WO2018168363A1 - Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device - Google Patents

Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device Download PDF

Info

Publication number
WO2018168363A1
WO2018168363A1 PCT/JP2018/006196 JP2018006196W WO2018168363A1 WO 2018168363 A1 WO2018168363 A1 WO 2018168363A1 JP 2018006196 W JP2018006196 W JP 2018006196W WO 2018168363 A1 WO2018168363 A1 WO 2018168363A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
urine
measuring instrument
axis
angle
Prior art date
Application number
PCT/JP2018/006196
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋健
笹谷信哉
Original Assignee
株式会社リリアム大塚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リリアム大塚 filed Critical 株式会社リリアム大塚
Priority to JP2019505809A priority Critical patent/JP6820453B2/en
Publication of WO2018168363A1 publication Critical patent/WO2018168363A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to an ultrasonic measurement device that measures data related to the size of an organ using ultrasonic waves and an ultrasonic measurement method using the ultrasonic measurement device.
  • an ultrasonic wave is transmitted to an organ such as a bladder or gallbladder, and a reflected wave is received. Based on the reflected wave, a size as data related to the size of the organ is obtained by an ultrasonic A mode.
  • Ultrasonic measuring devices that measure data are known. By the way, the size data measured by this kind of ultrasonic measuring instrument reacts sensitively to the contact position and angle of the ultrasonic probe, so in order to measure the size data more accurately, the ultrasonic probe Must be positioned at a position and angle suitable for the measurement of size data.
  • Patent Document 1 discloses a measurement mode for measuring the amount of urine stored in a state of being mounted on the abdomen, and a positioning mode for measuring the amount of urine stored in order to determine a position suitable for mounting the ultrasonic probe in the measurement mode.
  • An ultrasonic urinometer is disclosed.
  • the measurement of the urine accumulation amount in the positioning mode is performed at a temporary measurement position as a position where the ultrasonic probe is temporarily mounted for the purpose of a position where the urine accumulation amount can be measured with high accuracy.
  • This positioning mode is a mode for determining a position suitable for wearing the ultrasonic probe based on the amount of urine collected measured at a plurality of temporary measurement positions. (Hereinafter, referred to as a person to be measured).
  • this positioning mode is a mode for transmitting the positioning index value obtained based on these urine accumulation amounts to the measurement subject or the like, the position suitable for mounting the ultrasonic probe is the positioning index value. Based on the selection by the person to be measured. Therefore, the positioning of the ultrasonic urine volume measuring device disclosed in Patent Document 1 leaves the determination of the temporary measurement position and the selection of the mounting position of the ultrasonic probe to the measurement subject and the like. Was necessary.
  • the technical problem of the present invention is to provide an ultrasonic measuring device and an ultrasonic measuring device that can be positioned more easily when measuring data related to the size of an organ in the ultrasonic A mode. It is to provide an ultrasonic measurement method using the.
  • an ultrasonic measuring instrument includes an ultrasonic probe having an ultrasonic element that transmits ultrasonic waves toward an organ of a subject, and ultrasonic transmission by the ultrasonic element.
  • Ultrasound measurement comprising: an ultrasonic control unit for controlling; and a calculation unit for calculating size data related to the size of the organ by an ultrasonic A mode based on a reflected wave from the organ of the measurement subject
  • the ultrasonic measuring instrument abuts the ultrasonic probe on a predetermined position on the body surface of the measurement subject, and rotates the ultrasonic probe with an axis passing through the predetermined position as a rotation axis.
  • Angle Sen A storage unit that stores the size data as organ-related data associated with the angle measured by the angle sensor unit, and an error determination unit that determines an error in the predetermined position based on the organ-related data. , Provided.
  • the organ is a urinary bladder and the size data is an amount of accumulated urine in the urinary bladder.
  • the ultrasonic probe preferably includes a plurality of ultrasonic elements arranged in a line.
  • the error determination unit includes a direction calculation unit that calculates a direction of the error based on the angle when an error at the predetermined position is equal to or greater than a predetermined threshold.
  • the error determination unit includes a distance calculation unit that calculates a distance of the error based on the angle when an error at the predetermined position is equal to or greater than a predetermined threshold.
  • the ultrasonic measuring device further includes a one-round determination unit that determines, based on the angle, whether or not the ultrasonic probe rotates at least one round on the predetermined position by rotating about the axis. Further, it is preferable to have.
  • the ultrasonic measuring device may have an inclination rotation mechanism that rotates the ultrasonic probe while inclining in the circumferential direction with the axis as a rotation axis.
  • the ultrasonic measuring instrument according to the present invention includes a first surface that transmits ultrasonic waves from an ultrasonic element, a second surface that is erected from the first surface and has a curved surface portion for grip, and the second surface.
  • an operation button for operating the ultrasonic measuring device may be provided on the third surface.
  • the said display part is arrange
  • the operation button is disposed at a position facing the formation position of the curved surface portion, and the display section is disposed at a position farther from the first surface than the operation button.
  • the speaker may be formed in the 4th surface facing the said 1st surface.
  • an ultrasonic measurement method using the ultrasonic measuring instrument includes an ultrasonic probe including an ultrasonic element that transmits ultrasonic waves toward the measurement subject's bladder, and ultrasonic waves generated by the ultrasonic element.
  • An ultrasonic measuring device comprising: an ultrasonic control unit that controls transmission; and a calculation unit that calculates an amount of accumulated urine in the bladder by an ultrasonic A mode based on a reflected wave from the bladder of the subject.
  • the ultrasonic measuring device is brought into contact with a predetermined position on the body surface of the person to be measured, and the ultrasonic probe is rotated about the axis of the predetermined position with respect to the axis.
  • the first step measures the angle of the ultrasonic probe at the position along the axis of the predetermined position with the angle sensor, and receives the reflected wave to determine the amount of accumulated urine.
  • the third step includes organ-related data relating to the urine accumulation amount at a position along the axis, and organ-related data relating to the maximum urine accumulation amount among the urine accumulation amounts calculated at positions inclined with respect to the axis.
  • the method includes a step of determining an error of the predetermined position based on the above.
  • the ultrasonic probe includes a plurality of ultrasonic elements arranged in a line, and in the first step, the ultrasonic elements are directed from the subject's foot side to the face side.
  • the third step includes a step of measuring the angle of the ultrasonic probe and the amount of accumulated urine in contact with the predetermined position, and the third step is a foot-side ultrasonic element located closest to the foot among the plurality of ultrasonic elements. It is preferable to include a step of determining the presence or absence of the reflected wave received at the step. In addition, the third step includes a step of determining whether or not the error at the predetermined position is equal to or greater than a predetermined threshold value. In the third step, it is determined that the error at the predetermined position is equal to or greater than a predetermined threshold value.
  • the first step includes a step of measuring an angle of the ultrasonic probe 10 and a urine accumulation amount while rotating the ultrasonic probe at least once with the axis of the predetermined position as a rotation axis
  • the third step Includes removing a specific urine accumulation amount as noise from the urine accumulation amount stored in the storage unit, and determining an error of the predetermined position based on the organ-related data from which the noise has been removed.
  • the ultrasonic measuring instrument has an inclination rotating mechanism that rotates the ultrasonic measuring instrument while tilting it in the circumferential direction about the axis as a rotation axis
  • the first step includes the ultrasonic probe by the tilt rotating mechanism.
  • the method may include a step of calculating the urine accumulation amount by receiving the reflected wave while rotating in a state inclined with respect to the axis.
  • the ultrasonic wave and its reflected wave are transmitted and received at a plurality of positions inclined in the circumferential direction with respect to the axis passing through the body surface while rotating the ultrasonic probe with the axis passing through the body surface as the rotation axis.
  • size data relating to the size of the organ is calculated by the ultrasonic A mode.
  • an error at a predetermined position is determined based on the organ-related data in which this size data is associated with the angle measured by the angle sensor unit. Therefore, the error at the predetermined position can be easily determined by a simple operation of rotating the ultrasonic probe in contact with the body surface while inclining.
  • the ultrasonic measuring instrument transmits ultrasonic waves toward the organ of the measurement subject, receives the reflected waves, and relates to the size of the organs by the ultrasonic A mode based on the reflected waves. It is a measuring instrument that measures size data.
  • organs to be measured in this ultrasonic measuring instrument are luminal organs that can store body fluids such as urine and bile, and real organs, and specifically, bladders, gallbladder, rectum, and the like.
  • the size data includes the amount of urine stored in the bladder, the amount of bile stored in the gallbladder, the size of the rectum due to fecal discharge, etc. explain.
  • the ultrasonic measuring instrument 1 is a measuring instrument having an ultrasonic probe 10 on the tip side thereof, and the ultrasonic probe 10 is applied to a predetermined position on the lower abdominal surface S coated with gel. It is a measuring instrument that measures the amount of urine stored while in contact. The amount of urine collected is measured while the ultrasonic probe 10 is tilted with respect to the vertical axis Z of the lower abdominal surface S, and the ultrasonic wave and its reflected wave are transmitted from the ultrasonic probe 10 while rotating about the vertical axis Z. Measured by sending and receiving. At this time, the ultrasonic measuring instrument 1 is brought into contact with the lower abdominal surface S by being held by a person to be measured, and the ultrasonic probe 10 is rotated by rotating the ultrasonic measuring instrument 1 by hand.
  • the ultrasonic measuring instrument 1 of the present embodiment is formed in a substantially rectangular parallelepiped shape, and has a tapered shape on the tip side that comes into contact with the lower abdominal surface S of the measurement subject.
  • an ultrasonic probe 10 in which a plurality (four in FIG. 5) of ultrasonic elements 11a to 11d are arranged in a straight line on the distal end side of the ultrasonic measuring instrument 1. Is provided.
  • the ultrasonic element 11a to 11d when the ultrasonic probe 10 is brought into contact with the lower abdominal surface S, the ultrasonic element 11a is arranged on the face side (upper side) and the ultrasonic element 11d is on the foot side (lower side). Placed in.
  • the arrangement of the ultrasonic elements 11a to 11d is always constant during the rotation of the ultrasonic probe 10 with the vertical axis Z as the rotation axis. Further, as shown in FIGS. 6 and 7, the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d are in the bladder with the axis L connecting the distal end side and the proximal end side of the ultrasonic measuring instrument 1 as the central direction. Is sent out in a fan shape that opens up and down. Further, a monitor 2 as a display unit used for displaying urine accumulation and the like and an operation button 3 for turning on / off the power of the ultrasonic measuring instrument 1 are provided on the side of the ultrasonic measuring instrument 1. ing. Further, the ultrasonic measuring instrument 1 is provided with an acceleration sensor 4 as an angle sensor capable of measuring the angle of the ultrasonic probe 10 with respect to the vertical axis Z in three dimensions.
  • an acceleration sensor 4 as an angle sensor capable of measuring the angle of the ultrasonic probe 10 with respect to the vertical axis Z in
  • the ultrasonic measuring instrument 1 of the present embodiment is mainly composed of the ultrasonic probe 10 and the control unit 20 described above.
  • the control unit 20 includes an ultrasonic control unit 21 that controls transmission / reception of ultrasonic waves and their reflected waves by the ultrasonic elements 11a to 11d, and an A / D conversion that converts an ultrasonic reflected wave that is an analog signal into a digital signal.
  • the ultrasonic control unit 21 performs transmission control for amplifying the reflected waves received by the ultrasonic elements 11a to 11d in addition to performing transmission control for transmitting ultrasonic waves from the ultrasonic elements 11a to 11d at predetermined intervals. Is.
  • the reflected wave is converted into a digital signal by the A / D conversion unit 22 and then input to the calculation unit 26 and the storage unit 25.
  • the input unit 23 inputs various data relating to the urine storage amount including a urine amount threshold value determined as the urine amount to be urinated. These input data are stored in the storage unit 25 via the calculation unit 26. Note that the urine volume threshold value may be stored in the storage unit 25 in advance.
  • the angle of inclination of the ultrasonic probe 10 measured by the angle sensor unit 24 is measured immediately after the ultrasonic waves are received by the ultrasonic elements 11a to 11d, and stored as the rotation angle of the ultrasonic probe 10 via the calculation unit 26. Input to the unit 25.
  • the calculation unit 26 calculates a urine volume in the bladder for each measurement cycle based on the reflected wave data, and a measurement data unit 26b generates organ-related data by associating the accumulated urine amount with a rotation angle.
  • An error determination unit 26c that determines an error at a predetermined position based on the organ-related data, and a measurement end determination as a one-round determination unit that determines whether or not the ultrasonic probe 10 goes around the vertical axis Z as a rotation axis.
  • a portion 26d is provided.
  • the organ-related data generated by the measurement data unit 26b associates the urine accumulation amount calculated based on the ultrasonic waves received by the ultrasonic elements 11a to 11d with the angle acquired immediately after reception of the ultrasonic waves.
  • the error of the predetermined position measured by the error determination unit 26c is suitable for measuring the contact position of the ultrasonic measuring device 1 that is in contact with the lower abdomen surface S of the measurement subject and the urine accumulation amount.
  • a direction calculation unit 26e that calculates an error direction based on organ-related data when an error at a predetermined position is equal to or greater than a predetermined threshold.
  • the distance calculation unit 26f that calculates the error distance based on the organ-related data is provided.
  • the alarm unit 27 is configured to receive ultrasonic urine volume data when the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d hit the pubic bone, or between the ultrasonic elements 11a to 11d and the lower abdominal surface S.
  • an alarm is transmitted to notify the person to be measured, etc. .
  • the alarm may be transmitted by sound, screen, or vibration, but may be transmitted using other methods.
  • the notification unit 28 displays various data relating to the urine volume and urine volume measurement calculated by the urine volume calculation unit 26a on the monitor 2, and transmits the direction and distance of the error by voice.
  • the communication unit 29 outputs various data related to urine volume and urine volume measurement calculated by the urine volume calculation unit 26 a to an external device connected to the measuring instrument 1.
  • the connection between the ultrasonic measuring instrument 1 and an external device may be wired or wireless.
  • a urination diary can be created by connecting the ultrasonic measuring instrument 1 and an external device.
  • the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d are reflected at the boundaries between tissues, the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d toward the bladder are the front wall of the bladder.
  • the reflected waves are received by the ultrasonic elements 11a to 11d.
  • the amount of urine storage is calculated by calculating by the ultrasonic A mode demonstrated below.
  • FIG. 9 is a schematic diagram of the waveform of the reflected wave received by each of the ultrasonic elements 11a to 11d, with the vertical axis representing the reflection intensity and the horizontal axis representing the time from transmission.
  • the urine accumulation amount EU can be calculated based on the following equations (1) and (2).
  • PD ⁇ Pi ⁇ Di
  • EU PD ⁇ R (2)
  • i in Pi and Di means a number given to the plurality of ultrasonic elements 11a to 11d, and is an integer from 1 to 4 here.
  • the calculated urine accumulation amount, R indicates a coefficient determined corresponding to individual differences based on the anatomical structure and the posture being measured. Therefore, the average index value PD and the urine accumulation amount EU are calculated every time ultrasonic waves are transmitted and received by the ultrasonic elements 11a to 11d. In this embodiment, since the ultrasonic waves are transmitted every 0.1 seconds, the urine accumulation amount EU is calculated every 0.1 seconds.
  • step S101 transmission / reception of ultrasonic waves by the ultrasonic elements 11a to 11d in a state of being vertically contacted with respect to is started (step S101). Therefore, in step S101, the amount of urine stored when the ultrasonic measuring instrument 1 is held at a position along the vertical axis Z is measured.
  • the angle ⁇ y formed by the Y axis in the middle and the angle ⁇ z formed by the axis L and the vertical axis Z are measured by the acceleration sensor 4 immediately after the timing of receiving the ultrasonic wave transmitted every 0.1 seconds. .
  • step S101 the angles ( ⁇ x, ⁇ y, ⁇ z) are ( ⁇ / 2, ⁇ / 2, 0), and the organ-related data is generated by associating the angles with the urine accumulation amount, and the organ-related data is stored. Stored in the unit 25.
  • the ultrasonic probe 10 is tilted toward the face with respect to the vertical axis Z, and the ultrasonic measuring instrument 1 is rotated clockwise around the vertical axis Z from this tilted state.
  • the amount of stored urine is measured by transmitting and receiving ultrasonic waves while rotating counterclockwise (step S102).
  • the ultrasonic measuring device 1 makes one turn of the ultrasonic measuring device 1 while keeping the angle ⁇ z constant. Therefore, when the angle ⁇ z is the predetermined value ⁇ , the angle ⁇ x moves in the range of ⁇ / 2 ⁇ to ⁇ / 2 + ⁇ and the angle ⁇ y moves in the range of ⁇ / 2 ⁇ to ⁇ / 2 + ⁇ . .
  • step S102 the ultrasonic probe 10 is moved to the vertical axis. At a plurality of positions inclined in the circumferential direction with respect to Z, the angle of the ultrasonic probe 10 with respect to the vertical axis Z and the urine accumulation amount are measured. Then, by associating the urine accumulation amount with the angles ( ⁇ x, ⁇ y, ⁇ z) of the ultrasonic probe 10, organ-related data is generated and stored in the storage unit 25.
  • the ultrasonic measuring instrument 1 After making one round of the ultrasonic measuring instrument 1, the ultrasonic measuring instrument 1 is placed on the lower abdominal surface S so that the position of the ultrasonic measuring instrument 1 is the same as that at the start of transmission of ultrasonic waves in step S101. To return to vertical. Whether this return is possible is determined by the inclination of the ultrasonic probe 10 measured by the acceleration sensor 4 described above (step S103). When the ultrasonic probe 10 has returned to the original vertical position, the measurement end determining unit 26d determines that the ultrasonic measuring instrument 1 has made a round on the lower abdominal surface S about the vertical axis Z, Proceed to the next Step S104.
  • step S102 is continued until the ultrasonic measuring instrument 1 returns perpendicular to the lower abdominal surface.
  • steps S101 to S103 the step of measuring the rotation angle of the ultrasonic probe 10 and the amount of urine stored corresponds to the first step, and the step of storing the organ-related data in the storage unit 25 corresponds to the second step.
  • step S104 it is determined whether or not the urine accumulation amount measured in steps S101 to S103 is properly measured in all directions on the lower abdominal surface S (step S104). Whether or not it is appropriate is determined by whether or not the circumferential angles ( ⁇ x, ⁇ y) associated with the urine accumulation amount are calculated within a predetermined interval.
  • the circumferential angle ( ⁇ x, ⁇ y) is determined based on the number of measurements when the circumferential angle ( ⁇ x, ⁇ y) is ⁇ / 2 ⁇ ⁇ x ⁇ ⁇ / 2 + ⁇ and ⁇ / 2 ⁇ ⁇ y ⁇ ⁇ / 2 + ⁇ .
  • the number of measurements in the case of ⁇ / 2 and the number of measurements in the case of ⁇ / 2 ⁇ ⁇ x ⁇ ⁇ / 2 + ⁇ and ⁇ / 2 ⁇ ⁇ ⁇ y ⁇ / 2 are not less than a predetermined number, for example, 3 or more It is judged by whether or not.
  • the process proceeds to the next step S105.
  • the number of stored urine amounts is less than a predetermined number in any quadrant from the first quadrant to the fourth quadrant, an additional measurement of the urine storage amount is instructed in the next step S111, and the ultrasonic measuring device The measurement of the urine accumulation amount in step S102 is continued until 1 returns perpendicular to the lower abdominal surface S.
  • noise processing relating to the measured urine accumulation amount is performed based on the urine accumulation amount of the organ-related data stored in the storage unit 25.
  • the noise process is a process of removing a specific urine storage amount from the organ-related data when there is a specific urine storage amount in the measured urine storage amount, for example, when comparing a plurality of urine storage amounts close to the calculated timing.
  • This noise processing can be executed by a conventionally known noise processing technique.
  • the noise to be processed by the noise processing for example, although a gel is applied to the lower abdomen surface S, an air gap is generated between the ultrasonic elements 11a to 11d and the lower abdomen surface S. There is noise that occurs when ultrasonic waves are not sufficiently transmitted and received. In this case, the urine accumulation amount is measured as 0 to a very small amount, and becomes a specific urine accumulation amount.
  • Step S106 stores whether or not the reflected wave of the ultrasonic wave transmitted from the ultrasonic element 11d located on the most foot side is received based on the organ related data excluding the specific urine accumulation amount in Step S105
  • step S106 the urine accumulation amount including the ultrasonic wave transmitted toward the pubic bone P can be excluded from the urine accumulation amount in each direction measured in steps S101 to S103. The accuracy of the error of the predetermined position with respect to can be improved.
  • step S107 the maximum urine storage amount among the urine storage amounts obtained by removing noise data in step S105 from the urine storage amount calculated in step S102, and the circumferential angles ( ⁇ x, ⁇ y) corresponding to the maximum urine storage amount, Thus, the direction of the ultrasonic probe 10 when the maximum urine accumulation amount is calculated is specified. Further, in step S108 corresponding to the third step of the present invention, it is determined whether or not the maximum urine accumulation amount is an appropriately calculated urine accumulation amount in the bladder. As shown in FIG. 7, this determination is based on the assumption that the maximum urine storage amount is the urine storage amount calculated based on the ultrasonic waves that are transmitted and received near the center of the bladder B.
  • This calculated distance d3 is a distance d1 + d2 / from the contact position of the ultrasonic measuring instrument 1 to the center of the bladder obtained from a distance d1 from the lower abdominal surface S to the bladder front wall and a distance d2 from the bladder front wall to the rear wall. 2 and the angle ⁇ z in the axial direction are calculated by the following equation (3).
  • the calculated distance d3 represents an error between the position directly above the center of the bladder B and the contact position of the ultrasonic measuring instrument 1, and the larger the calculated distance d3, the greater the distance from the ultrasonic probe 10. It means that ultrasonic waves are transmitted and received in a state tilted with respect to the bladder B.
  • the maximum urine accumulation amount specified in step S107 is It is determined that the amount of accumulated urine in the bladder is appropriately calculated, and the process proceeds to the next step S109.
  • step S107 if it is determined that the error in the accumulated urine amount is larger than a predetermined threshold value, or if some of the reflected waves cannot be received for the ultrasonic waves transmitted in the first to fourth quadrants, the identification is made in step S107. It is determined that the maximum urine accumulation amount does not appropriately calculate the urine accumulation amount in the bladder, and the process proceeds to step S110. Steps S105 to S108 correspond to the third step.
  • step S109 the maximum urine accumulation amount specified in step S107 is used as the urine accumulation amount in the bladder, and this urine accumulation amount is displayed on the monitor 2. With this display, the measurement of the urine storage amount by the ultrasonic measuring device 1 is completed. Then, by turning off the operation button 3 and turning off the power, various data such as organ-related data stored in the storage unit 25 is reset. This data reset may be performed by automatic power-off by not performing the operation of the ultrasonic measuring instrument 1 for a certain period of time, or may be performed when the operation button 3 is performed in step S101. .
  • step S110 corresponding to the fourth step of the present invention, the notification unit 27 notifies the measurement subject or the like by voice that the contact position of the ultrasonic probe 10 is changed.
  • This notification notifies an error from the position directly above the center of the bladder B with reference to the position where the ultrasonic measuring device 1 is in contact in steps S101 to S109, and is calculated by the direction calculation unit 26e.
  • the error direction that is, the circumferential angle ( ⁇ x, ⁇ y) indicating the position directly above the center of the bladder B from the position where the ultrasonic measuring device 1 is in contact, and the error distance calculated by the distance calculation unit 26f It is to inform.
  • step S110 either the circumferential angle, the error distance, or both are notified.
  • the notification means may be a display by the monitor 2.
  • the calculated distance d3 calculated in step S108 is measured as an error directly above the center of the bladder S, it is brought into contact with a predetermined position on the lower abdominal surface S.
  • an error of a predetermined position with respect to the position directly above the center of the bladder S can be easily measured.
  • a second ultrasonic measurement method using the ultrasonic measurement device 1 will be described with reference to FIG.
  • a step of determining whether or not measurement is properly performed in all directions shown in step S106, and an additional measurement shown in step S111 the other steps are the same as those in the first ultrasonic measurement method. Therefore, the point that Step S106 and Step S111 in the first ultrasonic measurement method are omitted in the second ultrasonic measurement method will be described below.
  • the step corresponding to step S106 in the first ultrasonic measurement method is omitted. Therefore, in the second ultrasonic measurement method, it is not determined whether the ultrasonic reflected wave is received by the ultrasonic element 11d located on the most foot side. As described above, even if the step corresponding to step S106 is omitted, the center of the bladder S can be easily operated by tilting and rotating the ultrasonic probe 10 in contact with the predetermined position of the abdominal surface S. It is possible to easily measure an error of a predetermined position with respect to the position immediately above. In the second ultrasonic measurement method, a step corresponding to step S111 in the first ultrasonic measurement method is omitted.
  • the ultrasonic measuring instrument 1 is provided on the measuring instrument main body 8 that can be held by hand when measuring the urine accumulation amount, and on the distal end side of the measuring instrument main body 8.
  • the probe unit 9 includes the ultrasonic probe 10 described above.
  • the ultrasonic measuring instrument 1 is configured so that a cap 30 for covering the tip side can be attached.
  • the measuring instrument main body 8 is formed in a substantially rectangular parallelepiped with the direction along the axis L as the longitudinal direction, and is located on the other end side of the axis L and forms a plane of the ultrasonic measuring instrument 1; It has side surfaces 13b, 14b, 16b, and 17b erected from the fourth surface.
  • the side surface 13b constitutes a part of the back surface of the ultrasonic measuring device 1
  • the side surface 14b constitutes a part of the front surface of the ultrasonic measuring device 1
  • the side surface 16b constitutes a part of the left side surface of the ultrasonic measuring device 1.
  • the side surface 17b constitutes a part of the right side surface of the ultrasonic measuring instrument 1.
  • the side surface 14b is provided at a position facing the side surface 13b, and the side surface 17b is provided at a position facing the side surface 16b.
  • the probe portion 9 is formed in a quadrangular frustum shape (a truncated quadrangular frustum shape) having a narrowed tip side, and a first surface 12 serving as a bottom surface located on the tip side of the axis L, and the first surface 12.
  • Inclined surfaces 13a, 14a, 16a, and 17a constitutes a part of the back surface of the ultrasonic measuring device 1
  • the inclined surface 14 a constitutes a part of the front surface of the ultrasonic measuring device
  • the inclined surface 16 a is a left side surface of the ultrasonic measuring device 1.
  • the inclined surface 17a constitutes a part of the right side surface of the ultrasonic measuring instrument 1.
  • the inclined surface 13a and the side surface 13b are surfaces constituting the back surface of the ultrasonic measuring device 1, and the inclined surface 13a and the side surface 13b are the second surface 13 of the present invention. Equivalent to.
  • the inclined surface 14 a and the side surface 14 b are surfaces constituting the front surface of the ultrasonic measuring instrument 1, and the inclined surface 14 a and the side surface 14 b correspond to the third surface 14 of the present invention facing the second surface 13.
  • the intermediate portion 13c positioned between both ends of the side surface 13b is concavely curved in a sectional view in the direction along the axis L, and has constricted portions on both side ends along the axis L direction. 13c corresponds to the curved surface portion of the present invention. Further, the base end portion 13d of the side surface 13b is curved in a concave shape in a sectional view in the direction along the axis L. On the other hand, the intermediate portion 14c located between both ends of the side surface 14b is formed in a straight line in a sectional view in the direction along the axis L, and has constricted portions at both side ends along the direction of the axis L.
  • the intermediate portion 16c located between both ends of the side surface 16b is curved in a concave shape in a sectional view along the axis L, and the intermediate portion 17c located between both ends of the side surface 17b is also along the axis L. It is curved in a concave shape in a sectional view in the direction.
  • the intermediate portion 14c of the side surface 14b is provided at a position facing the formation position of the curved surface portion 13c, and an operation button 3 for turning on / off the power source of the ultrasonic measuring instrument 1 is disposed on the intermediate portion 14c. ing.
  • the operation button 3 is arranged so that the surface of the operation button 3 and the side surface 14b are located on the same plane.
  • the base end portion 14d of the side surface 14b is provided with a monitor 2 for displaying a urine accumulation amount calculated based on a reflected wave from the organ of the measurement subject, input data input by the measurement subject, or the like. Yes.
  • the monitor 2 is disposed at the base end portion 14d that is a position that is away from the position facing the formation position of the curved surface portion 13c and that is farther from the first surface 12 than the operation button 3.
  • the monitor 2 is arranged so that the surface thereof is located inward of the side surface 14b.
  • the fourth surface 15 is formed with a speaker 5 for transmitting a sound and an alarm, a USB connection portion as a communication portion 29 described later, and a pair of strap holes 6 and 6 for attaching a strap. .
  • the inclined surfaces 13a, 14a, 16a, and 17a are formed in a trapezoidal shape with the tip side narrowed.
  • the inclined surface 13a and the inclined surface 14a are provided at positions facing each other.
  • the angle formed between the inclined surface 13a and the first surface 12 and the angle formed between the inclined surface 14a and the first surface 12 are both
  • the angle ⁇ 1 is an obtuse angle.
  • the inclined surface 16a and the inclined surface 17a are provided at positions facing each other.
  • the angle formed between the inclined surface 16a and the first surface 12 and the angle formed between the inclined surface 17a and the first surface 12 are both
  • the angle ⁇ 2 is larger than the angle ⁇ 1.
  • the inclined surface 13a is formed with an engaging convex portion 18a extending in the width direction orthogonal to the axis L, and the inclined surface 14a of the third surface 14 is engaged in the width direction orthogonal to the axis L.
  • a convex portion 18b is formed.
  • Ultrasonic elements 11 a to 11 d are accommodated in the probe unit 9, and ultrasonic waves transmitted from the ultrasonic elements 11 a to 11 d are transmitted from the first surface 12.
  • FIG. The cap 30 includes a bottom wall 31 formed in a rectangular shape with rounded corners, and side walls 32a to 32d erected from each side of the bottom wall 31, and an opening 33 is formed by these side walls 32a to 32d. Is formed.
  • the angle formed between the side wall 32a and the bottom wall 31, the angle formed between the side wall 32b and the bottom wall 31, the angle formed between the side wall 32c and the bottom wall 31, and the angle formed between the side wall 32d and the bottom wall 31 are all.
  • This angle ⁇ 3 is an obtuse angle smaller than the angle ⁇ 1 formed by the inclined surfaces 13a, 14a and the first surface 12 and the angle ⁇ 2 formed by the inclined surfaces 16a, 17a and the first surface 12.
  • the cap 30 is formed so that its height is slightly larger than the length of the probe portion 9. Further, a pair of strap holes 7, 7 for attaching a strap are formed in the side wall 32d.
  • an engagement recess 34a is formed on the inner surface side of the side wall 32a
  • an engagement recess 34b is formed at a position facing the engagement recess 34a on the inner surface side of the side wall 32b.
  • the ultrasonic measuring device 1 is a measuring device having a length of about 15 centimeters and a width and a depth of about 4 centimeters, and the length around the axis L of the measuring device main body 8 is about 16 centimeters. It is a measuring instrument. Therefore, the length around the axis L of the measuring instrument main body 8 is substantially the same as the distance between the head of the thumb and the head of the little finger when the palm is spread, and the intermediate portions 13c, 14c, 16c and 17c are You can hold it with your palm and fingers covered.
  • the intermediate portion 13c is concavely curved in a sectional view in the direction along the axis L, and has constricted portions on both side ends along the axis L direction, so that the shape of the ultrasonic measuring instrument 1 is grasped. Easy to shape. The urine accumulation is measured while rotating the ultrasonic measuring instrument 1 clockwise or counterclockwise with the third surface 14 on which the monitor 2 is placed facing the face side of the person to be measured. Therefore, the operation button 3 provided on the intermediate portion 14b can be easily pushed by holding the ultrasonic measuring instrument 1 with the thumb belly in contact with the intermediate portion 14c of the third surface 14. .
  • the monitor 2 since the monitor 2 is arranged at a position farther from the first surface 12 than the operation button 3, the monitor 2 can be prevented from being hidden when the ultrasonic measuring instrument 1 is held. You can measure the amount of urine while watching. Since the speaker 5 is formed on the fourth surface 15 of the ultrasonic measuring instrument 1, the direction in which the speaker 5 is directed can be set to a direction that can be easily heard by the person to be measured when measuring the urine accumulation amount. .
  • the measurement posture of the measurement subject may be a supine position, a sitting position, or the like.
  • the present invention can be modified in various ways without departing from the gist thereof.
  • the ultrasonic probe 10 is rotated by hand, but the inclination of the ultrasonic measurement device 1 is changed by an inclination rotation mechanism such as a step motor,
  • the transmission / reception direction of ultrasonic waves may be inclined in the circumferential direction with respect to the vertical axis Z.
  • the ultrasonic probe 10 is rotated about the vertical axis Z as a rotation axis.
  • the ultrasonic probe 10 is not a vertical axis but passes through the contact position of the ultrasonic probe 10 on the body surface.
  • the axis may be a rotation axis.
  • the suitability of the omnidirectional measurement of the urine accumulation amount determined in steps S104 and S204 is determined by the circumferential angle ( ⁇ x, ⁇ y) of each urine accumulation amount measured in steps S101 to S103 and steps S201 to S203. It may be determined whether or not all the differences are within a predetermined threshold. Further, the noise processing in steps S105 and S205 is performed in the circumferential direction associated with a greatly different urine accumulation amount when a greatly different urine accumulation amount is measured as compared with each urine accumulation amount stored in the storage unit 25. Processing for correcting greatly different urine accumulation amounts may be performed by complementing the angles ( ⁇ x, ⁇ y) based on the circumferential angle near the circumferential angle.
  • the suitability of the maximum urine storage amount determined in steps S108 and S207 is the maximum urine storage amount that is the maximum among the urine storage amounts measured while rotating the ultrasonic measuring instrument 1 while being tilted with respect to the vertical axis Z. It is determined whether or not the difference between the amount and the amount of stored urine measured in a state where the ultrasonic measuring instrument 1 is in contact with the lower abdomen surface S of the person to be measured is equal to or less than a predetermined threshold value. Also good. When the difference in the urine storage amount is equal to or less than a predetermined threshold, it is determined that the maximum urine storage amount appropriately calculates the urine storage amount in the bladder, and the difference in the urine storage amount is larger than the predetermined threshold value.
  • the ultrasonic measuring instrument according to the embodiment of the present invention, the ultrasonic probe 10 is measured while being brought into contact with the lower abdomen surface S of the person to be measured. There is. For this reason, a pressure sensor may be provided in the ultrasonic probe so that it can be confirmed that the ultrasonic probe is pressed against the lower abdomen surface S of the measurement subject with a pressing force within a predetermined range.
  • the confirmation method there is a method in which an alarm is transmitted or the urine accumulation amount cannot be measured when the measurement of the urine accumulation amount is started when the pressing force to the lower abdominal surface S is not within a predetermined range. is there.
  • Ultrasonic measuring instrument 2 Display (monitor) 3 Operation button 5 Speaker 10 Ultrasonic probes 11a to 11d Ultrasonic element 12 First surface 13 Second surface 13c Curved surface portion (intermediate portion) 14 3rd surface 15 4th surface 21 Ultrasonic control part 24 Angle sensor part 25 Memory

Abstract

[Problem] To provide an ultrasonic measuring device that enables simpler positioning and an ultrasonic measuring method using the ultrasonic measuring device. [Solution] A measuring device that calculates size data relating to the size of an organ by placing an ultrasonic probe 10 against a predetermined position on the body surface of an individual to be measured, rotating the ultrasonic probe 10 about an axis that passes through the predetermined position, and while doing so, transmitting and receiving ultrasonic waves and reflected waves at a plurality of positions circumferentially inclined relative to the axis. The measuring device is characterized by including: an angle sensor unit 24 that measures the angle of the ultrasonic probe 10 relative to the axis; a storage unit 25 that stores the size data as organ-related data associated with the angle measured by the angle sensor unit 24; and an error determination unit 26c that determines an error of the predetermined position on the basis of the organ related data.

Description

超音波測定器及び超音波測定器を用いた超音波測定方法Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device
 本発明は、超音波を利用して臓器の大きさに関連するデータを測定する超音波測定器及び超音波測定器を用いた超音波測定方法に関するものである。 The present invention relates to an ultrasonic measurement device that measures data related to the size of an organ using ultrasonic waves and an ultrasonic measurement method using the ultrasonic measurement device.
 従来から、膀胱や胆嚢などの臓器に向けて超音波を発信すると共に、その反射波を受信し、この反射波に基づいて、超音波Aモードにより当該臓器の大きさに関連するデータとしてのサイズデータを測定する超音波測定器が知られている。
 ところで、この種の超音波測定器で測定されるサイズデータは、超音波プローブの当接位置・角度に対して敏感に反応するため、サイズデータをより正確に測定するためには、超音波プローブをサイズデータの測定に適した位置・角度に位置決めする必要がある。その一例として、特許文献1には、腹部に装着した状態で蓄尿量を測定する測定モードと、測定モードにおいて超音波プローブを装着するのに適した位置を決めるために蓄尿量を測定する位置決めモードを有する超音波尿量測定器が開示されている。このとき、この位置決めモードにおける蓄尿量の測定は、蓄尿量を高い精度で測定することのできる位置を目的として、超音波プローブを一時的に装着する位置としての仮測定位置で行われる。
Conventionally, an ultrasonic wave is transmitted to an organ such as a bladder or gallbladder, and a reflected wave is received. Based on the reflected wave, a size as data related to the size of the organ is obtained by an ultrasonic A mode. Ultrasonic measuring devices that measure data are known.
By the way, the size data measured by this kind of ultrasonic measuring instrument reacts sensitively to the contact position and angle of the ultrasonic probe, so in order to measure the size data more accurately, the ultrasonic probe Must be positioned at a position and angle suitable for the measurement of size data. As an example, Patent Document 1 discloses a measurement mode for measuring the amount of urine stored in a state of being mounted on the abdomen, and a positioning mode for measuring the amount of urine stored in order to determine a position suitable for mounting the ultrasonic probe in the measurement mode. An ultrasonic urinometer is disclosed. At this time, the measurement of the urine accumulation amount in the positioning mode is performed at a temporary measurement position as a position where the ultrasonic probe is temporarily mounted for the purpose of a position where the urine accumulation amount can be measured with high accuracy.
 この位置決めモードは、複数の仮測定位置で測定された蓄尿量に基づいて、超音波プローブを装着するのに適した位置を決めるモードであるが、これらの仮測定位置は被測定者や医療従事者(以下、被測定者等という。)によって決定されている。また、この位置決めモードは、これらの蓄尿量に基づいて求められた位置決め指標値を被測定者等に伝えるモードであるため、超音波プローブを装着するのに適した位置は、この位置決め指標値に基づいて被測定者等が選択している。したがって、特許文献1に開示されている超音波尿量測定器の位置決めは、仮測定位置の決定と超音波プローブの装着位置の選択を被測定者等に委ねるものであり、位置決めに際して一定の経験を必要とするものであった。 This positioning mode is a mode for determining a position suitable for wearing the ultrasonic probe based on the amount of urine collected measured at a plurality of temporary measurement positions. (Hereinafter, referred to as a person to be measured). In addition, since this positioning mode is a mode for transmitting the positioning index value obtained based on these urine accumulation amounts to the measurement subject or the like, the position suitable for mounting the ultrasonic probe is the positioning index value. Based on the selection by the person to be measured. Therefore, the positioning of the ultrasonic urine volume measuring device disclosed in Patent Document 1 leaves the determination of the temporary measurement position and the selection of the mounting position of the ultrasonic probe to the measurement subject and the like. Was necessary.
国際公開第2016/030959号International Publication No. 2016/030959
 如上に鑑みて、本発明の技術的課題は、超音波Aモードにより臓器の大きさに関連するデータを測定する際に、より簡易に位置決めをすることのできる超音波測定器及び超音波測定器を用いた超音波測定方法を提供することにある。 In view of the above, the technical problem of the present invention is to provide an ultrasonic measuring device and an ultrasonic measuring device that can be positioned more easily when measuring data related to the size of an organ in the ultrasonic A mode. It is to provide an ultrasonic measurement method using the.
 上述した課題を解決するために、本発明の超音波測定器は、被測定者の臓器に向けて超音波を発信する超音波素子を有する超音波プローブと、前記超音波素子による超音波発信を制御する超音波制御部と、前記被測定者の臓器からの反射波に基づいて、超音波Aモードにより前記臓器の大きさに関連するサイズデータを算出する演算部と、を備えた超音波測定器において、該超音波測定器は、前記被測定者の体表面の所定位置に前記超音波プローブを当接させ、かつ前記所定位置を通る軸を回転軸として前記超音波プローブを回転させながら、該軸に対して周方向に傾けた複数の位置で、超音波及びその反射波を送受信することで、前記サイズデータを算出する測定器であり、前記軸に対する前記超音波プローブの角度を測定する角度センサ部と、前記サイズデータを、前記角度センサ部で測定された角度と関連付けた臓器関連データとして記憶する記憶部と、該臓器関連データに基づいて、前記所定位置の誤差を判定する誤差判定部と、を備えたことを特徴とする。 In order to solve the above-described problems, an ultrasonic measuring instrument according to the present invention includes an ultrasonic probe having an ultrasonic element that transmits ultrasonic waves toward an organ of a subject, and ultrasonic transmission by the ultrasonic element. Ultrasound measurement comprising: an ultrasonic control unit for controlling; and a calculation unit for calculating size data related to the size of the organ by an ultrasonic A mode based on a reflected wave from the organ of the measurement subject In the measuring instrument, the ultrasonic measuring instrument abuts the ultrasonic probe on a predetermined position on the body surface of the measurement subject, and rotates the ultrasonic probe with an axis passing through the predetermined position as a rotation axis. It is a measuring instrument that calculates the size data by transmitting and receiving ultrasonic waves and their reflected waves at a plurality of positions inclined in the circumferential direction with respect to the axis, and measures the angle of the ultrasonic probe with respect to the axis Angle Sen A storage unit that stores the size data as organ-related data associated with the angle measured by the angle sensor unit, and an error determination unit that determines an error in the predetermined position based on the organ-related data. , Provided.
 この超音波測定器の好ましい具体例としては、前記臓器は膀胱であり、前記サイズデータは、前記膀胱内の蓄尿量である、とするものがある。
 また、前記超音波プローブは、一列に配置された複数の超音波素子を備えていることが好ましい。
 さらに、前記誤差判定部は、前記所定位置の誤差が所定の閾値以上であるときに、前記角度に基づいて前記誤差の方向を算出する方向算出部を有することが望ましい。
 さらに、前記誤差判定部は、前記所定位置の誤差が所定の閾値以上であるときに、前記角度に基づいて前記誤差の距離を算出する距離算出部を有することが望ましい。
 また、この超音波測定器は、前記超音波プローブが前記軸を回転軸として回転することで,前記所定位置上を少なくとも一周しているか否かを、前記角度に基づいて判定する一周判定部を、さらに有することが好ましい。
 そして、前記超音波測定器は、前記軸を回転軸として、前記超音波プローブを周方向に傾けながら回転させる傾斜回転機構を有していてもよい。
 また、本発明の超音波測定器は、超音波素子からの超音波を送出する第1面と、該第1面から立設し、グリップ用の曲面部を有する第2面と、前記第2面に向かい合う第3面と、を備え、前記第3面に超音波測定結果を表示する表示部を有することを特徴とする。
 この場合において、前記第3面に、超音波測定器を操作するための操作ボタンを有していてもよい。
 また、前記表示部は、前記曲面部の形成位置に向かい合う位置を避けた位置に配置されていることが好ましい。
 さらに、前記操作ボタンは、前記曲面部の形成位置に向かい合う位置に配置され、前記表示部は、前記操作ボタンよりも、前記第1面から離れた位置に配置されていることが好ましい。
 そして、前記第1面に向かい合う第4面に、スピーカーが形成されていてもよい。
As a preferred specific example of this ultrasonic measuring instrument, there is one in which the organ is a urinary bladder and the size data is an amount of accumulated urine in the urinary bladder.
The ultrasonic probe preferably includes a plurality of ultrasonic elements arranged in a line.
Furthermore, it is preferable that the error determination unit includes a direction calculation unit that calculates a direction of the error based on the angle when an error at the predetermined position is equal to or greater than a predetermined threshold.
Furthermore, it is preferable that the error determination unit includes a distance calculation unit that calculates a distance of the error based on the angle when an error at the predetermined position is equal to or greater than a predetermined threshold.
The ultrasonic measuring device further includes a one-round determination unit that determines, based on the angle, whether or not the ultrasonic probe rotates at least one round on the predetermined position by rotating about the axis. Further, it is preferable to have.
The ultrasonic measuring device may have an inclination rotation mechanism that rotates the ultrasonic probe while inclining in the circumferential direction with the axis as a rotation axis.
The ultrasonic measuring instrument according to the present invention includes a first surface that transmits ultrasonic waves from an ultrasonic element, a second surface that is erected from the first surface and has a curved surface portion for grip, and the second surface. And a third surface facing the surface, and a display unit for displaying an ultrasonic measurement result on the third surface.
In this case, an operation button for operating the ultrasonic measuring device may be provided on the third surface.
Moreover, it is preferable that the said display part is arrange | positioned in the position which avoided the position facing the formation position of the said curved surface part.
Furthermore, it is preferable that the operation button is disposed at a position facing the formation position of the curved surface portion, and the display section is disposed at a position farther from the first surface than the operation button.
And the speaker may be formed in the 4th surface facing the said 1st surface.
 また、本発明の超音波測定器を用いた超音波測定方法は、被測定者の膀胱に向けて超音波を発信する超音波素子を備えた超音波プローブと、前記超音波素子による超音波の発信を制御する超音波制御部と、前記被測定者の膀胱からの反射波に基づいて、超音波Aモードにより前記膀胱内の蓄尿量を算出する演算部と、を備えた超音波測定器を用いた超音波測定方法において、前記超音波測定器を被測定者の体表面の所定位置に当接し、かつ前記超音波プローブを前記所定位置の軸を回転軸として回転させながら、該軸に対して周方向に傾けた複数の位置で、前記軸に対する前記超音波プローブの角度を角度センサで測定すると共に、前記反射波を受信することで蓄尿量を測定する第1ステップと、前記第1ステップで測定された角度と蓄尿量とを関連付けた臓器関連データを記憶部に記憶させる第2ステップと、該臓器関連データに基づいて、前記所定位置の誤差を判定する第3ステップと、を有することを特徴とする。 Further, an ultrasonic measurement method using the ultrasonic measuring instrument according to the present invention includes an ultrasonic probe including an ultrasonic element that transmits ultrasonic waves toward the measurement subject's bladder, and ultrasonic waves generated by the ultrasonic element. An ultrasonic measuring device comprising: an ultrasonic control unit that controls transmission; and a calculation unit that calculates an amount of accumulated urine in the bladder by an ultrasonic A mode based on a reflected wave from the bladder of the subject. In the ultrasonic measurement method used, the ultrasonic measuring device is brought into contact with a predetermined position on the body surface of the person to be measured, and the ultrasonic probe is rotated about the axis of the predetermined position with respect to the axis. A first step of measuring an angle of the ultrasonic probe with respect to the axis with an angle sensor at a plurality of positions inclined in the circumferential direction and measuring a urine accumulation amount by receiving the reflected wave; and the first step Angle and urine storage measured in A second step of storing the organ-related data associated bets in the storage unit, based on the organ-related data, and having a third step of determining an error of the predetermined position.
 ここで、前記第1ステップは、前記超音波プローブを前記所定位置の軸に沿う位置で、前記超音波プローブの角度を前記角度センサで測定すると共に、前記反射波を受信することで蓄尿量を測定するステップを含み、前記第3ステップは、前記軸に沿う位置の蓄尿量に関する臓器関連データと、前記軸に対して傾けた位置で算出された蓄尿量のうち最大の蓄尿量に関する臓器関連データとに基づいて、前記所定位置の誤差を判定するステップを含むことが好ましい。
 この場合において、前記超音波プローブは、一列に配列された複数の超音波素子を備えており、前記第1ステップは、これらの超音波素子を被測定者の足側から顔側に向かうように前記所定位置に当接して、前記超音波プローブの角度と蓄尿量の測定を行うステップを含み、前記第3ステップは、前記複数の超音波素子のうち最も足側に位置する足側超音波素子で受信される反射波の有無を判定するステップを含むことが好ましい。
 また、前記第3ステップは、前記所定位置の誤差が所定の閾値以上であるか否かを判定するステップを含み、該第3ステップで前記所定位置の誤差が所定の閾値以上であると判定したときに、前記最大の蓄尿量に関連する角度に基づいて、前記超音波測定器の移動すべき方向を報知する第4ステップをさらに有することが好ましい。
 さらにまた、前記第4ステップは、前記足側超音波素子で反射波を受信することなく測定された蓄尿量が前記臓器関連データに含まれているときに、該蓄尿量に関連付けた角度に基づいて、前記超音波測定器の移動すべき方向を報知するステップを含むことが好ましい。
 さらに、前記第1ステップは、前記所定位置の軸を回転軸として前記超音波プローブを少なくとも一回転させながら、前記超音波プローブ10の角度と、蓄尿量を測定するステップを含み、前記第3ステップは、前記記憶部で記憶された蓄尿量の中で特異な蓄尿量をノイズとして除去すると共に、前記ノイズを除去した臓器関連データに基づいて、前記所定位置の誤差を判定するステップを含むことが望ましい。
 そして、前記超音波測定器は、前記軸を回転軸として前記超音波測定器を周方向に傾けながら回転させる傾斜回転機構を有し、前記第1ステップは、前記傾斜回転機構により前記超音波プローブを前記軸に対して傾斜させた状態で回転させながら、前記反射波を受信することで蓄尿量を算出するステップを含むものであってもよい。
Here, the first step measures the angle of the ultrasonic probe at the position along the axis of the predetermined position with the angle sensor, and receives the reflected wave to determine the amount of accumulated urine. The third step includes organ-related data relating to the urine accumulation amount at a position along the axis, and organ-related data relating to the maximum urine accumulation amount among the urine accumulation amounts calculated at positions inclined with respect to the axis. Preferably, the method includes a step of determining an error of the predetermined position based on the above.
In this case, the ultrasonic probe includes a plurality of ultrasonic elements arranged in a line, and in the first step, the ultrasonic elements are directed from the subject's foot side to the face side. The third step includes a step of measuring the angle of the ultrasonic probe and the amount of accumulated urine in contact with the predetermined position, and the third step is a foot-side ultrasonic element located closest to the foot among the plurality of ultrasonic elements. It is preferable to include a step of determining the presence or absence of the reflected wave received at the step.
In addition, the third step includes a step of determining whether or not the error at the predetermined position is equal to or greater than a predetermined threshold value. In the third step, it is determined that the error at the predetermined position is equal to or greater than a predetermined threshold value. In some cases, it is preferable to further include a fourth step of notifying a direction in which the ultrasonic measuring instrument should move based on an angle related to the maximum urine accumulation amount.
Furthermore, the fourth step is based on an angle associated with the urine accumulation amount when the organ-related data includes a urine accumulation amount measured without receiving a reflected wave by the foot side ultrasonic element. It is preferable to include a step of notifying the direction in which the ultrasonic measuring device should move.
Furthermore, the first step includes a step of measuring an angle of the ultrasonic probe 10 and a urine accumulation amount while rotating the ultrasonic probe at least once with the axis of the predetermined position as a rotation axis, and the third step Includes removing a specific urine accumulation amount as noise from the urine accumulation amount stored in the storage unit, and determining an error of the predetermined position based on the organ-related data from which the noise has been removed. desirable.
The ultrasonic measuring instrument has an inclination rotating mechanism that rotates the ultrasonic measuring instrument while tilting it in the circumferential direction about the axis as a rotation axis, and the first step includes the ultrasonic probe by the tilt rotating mechanism. The method may include a step of calculating the urine accumulation amount by receiving the reflected wave while rotating in a state inclined with respect to the axis.
 本発明によれば、体表面を通る軸を回転軸として超音波プローブを回転させながら、体表面を通る軸に対して周方向に傾けた複数の位置で超音波及びその反射波が送受信され、この反射波に基づいて、超音波Aモードにより臓器の大きさに関連するサイズデータが算出される。そして、このサイズデータを角度センサ部で測定された角度と関連付けた臓器関連データに基づいて、所定位置の誤差が判定される。そのため、体表面に当接された超音波プローブを傾けながら回転させる、という簡単な操作で、所定位置の誤差を容易に判定することができる。 According to the present invention, the ultrasonic wave and its reflected wave are transmitted and received at a plurality of positions inclined in the circumferential direction with respect to the axis passing through the body surface while rotating the ultrasonic probe with the axis passing through the body surface as the rotation axis. Based on this reflected wave, size data relating to the size of the organ is calculated by the ultrasonic A mode. Then, an error at a predetermined position is determined based on the organ-related data in which this size data is associated with the angle measured by the angle sensor unit. Therefore, the error at the predetermined position can be easily determined by a simple operation of rotating the ultrasonic probe in contact with the body surface while inclining.
超音波測定器を下腹部表面に対して垂直に当接させた状態を示す説明図である。It is explanatory drawing which shows the state which made the ultrasonic measuring device contact | abut perpendicularly with respect to the lower abdomen surface. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 超音波測定器を下腹部表面に対して傾けて周方向に回転させた状態を示す説明図である。It is explanatory drawing which shows the state which inclined the ultrasonic measuring device with respect to the lower abdomen surface, and was rotated in the circumferential direction. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 超音波素子の配列を示す概略図である。It is the schematic which shows the arrangement | sequence of an ultrasonic element. 超音波測定器を下腹部表面に対して垂直に当接させながら蓄尿量を測定している状態を示す説明図である。It is explanatory drawing which shows the state which is measuring the amount of urine storage, making an ultrasonic measuring device contact | abut perpendicularly with respect to the lower abdominal surface. 超音波測定器を下腹部表面に対して周方向に傾けながら蓄尿量を測定している状態を示す説明図である。It is explanatory drawing which shows the state which is measuring the amount of urine storage, inclining an ultrasonic measuring device in the circumferential direction with respect to the lower abdominal surface. 超音波測定器の概略ブロック図である。It is a schematic block diagram of an ultrasonic measuring device. 超音波素子で受信する反射波の波形の概略図である。It is the schematic of the waveform of the reflected wave received with an ultrasonic element. 第1の超音波測定方法を説明するフローチャートである。It is a flowchart explaining the 1st ultrasonic measurement method. 周方向の角度と算出された蓄尿量の測定タイミングの関係を示すグラフである。It is a graph which shows the relationship between the angle of the circumferential direction, and the measurement timing of the calculated urine storage amount. 第2の超音波測定方法を説明するフローチャートである。It is a flowchart explaining the 2nd ultrasonic measurement method. 超音波測定器にキャップを取り付ける様子を示す図である。It is a figure which shows a mode that a cap is attached to an ultrasonic measuring device. キャップを取り付けた超音波測定器の斜視図である。It is a perspective view of the ultrasonic measuring device which attached the cap. 超音波測定器の正面図である。It is a front view of an ultrasonic measuring device. 超音波測定器の背面図である。It is a rear view of an ultrasonic measuring device. 超音波測定器の平面図である。It is a top view of an ultrasonic measuring device. 超音波測定器の底面図である。It is a bottom view of an ultrasonic measuring device. 超音波測定器の左側面図である。It is a left view of an ultrasonic measuring device. 超音波測定器の右側面図である。It is a right view of an ultrasonic measuring device. 超音波測定器に取り付けるキャップの正面図である。It is a front view of the cap attached to an ultrasonic measuring device. 超音波測定器に取り付けるキャップの背面図である。It is a rear view of the cap attached to an ultrasonic measuring device. 超音波測定器に取り付けるキャップの平面図である。It is a top view of the cap attached to an ultrasonic measuring device. 超音波測定器に取り付けるキャップの底面図である。It is a bottom view of the cap attached to an ultrasonic measuring device. 超音波測定器に取り付けるキャップの左側面図である。It is a left view of the cap attached to an ultrasonic measuring device. 超音波測定器に取り付けるキャップの右側面図である。It is a right view of the cap attached to an ultrasonic measuring device.
 以下に、図面に基づいて、本発明の実施形態における超音波測定器の構成について説明する。本実施形態の超音波測定器は、被測定者の臓器に向けて超音波を発信して、その反射波を受信し、この反射波に基づいて、超音波Aモードにより臓器の大きさに関連するサイズデータを測定する測定器である。また、この超音波測定器において測定対象とする臓器は、尿や胆汁等の体液を蓄えることのできる管腔臓器や、実質臓器であり、具体的には、膀胱や胆嚢、直腸等である。また、サイズデータとしては、膀胱内の蓄尿量、胆嚢に蓄えられる胆汁の量、便の排出による直腸のサイズ変化等があるが、以下の実施形態では膀胱を測定対象とした超音波測定器について説明する。 Hereinafter, the configuration of the ultrasonic measuring instrument in the embodiment of the present invention will be described based on the drawings. The ultrasonic measuring instrument according to the present embodiment transmits ultrasonic waves toward the organ of the measurement subject, receives the reflected waves, and relates to the size of the organs by the ultrasonic A mode based on the reflected waves. It is a measuring instrument that measures size data. In addition, organs to be measured in this ultrasonic measuring instrument are luminal organs that can store body fluids such as urine and bile, and real organs, and specifically, bladders, gallbladder, rectum, and the like. In addition, the size data includes the amount of urine stored in the bladder, the amount of bile stored in the gallbladder, the size of the rectum due to fecal discharge, etc. explain.
 図1~図4に示すように、この超音波測定器1はその先端側に超音波プローブ10を有する測定器であり、ジェルを塗布した下腹部表面Sの所定位置に超音波プローブ10を当接させながら蓄尿量を測定する測定器である。蓄尿量の測定は、超音波プローブ10を下腹部表面Sの垂直軸Zに対して傾けた状態で、垂直軸Zを回転軸として回転させながら、超音波プローブ10から超音波及びその反射波を送受信することで測定される。このとき、超音波測定器1は、被測定者等が手に持つことで下腹部表面Sに当接されており、この超音波測定器1を手回しすることで超音波プローブ10を回転させる。 As shown in FIGS. 1 to 4, the ultrasonic measuring instrument 1 is a measuring instrument having an ultrasonic probe 10 on the tip side thereof, and the ultrasonic probe 10 is applied to a predetermined position on the lower abdominal surface S coated with gel. It is a measuring instrument that measures the amount of urine stored while in contact. The amount of urine collected is measured while the ultrasonic probe 10 is tilted with respect to the vertical axis Z of the lower abdominal surface S, and the ultrasonic wave and its reflected wave are transmitted from the ultrasonic probe 10 while rotating about the vertical axis Z. Measured by sending and receiving. At this time, the ultrasonic measuring instrument 1 is brought into contact with the lower abdominal surface S by being held by a person to be measured, and the ultrasonic probe 10 is rotated by rotating the ultrasonic measuring instrument 1 by hand.
 本実施形態の超音波測定器1は略直方体に形成されており、その被測定者の下腹部表面Sに当接する先端側で先細り形状となっている。そして、図5に示すように、この超音波測定器1の先端側には、複数(図5中では4個)の超音波素子11a~11dを直線上に一列に並べて設けた超音波プローブ10が備えられている。この超音波素子11a~11dは、超音波プローブ10を下腹部表面Sに当接させる際に、超音波素子11aが顔側(上側)に配置され、超音波素子11dが足側(下側)に配置される。この超音波素子11a~11dの配置は、垂直軸Zを回転軸とした超音波プローブ10の回転中常に一定である。また、図6,図7に示すように、この超音波素子11a~11dから発信される超音波は、超音波測定器1の先端側と基端側とを結ぶ軸線Lを中心方向として、膀胱に対して上下に開く扇状に発信される。また、この超音波測定器1の側面には、蓄尿量の表示等に用いられる表示部としてのモニター2とこの超音波測定器1の電源のオン・オフをするための操作ボタン3が設けられている。さらに、この超音波測定器1には、垂直軸Zに対する超音波プローブ10の角度を三次元で測定することのできる角度センサとしての加速度センサ4が設けられている。 The ultrasonic measuring instrument 1 of the present embodiment is formed in a substantially rectangular parallelepiped shape, and has a tapered shape on the tip side that comes into contact with the lower abdominal surface S of the measurement subject. As shown in FIG. 5, an ultrasonic probe 10 in which a plurality (four in FIG. 5) of ultrasonic elements 11a to 11d are arranged in a straight line on the distal end side of the ultrasonic measuring instrument 1. Is provided. In the ultrasonic elements 11a to 11d, when the ultrasonic probe 10 is brought into contact with the lower abdominal surface S, the ultrasonic element 11a is arranged on the face side (upper side) and the ultrasonic element 11d is on the foot side (lower side). Placed in. The arrangement of the ultrasonic elements 11a to 11d is always constant during the rotation of the ultrasonic probe 10 with the vertical axis Z as the rotation axis. Further, as shown in FIGS. 6 and 7, the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d are in the bladder with the axis L connecting the distal end side and the proximal end side of the ultrasonic measuring instrument 1 as the central direction. Is sent out in a fan shape that opens up and down. Further, a monitor 2 as a display unit used for displaying urine accumulation and the like and an operation button 3 for turning on / off the power of the ultrasonic measuring instrument 1 are provided on the side of the ultrasonic measuring instrument 1. ing. Further, the ultrasonic measuring instrument 1 is provided with an acceleration sensor 4 as an angle sensor capable of measuring the angle of the ultrasonic probe 10 with respect to the vertical axis Z in three dimensions.
 図8に示すように、本実施形態の超音波測定器1は、上述した超音波プローブ10と制御部20とから主に構成されている。この制御部20は、超音波素子11a~11dによる超音波及びその反射波の送受信を制御する超音波制御部21と、アナログ信号である超音波の反射波をデジタル信号に変換するA/D変換部22と、被測定者等が入力データを入力する入力部23と、前記加速度センサ4に基づいて前記垂直軸Zに対する超音波プローブ10の回転角度を測定する角度センサ部24と、尿量に関する種々のデータを記憶する記憶部25と、デジタル変換された反射波データや他の種々のデータに基づいて蓄尿量に関する種々の演算を行う演算部26と、該演算部26で演算された演算データに基づいてアラームを発信するアラーム部27と、前記演算データを音声や表示で報知するための報知部28と、前記演算データや入力データを図示しない外部通信端末に送信する通信部29と、を備えている。 As shown in FIG. 8, the ultrasonic measuring instrument 1 of the present embodiment is mainly composed of the ultrasonic probe 10 and the control unit 20 described above. The control unit 20 includes an ultrasonic control unit 21 that controls transmission / reception of ultrasonic waves and their reflected waves by the ultrasonic elements 11a to 11d, and an A / D conversion that converts an ultrasonic reflected wave that is an analog signal into a digital signal. A unit 22; an input unit 23 through which a person to be measured inputs input data; an angle sensor unit 24 that measures a rotation angle of the ultrasonic probe 10 with respect to the vertical axis Z based on the acceleration sensor 4; A storage unit 25 that stores various data, a calculation unit 26 that performs various calculations related to the amount of urine collection based on digitally converted reflected wave data and other various data, and calculation data calculated by the calculation unit 26 An alarm unit 27 for transmitting an alarm based on the above, an informing unit 28 for informing the arithmetic data by voice or display, and external communication not shown for the arithmetic data and input data It includes a communication unit 29 that transmits the end to, the.
 超音波制御部21は、超音波素子11a~11dにおける超音波を所定の周期毎に発信する発信制御を行う他に、超音波素子11a~11dで受信した反射波を増幅する受信制御をも行うものである。この反射波は、A/D変換部22でデジタル信号に変換された後に演算部26及び記憶部25に入力される。
 入力部23は、排尿すべき尿量として決められる尿量の閾値を含む、蓄尿量に関する種々のデータ等を入力するものである。これらの入力データは、演算部26を介して記憶部25に記憶される。なお、尿量の閾値は、予め記憶部25に記憶させるものであってもよい。
 角度センサ部24で測定される超音波プローブ10の傾きの角度は、超音波素子11a~11dで超音波を受信した直後に測定され、超音波プローブ10の回転角度として演算部26を介して記憶部25に入力される。
The ultrasonic control unit 21 performs transmission control for amplifying the reflected waves received by the ultrasonic elements 11a to 11d in addition to performing transmission control for transmitting ultrasonic waves from the ultrasonic elements 11a to 11d at predetermined intervals. Is. The reflected wave is converted into a digital signal by the A / D conversion unit 22 and then input to the calculation unit 26 and the storage unit 25.
The input unit 23 inputs various data relating to the urine storage amount including a urine amount threshold value determined as the urine amount to be urinated. These input data are stored in the storage unit 25 via the calculation unit 26. Note that the urine volume threshold value may be stored in the storage unit 25 in advance.
The angle of inclination of the ultrasonic probe 10 measured by the angle sensor unit 24 is measured immediately after the ultrasonic waves are received by the ultrasonic elements 11a to 11d, and stored as the rotation angle of the ultrasonic probe 10 via the calculation unit 26. Input to the unit 25.
 演算部26は、前記反射波データに基づいて膀胱内の尿量を測定周期毎に算出する尿量演算部26aと、蓄尿量を回転角度と関連付けて臓器関連データを生成する測定データ部26bと、この臓器関連データに基づいて、所定位置の誤差を判定する誤差判定部26cと、超音波プローブ10が垂直軸Zを回転軸として一周しているかどうかを判定する一周判定部としての測定終了判定部26dを備えている。ここで、測定データ部26bで生成される臓器関連データは、超音波素子11a~11dで受信した超音波に基づいて算出される蓄尿量と、この超音波の受信直後に取得した角度を関連付けることで生成され、記憶部25に入力される。また、誤差判定部26cで測定される所定位置の誤差は、被測定者の下腹部表面Sに当接している超音波測定器1の当接位置と、蓄尿量を測定するのに適していると判断される位置との間の位置ズレをいうものであり、所定位置の誤差が所定の閾値以上であるときに、臓器関連データに基づいて誤差の方向を算出する方向算出部26eと、所定位置の誤差が所定の閾値以上であるときに、臓器関連データに基づいて誤差の距離を算出する距離算出部26fを有する。 The calculation unit 26 calculates a urine volume in the bladder for each measurement cycle based on the reflected wave data, and a measurement data unit 26b generates organ-related data by associating the accumulated urine amount with a rotation angle. An error determination unit 26c that determines an error at a predetermined position based on the organ-related data, and a measurement end determination as a one-round determination unit that determines whether or not the ultrasonic probe 10 goes around the vertical axis Z as a rotation axis. A portion 26d is provided. Here, the organ-related data generated by the measurement data unit 26b associates the urine accumulation amount calculated based on the ultrasonic waves received by the ultrasonic elements 11a to 11d with the angle acquired immediately after reception of the ultrasonic waves. And is input to the storage unit 25. Further, the error of the predetermined position measured by the error determination unit 26c is suitable for measuring the contact position of the ultrasonic measuring device 1 that is in contact with the lower abdomen surface S of the measurement subject and the urine accumulation amount. And a direction calculation unit 26e that calculates an error direction based on organ-related data when an error at a predetermined position is equal to or greater than a predetermined threshold. When the position error is greater than or equal to a predetermined threshold, the distance calculation unit 26f that calculates the error distance based on the organ-related data is provided.
 アラーム部27は、超音波素子11a~11dから発信された超音波が、恥骨に当たることで超音波による尿量データを受信できない場合や、超音波素子11a~11dと下腹部表面Sとの間に生じた空気の隙間によって、超音波の送受信が充分になされない場合、測定された蓄尿量が設定値を超えている場合に、アラームを発信することで、被測定者等に報知するものである。アラームとしては、音、画面、又は振動による発信があるが、これ以外の手法を用いた発信でもよい。
 報知部28は、尿量演算部26aで算出された尿量や尿量測定に関する種々のデータをモニター2に表示したり、前記誤差の方向や距離を音声で伝達したりするものである。また、通信部29は、尿量演算部26aで算出された尿量や尿量測定に関する種々のデータを測定器1と接続する外部機器に出力するものである。このとき、超音波測定器1と外部機器との接続は、有線、無線を問わない。超音波測定器1と外部機器とを接続することで排尿日誌を作成することが可能となる。
The alarm unit 27 is configured to receive ultrasonic urine volume data when the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d hit the pubic bone, or between the ultrasonic elements 11a to 11d and the lower abdominal surface S. When the ultrasonic wave is not sufficiently transmitted or received due to the generated air gap, or when the measured urine accumulation exceeds the set value, an alarm is transmitted to notify the person to be measured, etc. . The alarm may be transmitted by sound, screen, or vibration, but may be transmitted using other methods.
The notification unit 28 displays various data relating to the urine volume and urine volume measurement calculated by the urine volume calculation unit 26a on the monitor 2, and transmits the direction and distance of the error by voice. The communication unit 29 outputs various data related to urine volume and urine volume measurement calculated by the urine volume calculation unit 26 a to an external device connected to the measuring instrument 1. At this time, the connection between the ultrasonic measuring instrument 1 and an external device may be wired or wireless. A urination diary can be created by connecting the ultrasonic measuring instrument 1 and an external device.
 次に、本実施形態で用いられている蓄尿量の算出方法について説明する。本実施形態では、超音波素子11a~11dから発信された超音波は、組織間の境界において反射されるため、超音波素子11a~11dから膀胱に向けて発信された超音波は膀胱の前壁と後壁とで反射し、この反射波が超音波素子11a~11dで受信される。そして、この反射波に基づいて、以下に説明する超音波Aモードによる演算をすることで、蓄尿量が算出される。 Next, a method for calculating the amount of stored urine used in this embodiment will be described. In the present embodiment, since the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d are reflected at the boundaries between tissues, the ultrasonic waves transmitted from the ultrasonic elements 11a to 11d toward the bladder are the front wall of the bladder. The reflected waves are received by the ultrasonic elements 11a to 11d. And based on this reflected wave, the amount of urine storage is calculated by calculating by the ultrasonic A mode demonstrated below.
 図9は、各超音波素子11a~11dにて受信される反射波の波形の概略図であり、縦軸を反射強度、横軸を発信からの時間とした図である。ここで、i番目の超音波素子にて受信した波形のうち後壁からの反射波のピーク強度をPi、前壁及び後壁からの反射波強度のピーク間距離をDiとすると、膀胱内の蓄尿量EUは、以下の式(1)、(2)に基づいて算出することができる。
 PD=ΣPi×Di・・(1)
 EU=PD×R  ・・(2)
 ここで、Pi、Diのiは、複数の超音波素子11a~11dに付された番号を意味しており、ここでは1から4までの整数となっている。また、PDは、各超音波素子11a~11dで受信される反射波の反射強度Piとピーク間の距離Diとの積をi=1~4につき加算することにより得られる平均指標値、EUは算出される蓄尿量、Rは解剖構造に基づく個人差や測定中の姿勢に対応して定められる係数を示す。従って、この平均指標値PD及び蓄尿量EUは、超音波素子11a~11dで超音波の送受信をする毎に算出される。本実施形態では、超音波は0.1秒毎で発信されているため、蓄尿量EUは0.1秒毎に算出される。
FIG. 9 is a schematic diagram of the waveform of the reflected wave received by each of the ultrasonic elements 11a to 11d, with the vertical axis representing the reflection intensity and the horizontal axis representing the time from transmission. Here, if the peak intensity of the reflected wave from the rear wall of the waveform received by the i-th ultrasonic element is Pi and the distance between the peaks of the reflected wave intensity from the front wall and the rear wall is Di, The urine accumulation amount EU can be calculated based on the following equations (1) and (2).
PD = ΣPi × Di (1)
EU = PD × R (2)
Here, i in Pi and Di means a number given to the plurality of ultrasonic elements 11a to 11d, and is an integer from 1 to 4 here. PD is an average index value obtained by adding the product of the reflection intensity Pi of the reflected wave received by each of the ultrasonic elements 11a to 11d and the distance Di between the peaks for i = 1 to 4, and EU is The calculated urine accumulation amount, R, indicates a coefficient determined corresponding to individual differences based on the anatomical structure and the posture being measured. Therefore, the average index value PD and the urine accumulation amount EU are calculated every time ultrasonic waves are transmitted and received by the ultrasonic elements 11a to 11d. In this embodiment, since the ultrasonic waves are transmitted every 0.1 seconds, the urine accumulation amount EU is calculated every 0.1 seconds.
 次に、図10,図11に基づいて、超音波測定器1を用いた第1の超音波測定方法について説明する。まず、超音波測定器1を被測定者の下腹部表面Sに対して垂直に当接させた状態で、操作ボタン3を押して電源をオンにすることで、超音波プローブ10を下腹部表面Sに対して垂直に当接させた状態での超音波素子11a~11dによる超音波の送受信が開始される(ステップS101)。従って、ステップS101では、超音波測定器1を垂直軸Zに沿う位置で保持した場合の蓄尿量が測定される。このとき、超音波プローブ10の軸線Lと下腹部表面Sの左右方向の軸(図4中のX軸)とのなす角度θx、前記軸線Lと下腹部表面Sの上下方向の軸(図4中のY軸)とのなす角度θy、軸線Lと垂直軸Zとのなす角度θzは、0.1秒毎に発信されている超音波を受信したタイミングの直後に加速度センサ4で測定される。ステップS101では、この角度(θx、θy、θz)は、(π/2、π/2、0)となり、この角度を蓄尿量に関連付けることで臓器関連データが生成され、この臓器関連データが記憶部25に記憶される。 Next, a first ultrasonic measurement method using the ultrasonic measuring instrument 1 will be described with reference to FIGS. First, in a state where the ultrasonic measuring instrument 1 is vertically contacted with the lower abdomen surface S of the person to be measured, the operation button 3 is pressed to turn on the power, whereby the ultrasonic probe 10 is moved to the lower abdomen surface S. Then, transmission / reception of ultrasonic waves by the ultrasonic elements 11a to 11d in a state of being vertically contacted with respect to is started (step S101). Therefore, in step S101, the amount of urine stored when the ultrasonic measuring instrument 1 is held at a position along the vertical axis Z is measured. At this time, the angle θx formed between the axis L of the ultrasonic probe 10 and the horizontal axis (X axis in FIG. 4) of the lower abdominal surface S, the vertical axis of the axis L and the lower abdominal surface S (FIG. 4). The angle θy formed by the Y axis in the middle and the angle θz formed by the axis L and the vertical axis Z are measured by the acceleration sensor 4 immediately after the timing of receiving the ultrasonic wave transmitted every 0.1 seconds. . In step S101, the angles (θx, θy, θz) are (π / 2, π / 2, 0), and the organ-related data is generated by associating the angles with the urine accumulation amount, and the organ-related data is stored. Stored in the unit 25.
 次に、図2,図4にも示すように、超音波プローブ10を前記垂直軸Zに対して顔側に傾け、この傾けた状態から垂直軸Zを中心に超音波測定器1を時計回り、又は反時計回りに回転させながら超音波の送受信を行うことで、蓄尿量が測定される(ステップS102)。このとき、超音波測定器1は、角度θzを一定に保ちながら超音波測定器1を一周させる。従って、角度θzが所定値αの場合、角度θxは、π/2-α以上π/2+α以下の範囲で移動し、角度θyは、π/2-α以上π/2+α以下の範囲で移動する。これらの角度θx、θy、θzは、0.1秒毎に発信されている超音波を受信したタイミングの直後に、加速度センサ4で測定されるため、ステップS102では、超音波プローブ10を垂直軸Zに対して周方向に傾けた複数の位置で、垂直軸Zに対する超音波プローブ10の角度と蓄尿量が測定される。そして、この蓄尿量に超音波プローブ10の角度(θx、θy、θz)を関連付けることで、臓器関連データが生成されて、記憶部25に記憶される。 Next, as shown in FIGS. 2 and 4, the ultrasonic probe 10 is tilted toward the face with respect to the vertical axis Z, and the ultrasonic measuring instrument 1 is rotated clockwise around the vertical axis Z from this tilted state. Alternatively, the amount of stored urine is measured by transmitting and receiving ultrasonic waves while rotating counterclockwise (step S102). At this time, the ultrasonic measuring device 1 makes one turn of the ultrasonic measuring device 1 while keeping the angle θz constant. Therefore, when the angle θz is the predetermined value α, the angle θx moves in the range of π / 2−α to π / 2 + α and the angle θy moves in the range of π / 2−α to π / 2 + α. . These angles θx, θy, and θz are measured by the acceleration sensor 4 immediately after the timing of receiving the ultrasonic wave transmitted every 0.1 second. Therefore, in step S102, the ultrasonic probe 10 is moved to the vertical axis. At a plurality of positions inclined in the circumferential direction with respect to Z, the angle of the ultrasonic probe 10 with respect to the vertical axis Z and the urine accumulation amount are measured. Then, by associating the urine accumulation amount with the angles (θx, θy, θz) of the ultrasonic probe 10, organ-related data is generated and stored in the storage unit 25.
 超音波測定器1を一周させた後、この超音波測定器1の位置がステップS101における超音波の発信開始時と同じ位置になるように、この超音波測定器1を下腹部表面Sに対して垂直に復帰させる。この復帰の可否は、上述した加速度センサ4で測定される超音波プローブ10の傾きによって判断される(ステップS103)。超音波プローブ10がもとの垂直位置に復帰している場合には、超音波測定器1が垂直軸Zを中心として下腹部表面S上を一周したと測定終了判定部26dにおいて判断して、次のステップS104に進む。又、超音波測定器1が下腹部表面Sに対して垂直に復帰していないと判断した場合には、超音波測定器1が下腹部表面に対して垂直に復帰するまで、ステップS102を継続させる。そして、ステップS101からステップS103において、超音波プローブ10の回転角度と蓄尿量を測定するステップが第1ステップに該当し、臓器関連データを記憶部25に記憶させるステップが第2ステップに該当する。 After making one round of the ultrasonic measuring instrument 1, the ultrasonic measuring instrument 1 is placed on the lower abdominal surface S so that the position of the ultrasonic measuring instrument 1 is the same as that at the start of transmission of ultrasonic waves in step S101. To return to vertical. Whether this return is possible is determined by the inclination of the ultrasonic probe 10 measured by the acceleration sensor 4 described above (step S103). When the ultrasonic probe 10 has returned to the original vertical position, the measurement end determining unit 26d determines that the ultrasonic measuring instrument 1 has made a round on the lower abdominal surface S about the vertical axis Z, Proceed to the next Step S104. If it is determined that the ultrasonic measuring instrument 1 has not returned perpendicular to the lower abdominal surface S, step S102 is continued until the ultrasonic measuring instrument 1 returns perpendicular to the lower abdominal surface. Let In steps S101 to S103, the step of measuring the rotation angle of the ultrasonic probe 10 and the amount of urine stored corresponds to the first step, and the step of storing the organ-related data in the storage unit 25 corresponds to the second step.
 次に、ステップS101からS103で測定された蓄尿量が、下腹部表面S上の全方向について適正に測定されているかどうかを判定する(ステップS104)。適正であるか否かの判定は、蓄尿量と関連付けられた周方向の角度(θx,θy)が、所定の間隔以内で算出されているか否かで判定される。周方向の角度(θx,θy)の判定は、周方向の角度(θx,θy)が、π/2≦θx≦π/2+α及びπ/2≦θy≦π/2+αである場合の測定数と、π/2-α≦θx≦π/2及びπ/2≦θy≦π/2+αである場合の測定数と、π/2-α≦θx≦π/2及びπ/2-α≦θy≦π/2の場合の測定数と、π/2≦θx≦π/2+α及びπ/2-α≦θy≦π/2の場合の測定数のいずれもが、所定数以上、例えば3点以上あるかどうかで判定される。すなわち、蓄尿量が下腹部表面S上の全方向について適正に測定されているかどうかの判定は、図11に示すように、周方向の角度(θx,θy)が(π/2,π/2)となる点を原点とした二次元のグラフにおける第1象限から第4象限までのそれぞれにおいて、所定数、例えば3点以上測定されているか否かで判定される。 Next, it is determined whether or not the urine accumulation amount measured in steps S101 to S103 is properly measured in all directions on the lower abdominal surface S (step S104). Whether or not it is appropriate is determined by whether or not the circumferential angles (θx, θy) associated with the urine accumulation amount are calculated within a predetermined interval. The circumferential angle (θx, θy) is determined based on the number of measurements when the circumferential angle (θx, θy) is π / 2 ≦ θx ≦ π / 2 + α and π / 2 ≦ θy ≦ π / 2 + α. , Π / 2-α ≦ θx ≦ π / 2 and π / 2 ≦ θy ≦ π / 2 + α, and π / 2−α ≦ θx ≦ π / 2 and π / 2−α ≦ θy ≦ The number of measurements in the case of π / 2 and the number of measurements in the case of π / 2 ≦ θx ≦ π / 2 + α and π / 2−α ≦ θy ≦ π / 2 are not less than a predetermined number, for example, 3 or more It is judged by whether or not. That is, whether or not the urine accumulation amount is properly measured in all directions on the lower abdominal surface S is determined by determining that the circumferential angles (θx, θy) are (π / 2, π / 2) as shown in FIG. ) In each of the first quadrant to the fourth quadrant in the two-dimensional graph with the point as the origin as the origin.
 第1象限から第4象限までのいずれの象限でも蓄尿量が所定数以上測定されている場合には、次のステップS105に進む。一方で、第1象限から第4象限までのいずれかの象限で蓄尿量の測定数が所定数未満である場合には、次のステップS111において蓄尿量の追加測定を指示し、超音波測定器1が下腹部表面Sに対して垂直に復帰するまで、ステップS102における蓄尿量の測定を継続させる。 When the urine accumulation amount is measured in a predetermined number or more in any quadrant from the first quadrant to the fourth quadrant, the process proceeds to the next step S105. On the other hand, if the number of stored urine amounts is less than a predetermined number in any quadrant from the first quadrant to the fourth quadrant, an additional measurement of the urine storage amount is instructed in the next step S111, and the ultrasonic measuring device The measurement of the urine accumulation amount in step S102 is continued until 1 returns perpendicular to the lower abdominal surface S.
 ステップS105では、記憶部25で記憶された臓器関連データの蓄尿量に基づいて、測定された蓄尿量に関するノイズ処理が行われる。ノイズ処理は、測定された蓄尿量の中で特異な蓄尿量があるときに、これを臓器関連データから除去する処理であり、例えば、算出されたタイミングの近い複数の蓄尿量を比較した場合に、他の蓄尿量と比べて極端に少ない蓄尿量や極端に多い蓄尿量が測定されている場合には、これらのデータを臓器関連データから除去する処理である。そして、このノイズ処理は従来から知られているノイズ処理技術により実行できる。ノイズ処理で処理されるノイズとしては、例えば、下腹部表面Sにジェルを塗布したにも関わらず、超音波素子11a~11dと下腹部表面Sとの間に空気の隙間が生じ、この隙間によって超音波の送受信が充分になされない場合に生じるノイズがある。この場合には、蓄尿量は0ないし微量と測定され、特異な蓄尿量となる。 In step S105, noise processing relating to the measured urine accumulation amount is performed based on the urine accumulation amount of the organ-related data stored in the storage unit 25. The noise process is a process of removing a specific urine storage amount from the organ-related data when there is a specific urine storage amount in the measured urine storage amount, for example, when comparing a plurality of urine storage amounts close to the calculated timing. When an extremely small urine accumulation amount or an extremely large urine accumulation amount is measured as compared with other urine accumulation amounts, this is a process of removing these data from the organ-related data. This noise processing can be executed by a conventionally known noise processing technique. As the noise to be processed by the noise processing, for example, although a gel is applied to the lower abdomen surface S, an air gap is generated between the ultrasonic elements 11a to 11d and the lower abdomen surface S. There is noise that occurs when ultrasonic waves are not sufficiently transmitted and received. In this case, the urine accumulation amount is measured as 0 to a very small amount, and becomes a specific urine accumulation amount.
 ステップS106は、ステップS105で特異な蓄尿量を除外した臓器関連データに基づいて、一番足側に位置する超音波素子11dから発信した超音波の反射波が受信されているか否かを記憶部25に記憶されている各種データから判定するステップである。超音波素子11dで反射波を受信しない場合としては、超音波素子11dから発信した超音波が恥骨Pによって妨げられている場合がある。そして、超音波素子11dにおいて超音波の反射波が受信されていないと判断された場合には、蓄尿量の測定が不適正な測定であると判定し、ステップS110において、超音波測定器1を当接している位置から膀胱Bの中心の直上位置を示す周方向の角度(θx、θy)や、距離算出部26fで算出された誤差の距離を報知する。また、超音波素子11dにおいて超音波の反射波が受信されていると判断された場合には、蓄尿量の測定が適正な測定であると判定し、次のステップS107に進む。このように、ステップS106では、ステップS101~S103で測定された各方位の蓄尿量から、恥骨Pに向かって発信された超音波を含む蓄尿量を除くことができるため、膀胱Sの中心の直上に対する所定位置の誤差の精度を向上させることができる。 Step S106 stores whether or not the reflected wave of the ultrasonic wave transmitted from the ultrasonic element 11d located on the most foot side is received based on the organ related data excluding the specific urine accumulation amount in Step S105 This is a step of determining from various data stored in the data 25. As a case where the ultrasonic wave is not received by the ultrasonic element 11d, the ultrasonic wave transmitted from the ultrasonic element 11d may be blocked by the pubic bone P. When it is determined that the ultrasonic reflected wave is not received by the ultrasonic element 11d, it is determined that the measurement of the amount of urine is an inappropriate measurement, and in step S110, the ultrasonic measuring device 1 is determined. The circumferential angle (θx, θy) indicating the position directly above the center of the bladder B from the abutting position and the error distance calculated by the distance calculation unit 26f are notified. On the other hand, when it is determined that the ultrasonic reflected wave is received by the ultrasonic element 11d, it is determined that the measurement of the urine accumulation is an appropriate measurement, and the process proceeds to the next step S107. As described above, in step S106, the urine accumulation amount including the ultrasonic wave transmitted toward the pubic bone P can be excluded from the urine accumulation amount in each direction measured in steps S101 to S103. The accuracy of the error of the predetermined position with respect to can be improved.
 ステップS107では、ステップS102で算出された蓄尿量からステップS105でノイズデータを除去した蓄尿量の中での最大の蓄尿量と、この最大蓄尿量に対応する周方向の角度(θx、θy)とから、最大蓄尿量を算出した時の超音波プローブ10の向きが特定される。
 また、本発明の第3ステップに該当するステップS108では、この最大蓄尿量が、膀胱内の蓄尿量を適切に算出したものであるか否かを判定する。この判定は、図7に示すように、最大蓄尿量が膀胱Bの中心付近を送受信する超音波に基づいて算出された蓄尿量であるとして、最大蓄尿量の算出時における、超音波測定器1の当接位置から膀胱の中心までの距離と、超音波素子11a~11dで送受信される軸方向の角度θzとから求められる算出距離d3に基づいて判定される。この算出距離d3は、下腹部表面Sから膀胱前壁までの距離d1及び膀胱前壁から後壁までの距離d2から得られる超音波測定器1の当接位置から膀胱の中心までの距離d1+d2/2と、前記軸方向の角度θzとから、以下の(3)式で算出される。
 d3=(d1+d2/2)×cosθz・・(3)
 ここで、この式(3)においては、超音波素子11a~11dのうちの特定の超音波素子、例えば超音波素子11c(ch3)における反射波に基づき求めることができる。
In step S107, the maximum urine storage amount among the urine storage amounts obtained by removing noise data in step S105 from the urine storage amount calculated in step S102, and the circumferential angles (θx, θy) corresponding to the maximum urine storage amount, Thus, the direction of the ultrasonic probe 10 when the maximum urine accumulation amount is calculated is specified.
Further, in step S108 corresponding to the third step of the present invention, it is determined whether or not the maximum urine accumulation amount is an appropriately calculated urine accumulation amount in the bladder. As shown in FIG. 7, this determination is based on the assumption that the maximum urine storage amount is the urine storage amount calculated based on the ultrasonic waves that are transmitted and received near the center of the bladder B. Is determined based on the calculated distance d3 obtained from the distance from the contact position to the center of the bladder and the axial angle θz transmitted and received by the ultrasonic elements 11a to 11d. This calculated distance d3 is a distance d1 + d2 / from the contact position of the ultrasonic measuring instrument 1 to the center of the bladder obtained from a distance d1 from the lower abdominal surface S to the bladder front wall and a distance d2 from the bladder front wall to the rear wall. 2 and the angle θz in the axial direction are calculated by the following equation (3).
d3 = (d1 + d2 / 2) × cos θz (3)
Here, in this equation (3), it can be obtained based on a reflected wave in a specific ultrasonic element among the ultrasonic elements 11a to 11d, for example, the ultrasonic element 11c (ch3).
 すなわち、この算出距離d3が、膀胱Bの中心の直上と超音波測定器1の当接位置との間の誤差を表しており、この算出距離d3が大きくなるほど、超音波プローブ10から発信される超音波が、膀胱Bに対して傾いた状態で送受信されていることを意味する。そして、この算出距離d3が所定の閾値以内である場合、もしくは第1~第4象限で発信した全ての超音波について反射波を受信できた場合には、ステップS107で特定された最大蓄尿量が膀胱内の蓄尿量を適切に算出していると判断して、次のステップS109に進む。一方で、この蓄尿量の誤差が所定の閾値より大きいと判断した場合、もしくは第1~第4象限で発信した超音波について一部の反射波を受信できない場合には、ステップS107で特定された最大蓄尿量が膀胱内の蓄尿量を適切に算出していないと判断して、ステップS110に進む。そして、ステップS105~S108が第3ステップに該当する。 In other words, the calculated distance d3 represents an error between the position directly above the center of the bladder B and the contact position of the ultrasonic measuring instrument 1, and the larger the calculated distance d3, the greater the distance from the ultrasonic probe 10. It means that ultrasonic waves are transmitted and received in a state tilted with respect to the bladder B. When the calculated distance d3 is within a predetermined threshold or when the reflected waves can be received for all the ultrasonic waves transmitted in the first to fourth quadrants, the maximum urine accumulation amount specified in step S107 is It is determined that the amount of accumulated urine in the bladder is appropriately calculated, and the process proceeds to the next step S109. On the other hand, if it is determined that the error in the accumulated urine amount is larger than a predetermined threshold value, or if some of the reflected waves cannot be received for the ultrasonic waves transmitted in the first to fourth quadrants, the identification is made in step S107. It is determined that the maximum urine accumulation amount does not appropriately calculate the urine accumulation amount in the bladder, and the process proceeds to step S110. Steps S105 to S108 correspond to the third step.
 ステップS109では、ステップS107で特定された最大蓄尿量を膀胱内の蓄尿量として、この蓄尿量をモニター2で表示する。そして、この表示によって、超音波測定器1による蓄尿量の測定が完了する。そして、操作ボタン3をオフにして電源を切ることで、記憶部25に記憶されている臓器関連データ等の各種データがリセットされる。
 なお、このデータのリセットは、超音波測定器1の操作を一定時間行わないことによる自動電源オフにより行われてもよく、あるいは、ステップS101で行われる操作ボタン3のオン時に行われてもよい。
In step S109, the maximum urine accumulation amount specified in step S107 is used as the urine accumulation amount in the bladder, and this urine accumulation amount is displayed on the monitor 2. With this display, the measurement of the urine storage amount by the ultrasonic measuring device 1 is completed. Then, by turning off the operation button 3 and turning off the power, various data such as organ-related data stored in the storage unit 25 is reset.
This data reset may be performed by automatic power-off by not performing the operation of the ultrasonic measuring instrument 1 for a certain period of time, or may be performed when the operation button 3 is performed in step S101. .
 本発明の第4ステップに該当するステップS110では、被測定者等に対して超音波プローブ10の当接位置を変更する旨の音声による報知が、報知部27によってなされる。この報知は、ステップS101からS109において超音波測定器1を当接している位置を基準として、膀胱Bの中心の直上位置との誤差を報知するものであり、前記方向算出部26eで算出された誤差の方向、すなわち超音波測定器1を当接している位置から膀胱Bの中心の直上位置を示す周方向の角度(θx,θy)や、前記距離算出部26fで算出された誤差の距離を報知するものである。そして、ステップS110では、周方向の角度若しくは誤差の距離のいずれか、又はこれらの両方が報知される。このように、周方向の角度や、誤差の距離を報知することで、被測定者等に対して所定位置の誤差を確実に伝達することができる。なお、この報知の手段は、モニター2による表示であってもよい。 In step S110 corresponding to the fourth step of the present invention, the notification unit 27 notifies the measurement subject or the like by voice that the contact position of the ultrasonic probe 10 is changed. This notification notifies an error from the position directly above the center of the bladder B with reference to the position where the ultrasonic measuring device 1 is in contact in steps S101 to S109, and is calculated by the direction calculation unit 26e. The error direction, that is, the circumferential angle (θx, θy) indicating the position directly above the center of the bladder B from the position where the ultrasonic measuring device 1 is in contact, and the error distance calculated by the distance calculation unit 26f It is to inform. In step S110, either the circumferential angle, the error distance, or both are notified. Thus, by notifying the angle in the circumferential direction and the error distance, the error at the predetermined position can be reliably transmitted to the person to be measured. The notification means may be a display by the monitor 2.
 そして、第1の超音波測定方法によれば、ステップS108において算出された算出距離d3が、膀胱Sの中心の直上に対する誤差として測定されるため、下腹部表面Sの所定位置に当接させた超音波プローブ10を傾けながら回転させるという簡単な操作で、膀胱Sの中心の直上に対する所定位置の誤差を容易に測定することができる。 According to the first ultrasonic measurement method, since the calculated distance d3 calculated in step S108 is measured as an error directly above the center of the bladder S, it is brought into contact with a predetermined position on the lower abdominal surface S. With a simple operation of rotating the ultrasonic probe 10 while tilting, an error of a predetermined position with respect to the position directly above the center of the bladder S can be easily measured.
 次に、図12に基づいて、超音波測定器1を用いた第2の超音波測定方法について説明する。第1の超音波測定方法と第2の超音波測定方法は、ステップS106で示されている全方位で適正に測定されているか否かを判定するステップと、ステップS111で示されている追加測定を指示するステップの有無で異なるものの、他のステップは第1の超音波測定方法と同一である。そのため、第1の超音波測定方法におけるステップS106及びステップS111が第2の超音波測定方法で省略されている点について、以下に説明する。 Next, a second ultrasonic measurement method using the ultrasonic measurement device 1 will be described with reference to FIG. In the first ultrasonic measurement method and the second ultrasonic measurement method, a step of determining whether or not measurement is properly performed in all directions shown in step S106, and an additional measurement shown in step S111 However, the other steps are the same as those in the first ultrasonic measurement method. Therefore, the point that Step S106 and Step S111 in the first ultrasonic measurement method are omitted in the second ultrasonic measurement method will be described below.
 上述したように、第2の超音波測定方法では、第1の超音波測定方法におけるステップS106に相当するステップが省略されている。そのため、第2の超音波測定方法では、一番足側に位置する超音波素子11dで超音波の反射波を受信しているか否かについては、判定されていない。そして、このように、ステップS106に相当するステップが省略されていても、腹部表面Sの所定位置に当接させた超音波プローブ10を傾けながら回転させるという簡単な操作で、膀胱Sの中心の直上に対する所定位置の誤差を容易に測定することができる。
 また、第2の超音波測定方法では、第1の超音波測定方法におけるステップS111に相当するステップが省略されている。
As described above, in the second ultrasonic measurement method, the step corresponding to step S106 in the first ultrasonic measurement method is omitted. Therefore, in the second ultrasonic measurement method, it is not determined whether the ultrasonic reflected wave is received by the ultrasonic element 11d located on the most foot side. As described above, even if the step corresponding to step S106 is omitted, the center of the bladder S can be easily operated by tilting and rotating the ultrasonic probe 10 in contact with the predetermined position of the abdominal surface S. It is possible to easily measure an error of a predetermined position with respect to the position immediately above.
In the second ultrasonic measurement method, a step corresponding to step S111 in the first ultrasonic measurement method is omitted.
 次に、超音波測定器1の好ましい形状の一例について説明する。この超音波測定器1は、図13~図20に示すように、蓄尿量を測定する際に手で持つことのできる測定器本体部8と、この測定器本体部8の先端側に設けられ上述の超音波プローブ10を有するプローブ部9とから構成されている。また、この超音波測定器1は、その先端側を覆うためのキャップ30を取り付けることができるように構成されている。 Next, an example of a preferable shape of the ultrasonic measuring instrument 1 will be described. As shown in FIGS. 13 to 20, the ultrasonic measuring instrument 1 is provided on the measuring instrument main body 8 that can be held by hand when measuring the urine accumulation amount, and on the distal end side of the measuring instrument main body 8. The probe unit 9 includes the ultrasonic probe 10 described above. In addition, the ultrasonic measuring instrument 1 is configured so that a cap 30 for covering the tip side can be attached.
 測定器本体部8は、軸線Lに沿う方向を長手方向とする略直方体に形成されており、軸線Lの他端側に位置し超音波測定器1の平面を構成する第4面15と、この第4面から立設した側面13b,14b,16b,17bとを有している。この側面13bは超音波測定器1の背面の一部を構成し、側面14bは超音波測定器1の正面の一部を構成し、側面16bは超音波測定器1の左側面の一部を構成し、側面17bは超音波測定器1の右側面の一部を構成する。また、側面14bは側面13bに向かい合う位置に設けられ、側面17bは側面16bに向かい合う位置に設けられている。 The measuring instrument main body 8 is formed in a substantially rectangular parallelepiped with the direction along the axis L as the longitudinal direction, and is located on the other end side of the axis L and forms a plane of the ultrasonic measuring instrument 1; It has side surfaces 13b, 14b, 16b, and 17b erected from the fourth surface. The side surface 13b constitutes a part of the back surface of the ultrasonic measuring device 1, the side surface 14b constitutes a part of the front surface of the ultrasonic measuring device 1, and the side surface 16b constitutes a part of the left side surface of the ultrasonic measuring device 1. The side surface 17b constitutes a part of the right side surface of the ultrasonic measuring instrument 1. The side surface 14b is provided at a position facing the side surface 13b, and the side surface 17b is provided at a position facing the side surface 16b.
 プローブ部9は、先端側を細くした四角錐台状(截頭四角錐台状)に形成されており、軸線Lの先端側に位置する底面としての第1面12と、この第1面12から立設する傾斜面13a,14a,16a,17aを有している。この傾斜面13aは超音波測定器1の背面の一部を構成し、傾斜面14aは超音波測定器1の正面の一部を構成し、傾斜面16aは超音波測定器1の左側面の一部を構成し、傾斜面17aは超音波測定器1の右側面の一部を構成する。 The probe portion 9 is formed in a quadrangular frustum shape (a truncated quadrangular frustum shape) having a narrowed tip side, and a first surface 12 serving as a bottom surface located on the tip side of the axis L, and the first surface 12. Inclined surfaces 13a, 14a, 16a, and 17a. The inclined surface 13 a constitutes a part of the back surface of the ultrasonic measuring device 1, the inclined surface 14 a constitutes a part of the front surface of the ultrasonic measuring device 1, and the inclined surface 16 a is a left side surface of the ultrasonic measuring device 1. The inclined surface 17a constitutes a part of the right side surface of the ultrasonic measuring instrument 1.
 したがって、上述した超音波測定器1の形状において、傾斜面13aと側面13bは超音波測定器1の背面を構成する面であり、この傾斜面13a及び側面13bが本発明の第2面13に相当する。また、傾斜面14aと側面14bは超音波測定器1の正面を構成する面であり、この傾斜面14a及び側面14bが第2面13に向かい合う本発明の第3面14に相当する。 Therefore, in the shape of the ultrasonic measuring device 1 described above, the inclined surface 13a and the side surface 13b are surfaces constituting the back surface of the ultrasonic measuring device 1, and the inclined surface 13a and the side surface 13b are the second surface 13 of the present invention. Equivalent to. In addition, the inclined surface 14 a and the side surface 14 b are surfaces constituting the front surface of the ultrasonic measuring instrument 1, and the inclined surface 14 a and the side surface 14 b correspond to the third surface 14 of the present invention facing the second surface 13.
 次に、測定器本体部8について説明する。側面13bの両端の間に位置する中間部13cは、軸線Lに沿う方向の断面視において凹状に湾曲していると共に、軸線L方向に沿う両側端にくびれ部を有しており、この中間部13cが本発明の曲面部に相当する。また、側面13bの基端部13dは、軸線Lに沿う方向の断面視において凹状に湾曲している。一方で、側面14bの両端の間に位置する中間部14cは、軸線Lに沿う方向の断面視において直線状に形成されると共に、軸線L方向に沿う両側端にくびれ部を有している。また、側面16bの両端の間に位置する中間部16cは、軸線Lに沿う方向の断面視において凹状に湾曲されており、側面17bの両端の間に位置する中間部17cも、軸線Lに沿う方向の断面視において凹状に湾曲されている。 Next, the measuring instrument body 8 will be described. The intermediate portion 13c positioned between both ends of the side surface 13b is concavely curved in a sectional view in the direction along the axis L, and has constricted portions on both side ends along the axis L direction. 13c corresponds to the curved surface portion of the present invention. Further, the base end portion 13d of the side surface 13b is curved in a concave shape in a sectional view in the direction along the axis L. On the other hand, the intermediate portion 14c located between both ends of the side surface 14b is formed in a straight line in a sectional view in the direction along the axis L, and has constricted portions at both side ends along the direction of the axis L. Further, the intermediate portion 16c located between both ends of the side surface 16b is curved in a concave shape in a sectional view along the axis L, and the intermediate portion 17c located between both ends of the side surface 17b is also along the axis L. It is curved in a concave shape in a sectional view in the direction.
 側面14bの中間部14cは曲面部13cの形成位置に向かい合う位置に設けられており、この中間部14cには、超音波測定器1の電源のオン・オフをするための操作ボタン3が配置されている。その際、この操作ボタン3は、操作ボタン3の表面と側面14bとが同一面上に位置するように配置されている。また、側面14bの基端部14dには、被測定者の臓器からの反射波に基づいて算出された蓄尿量や、被測定者等が入力した入力データ等を表示するモニター2が備えられている。すなわち、モニター2は、曲面部13cの形成位置に向かい合う位置を避けた位置であって、操作ボタン3よりも第1面12から離れた位置である基端部14dに配置されている。また、このモニター2は、その表面が側面14bよりも内方向に位置するように配置されている。さらに、第4面15には、音声やアラームを発信するためのスピーカー5と、後述する通信部29としてのUSB接続部と、ストラップを取り付けるための一対のストラップ穴6,6が形成されている。 The intermediate portion 14c of the side surface 14b is provided at a position facing the formation position of the curved surface portion 13c, and an operation button 3 for turning on / off the power source of the ultrasonic measuring instrument 1 is disposed on the intermediate portion 14c. ing. At this time, the operation button 3 is arranged so that the surface of the operation button 3 and the side surface 14b are located on the same plane. In addition, the base end portion 14d of the side surface 14b is provided with a monitor 2 for displaying a urine accumulation amount calculated based on a reflected wave from the organ of the measurement subject, input data input by the measurement subject, or the like. Yes. That is, the monitor 2 is disposed at the base end portion 14d that is a position that is away from the position facing the formation position of the curved surface portion 13c and that is farther from the first surface 12 than the operation button 3. The monitor 2 is arranged so that the surface thereof is located inward of the side surface 14b. Further, the fourth surface 15 is formed with a speaker 5 for transmitting a sound and an alarm, a USB connection portion as a communication portion 29 described later, and a pair of strap holes 6 and 6 for attaching a strap. .
 次に、プローブ部9について説明する。傾斜面13a,14a,16a,17aは先端側を細くした台形状に形成されている。そして、この傾斜面13aと傾斜面14aは互いに向かい合う位置に設けられていて、この傾斜面13aと第1面12とのなす角度と、傾斜面14aと第1面12とのなす角度は、共に鈍角である角度θ1となる。また、傾斜面16aと傾斜面17aとは互いに向かい合う位置に設けられていて、この傾斜面16aと第1面12とのなす角度と、傾斜面17aと第1面12とのなす角度は、共に角度θ1よりも大きい角度θ2となる。また、傾斜面13aには、軸線Lと直交する幅方向に延びる係合凸部18aが形成されており、第3面14の傾斜面14aには、軸線Lと直交する幅方向に延びる係合凸部18bが形成されている。そして、このプローブ部9に超音波素子11a~11dが収容されており、この超音波素子11a~11dから発信される超音波が第1面12から送出される。 Next, the probe unit 9 will be described. The inclined surfaces 13a, 14a, 16a, and 17a are formed in a trapezoidal shape with the tip side narrowed. The inclined surface 13a and the inclined surface 14a are provided at positions facing each other. The angle formed between the inclined surface 13a and the first surface 12 and the angle formed between the inclined surface 14a and the first surface 12 are both The angle θ1 is an obtuse angle. The inclined surface 16a and the inclined surface 17a are provided at positions facing each other. The angle formed between the inclined surface 16a and the first surface 12 and the angle formed between the inclined surface 17a and the first surface 12 are both The angle θ2 is larger than the angle θ1. Further, the inclined surface 13a is formed with an engaging convex portion 18a extending in the width direction orthogonal to the axis L, and the inclined surface 14a of the third surface 14 is engaged in the width direction orthogonal to the axis L. A convex portion 18b is formed. Ultrasonic elements 11 a to 11 d are accommodated in the probe unit 9, and ultrasonic waves transmitted from the ultrasonic elements 11 a to 11 d are transmitted from the first surface 12.
 次に、図13,図14,図21~図26に基づいてキャップ30を説明する。キャップ30は、角を丸くした長方形に形成された底壁31と、この底壁31の各辺から立設された側壁32a~32dとを備えており、これらの側壁32a~32dによって開口部33が形成されている。また、側壁32aと底壁31とのなす角度、側壁32bと底壁31とのなす角度、側壁32cと底壁31とのなす角度、そして側壁32dと底壁31とのなす角度は、いずれもθ3であり、この角度θ3は、上述した傾斜面13a,14aと第1面12とのなす角度θ1や、傾斜面16a,17aと第1面12のなす角度θ2よりも小さい鈍角となる。そして、このキャップ30は、その高さがプローブ部9の長さよりも僅かに大きくなるように形成されている。さらに、側壁32dには、ストラップを取り付けるための一対のストラップ穴7,7が形成されている。 Next, the cap 30 will be described with reference to FIGS. 13, 14, and 21 to 26. FIG. The cap 30 includes a bottom wall 31 formed in a rectangular shape with rounded corners, and side walls 32a to 32d erected from each side of the bottom wall 31, and an opening 33 is formed by these side walls 32a to 32d. Is formed. The angle formed between the side wall 32a and the bottom wall 31, the angle formed between the side wall 32b and the bottom wall 31, the angle formed between the side wall 32c and the bottom wall 31, and the angle formed between the side wall 32d and the bottom wall 31 are all. This angle θ3 is an obtuse angle smaller than the angle θ1 formed by the inclined surfaces 13a, 14a and the first surface 12 and the angle θ2 formed by the inclined surfaces 16a, 17a and the first surface 12. The cap 30 is formed so that its height is slightly larger than the length of the probe portion 9. Further, a pair of strap holes 7, 7 for attaching a strap are formed in the side wall 32d.
 また、側壁32aの内面側に係合凹部34aが形成されており、側壁32bの内面側であって係合凹部34aと向かい合う位置に係合凹部34bが形成されている。そして、図13,図14に示すように、第2面13の傾斜面13aに形成されている係合凸部18aを、側壁32aに形成されている係合凹部34aに係合し、第3面14の傾斜面14aに形成されている係合凸部18bを、側壁32bに形成されている係合凹部34bに係合することで、キャップ30が超音波測定器1に取り付けられ、プローブ部9をキャップ30で覆うことができる。 Also, an engagement recess 34a is formed on the inner surface side of the side wall 32a, and an engagement recess 34b is formed at a position facing the engagement recess 34a on the inner surface side of the side wall 32b. Then, as shown in FIGS. 13 and 14, the engagement convex portion 18 a formed on the inclined surface 13 a of the second surface 13 is engaged with the engagement concave portion 34 a formed on the side wall 32 a, and the third The cap 30 is attached to the ultrasonic measuring instrument 1 by engaging the engaging convex portion 18b formed on the inclined surface 14a of the surface 14 with the engaging concave portion 34b formed on the side wall 32b. 9 can be covered with a cap 30.
 次に、この超音波測定器1の第1面12を下腹部表面Sの所定位置に当接させながら蓄尿量を測定する際の超音波測定器1の握り方について説明する。超音波測定器1は、長さを約15センチメートル、幅と奥行きを共に約4センチメートルとする測定器であり、測定器本体部8の軸線L周りの長さを約16センチメートルとする測定器である。従って、この測定器本体部8の軸線L周りの長さは、手のひらを広げた時の親指の頭と小指の頭との距離とほぼ同じ長さとなり、中間部13c,14c,16c,17cを掌と指で覆うようにして持つことができる。 Next, how to grasp the ultrasonic measuring instrument 1 when measuring the amount of urine collected while bringing the first surface 12 of the ultrasonic measuring instrument 1 into contact with a predetermined position of the lower abdominal surface S will be described. The ultrasonic measuring device 1 is a measuring device having a length of about 15 centimeters and a width and a depth of about 4 centimeters, and the length around the axis L of the measuring device main body 8 is about 16 centimeters. It is a measuring instrument. Therefore, the length around the axis L of the measuring instrument main body 8 is substantially the same as the distance between the head of the thumb and the head of the little finger when the palm is spread, and the intermediate portions 13c, 14c, 16c and 17c are You can hold it with your palm and fingers covered.
 このとき、中間部13cが軸線Lに沿う方向の断面視において凹状に湾曲していると共に、軸線L方向に沿う両側端にくびれ部を有しているため、超音波測定器1の形状が握りやすい形状となっている。また、蓄尿量の測定は、モニター2を配置した第3面14を被測定者等の顔側に向けた状態で、超音波測定器1を時計回り、又は反時計回りに回転させながら行われるため、第3面14の中間部14cに親指の腹を当接させた状態で超音波測定器1を持つことで、この中間部14bに設けられている操作ボタン3を容易に押すことができる。また、モニター2は、操作ボタン3よりも第1面12から離れた位置に配置されているため、超音波測定器1を持つ際にモニター2が隠れることを防止することができ、モニター2を見ながら蓄尿量を測定することができる。そして、この超音波測定器1の第4面15にはスピーカー5が形成されているため、スピーカー5の指向する方向を、蓄尿量の測定時に被測定者等にとって聞き取りやすい方向とすることができる。 At this time, the intermediate portion 13c is concavely curved in a sectional view in the direction along the axis L, and has constricted portions on both side ends along the axis L direction, so that the shape of the ultrasonic measuring instrument 1 is grasped. Easy to shape. The urine accumulation is measured while rotating the ultrasonic measuring instrument 1 clockwise or counterclockwise with the third surface 14 on which the monitor 2 is placed facing the face side of the person to be measured. Therefore, the operation button 3 provided on the intermediate portion 14b can be easily pushed by holding the ultrasonic measuring instrument 1 with the thumb belly in contact with the intermediate portion 14c of the third surface 14. . Further, since the monitor 2 is arranged at a position farther from the first surface 12 than the operation button 3, the monitor 2 can be prevented from being hidden when the ultrasonic measuring instrument 1 is held. You can measure the amount of urine while watching. Since the speaker 5 is formed on the fourth surface 15 of the ultrasonic measuring instrument 1, the direction in which the speaker 5 is directed can be set to a direction that can be easily heard by the person to be measured when measuring the urine accumulation amount. .
 以上、本発明の実施形態について詳細に説明してきたが、被測定者の測定時姿勢は仰臥位、座位などであってもよい。また、本発明はその要旨を逸脱しない範囲において、様々な設計変更が可能である。例えば、上述の第1及び第2の超音波測定方法では、手回しで超音波プローブ10を回転させているが、超音波測定器1の傾きをステップモータなどの傾斜回転機構によって変化させることで、超音波の送受信方向を垂直軸Zに対して周方向に傾けるようにしてもよい。
 また、上記の実施形態では垂直軸Zを回転軸として超音波プローブ10を回転させたが、測定対象の臓器によっては垂直軸ではなく、超音波プローブ10の体表面への当接位置を通る斜めの軸を回転軸としてもよい。
As described above, the embodiment of the present invention has been described in detail. However, the measurement posture of the measurement subject may be a supine position, a sitting position, or the like. The present invention can be modified in various ways without departing from the gist thereof. For example, in the above-described first and second ultrasonic measurement methods, the ultrasonic probe 10 is rotated by hand, but the inclination of the ultrasonic measurement device 1 is changed by an inclination rotation mechanism such as a step motor, The transmission / reception direction of ultrasonic waves may be inclined in the circumferential direction with respect to the vertical axis Z.
In the above embodiment, the ultrasonic probe 10 is rotated about the vertical axis Z as a rotation axis. However, depending on the organ to be measured, the ultrasonic probe 10 is not a vertical axis but passes through the contact position of the ultrasonic probe 10 on the body surface. The axis may be a rotation axis.
 また、ステップS104及びS204で判定されている蓄尿量の全方向測定の適否は、ステップS101からS103、及びステップS201からS203で測定されている各々の蓄尿量の周方向の角度(θx、θy)の差が全て所定の閾値以内であるか否か、で判定してもよい。
 さらに、ステップS105及びS205のノイズ処理は、記憶部25で記憶されている各々の蓄尿量と比較して大きく異なる蓄尿量が測定されている場合に、大きく異なる蓄尿量と関連付けられた周方向の角度(θx、θy)を、この周方向の角度付近の周方向の角度に基づいて補完することで、大きく異なる蓄尿量を補正する処理であってもよい。
 さらに、ステップS108及びS207で判定されている最大蓄尿量の適否は、超音波測定器1を垂直軸Zに対して傾けた状態で回転させながら測定された蓄尿量の中で最大となる最大蓄尿量と、超音波測定器1を被測定者の下腹部表面Sに対して垂直に当接させた状態で測定した蓄尿量との差が所定の閾値以下となるか否かで、判断してもよい。この蓄尿量の差が所定の閾値以下である場合には、最大蓄尿量が膀胱内の蓄尿量を適切に算出していると判断され、この蓄尿量の差が所定の閾値よりも大きい場合には、最大蓄尿量が膀胱内の蓄尿量を適切に算出していないと判断される。
 さらに、本発明の実施形態における超音波測定器では、超音波プローブ10を被測定者の下腹部表面Sに接触させて測定するが、その押し付け方によって、蓄尿量の測定結果が変化する可能性がある。このため、超音波プローブに圧力センサを設け、超音波プローブが被測定者の下腹部表面Sに対して所定範囲内の押圧力で押し付けられていることを確認できるようにしてもよい。この確認方法としては、下腹部表面Sへの押圧力が所定範囲内でない場合に蓄尿量の測定を開始しようとすると、アラームが発信されたり、または蓄尿量の測定ができなくなるようにする方法がある。
In addition, the suitability of the omnidirectional measurement of the urine accumulation amount determined in steps S104 and S204 is determined by the circumferential angle (θx, θy) of each urine accumulation amount measured in steps S101 to S103 and steps S201 to S203. It may be determined whether or not all the differences are within a predetermined threshold.
Further, the noise processing in steps S105 and S205 is performed in the circumferential direction associated with a greatly different urine accumulation amount when a greatly different urine accumulation amount is measured as compared with each urine accumulation amount stored in the storage unit 25. Processing for correcting greatly different urine accumulation amounts may be performed by complementing the angles (θx, θy) based on the circumferential angle near the circumferential angle.
Further, the suitability of the maximum urine storage amount determined in steps S108 and S207 is the maximum urine storage amount that is the maximum among the urine storage amounts measured while rotating the ultrasonic measuring instrument 1 while being tilted with respect to the vertical axis Z. It is determined whether or not the difference between the amount and the amount of stored urine measured in a state where the ultrasonic measuring instrument 1 is in contact with the lower abdomen surface S of the person to be measured is equal to or less than a predetermined threshold value. Also good. When the difference in the urine storage amount is equal to or less than a predetermined threshold, it is determined that the maximum urine storage amount appropriately calculates the urine storage amount in the bladder, and the difference in the urine storage amount is larger than the predetermined threshold value. Therefore, it is determined that the maximum urine accumulation amount does not appropriately calculate the urine accumulation amount in the bladder.
Furthermore, in the ultrasonic measuring instrument according to the embodiment of the present invention, the ultrasonic probe 10 is measured while being brought into contact with the lower abdomen surface S of the person to be measured. There is. For this reason, a pressure sensor may be provided in the ultrasonic probe so that it can be confirmed that the ultrasonic probe is pressed against the lower abdomen surface S of the measurement subject with a pressing force within a predetermined range. As the confirmation method, there is a method in which an alarm is transmitted or the urine accumulation amount cannot be measured when the measurement of the urine accumulation amount is started when the pressing force to the lower abdominal surface S is not within a predetermined range. is there.
1 超音波測定器
2 表示部(モニター)
3 操作ボタン
5 スピーカー
10 超音波プローブ
11a~11d 超音波素子
12 第1面
13 第2面
13c 曲面部(中間部)
14 第3面
15 第4面
21 超音波制御部
24 角度センサ部
25 記憶部
26 演算部
26c 誤差判定部
26d 一周判定部(測定終了判定部)
26e 方向算出部
26f 距離算出部
S 体表面(下腹部表面)
Z 垂直軸
1 Ultrasonic measuring instrument 2 Display (monitor)
3 Operation button 5 Speaker 10 Ultrasonic probes 11a to 11d Ultrasonic element 12 First surface 13 Second surface 13c Curved surface portion (intermediate portion)
14 3rd surface 15 4th surface 21 Ultrasonic control part 24 Angle sensor part 25 Memory | storage part 26 Calculation part 26c Error determination part 26d One round determination part (measurement completion | finish determination part)
26e Direction calculation unit 26f Distance calculation unit S Body surface (lower abdomen surface)
Z Vertical axis

Claims (19)

  1.  被測定者の臓器に向けて超音波を発信する超音波素子を有する超音波プローブと、
     前記超音波素子による超音波発信を制御する超音波制御部と、
     前記被測定者の臓器からの反射波に基づいて、超音波Aモードにより前記臓器の大きさに関連するサイズデータを算出する演算部と、を備えた超音波測定器において、
     該超音波測定器は、前記被測定者の体表面の所定位置に前記超音波プローブを当接させ、かつ前記所定位置を通る軸を回転軸として前記超音波プローブを回転させながら、該軸に対して周方向に傾けた複数の位置で、超音波及びその反射波を送受信することで、前記サイズデータを算出する測定器であり、
     前記軸に対する前記超音波プローブの角度を測定する角度センサ部と、
     前記サイズデータを、前記角度センサ部で測定された角度と関連付けた臓器関連データとして記憶する記憶部と、
     該臓器関連データに基づいて、前記所定位置の誤差を判定する誤差判定部と、
    を備えたことを特徴とする超音波測定器。
    An ultrasonic probe having an ultrasonic element for transmitting ultrasonic waves toward the organ of the subject;
    An ultrasonic control unit for controlling ultrasonic transmission by the ultrasonic element;
    In an ultrasonic measuring instrument comprising: an arithmetic unit that calculates size data related to the size of the organ by an ultrasonic A mode based on a reflected wave from the organ of the measurement subject;
    The ultrasonic measuring instrument abuts the ultrasonic probe on a predetermined position on the body surface of the measurement subject and rotates the ultrasonic probe about an axis passing through the predetermined position as a rotation axis. A measuring instrument that calculates the size data by transmitting and receiving ultrasonic waves and their reflected waves at a plurality of positions inclined in the circumferential direction with respect to the
    An angle sensor unit for measuring an angle of the ultrasonic probe with respect to the axis;
    A storage unit for storing the size data as organ-related data associated with an angle measured by the angle sensor unit;
    An error determination unit that determines an error of the predetermined position based on the organ-related data;
    An ultrasonic measuring instrument comprising:
  2.  前記臓器は膀胱であり、
     前記サイズデータは、前記膀胱内の蓄尿量であることを特徴とする請求項1に記載の超音波測定器。
    The organ is the bladder;
    The ultrasonic measuring device according to claim 1, wherein the size data is a stored amount of urine in the bladder.
  3.  前記超音波プローブは、一列に配置された複数の超音波素子を備えていることを特徴とする請求項2に記載の超音波測定器。 The ultrasonic measuring instrument according to claim 2, wherein the ultrasonic probe includes a plurality of ultrasonic elements arranged in a line.
  4.  前記誤差判定部は、前記所定位置の誤差が所定の閾値以上であるときに、前記角度に基づいて前記誤差の方向を算出する方向算出部を有することを特徴とする請求項3に記載の超音波測定器。 The superimposition determination unit according to claim 3, wherein the error determination unit includes a direction calculation unit that calculates a direction of the error based on the angle when an error at the predetermined position is equal to or greater than a predetermined threshold. Sound wave measuring instrument.
  5.  前記誤差判定部は、前記所定位置の誤差が所定の閾値以上であるときに、前記角度に基づいて前記誤差の距離を算出する距離算出部を有することを特徴とする請求項3に記載の超音波測定器。 The superimposition determination unit according to claim 3, wherein the error determination unit includes a distance calculation unit that calculates a distance of the error based on the angle when the error at the predetermined position is equal to or greater than a predetermined threshold. Sound wave measuring instrument.
  6.  前記超音波プローブが前記軸を回転軸として回転することで,前記所定位置上を少なくとも一周しているか否かを、前記角度に基づいて判定する一周判定部を、さらに有することを特徴とする請求項1ないし5のいずれかに記載の超音波測定器。 The circuit further comprises a one-round determination unit that determines, based on the angle, whether or not the ultrasonic probe rotates at least one round on the predetermined position by rotating about the axis. Item 6. The ultrasonic measuring instrument according to any one of Items 1 to 5.
  7.  前記超音波測定器は、前記軸を回転軸として、前記超音波プローブを周方向に傾けながら回転させる傾斜回転機構を有することを特徴とする請求項6に記載の超音波測定器。 The ultrasonic measuring device according to claim 6, wherein the ultrasonic measuring device has a tilt rotation mechanism that rotates the ultrasonic probe while tilting in the circumferential direction about the axis as a rotation axis.
  8.  超音波素子からの超音波を送出する第1面と、
     該第1面から立設し、グリップ用の曲面部を有する第2面と、
     前記第2面に向かい合う第3面と、を備え、
     前記第3面に超音波測定結果を表示する表示部を有することを特徴とする超音波測定器。
    A first surface for transmitting ultrasonic waves from the ultrasonic element;
    A second surface erected from the first surface and having a curved surface portion for grip;
    A third surface facing the second surface,
    An ultrasonic measuring instrument comprising a display unit for displaying an ultrasonic measurement result on the third surface.
  9.  前記第3面に、超音波測定器を操作するための操作ボタンを有することを特徴とする請求項8に記載の超音波測定器。 9. The ultrasonic measuring instrument according to claim 8, further comprising an operation button for operating the ultrasonic measuring instrument on the third surface.
  10.  前記表示部は、前記曲面部の形成位置に向かい合う位置を避けた位置に配置されていることを特徴とする請求項8又は9に記載の超音波測定器。 The ultrasonic measuring instrument according to claim 8 or 9, wherein the display unit is arranged at a position avoiding a position facing the formation position of the curved surface part.
  11.  前記操作ボタンは、前記曲面部の形成位置に向かい合う位置に配置され、
     前記表示部は、前記操作ボタンよりも、前記第1面から離れた位置に配置されていることを特徴とする請求項9に記載の超音波測定器。
    The operation button is disposed at a position facing the formation position of the curved surface portion,
    The ultrasonic measuring device according to claim 9, wherein the display unit is arranged at a position farther from the first surface than the operation button.
  12.  前記第1面に向かい合う第4面に、スピーカーが形成されていることを特徴とする請求項8に記載の超音波測定器。 The ultrasonic measuring instrument according to claim 8, wherein a speaker is formed on a fourth surface facing the first surface.
  13.  被測定者の膀胱に向けて超音波を発信する超音波素子を備えた超音波プローブと、
     前記超音波素子による超音波の発信を制御する超音波制御部と、
     前記被測定者の膀胱からの反射波に基づいて、超音波Aモードにより前記膀胱内の蓄尿量を算出する演算部と、を備えた超音波測定器を用いた超音波測定方法において、
     前記超音波測定器を被測定者の体表面の所定位置に当接し、かつ前記超音波プローブを前記所定位置の軸を回転軸として回転させながら、該軸に対して周方向に傾けた複数の位置で、前記軸に対する前記超音波プローブの角度を角度センサで測定すると共に、前記反射波を受信することで蓄尿量を測定する第1ステップと、
     前記第1ステップで測定された角度と蓄尿量とを関連付けた臓器関連データを記憶部に記憶させる第2ステップと、
     該臓器関連データに基づいて、前記所定位置の誤差を判定する第3ステップと、
    を有する超音波測定器を用いた超音波測定方法。
    An ultrasonic probe including an ultrasonic element that transmits ultrasonic waves toward the measurement subject's bladder;
    An ultrasonic control unit for controlling transmission of ultrasonic waves by the ultrasonic element;
    In an ultrasonic measurement method using an ultrasonic measuring device comprising: an arithmetic unit that calculates a urine accumulation amount in the bladder by an ultrasonic A mode based on a reflected wave from the measurement subject's bladder;
    The ultrasonic measuring instrument is in contact with a predetermined position on the body surface of the measurement subject, and a plurality of the ultrasonic probes are inclined in the circumferential direction with respect to the axis while rotating the ultrasonic probe about the axis of the predetermined position. At a position, measuring an angle of the ultrasonic probe with respect to the axis with an angle sensor, and measuring a urine accumulation amount by receiving the reflected wave;
    A second step of storing in the storage unit organ-related data associating the angle measured in the first step with the urine accumulation amount;
    A third step of determining an error of the predetermined position based on the organ-related data;
    An ultrasonic measurement method using an ultrasonic measuring instrument having
  14.  前記第1ステップは、前記超音波プローブを前記所定位置の軸に沿う位置で、前記超音波プローブの角度を前記角度センサで測定すると共に、前記反射波を受信することで蓄尿量を測定するステップを含み、
     前記第3ステップは、前記軸に沿う位置の蓄尿量に関する臓器関連データと、前記軸に対して傾けた位置で算出された蓄尿量のうち最大の蓄尿量に関する臓器関連データとに基づいて、前記所定位置の誤差を判定するステップを含むことを特徴とする請求項13に記載の超音波測定器を用いた超音波測定方法。
    In the first step, the ultrasonic probe is measured at a position along the axis of the predetermined position, the angle of the ultrasonic probe is measured by the angle sensor, and the amount of urine stored is measured by receiving the reflected wave. Including
    The third step is based on the organ-related data related to the urine storage amount at a position along the axis and the organ-related data related to the maximum urine storage amount among the urine storage amounts calculated at positions inclined with respect to the axis. 14. The ultrasonic measurement method using an ultrasonic measurement device according to claim 13, further comprising a step of determining an error at a predetermined position.
  15.  前記超音波プローブは、一列に配列された複数の超音波素子を備えており、
     前記第1ステップは、これらの超音波素子を被測定者の足側から顔側に向かうように前記所定位置に当接して、前記超音波プローブの角度と蓄尿量の測定を行うステップを含み、
     前記第3ステップは、前記複数の超音波素子のうち最も足側に位置する足側超音波素子で受信される反射波の有無を判定するステップを含むことを特徴とする請求項14に記載の超音波測定器を用いた超音波測定方法。
    The ultrasonic probe includes a plurality of ultrasonic elements arranged in a line,
    The first step includes a step of measuring the angle of the ultrasonic probe and the amount of urine collected by bringing these ultrasonic elements into contact with the predetermined position so as to go from the foot side of the person to be measured to the face side,
    The said 3rd step includes the step which determines the presence or absence of the reflected wave received by the foot side ultrasonic element located in the most foot side among these several ultrasonic elements. An ultrasonic measurement method using an ultrasonic measuring instrument.
  16.  前記第3ステップは、前記所定位置の誤差が所定の閾値以上であるか否かを判定するステップを含み、
     該第3ステップで前記所定位置の誤差が所定の閾値以上であると判定したときに、前記最大の蓄尿量に関連する角度に基づいて、前記超音波測定器の移動すべき方向を報知する第4ステップをさらに有することを特徴とする請求項15に記載の超音波測定器を用いた超音波測定方法。
    The third step includes a step of determining whether an error at the predetermined position is equal to or greater than a predetermined threshold value,
    When it is determined in the third step that the error at the predetermined position is greater than or equal to a predetermined threshold, the direction in which the ultrasonic measuring instrument should move is notified based on the angle associated with the maximum urine accumulation amount. The ultrasonic measurement method using the ultrasonic measurement device according to claim 15, further comprising four steps.
  17.  前記第4ステップは、前記足側超音波素子で反射波を受信することなく測定された蓄尿量が前記臓器関連データに含まれているときに、該蓄尿量に関連付けた角度に基づいて、前記超音波測定器の移動すべき方向を報知するステップを含むことを特徴とする請求項16に記載の超音波測定器を用いた超音波測定方法。 In the fourth step, when the urine accumulation amount measured without receiving the reflected wave by the foot side ultrasonic element is included in the organ-related data, based on the angle associated with the urine accumulation amount, The ultrasonic measurement method using the ultrasonic measurement device according to claim 16, further comprising a step of notifying a direction in which the ultrasonic measurement device should move.
  18.  前記第1ステップは、前記所定位置の軸を回転軸として前記超音波プローブを少なくとも一回転させながら、前記超音波プローブの角度と、蓄尿量を測定するステップを含み、
     前記第3ステップは、前記記憶部で記憶された蓄尿量の中で特異な蓄尿量をノイズとして除去すると共に、前記ノイズを除去した臓器関連データに基づいて、前記所定位置の誤差を判定するステップを含むことを特徴とする請求項13ないし17のいずれかに記載の超音波測定器を用いた超音波測定方法。
    The first step includes a step of measuring an angle of the ultrasonic probe and a urine accumulation amount while rotating the ultrasonic probe at least once around an axis of the predetermined position as a rotation axis;
    The third step includes removing a specific urine accumulation amount as noise from the urine accumulation amount stored in the storage unit, and determining an error at the predetermined position based on the organ-related data from which the noise has been removed. The ultrasonic measurement method using the ultrasonic measuring device according to claim 13, wherein
  19.  前記超音波測定器は、前記軸を回転軸として前記超音波測定器を周方向に傾けながら回転させる傾斜回転機構を有し、
     前記第1ステップは、前記傾斜回転機構により前記超音波プローブを前記軸に対して傾斜させた状態で回転させながら、前記反射波を受信することで蓄尿量を算出するステップを含むことを特徴とする請求項18に記載の超音波測定器を用いた超音波測定方法。
    The ultrasonic measuring device has an inclined rotation mechanism that rotates the ultrasonic measuring device while tilting the ultrasonic measuring device in the circumferential direction about the axis as a rotation axis,
    The first step includes a step of calculating a urine accumulation amount by receiving the reflected wave while rotating the ultrasonic probe while being inclined with respect to the axis by the tilt rotation mechanism. An ultrasonic measurement method using the ultrasonic measurement device according to claim 18.
PCT/JP2018/006196 2017-03-17 2018-02-21 Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device WO2018168363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505809A JP6820453B2 (en) 2017-03-17 2018-02-21 Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053084 2017-03-17
JP2017-053084 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168363A1 true WO2018168363A1 (en) 2018-09-20

Family

ID=63523556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006196 WO2018168363A1 (en) 2017-03-17 2018-02-21 Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device

Country Status (3)

Country Link
JP (1) JP6820453B2 (en)
TW (1) TW201840294A (en)
WO (1) WO2018168363A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100942A1 (en) * 2018-11-14 2020-05-22 株式会社リリアム大塚 Urine quantity measuring instrument, and urine quantity measuring method
WO2020137631A1 (en) * 2018-12-26 2020-07-02 株式会社リリアム大塚 Urine volume measuring device, urine volume measuring method, and program
WO2022255471A1 (en) * 2021-06-04 2022-12-08 株式会社リリアム大塚 Ultrasonic measurement device and ultrasonic measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615722B1 (en) * 2021-12-30 2023-12-19 (주)엠큐브테크놀로지 Ultrasound scanner and method of guiding aim

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183142A (en) * 2010-02-09 2011-09-22 Nagasaki Univ Non-invasive urine volume estimation sensor unit, non-invasive urine volume estimation device, and urination management system
JP2012101104A (en) * 2004-08-27 2012-05-31 Verathon Inc System and method for quantifying and classifying coelomic fluid in ultrasonic image
JP2015112450A (en) * 2013-12-16 2015-06-22 日立アロカメディカル株式会社 Ultrasonic diagnostic device and program
WO2016030959A1 (en) * 2014-08-26 2016-03-03 大塚メディカルデバイス株式会社 Ultrasound urine volume meter and ultrasound probe positioning method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101104A (en) * 2004-08-27 2012-05-31 Verathon Inc System and method for quantifying and classifying coelomic fluid in ultrasonic image
JP2011183142A (en) * 2010-02-09 2011-09-22 Nagasaki Univ Non-invasive urine volume estimation sensor unit, non-invasive urine volume estimation device, and urination management system
JP2015112450A (en) * 2013-12-16 2015-06-22 日立アロカメディカル株式会社 Ultrasonic diagnostic device and program
WO2016030959A1 (en) * 2014-08-26 2016-03-03 大塚メディカルデバイス株式会社 Ultrasound urine volume meter and ultrasound probe positioning method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100942A1 (en) * 2018-11-14 2020-05-22 株式会社リリアム大塚 Urine quantity measuring instrument, and urine quantity measuring method
JPWO2020100942A1 (en) * 2018-11-14 2021-09-02 株式会社リリアム大塚 Urine volume measuring device and urine volume measuring method
WO2020137631A1 (en) * 2018-12-26 2020-07-02 株式会社リリアム大塚 Urine volume measuring device, urine volume measuring method, and program
WO2022255471A1 (en) * 2021-06-04 2022-12-08 株式会社リリアム大塚 Ultrasonic measurement device and ultrasonic measurement method

Also Published As

Publication number Publication date
JP6820453B2 (en) 2021-01-27
TW201840294A (en) 2018-11-16
JPWO2018168363A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2018168363A1 (en) Ultrasonic measuring device and ultrasonic measuring method using ultrasonic measuring device
CA2624651C (en) Ultrasonic diagnosis apparatus for a urinary bladder and the method thereof
JP4549853B2 (en) Instantaneous measurement device for bladder volume
US8777855B2 (en) Ultrasound system for providing image indicator
WO2016031245A1 (en) Ultrasonic urine volume measuring instrument, and urine volume management data generating and displaying method using ultrasonic urine volume measuring instrument
JP6088761B2 (en) Organ measurement device
US9226668B2 (en) Blood pressure monitor
JP2008537694A5 (en)
EP1180973A1 (en) System for quantizing bladder distension due to pressure using normalized surface area of the bladder
JP2005535420A5 (en)
JP2011183142A (en) Non-invasive urine volume estimation sensor unit, non-invasive urine volume estimation device, and urination management system
CN105916447B (en) Ultrasound device and method for assessing bone of subject
EP1764629B1 (en) Ultrasound diagnostic system and method for rotating ultrasound image
WO2017187608A1 (en) Ultrasonic imaging device, and ultrasonic transmission/reception method
US8221337B2 (en) System and method for monitoring bladder distention in a variety of patients having differing anatomical proportions
US20140024937A1 (en) Apparatus and method for measuring an amount of urine in a bladder
JP2001218768A (en) Ultrasonograph
US20120108965A1 (en) Facilitating Desired Transducer Manipulation for Medical Diagnostics and Compensating for Undesired Motion
US5082276A (en) Distance measuring golf putting apparatus
US20110137172A1 (en) Apparatus and method for measuring an amount of urine in a bladder
JPWO2020100942A1 (en) Urine volume measuring device and urine volume measuring method
WO2020137631A1 (en) Urine volume measuring device, urine volume measuring method, and program
WO2016022895A1 (en) Laser distance comparator for use in ball games utilizing a reference ball
US7824036B2 (en) Ophthalmic ultrasonic measurement apparatus, and an ophthalmic measurement method
JP5228189B2 (en) Organ shape measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767495

Country of ref document: EP

Kind code of ref document: A1