示すコンテンツ推薦サーバ103、あるいは、実施例2として説明した図21に示すコンテンツ推薦サーバ103内に構成可能な推薦情報生成部209である。すなわち、以下に説明する実施例3に従った推薦情報生成部209の実行する処理は、前述した実施例1や、実施例2において推薦情報生成処理に置き換えて実行することが可能な処理である。
図27に示す推薦情報生成部209は、図に示すように、CF推薦情報生成部301、CBF推薦情報生成部302、合成推薦情報生成部303を有する。
CF推薦情報生成部301は、CFに基づく推薦情報を生成する。CFは、ユーザの情報に基づいて情報を取捨選択する方法である。例えば、ユーザ嗜好や行動情報を取得して、これらの情報にマッチングする提供情報(コンテンツやボディ)を選択して、選択情報を推薦情報として提供する処理等を行う。
また、CBF推薦情報生成部302は、CBFに基づく推薦情報を生成する。CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。例えば、提供情報となるコンテンツやボディの情報を取得し、この情報とユーザの要求を比較し、ユーザ要求にマッチングする提供情報(コンテンツやボディ)を選択して、選択情報を推薦情報として提供する処理等を行う。
合成推薦情報生成部303は、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々異なる手法で生成した推薦情報を合成して、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図27を参照して具体的な処理例について説明する。CF推薦情報生成部301は、CFに基づく推薦情報を生成する。CF推薦情報生成部301は、図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムa,b,cを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
a=0.9、
b=0.77
c=0.65
a=0.9、
b=0.77
c=0.65
これらの推薦アイテム、およびアイテムスコアは、CFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。なお、本例において、アイテムスコアは、コンテンツ視聴ユーザ(ゴースト)の嗜好や行動と、各コンテンツのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、コンテンツ視聴ユーザ(ゴースト)の嗜好に適合したコンテンツであり、推薦レベルの高いアイテムであることを示す。
一方、CBF推薦情報生成部302は、CBFに基づく推薦情報を生成する。CBF推薦情報生成部302は、図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムa,b,c,dを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
a=0.8、
b=0.6
c=0.3
d=0.2
これらの推薦アイテム、およびアイテムスコアは、CBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。アイテムスコアは、提供情報a~dから取得した特徴量等の情報とユーザ要求とのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、コンテンツ視聴ユーザ(ゴースト)の要求に適合したコンテンツであり、推薦レベルの高いアイテムであることを示す。
a=0.8、
b=0.6
c=0.3
d=0.2
これらの推薦アイテム、およびアイテムスコアは、CBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。アイテムスコアは、提供情報a~dから取得した特徴量等の情報とユーザ要求とのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、コンテンツ視聴ユーザ(ゴースト)の要求に適合したコンテンツであり、推薦レベルの高いアイテムであることを示す。
合成推薦情報生成部303は、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々CF、CBFを適用して選択および算出したアイテムとアイテムスコアを入力し、これらを合成して、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図27には、合成推薦情報生成部303の実行する処理の一例を示している。合成推薦情報生成部303は、予め規定した重み係数を用いて、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々CF、CBFを適用して算出したアイテムスコアを加算して、新たなアイテムスコアを算出する。図に示す例において、重み係数の設定は以下の設定である。
CF推薦情報生成部301の生成したCF適用アイテムスコアに対する重み係数(Wcf)=0.4、
CBF推薦情報生成部302の生成したCBF適用アイテムスコアに対する重み係数(Wcbf)=0.6、
CF推薦情報生成部301の生成したCF適用アイテムスコアに対する重み係数(Wcf)=0.4、
CBF推薦情報生成部302の生成したCBF適用アイテムスコアに対する重み係数(Wcbf)=0.6、
合成推薦情報生成部303は、この重み係数を用いて、CF推薦情報生成部301と、CBF推薦情報生成部302が算出したアイテムスコアを加算して、新たなアイテムスコアを算出する。すなわち、以下のスコア算出処理を行う、
アイテムスコア(a)=0.9×0.4+0.8×0.6=0.84
アイテムスコア(b)=0.77×0.4+0.6×0.6=0.668
アイテムスコア(c)=0.65×0.4+0.3×0.6=0.44
アイテムスコア(d)=0×0.4+0.2×0.6=0.12
アイテムスコア(a)=0.9×0.4+0.8×0.6=0.84
アイテムスコア(b)=0.77×0.4+0.6×0.6=0.668
アイテムスコア(c)=0.65×0.4+0.3×0.6=0.44
アイテムスコア(d)=0×0.4+0.2×0.6=0.12
合成推薦情報生成部303は、上記の各式に従って算出したアイタムスコアを各アイテムの最終的な推薦レベルを決定するスコアとする。上記式に従って、最終的なアイテムスコアの高い順にアイテムを並べると、以下のようになる。
a,b,c,d
合成推薦情報生成部303は、例えばこのスコア順にアイテム(コンテンツ、あるいはコンテンツ提供ユーザ(ボディ))を並べた推薦情報213を生成してコンテンツ出力装置104に出力する。
a,b,c,d
合成推薦情報生成部303は、例えばこのスコア順にアイテム(コンテンツ、あるいはコンテンツ提供ユーザ(ボディ))を並べた推薦情報213を生成してコンテンツ出力装置104に出力する。
このような処理を実行することで、CF,CBF手法、各処理の利点を具備する最終的なスコアに基づく推薦情報の生成が可能となる。なお、上述した処理に適用した重み係数の例は一例にすぎず、合成推薦情報生成部303は、状況に応じて様々な重み係数を用いることが可能である。
図27を参照して説明した処理において用いてアイテムスコアは、ユーザとコンテンツとのマッチングレベルを示す値であった。次に、図28を参照してコンテンツ間のマッチングレベルをアイテムスコアとして設定し、ユーザが過去に見たコンテンツ(コンテンツX)に近いコンテンツを選択して推薦情報を生成する処理例について説明する。
図28に示す推薦情報生成部209は、図27を参照して説明したと同様の構成であり、CF推薦情報生成部301、CBF推薦情報生成部302、合成推薦情報生成部303を有する。
CF推薦情報生成部301は、CFに基づく推薦情報を生成する。CFは、ユーザの情報に基づいて情報を取捨選択する方法である。また、CBF推薦情報生成部302は、CBFに基づく推薦情報を生成する。CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。合成推薦情報生成部303は、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々異なる手法で生成した推薦情報を合成して、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
この図28に示す構成では、コンテンツ間のマッチングレベルをアイテムスコアとして設定し、ユーザが過去に見たコンテンツ(コンテンツX)に近いコンテンツを選択して推薦情報を生成する
図28を参照して具体的な処理例について説明する。CF推薦情報生成部301は、CFに基づく推薦情報を生成する。CF推薦情報生成部301は、図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムm,l,nを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
m=0.9、
l=0.4
n=0.3
m=0.9、
l=0.4
n=0.3
これらの推薦アイテム、およびアイテムスコアは、CFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。なお、本例において、アイテムスコアは、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)のマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、ユーザが過去に見たコンテンツ(またはボディ)に近いコンテンツ(またはボディ)であり、推薦レベルの高いアイテムであることを示す。
一方、CBF推薦情報生成部302は、CBFに基づく推薦情報を生成する。CBF推薦情報生成部302は、図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムm,l,pを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
m=0.8、
l=0.3
p=0.4
これらの推薦アイテム、およびアイテムスコアは、CBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。アイテムスコアは、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)m,l,pとのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、ユーザが過去に見たコンテンツ(またはボディ)に近いコンテンツ(またはボディ)であり、推薦レベルの高いアイテムであることを示す。
m=0.8、
l=0.3
p=0.4
これらの推薦アイテム、およびアイテムスコアは、CBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。アイテムスコアは、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)m,l,pとのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、ユーザが過去に見たコンテンツ(またはボディ)に近いコンテンツ(またはボディ)であり、推薦レベルの高いアイテムであることを示す。
合成推薦情報生成部303は、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々CF、CBFを適用して選択および算出したアイテムとアイテムスコアを入力し、これらを合成して、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図28には、合成推薦情報生成部303の実行する処理の一例を示している。合成推薦情報生成部303は、予め規定した重み係数を用いて、CF推薦情報生成部301と、CBF推薦情報生成部302が、各々CF、CBFを適用して算出したアイテムスコアを加算して、新たなアイテムスコアを算出する。図に示す例において、重み係数の設定は以下の設定である。
CF推薦情報生成部301の生成したCF適用アイテムスコアに対する重み係数(Wcf)=0.1、
CBF推薦情報生成部302の生成したCBF適用アイテムスコアに対する重み係数(Wcbf)=0.9、
CF推薦情報生成部301の生成したCF適用アイテムスコアに対する重み係数(Wcf)=0.1、
CBF推薦情報生成部302の生成したCBF適用アイテムスコアに対する重み係数(Wcbf)=0.9、
合成推薦情報生成部303は、この重み係数を用いて、CF推薦情報生成部301と、CBF推薦情報生成部302が算出したアイテムスコアを加算して、新たなアイテムスコアを算出する。すなわち、以下のスコア算出処理を行う、
アイテムスコア(m)=0.9×0.1+0.8×0.9=0.81
アイテムスコア(l)=0.4×0.1+0.3×0.9=0.31
アイテムスコア(n)=0.3×0.1+0×0.9=0.03
アイテムスコア(p)=0×0.1+0.4×0.9=0.36
アイテムスコア(m)=0.9×0.1+0.8×0.9=0.81
アイテムスコア(l)=0.4×0.1+0.3×0.9=0.31
アイテムスコア(n)=0.3×0.1+0×0.9=0.03
アイテムスコア(p)=0×0.1+0.4×0.9=0.36
合成推薦情報生成部303は、上記の各式に従って算出したアイタムスコアを各アイテムの最終的な推薦レベルを決定するスコアとする。上記式に従って、最終的なアイテムスコアの高い順にアイテムを並べると、以下のようになる。
m,p,l,n
合成推薦情報生成部303は、例えばこのスコア順にアイテム(コンテンツ、あるいはコンテンツ提供ユーザ(ボディ))を並べた推薦情報213を生成してコンテンツ出力装置104に出力する。
m,p,l,n
合成推薦情報生成部303は、例えばこのスコア順にアイテム(コンテンツ、あるいはコンテンツ提供ユーザ(ボディ))を並べた推薦情報213を生成してコンテンツ出力装置104に出力する。
このような処理を実行することで、CF,CBF手法、各処理の利点を具備する最終的なスコアに基づく推薦情報の生成が可能となる。なお、上述した処理に適用した重み係数の例は一例にすぎず、合成推薦情報生成部303は、状況に応じて様々な重み係数を用いることが可能である。
[3-5.(実施例4)新着コンテンツを考慮した推薦情報生成処理を行う実施例]
次に、実施例4として、新着コンテンツを考慮した推薦情報生成処理を行う実施例について説明する。
次に、実施例4として、新着コンテンツを考慮した推薦情報生成処理を行う実施例について説明する。
先に説明したように、CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。例えば、情報の内容とユーザの要求を比較してユーザが求める情報を選別することができる。一方、CFは、ユーザの情報に基づいて情報を取捨選択する方法である。例えば、嗜好の類似した他のユーザの情報を用いてユーザが求める情報を選別することができる。
しかし、例えば、CFに基づく場合の問題点として、ログが少ないコンテンツや新着コンテンツなどは推薦されにくいという問題がある。多くのコンテンツ視聴ユーザはより新しいコンテンツを早く見たいという欲求が強く、CFを適用すると新着コンテンツが推薦されにくくなるという問題がある。以下に説明する実施例4は、この問題を解決する実施例であり、新着コンテンツを考慮した推薦情報生成処理を行う実施例である。
図29を参照して本実施例4の推薦情報生成部209の構成と処理の一例について説明する。なお、図29に示す推薦情報生成部209は、先に実施例1として説明した図8、および図15に示すコンテンツ推薦サーバ103、あるいは、実施例2として説明した図21に示すコンテンツ推薦サーバ103内に構成可能な推薦情報生成部209である。すなわち、以下に説明する実施例4に従った推薦情報生成部209の実行する処理は、前述した実施例1や、実施例2において推薦情報生成処理に置き換えて実行することが可能な処理である。
図29に示す推薦情報生成部209は、図に示すように、第1段推薦情報生成部311、合成推薦情報生成部312を有する。
第1段推薦情報生成部311は、CF、または、CBFに基づく推薦情報を生成する。CFは、ユーザの情報に基づいて情報を取捨選択する方法である。CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図29を参照して具体的な処理例について説明する。第1段推薦情報生成部311は、CF、またはCBFに基づく推薦情報を生成する。図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムa,b,c・・・,zを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
a=0.9、
b=0.77
c=0.65
・・・
z=0.1
a=0.9、
b=0.77
c=0.65
・・・
z=0.1
これらの推薦アイテム、およびアイテムスコアは、CF、またはCBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。なお、本例において、アイテムスコアは、コンテンツ視聴ユーザ(ゴースト)の嗜好や行動と、各コンテンツのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、コンテンツ視聴ユーザ(ゴースト)の嗜好に適合したコンテンツであり、推薦レベルの高いアイテムであることを示す。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図29には、合成推薦情報生成部312の実行する処理の一例を示している。合成推薦情報生成部312は、以下の式に従って、新たなアイテムスコア(itemScorenew)を算出する。
itemScorenew=itemScoreold×e-at
itemScorenew=itemScoreold×e-at
上記式において、
itemScoreoldは、第1段推薦情報生成部311の算出したアイテムスコア、
aは規定の定数、
tは、アイテムのアップロードからの経過時間(sec)
である。
itemScoreoldは、第1段推薦情報生成部311の算出したアイテムスコア、
aは規定の定数、
tは、アイテムのアップロードからの経過時間(sec)
である。
一例として、a=0.001とした設定において、上記式に従って新たなアイテムスコア(itemScorenew)を算出した場合の算出値の例を図30に示す。図30には、アイテムa~z各々の、
アップロード後の経過時間、
itemScoreold(第1段推薦情報生成部311の算出したアイテムスコア)、
itemScorenew(合成推薦情報生成部312の算出したアイテムスコア)、
正規化itemScorenew(合成推薦情報生成部312の算出したアイテムスコアを正規化(最大値で正規化))、
これらを対応付けて示している。
アップロード後の経過時間、
itemScoreold(第1段推薦情報生成部311の算出したアイテムスコア)、
itemScorenew(合成推薦情報生成部312の算出したアイテムスコア)、
正規化itemScorenew(合成推薦情報生成部312の算出したアイテムスコアを正規化(最大値で正規化))、
これらを対応付けて示している。
合成推薦情報生成部312は、合成推薦情報生成部312の算出したアイテムスコアである「itemScorenew」、またはその正規化後のスコアである「正規化itemScorenew」のいずれかのスコアを、各アイテムの最終的な推薦レベルを決定するスコアとする。図30に示されているアイテムについて、最終的なアイテムスコアの高い順に並べると、以下のようになる。
z,a,c,b
z,a,c,b
アイテムzは、アップロード後の経過時間の短い最新のアイテムであり、(itemScorenew)、すなわち合成推薦情報生成部312の算出したアイテムスコアの値が最も高くなり、推薦アイテムの筆頭に設定される。
このように、アップロード時間を考慮したスコア算出処理を実行することで、ログの少ない最新のアイテムが推薦対象からはずれてしまうといった問題が解消される。
図29を参照して説明した処理において用いてアイテムスコアは、ユーザとコンテンツとのマッチングレベルを示す値であった。次に、図31を参照してコンテンツ間のマッチングレベルをアイテムスコアとして設定し、ユーザが過去に見たコンテンツ(コンテンツX)に近いコンテンツを選択して推薦情報を生成する処理例について説明する。
図31に示す推薦情報生成部209は、図29を参照して説明したと同様の構成であり、第1段推薦情報生成部311、合成推薦情報生成部312を有する。
第1段推薦情報生成部311は、CF、または、CBFに基づく推薦情報を生成する。CFは、ユーザの情報に基づいて情報を取捨選択する方法である。CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図31を参照して具体的な処理例について説明する。第1段推薦情報生成部311は、CF、またはCBFに基づく推薦情報を生成する。図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムa,b,c・・・,zを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
a=0.9、
b=0.77
・・・
z=0.1
a=0.9、
b=0.77
・・・
z=0.1
これらの推薦アイテム、およびアイテムスコアは、CF、またはCBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。
なお、本例において、アイテムスコアは、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)のマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、ユーザが過去に見たコンテンツ(またはボディ)に近いコンテンツ(またはボディ)であり、推薦レベルの高いアイテムであることを示す。
なお、本例において、アイテムスコアは、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)のマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、ユーザが過去に見たコンテンツ(またはボディ)に近いコンテンツ(またはボディ)であり、推薦レベルの高いアイテムであることを示す。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図31には、合成推薦情報生成部312の実行する処理の一例を示している。合成推薦情報生成部312は、以下の式に従って、新たなアイテムスコア(itemScorenew)を算出する。
itemScorenew=itemScoreold×e-at
itemScorenew=itemScoreold×e-at
上記式において、
itemScoreoldは、第1段推薦情報生成部311の算出したアイテムスコア、
aは規定の定数、
tは、アイテムのアップロードからの経過時間(sec)
である。
itemScoreoldは、第1段推薦情報生成部311の算出したアイテムスコア、
aは規定の定数、
tは、アイテムのアップロードからの経過時間(sec)
である。
一例として、a=0.001とした設定において、上記式に従って新たなアイテムスコア(itemScorenew)を算出した場合の算出値の例を図32に示す。図32には、アイテムa~z各々の、
アップロード後の経過時間、
itemScoreold(第1段推薦情報生成部311の算出したアイテムスコア)、
itemScorenew(合成推薦情報生成部312の算出したアイテムスコア)、
正規化itemScorenew(合成推薦情報生成部312の算出したアイテムスコアを正規化(最大値で正規化))、
これらを対応付けて示している。
アップロード後の経過時間、
itemScoreold(第1段推薦情報生成部311の算出したアイテムスコア)、
itemScorenew(合成推薦情報生成部312の算出したアイテムスコア)、
正規化itemScorenew(合成推薦情報生成部312の算出したアイテムスコアを正規化(最大値で正規化))、
これらを対応付けて示している。
合成推薦情報生成部312は、合成推薦情報生成部312の算出したアイテムスコアである「itemScorenew」、またはその正規化後のスコアである「正規化itemScorenew」のいずれかのスコアを、各アイテムの最終的な推薦レベルを決定するスコアとする。図32に示されているアイテムについて、最終的なアイテムスコアの高い順に並べると、以下のようになる。
z,a,b
z,a,b
アイテムzは、アップロード後の経過時間の短い最新のアイテムであり、(itemScorenew)、すなわち合成推薦情報生成部312の算出したアイテムスコアの値が最も高くなり、推薦アイテムの筆頭に設定される。
このように、アップロード時間を考慮したスコア算出処理を実行することで、ログの少ない最新のアイテムが推薦対象からはずれてしまうといった問題が解消される。
次に、図33を参照して、CF、または、CBFに基づく推薦情報と、新着アイテムに基づく推薦情報を併せたハイブリッド型の推薦情報213を生成して、コンテンツ出力装置104に出力する構成例について説明する。
図33に示す推薦情報生成部209は、図29、図31を参照して説明したと同様の構成であり、第1段推薦情報生成部311、合成推薦情報生成部312を有する。
第1段推薦情報生成部311は、CF、または、CBFに基づく推薦情報を生成する。CFは、ユーザの情報に基づいて情報を取捨選択する方法である。CBFは、推薦する情報の内容に基づいて情報を取捨選択する方法である。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図33を参照して具体的な処理例について説明する。第1段推薦情報生成部311は、CF、またはCBFに基づく推薦情報を生成する。図に示すように推薦アイテム(コンテンツやコンテンツ提供ユーザ(ボディ))として、アイテムa,b,c・・・,zを選択する。各アイテム対応のアイテムスコアは、以下の通りである。
a=0.9、
b=0.77
・・・
z=0.1
a=0.9、
b=0.77
・・・
z=0.1
これらの推薦アイテム、およびアイテムスコアは、CF、またはCBFに基づくマッチング処理によって選択、および算出したアイテムとアイテムスコアである。なお、本例において、アイテムスコアは、図29を参照して説明したと同様、コンテンツ視聴ユーザ(ゴースト)の嗜好や行動と、各コンテンツのマッチングレベルを示す0~1.0の範囲の値であり、1に近いほどマッチング率が高く、コンテンツ視聴ユーザ(ゴースト)の嗜好に適合したコンテンツであり、推薦レベルの高いアイテムであることを示す。
合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報を入力し、さらに、コンテンツメタ情報記憶部202から、コンテンツメタ情報、具体的にはコンテンツのアップロード時間を入力して、これらの入力情報に基づいて、最終的にコンテンツ出力装置104に出力する推薦情報213を生成して出力する。
図33には、合成推薦情報生成部312の実行する処理の一例を示している。合成推薦情報生成部312は、第1段推薦情報生成部311の生成した推薦情報、すなわち、CF、または、CBFに基づく推薦情報と、新着アイテムに基づく推薦情報を併せたハイブリッド型の推薦情報213を生成して、コンテンツ出力装置104に出力する構成例について説明する。
新着アイテムに基づく推薦情報は、より新しいアイテムを優先的に推薦する構成であり、図に示す例では、アイテムx,y,zの順に優先的に推薦される。
この処理の結果として生成されるハイブリッド型の推薦情報213を受信したコンテンツ出力装置104において表示される表示情報(UI)の例を図34に示す。図34に示す表示情報中の上側には、「あなたにおススメのボディ(コンテンツ提供ユーザ)」が表示され、このメッセージ以下に推薦コンテンツの画像を表示している。
この表示情報は、先に実施例1において説明した図5に示す表示情報と同様の表示情報である。この表示情報は、第1段推薦情報生成部311の生成した推薦情報に従って生成される表示情報である。
さらに、図34に示す表示情報中の下側には、「新着ボディ(コンテンツ提供ユーザ)」が表示され、このメッセージ以下に推薦コンテンツの画像が表示されている。これらは、合成推薦情報生成部312が、コンテンツメタ情報記憶部202から取得したアイテムのアップロード時間に基づいて生成した推薦情報に基づいて生成された表示情報である。
このように、異なる手法で生成した推薦情報をユーザ側の表示装置であるコンテンツ出力装置104に表示することが可能となる。
なお、図33を参照して説明した構成において、第1段推薦情報生成部311の算出するアイテムスコアは、図29を参照して説明した構成と同様、コンテンツ視聴ユーザ(ゴースト)の嗜好や行動と、各コンテンツのマッチングレベルを示す値とした例について説明したが、第1段推薦情報生成部311は、先に図31を参照して説明した構成と同様の構成としてもよい。
すなわち、第1段推薦情報生成部311が、推薦情報213を提供する対象となるユーザが過去に見たコンテンツあるいはボディ(コンテンツXあるいはボディX)と、他のコンテンツ(またはボディ)のマッチングレベルを示す0~1.0の範囲の値を持つアイテムスコアを算出する構成としてもよい。この場合、合成推薦情報生成部312は、このアイテムスコアに基づく推薦情報と、新着順に応じた推薦情報とを合成したハイブリッど型の推薦情報213を生成して出力する。
[4.情報処理装置のハードウェア構成例について]
次に、図35を参照して、情報処理装置のハードウェア構成例について説明する。図35を参照して説明するハードウェアは、先に図1を参照して説明したコンテンツ配信システムを構成するコンテンツ提供装置101や、コンテンツ出力装置104を構成する情報処理装置、さらに、コンテンツ配信サーバ102、コンテンツ推薦サーバ103を構成する情報処理装置のハードウェア構成の一例である。
次に、図35を参照して、情報処理装置のハードウェア構成例について説明する。図35を参照して説明するハードウェアは、先に図1を参照して説明したコンテンツ配信システムを構成するコンテンツ提供装置101や、コンテンツ出力装置104を構成する情報処理装置、さらに、コンテンツ配信サーバ102、コンテンツ推薦サーバ103を構成する情報処理装置のハードウェア構成の一例である。
CPU(Central Processing Unit)501は、ROM(Read Only Memory)502、または記憶部508に記憶されているプログラムに従って各種の処理を実行する制御部やデータ処理部として機能する。例えば、上述した実施例において説明したシーケンスに従った処理を実行する。RAM(Random Access Memory)503には、CPU501が実行するプログラムやデータなどが記憶される。これらのCPU501、ROM502、およびRAM503は、バス504により相互に接続されている。
CPU501はバス504を介して入出力インタフェース505に接続され、入出力インタフェース505には、各種スイッチ、キーボード、マウス、マイクロホン、センサなどよりなる入力部506、ディスプレイ、スピーカなどよりなる出力部507が接続されている。CPU501は、入力部506から入力される指令に対応して各種の処理を実行し、処理結果を例えば出力部507に出力する。なお、コンテンツ提供装置101の場合、入力部506には撮像部が含まれる。
入出力インタフェース505に接続されている記憶部508は、例えばハードディスク等からなり、CPU501が実行するプログラムや各種のデータを記憶する。通信部509は、Wi-Fi通信、ブルートゥース(登録商標)(BT)通信、その他インターネットやローカルエリアネットワークなどのネットワークを介したデータ通信の送受信部として機能し、外部の装置と通信する。
入出力インタフェース505に接続されているドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、あるいはメモリカード等の半導体メモリなどのリムーバブルメディア511を駆動し、データの記録あるいは読み取りを実行する。
[5.本開示の構成のまとめ]
以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
なお、本明細書において開示した技術は、以下のような構成をとることができる。
(1) 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツに関する推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部は、前記複数のコンテンツうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、前記取得したフィードバックログに基づいて前記推薦情報を生成する情報処理装置。
(2) 前記情報処理装置は、前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイル、および前記フィードバックログに基づいて、前記コンテンツ視聴ユーザの嗜好に関するユーザ嗜好情報を生成するユーザ嗜好解析部をさらに有し、
前記推薦情報生成部は、前記コンテンツ視聴ユーザの前記嗜好に近いコンテンツを推薦コンテンツとして含む推薦情報を生成する(1)に記載の情報処理装置。
(3) 前記推薦情報生成部は、
前記コンテンツプロファイルに基づいて生成されるコンテンツ特徴量ベクトルと、前記ユーザ嗜好情報に基づいて生成されるユーザ嗜好ベクトルとの類似性判定を行い、かつ
前記ユーザ嗜好ベクトルとの類似度の高いコンテンツ特徴量ベクトルを有するコンテンツを推薦コンテンツとして含む前記推薦情報を生成する(2)に記載の情報処理装置。
(4) 前記推薦情報は、前記複数のコンテンツの推薦情報、または、前記コンテンツ提供ユーザの推薦情報の少なくともいずれかを含む(1)から(3)のいずれか一項に記載の情報処理装置。
(5) 前記情報処理装置は、前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて、前記複数のコンテンツの関連性を示すコンテンツ関連性情報を生成するコンテンツ関連性情報生成部をさらに有する(1)から(4)のいずれか一項に記載の情報処理装置。
(6) 前記推薦情報生成部は、前記コンテンツ関連性情報および前記フィードバックログに基づいて、前記コンテンツ提供ユーザが過去に視聴したコンテンツに類似するコンテンツを推薦コンテンツとして含む推薦情報を生成する(5)に記載の情報処理装置。
(7) 前記コンテンツ関連性情報生成部は、
前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて生成される、前記複数のコンテンツ各々のコンテンツ特徴量ベクトルの類似度を判定し、かつ
前記判定された類似度に応じた関連性スコアを設定したコンテンツ関連性情報を生成する(5)に記載の情報処理装置。
(8) 前記コンテンツ視聴ユーザは、複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記複数のコンテンツ視聴ユーザ各々のフィードバックログに基づいて、前記複数のコンテンツ視聴ユーザのフィードバック情報の類似度を算出し、前記算出された類似度が大きいほど関連性スコアを高く設定したユーザ関連性情報を生成するユーザ関連性情報生成部をさらに有する(1)から(7)のいずれか一項に記載の情報処理装置。
(9) 前記推薦情報生成部は、前記ユーザ関連性情報に基づいて、相対的に高い前記関連性スコアを有する前記複数のコンテンツ視聴ユーザのうち少なくとも一人に、前記複数のコンテンツのうち1つに関する共同視聴を推薦する推薦情報を生成する(8)に記載の情報処理装置。
(10) 前記コンテンツ視聴ユーザは、少なくとも第1のコンテンツ視聴ユーザおよび第2のコンテンツ視聴ユーザを含む複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記第1のコンテンツ視聴ユーザの前記フィードバックログおよび前記第2のコンテンツ視聴ユーザの前記フィードバックログに基づいて、前記第1のコンテンツ視聴ユーザに、前記複数のコンテンツのうち1つに関する、前記第2のコンテンツ視聴ユーザとの共同視聴を推薦する推薦情報を生成する(1)から(9)のいずれか一項に記載の情報処理装置。
(11) 前記推薦情報生成部は、CBF(Content-based Filtering)、またはCF(Collaborative Filtering)の少なくともいずれかのフィルタリング処理の前記複数のコンテンツへの適用に基づく推薦コンテンツの選択処理を実行する(1)から(10)のいずれか一項に記載の情報処理装置。
(12) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報を生成するCF推薦情報生成部と、
前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報を生成するCBF推薦情報生成部と、
前記CF適用推薦情報と前記とCBF適用推薦情報を合成して、前記コンテンツ出力装置に出力する出力用推薦情報を生成する合成推薦情報生成部を有する(1)から(11)のいずれか一項に記載の情報処理装置。
(13) 前記合成推薦情報生成部は、前記CF推薦情報に含まれる推薦スコアと、前記CBF推薦情報に含まれる推薦スコアに対して、予め設定した重み係数を乗算して加算した値である最終推薦スコアに基づいて推薦情報を生成する(12)に記載の情報処理装置。
(14) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報、または、前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報の一方を生成する第1段推薦情報生成部と、
前記生成した推薦スコアに対して予め規定した変換式を適用した推薦スコアに基づいて推薦情報を生成する合成推薦情報生成部を有する(1)から(13)のいずれか一項に記載の情報処理装置。
(15) 前記変換式は、前記複数のコンテンツ各々のアップロード時間からの経過時間が短いほど、高いスコアとなるスコア算出式である(13)に記載の情報処理装置。
(16) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報、または、前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報のいずれかを生成する第1段推薦情報生成部と、
前記推薦スコアに基づく第1の推薦情報と、前記複数のコンテンツのうちアップロード時間からの経過時間が相対的に短い少なくとも1つのコンテンツを推薦コンテンツとして設定した第2の推薦情報とを含む推薦情報を生成する合成推薦情報生成部を有する(1)から(15)のいずれか一項に記載の情報処理装置。
(17) 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを少なくとも1つの情報処理装置で取得すること、および
前記取得したフィードバックログに基づいて推薦情報を生成するよう前記少なくとも1つの情報処理装置を制御すること、を含む情報処理方法。
(18) 少なくとも1つの情報処理装置において情報処理を実行させるための複数の指示を含むプログラムであり、
複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを、前記少なくとも1つの情報処理装置に取得させる指示と、
前記取得したフィードバックログに基づいて推薦情報を前記少なくとも1つの情報処理装置に生成させる指示と、を含むプログラム。
(19) コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部は、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得したフィードバックログに基づいて推薦情報を生成する情報処理装置。
(20) 情報処理装置において実行する情報処理方法であり、
前記情報処理装置は、コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部が、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得したフィードバックログに基づいて推薦情報を生成する情報処理方法。
(21) 情報処理装置において情報処理を実行させるプログラムであり、前記情報処理装置は、コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記プログラムは、前記推薦情報生成部に、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得させ、取得したフィードバックログに基づいて推薦情報を生成させるプログラム。
(1) 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツに関する推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部は、前記複数のコンテンツうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、前記取得したフィードバックログに基づいて前記推薦情報を生成する情報処理装置。
(2) 前記情報処理装置は、前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイル、および前記フィードバックログに基づいて、前記コンテンツ視聴ユーザの嗜好に関するユーザ嗜好情報を生成するユーザ嗜好解析部をさらに有し、
前記推薦情報生成部は、前記コンテンツ視聴ユーザの前記嗜好に近いコンテンツを推薦コンテンツとして含む推薦情報を生成する(1)に記載の情報処理装置。
(3) 前記推薦情報生成部は、
前記コンテンツプロファイルに基づいて生成されるコンテンツ特徴量ベクトルと、前記ユーザ嗜好情報に基づいて生成されるユーザ嗜好ベクトルとの類似性判定を行い、かつ
前記ユーザ嗜好ベクトルとの類似度の高いコンテンツ特徴量ベクトルを有するコンテンツを推薦コンテンツとして含む前記推薦情報を生成する(2)に記載の情報処理装置。
(4) 前記推薦情報は、前記複数のコンテンツの推薦情報、または、前記コンテンツ提供ユーザの推薦情報の少なくともいずれかを含む(1)から(3)のいずれか一項に記載の情報処理装置。
(5) 前記情報処理装置は、前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて、前記複数のコンテンツの関連性を示すコンテンツ関連性情報を生成するコンテンツ関連性情報生成部をさらに有する(1)から(4)のいずれか一項に記載の情報処理装置。
(6) 前記推薦情報生成部は、前記コンテンツ関連性情報および前記フィードバックログに基づいて、前記コンテンツ提供ユーザが過去に視聴したコンテンツに類似するコンテンツを推薦コンテンツとして含む推薦情報を生成する(5)に記載の情報処理装置。
(7) 前記コンテンツ関連性情報生成部は、
前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて生成される、前記複数のコンテンツ各々のコンテンツ特徴量ベクトルの類似度を判定し、かつ
前記判定された類似度に応じた関連性スコアを設定したコンテンツ関連性情報を生成する(5)に記載の情報処理装置。
(8) 前記コンテンツ視聴ユーザは、複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記複数のコンテンツ視聴ユーザ各々のフィードバックログに基づいて、前記複数のコンテンツ視聴ユーザのフィードバック情報の類似度を算出し、前記算出された類似度が大きいほど関連性スコアを高く設定したユーザ関連性情報を生成するユーザ関連性情報生成部をさらに有する(1)から(7)のいずれか一項に記載の情報処理装置。
(9) 前記推薦情報生成部は、前記ユーザ関連性情報に基づいて、相対的に高い前記関連性スコアを有する前記複数のコンテンツ視聴ユーザのうち少なくとも一人に、前記複数のコンテンツのうち1つに関する共同視聴を推薦する推薦情報を生成する(8)に記載の情報処理装置。
(10) 前記コンテンツ視聴ユーザは、少なくとも第1のコンテンツ視聴ユーザおよび第2のコンテンツ視聴ユーザを含む複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記第1のコンテンツ視聴ユーザの前記フィードバックログおよび前記第2のコンテンツ視聴ユーザの前記フィードバックログに基づいて、前記第1のコンテンツ視聴ユーザに、前記複数のコンテンツのうち1つに関する、前記第2のコンテンツ視聴ユーザとの共同視聴を推薦する推薦情報を生成する(1)から(9)のいずれか一項に記載の情報処理装置。
(11) 前記推薦情報生成部は、CBF(Content-based Filtering)、またはCF(Collaborative Filtering)の少なくともいずれかのフィルタリング処理の前記複数のコンテンツへの適用に基づく推薦コンテンツの選択処理を実行する(1)から(10)のいずれか一項に記載の情報処理装置。
(12) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報を生成するCF推薦情報生成部と、
前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報を生成するCBF推薦情報生成部と、
前記CF適用推薦情報と前記とCBF適用推薦情報を合成して、前記コンテンツ出力装置に出力する出力用推薦情報を生成する合成推薦情報生成部を有する(1)から(11)のいずれか一項に記載の情報処理装置。
(13) 前記合成推薦情報生成部は、前記CF推薦情報に含まれる推薦スコアと、前記CBF推薦情報に含まれる推薦スコアに対して、予め設定した重み係数を乗算して加算した値である最終推薦スコアに基づいて推薦情報を生成する(12)に記載の情報処理装置。
(14) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報、または、前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報の一方を生成する第1段推薦情報生成部と、
前記生成した推薦スコアに対して予め規定した変換式を適用した推薦スコアに基づいて推薦情報を生成する合成推薦情報生成部を有する(1)から(13)のいずれか一項に記載の情報処理装置。
(15) 前記変換式は、前記複数のコンテンツ各々のアップロード時間からの経過時間が短いほど、高いスコアとなるスコア算出式である(13)に記載の情報処理装置。
(16) 前記推薦情報生成部は、
前記複数のコンテンツにCFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCF適用推薦情報、または、前記複数のコンテンツにCBFを適用した処理によって算出したコンテンツ単位の推薦スコアを含むCBF適用推薦情報のいずれかを生成する第1段推薦情報生成部と、
前記推薦スコアに基づく第1の推薦情報と、前記複数のコンテンツのうちアップロード時間からの経過時間が相対的に短い少なくとも1つのコンテンツを推薦コンテンツとして設定した第2の推薦情報とを含む推薦情報を生成する合成推薦情報生成部を有する(1)から(15)のいずれか一項に記載の情報処理装置。
(17) 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを少なくとも1つの情報処理装置で取得すること、および
前記取得したフィードバックログに基づいて推薦情報を生成するよう前記少なくとも1つの情報処理装置を制御すること、を含む情報処理方法。
(18) 少なくとも1つの情報処理装置において情報処理を実行させるための複数の指示を含むプログラムであり、
複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを、前記少なくとも1つの情報処理装置に取得させる指示と、
前記取得したフィードバックログに基づいて推薦情報を前記少なくとも1つの情報処理装置に生成させる指示と、を含むプログラム。
(19) コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部は、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得したフィードバックログに基づいて推薦情報を生成する情報処理装置。
(20) 情報処理装置において実行する情報処理方法であり、
前記情報処理装置は、コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部が、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得したフィードバックログに基づいて推薦情報を生成する情報処理方法。
(21) 情報処理装置において情報処理を実行させるプログラムであり、前記情報処理装置は、コンテンツの推薦情報を生成する推薦情報生成部を有し、
前記プログラムは、前記推薦情報生成部に、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得させ、取得したフィードバックログに基づいて推薦情報を生成させるプログラム。
また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
以上、説明したように、本開示の一実施例の構成によれば、コンテンツ視聴ユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得ログに基づいて推薦情報を生成する構成が実現される。具体的には、例えば、コンテンツの推薦情報を生成する推薦情報生成部が、コンテンツを視聴するユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得したフィードバックログに基づいて推薦情報を生成する。例えば、(a)コンテンツ各々の特徴量を含むコンテンツプロファイル、(b)フィードバックログ、これら(a),(b)の各データを利用して生成されたユーザ嗜好情報に従って、ユーザ嗜好に近いコンテンツを推薦コンテンツとして含む推薦情報を生成する。本構成により、コンテンツ視聴ユーザのコンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、取得ログに基づいて推薦情報を生成する構成が実現される。
100 コンテンツ配信システム
101 コンテンツ提供装置
102 コンテンツ配信サーバ
103 コンテンツ推薦サーバ
104 コンテンツ出力装置
110 ネットワーク
111 コンテンツ記憶部
112 コンテンツプロファイル記憶部
113 ユーザプロファイル記憶部
121 制御部
122 入力部
123 センサ
124 出力部
125 撮像部
126 通信部
127 記憶部
141 制御部
142 入力部
143 センサ
144 出力部
145 表示部
146 通信部
147 記憶部
201 コンテンツメタ情報取得部
202 コンテンツメタ情報記憶部
203 コンテンツプロファイル生成部
204 ユーザプロファイル生成部
205 フィードバックログ解析部
206 フィードバックログ記憶部
207 ユーザ嗜好解析部
208 ユーザ嗜好情報記憶部
209 推薦情報生成部
211 ユーザ情報
212 ユーザ操作情報
213 推薦情報
221 コンテンツ関連性情報生成部
222 コンテンツ関連性情報記憶部
231 ユーザ関連性情報生成部
232 ユーザ関連性情報記憶部
301 CF推薦情報生成部
302 CBF推薦情報生成部
303 合成推薦情報生成部
311 第1段推薦情報生成部
312 合成推薦情報生成部
501 CPU
502 ROM
503 RAM
504 バス
505 入出力インタフェース
506 入力部
507 出力部
508 記憶部
509 通信部
510 ドライブ
511 リムーバブルメディア
101 コンテンツ提供装置
102 コンテンツ配信サーバ
103 コンテンツ推薦サーバ
104 コンテンツ出力装置
110 ネットワーク
111 コンテンツ記憶部
112 コンテンツプロファイル記憶部
113 ユーザプロファイル記憶部
121 制御部
122 入力部
123 センサ
124 出力部
125 撮像部
126 通信部
127 記憶部
141 制御部
142 入力部
143 センサ
144 出力部
145 表示部
146 通信部
147 記憶部
201 コンテンツメタ情報取得部
202 コンテンツメタ情報記憶部
203 コンテンツプロファイル生成部
204 ユーザプロファイル生成部
205 フィードバックログ解析部
206 フィードバックログ記憶部
207 ユーザ嗜好解析部
208 ユーザ嗜好情報記憶部
209 推薦情報生成部
211 ユーザ情報
212 ユーザ操作情報
213 推薦情報
221 コンテンツ関連性情報生成部
222 コンテンツ関連性情報記憶部
231 ユーザ関連性情報生成部
232 ユーザ関連性情報記憶部
301 CF推薦情報生成部
302 CBF推薦情報生成部
303 合成推薦情報生成部
311 第1段推薦情報生成部
312 合成推薦情報生成部
501 CPU
502 ROM
503 RAM
504 バス
505 入出力インタフェース
506 入力部
507 出力部
508 記憶部
509 通信部
510 ドライブ
511 リムーバブルメディア
Claims (12)
- 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツに関する推薦情報を生成する推薦情報生成部を有し、
前記推薦情報生成部は、前記複数のコンテンツうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを取得し、前記取得したフィードバックログに基づいて前記推薦情報を生成する情報処理装置。 - 前記情報処理装置は、
前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイル、および前記フィードバックログに基づいて、前記コンテンツ視聴ユーザの嗜好に関するユーザ嗜好情報を生成するユーザ嗜好解析部をさらに有し、
前記推薦情報生成部は、前記コンテンツ視聴ユーザの前記嗜好に近いコンテンツを推薦コンテンツとして含む推薦情報を生成する請求項1に記載の情報処理装置。 - 前記推薦情報生成部は、
前記コンテンツプロファイルに基づいて生成されるコンテンツ特徴量ベクトルと、前記ユーザ嗜好情報に基づいて生成されるユーザ嗜好ベクトルとの類似性判定を行い、かつ
前記ユーザ嗜好ベクトルとの類似度の高いコンテンツ特徴量ベクトルを有するコンテンツを推薦コンテンツとして含む前記推薦情報を生成する請求項2に記載の情報処理装置。 - 前記推薦情報は、前記複数のコンテンツの推薦情報、または、前記コンテンツ提供ユーザの推薦情報の少なくともいずれかを含む請求項1に記載の情報処理装置。
- 前記情報処理装置は、前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて、前記複数のコンテンツの関連性を示すコンテンツ関連性情報を生成するコンテンツ関連性情報生成部をさらに有する請求項1に記載の情報処理装置。
- 前記推薦情報生成部は、前記コンテンツ関連性情報および前記フィードバックログに基づいて、前記コンテンツ提供ユーザが過去に視聴したコンテンツに類似するコンテンツを推薦コンテンツとして含む推薦情報を生成する請求項5に記載の情報処理装置。
- 前記コンテンツ関連性情報生成部は、
前記複数のコンテンツ各々の特徴量を含むコンテンツプロファイルに基づいて生成される、前記複数のコンテンツ各々のコンテンツ特徴量ベクトルの類似度を判定し、かつ
前記判定された類似度に応じた関連性スコアを設定したコンテンツ関連性情報を生成する請求項5に記載の情報処理装置。 - 前記コンテンツ視聴ユーザは、複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記複数のコンテンツ視聴ユーザ各々のフィードバックログに基づいて、前記複数のコンテンツ視聴ユーザのフィードバック情報の類似度を算出し、前記算出された類似度が大きいほど関連性スコアを高く設定したユーザ関連性情報を生成するユーザ関連性情報生成部をさらに有する請求項1に記載の情報処理装置。 - 前記推薦情報生成部は、前記ユーザ関連性情報に基づいて、相対的に高い前記関連性スコアを有する前記複数のコンテンツ視聴ユーザのうち少なくとも一人に、前記複数のコンテンツのうち1つに関する共同視聴を推薦する推薦情報を生成する請求項8に記載の情報処理装置。
- 前記コンテンツ視聴ユーザは、少なくとも第1のコンテンツ視聴ユーザおよび第2のコンテンツ視聴ユーザを含む複数のコンテンツ視聴ユーザを含み、
前記情報処理装置は、前記第1のコンテンツ視聴ユーザの前記フィードバックログおよび前記第2のコンテンツ視聴ユーザの前記フィードバックログに基づいて、前記第1のコンテンツ視聴ユーザに、前記複数のコンテンツのうち1つに関する、前記第2のコンテンツ視聴ユーザとの共同視聴を推薦する推薦情報を生成する請求項1に記載の情報処理装置。 - 複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを少なくとも1つの情報処理装置で取得すること、および
前記取得したフィードバックログに基づいて推薦情報を生成するよう前記少なくとも1つの情報処理装置を制御すること、を含む情報処理方法。 - 少なくとも1つの情報処理装置において情報処理を実行させるための複数の指示を含むプログラムであり、
複数のコンテンツ提供ユーザにより撮像され、ネットワークを介して配信される複数のコンテンツのうち少なくとも1つを視聴するコンテンツ視聴ユーザの、コンテンツ出力装置に対する操作情報を含むフィードバックログを、前記少なくとも1つの情報処理装置に取得させる指示と、
前記取得したフィードバックログに基づいて推薦情報を前記少なくとも1つの情報処理装置に生成させる指示と、を含むプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-049405 | 2017-03-15 | ||
JP2017049405 | 2017-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168444A1 true WO2018168444A1 (ja) | 2018-09-20 |
Family
ID=63523897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007265 WO2018168444A1 (ja) | 2017-03-15 | 2018-02-27 | 情報処理装置、および情報処理方法、並びにプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018168444A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008197925A (ja) * | 2007-02-13 | 2008-08-28 | Sony Corp | 表示制御装置、表示方法、およびプログラム |
JP2009266096A (ja) * | 2008-04-28 | 2009-11-12 | Sony Corp | 情報処理装置、および関連アイテムの提供方法 |
JP2011053833A (ja) * | 2009-08-31 | 2011-03-17 | Sony Corp | 情報処理装置及び情報処理方法 |
JP2014006669A (ja) * | 2012-06-22 | 2014-01-16 | Sharp Corp | 推奨コンテンツ通知システム、その制御方法および制御プログラム、ならびに記録媒体 |
JP2015032254A (ja) * | 2013-08-06 | 2015-02-16 | ソニー株式会社 | 情報処理装置、情報処理方法、及び、プログラム |
JP2015152957A (ja) * | 2014-02-10 | 2015-08-24 | 大日本印刷株式会社 | サーバ装置、プログラム及び情報提供方法 |
US20160212494A1 (en) * | 2013-09-06 | 2016-07-21 | Beijing Qihoo Technology Company Limited | Video recommendation method and device |
-
2018
- 2018-02-27 WO PCT/JP2018/007265 patent/WO2018168444A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008197925A (ja) * | 2007-02-13 | 2008-08-28 | Sony Corp | 表示制御装置、表示方法、およびプログラム |
JP2009266096A (ja) * | 2008-04-28 | 2009-11-12 | Sony Corp | 情報処理装置、および関連アイテムの提供方法 |
JP2011053833A (ja) * | 2009-08-31 | 2011-03-17 | Sony Corp | 情報処理装置及び情報処理方法 |
JP2014006669A (ja) * | 2012-06-22 | 2014-01-16 | Sharp Corp | 推奨コンテンツ通知システム、その制御方法および制御プログラム、ならびに記録媒体 |
JP2015032254A (ja) * | 2013-08-06 | 2015-02-16 | ソニー株式会社 | 情報処理装置、情報処理方法、及び、プログラム |
US20160212494A1 (en) * | 2013-09-06 | 2016-07-21 | Beijing Qihoo Technology Company Limited | Video recommendation method and device |
JP2015152957A (ja) * | 2014-02-10 | 2015-08-24 | 大日本印刷株式会社 | サーバ装置、プログラム及び情報提供方法 |
Non-Patent Citations (1)
Title |
---|
"japanese mag.", vol. 115, no. 495, pages 235 - 240 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180279004A1 (en) | Information processing apparatus, information processing method, and program | |
US11537907B2 (en) | Adapting a virtual reality experience for a user based on a mood improvement score | |
US11495001B2 (en) | Chroma key content management systems and methods | |
US10691202B2 (en) | Virtual reality system including social graph | |
CN111201539B (zh) | 用于确定用户行为的匹配场景的方法、介质和计算机系统 | |
JP6773190B2 (ja) | 情報処理システム、制御方法、および記憶媒体 | |
JP6462059B1 (ja) | 情報処理方法、情報処理プログラム、情報処理システム、および情報処理装置 | |
US20160350609A1 (en) | System and method for customizing content for a user | |
WO2018135334A1 (ja) | 情報処理装置、および情報処理方法、並びにコンピュータ・プログラム | |
CN109416931A (zh) | 用于视线跟踪的装置和方法 | |
US10701426B1 (en) | Virtual reality system including social graph | |
WO2016014233A1 (en) | Real-time immersive mediated reality experiences | |
CN105247879A (zh) | 客户机设备、控制方法、系统和程序 | |
KR20170121718A (ko) | Vr 공간에서 사용자 인터페이스를 제공하는 방법, 디바이스 및 기록매체 | |
US20180278995A1 (en) | Information processing apparatus, information processing method, and program | |
US20230130770A1 (en) | Method and a system for interacting with physical devices via an artificial-reality device | |
JP6822413B2 (ja) | サーバ装置及び情報処理方法、並びにコンピュータ・プログラム | |
JP2006268395A (ja) | 情報処理装置、情報処理方法及びプログラム | |
US20190138463A1 (en) | Information processing apparatus, information processing method, and program | |
CN108369597A (zh) | 用于基于场境来指示视频的观众群的方法、系统和介质 | |
CN113852863A (zh) | 动态媒体项递送 | |
US20210049824A1 (en) | Generating a mixed reality | |
WO2018168444A1 (ja) | 情報処理装置、および情報処理方法、並びにプログラム | |
US11601639B2 (en) | Information processing apparatus and image display method | |
JP7312465B2 (ja) | 情報出力装置、設計支援システム、情報出力方法及び情報出力プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18766834 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18766834 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |