WO2018168307A1 - Hydraulic control device, brake system, and auxiliary hydraulic unit for use in event of failure - Google Patents

Hydraulic control device, brake system, and auxiliary hydraulic unit for use in event of failure Download PDF

Info

Publication number
WO2018168307A1
WO2018168307A1 PCT/JP2018/005165 JP2018005165W WO2018168307A1 WO 2018168307 A1 WO2018168307 A1 WO 2018168307A1 JP 2018005165 W JP2018005165 W JP 2018005165W WO 2018168307 A1 WO2018168307 A1 WO 2018168307A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
valve
hydraulic
fluid
unit
Prior art date
Application number
PCT/JP2018/005165
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 丸尾
千春 中澤
旭 渡辺
大澤 俊哉
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018001352.9T priority Critical patent/DE112018001352T5/en
Publication of WO2018168307A1 publication Critical patent/WO2018168307A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units

Definitions

  • the present invention relates to a hydraulic pressure control device.
  • the hydraulic pressure control device described in Patent Document 1 includes two hydraulic pressure sources as described above as countermeasures against failure.
  • the conventional hydraulic pressure control device includes a control unit for each hydraulic pressure source, there is a risk of complication.
  • the hydraulic pressure control device includes a second hydraulic pressure source that can be activated when the brake pedal is operated in a state where the boost control by the first hydraulic pressure source is not activated.
  • the structure of the brake system of 1st Embodiment is shown. It is a perspective view of the master cylinder unit of a 1st embodiment. It is a perspective view of the 1st hydraulic unit of a 1st embodiment. It is the perspective view which looked at the 2nd hydraulic unit of a 1st embodiment from the 2nd motor side. It is the perspective view which looked at the 2nd hydraulic unit of a 1st embodiment from the side opposite to the 2nd motor. It is the perspective view which looked at the 2nd hydraulic pressure unit in the state where the cover of a 1st embodiment was removed from the 2nd motor side. It is the perspective view which saw through the inside of the 2nd hydraulic unit of a 1st embodiment from the 2nd motor side.
  • the structure of the control system of the 2nd hydraulic pressure unit of 1st Embodiment is shown. It is a time chart which shows the operating state of a brake system at the time of failure of the boost control by the 1st hydraulic pressure unit of a 1st embodiment. It is a flowchart which shows the control logic of the 2nd hydraulic pressure unit of 2nd Embodiment.
  • the structure of the brake system of 3rd Embodiment is shown. It is a time chart which shows the operating state of a brake system at the time of failure of the boost control by the 1st hydraulic pressure unit of a 3rd embodiment.
  • the structure of the brake system of 4th Embodiment is shown.
  • the structure of the liquid path in the 2nd hydraulic pressure unit of 5th Embodiment is shown.
  • the structure of the brake system of 6th Embodiment is shown.
  • the brake system 1 of the present embodiment is mounted on a vehicle, specifically an automobile.
  • Automobiles include those having only an internal combustion engine (engine) as a prime mover for driving wheels, hybrid vehicles having an electric motor in addition to the engine, electric vehicles having only a motor, and the like.
  • the vehicle has one or more wheels, specifically left and right front wheels FL and FR, and left and right rear wheels RL and RR as wheel portions.
  • a wheel cylinder 102 is installed on each wheel.
  • a brake operating unit is installed on each wheel FL to RR.
  • the brake operation unit is, for example, a disk type, and includes a wheel cylinder 102 and a caliper.
  • the caliper is operated by the hydraulic pressure (brake hydraulic pressure) of the wheel cylinder 102, and applies friction braking force to the wheels FL to RR according to the brake hydraulic pressure.
  • These one or more wheel cylinders 102 function as a wheel cylinder part.
  • the hydraulic circuit of the brake system 1 is divided into two systems, a primary system (P system) and a secondary system (S system).
  • P system primary system
  • S system secondary system
  • the brake system 1 includes a first hydraulic unit 1A, a second hydraulic unit 1B, and a master cylinder unit 1C.
  • the brake pedal 100 is a member (input member) that receives an input of a brake operation by a vehicle driver (driver).
  • a push rod 101 is rotatably connected to the brake pedal 100. The push rod 101 is pushed in accordance with the depression operation of the brake pedal 100 and can move in the axial direction of the push rod 101.
  • the push rod 101 has a flange 101f.
  • the master cylinder unit 1C has a reservoir tank 2 and a master cylinder 3.
  • the reservoir tank 2 stores brake fluid and can replenish the master cylinder 3 and the hydraulic units 1A and 1B with brake fluid.
  • the bottom side of the reservoir tank 2 is partitioned by a partition wall 21 into a liquid chamber 23 for replenishing the master cylinder and a liquid chamber 24 for pump suction.
  • the liquid chamber 23 is partitioned by a partition wall 22 into a P-system liquid chamber 23P and an S-system liquid chamber 23S.
  • the partition wall 22 is lower than the partition wall 21.
  • a liquid level sensor 26 is installed in the partition wall 22, and the liquid level height of the liquid chamber 23 can be measured.
  • a replenishment port 25 is connected to the liquid chamber 24.
  • a liquid level sensor 27 is installed in the liquid chamber 24, and the liquid level height of the liquid chamber 24 can be measured.
  • the master cylinder 3 includes a housing 30, a piston 31, a spring unit 32, and a seal member 33.
  • the x-axis is provided in the axial direction of the master cylinder 3, and the direction in which the push rod 101 is pushed in response to the depression operation of the brake pedal 100 is defined as the positive direction.
  • the housing 30 has a flange 306.
  • the flange 306 is fixed to a vehicle-side member (such as a dash panel) by a bolt 307.
  • the cylinder 300 is cylindrical and has two grooves 303 and 304 for each system.
  • Each of the grooves 303 and 304 has an annular shape extending in the direction around the axis of the cylinder 300 (hereinafter referred to as the circumferential direction).
  • the first groove 303 is on the x-axis positive direction side
  • the second groove 304 is on the x-axis negative direction side.
  • Each port 301, 302 is provided for each system.
  • the supply port 301 opens to the cylinder 300 between the grooves 303 and 304 and opens to the outer surface of the housing 30.
  • the replenishment port 301P is connected to the liquid chamber 23P of the reservoir tank 2, and the replenishment port 301S is connected to the liquid chamber 23S of the reservoir tank 2.
  • the supply port 302 opens in the cylinder 300 on the x axis positive direction side with respect to the first groove 303 and also opens on the outer surface of the housing 30.
  • the master cylinder 3 is a tandem type, and the piston 31 is provided for each system.
  • the piston 31 is installed inside the cylinder 300 and can reciprocate in the x-axis direction.
  • the piston 31 is cylindrical and has two concave portions 311 and 312 separated by a partition wall 310.
  • the first recess 311 is disposed on the x-axis positive direction side
  • the second recess 312 is disposed on the x-axis negative direction side.
  • a hole 313 passes through the peripheral wall of the first recess 311.
  • the piston 31P is installed on the x-axis negative direction side
  • the piston 31S is installed on the x-axis positive direction side.
  • the x-axis positive direction side of the push rod 101 is installed in the second recess 312P of the piston 31P.
  • the x-axis positive direction end of the push rod 101 is in contact with the partition wall 310P.
  • the cylinder 300 is divided into two hydraulic pressure chambers 34P and 34S and an atmospheric pressure chamber 38 by both pistons 31P and 31S.
  • the hydraulic chamber 34P is located between the piston 31P and the piston 31S.
  • the hydraulic chamber 34S is on the positive side of the piston 31S in the x-axis direction.
  • Each hydraulic chamber 34P, 34S is connected to a supply port 302.
  • the atmospheric pressure chamber 38 is on the negative side in the x-axis direction of the hydraulic chamber 34P.
  • a hole 305 that connects the atmospheric pressure chamber 38 and the outside is provided at the end of the housing 30 in the negative x-axis direction.
  • the push rod 101 is installed through the hole 305.
  • the seal member 33 is a rod seal U-packing or V-packing, and is installed in each of the grooves 303 and 304.
  • the lip of the seal member 33 is in contact with the outer peripheral surface of the piston 31.
  • the seal member 33 of the first groove 303 suppresses the flow of brake fluid from the hydraulic chamber 34 toward the replenishment port 301 on the outer peripheral side of the piston 31, and allows the flow in the opposite direction.
  • the seal member 33 in the second groove 304P suppresses the flow of brake fluid from the supply port 301P toward the atmospheric pressure chamber 38 on the outer peripheral side of the piston 31P.
  • the seal member 33 in the second groove 304S suppresses the flow of brake fluid from the hydraulic chamber 34P toward the replenishment port 301S on the outer peripheral side of the piston 31S.
  • the spring unit 32 includes a coil spring 320, a first retainer 321, a second retainer 322, and a stopper 323.
  • Both retainers 321 and 322 have a bottomed cylindrical shape and have a bottom portion and a flange portion.
  • One end of the stopper 323 has a bowl shape and is installed inside the first retainer 321 so as to be able to reciprocate.
  • the other end of the stopper 323 is fixed to the bottom of the second retainer 322.
  • the coil spring 320 surrounds both retainers 321 and 322.
  • One end of the coil spring 320 is installed on the flange of the first retainer 321, and the other end of the coil spring 320 is installed on the flange of the second retainer 322.
  • the coil spring 320 is always compressed.
  • the spring unit 32P is installed in the hydraulic chamber 34P.
  • the flange of the first retainer 321P is installed on the partition wall 310S of the piston 31S, and the flange of the second retainer 322P is installed on the partition wall 310P of the piston 31P.
  • the spring unit 32S is installed in the hydraulic chamber 34S.
  • the flange of the first retainer 321S is installed on the inner wall of the cylinder 300 at the positive end in the x-axis direction, and the flange of the second retainer 322S is installed on the partition wall 310S of the piston 31S.
  • both pistons 31P, 31S are displaced maximum in the negative x-axis direction, and the flange portion 101f of the push rod 101 is located on the outer peripheral side of the hole 305 in the housing 30. Touch the inner wall. The inner wall restricts the movement of the flange portion 101f in the negative x-axis direction.
  • the holes 313 of the pistons 31P and 31S are located between the seal members 33 (lips) of the grooves 303 and 304 in the x-axis direction, and the first recesses 311 (hydraulic pressure chambers 34) of the pistons 31P and 31S and
  • the replenishment port 301 communicates through a hole 313.
  • the fixed portion 910 of the stroke sensor 91 is installed on the outer periphery of the housing 30 on the x-axis negative direction side.
  • an element for detecting a change in magnetism is installed in the fixing unit 910.
  • a moving part 911 of the stroke sensor 91 is installed on the outer periphery of the piston 31P on the x-axis negative direction side.
  • a permanent magnet 912 is installed in a part of the moving portion 911 in the circumferential direction.
  • a rod 39 extending in the x-axis direction inside the atmospheric pressure chamber 38 is fixedly installed in the housing 30.
  • the moving unit 911 can be displaced with respect to the rod 39 in the x-axis direction, and the displacement in the circumferential direction is restricted by the rod 39. Thereby, the permanent magnet 912 is more reliably opposed to the element of the fixed portion 910 in the circumferential direction.
  • the first hydraulic unit 1A is a main hydraulic unit that can increase the brake hydraulic pressure.
  • the first hydraulic unit 1A can function as a booster unit for executing boost control. Further, the first hydraulic unit 1A can function as a hydraulic unit for executing side slip prevention control (ESC).
  • ESC side slip prevention control
  • the first hydraulic unit 1A includes a first housing 40, a first pump unit 8A, a valve 7A, a stroke simulator 5, hydraulic pressure sensors 92 and 93, and an electronic control unit 90. .
  • the first housing 40 is fixed to a vehicle-side member (such as the bottom of the engine compartment) via a bracket or an insulator.
  • the first pump unit 8A has a first motor 80A and a first pump 81A as a first hydraulic pressure source.
  • the first motor 80A is, for example, a DC motor, and an eccentric cam is attached to its drive shaft.
  • the first pump 81A is a plunger pump. Five plungers are arranged radially around the drive shaft of the first motor 80A. When the first motor 80A rotates the eccentric cam, each plunger reciprocates. As a result, the first pump 81A sucks and discharges the brake fluid. The five plungers overlap in the direction (axial direction) in which the axis of the drive shaft of the first motor 80A extends. As a result, an increase in dimension of the first hydraulic unit 1A in the axial direction is suppressed.
  • Valve 7A has a solenoid valve and a check valve.
  • the solenoid valve has a solenoid part and a valve part.
  • the check valve can be formed in the valve portion by a member constituting the valve portion of the electromagnetic valve.
  • the solenoid valve includes a shut-off valve 71A, a pressure increasing valve 72, a communication valve 73, a pressure regulating valve 74, a pressure reducing valve 75, a simulator out valve 77, and a simulator in valve 78.
  • the shut-off valve 71A, the pressure increasing valve 72, and the pressure regulating valve 74 are normally open valves that open in a non-energized state and operate in the closing direction when energized, and are proportional control valves that can control the opening degree of the valve in accordance with the energization amount. It is.
  • the pressure reducing valve 75, the communication valve 73, the simulator-out valve 77, and the simulator-in valve 78 are normally closed valves that close in a non-energized state and operate in the opening direction when energized. This is an on / off valve that can take two positions.
  • the first pump unit 8A is arranged along one surface of the first housing 40 in the axial direction, and the valves are arranged along the other surface. Thereby, an increase in the size of the first hydraulic unit 1A is suppressed.
  • the first housing 40 is formed from an aluminum-based metal material. Inside the first housing 40 are a port, a fluid path, and a first reservoir 47.
  • the port has a first input port 41, a first output port 42, a first suction port 43, a positive pressure port 44, a back pressure port 45, and a replenishment port 46.
  • the liquid paths are the first connecting liquid path 11A, the first suction liquid path 12A, the first discharge liquid path 13A, the pressure adjusting liquid path 14, the discharge liquid path 15, the simulator positive pressure liquid path 16A, the simulator back pressure liquid path 17A, A simulator pressure increasing liquid path 18A and a simulator replenishing liquid path 19A are provided.
  • Each port 41 to 46 opens on the outer surface of the first housing 40.
  • the first reservoir 47 is connected to the first suction port 43.
  • the first input port 41 is a port for inputting brake fluid to the first hydraulic unit 1A.
  • the first output port 42 is a port for outputting brake fluid from the first hydraulic unit 1A.
  • first connection liquid path 11A One end of the first connection liquid path 11A is connected to the first input port 41.
  • shutoff valve 71A above the first connection liquid path 11A.
  • the first connection liquid path 11A opposite to the first input port 41 with respect to the shutoff valve 71A branches into two.
  • Each of the branch liquid passages 11a to 11d is connected to the first output port.
  • a pressure increasing valve 72 is provided on the branch liquid passages 11a to 11d.
  • the bypass liquid paths 111a to 111d are connected to the branch liquid paths 11a to 11d in parallel with the pressure increasing valve 72.
  • check valves 720a to 720d in the bypass liquid passages 111a to 111d.
  • the check valves 720a to 720d allow the flow of brake fluid from the first output port 42 side to the shutoff valve 71A side, and suppress the flow of brake fluid in the opposite direction.
  • One end of the first suction fluid path 12A is connected to the first reservoir 47.
  • the other end of the first suction fluid path 12A is connected to the suction part of the first pump 81A.
  • One end of the first discharge liquid passage 13A is connected to the discharge portion of the first pump 81A.
  • the other end side of the first discharge liquid passage 13A branches into two.
  • Each of the branch liquid paths 13PA and 13SA is a first connection liquid path 11A and is connected between the pressure increasing valve 72 and the shutoff valve 71A.
  • the branch liquid paths 13PA and 13SA function as a communication liquid path that connects the first connection liquid paths 11PA and 11SA of both systems.
  • a communication valve 73 is provided above each of the branch liquid passages 13PA and 13SA.
  • One end of the drainage passage 15 is connected to the first reservoir 47.
  • the other end side of the discharge liquid passage 15 branches into four.
  • the branch liquid paths 15a to 15d are branch liquid paths 11a to 11d of the first connection liquid path 11A, respectively, and are connected to the pressure increasing valve 72 on the first output port 42 side.
  • a pressure reducing valve 75 is provided on the branch liquid passages 15a to 15d.
  • One end of the pressure regulating fluid passage 14 is a first discharge fluid passage 13A and is connected to the communication valve 73 on the first pump 81A side.
  • the other end of the pressure adjusting liquid passage 14 is connected to the discharge liquid passage 15.
  • a pressure regulating valve 74 Above the pressure regulating fluid path 14 is a pressure regulating valve 74.
  • the hydraulic pressure sensor 92 is connected to the first discharge liquid passage 13A between the first pump 81A and the communication valve 73, and detects the hydraulic pressure at this portion.
  • the hydraulic pressure sensor 93 is connected to the first connecting liquid path 11A between the shutoff valve 71A and the pressure increasing valve 72, and detects the hydraulic pressure at this portion.
  • the hydraulic pressure sensor 94 is a first connection fluid path 11PA, and is connected between the first input port 41P and the shut-off valve 71PA, and detects the hydraulic pressure at this portion.
  • One end of the simulator positive pressure fluid passage 16A is a first connection fluid passage 11PA and is connected between the first input port 41P and the shutoff valve 71PA.
  • the other end of the simulator positive pressure fluid path 16A is connected to the positive pressure port 44.
  • One end of the simulator back pressure liquid passage 17A is connected to the back pressure port 45.
  • the other end of the simulator back pressure liquid path 17A is connected to the drain liquid path 15.
  • a simulator out valve 77 is provided above the simulator back pressure liquid passage 17A.
  • a bypass liquid path 170 is connected in parallel with the simulator out valve 77 to the simulator back pressure liquid path 17A.
  • a bypass valve 170 has a check valve 770.
  • the check valve 770 allows the flow of brake fluid from the first reservoir 47 side toward the back pressure port 45 side, and suppresses the flow of brake fluid in the opposite direction.
  • One end of the simulator pressure increasing fluid passage 18A is a simulator back pressure fluid passage 17A and is connected between the back pressure port 45 and the simulator out valve 77.
  • the other end of the simulator pressure increasing liquid path 18A is a first connection liquid path 11PA and is connected between the shutoff valve 71PA and the pressure increasing valves 72a and 72d.
  • a simulator-in valve 78 is provided above the simulator pressure increasing fluid passage 18A.
  • a bypass liquid path 180 is connected to the simulator pressure increasing liquid path 18A in parallel with the simulator-in valve 78.
  • a bypass valve 180 has a check valve 780.
  • the check valve 780 allows the flow of brake fluid from the simulator back pressure fluid passage 17A (back pressure port 45) side to the first connection fluid passage 11PA side, and suppresses the flow of brake fluid in the opposite direction.
  • One end of the simulator replenishment liquid path 19A is connected to the replenishment port 46.
  • the other end of the simulator replenishment liquid path 19A is connected to the discharge liquid path 15.
  • the stroke simulator 5 includes a housing 50, a piston 51, a first spring unit 52, a second spring unit 53, and a seal member 54.
  • the housing 50 is fixed to the first housing 40.
  • the y-axis is provided in the axial direction of the stroke simulator 5, and the direction in which the piston 51 moves in response to the inflow of the brake fluid into the positive pressure chamber 55 according to the depression operation of the brake pedal 100 is defined as the positive direction.
  • the y-axis extends in the vertical direction, and the lower side in the vertical direction is the positive y-axis direction.
  • Inside the housing 50 are a cylinder 500, a positive pressure port 501, a back pressure port 502, and a replenishment port 503.
  • the cylinder 500 has a stepped cylindrical shape, and has two seal grooves 504 and 505 and one communication groove 506 on the small diameter side.
  • Each of the grooves 504 to 506 has an annular shape extending in the direction around the axis of the cylinder 500 (hereinafter referred to as the circumferential direction).
  • the first seal groove 504 is on the y-axis positive direction side
  • the second seal groove 505 is on the y-axis negative direction side.
  • the positive pressure port 501 opens to the small diameter portion of the cylinder 500 on the y axis negative direction side of the second seal groove 505 and opens to the outer surface of the housing 50 to connect to the positive pressure port 44 of the first housing 40. .
  • the back pressure port 502 opens to the large diameter portion of the cylinder 500 on the positive side in the y-axis direction from the first seal groove 504, and opens to the outer surface of the housing 50 to connect to the back pressure port 45 of the first housing 40.
  • the supply port 503 opens to the cylinder 500 between the seal grooves 504 and 505 and opens to the outer surface of the housing 50 to connect to the supply port 46 of the first housing 40.
  • the communication groove 506 connects the supply port 503 and the first seal groove 504.
  • the piston 51 is installed inside the cylinder 500 (small diameter portion) and can reciprocate in the y-axis direction.
  • the piston 51 is cylindrical and has two concave portions 511 and 512 partitioned by a partition wall 510.
  • the first recess 511 is disposed on the y-axis negative direction side
  • the second recess 512 is disposed on the y-axis positive direction side.
  • a hole 513 passes through the peripheral wall of the first recess 511.
  • a hole 514 passes through the peripheral wall of the second recess 512.
  • the second recess 512 has a protrusion 515 extending from the partition wall 510 in the positive y-axis direction.
  • the cylinder 500 is divided into a positive pressure chamber 55 and a back pressure chamber 56 by the piston 51.
  • the positive pressure chamber 55 is connected to the positive pressure port 501.
  • the back pressure chamber 56 is connected to the back pressure port 502.
  • the positive pressure chamber 55 is on the y axis negative direction side of the piston 51.
  • the back pressure chamber 56 is on the positive side of the piston 51 in the y-axis direction.
  • the housing 50 is provided with an air vent valve 58 for the positive pressure chamber 55 and an air vent valve 59 for the back pressure chamber 56.
  • the valve 58 is at the y-axis negative direction end of the positive pressure chamber 55, and the valve 59 is at the y-axis negative direction end of the back pressure chamber 56.
  • the opening on the positive side in the y-axis direction of the cylinder 500 is liquid-tightly closed by the lid member 57.
  • the lid member 57 has a bottomed first recess 571.
  • the first recess 571 has a protrusion 570 extending from the bottom in the negative y-axis direction.
  • the protrusion 570 has a bottomed second recess 572.
  • the seal member 54 is a U seal or a V seal for rod seal, and is installed in each seal groove 504, 505.
  • the lip of the seal member 54 is in contact with the outer peripheral surface of the piston 51.
  • the seal member 54 of the first seal groove 504 suppresses the flow of brake fluid from the back pressure chamber 56 toward the replenishment port 503 on the outer peripheral side of the piston 51, and allows the flow in the opposite direction.
  • the seal member 54 of the second seal groove 505 suppresses the flow of brake fluid from the positive pressure chamber 55 toward the supply port 503 on the outer peripheral side of the piston 51, and allows the flow in the opposite direction.
  • the first spring unit 52 includes a first coil spring 520, a first retainer 521, a second retainer 522, a stopper 523, and a first damper 524.
  • the first damper 524 has a cylindrical shape and is an elastic member formed of rubber or the like. Other configurations of the first spring unit 52 are the same as those of the spring unit 32 of the master cylinder 3.
  • the second spring unit 53 includes a second coil spring 530, a retainer 531, and a second damper 532.
  • the retainer 531 has a bottomed cylindrical shape, and has a bottom portion and a flange portion.
  • the coil diameter, wire diameter, and spring coefficient of the second coil spring 530 are each larger than that of the first coil spring 520.
  • the second damper 532 is a columnar shape having a constriction, and is an elastic member formed of rubber or the like. Both spring units 52 and 53 are installed in the back pressure chamber 56.
  • the first retainer 521 of the first spring unit 52 is fitted to the protrusion 515, and the flange portion is installed on the partition wall 510 of the piston 51.
  • a first damper 524 is installed between the protrusion 515 and the stopper 523.
  • the collar portion of the second retainer 522 is installed at the bottom of the retainer 531 of the second spring unit 53.
  • the negative end of the second coil spring 530 in the y-axis direction is installed at the flange portion of the retainer 531.
  • the positive end in the y-axis direction of the second coil spring 530 is fitted to the protrusion 570 of the lid member 57 and is installed at the bottom of the first recess 571.
  • a second damper 532 is installed in the second recess 572 of the lid member 57.
  • the second damper 532 protrudes in the negative y-axis direction from the protrusion 570 and faces the bottom of the retainer 531.
  • the hole 513 of the piston 51 overlaps the positive pressure port 501 in the y-axis direction.
  • the hole 514 is located between the seal member 54 (lip) of the first seal groove 504 and the supply port 503 in the y-axis direction, and the second recess 512 (back pressure chamber 56) of the piston 51 and the supply port 503 are formed in the hole 514. And it communicates through the communication groove 506.
  • the second hydraulic pressure unit 1B is an auxiliary hydraulic pressure unit that can increase the brake hydraulic pressure so as to supplement the first hydraulic pressure unit 1A.
  • B is appended to the end of the reference numeral.
  • the second hydraulic pressure unit 1B includes a second housing 60, a second pump unit 8B, a valve 7B, a solenoid case 600, and a cover 601.
  • the hydraulic circuit of the second hydraulic unit 1B is divided into two systems, a primary system (p system) and a secondary system (s system).
  • the second pump unit 8B has one second motor 80B and a second pump 81B as a second hydraulic pressure source. As shown in FIG. 7, the second motor 80B is fixed to the second housing 60 by a bolt 801. The second motor 80B is, for example, a DC motor, and an eccentric cam is attached to its drive shaft. The second pump 81B is a plunger pump. Two second pumps 81B are formed by arranging the two plungers so as to face each other around the drive shaft of the second motor 80B.
  • the valve 7B has a solenoid valve and a check valve.
  • the electromagnetic valve has an on-off valve 71B.
  • the on-off valve 71B is a normally open proportional control valve.
  • the on-off valve 71B may be an on / off valve.
  • the second housing 60 is formed from an aluminum-based metal material.
  • the second housing 60 is fixed to a vehicle-side member (such as the bottom of the engine compartment) via a bracket or an insulator.
  • Inside the second housing 60 are a port, a fluid path, a second reservoir 64, and a bolt hole 65.
  • a bolt for fixing the bracket or the insulator is inserted into the bolt hole 65.
  • the port has a second input port 61, a second output port 62, and a second suction port 63.
  • the liquid path includes a second connection liquid path 11B, a second suction liquid path 12B, and a second discharge liquid path 13B.
  • Each port 61 to 63 opens to the outer surface of the second housing 60.
  • the second reservoir 64 is connected to the second suction port 63.
  • the second input port 61 is a port for inputting brake fluid to the second hydraulic pressure unit 1B.
  • the second output port 62 is a port for outputting brake fluid from the second hydraulic unit 1B.
  • One end of the second connection liquid path 11B is connected to the second input port 61, and the other end of the second connection liquid path 11B is connected to the second output port 62.
  • An on-off valve 71B is above the second connection liquid path 11B.
  • the bypass liquid path 110 is connected to the second connection liquid path 11B in parallel with the on-off valve 71B.
  • a bypass valve 110 has a check valve 710. The check valve 710 allows the flow of brake fluid from the second input port 61 side to the second output port 62 side, and suppresses the flow of brake fluid in the opposite direction.
  • One end of the second suction fluid path 12B is connected to the second reservoir 64.
  • the other end of the second suction fluid path 12B is connected to the suction part of the second pump 81B.
  • One end of the second discharge liquid passage 13B is connected to the discharge portion of the second pump 81B.
  • the other end of the second discharge liquid path 13B is a second connection liquid path 11B and is connected between the on-off valve 71B and the second output port 62.
  • the solenoid case 600 is made of resin and is fixed to the second housing 60 by bolts 602. As shown in FIG. 6, in the case 600, the second motor 80B (a part thereof) and the solenoid of the on-off valve 71B are accommodated.
  • the case 600 has a hole 603, and the second motor 80 passes through the hole 603.
  • the cover 601 is attached to the case 600, covers the second motor 80B and the solenoid of the on-off valve 71B, and protects them from the outside (moisture or the like).
  • the master cylinder piping 10M connects the master cylinder 3 and the first hydraulic unit 1A.
  • One end of the master cylinder pipe 10M is connected to the supply port 302 of the master cylinder 3, and the other end of the master cylinder pipe 10M is connected to the first input port 41 of the first hydraulic unit 1A.
  • the relay pipe 10I connects the first hydraulic unit 1A and the second hydraulic unit 1B.
  • One end of the relay pipes 10Ip and 10Is is connected to the first output ports 42a and 42b of the first hydraulic unit 1A, respectively, and the other end of the relay pipes 10Ip and 10Is is the second input port 61p of the second hydraulic unit 1B, respectively. Connect to 61s.
  • the front wheel cylinder pipes 10Wa and 10Wb connect the second hydraulic unit 1B and the wheel cylinders 102a and 102b of the front wheels FL and FR.
  • One end of the front wheel cylinder pipes 10Wa and 10Wb is connected to the second output ports 62p and 62s of the second hydraulic unit 1B, respectively, and the other end of the front wheel cylinder pipes 10Wa and 10Wb is connected to the front wheel cylinders 102a and 102b, respectively.
  • the rear wheel wheel cylinder pipes 10Wc and 10Wd connect the first hydraulic unit 1A and the wheel cylinders 102c and 102d of the rear wheels RL and RR.
  • each of the rear wheel wheel cylinder pipes 10Wc and 10Wd is connected to the first output port 42c and 42d of the first hydraulic unit 1A, and the other end of the rear wheel wheel cylinder pipes 10Wc and 10W is respectively connected to the rear wheel wheel cylinders 102c and 102d.
  • the reservoir pipe 10R connects the reservoir tank 2 and the hydraulic units 1A and 1B.
  • One end of the reservoir pipe 10R is connected to the supply port 25 of the reservoir tank 2.
  • the other end of the reservoir pipe 10R branches into two.
  • the branch pipe 10RA is connected to the first suction port 43 of the first hydraulic unit 1A.
  • the branch pipe 10RB is connected to the second suction port 63 of the second hydraulic unit 1B.
  • a partition is provided in the liquid chamber 24 of the reservoir tank 2 to partition the two liquid chambers 24A and 24B, and the replenishment ports 25A and 25B that open to the respective liquid chambers 24A and 24B and the suctions of the respective hydraulic units 1A and 1B
  • the ports 43 and 63 may be connected by separate reservoir pipes 10RA and 10RB, respectively.
  • connection liquid passage 11 that connects the master cylinder 3 and the wheel cylinder 102.
  • a connection liquid path 11 is connected to the supply port 302 of the master cylinder 3.
  • the connecting liquid path 11P branches into a liquid path 11a connected to the wheel cylinder 102a of the front left wheel FL and a liquid path 11d connected to the wheel cylinder 102d of the rear right wheel RR.
  • the connection liquid path 11S branches into a liquid path 11b connected to the wheel cylinder 102b of the front right wheel FR and a liquid path 11c connected to the wheel cylinder 102c of the rear left wheel RL.
  • the on-off valve 71B is in the connection liquid path 11 on the wheel cylinder 102 side with respect to the shutoff valve 71A.
  • the master cylinder 3 operates according to the operation of the brake pedal 100 and generates hydraulic pressure.
  • thrust on the x-axis positive direction side acts on the piston 31P via the push rod 101.
  • the piston 31 slightly moves from the initial position to the x-axis positive direction side while pushing and shrinking the coil spring 320 and the hole 313 is displaced from the seal member 33 (lip) of the first groove 303 to the x-axis positive direction side, the replenishment port Communication between 301 and the hydraulic chamber 34 is blocked.
  • the piston 31 further strokes in the positive x-axis direction in this state, the volume of the hydraulic chamber 34 is reduced, so that hydraulic pressure (master cylinder hydraulic pressure) is generated in the hydraulic chamber 34 and the supply port 302 Brake fluid is about to flow out.
  • the stroke simulator 5 operates in response to the operation of the brake pedal 100, and can generate an appropriate operation reaction force of the brake pedal 100.
  • brake fluid flowing out from the master cylinder 3 in response to the brake operation flows into the positive pressure chamber 55 via the simulator positive pressure fluid passage 16A, hydraulic pressure is generated in the positive pressure chamber 55, and the pistons are compressed while compressing the coil springs 520 and 530.
  • Brake fluid flows out from the back pressure chamber 56 and is discharged to the first reservoir 47 through the simulator back pressure fluid passage 17A (simulator out valve 77).
  • a pedal stroke is generated and a pedal reaction force is generated by the biasing force of the coil springs 520 and 530.
  • the first coil spring 520 When the first coil spring 520 is compressed by a predetermined amount or more according to the stroke of the piston 51, the first damper 524 and the stopper 523 come into contact with each other, and the first damper 524 is compressed and elastically deformed together with the first coil spring 520.
  • the second coil spring 530 starts compressive deformation.
  • the second coil spring 530 is compressed by a predetermined amount or more, the second damper 532 and the retainer 531 come into contact with each other, and the second damper 532 is compressed and elastically deformed together with the second coil spring 530.
  • the coil springs 520 and 530 having different spring coefficients are connected in series, and these are elastically deformed step by step in order, whereby the characteristics of both coil springs as a whole (the change of the spring coefficient with respect to the deformation amount). Characteristic) becomes nonlinear. Thereby, the pedal reaction force generated by the stroke simulator 5 in accordance with the operation of the piston 51 (pedal stroke) can be made closer to a more desirable characteristic. Further, the above characteristics are smoothed by the elastic deformation of the dampers 524 and 532. Thereby, pedal feeling can be improved.
  • the first pump 81A can discharge the brake fluid to the first output port 42 side (the connection fluid passage 11 on the wheel cylinder 102 side with respect to the shut-off valve 71A) from the shut-off valve 71A of the first connection fluid passage 11A. Yes, brake fluid can be supplied to the wheel cylinder 102.
  • the first pump 81A sucks the brake fluid in the first reservoir 47 through the first suction liquid path 12A and discharges it to the first discharge liquid path 13A (liquid paths 13PA, 13SA).
  • the brake fluid is supplied to the first reservoir 47 from the reservoir tank 2 through the pipe 10RA.
  • the brake fluid boosted by the first pump 81A is supplied to the first connection fluid passage 11A, and then the relay pipe 10I, the second hydraulic pressure unit 1B (second connection fluid passage 11B), and the front wheel wheel cylinder piping 10Wa, It is supplied to the front wheel cylinders 102a and 102b via 10Wb and supplied to the rear wheel cylinders 102c and 102d via the rear wheel cylinder cylinders 10Wc and 10Wd.
  • the second pump 81B can discharge the brake fluid to the second output port 62 side (the connection liquid path 11 on the wheel cylinder 102 side with respect to the on-off valve 71B) from the on-off valve 71B of the second connection liquid path 11B. Yes, brake fluid can be supplied to the wheel cylinder 102.
  • the second pump 81B can supply the brake fluid only to the connection fluid passages 11a and 11b connected to the wheel cylinders 102a and 102b corresponding to the front wheels FL and FR among all the wheels.
  • the second pump 81B sucks the brake fluid in the second reservoir 64 through the second suction fluid passage 12B and discharges it to the second discharge fluid passage 13B.
  • the brake fluid is supplied to the second reservoir 64 from the reservoir tank 2 via the pipe 10RB.
  • the brake fluid boosted by the second pump 81B is supplied to the second connection fluid passage 11B and then supplied to the front wheel cylinders 102a and 102b via the front wheel cylinder pipes 10Wa and 10Wb.
  • the reservoirs 47 and 64 of the hydraulic units 1A and 1B can continuously supply brake fluid to the pump 8 even when there is a fluid leak from the reservoir pipe 10R, for example.
  • the hydraulic units 1A and 1B when the hydraulic units 1A and 1B are arranged so that the reservoirs 47 and 64 are positioned on the upper side in the vertical direction, the functions of the reservoirs 47 and 64 can be more reliably exhibited.
  • An electronic control unit (hereinafter, ECU) 90 is installed on one side of the first housing 40 of the first hydraulic unit 1A.
  • the ECU 90 is electrically connected to the first motor 80A of the first hydraulic pressure unit 1A, the solenoids of the electromagnetic valves 7A, and the hydraulic pressure sensors 92, 93, 94.
  • the ECU 90 is electrically connected to the stroke sensor 91, the liquid level sensors 26 and 27, and the second motor 80B and the on-off valve 71B (solenoid thereof) of the second hydraulic pressure unit 1B via a harness.
  • the ECU 90 is connected to other control devices on the vehicle side via an in-vehicle network such as CAN.
  • the ECU 90 includes a first control unit 901, a second control unit 902, and a failure notification unit 903.
  • the first control unit 901 based on the detection value of the sensor 91 and the like, information on the running state input from the vehicle side, and a built-in program (stored in the ROM), the electromagnetic valve 7A of the first hydraulic unit 1A. And the rotation speed of the first motor 80A (that is, the discharge amount of the first pump 81A) is controlled. Thereby, the wheel cylinder hydraulic pressure (hydraulic braking force) of each wheel FL to RR is controlled.
  • the first controller 901 can execute various types of brake control by controlling the wheel cylinder hydraulic pressure.
  • Brake control includes boost control to reduce driver's braking force, anti-lock brake control (ABS) to suppress wheel slip due to braking, traction control to suppress wheel drive slip, vehicle Brake control for motion control, automatic brake control such as preceding vehicle follow-up control, regenerative cooperative brake control, and the like.
  • Vehicle motion control includes vehicle behavior stabilization control such as skidding prevention.
  • the first control unit 901 is a control device inside the microcomputer, and functions as a fluid pressure control device together with the sensor 91 and the like and the actuator (the electromagnetic valve 7A and the first motor 80A) of the first fluid pressure unit 1A.
  • the first control unit 901 includes an input unit 904, a calculation unit 905, and an output unit 906.
  • the input unit 904 reads information detected by the sensor 91 and the like and information from the in-vehicle network through an input interface circuit inside the microcomputer. Based on the information read by the input unit 904, the arithmetic unit 905 performs arithmetic processing for generating an actuator drive pattern in accordance with an embedded program (control algorithm).
  • the calculation unit 905 detects a displacement amount (pedal stroke) of the brake pedal 100 as a brake operation amount based on a detection value of the stroke sensor 91.
  • boost control based on the detected pedal stroke, a desired boost ratio, that is, the ideal relationship between the pedal stroke and the driver's required brake fluid pressure (vehicle deceleration required by the driver) is achieved.
  • Set the target wheel cylinder hydraulic pressure During regenerative cooperative brake control, for example, the sum of the regenerative braking force input from the control unit of the regenerative braking device of the vehicle and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver.
  • the target wheel cylinder hydraulic pressure is calculated.
  • the target wheel cylinder fluid of each wheel FL to RR that realizes a desired vehicle motion state Calculate the pressure.
  • the calculation unit 905 calculates a command for driving the actuator so as to realize the target wheel cylinder hydraulic pressure, and outputs the command to the output unit 906.
  • the drive command may relate to a current value, or may relate to a torque or a displacement amount.
  • the output unit 906 converts the drive command value from the calculation unit 905 and outputs it to the actuator drive circuit through an output interface circuit inside the microcomputer.
  • the output unit 906 includes a PWM duty value calculation unit and the like.
  • the output interface circuit includes a square wave generation circuit that generates a PWM signal, an inverter, and the like.
  • the input unit 904 and the output unit 906 may be realized by an electronic circuit (interface circuit).
  • the calculation means not only mathematical calculation but also general processing on software.
  • the target wheel cylinder hydraulic pressure that achieves a predetermined boost ratio may be set by calculation in addition to being set by a map in the microcomputer.
  • the first control unit 901 deactivates the first pump 81A and controls the shutoff valve 71A in the opening direction.
  • the connecting fluid path 11 that connects the hydraulic chambers 34P and 34S of the master cylinder 3 and the wheel cylinder 102 has the wheel cylinder hydraulic pressure generated by the master cylinder hydraulic pressure generated using the depression force of the brake pedal 100. Realize the tread force brake (non-boosting control) to be created.
  • the first control unit 901 controls the simulator-in valve 78 and the simulator-out valve 77 in the closing direction. As a result, the stroke simulator 5 is deactivated.
  • the first control unit 901 controls each actuator using the hydraulic pressure generated by the first pump 81A in a state where the communication between the master cylinder 3 and the wheel cylinder 102 is blocked by controlling the actuator of the first hydraulic unit 1A.
  • the hydraulic pressure in the cylinder 102 can be individually controlled (independent of the brake operation by the driver).
  • the first control unit 901 operates the first pump 81A and controls the shutoff valve 71A in the closing direction.
  • the fluid passage (the first suction fluid passage 12A, the first discharge fluid passage 13A, etc.) connecting the first reservoir 47 and the wheel cylinder 102 is the foil cylinder generated by the fluid pressure generated using the first pump 81A.
  • a so-called brake-by-wire system that creates hydraulic pressure is realized.
  • the first control unit 901 controls the simulator-in valve 78 in the closing direction and the simulator-out valve 77 in the opening direction.
  • the stroke simulator 5 operates.
  • the simulator out valve 77 is closed. Due to the force of the coil springs 520 and 530, the piston 51 strokes in the negative y-axis direction toward the initial position.
  • the hole 514 of the piston 51 returns to the y-axis positive direction side with respect to the seal member 54 (the lip) of the first seal groove 504, the back pressure chamber 56 and the supply port 503 communicate with each other.
  • the brake fluid is smoothly supplied from the first reservoir 47 (reservoir tank 2) to the back pressure chamber 56 via the simulator supply liquid passage 19A.
  • the first control unit 901 operates the first pump 81A at a predetermined number of revolutions when operating the brake pedal 100, closes the shutoff valve 71A, and opens the pressure increasing valve 72.
  • the communication valve 73A is controlled in the opening direction, and the pressure reducing valve 75 is controlled in the closing direction.
  • the opening and closing of the pressure regulating valve 74 is controlled so that the fluid pressure in the first discharge fluid passage 13A, which is the fluid pressure upstream of the pressure regulating valve 74, becomes the target fluid pressure corresponding to the target wheel cylinder fluid pressure.
  • the brake fluid pressure is supplied to the wheel cylinder 102 (the brake fluid is supplied to generate the fluid pressure), and the target wheel cylinder fluid pressure is realized.
  • the upstream hydraulic pressure is obtained by using any one or a plurality of detected values (for example, average values) of the hydraulic pressure sensors 92, 93P, 93S.
  • a wheel cylinder hydraulic pressure higher than the master cylinder hydraulic pressure is created using the first pump 81A as a hydraulic pressure source instead of the engine negative pressure booster.
  • the brake operation force is assisted by generating a hydraulic braking force that is insufficient with the driver's brake operation force.
  • the simulator out valve 77 may be controlled in the closing direction until the first pump 81A can generate a sufficiently high wheel cylinder hydraulic pressure after the start of the depression operation of the brake pedal 100.
  • the brake fluid flowing out from the back pressure chamber 56 is supplied to the connecting fluid passage 11A through the simulator pressure-increasing fluid passage 18A (the bypass fluid passage 180 and the check valve 780), and is supplied toward the wheel cylinder 102. .
  • voltage rise responsiveness of wheel cylinder hydraulic pressure can be improved.
  • the simulator out valve 77 is controlled in the opening direction so that the brake fluid is discharged from the back pressure chamber 56 to the first reservoir 47. Can be switched to. Note that the flow path cross-sectional area of the simulator pressure increasing liquid path 18A may be increased by controlling the simulator in valve 78 in the opening direction while the simulator out valve 77 is controlled in the closing direction.
  • the failure notification unit 903 generates a signal (normal signal) indicating that the boost control can be normally operated while the boost control by the first hydraulic pressure unit 1A is normally operable. Is continuously output to the signal line.
  • the normal signal is, for example, a square wave having a predetermined duty ratio. If the boost control is not normally operable, the failure notification unit 903 does not generate a normal signal and does not output it to the signal line.
  • the case where the boost control is not normally operable is a case where the ECU 90, the sensor 92, or the like, or the actuator of the first hydraulic unit 1A has failed (including power failure of the first hydraulic unit 1A). “The state in which the failure notifying unit 903 does not output a normal signal” corresponds to “notifying” the failure of the boost control (that the boost control is not normally operable) to other places.
  • the second control unit 902 functions as a hydraulic pressure control device together with the actuators (the on-off valve 71B and the second motor 80B) of the second hydraulic pressure unit 1B.
  • the second control unit 902 can execute boost control by controlling the second pump 81B and the on-off valve 71B of the second hydraulic pressure unit 1B.
  • the second control unit 902 and the actuator drive circuit 907 of the second hydraulic unit 1B constitute a control system for the second hydraulic unit 1B.
  • the second control unit 902 and the drive circuit 907 are circuits that are independent of the drive circuit of the actuator of the first control unit 901 and the first hydraulic unit 1A inside the ECU 90.
  • the drive circuit 907 has a relay 908 on a power supply line 909 extending between a power supply (battery) and ground.
  • the relay 908 is a semiconductor relay (for example, a power MOSFET). A mechanical relay may be used.
  • the drive circuit 907 is a current drive circuit, and the relay 908 is between a coil or the like and ground. Note that the drive circuit 907 may be a voltage drive circuit.
  • the second control unit 902 is connected to the relay 908 via a signal line.
  • a failure notification unit 903 and a stroke sensor 91 are connected to the second control unit 902 via a signal line.
  • the second control unit 902 is an electric circuit that can generate a signal, and has a relay sequence, for example.
  • the second control unit 902 generates a relay drive signal when there is no normal signal input from the failure notification unit 903 (for example, a predetermined time or more) and the detection value input from the stroke sensor 91 exceeds a predetermined value. This is output to the relay 908.
  • the relay drive signal is a switching signal for switching the relay 908 from OFF to ON.
  • the second control unit 902 does not generate a relay drive signal when a normal signal is input from the failure notification unit 903 or when the detection value input from the stroke sensor 91 is equal to or less than the predetermined value.
  • the second control unit 902 functions as a failure detection unit.
  • the second control unit 902 generates a relay drive signal, generates a signal (alert signal) for displaying an alert on the instrument panel or generating an alarm sound, and outputs the signal. Also good.
  • the brake pedal 100 is depressed from time t1 to t6, the depression amount is maintained from time t6 to t7, and the brake pedal 100 is depressed from time t7 to t8.
  • the pedal effort F increases from zero.
  • the pedaling force F reaches a predetermined initial pedaling force (for example, about 15N) [0] at which the brake pedal 100 starts to move.
  • the pedal stroke S (detected value of the stroke sensor 91) exceeds the predetermined value S0.
  • the brake lamp switch is switched from OFF to ON. Since the boost control by the first hydraulic pressure unit 1A is not normally operable (the boost control is not activated), the failure notification unit 903 does not generate a normal signal, and the second control unit 902 is normal. There is no signal input. Therefore, when the detection value of the stroke sensor 91 input to the second control unit 902 exceeds the predetermined value S0 at time t2, the second control unit 902 generates a relay drive signal and outputs it to the relay 908. As a result, the relay 908 is switched from OFF to ON, and energization of the second motor 80B and the on-off valve 71B is started. The on-off valve 71B is closed and the second pump 81B is activated.
  • the second control unit 902 does not particularly control the rotational speed of the second pump 81B.
  • the brake fluid boosted by the second pump 81B is supplied to the front wheel cylinders 102a and 102b. Therefore, after time t2, the hydraulic pressure in the front wheel cylinders 102a and 102b indicated by the solid line in FIG. 9 gradually increases.
  • the stroke simulator 5 since each actuator of the first hydraulic pressure unit 1A is inactive, the stroke simulator 5 is inactive, and the brake fluid flowing out from the hydraulic chamber 34 of the master cylinder 3 is connected to the connection fluid path 11 (first connection). It is supplied to the rear wheel cylinders 102c and 102d via the liquid passage 11A).
  • the rate of increase of S relative to the increase of F decreases, and the hydraulic pressure of the rear wheel cylinders 102c, 102d gradually increases as F increases.
  • the rising speed of the hydraulic pressure of the front wheel cylinders 102a and 102b by the second pump 81B is higher than the rising speed of the hydraulic pressure of the rear wheel cylinders 102c and 102d by F, and is, for example, 1 to 5 MPa / s.
  • the hydraulic pressure in the front wheel cylinders 102a and 102b is higher than the hydraulic pressure in the rear wheel cylinders 102c and 102d.
  • the vehicle deceleration realized by the wheel cylinder hydraulic pressure of the front and rear wheels increases.
  • the discharge pressure of the second pump 81B (the hydraulic pressure of the front wheel cylinders 102a and 102b by the second pump 81B) reaches an upper limit (eg, 3.7 MPa. The following is an example for reference).
  • F is 200 N
  • S is approximately 30 mm
  • the hydraulic pressure of the rear wheel cylinders 102c and 102d is 2.4 MPa
  • the vehicle deceleration realized by the wheel cylinder hydraulic pressure of the front and rear wheels is 0.46G.
  • the hydraulic pressure in the front wheel cylinders 102a, 102b remains at the upper limit, and the hydraulic pressure in the rear wheel cylinders 102c, 102d increases as F increases.
  • the hydraulic pressure in the front wheel cylinders 102a and 102b remains higher than the hydraulic pressure in the rear wheel cylinders 102c and 102d.
  • the vehicle deceleration achieved by the front and rear wheel cylinder hydraulic pressures increases slightly from 0.46G.
  • the brake fluid that has flowed out of the hydraulic chamber 34 of the master cylinder 3 is connected not only to the rear wheel cylinders 102c and 102d but also to the front wheel cylinder 102a via the connection fluid passage 11 (first and second connection fluid passages 11A and 11B). , 102b. Therefore, the deceleration of the vehicle realized by the wheel cylinder hydraulic pressures of the front and rear wheels increases, and the rate of increase of S with respect to the increase of F increases.
  • the relay 908 is switched from on to off, and energization of the second motor 80B and the on-off valve 71B is completed.
  • the on-off valve 71B is opened and the second pump 81B is stopped.
  • Brake fluid is returned from the front wheel cylinders 102a, 102b to the hydraulic pressure chamber 34 of the master cylinder 3 via the connection fluid passage 11 (first and second connection fluid passages 11A, 11B). Therefore, after time t8, the hydraulic pressure in the front wheel cylinders 102a, 102b rapidly decreases to 0, and the vehicle deceleration realized by the wheel cylinder hydraulic pressure in the front and rear wheels also decreases to 0.
  • the brake system 1 includes the second hydraulic unit 1B separately from the first hydraulic unit 1A. Normally, only the first hydraulic pressure unit 1A is activated to generate a brake hydraulic pressure, and a boost control that assists the pedal effort is executed. In a state where the boost control by the first hydraulic unit 1A has failed, the second hydraulic unit 1B is activated to generate the brake hydraulic pressure. As a result, as shown at times t2 to t5 in FIG. 9, a brake fluid pressure (front wheel wheel cylinder fluid pressure) higher than the brake fluid pressure (rear wheel wheel cylinder fluid pressure) due to the master cylinder fluid pressure is generated, and the pedal depression force Can continue assistance. That is, the failure notification unit 903 of the ECU 90 does not output a normal signal.
  • the second control unit 902 detects the failure of the boost control, and operates the second pump 81B to operate the on-off valve 71B in the closing direction when the brake pedal 100 is operated. Therefore, since the brake hydraulic pressure is supplied to the wheel cylinder 102 (in the present embodiment, the front wheels FL and FR) by the second hydraulic pressure unit 1B, the boost control can be continued as a whole of the brake system 1. Thus, the second hydraulic pressure unit 1B functions as an auxiliary hydraulic pressure unit for failure.
  • the pressure increase speed of the front wheel cylinders 102a and 102b by the second pump 81B is, for example, 1 to 5 MPa / s, and the maximum wheel in brake control for vehicle motion control It can be set lower than the cylinder pressure increase speed.
  • the original function of the second hydraulic pressure unit 1B is assistance in the case of failure of boost control by the first hydraulic pressure unit 1A (continuation of boost control).
  • the output or performance of the second pump 81B (second motor 80B) can be set lower than the output or performance of the first pump 81A (first motor 80A).
  • the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved.
  • the boost control by the first hydraulic unit 1A fails, a deceleration of 0.4G or more can be realized when the pedal force F is 200N.
  • the pedal stroke S at this time is approximately 30 mm, and S is suppressed within 50 mm. Therefore, it is possible to shorten the pedal stroke. In other words, a large deceleration can be obtained with a small pedaling force and a short pedal stroke.
  • the master cylinder 3 is provided with a booster such as an electric booster
  • the operation signal of the brake pedal 100 is used as a trigger in the state where the failure of the boost control by the first hydraulic unit 1A is detected. It is also conceivable to activate the booster.
  • the second hydraulic pressure unit 1B can increase the pressure of the wheel cylinder 102 independently of the operation of the master cylinder 3 (not using the brake fluid in the hydraulic pressure chamber 34). For this reason, when the pressure of the wheel cylinder 102 is increased by the second hydraulic unit 1B when the brake pedal 100 is operated in the above-described failure state, the amount of brake fluid delivered from the master cylinder 3 can be reduced. Therefore, it is easy to shorten the pedal stroke.
  • the second hydraulic unit 1B has a check valve 710 in parallel with the on-off valve 71B.
  • the brake fluid pressure front wheel wheel cylinder fluid pressure
  • the brake fluid pressure rear wheel cylinder fluid pressure
  • the master cylinder hydraulic pressure can be supplied to the wheel cylinder 102.
  • the second hydraulic pressure unit 1B may be configured to increase the pressure of the wheel cylinders 102 of all wheels (not only the front wheels FL and FR but also the rear wheels RL and RR).
  • the path 13B may be connected.
  • the second hydraulic pressure unit 1B (second pump 81B) is connected to the wheel cylinders 102a, 102b of only a part (front wheels FL, FR) of all the wheels, and this part of the wheel cylinders 102 is increased. Press. Therefore, the amount of discharge liquid of the second pump 81B necessary for increasing the pressure of the wheel cylinder 102 can be reduced. Accordingly, the rotation speed of the second motor 80B can be suppressed. By suppressing the motor rotation speed, it is possible to reduce sound vibration.
  • the master cylinder 3 (hydraulic pressure chamber 34) is connected to the wheel cylinders 102c, 102d of some other wheels (rear wheels RL, RR) of all the wheels without the second hydraulic pressure unit 1B (open / close valve 71B).
  • the master cylinder hydraulic pressure directly acts on the wheel cylinder 102. Therefore, the brake pedal 100 can stroke appropriately, and a more natural pedal operation feeling can be obtained.
  • the wheels connected to the second hydraulic pressure unit 1B may include both front wheels FL and FR and rear wheels RL and RR.
  • the second hydraulic pressure unit 1B may increase the pressure of the wheel cylinders 102c and 102d for only the rear wheels RL and RR.
  • the second hydraulic pressure unit 1B increases the pressure of the wheel cylinders 102a, 102b for the front wheels FL, FR only. Therefore, the deceleration of the vehicle can be effectively generated as compared with the case where the wheel cylinders 102c and 102d with only the rear wheels RL and RR are increased.
  • the second pump 81B there are two second pumps 81B. Therefore, by disposing the second pump 81B for each system, a valve for shutting off the liquid path on the discharge side of the second pump 81B between the systems becomes unnecessary. Thereby, the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved.
  • a second motor 80B may be provided for each second pump 81B. In the present embodiment, there is one second motor 80B, and two second pumps 81B are driven by one second motor 80B. Therefore, the configuration can be simplified and the size can be reduced.
  • the second control unit 902 detects the stroke sensor 91 as a signal (pedal operation signal) indicating that the brake pedal 100 has been operated in a state where the failure of the boost control by the first hydraulic unit 1A is detected. Using the signal as a trigger, the second pump 81B and the on-off valve 71B of the second hydraulic unit 1B are relay-driven to increase the pressure in the wheel cylinder 102.
  • the control system of the second hydraulic pressure unit 1B is a simple system in which the relay 908 is turned on only while the driver steps on the brake pedal 100, and the relay 908 is turned off when the driver releases the brake pedal 100. Thus, the operation method of the second hydraulic pressure unit 1B is simple and does not require complicated control.
  • complication of the brake system 1 as a countermeasure against the failure can be suppressed.
  • “complication” is from both a structural and control viewpoint.
  • a brake system is also conceivable in which the second hydraulic unit 1B is also provided with an ECU and the mutual failure state is monitored with the ECU 90 of the first hydraulic unit 1A.
  • the second hydraulic pressure unit 1B may be increased in size, the brake system may be complicated, or a mutual monitoring program may be required, resulting in an increase in cost.
  • the second control unit 902 generates and outputs an actuator drive signal based on the input (presence / absence) of two signals (failure signal and pedal operation signal). A circuit is sufficient.
  • the second control unit 902 does not need to have a complicated control law or a high processing capability, and can simplify or omit a program for realizing the control law and a memory for storing the program. Therefore, the second control unit 902 can be configured by a simple circuit (in this embodiment, a relay sequence).
  • the control system of the second hydraulic pressure unit 1B is not a system that monitors the state of the second motor 80B or the on-off valve 71B and performs feedback control thereof (an open type system that performs sequence control). And sensors can be omitted, and the input interface can be simplified and omitted.
  • the signal output from the second control unit 902 is a signal for switching on / off of the relay 908, and does not particularly control the rotation speed of the second motor 80B. For this reason, the output interface can be simplified or omitted. Therefore, an ECU or a sensor for controlling the operation of the second hydraulic unit 1B can be omitted, and thereby the second hydraulic unit 1B can be downsized. In addition, the configuration of the brake system 1 can be simplified and the cost can be reduced.
  • the failure notification unit 903 outputs a signal (failure signal) indicating the occurrence of the failure, and when the second control unit 902 receives the failure signal, the failure notification unit 903 outputs the failure. May be detected.
  • a detection signal such as a brake lamp switch provided in the brake pedal 100 or the like may be used. If a detection signal such as a brake lamp switch independent of the ECU 90 is used, the reliability of the ECU 90 when the power supply fails can be improved.
  • the second control unit 902 is arranged as an independent circuit inside the ECU 90 of the first hydraulic unit 1A. Therefore, further miniaturization of the second hydraulic unit 1B can be achieved. As described above, since the control system of the second hydraulic unit 1B including the second control unit 902 can be simplified, it is easy to arrange this control system inside the ECU 90 of the first hydraulic unit 1A. is there.
  • the drive circuit 907 (relay 908) of the second hydraulic unit 1B is also arranged as an independent circuit inside the ECU 90 of the first hydraulic unit 1A. Thereby, the same effect as the above is obtained.
  • the second controller 902 and the drive circuit 907 may be disposed in the second hydraulic unit 1B (inside the solenoid case 600).
  • the space inside the ECU 90 in the first hydraulic unit 1A can be saved.
  • the second control unit 902 and the drive circuit 907 may be separately arranged between the hydraulic units 1A and 1B. If the second control unit 902 and the drive circuit 907 are arranged in the same hydraulic unit, the control configuration for countermeasure against failure can be completed in the same hydraulic unit.
  • the second control unit 902 may be arranged as an independent circuit in a vehicle-side controller outside the brake system 1 (for example, an ECU for automatic driving in the advanced driving support system ADAS).
  • the failure of the first hydraulic pressure unit 1A (the state where the boost control is not activated) is detected by the second control unit 902 in the vehicle-side controller, so that the brake system 1 takes measures against the failure. Therefore, it can suppress complicating.
  • the drive circuit 907 may be disposed in the controller on the vehicle side.
  • the second control unit 902 and the drive circuit 907 are arranged in the first hydraulic unit 1A or the second hydraulic unit 1B, the control configuration for the failure countermeasure is completed in the brake system 1. Can do.
  • the second controller 902 and the drive circuit 907 may be arranged in the master cylinder unit 1C.
  • the ECU 90 may include a failure detection unit for executing an initial check as to whether or not the boost control by the second hydraulic unit 1B has failed. For example, when the brake pedal 100 is operated while the vehicle is stopped or at a predetermined vehicle speed (a vehicle speed that is less likely to cause a sense of incongruity when an unintended braking force is generated) after the ignition is turned on, The normal signal output from the failure notification unit 903 to the second control unit 902 is interrupted. At this time, it is detected whether or not the second hydraulic pressure unit 1B operates normally. In this case, it is preferable to ensure the performance of the second hydraulic pressure unit 1B (second motor 80B, etc.) that can withstand an initial check that is repeated to a certain extent.
  • a failure detection unit for executing an initial check as to whether or not the boost control by the second hydraulic unit 1B has failed. For example, when the brake pedal 100 is operated while the vehicle is stopped or at a predetermined vehicle speed (a vehicle speed that is less likely to cause a sense of incongruity when an
  • first hydraulic unit 1A and the second hydraulic unit 1B may be configured as one hydraulic unit (for example, by being connected and fixed to each other or sharing the same housing). In this case, the same effect as described above can be obtained.
  • the two hydraulic units 1A and 1B are separate bodies and are connected to each other by a brake pipe 10.
  • the second hydraulic unit 1B is located between the wheel cylinder 102 (of the front wheels FL, FR) and the first hydraulic unit 1A.
  • the second hydraulic unit 1B is on the wheel cylinder 102 side with respect to the first hydraulic unit 1A.
  • the on-off valve 71B is on the wheel cylinder 102 side with respect to the shutoff valve 71A.
  • the second hydraulic unit 1B (second pump 81B) adds the wheel cylinder 102 from a position relatively close to the wheel cylinder 102 in the connecting fluid path 11. Will be pressed. For this reason, there is little flow path resistance by the piping 10, and the pressure increase responsiveness of the wheel cylinder 102 can be improved correspondingly.
  • each unit 1A, 1B, 1C for achieving the above-described effects is not limited to that of this embodiment.
  • the pump 81 is not limited to a plunger pump, and may be a gear pump, for example. If it is a plunger pump like this embodiment, responsiveness is comparatively high.
  • the second control unit 902 of this embodiment implements control by software instead of the relay sequence.
  • FIG. 10 shows the flow of control executed by a program built in the second control unit 902.
  • step S1 it is determined whether a normal signal is received from the first hydraulic unit 1A. If the normal signal is continuously received (for example, a predetermined time or longer), S1 is repeatedly executed. If the normal signal is not continuously received, it is detected that the boost control by the first hydraulic pressure unit 1A has failed, and the process proceeds to S2.
  • the alert signal is turned on, an alert is displayed on the instrument panel, and an alarm sound is generated.
  • S3 it is determined whether or not a pedal operation signal is input. If it has been input, the process proceeds to S4.
  • the program is simple as described above, the microprocessor on which the program is mounted can be simplified and downsized. Further, as in the first embodiment, an ECU or the like for controlling the operation of the second hydraulic unit 1B can be omitted.
  • the failure notification unit 903 outputs a failure signal
  • the second control unit 902 detects the failure when receiving the failure signal in step S1. Then, the process may proceed to step S2.
  • Other functions and effects are the same as those of the first embodiment.
  • the electromagnetic valve 7B of the second hydraulic unit 1B has a communication valve 73B.
  • the communication valve 73B is a normally closed on / off valve.
  • the communication valve 73B may be a proportional control valve.
  • One end of the second discharge liquid passage 13B is connected to the discharge portion of the second pump 81B.
  • the other end of the second discharge liquid path 13B is a second connection liquid path 11sB, which is connected between the on-off valve 71sB and the second output port 62s.
  • the communication liquid path 13pB is a second connection liquid path 11pB between the on-off valve 71pB and the second output port 62p, and a second connection liquid path 11sB between the on-off valve 71sB and the second output port 62s. Connecting.
  • a communication valve 73B is provided on the communication liquid path 13pB. On the power supply line 909, the coil of the second motor 80B, the solenoid of the on-off valve 71B, and the solenoid of the communication valve 73B are connected in parallel.
  • the second hydraulic unit 1B is located between the master cylinder unit 1C and the first hydraulic unit 1A.
  • the first hydraulic unit 1A is on the wheel cylinder 102 side with respect to the second hydraulic unit 1B.
  • Master cylinder piping 10M connects master cylinder 3 and second hydraulic unit 1B.
  • One end of the master cylinder pipe 10M is connected to the supply port 302, and the other end of the master cylinder pipe 10M is connected to the second input port 61.
  • the relay pipe 10I connects the second hydraulic unit 1B and the first hydraulic unit 1A.
  • the wheel cylinder pipe 10W connects the first hydraulic unit 1A and the wheel cylinders 102 of the wheels FL to RR.
  • One end of each of the wheel cylinder pipes 10Wa to 10Wd is connected to each of the first output ports 42a to 42d, and the other end of each of the wheel cylinder pipes 10Wa to 10Wd is connected to each of the wheel cylinders 102a to 102d.
  • the on-off valve 71B is in the connection liquid path 11 on the master cylinder 3 side with respect to the shutoff valve 71A.
  • the shut-off valve 71A is in the connection liquid path 11 on the wheel cylinder 102 side with respect to the on-off valve 71B.
  • the second pump 81B can supply brake fluid to the connection fluid path 11 between the on-off valve 71B and the shutoff valve 71A.
  • Other configurations of the brake system 1 are the same as those in the first embodiment.
  • the second control unit 902 When the detection value of the stroke sensor 91 exceeds the predetermined value S0 (or the brake lamp switch detection signal is input) at time t2, the second control unit 902 generates a relay drive signal and outputs it to the relay 908. As a result, the relay 908 is switched from OFF to ON, and energization of the second motor 80B, the on-off valve 71B, and the communication valve 73B is started. The on-off valve 71B is closed, the communication valve 73B is opened, and the second pump 81B is operated.
  • the brake fluid boosted by the second pump 81B is supplied to the second connection fluid passage 11B of both systems, and then the front and rear wheel foils are connected via the relay piping 10I, the first connection fluid passage 11A, and the wheel cylinder piping 10W. It is supplied to the cylinders 102a to 102d. Therefore, after time t2, the hydraulic pressure in the front and rear wheel wheel cylinders 102 indicated by the solid line in FIG. 12 gradually increases. On the other hand, since the on-off valve 71B is closed, the outflow of the brake fluid from the hydraulic chamber 34 of the master cylinder 3 is suppressed. After time t2, the increase amount of the pedal stroke S is small with respect to the increase of the pedaling force F.
  • the rate of increase of the hydraulic pressure of the front and rear wheel cylinders 102 shown by the solid line in FIG. 12 is higher than the rate of increase of the hydraulic pressure of the master cylinder 3 by F (shown by the broken line), for example, 1-5 MPa / s. is there. Further, the hydraulic pressure in the wheel cylinder 102 is higher than the hydraulic pressure in the master cylinder 3.
  • the discharge pressure of the second pump 81B (the hydraulic pressure of the wheel cylinder 102 increased by the second pump 81B) is a mechanical upper limit value (for example, 3.5 MPa.
  • the check valve 710 opens according to the increase in the hydraulic pressure in the master cylinder 3, and the brake fluid flows from the master cylinder 3 side to the wheel cylinder 102 side, so that the hydraulic pressure in the wheel cylinder 102 is increased. It rises as well as the hydraulic pressure of 3. Therefore, the deceleration of the vehicle realized by the wheel cylinder hydraulic pressure increases, and the rate of increase of S with respect to the increase of F increases. Other changes are the same as in the first embodiment.
  • the second hydraulic pressure unit 1B pressurizes the wheel cylinders 102 of all the wheels FL to RR. Since the same brake fluid pressure acts on all wheels, a stable braking force can be secured.
  • the pedal force F is 200 N
  • the wheel cylinder hydraulic pressure of each wheel is 3.5 MPa, which is lower than that of the first embodiment, while the deceleration is 0.48 G, which is higher than that of the first embodiment. high.
  • the pedaling force F is 290N which is smaller than that of the first embodiment (310N), while the deceleration is 0.48G, which is the same as or higher than that of the first embodiment. In other words, a greater deceleration can be achieved with a smaller pedal effort.
  • the master cylinder hydraulic pressure does not act on the wheel cylinders 102 of all the wheels FL to RR. Since the on-off valve 71B is closed, the outflow of brake fluid from the hydraulic chamber 34 of the master cylinder 3 is suppressed. Therefore, the pedal stroke can be shortened as compared with the one in which the master cylinder hydraulic pressure acts on some of the wheels (first embodiment). For example, as shown at time t4 in FIG. 12, the pedaling force F is 200 N, and the pedal stroke S is approximately 20 mm, which is shorter than that of the first embodiment.
  • the second hydraulic unit 1B is located between the master cylinder 3 and the first hydraulic unit 1A. Compared to the first embodiment, since the second hydraulic pressure unit 1B (open / close valve 71B) is closer to the master cylinder 3, the pedal stroke can be made shorter during control by the second hydraulic pressure unit 1B.
  • the first hydraulic unit 1A is located between the wheel cylinder 102 and the second hydraulic unit 1B. In normal times when the boost control by the first hydraulic unit 1A has not failed, the first hydraulic unit 1A (first pump 81A) moves the wheel cylinder 102 from a position closer to the wheel cylinder 102 than in the first embodiment. Since the pressure is applied, the flow path resistance by the brake pipe 10 is small. For this reason, the pressure increase response of the wheel cylinder 102 at the normal time is improved.
  • the number of the second pump 81B is one, and the brake fluid can be supplied to the second connection fluid passage 11B of both systems via the communication fluid passage 13pB.
  • the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved.
  • the second discharge liquid path 13B may be connected to the second connection liquid path 11B of either system or may be connected to the communication liquid path 13pB.
  • Other functions and effects are the same as those of the first embodiment.
  • FIG. 13 there is one second pump 81B and it is driven by one second motor 80B.
  • One end of the second discharge liquid passage 13B is connected to the discharge portion of the first pump 81A.
  • the other end side of the second discharge liquid passage 13B branches into two.
  • Each of the branch liquid paths 13pB and 13sB is a second connection liquid path 11B and is connected between the on-off valve 71B and the second output port 62.
  • a check valve 73B is provided above each of the branch liquid passages 13pB and 13sB. The check valve 73B allows the flow of brake fluid from the discharge portion of the second pump 81B toward the second connection fluid path 11B and suppresses the flow in the opposite direction.
  • the second hydraulic pressure unit 1B has a relief circuit in the second discharge liquid path 13B.
  • the relief circuit includes a relief liquid passage 130, a relief valve 730, and a check valve 73B.
  • the relief liquid path 130 is the second discharge liquid path 13B, and connects the discharge part of the second pump 81B and the check valve 73B to the second suction liquid path 12B.
  • the relief valve 730 is above the relief fluid path 130.
  • the valve body of the relief valve 730 is always urged in the valve closing direction by a spring as an elastic body.
  • the second suction fluid passage 12B is connected to the reservoir 64 (reservoir tank 2), and the fluid pressure in the second suction fluid passage 12B is low (atmospheric pressure).
  • the urging force due to the difference between the fluid pressure in the second suction fluid passage 12B and the fluid pressure in the second discharge fluid passage 13B is the urging force of the spring.
  • the valve body moves above the threshold value, and the relief valve 730 opens.
  • the relief pressure is preset to a hydraulic pressure equivalent to the required braking force (for example, 3.7 MPa) when the second hydraulic unit 1B continues the boost control when the boost control by the first hydraulic unit 1A fails.
  • the Other configurations of the brake system 1 are the same as those in the first embodiment.
  • the number of the second pump 81B is one, and the brake fluid can be supplied to the second connection fluid passage 11B of both systems via the second discharge fluid passage 13B (branching fluid passages 13pB, 13sB).
  • the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved.
  • a check valve 73B in each of the branch liquid passages 13pB and 13sB, it is possible to block the flow of brake fluid between the systems.
  • one electromagnetic valve may be installed in each of the branch liquid passages 13pB and 13sB instead of the check valves 73pB and 73sB.
  • the relief valve 730 opens at a hydraulic pressure (relief pressure) corresponding to the required braking force, and allows the brake fluid in the second discharge fluid passage 13B to escape to the reservoir 64 (reservoir tank 2) side, which is a low-pressure part. .
  • rock of the 2nd motor 80B can be suppressed. That is, during the control by the second hydraulic pressure unit 1B, the brake system 1 continues to drive the second motor 80B while the brake pedal 100 is being operated.
  • the rotation of the second pump 81B is not stopped by the control of the second motor 80B, but is stopped due to a mechanical limit.
  • the second motor 80B automatically stops when the load on the second pump 81B exceeds a certain level.
  • the second motor 80B is stopped so as to stop (lock) when the discharge side of the second pump 81B reaches the hydraulic pressure equivalent to the braking force.
  • the motor 80B or the like it is also conceivable to set the motor 80B or the like. However, in this case, a large current continues to flow through the second motor 80B, which may reduce durability.
  • the relief valve 730 releases the brake fluid with a hydraulic pressure corresponding to the required braking force, so that the load is suppressed and the second motor 80B continues to rotate.
  • the brake fluid discharged from the second pump 81B is discharged from the relief valve 730 to the reservoir 64 (reservoir tank 2) side instead of the hydraulic chamber 34 of the master cylinder 3. For this reason, it can suppress that reaction force is transmitted to the brake pedal 100 by relief of brake fluid, and brake operation feeling falls.
  • the relief valve 730 is automatically opened when the liquid pressure in the second connection liquid path 11B tends to be higher than the relief pressure. Therefore, the brake fluid is discharged from the second connection fluid passage 1B through the relief valve 730, the fluid pressure in the second connection fluid passage 11B is not higher than the relief pressure, and the wheel cylinder fluid pressure is increased higher than the relief pressure. It becomes difficult to press.
  • the check valve 73B suppresses the flow of brake fluid from the second connection fluid path 1B to the relief valve 730. Therefore, the hydraulic pressure (foil cylinder hydraulic pressure) in the second connection liquid passage 1B can be increased higher than the relief pressure.
  • the check valve 73B has a function of increasing the hydraulic pressure (foil cylinder hydraulic pressure) of the connection liquid passage 11 higher than the relief pressure, in addition to the function of cutting off the systems. Since the check valve 73B has a plurality of functions, the number of parts of the second hydraulic unit 1B can be reduced and the configuration can be simplified. Note that a relief circuit similar to that of this embodiment may be provided in the second discharge liquid passage 13B of the first to third embodiments. Other functions and effects are the same as those of the first embodiment.
  • the second hydraulic pressure unit 1B does not have the relief liquid passage 130 and the relief valve 730. Instead, the on-off valve 71B functions as a relief valve.
  • the relay 908 is turned on and the on-off valve 71B is closed when the boost control by the first hydraulic unit 1A fails, the current flowing through the solenoid of the on-off valve 71B is set to a certain value or less.
  • the on-off valve 71B opens when the hydraulic pressure on the wheel cylinder 102 side is higher than the hydraulic pressure on the side of the master cylinder 3 relative to the on-off valve 71B in the second connection liquid path 11B” Such a current value is set so that the on-off valve 71B is energized.
  • Other configurations of the brake system 1 are the same as those in the fourth embodiment.
  • the open / close valve 71B is automatically opened.
  • a part of the brake fluid discharged from the second pump 81B is discharged to the master cylinder 3 side through the on-off valve 71B.
  • the wheel cylinder hydraulic pressure is suppressed from becoming higher than a certain level with respect to the master cylinder hydraulic pressure. Therefore, excessive pressure increase of the wheel cylinder 102 and locking of the second motor 80B can be suppressed.
  • the on-off valve 71B may be set to function as a relief valve. Other functions and effects are the same as those of the fourth embodiment.
  • the second hydraulic unit 1B has a relief circuit in the second discharge liquid passage 13B.
  • the relief circuit includes a relief liquid path 130, a relief valve 730, and a check valve 76.
  • the check valve 76 is above the second discharge liquid path 13B.
  • the check valve 76 allows the flow of brake fluid from the discharge portion of the second pump 81B toward the second connection fluid path 11B and suppresses the flow in the opposite direction.
  • the relief liquid path 130 is the second discharge liquid path 13B, and connects the discharge part of the second pump 81B and the check valve 76 to the second suction liquid path 12B.
  • the relief valve 730 is above the relief fluid path 130.
  • the configuration of the relief valve 730 is the same as that of the fourth embodiment.
  • the electromagnetic valve 7B of the second hydraulic unit 1B has an output control valve 78B.
  • the output control valve 78B is a normally closed on / off valve.
  • the output control valve 78B may be a proportional control valve.
  • the output control valve 78B is between the check valve 76 and the second discharge liquid passage 13B, which is connected to the second connection liquid passage 11sB.
  • the coil of the second motor 80B, the solenoid of the on-off valve 71B, the solenoid of the communication valve 73B, and the solenoid of the output control valve 78B are connected in parallel.
  • the second hydraulic unit 1B has a fast fill mechanism.
  • the fast fill mechanism includes a bypass liquid path 18B, a replenishment liquid path 19B, a piston 66, a coil spring 67, a seal member 68, and an output control valve 78B.
  • One end of the bypass liquid path 18B is a second connection liquid path 11sB and is connected between the second input port 61s and the on-off valve 71sB.
  • the other end of the bypass liquid path 18B is a second discharge liquid path 13B and is connected between the check valve 76 and the output control valve 78B.
  • Above the bypass liquid path 18B is a cylinder 604.
  • the cylinder 604 has a stepped cylindrical shape.
  • the large diameter portion of the cylinder 604 is on the second connection liquid passage 11sB side, and the small diameter portion is on the second discharge liquid passage 13B side.
  • the cylinder 604 has a first seal groove 607 in the large diameter portion and a second seal groove 608 in the small diameter portion.
  • Each of the seal grooves 607 and 608 has an annular shape extending in the direction around the axis of the cylinder 604 (hereinafter referred to as the circumferential direction).
  • the piston 66 is installed inside the cylinder 604 and can reciprocate in the axial direction.
  • the piston 66 has a stepped cylindrical shape.
  • the small diameter portion of the piston 66 is fitted to the small diameter portion of the cylinder 604, and the large diameter portion of the piston 66 is fitted to the large diameter portion of the cylinder 604.
  • the piston 66 has two recesses 661 and 662 separated by a partition wall 660.
  • the first recess 661 opens on the large diameter portion side of the piston 66, and the second recess 662 opens on the small diameter portion side.
  • a hole 665 penetrates the large-diameter portion of the piston 66, which is the peripheral wall of the first recess 661. There are a plurality of holes 665 in the circumferential direction.
  • the cylinder 604 is divided into a positive pressure chamber 691, a back pressure chamber 692, and a variable volume chamber 693 by the piston 66.
  • the positive pressure chamber 691 is on the large diameter portion side of the cylinder 604 with respect to the piston 66, and the back pressure chamber 692 is on the small diameter portion side.
  • the variable volume chamber 693 is located between the outer peripheral surface of the small diameter portion of the piston 66 and the inner peripheral surface of the large diameter portion of the cylinder 604.
  • the seal member 68 is a rod seal U-packing or V-packing, and is installed in each of the seal grooves 607 and 608. The lip of the seal member 68 is in contact with the outer peripheral surface of the piston 66.
  • the seal member 68 of the first seal groove 607 suppresses the flow of brake fluid from the positive pressure chamber 691 to the variable volume chamber 693 on the outer peripheral side of the large diameter portion of the piston 66, and allows the flow in the opposite direction.
  • the seal member 68 of the second seal groove 608 suppresses the flow of brake fluid from the back pressure chamber 692 toward the variable volume chamber 693 on the outer peripheral side of the small diameter portion of the piston 66, and allows the flow in the opposite direction.
  • the coil spring 67 is installed in the back pressure chamber 692, and always urges the piston 66 toward the positive pressure chamber 691 (the side where the volume of the positive pressure chamber 691 decreases).
  • the housing 60 is provided with a valve 761 for bleeding air from the variable volume chamber 693 and a valve 762 for bleeding air from the back pressure chamber 692.
  • the valve 761 is connected to the replenishing liquid path 19B, and the valve 762 is connected to the other end side (the side connected to the second discharge liquid path 13B) of the bypass liquid path 18B.
  • the other configuration of the brake system 1 is the same as that of the third embodiment.
  • the brake pedal 100 is depressed when the boost control by the first hydraulic unit 1A fails, the relay 908 switches from OFF to ON, and the second motor 80B, the on-off valve 71B, the communication valve 73B, and the output control valve 78B. Is energized.
  • the on-off valve 71B is closed, the communication valve 73B and the output control valve 78B are opened, and the second pump 81B is operated.
  • the master cylinder 3 is generated and the piston 66 is actuated by the master cylinder hydraulic pressure supplied to the positive pressure chamber 691 (stroke toward the back pressure chamber 692).
  • Brake fluid flows out of This brake fluid is supplied to the second connection fluid passage 11sB through the second discharge fluid passage 13B (output control valve 78B), and is supplied to the wheel cylinder 102 via the connection fluid passage 11.
  • the foil cylinder 102 is stuffed, so that the pressure increase response of the wheel cylinder 102 by the second pump 81B can be improved.
  • the fluid pressure of the positive pressure chamber 691 acts on the portion of the piston 66 facing the positive pressure chamber 691, and the force due to this fluid pressure tries to move the piston 66 to the back pressure chamber 692.
  • the hydraulic pressure of the back pressure chamber 692 acts on the portion facing the back pressure chamber 692, and the force by this hydraulic pressure tries to move the piston 66 to the positive pressure chamber 691 side.
  • the pressure increase response of the wheel cylinder 102 by the second pump 81B is low due to an insufficient rotation speed of the second motor 80B.
  • the second connection fluid on the second output port 62 side compared to the brake fluid pressure (master cylinder fluid pressure) of the second connection fluid passage 11B on the second input port 61 side with respect to the closed on-off valve 71B.
  • the brake fluid pressure (wheel cylinder fluid pressure) on the road 11B is not sufficiently high. Therefore, the force due to the fluid pressure in the positive pressure chamber 691 (master cylinder fluid pressure) exceeds the force due to the fluid pressure in the back pressure chamber 692 (wheel cylinder fluid pressure) (and the sum of the biasing force of the coil spring 67),
  • the piston 66 is movable toward the back pressure chamber 692.
  • the second connection liquid is connected in parallel with the on-off valve 71B.
  • This bypass fluid path is connected to the second connection port 11B on the second input port 61 or the master cylinder 3 side with respect to the on-off valve 71B, and on the second output port 62 or the wheel cylinder 102 side on the side of the on-off valve 71B.
  • the second connection liquid path 11B is connected.
  • a function equivalent to the brake fluid flowing from the master cylinder 3 to the wheel cylinder 102 via the bypass fluid path (bypassing the on-off valve 71B) is realized.
  • the output control valve 78B is on the bypass liquid passage, and enables the operation of the piston 66 by opening the valve, and suppresses the operation of the piston 66 by closing the valve. In other words, it controls the presence or absence of the output of the fast fill mechanism.
  • As the bypass liquid path a liquid path that is connected to the second connection liquid path 11sB in parallel with the on-off valve 71B and bypasses the on-off valve 71B may be provided independently of the second discharge liquid path 13B.
  • the circuit configuration can be simplified by using a part of the second discharge liquid path 13B also as the bypass liquid path.
  • Piston 66 is stepped.
  • the hydraulic pressure in the back pressure chamber 692 (hydraulic pressure on the wheel cylinder 102) is larger than the area (large diameter portion) of the piston 66 that receives the hydraulic pressure in the positive pressure chamber 691 (hydraulic pressure on the master cylinder 3 side).
  • the area of the part (small diameter part) that receives is smaller. Therefore, the hydraulic pressure on the side of the wheel cylinder 102 output from the cylinder 604 becomes higher than the hydraulic pressure on the side of the master cylinder 3 input to the cylinder 604 (ignoring the biasing force of the coil spring 67). Therefore, the pressure increasing response of the wheel cylinder 102 can be further improved.
  • the hydraulic pressure (master cylinder fluid) of the positive pressure chamber 691 is increased. It is possible to keep the piston 66 stopped at a fixed position on the back pressure chamber 692 side by pressure. Therefore, it is easy to stabilize the operation of the piston 66 during the control by the second hydraulic unit 1B.
  • the piston 66 returns to the initial position by the urging force of the coil spring 67.
  • the change of the variable volume chamber 693, that is, the reciprocating movement of the piston 66 is facilitated by the replenishing liquid passage 19B communicating with the low pressure portion.
  • the relief circuit including the relief valve 730 provides the same effects as the fourth embodiment. Other functions and effects are the same as those of the third embodiment.
  • the hydraulic control device in one embodiment thereof, A connecting fluid path for connecting a master cylinder that generates a brake fluid pressure in response to an operation of a brake pedal, and a wheel cylinder portion that can apply a braking force to a wheel portion in accordance with the brake fluid pressure; A shut-off valve disposed in the connection liquid path; A first hydraulic pressure source capable of supplying brake fluid to a portion of the connection fluid path located on the wheel cylinder portion side with respect to the shutoff valve; A control unit capable of executing boost control for controlling the first hydraulic pressure source and the shut-off valve during operation of the brake pedal and supplying brake fluid to the wheel cylinder unit; An on-off valve that is disposed in the connection liquid path and that operates in a closing direction when the brake pedal is operated in a state where the boost control is not operated; Brake fluid can be supplied to a portion of the connection fluid path located on the wheel cylinder portion side with respect
  • a second hydraulic pressure source operable operable.
  • the on-off valve is disposed in the portion of the connection liquid path on the side located on the wheel cylinder portion with respect to the shutoff valve.
  • the second hydraulic pressure source can supply brake fluid only to a portion of the connection fluid path that is connected to the wheel cylinder portion corresponding to the front wheel of the wheel portion.
  • a relief valve is provided in a fluid path connecting the low pressure portion and the discharge side of the second fluid pressure source, and can recirculate brake fluid to the low pressure portion.
  • the on-off valve is disposed in a portion of the connection liquid path located on the master cylinder side with respect to the shutoff valve,
  • the second hydraulic pressure source can supply brake fluid to a portion of the connection fluid path between the on-off valve and the shutoff valve.
  • a relief valve is provided in a fluid path connecting the low pressure portion and the discharge side of the second fluid pressure source, and can recirculate brake fluid to the low pressure portion.
  • a bypass fluid path that connects the master cylinder and the portion of the connection fluid path that is located on the wheel cylinder portion side with respect to the on-off valve;
  • a piston that is disposed in the bypass fluid passage and is operable by a brake fluid pressure generated by the master cylinder, the brake fluid being closer to the wheel cylinder portion than the area receiving the brake fluid pressure on the master cylinder side And a piston having a smaller area for receiving pressure.
  • the brake system is, in one embodiment thereof, A master cylinder unit having a master cylinder that generates brake fluid pressure in response to operation of the brake pedal; A first hydraulic unit capable of increasing the brake hydraulic pressure; A second hydraulic pressure unit capable of increasing the brake hydraulic pressure, The first hydraulic unit is A first input port to which brake fluid is input; A first connection liquid path connected to the first input port; A shutoff valve disposed in the first connection liquid path; A first output port connected to the first connection fluid path for outputting brake fluid; A first hydraulic pressure source capable of discharging brake fluid to a portion of the first connection fluid path located closer to the first output port than the shutoff valve; A control unit capable of executing a boost control for controlling the first hydraulic pressure source and the shutoff valve to generate a brake hydraulic pressure when the brake pedal is operated, The second hydraulic unit is A second input port to which brake fluid is input; A second connection liquid path connected to the second input port; An on-off valve disposed in the second connection liquid path and operating in a closing direction when the brake pedal is operated in
  • a second hydraulic pressure source operable during operation.
  • the first input port is connected to the master cylinder;
  • the first output port is connected to the second input port;
  • the second output port is connected to a wheel cylinder portion that can apply a braking force to the wheel portion according to the brake fluid pressure.
  • the second hydraulic unit can supply brake fluid only to the wheel cylinder part corresponding to the front wheel of the wheel part.
  • the second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. .
  • the second input port is connected to the master cylinder;
  • the second output port is connected to the first input port;
  • the first output port is connected to a wheel cylinder part capable of applying a braking force to the wheel part according to the brake fluid pressure.
  • the second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. .
  • the second hydraulic unit is A portion of the second connection liquid path that is positioned on the second input port side with respect to the on-off valve, and the second output port with respect to the on-off valve of the second connection liquid path.
  • the state where the boost control is not activated is detected by a controller on the vehicle side.
  • the state where the boost control is not activated is detected by the failure detection unit of the first hydraulic pressure unit.
  • the auxiliary hydraulic unit is, in one embodiment thereof, When the brake pedal is operated, the main hydraulic unit that can execute the boost control that supplies the brake hydraulic pressure to the wheel cylinder portion of the wheel when the brake pedal is operated does not execute the boost control, and operates when the brake pedal is operated. Thus, the brake fluid pressure can be supplied to the wheel cylinder portion.
  • a hydraulic pressure source capable of supplying brake fluid to the wheel cylinder portion;
  • a relief valve disposed in a fluid path connecting a low pressure portion and a discharge side of the fluid pressure source and capable of returning brake fluid to the low pressure portion.
  • 1 Brake system 100 Brake pedal, 1C Master cylinder unit, 3 Master cylinder, 1A 1st hydraulic unit, 11A 1st connecting fluid path, 41 1st input port, 42 1st output port, 71A shutoff valve, 81A 1st Pump (first hydraulic pressure source), 1B, second hydraulic pressure unit, 11B, second connecting fluid path, 61, second input port, 62, second output port, 71B on-off valve, 81B second pump (second hydraulic pressure source) , 90 Electronic control unit, 901 1st control unit, 902 2nd control unit

Abstract

Provided is a hydraulic control device capable of suppressing complication. This hydraulic control device comprises: a connection fluid path which connects a master cylinder and a wheel cylinder portion; a shutoff valve disposed in the connection fluid path; a first hydraulic source capable of supplying a brake fluid to a portion of the connection fluid path located to the side of the wheel cylinder portion with respect to the shutoff valve; a control unit capable of executing boost control to control the first hydraulic source and the shutoff valve and supply the brake fluid to the wheel cylinder portion when a brake pedal is operated; an opening-closing valve which is disposed in the connection fluid path and operates in the closing direction when the brake pedal is operated in a state in which the boost control is not in execution; and a second hydraulic source capable of supplying the brake fluid to a portion of the connection fluid path located to the side of the wheel cylinder portion with respect to the opening-closing valve, and capable of operating when the brake pedal is operated in a state in which the boost control is not in execution.

Description

液圧制御装置、ブレーキシステム及び失陥時用補助液圧ユニットHydraulic pressure control device, brake system, and auxiliary hydraulic pressure unit for failure
 本発明は、液圧制御装置に関する。 The present invention relates to a hydraulic pressure control device.
 従来、ホイルシリンダの側にブレーキ液を供給可能な液圧源を、マスタシリンダとは別に備える液圧制御装置が知られている。例えば特許文献1に記載の液圧制御装置は、失陥時対策として上記のような液圧源を2つ備えている。 Conventionally, there has been known a hydraulic pressure control device provided with a hydraulic pressure source capable of supplying brake fluid to the wheel cylinder side separately from the master cylinder. For example, the hydraulic pressure control device described in Patent Document 1 includes two hydraulic pressure sources as described above as countermeasures against failure.
米国特許出願公開第2015/0175146号明細書US Patent Application Publication No. 2015/0175146
 従来の液圧制御装置は、液圧源毎にコントロールユニットを備えるため、複雑化するおそれがあった。 Since the conventional hydraulic pressure control device includes a control unit for each hydraulic pressure source, there is a risk of complication.
 本発明の一実施形態に係る液圧制御装置は、第1液圧源による倍力制御が作動していない状態でブレーキペダルの操作時に作動可能な第2液圧源を備える。 The hydraulic pressure control device according to an embodiment of the present invention includes a second hydraulic pressure source that can be activated when the brake pedal is operated in a state where the boost control by the first hydraulic pressure source is not activated.
 よって、第2液圧源の作動に複雑な制御を必要としないため、複雑化を抑制できる。 Therefore, since complicated control is not required for the operation of the second hydraulic pressure source, complication can be suppressed.
第1実施形態のブレーキシステムの構成を示す。The structure of the brake system of 1st Embodiment is shown. 第1実施形態のマスタシリンダユニットの斜視図である。It is a perspective view of the master cylinder unit of a 1st embodiment. 第1実施形態の第1液圧ユニットの斜視図である。It is a perspective view of the 1st hydraulic unit of a 1st embodiment. 第1実施形態の第2液圧ユニットを第2モータの側から見た斜視図である。It is the perspective view which looked at the 2nd hydraulic unit of a 1st embodiment from the 2nd motor side. 第1実施形態の第2液圧ユニットを第2モータと反対の側から見た斜視図である。It is the perspective view which looked at the 2nd hydraulic unit of a 1st embodiment from the side opposite to the 2nd motor. 第1実施形態のカバーを外した状態の第2液圧ユニットを第2モータの側から見た斜視図である。It is the perspective view which looked at the 2nd hydraulic pressure unit in the state where the cover of a 1st embodiment was removed from the 2nd motor side. 第1実施形態の第2液圧ユニットの内部を第2モータの側から透視した斜視図である。It is the perspective view which saw through the inside of the 2nd hydraulic unit of a 1st embodiment from the 2nd motor side. 第1実施形態の第2液圧ユニットの制御システムの構成を示す。The structure of the control system of the 2nd hydraulic pressure unit of 1st Embodiment is shown. 第1実施形態の第1液圧ユニットによる倍力制御の失陥時におけるブレーキシステムの作動状態を示すタイムチャートである。It is a time chart which shows the operating state of a brake system at the time of failure of the boost control by the 1st hydraulic pressure unit of a 1st embodiment. 第2実施形態の第2液圧ユニットの制御ロジックを示すフローチャートである。It is a flowchart which shows the control logic of the 2nd hydraulic pressure unit of 2nd Embodiment. 第3実施形態のブレーキシステムの構成を示す。The structure of the brake system of 3rd Embodiment is shown. 第3実施形態の第1液圧ユニットによる倍力制御の失陥時におけるブレーキシステムの作動状態を示すタイムチャートである。It is a time chart which shows the operating state of a brake system at the time of failure of the boost control by the 1st hydraulic pressure unit of a 3rd embodiment. 第4実施形態のブレーキシステムの構成を示す。The structure of the brake system of 4th Embodiment is shown. 第5実施形態の第2液圧ユニットにおける液路の構成を示す。The structure of the liquid path in the 2nd hydraulic pressure unit of 5th Embodiment is shown. 第6実施形態のブレーキシステムの構成を示す。The structure of the brake system of 6th Embodiment is shown.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
  まず、構成を説明する。本実施形態のブレーキシステム1は、車両、具体的には自動車に搭載される。自動車は、車輪を駆動する原動機として内燃機関(エンジン)のみを備えたもの、エンジンに加えて電動式のモータを備えたハイブリッド車、モータのみを備えた電気自動車等である。車両は、車輪部として1以上の車輪、具体的には左右の前輪FL,FRと左右の後輪RL,RRを有する。各車輪にはホイルシリンダ102が設置される。各車輪FL~RRには、ブレーキ作動ユニットが設置される。ブレーキ作動ユニットは例えばディスク式であり、ホイルシリンダ102とキャリパを有する。キャリパはホイルシリンダ102の液圧(ブレーキ液圧)によって作動し、ブレーキ液圧に応じて車輪FL~RRに摩擦制動力を付与する。これら1以上のホイルシリンダ102はホイルシリンダ部として機能する。ブレーキシステム1の液圧回路は、プライマリ系統(P系統)とセカンダリ系統(S系統)に2系統化されている。以下、部材や構成がP系統に関することを明示する場合はその符号の末尾にPを付し、S系統に関することを明示する場合はその符号の末尾にSを付す。図1に示すように、ブレーキシステム1は、第1液圧ユニット1A、第2液圧ユニット1B、及びマスタシリンダユニット1Cを備える。以下、部材や構成が第1液圧ユニット1Aに関することを明示する場合はその符号の末尾にAを付し、第2液圧ユニット1Bに関することを明示する場合はその符号の末尾にBを付す。ブレーキペダル100は、車両の運転者(ドライバ)によるブレーキ操作の入力を受ける部材(入力部材)である。ブレーキペダル100にはプッシュロッド101が回動自在に連結される。プッシュロッド101は、ブレーキペダル100の踏込み操作に応じて押され、当該プッシュロッド101の軸方向に移動可能である。プッシュロッド101は鍔部101fを有する。
[First embodiment]
First, the configuration will be described. The brake system 1 of the present embodiment is mounted on a vehicle, specifically an automobile. Automobiles include those having only an internal combustion engine (engine) as a prime mover for driving wheels, hybrid vehicles having an electric motor in addition to the engine, electric vehicles having only a motor, and the like. The vehicle has one or more wheels, specifically left and right front wheels FL and FR, and left and right rear wheels RL and RR as wheel portions. A wheel cylinder 102 is installed on each wheel. A brake operating unit is installed on each wheel FL to RR. The brake operation unit is, for example, a disk type, and includes a wheel cylinder 102 and a caliper. The caliper is operated by the hydraulic pressure (brake hydraulic pressure) of the wheel cylinder 102, and applies friction braking force to the wheels FL to RR according to the brake hydraulic pressure. These one or more wheel cylinders 102 function as a wheel cylinder part. The hydraulic circuit of the brake system 1 is divided into two systems, a primary system (P system) and a secondary system (S system). Hereinafter, when it is clearly indicated that the member or configuration relates to the P system, P is added to the end of the reference numeral, and when it is specified that the member or configuration is related to the S system, S is added to the end of the reference numeral. As shown in FIG. 1, the brake system 1 includes a first hydraulic unit 1A, a second hydraulic unit 1B, and a master cylinder unit 1C. Hereinafter, when it is clearly stated that the member or configuration relates to the first hydraulic unit 1A, an A is added to the end of the symbol, and when it is explicitly shown that the member or configuration is related to the second hydraulic unit 1B, the suffix B is attached to the end . The brake pedal 100 is a member (input member) that receives an input of a brake operation by a vehicle driver (driver). A push rod 101 is rotatably connected to the brake pedal 100. The push rod 101 is pushed in accordance with the depression operation of the brake pedal 100 and can move in the axial direction of the push rod 101. The push rod 101 has a flange 101f.
 図1及び図2に示すように、マスタシリンダユニット1Cは、リザーバタンク2とマスタシリンダ3を有する。リザーバタンク2は、ブレーキ液を貯留し、マスタシリンダ3及び各液圧ユニット1A,1Bにブレーキ液を補給可能である。リザーバタンク2の底部側は、隔壁21によりマスタシリンダ補給用の液室23及びポンプ吸入用の液室24に区画される。液室23は、隔壁22によりP系統の液室23PとS系統の液室23Sに区画される。この隔壁22は上記隔壁21よりも低い。隔壁22には、液面センサ26が設置され、液室23の液面高さを測定可能である。液室24には補給ポート25が接続する。液室24には、液面センサ27が設置され、液室24の液面高さを測定可能である。 As shown in FIGS. 1 and 2, the master cylinder unit 1C has a reservoir tank 2 and a master cylinder 3. The reservoir tank 2 stores brake fluid and can replenish the master cylinder 3 and the hydraulic units 1A and 1B with brake fluid. The bottom side of the reservoir tank 2 is partitioned by a partition wall 21 into a liquid chamber 23 for replenishing the master cylinder and a liquid chamber 24 for pump suction. The liquid chamber 23 is partitioned by a partition wall 22 into a P-system liquid chamber 23P and an S-system liquid chamber 23S. The partition wall 22 is lower than the partition wall 21. A liquid level sensor 26 is installed in the partition wall 22, and the liquid level height of the liquid chamber 23 can be measured. A replenishment port 25 is connected to the liquid chamber 24. A liquid level sensor 27 is installed in the liquid chamber 24, and the liquid level height of the liquid chamber 24 can be measured.
 マスタシリンダ3は、ハウジング30、ピストン31、ばねユニット32、及びシール部材33を有する。以下、マスタシリンダ3の軸方向にx軸を設け、ブレーキペダル100の踏込み操作に応じてプッシュロッド101が押される方向を正方向とする。図2に示すように、ハウジング30はフランジ306を有する。フランジ306はボルト307により車両側の部材(ダッシュパネル等)に固定される。ハウジング30の内部には、シリンダ300、補給ポート301、及び供給ポート302がある。シリンダ300は円筒状であり、系統毎に2つの溝303,304を有する。各溝303,304は、シリンダ300の軸心の周り方向(以下、周方向)に延びる円環状である。第1溝303はx軸正方向側にあり、第2溝304はx軸負方向側にある。各ポート301,302は系統毎にある。各系統で、補給ポート301は、両溝303,304の間でシリンダ300に開口すると共に、ハウジング30の外表面に開口する。補給ポート301Pはリザーバタンク2の液室23Pに接続し、補給ポート301Sはリザーバタンク2の液室23Sに接続する。供給ポート302は、第1溝303よりもx軸正方向側でシリンダ300に開口すると共に、ハウジング30の外表面に開口する。 The master cylinder 3 includes a housing 30, a piston 31, a spring unit 32, and a seal member 33. Hereinafter, the x-axis is provided in the axial direction of the master cylinder 3, and the direction in which the push rod 101 is pushed in response to the depression operation of the brake pedal 100 is defined as the positive direction. As shown in FIG. 2, the housing 30 has a flange 306. The flange 306 is fixed to a vehicle-side member (such as a dash panel) by a bolt 307. Inside the housing 30, there are a cylinder 300, a supply port 301, and a supply port 302. The cylinder 300 is cylindrical and has two grooves 303 and 304 for each system. Each of the grooves 303 and 304 has an annular shape extending in the direction around the axis of the cylinder 300 (hereinafter referred to as the circumferential direction). The first groove 303 is on the x-axis positive direction side, and the second groove 304 is on the x-axis negative direction side. Each port 301, 302 is provided for each system. In each system, the supply port 301 opens to the cylinder 300 between the grooves 303 and 304 and opens to the outer surface of the housing 30. The replenishment port 301P is connected to the liquid chamber 23P of the reservoir tank 2, and the replenishment port 301S is connected to the liquid chamber 23S of the reservoir tank 2. The supply port 302 opens in the cylinder 300 on the x axis positive direction side with respect to the first groove 303 and also opens on the outer surface of the housing 30.
 マスタシリンダ3はタンデム型であり、ピストン31は系統毎にある。ピストン31はシリンダ300の内部に設置され、x軸方向に往復移動可能である。ピストン31は円筒状であり、隔壁310で仕切られた2つの凹部311,312を有する。第1凹部311はx軸正方向側に配置され、第2凹部312はx軸負方向側に配置される。第1凹部311の周壁を孔313が貫通する。孔313は周方向に複数ある。ピストン31Pはx軸負方向側に設置され、ピストン31Sはx軸正方向側に設置される。ピストン31Pの第2凹部312Pにはプッシュロッド101のx軸正方向側が設置される。隔壁310Pにプッシュロッド101のx軸正方向端が接する。シリンダ300は、両ピストン31P,31Sにより、2つの液圧室34P,34Sと大気圧室38に区画される。液圧室34Pはピストン31Pとピストン31Sの間にある。液圧室34Sはピストン31Sのx軸正方向側にある。各液圧室34P,34Sは供給ポート302に接続する。大気圧室38は液圧室34Pのx軸負方向側にある。ハウジング30のx軸負方向端に、大気圧室38と外部とを連通する孔305がある。孔305にはプッシュロッド101が貫通して設置される。シール部材33はロッドシール用のUパッキンやVパッキンであり、各溝303,304に設置される。ピストン31の外周面にはシール部材33のリップが接する。第1溝303のシール部材33は、ピストン31の外周側で液圧室34から補給ポート301へ向うブレーキ液の流れを抑制し、反対方向の流れを許容する。第2溝304Pのシール部材33は、ピストン31Pの外周側で補給ポート301Pから大気圧室38へ向うブレーキ液の流れを抑制する。第2溝304Sのシール部材33は、ピストン31Sの外周側で液圧室34Pから補給ポート301Sへ向うブレーキ液の流れを抑制する。 The master cylinder 3 is a tandem type, and the piston 31 is provided for each system. The piston 31 is installed inside the cylinder 300 and can reciprocate in the x-axis direction. The piston 31 is cylindrical and has two concave portions 311 and 312 separated by a partition wall 310. The first recess 311 is disposed on the x-axis positive direction side, and the second recess 312 is disposed on the x-axis negative direction side. A hole 313 passes through the peripheral wall of the first recess 311. There are a plurality of holes 313 in the circumferential direction. The piston 31P is installed on the x-axis negative direction side, and the piston 31S is installed on the x-axis positive direction side. The x-axis positive direction side of the push rod 101 is installed in the second recess 312P of the piston 31P. The x-axis positive direction end of the push rod 101 is in contact with the partition wall 310P. The cylinder 300 is divided into two hydraulic pressure chambers 34P and 34S and an atmospheric pressure chamber 38 by both pistons 31P and 31S. The hydraulic chamber 34P is located between the piston 31P and the piston 31S. The hydraulic chamber 34S is on the positive side of the piston 31S in the x-axis direction. Each hydraulic chamber 34P, 34S is connected to a supply port 302. The atmospheric pressure chamber 38 is on the negative side in the x-axis direction of the hydraulic chamber 34P. A hole 305 that connects the atmospheric pressure chamber 38 and the outside is provided at the end of the housing 30 in the negative x-axis direction. The push rod 101 is installed through the hole 305. The seal member 33 is a rod seal U-packing or V-packing, and is installed in each of the grooves 303 and 304. The lip of the seal member 33 is in contact with the outer peripheral surface of the piston 31. The seal member 33 of the first groove 303 suppresses the flow of brake fluid from the hydraulic chamber 34 toward the replenishment port 301 on the outer peripheral side of the piston 31, and allows the flow in the opposite direction. The seal member 33 in the second groove 304P suppresses the flow of brake fluid from the supply port 301P toward the atmospheric pressure chamber 38 on the outer peripheral side of the piston 31P. The seal member 33 in the second groove 304S suppresses the flow of brake fluid from the hydraulic chamber 34P toward the replenishment port 301S on the outer peripheral side of the piston 31S.
 ばねユニット32は、コイルスプリング320、第1リテーナ321、第2リテーナ322、及びストッパ323を有する。両リテーナ321,322は有底円筒状であり、底部と鍔部を有する。ストッパ323の一端は鍔状であり、第1リテーナ321の内部に往復移動可能に設置される。ストッパ323の他端は、第2リテーナ322の底部に固定される。コイルスプリング320は、両リテーナ321,322を取り囲む。コイルスプリング320の一端は第1リテーナ321の鍔部に設置され、コイルスプリング320の他端は第2リテーナ322の鍔部に設置される。コイルスプリング320は常時圧縮された状態である。ストッパ323の上記一端が第1リテーナ321の底部に係合することで、コイルスプリング320の伸長が規制される。ばねユニット32Pは液圧室34Pに設置される。第1リテーナ321Pの鍔部がピストン31Sの隔壁310Sに設置され、第2リテーナ322Pの鍔部がピストン31Pの隔壁310Pに設置される。ばねユニット32Sは液圧室34Sに設置される。第1リテーナ321Sの鍔部がシリンダ300のx軸正方向端の内壁に設置され、第2リテーナ322Sの鍔部がピストン31Sの隔壁310Sに設置される。各コイルスプリング320P,320Sの長さが最大となる初期状態で、両ピストン31P,31Sはx軸負方向側に最大変位し、プッシュロッド101の鍔部101fがハウジング30における孔305の外周側の内壁に接する。この内壁により鍔部101fのx軸負方向側への移動が規制される。この初期状態で、各ピストン31P,31Sの孔313はx軸方向で両溝303,304のシール部材33(リップ)の間にあり、各ピストン31P,31Sの第1凹部311(液圧室34)と補給ポート301は孔313を介して連通する。 The spring unit 32 includes a coil spring 320, a first retainer 321, a second retainer 322, and a stopper 323. Both retainers 321 and 322 have a bottomed cylindrical shape and have a bottom portion and a flange portion. One end of the stopper 323 has a bowl shape and is installed inside the first retainer 321 so as to be able to reciprocate. The other end of the stopper 323 is fixed to the bottom of the second retainer 322. The coil spring 320 surrounds both retainers 321 and 322. One end of the coil spring 320 is installed on the flange of the first retainer 321, and the other end of the coil spring 320 is installed on the flange of the second retainer 322. The coil spring 320 is always compressed. When the one end of the stopper 323 is engaged with the bottom of the first retainer 321, the extension of the coil spring 320 is restricted. The spring unit 32P is installed in the hydraulic chamber 34P. The flange of the first retainer 321P is installed on the partition wall 310S of the piston 31S, and the flange of the second retainer 322P is installed on the partition wall 310P of the piston 31P. The spring unit 32S is installed in the hydraulic chamber 34S. The flange of the first retainer 321S is installed on the inner wall of the cylinder 300 at the positive end in the x-axis direction, and the flange of the second retainer 322S is installed on the partition wall 310S of the piston 31S. In the initial state where the length of each coil spring 320P, 320S is the maximum, both pistons 31P, 31S are displaced maximum in the negative x-axis direction, and the flange portion 101f of the push rod 101 is located on the outer peripheral side of the hole 305 in the housing 30. Touch the inner wall. The inner wall restricts the movement of the flange portion 101f in the negative x-axis direction. In this initial state, the holes 313 of the pistons 31P and 31S are located between the seal members 33 (lips) of the grooves 303 and 304 in the x-axis direction, and the first recesses 311 (hydraulic pressure chambers 34) of the pistons 31P and 31S and The replenishment port 301 communicates through a hole 313.
 ハウジング30のx軸負方向側の外周には、ストロークセンサ91の固定部910が設置される。固定部910には、磁気の変化を検出する素子が設置される。ピストン31Pのx軸負方向側の外周には、ストロークセンサ91の移動部911が設置される。移動部911の周方向一部には永久磁石912が設置される。ハウジング30には、大気圧室38の内部をx軸方向に延びるロッド39が固定設置される。移動部911はロッド39に対しx軸方向で変位可能であると共に、ロッド39により周方向の変位を規制される。これにより、永久磁石912がより確実に周方向で固定部910の素子に対向する。 The fixed portion 910 of the stroke sensor 91 is installed on the outer periphery of the housing 30 on the x-axis negative direction side. In the fixing unit 910, an element for detecting a change in magnetism is installed. A moving part 911 of the stroke sensor 91 is installed on the outer periphery of the piston 31P on the x-axis negative direction side. A permanent magnet 912 is installed in a part of the moving portion 911 in the circumferential direction. A rod 39 extending in the x-axis direction inside the atmospheric pressure chamber 38 is fixedly installed in the housing 30. The moving unit 911 can be displaced with respect to the rod 39 in the x-axis direction, and the displacement in the circumferential direction is restricted by the rod 39. Thereby, the permanent magnet 912 is more reliably opposed to the element of the fixed portion 910 in the circumferential direction.
 第1液圧ユニット1Aは、ブレーキ液圧を増圧可能な主液圧ユニットである。第1液圧ユニット1Aは、倍力制御を実行するための倍力ユニットとして機能しうる。また、第1液圧ユニット1Aは、横滑り防止制御(ESC)を実行するための液圧ユニットとして機能しうる。以下、部材や構成が第1液圧ユニット1Aに関することを明示する場合はその符号の末尾にAを付す。図1及び図3に示すように、第1液圧ユニット1Aは、第1ハウジング40、第1ポンプユニット8A、弁7A、ストロークシミュレータ5、液圧センサ92,93、及び電子制御ユニット90を有する。第1ハウジング40は、ブラケットやインシュレータを介して、車両側の部材(エンジン室の底部等)に固定される。第1ポンプユニット8Aは、第1モータ80Aと、第1液圧源としての第1ポンプ81Aを有する。第1モータ80Aは、例えばDCモータであり、その駆動軸には偏心カムが取り付けられている。第1ポンプ81Aはプランジャポンプである。5つのプランジャが第1モータ80Aの駆動軸の周りに放射状に配置される。第1モータ80Aが偏心カムを回転駆動することにより、各プランジャが往復移動する。これにより第1ポンプ81Aがブレーキ液を吸入・吐出する。5つのプランジャは第1モータ80Aの駆動軸の軸心が延びる方向(軸方向)で重なる。これにより第1液圧ユニット1Aの上記軸方向における寸法の増大が抑制される。 The first hydraulic unit 1A is a main hydraulic unit that can increase the brake hydraulic pressure. The first hydraulic unit 1A can function as a booster unit for executing boost control. Further, the first hydraulic unit 1A can function as a hydraulic unit for executing side slip prevention control (ESC). Hereinafter, when it is clearly indicated that the member or configuration relates to the first hydraulic unit 1A, A is added to the end of the reference numeral. As shown in FIGS. 1 and 3, the first hydraulic unit 1A includes a first housing 40, a first pump unit 8A, a valve 7A, a stroke simulator 5, hydraulic pressure sensors 92 and 93, and an electronic control unit 90. . The first housing 40 is fixed to a vehicle-side member (such as the bottom of the engine compartment) via a bracket or an insulator. The first pump unit 8A has a first motor 80A and a first pump 81A as a first hydraulic pressure source. The first motor 80A is, for example, a DC motor, and an eccentric cam is attached to its drive shaft. The first pump 81A is a plunger pump. Five plungers are arranged radially around the drive shaft of the first motor 80A. When the first motor 80A rotates the eccentric cam, each plunger reciprocates. As a result, the first pump 81A sucks and discharges the brake fluid. The five plungers overlap in the direction (axial direction) in which the axis of the drive shaft of the first motor 80A extends. As a result, an increase in dimension of the first hydraulic unit 1A in the axial direction is suppressed.
 弁7Aは、電磁弁とチェック弁を有する。電磁弁はソレノイド部と弁部を有する。チェック弁は、電磁弁の弁部を構成する部材により、上記弁部内に形成可能である。電磁弁は、遮断弁71A、増圧弁72、連通弁73、調圧弁74、減圧弁75、シミュレータアウト弁77、及びシミュレータイン弁78を有する。遮断弁71A、増圧弁72、及び調圧弁74は、非通電状態で開き、通電により閉方向に作動する常開弁であると共に、通電量に応じて弁の開度を制御可能な比例制御弁である。減圧弁75、連通弁73、シミュレータアウト弁77、及びシミュレータイン弁78は、非通電状態で閉じ、通電により開方向に作動する常閉弁であると共に、弁の開度として全開と全閉の2位置をとることが可能なオン・オフ弁である。第1ハウジング40の上記軸方向における一方側の面に沿って第1ポンプユニット8Aが配置され、他方側の面に沿って各弁が配置される。これにより第1液圧ユニット1Aの寸法の増大が抑制される。 Valve 7A has a solenoid valve and a check valve. The solenoid valve has a solenoid part and a valve part. The check valve can be formed in the valve portion by a member constituting the valve portion of the electromagnetic valve. The solenoid valve includes a shut-off valve 71A, a pressure increasing valve 72, a communication valve 73, a pressure regulating valve 74, a pressure reducing valve 75, a simulator out valve 77, and a simulator in valve 78. The shut-off valve 71A, the pressure increasing valve 72, and the pressure regulating valve 74 are normally open valves that open in a non-energized state and operate in the closing direction when energized, and are proportional control valves that can control the opening degree of the valve in accordance with the energization amount. It is. The pressure reducing valve 75, the communication valve 73, the simulator-out valve 77, and the simulator-in valve 78 are normally closed valves that close in a non-energized state and operate in the opening direction when energized. This is an on / off valve that can take two positions. The first pump unit 8A is arranged along one surface of the first housing 40 in the axial direction, and the valves are arranged along the other surface. Thereby, an increase in the size of the first hydraulic unit 1A is suppressed.
 第1ハウジング40は、アルミ系金属材料から形成される。第1ハウジング40の内部には、ポート、液路、及び第1リザーバ47がある。ポートは、第1入力ポート41、第1出力ポート42、第1吸入ポート43、正圧ポート44、背圧ポート45、及び補給ポート46を有する。液路は、第1接続液路11A、第1吸入液路12A、第1吐出液路13A、調圧液路14、排出液路15、シミュレータ正圧液路16A、シミュレータ背圧液路17A、シミュレータ増圧液路18A、及びシミュレータ補給液路19Aを有する。各ポート41~46は、第1ハウジング40の外表面に開口する。第1リザーバ47は第1吸入ポート43に接続する。第1入力ポート41は、第1液圧ユニット1Aにブレーキ液を入力するためのポートである。第1出力ポート42は、第1液圧ユニット1Aからブレーキ液を出力するためのポートである。 The first housing 40 is formed from an aluminum-based metal material. Inside the first housing 40 are a port, a fluid path, and a first reservoir 47. The port has a first input port 41, a first output port 42, a first suction port 43, a positive pressure port 44, a back pressure port 45, and a replenishment port 46. The liquid paths are the first connecting liquid path 11A, the first suction liquid path 12A, the first discharge liquid path 13A, the pressure adjusting liquid path 14, the discharge liquid path 15, the simulator positive pressure liquid path 16A, the simulator back pressure liquid path 17A, A simulator pressure increasing liquid path 18A and a simulator replenishing liquid path 19A are provided. Each port 41 to 46 opens on the outer surface of the first housing 40. The first reservoir 47 is connected to the first suction port 43. The first input port 41 is a port for inputting brake fluid to the first hydraulic unit 1A. The first output port 42 is a port for outputting brake fluid from the first hydraulic unit 1A.
 第1接続液路11Aの一端は、第1入力ポート41に接続する。第1接続液路11Aの上には遮断弁71Aがある。各系統で、遮断弁71Aに対し第1入力ポート41と反対側の第1接続液路11Aは2つに分岐する。分岐液路11a~11dはそれぞれ第1出力ポート42に接続する。分岐液路11a~11dの上には増圧弁72がある。バイパス液路111a~111dが、増圧弁72と並列に、分岐液路11a~11dに接続する。バイパス液路111a~111dにはチェック弁720a~720dがある。チェック弁720a~720dは、第1出力ポート42の側から遮断弁71Aの側へ向うブレーキ液の流れを許容し、反対方向のブレーキ液の流れを抑制する。第1吸入液路12Aの一端は第1リザーバ47に接続する。第1吸入液路12Aの他端は第1ポンプ81Aの吸入部に接続する。第1吐出液路13Aの一端は第1ポンプ81Aの吐出部に接続する。第1吐出液路13Aの他端側は2つに分岐する。分岐液路13PA,13SAはそれぞれ、第1接続液路11Aであって増圧弁72と遮断弁71Aの間に接続する。分岐液路13PA,13SAは、両系統の第1接続液路11PA,11SAを互いに接続する連通液路として機能する。分岐液路13PA,13SAの上にはそれぞれ連通弁73がある。排出液路15の一端は、第1リザーバ47に接続する。排出液路15の他端側は4つに分岐する。分岐液路15a~15dはそれぞれ、第1接続液路11Aの分岐液路11a~11dであって増圧弁72に対し第1出力ポート42の側に接続する。分岐液路15a~15dの上には減圧弁75がある。調圧液路14の一端は、第1吐出液路13Aであって連通弁73に対し第1ポンプ81Aの側に接続する。調圧液路14の他端は排出液路15に接続する。調圧液路14の上には調圧弁74がある。液圧センサ92は、第1吐出液路13Aであって第1ポンプ81Aと連通弁73との間に接続し、この部位の液圧を検出する。液圧センサ93は、各系統で、第1接続液路11Aであって遮断弁71Aと増圧弁72との間に接続し、この部位の液圧を検出する。液圧センサ94は、第1接続液路11PAであって第1入力ポート41Pと遮断弁71PAとの間に接続し、この部位の液圧を検出する。 One end of the first connection liquid path 11A is connected to the first input port 41. There is a shutoff valve 71A above the first connection liquid path 11A. In each system, the first connection liquid path 11A opposite to the first input port 41 with respect to the shutoff valve 71A branches into two. Each of the branch liquid passages 11a to 11d is connected to the first output port. A pressure increasing valve 72 is provided on the branch liquid passages 11a to 11d. The bypass liquid paths 111a to 111d are connected to the branch liquid paths 11a to 11d in parallel with the pressure increasing valve 72. There are check valves 720a to 720d in the bypass liquid passages 111a to 111d. The check valves 720a to 720d allow the flow of brake fluid from the first output port 42 side to the shutoff valve 71A side, and suppress the flow of brake fluid in the opposite direction. One end of the first suction fluid path 12A is connected to the first reservoir 47. The other end of the first suction fluid path 12A is connected to the suction part of the first pump 81A. One end of the first discharge liquid passage 13A is connected to the discharge portion of the first pump 81A. The other end side of the first discharge liquid passage 13A branches into two. Each of the branch liquid paths 13PA and 13SA is a first connection liquid path 11A and is connected between the pressure increasing valve 72 and the shutoff valve 71A. The branch liquid paths 13PA and 13SA function as a communication liquid path that connects the first connection liquid paths 11PA and 11SA of both systems. A communication valve 73 is provided above each of the branch liquid passages 13PA and 13SA. One end of the drainage passage 15 is connected to the first reservoir 47. The other end side of the discharge liquid passage 15 branches into four. The branch liquid paths 15a to 15d are branch liquid paths 11a to 11d of the first connection liquid path 11A, respectively, and are connected to the pressure increasing valve 72 on the first output port 42 side. A pressure reducing valve 75 is provided on the branch liquid passages 15a to 15d. One end of the pressure regulating fluid passage 14 is a first discharge fluid passage 13A and is connected to the communication valve 73 on the first pump 81A side. The other end of the pressure adjusting liquid passage 14 is connected to the discharge liquid passage 15. Above the pressure regulating fluid path 14 is a pressure regulating valve 74. The hydraulic pressure sensor 92 is connected to the first discharge liquid passage 13A between the first pump 81A and the communication valve 73, and detects the hydraulic pressure at this portion. In each system, the hydraulic pressure sensor 93 is connected to the first connecting liquid path 11A between the shutoff valve 71A and the pressure increasing valve 72, and detects the hydraulic pressure at this portion. The hydraulic pressure sensor 94 is a first connection fluid path 11PA, and is connected between the first input port 41P and the shut-off valve 71PA, and detects the hydraulic pressure at this portion.
 シミュレータ正圧液路16Aの一端は、第1接続液路11PAであって第1入力ポート41Pと遮断弁71PAの間に接続する。シミュレータ正圧液路16Aの他端は正圧ポート44に接続する。シミュレータ背圧液路17Aの一端は背圧ポート45に接続する。シミュレータ背圧液路17Aの他端は排出液路15に接続する。シミュレータ背圧液路17Aの上にはシミュレータアウト弁77がある。バイパス液路170が、シミュレータアウト弁77と並列に、シミュレータ背圧液路17Aに接続する。バイパス液路170にはチェック弁770がある。チェック弁770は、第1リザーバ47の側から背圧ポート45の側へ向うブレーキ液の流れを許容し、反対方向のブレーキ液の流れを抑制する。シミュレータ増圧液路18Aの一端は、シミュレータ背圧液路17Aであって背圧ポート45とシミュレータアウト弁77の間に接続する。シミュレータ増圧液路18Aの他端は、第1接続液路11PAであって遮断弁71PAと増圧弁72a,72dとの間に接続する。シミュレータ増圧液路18Aの上にはシミュレータイン弁78がある。バイパス液路180が、シミュレータイン弁78と並列に、シミュレータ増圧液路18Aに接続する。バイパス液路180にはチェック弁780がある。チェック弁780は、シミュレータ背圧液路17A(背圧ポート45)の側から第1接続液路11PAの側へ向うブレーキ液の流れを許容し、反対方向のブレーキ液の流れを抑制する。シミュレータ補給液路19Aの一端は補給ポート46に接続する。シミュレータ補給液路19Aの他端は排出液路15に接続する。 One end of the simulator positive pressure fluid passage 16A is a first connection fluid passage 11PA and is connected between the first input port 41P and the shutoff valve 71PA. The other end of the simulator positive pressure fluid path 16A is connected to the positive pressure port 44. One end of the simulator back pressure liquid passage 17A is connected to the back pressure port 45. The other end of the simulator back pressure liquid path 17A is connected to the drain liquid path 15. A simulator out valve 77 is provided above the simulator back pressure liquid passage 17A. A bypass liquid path 170 is connected in parallel with the simulator out valve 77 to the simulator back pressure liquid path 17A. A bypass valve 170 has a check valve 770. The check valve 770 allows the flow of brake fluid from the first reservoir 47 side toward the back pressure port 45 side, and suppresses the flow of brake fluid in the opposite direction. One end of the simulator pressure increasing fluid passage 18A is a simulator back pressure fluid passage 17A and is connected between the back pressure port 45 and the simulator out valve 77. The other end of the simulator pressure increasing liquid path 18A is a first connection liquid path 11PA and is connected between the shutoff valve 71PA and the pressure increasing valves 72a and 72d. A simulator-in valve 78 is provided above the simulator pressure increasing fluid passage 18A. A bypass liquid path 180 is connected to the simulator pressure increasing liquid path 18A in parallel with the simulator-in valve 78. A bypass valve 180 has a check valve 780. The check valve 780 allows the flow of brake fluid from the simulator back pressure fluid passage 17A (back pressure port 45) side to the first connection fluid passage 11PA side, and suppresses the flow of brake fluid in the opposite direction. One end of the simulator replenishment liquid path 19A is connected to the replenishment port 46. The other end of the simulator replenishment liquid path 19A is connected to the discharge liquid path 15.
 ストロークシミュレータ5は、ハウジング50、ピストン51、第1ばねユニット52、第2ばねユニット53、及びシール部材54を有する。ハウジング50は第1ハウジング40に固定される。以下、ストロークシミュレータ5の軸方向にy軸を設け、ブレーキペダル100の踏み込み操作に応じた正圧室55へのブレーキ液の流入に応じてピストン51が移動する方向を正方向とする。本実施形態では、y軸は鉛直方向に延び、鉛直方向下側がy軸正方向である。ハウジング50の内部には、シリンダ500、正圧ポート501、背圧ポート502、及び補給ポート503がある。シリンダ500は段付きの円筒状であり、小径部側に2つのシール溝504,505と1つの連通溝506がある。各溝504~506は、シリンダ500の軸心の周り方向(以下、周方向)に延びる円環状である。第1シール溝504はy軸正方向側にあり、第2シール溝505はy軸負方向側にある。正圧ポート501は、第2シール溝505よりもy軸負方向側でシリンダ500の小径部に開口すると共に、ハウジング50の外表面に開口して第1ハウジング40の正圧ポート44に接続する。背圧ポート502は、第1シール溝504よりもy軸正方向側でシリンダ500の大径部に開口すると共に、ハウジング50の外表面に開口して第1ハウジング40の背圧ポート45に接続する。補給ポート503は、両シール溝504,505の間でシリンダ500に開口すると共に、ハウジング50の外表面に開口して第1ハウジング40の補給ポート46に接続する。連通溝506は補給ポート503と第1シール溝504を接続する。 The stroke simulator 5 includes a housing 50, a piston 51, a first spring unit 52, a second spring unit 53, and a seal member 54. The housing 50 is fixed to the first housing 40. Hereinafter, the y-axis is provided in the axial direction of the stroke simulator 5, and the direction in which the piston 51 moves in response to the inflow of the brake fluid into the positive pressure chamber 55 according to the depression operation of the brake pedal 100 is defined as the positive direction. In this embodiment, the y-axis extends in the vertical direction, and the lower side in the vertical direction is the positive y-axis direction. Inside the housing 50 are a cylinder 500, a positive pressure port 501, a back pressure port 502, and a replenishment port 503. The cylinder 500 has a stepped cylindrical shape, and has two seal grooves 504 and 505 and one communication groove 506 on the small diameter side. Each of the grooves 504 to 506 has an annular shape extending in the direction around the axis of the cylinder 500 (hereinafter referred to as the circumferential direction). The first seal groove 504 is on the y-axis positive direction side, and the second seal groove 505 is on the y-axis negative direction side. The positive pressure port 501 opens to the small diameter portion of the cylinder 500 on the y axis negative direction side of the second seal groove 505 and opens to the outer surface of the housing 50 to connect to the positive pressure port 44 of the first housing 40. . The back pressure port 502 opens to the large diameter portion of the cylinder 500 on the positive side in the y-axis direction from the first seal groove 504, and opens to the outer surface of the housing 50 to connect to the back pressure port 45 of the first housing 40. To do. The supply port 503 opens to the cylinder 500 between the seal grooves 504 and 505 and opens to the outer surface of the housing 50 to connect to the supply port 46 of the first housing 40. The communication groove 506 connects the supply port 503 and the first seal groove 504.
 ピストン51はシリンダ500(小径部)の内部に設置され、y軸方向に往復移動可能である。ピストン51は円筒状であり、隔壁510で仕切られた2つの凹部511,512を有する。第1凹部511はy軸負方向側に配置され、第2凹部512はy軸正方向側に配置される。第1凹部511の周壁を孔513が貫通する。孔513は周方向に複数ある。第2凹部512の周壁を孔514が貫通する。孔514は周方向に複数ある。第2凹部512には、隔壁510からy軸正方向に延びる突起515がある。シリンダ500は、ピストン51により、正圧室55と背圧室56に区画される。正圧室55は正圧ポート501に接続する。背圧室56は背圧ポート502に接続する。正圧室55はピストン51のy軸負方向側にある。背圧室56はピストン51のy軸正方向側にある。ハウジング50には、正圧室55のエア抜き用の弁58及び背圧室56のエア抜き用の弁59が設置される。弁58は正圧室55のy軸負方向端にあり、弁59は背圧室56のy軸負方向端にある。シリンダ500のy軸正方向側の開口は、蓋部材57により液密に閉塞される。蓋部材57は、有底の第1凹部571を有する。第1凹部571には、底部からy軸負方向に延びる突起570がある。突起570は、有底の第2凹部572を有する。シール部材54はロッドシール用のUパッキンやVパッキンであり、各シール溝504,505に設置される。ピストン51の外周面にはシール部材54のリップが接する。第1シール溝504のシール部材54は、ピストン51の外周側で背圧室56から補給ポート503へ向うブレーキ液の流れを抑制し、反対方向の流れを許容する。第2シール溝505のシール部材54は、ピストン51の外周側で正圧室55から補給ポート503へ向うブレーキ液の流れを抑制し、反対方向の流れを許容する。 The piston 51 is installed inside the cylinder 500 (small diameter portion) and can reciprocate in the y-axis direction. The piston 51 is cylindrical and has two concave portions 511 and 512 partitioned by a partition wall 510. The first recess 511 is disposed on the y-axis negative direction side, and the second recess 512 is disposed on the y-axis positive direction side. A hole 513 passes through the peripheral wall of the first recess 511. There are a plurality of holes 513 in the circumferential direction. A hole 514 passes through the peripheral wall of the second recess 512. There are a plurality of holes 514 in the circumferential direction. The second recess 512 has a protrusion 515 extending from the partition wall 510 in the positive y-axis direction. The cylinder 500 is divided into a positive pressure chamber 55 and a back pressure chamber 56 by the piston 51. The positive pressure chamber 55 is connected to the positive pressure port 501. The back pressure chamber 56 is connected to the back pressure port 502. The positive pressure chamber 55 is on the y axis negative direction side of the piston 51. The back pressure chamber 56 is on the positive side of the piston 51 in the y-axis direction. The housing 50 is provided with an air vent valve 58 for the positive pressure chamber 55 and an air vent valve 59 for the back pressure chamber 56. The valve 58 is at the y-axis negative direction end of the positive pressure chamber 55, and the valve 59 is at the y-axis negative direction end of the back pressure chamber 56. The opening on the positive side in the y-axis direction of the cylinder 500 is liquid-tightly closed by the lid member 57. The lid member 57 has a bottomed first recess 571. The first recess 571 has a protrusion 570 extending from the bottom in the negative y-axis direction. The protrusion 570 has a bottomed second recess 572. The seal member 54 is a U seal or a V seal for rod seal, and is installed in each seal groove 504, 505. The lip of the seal member 54 is in contact with the outer peripheral surface of the piston 51. The seal member 54 of the first seal groove 504 suppresses the flow of brake fluid from the back pressure chamber 56 toward the replenishment port 503 on the outer peripheral side of the piston 51, and allows the flow in the opposite direction. The seal member 54 of the second seal groove 505 suppresses the flow of brake fluid from the positive pressure chamber 55 toward the supply port 503 on the outer peripheral side of the piston 51, and allows the flow in the opposite direction.
 第1ばねユニット52は、第1コイルスプリング520、第1リテーナ521、第2リテーナ522、ストッパ523、及び第1ダンパ524を有する。第1ダンパ524は円柱状であり、ゴム等から形成される弾性部材である。その他の第1ばねユニット52の構成は、マスタシリンダ3のばねユニット32と同様である。第2ばねユニット53は、第2コイルスプリング530、リテーナ531、及び第2ダンパ532を有する。リテーナ531は有底円筒状であり、底部と鍔部を有する。第2コイルスプリング530のコイル径、線径、及びばね係数はそれぞれ、第1コイルスプリング520よりも大きい。第2ダンパ532は、くびれを有する円柱状であり、ゴム等から形成される弾性部材である。両ばねユニット52,53は、背圧室56に設置される。第1ばねユニット52の第1リテーナ521は突起515に嵌合し、鍔部がピストン51の隔壁510に設置される。突起515とストッパ523との間に第1ダンパ524が設置される。第2リテーナ522の鍔部が第2ばねユニット53のリテーナ531の底部に設置される。第2コイルスプリング530のy軸負方向端は、リテーナ531の鍔部に設置される。第2コイルスプリング530のy軸正方向端は、蓋部材57の突起570に嵌合し、第1凹部571の底部に設置される。蓋部材57の第2凹部572に第2ダンパ532が設置される。第2ダンパ532は突起570よりもy軸負方向側に突出し、リテーナ531の底部に対向する。各コイルスプリング520,530の長さが最大となる初期状態で、ピストン51はy軸負方向側に最大変位し、シリンダ500のy軸負方向側の内壁に接する。内壁によりピストン51のy軸負方向側への移動が規制される。この初期状態で、ピストン51の孔513はy軸方向で正圧ポート501と重なる。また、孔514はy軸方向で第1シール溝504のシール部材54(リップ)と補給ポート503の間にあり、ピストン51の第2凹部512(背圧室56)と補給ポート503は孔514及び連通溝506を介して連通する。 The first spring unit 52 includes a first coil spring 520, a first retainer 521, a second retainer 522, a stopper 523, and a first damper 524. The first damper 524 has a cylindrical shape and is an elastic member formed of rubber or the like. Other configurations of the first spring unit 52 are the same as those of the spring unit 32 of the master cylinder 3. The second spring unit 53 includes a second coil spring 530, a retainer 531, and a second damper 532. The retainer 531 has a bottomed cylindrical shape, and has a bottom portion and a flange portion. The coil diameter, wire diameter, and spring coefficient of the second coil spring 530 are each larger than that of the first coil spring 520. The second damper 532 is a columnar shape having a constriction, and is an elastic member formed of rubber or the like. Both spring units 52 and 53 are installed in the back pressure chamber 56. The first retainer 521 of the first spring unit 52 is fitted to the protrusion 515, and the flange portion is installed on the partition wall 510 of the piston 51. A first damper 524 is installed between the protrusion 515 and the stopper 523. The collar portion of the second retainer 522 is installed at the bottom of the retainer 531 of the second spring unit 53. The negative end of the second coil spring 530 in the y-axis direction is installed at the flange portion of the retainer 531. The positive end in the y-axis direction of the second coil spring 530 is fitted to the protrusion 570 of the lid member 57 and is installed at the bottom of the first recess 571. A second damper 532 is installed in the second recess 572 of the lid member 57. The second damper 532 protrudes in the negative y-axis direction from the protrusion 570 and faces the bottom of the retainer 531. In an initial state in which the lengths of the coil springs 520 and 530 are maximized, the piston 51 is maximally displaced in the y-axis negative direction side and contacts the inner wall of the cylinder 500 on the y-axis negative direction side. The movement of the piston 51 in the negative y-axis direction is restricted by the inner wall. In this initial state, the hole 513 of the piston 51 overlaps the positive pressure port 501 in the y-axis direction. The hole 514 is located between the seal member 54 (lip) of the first seal groove 504 and the supply port 503 in the y-axis direction, and the second recess 512 (back pressure chamber 56) of the piston 51 and the supply port 503 are formed in the hole 514. And it communicates through the communication groove 506.
 第2液圧ユニット1Bは、第1液圧ユニット1Aを補うようにブレーキ液圧を増圧可能な補助液圧ユニットである。以下、部材や構成が第2液圧ユニット1Bに関することを明示する場合はその符号の末尾にBを付す。図1及び図4~図7に示すように、第2液圧ユニット1Bは、第2ハウジング60、第2ポンプユニット8B、弁7B、ソレノイドケース600、及びカバー601を有する。第2液圧ユニット1Bの液圧回路は、プライマリ系統(p系統)とセカンダリ系統(s系統)に2系統化されている。以下、部材や構成がp系統に関することを明示する場合はその符号の末尾にpを付し、s系統に関することを明示する場合はその符号の末尾にsを付す。第2ポンプユニット8Bは、1つの第2モータ80Bと、第2液圧源としての第2ポンプ81Bを有する。図7に示すように、第2モータ80Bは、ボルト801により第2ハウジング60に固定される。第2モータ80Bは、例えばDCモータであり、その駆動軸には偏心カムが取り付けられている。第2ポンプ81Bはプランジャポンプである。2つのプランジャが第2モータ80Bの駆動軸の周りに対向するように配置されることで、2つの第2ポンプ81Bが形成される。第2モータ80Bが偏心カムを回転駆動することにより、各プランジャが往復移動する。これにより2つの第2ポンプ81Bがそれぞれブレーキ液を吸入・吐出する。弁7Bは、電磁弁とチェック弁を有する。電磁弁は、開閉弁71Bを有する。開閉弁71Bは、常開の比例制御弁である。なお、開閉弁71Bはオン・オフ弁でもよい。 The second hydraulic pressure unit 1B is an auxiliary hydraulic pressure unit that can increase the brake hydraulic pressure so as to supplement the first hydraulic pressure unit 1A. Hereinafter, when it is clearly indicated that the member or configuration relates to the second hydraulic unit 1B, B is appended to the end of the reference numeral. As shown in FIGS. 1 and 4 to 7, the second hydraulic pressure unit 1B includes a second housing 60, a second pump unit 8B, a valve 7B, a solenoid case 600, and a cover 601. The hydraulic circuit of the second hydraulic unit 1B is divided into two systems, a primary system (p system) and a secondary system (s system). In the following, when it is clearly stated that the member or configuration is related to the p system, p is added to the end of the symbol, and when it is clearly indicated that the material or structure is related to the s system, s is added to the end of the symbol. The second pump unit 8B has one second motor 80B and a second pump 81B as a second hydraulic pressure source. As shown in FIG. 7, the second motor 80B is fixed to the second housing 60 by a bolt 801. The second motor 80B is, for example, a DC motor, and an eccentric cam is attached to its drive shaft. The second pump 81B is a plunger pump. Two second pumps 81B are formed by arranging the two plungers so as to face each other around the drive shaft of the second motor 80B. Each plunger reciprocates as the second motor 80B rotationally drives the eccentric cam. As a result, the two second pumps 81B respectively suck and discharge the brake fluid. The valve 7B has a solenoid valve and a check valve. The electromagnetic valve has an on-off valve 71B. The on-off valve 71B is a normally open proportional control valve. The on-off valve 71B may be an on / off valve.
 第2ハウジング60は、アルミ系金属材料から形成される。第2ハウジング60は、ブラケットやインシュレータを介して、車両側の部材(エンジン室の底部等)に固定される。第2ハウジング60の内部には、ポート、液路、第2リザーバ64、及びボルト孔65がある。ボルト孔65には、上記ブラケットやインシュレータを固定するためのボルトが挿入される。ポートは、第2入力ポート61、第2出力ポート62、及び第2吸入ポート63を有する。液路は、第2接続液路11B、第2吸入液路12B、及び第2吐出液路13Bを有する。各ポート61~63は、第2ハウジング60の外表面に開口する。第2リザーバ64は第2吸入ポート63に接続する。第2入力ポート61は、第2液圧ユニット1Bにブレーキ液を入力するためのポートである。第2出力ポート62は、第2液圧ユニット1Bからブレーキ液を出力するためのポートである。第2接続液路11Bの一端は第2入力ポート61に接続し、第2接続液路11Bの他端は第2出力ポート62に接続する。第2接続液路11Bの上には開閉弁71Bがある。バイパス液路110が、開閉弁71Bと並列に、第2接続液路11Bに接続する。バイパス液路110にはチェック弁710がある。チェック弁710は、第2入力ポート61の側から第2出力ポート62の側へ向うブレーキ液の流れを許容し、反対方向のブレーキ液の流れを抑制する。第2吸入液路12Bの一端は第2リザーバ64に接続する。第2吸入液路12Bの他端は第2ポンプ81Bの吸入部に接続する。第2吐出液路13Bの一端は第2ポンプ81Bの吐出部に接続する。第2吐出液路13Bの他端は第2接続液路11Bであって開閉弁71Bと第2出力ポート62の間に接続する。 The second housing 60 is formed from an aluminum-based metal material. The second housing 60 is fixed to a vehicle-side member (such as the bottom of the engine compartment) via a bracket or an insulator. Inside the second housing 60 are a port, a fluid path, a second reservoir 64, and a bolt hole 65. A bolt for fixing the bracket or the insulator is inserted into the bolt hole 65. The port has a second input port 61, a second output port 62, and a second suction port 63. The liquid path includes a second connection liquid path 11B, a second suction liquid path 12B, and a second discharge liquid path 13B. Each port 61 to 63 opens to the outer surface of the second housing 60. The second reservoir 64 is connected to the second suction port 63. The second input port 61 is a port for inputting brake fluid to the second hydraulic pressure unit 1B. The second output port 62 is a port for outputting brake fluid from the second hydraulic unit 1B. One end of the second connection liquid path 11B is connected to the second input port 61, and the other end of the second connection liquid path 11B is connected to the second output port 62. An on-off valve 71B is above the second connection liquid path 11B. The bypass liquid path 110 is connected to the second connection liquid path 11B in parallel with the on-off valve 71B. A bypass valve 110 has a check valve 710. The check valve 710 allows the flow of brake fluid from the second input port 61 side to the second output port 62 side, and suppresses the flow of brake fluid in the opposite direction. One end of the second suction fluid path 12B is connected to the second reservoir 64. The other end of the second suction fluid path 12B is connected to the suction part of the second pump 81B. One end of the second discharge liquid passage 13B is connected to the discharge portion of the second pump 81B. The other end of the second discharge liquid path 13B is a second connection liquid path 11B and is connected between the on-off valve 71B and the second output port 62.
 ソレノイドケース600は樹脂製であり、ボルト602により第2ハウジング60に固定される。図6に示すように、ケース600の内部には、第2モータ80B(の一部)と開閉弁71Bのソレノイドが収容される。ケース600には孔603があり、第2モータ80が孔603を貫通する。カバー601は、ケース600に取り付けられ、第2モータ80Bと開閉弁71Bのソレノイドを覆い、これらを外部(水分等)から保護する。 The solenoid case 600 is made of resin and is fixed to the second housing 60 by bolts 602. As shown in FIG. 6, in the case 600, the second motor 80B (a part thereof) and the solenoid of the on-off valve 71B are accommodated. The case 600 has a hole 603, and the second motor 80 passes through the hole 603. The cover 601 is attached to the case 600, covers the second motor 80B and the solenoid of the on-off valve 71B, and protects them from the outside (moisture or the like).
 マスタシリンダ配管10Mは、マスタシリンダ3と第1液圧ユニット1Aを接続する。マスタシリンダ配管10Mの一端はマスタシリンダ3の供給ポート302に接続し、マスタシリンダ配管10Mの他端は第1液圧ユニット1Aの第1入力ポート41に接続する。中継配管10Iは、第1液圧ユニット1Aと第2液圧ユニット1Bを接続する。中継配管10Ip,10Isの一端はそれぞれ第1液圧ユニット1Aの第1出力ポート42a,42bに接続し、中継配管10Ip,10Isの他端はそれぞれ第2液圧ユニット1Bの第2入力ポート61p,61sに接続する。前輪ホイルシリンダ配管10Wa,10Wbは、第2液圧ユニット1Bと前輪FL,FRのホイルシリンダ102a,102bを接続する。前輪ホイルシリンダ配管10Wa,10Wbの一端はそれぞれ第2液圧ユニット1Bの第2出力ポート62p,62sに接続し、前輪ホイルシリンダ配管10Wa,10Wbの他端はそれぞれ前輪ホイルシリンダ102a,102bに接続する。後輪ホイルシリンダ配管10Wc,10Wdは、第1液圧ユニット1Aと後輪RL,RRのホイルシリンダ102c,102dを接続する。後輪ホイルシリンダ配管10Wc,10Wdの一端はそれぞれ第1液圧ユニット1Aの第1出力ポート42c,42dに接続し、後輪ホイルシリンダ配管10Wc,10Wの他端はそれぞれ後輪ホイルシリンダ102c,102dに接続する。リザーバ配管10Rは、リザーバタンク2と各液圧ユニット1A,1Bとを接続する。リザーバ配管10Rの一端はリザーバタンク2の補給ポート25に接続する。リザーバ配管10Rの他端側は2つに分岐する。分岐配管10RAは第1液圧ユニット1Aの第1吸入ポート43に接続する。分岐配管10RBは第2液圧ユニット1Bの第2吸入ポート63に接続する。なお、リザーバタンク2の液室24に隔壁を設けて2つの液室24A,24Bを区画し、それぞれの液室24A,24Bに開口する補給ポート25A,25Bと各液圧ユニット1A,1Bの吸入ポート43,63とをそれぞれ別々のリザーバ配管10RA,10RBで接続する構成としてもよい。 The master cylinder piping 10M connects the master cylinder 3 and the first hydraulic unit 1A. One end of the master cylinder pipe 10M is connected to the supply port 302 of the master cylinder 3, and the other end of the master cylinder pipe 10M is connected to the first input port 41 of the first hydraulic unit 1A. The relay pipe 10I connects the first hydraulic unit 1A and the second hydraulic unit 1B. One end of the relay pipes 10Ip and 10Is is connected to the first output ports 42a and 42b of the first hydraulic unit 1A, respectively, and the other end of the relay pipes 10Ip and 10Is is the second input port 61p of the second hydraulic unit 1B, respectively. Connect to 61s. The front wheel cylinder pipes 10Wa and 10Wb connect the second hydraulic unit 1B and the wheel cylinders 102a and 102b of the front wheels FL and FR. One end of the front wheel cylinder pipes 10Wa and 10Wb is connected to the second output ports 62p and 62s of the second hydraulic unit 1B, respectively, and the other end of the front wheel cylinder pipes 10Wa and 10Wb is connected to the front wheel cylinders 102a and 102b, respectively. . The rear wheel wheel cylinder pipes 10Wc and 10Wd connect the first hydraulic unit 1A and the wheel cylinders 102c and 102d of the rear wheels RL and RR. One end of each of the rear wheel wheel cylinder pipes 10Wc and 10Wd is connected to the first output port 42c and 42d of the first hydraulic unit 1A, and the other end of the rear wheel wheel cylinder pipes 10Wc and 10W is respectively connected to the rear wheel wheel cylinders 102c and 102d. Connect to. The reservoir pipe 10R connects the reservoir tank 2 and the hydraulic units 1A and 1B. One end of the reservoir pipe 10R is connected to the supply port 25 of the reservoir tank 2. The other end of the reservoir pipe 10R branches into two. The branch pipe 10RA is connected to the first suction port 43 of the first hydraulic unit 1A. The branch pipe 10RB is connected to the second suction port 63 of the second hydraulic unit 1B. In addition, a partition is provided in the liquid chamber 24 of the reservoir tank 2 to partition the two liquid chambers 24A and 24B, and the replenishment ports 25A and 25B that open to the respective liquid chambers 24A and 24B and the suctions of the respective hydraulic units 1A and 1B The ports 43 and 63 may be connected by separate reservoir pipes 10RA and 10RB, respectively.
 各配管10M,10I,10Wの内部の液路と各液圧ユニット1A,1Bの接続液路11A,11Bは、マスタシリンダ3とホイルシリンダ102とを接続する接続液路11として機能する。マスタシリンダ3の供給ポート302には接続液路11が接続する。接続液路11Pは、前左輪FLのホイルシリンダ102aに接続する液路11aと、後右輪RRのホイルシリンダ102dに接続する液路11dに分岐する。接続液路11Sは、前右輪FRのホイルシリンダ102bに接続する液路11bと、後左輪RLのホイルシリンダ102cに接続する液路11cに分岐する。開閉弁71Bは、遮断弁71Aに対してホイルシリンダ102の側の接続液路11にある。 The internal liquid passages of the pipes 10M, 10I, and 10W and the connection liquid passages 11A and 11B of the hydraulic units 1A and 1B function as the connection liquid passage 11 that connects the master cylinder 3 and the wheel cylinder 102. A connection liquid path 11 is connected to the supply port 302 of the master cylinder 3. The connecting liquid path 11P branches into a liquid path 11a connected to the wheel cylinder 102a of the front left wheel FL and a liquid path 11d connected to the wheel cylinder 102d of the rear right wheel RR. The connection liquid path 11S branches into a liquid path 11b connected to the wheel cylinder 102b of the front right wheel FR and a liquid path 11c connected to the wheel cylinder 102c of the rear left wheel RL. The on-off valve 71B is in the connection liquid path 11 on the wheel cylinder 102 side with respect to the shutoff valve 71A.
 マスタシリンダ3は、ブレーキペダル100の操作に応じて作動し、液圧を発生する。ブレーキペダル100が踏み込まれると、プッシュロッド101を介してピストン31Pにx軸正方向側の推力が作用する。コイルスプリング320を押し縮めつつピストン31が初期位置からx軸正方向側に若干移動し、孔313が第1溝303のシール部材33(リップ)よりもx軸正方向側に変位すると、補給ポート301と液圧室34との連通が遮断される。この状態でピストン31がさらにx軸正方向側にストロークすると、液圧室34の容積が小さくなることで、液圧室34に液圧(マスタシリンダ液圧)が発生すると共に、供給ポート302からブレーキ液が流出しようとする。 The master cylinder 3 operates according to the operation of the brake pedal 100 and generates hydraulic pressure. When the brake pedal 100 is depressed, thrust on the x-axis positive direction side acts on the piston 31P via the push rod 101. When the piston 31 slightly moves from the initial position to the x-axis positive direction side while pushing and shrinking the coil spring 320 and the hole 313 is displaced from the seal member 33 (lip) of the first groove 303 to the x-axis positive direction side, the replenishment port Communication between 301 and the hydraulic chamber 34 is blocked. When the piston 31 further strokes in the positive x-axis direction in this state, the volume of the hydraulic chamber 34 is reduced, so that hydraulic pressure (master cylinder hydraulic pressure) is generated in the hydraulic chamber 34 and the supply port 302 Brake fluid is about to flow out.
 ストロークシミュレータ5は、ブレーキペダル100の操作に応じて作動し、ブレーキペダル100の適度な操作反力を発生可能である。ブレーキ操作に応じてマスタシリンダ3から流出するブレーキ液がシミュレータ正圧液路16Aを介して正圧室55に流入すると、正圧室55に液圧が発生し、コイルスプリング520,530を押し縮めつつピストンがy軸正方向側に移動する。背圧室56からブレーキ液が流出し、シミュレータ背圧液路17A(シミュレータアウト弁77)を通って第1リザーバ47に排出される。これにより、ペダルストロークが発生すると共に、コイルスプリング520,530の付勢力によりペダル反力が生成される。なお、ピストン51のストロークに応じて第1コイルスプリング520が所定量以上圧縮されると、第1ダンパ524とストッパ523とが接し、第1ダンパ524が第1コイルスプリング520と共に圧縮弾性変形する。ピストン51がさらにストロークすると第2コイルスプリング530が圧縮変形を開始する。第2コイルスプリング530が所定量以上圧縮されると、第2ダンパ532とリテーナ531とが接触し、第2ダンパ532が第2コイルスプリング530と共に圧縮弾性変形する。このように、ばね係数が互いに異なるコイルスプリング520,530が直列に接続されており、これらが順を追って段階的に弾性変形することにより、両コイルスプリング全体としての特性(変形量に対するばね係数の変化の特性)が非線形となる。これにより、ピストン51の作動(ペダルストローク)に応じてストロークシミュレータ5が生成するペダル反力を、より望ましい特性に近づけることができる。また、ダンパ524,532の弾性変形により、上記特性が滑らかになる。これにより、ペダルフィーリングを向上できる。 The stroke simulator 5 operates in response to the operation of the brake pedal 100, and can generate an appropriate operation reaction force of the brake pedal 100. When brake fluid flowing out from the master cylinder 3 in response to the brake operation flows into the positive pressure chamber 55 via the simulator positive pressure fluid passage 16A, hydraulic pressure is generated in the positive pressure chamber 55, and the pistons are compressed while compressing the coil springs 520 and 530. Moves to the positive side of the y-axis. Brake fluid flows out from the back pressure chamber 56 and is discharged to the first reservoir 47 through the simulator back pressure fluid passage 17A (simulator out valve 77). As a result, a pedal stroke is generated and a pedal reaction force is generated by the biasing force of the coil springs 520 and 530. When the first coil spring 520 is compressed by a predetermined amount or more according to the stroke of the piston 51, the first damper 524 and the stopper 523 come into contact with each other, and the first damper 524 is compressed and elastically deformed together with the first coil spring 520. When the piston 51 further strokes, the second coil spring 530 starts compressive deformation. When the second coil spring 530 is compressed by a predetermined amount or more, the second damper 532 and the retainer 531 come into contact with each other, and the second damper 532 is compressed and elastically deformed together with the second coil spring 530. In this way, the coil springs 520 and 530 having different spring coefficients are connected in series, and these are elastically deformed step by step in order, whereby the characteristics of both coil springs as a whole (the change of the spring coefficient with respect to the deformation amount). Characteristic) becomes nonlinear. Thereby, the pedal reaction force generated by the stroke simulator 5 in accordance with the operation of the piston 51 (pedal stroke) can be made closer to a more desirable characteristic. Further, the above characteristics are smoothed by the elastic deformation of the dampers 524 and 532. Thereby, pedal feeling can be improved.
 第1ポンプ81Aは、第1接続液路11Aの遮断弁71Aよりも第1出力ポート42の側(遮断弁71Aに対してホイルシリンダ102の側の接続液路11)にブレーキ液を吐出可能であり、ホイルシリンダ102にブレーキ液を供給可能である。第1ポンプ81Aは、第1リザーバ47のブレーキ液を第1吸入液路12Aを介して吸入し、第1吐出液路13A(液路13PA,13SA)に吐出する。第1リザーバ47には、配管10RAを介してリザーバタンク2からブレーキ液が補給される。第1ポンプ81Aにより昇圧されたブレーキ液は、第1接続液路11Aに供給された後、中継配管10I、第2液圧ユニット1B(第2接続液路11B)、及び前輪ホイルシリンダ配管10Wa,10Wbを介して前輪ホイルシリンダ102a,102bへ供給されると共に、後輪ホイルシリンダ配管10Wc,10Wdを介して後輪ホイルシリンダ102c,102dへ供給される。第2ポンプ81Bは、第2接続液路11Bの開閉弁71Bよりも第2出力ポート62の側(開閉弁71Bに対してホイルシリンダ102の側の接続液路11)にブレーキ液を吐出可能であり、ホイルシリンダ102にブレーキ液を供給可能である。第2ポンプ81Bは、全車輪のうち前輪FL,FRに対応するホイルシリンダ102a,102bに接続する接続液路11a,11bにのみブレーキ液を供給可能である。第2ポンプ81Bは、第2リザーバ64のブレーキ液を第2吸入液路12Bを介して吸入し、第2吐出液路13Bに吐出する。第2リザーバ64には、配管10RBを介してリザーバタンク2からブレーキ液が補給される。第2ポンプ81Bにより昇圧されたブレーキ液は、第2接続液路11Bに供給された後、前輪ホイルシリンダ配管10Wa,10Wbを介して前輪ホイルシリンダ102a,102bへ供給される。 The first pump 81A can discharge the brake fluid to the first output port 42 side (the connection fluid passage 11 on the wheel cylinder 102 side with respect to the shut-off valve 71A) from the shut-off valve 71A of the first connection fluid passage 11A. Yes, brake fluid can be supplied to the wheel cylinder 102. The first pump 81A sucks the brake fluid in the first reservoir 47 through the first suction liquid path 12A and discharges it to the first discharge liquid path 13A (liquid paths 13PA, 13SA). The brake fluid is supplied to the first reservoir 47 from the reservoir tank 2 through the pipe 10RA. The brake fluid boosted by the first pump 81A is supplied to the first connection fluid passage 11A, and then the relay pipe 10I, the second hydraulic pressure unit 1B (second connection fluid passage 11B), and the front wheel wheel cylinder piping 10Wa, It is supplied to the front wheel cylinders 102a and 102b via 10Wb and supplied to the rear wheel cylinders 102c and 102d via the rear wheel cylinder cylinders 10Wc and 10Wd. The second pump 81B can discharge the brake fluid to the second output port 62 side (the connection liquid path 11 on the wheel cylinder 102 side with respect to the on-off valve 71B) from the on-off valve 71B of the second connection liquid path 11B. Yes, brake fluid can be supplied to the wheel cylinder 102. The second pump 81B can supply the brake fluid only to the connection fluid passages 11a and 11b connected to the wheel cylinders 102a and 102b corresponding to the front wheels FL and FR among all the wheels. The second pump 81B sucks the brake fluid in the second reservoir 64 through the second suction fluid passage 12B and discharges it to the second discharge fluid passage 13B. The brake fluid is supplied to the second reservoir 64 from the reservoir tank 2 via the pipe 10RB. The brake fluid boosted by the second pump 81B is supplied to the second connection fluid passage 11B and then supplied to the front wheel cylinders 102a and 102b via the front wheel cylinder pipes 10Wa and 10Wb.
 各液圧ユニット1A,1Bのリザーバ47,64は、例えばリザーバ配管10Rから液漏れがあった場合等にも、ポンプ8へブレーキ液を継続して供給可能である。各液圧ユニット1A,1Bにおいて、リザーバ47,64が鉛直方向上側に位置するように各液圧ユニット1A,1Bを配置した場合、リザーバ47,64の機能をより確実に発揮可能である。 The reservoirs 47 and 64 of the hydraulic units 1A and 1B can continuously supply brake fluid to the pump 8 even when there is a fluid leak from the reservoir pipe 10R, for example. In the hydraulic units 1A and 1B, when the hydraulic units 1A and 1B are arranged so that the reservoirs 47 and 64 are positioned on the upper side in the vertical direction, the functions of the reservoirs 47 and 64 can be more reliably exhibited.
 電子制御ユニット(以下、ECU)90は、第1液圧ユニット1Aの第1ハウジング40の一側面に設置される。ECU90は、第1液圧ユニット1Aの第1モータ80A、各電磁弁7Aのソレノイド、及び液圧センサ92,93,94と電気的に接続する。また、ECU90は、ハーネスを介して、ストロークセンサ91及び液面センサ26,27、並びに第2液圧ユニット1Bの第2モータ80B及び開閉弁71B(のソレノイド)と、電気的に接続する。また、ECU90は、CAN等の車載ネットワークを介して、車両側の他の制御機器等と接続する。ECU90は、第1制御部901、第2制御部902、及び失陥報知部903を有する。第1制御部901は、センサ91等の検出値や車両側から入力された走行状態に関する情報、及び内蔵された(ROMに記憶された)プログラムに基づき、第1液圧ユニット1Aの電磁弁7Aの開閉動作や第1モータ80Aの回転数(すなわち第1ポンプ81Aの吐出量)を制御する。これにより、各車輪FL~RRのホイルシリンダ液圧(液圧制動力)を制御する。第1制御部901は、ホイルシリンダ液圧を制御することで、各種のブレーキ制御を実行可能である。ブレーキ制御は、運転者のブレーキ操作力を低減するための倍力制御、制動による車輪のスリップを抑制するためのアンチロックブレーキ制御(ABS)、車輪の駆動スリップを抑制するためのトラクション制御、車両の運動制御のためのブレーキ制御、先行車追従制御等の自動ブレーキ制御、回生協調ブレーキ制御等を含む。車両の運動制御は、横滑り防止等の車両挙動安定化制御を含む。 An electronic control unit (hereinafter, ECU) 90 is installed on one side of the first housing 40 of the first hydraulic unit 1A. The ECU 90 is electrically connected to the first motor 80A of the first hydraulic pressure unit 1A, the solenoids of the electromagnetic valves 7A, and the hydraulic pressure sensors 92, 93, 94. The ECU 90 is electrically connected to the stroke sensor 91, the liquid level sensors 26 and 27, and the second motor 80B and the on-off valve 71B (solenoid thereof) of the second hydraulic pressure unit 1B via a harness. The ECU 90 is connected to other control devices on the vehicle side via an in-vehicle network such as CAN. The ECU 90 includes a first control unit 901, a second control unit 902, and a failure notification unit 903. The first control unit 901, based on the detection value of the sensor 91 and the like, information on the running state input from the vehicle side, and a built-in program (stored in the ROM), the electromagnetic valve 7A of the first hydraulic unit 1A. And the rotation speed of the first motor 80A (that is, the discharge amount of the first pump 81A) is controlled. Thereby, the wheel cylinder hydraulic pressure (hydraulic braking force) of each wheel FL to RR is controlled. The first controller 901 can execute various types of brake control by controlling the wheel cylinder hydraulic pressure. Brake control includes boost control to reduce driver's braking force, anti-lock brake control (ABS) to suppress wheel slip due to braking, traction control to suppress wheel drive slip, vehicle Brake control for motion control, automatic brake control such as preceding vehicle follow-up control, regenerative cooperative brake control, and the like. Vehicle motion control includes vehicle behavior stabilization control such as skidding prevention.
 第1制御部901は、マイクロコンピュータの内部の制御装置であり、センサ91等及び第1液圧ユニット1Aのアクチュエータ(電磁弁7Aや第1モータ80A)と共に、液圧制御装置として機能する。第1制御部901は、入力部904、演算部905、及び出力部906を有する。入力部904は、センサ91等が検出した情報及び車載ネットワークからの情報を、マイクロコンピュータの内部の入力インターフェイス回路を通して読み込む。演算部905は、入力部904が読み込んだ情報に基づき、組み込まれたプログラム(制御アルゴリズム)に従って、アクチュエータの駆動パターンを生成する演算処理を行う。例えば、演算部905は、ストロークセンサ91の検出値に基づき、ブレーキ操作量としてのブレーキペダル100の変位量(ペダルストローク)を検出する。倍力制御時には、検出されたペダルストロークに基づき、所定の倍力比、すなわちペダルストロークと運転者の要求ブレーキ液圧(運転者が要求する車両減速度)との間の理想の関係特性を実現する目標ホイルシリンダ液圧を設定する。回生協調ブレーキ制御時には、例えば、車両の回生制動装置のコントロールユニットから入力される回生制動力と目標ホイルシリンダ液圧に相当する液圧制動力との和が、運転者の要求する車両減速度を充足するような上記目標ホイルシリンダ液圧を算出する。運動制御時には、例えば検出された車両運動状態量(車輪速、ヨーレイト、前後方向加速度、横方向加速度等)に基づき、所望の車両運動状態を実現するような各車輪FL~RRの目標ホイルシリンダ液圧を算出する。演算部905は、上記目標ホイルシリンダ液圧を実現するよう、アクチュエータを駆動するための指令を演算し、これを出力部906に出力する。駆動指令は、電流値に関するものであってもよいし、トルクや変位量に関するものであってもよい。出力部906は、演算部905からの駆動指令値を換算し、マイクロコンピュータの内部の出力インターフェイス回路を通してアクチュエータの駆動回路に出力する。出力部906は、PWMデューティ値演算部等を含む。出力インターフェイス回路は、PWM信号を発生する方形波発生回路やインバータ等を含む。なお、入力部904や出力部906を電子回路(インターフェイス回路)により実現してもよい。演算は、数式演算だけでなく、ソフトウェア上での処理全般を意味する。演算部905において、所定の倍力比を実現する目標ホイルシリンダ液圧は、マイクロコンピュータ内のマップによって設定する他、演算によって設定してもよい。 The first control unit 901 is a control device inside the microcomputer, and functions as a fluid pressure control device together with the sensor 91 and the like and the actuator (the electromagnetic valve 7A and the first motor 80A) of the first fluid pressure unit 1A. The first control unit 901 includes an input unit 904, a calculation unit 905, and an output unit 906. The input unit 904 reads information detected by the sensor 91 and the like and information from the in-vehicle network through an input interface circuit inside the microcomputer. Based on the information read by the input unit 904, the arithmetic unit 905 performs arithmetic processing for generating an actuator drive pattern in accordance with an embedded program (control algorithm). For example, the calculation unit 905 detects a displacement amount (pedal stroke) of the brake pedal 100 as a brake operation amount based on a detection value of the stroke sensor 91. During boost control, based on the detected pedal stroke, a desired boost ratio, that is, the ideal relationship between the pedal stroke and the driver's required brake fluid pressure (vehicle deceleration required by the driver) is achieved. Set the target wheel cylinder hydraulic pressure. During regenerative cooperative brake control, for example, the sum of the regenerative braking force input from the control unit of the regenerative braking device of the vehicle and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver. The target wheel cylinder hydraulic pressure is calculated. At the time of motion control, for example, based on the detected vehicle motion state quantity (wheel speed, yaw rate, longitudinal acceleration, lateral acceleration, etc.), the target wheel cylinder fluid of each wheel FL to RR that realizes a desired vehicle motion state Calculate the pressure. The calculation unit 905 calculates a command for driving the actuator so as to realize the target wheel cylinder hydraulic pressure, and outputs the command to the output unit 906. The drive command may relate to a current value, or may relate to a torque or a displacement amount. The output unit 906 converts the drive command value from the calculation unit 905 and outputs it to the actuator drive circuit through an output interface circuit inside the microcomputer. The output unit 906 includes a PWM duty value calculation unit and the like. The output interface circuit includes a square wave generation circuit that generates a PWM signal, an inverter, and the like. Note that the input unit 904 and the output unit 906 may be realized by an electronic circuit (interface circuit). The calculation means not only mathematical calculation but also general processing on software. In the calculation unit 905, the target wheel cylinder hydraulic pressure that achieves a predetermined boost ratio may be set by calculation in addition to being set by a map in the microcomputer.
 第1制御部901は、第1ポンプ81Aを非作動とし、遮断弁71Aを開方向に制御する。この状態で、マスタシリンダ3の各液圧室34P,34Sとホイルシリンダ102とを接続する接続液路11は、ブレーキペダル100の踏力を用いて発生させたマスタシリンダ液圧によりホイルシリンダ液圧を創生する踏力ブレーキ(非倍力制御)を実現する。踏力ブレーキ時、第1制御部901は、シミュレータイン弁78及びシミュレータアウト弁77を閉方向に制御する。これにより、ストロークシミュレータ5が非作動となる。 The first control unit 901 deactivates the first pump 81A and controls the shutoff valve 71A in the opening direction. In this state, the connecting fluid path 11 that connects the hydraulic chambers 34P and 34S of the master cylinder 3 and the wheel cylinder 102 has the wheel cylinder hydraulic pressure generated by the master cylinder hydraulic pressure generated using the depression force of the brake pedal 100. Realize the tread force brake (non-boosting control) to be created. At the time of pedaling braking, the first control unit 901 controls the simulator-in valve 78 and the simulator-out valve 77 in the closing direction. As a result, the stroke simulator 5 is deactivated.
 第1制御部901は、第1液圧ユニット1Aのアクチュエータを制御することで、マスタシリンダ3とホイルシリンダ102の連通を遮断した状態で、第1ポンプ81Aが発生する液圧を用いて各ホイルシリンダ102の液圧を(運転者によるブレーキ操作とは独立に)個別に制御可能である。第1制御部901は、第1ポンプ81Aを作動させ、遮断弁71Aを閉方向に制御する。この状態で、第1リザーバ47とホイルシリンダ102を接続する液路(第1吸入液路12A、第1吐出液路13A等)は、第1ポンプ81Aを用いて発生させた液圧によりホイルシリンダ液圧を創生する所謂ブレーキバイワイヤシステムを実現する。ブレーキバイワイヤ時、第1制御部901は、シミュレータイン弁78を閉方向に、シミュレータアウト弁77を開方向に制御する。これにより、ストロークシミュレータ5が作動する。なお、ストロークシミュレータ5の作動中に第1液圧ユニット1Aの電源失陥が発生すると、シミュレータアウト弁77が閉弁状態になる。コイルスプリング520,530の力により、ピストン51は初期位置に向けてy軸負方向にストロークする。ピストン51の孔514が第1シール溝504のシール部材54(のリップ)よりもy軸正方向側に戻ると、背圧室56と補給ポート503とが連通する。これにより、第1リザーバ47(リザーバタンク2)からシミュレータ補給液路19Aを介して背圧室56にブレーキ液が円滑に補給される。 The first control unit 901 controls each actuator using the hydraulic pressure generated by the first pump 81A in a state where the communication between the master cylinder 3 and the wheel cylinder 102 is blocked by controlling the actuator of the first hydraulic unit 1A. The hydraulic pressure in the cylinder 102 can be individually controlled (independent of the brake operation by the driver). The first control unit 901 operates the first pump 81A and controls the shutoff valve 71A in the closing direction. In this state, the fluid passage (the first suction fluid passage 12A, the first discharge fluid passage 13A, etc.) connecting the first reservoir 47 and the wheel cylinder 102 is the foil cylinder generated by the fluid pressure generated using the first pump 81A. A so-called brake-by-wire system that creates hydraulic pressure is realized. During brake-by-wire, the first control unit 901 controls the simulator-in valve 78 in the closing direction and the simulator-out valve 77 in the opening direction. Thereby, the stroke simulator 5 operates. Note that if the power failure of the first hydraulic unit 1A occurs during the operation of the stroke simulator 5, the simulator out valve 77 is closed. Due to the force of the coil springs 520 and 530, the piston 51 strokes in the negative y-axis direction toward the initial position. When the hole 514 of the piston 51 returns to the y-axis positive direction side with respect to the seal member 54 (the lip) of the first seal groove 504, the back pressure chamber 56 and the supply port 503 communicate with each other. As a result, the brake fluid is smoothly supplied from the first reservoir 47 (reservoir tank 2) to the back pressure chamber 56 via the simulator supply liquid passage 19A.
 倍力制御を実行するため、第1制御部901は、ブレーキペダル100の操作時に、第1ポンプ81Aを所定回転数で作動させ、遮断弁71Aを閉方向に、増圧弁72を開方向に、連通弁73Aを開方向に、減圧弁75を閉方向に制御する。調圧弁74の上流側の液圧である第1吐出液路13Aの液圧が目標ホイルシリンダ液圧に応じた目標液圧となるように、調圧弁74の開閉を制御する。これにより、ホイルシリンダ102にブレーキ液圧を供給し(ブレーキ液を供給して液圧を発生し)、目標ホイルシリンダ液圧を実現する。上記上流側の液圧は、液圧センサ92,93P,93Sのいずれか又は複数の検出値(例えば平均値)を用いて得られる。倍力制御では、エンジン負圧ブースタに代え、第1ポンプ81Aを液圧源としてマスタシリンダ液圧よりも高いホイルシリンダ液圧を創生する。これにより、運転者のブレーキ操作力では不足する液圧制動力を発生させることで、ブレーキ操作力を補助する。 In order to execute the boost control, the first control unit 901 operates the first pump 81A at a predetermined number of revolutions when operating the brake pedal 100, closes the shutoff valve 71A, and opens the pressure increasing valve 72. The communication valve 73A is controlled in the opening direction, and the pressure reducing valve 75 is controlled in the closing direction. The opening and closing of the pressure regulating valve 74 is controlled so that the fluid pressure in the first discharge fluid passage 13A, which is the fluid pressure upstream of the pressure regulating valve 74, becomes the target fluid pressure corresponding to the target wheel cylinder fluid pressure. As a result, the brake fluid pressure is supplied to the wheel cylinder 102 (the brake fluid is supplied to generate the fluid pressure), and the target wheel cylinder fluid pressure is realized. The upstream hydraulic pressure is obtained by using any one or a plurality of detected values (for example, average values) of the hydraulic pressure sensors 92, 93P, 93S. In the boost control, a wheel cylinder hydraulic pressure higher than the master cylinder hydraulic pressure is created using the first pump 81A as a hydraulic pressure source instead of the engine negative pressure booster. Thus, the brake operation force is assisted by generating a hydraulic braking force that is insufficient with the driver's brake operation force.
 なお、ブレーキペダル100の踏込み操作開始後、第1ポンプ81Aが十分に高いホイルシリンダ液圧を発生可能になるまでの間、シミュレータアウト弁77を閉方向に制御してもよい。これにより、背圧室56から流出するブレーキ液は、シミュレータ増圧液路18A(バイパス液路180及びチェック弁780)を通って接続液路11Aに供給され、ホイルシリンダ102へ向って供給される。これにより、ホイルシリンダ液圧の昇圧応答性を向上できる。第1ポンプ81Aが十分に高いホイルシリンダ液圧を発生可能な作動状態になると、シミュレータアウト弁77を開方向に制御することにより、背圧室56からのブレーキ液の流出先が第1リザーバ47に切り換えられる。なお、シミュレータアウト弁77を閉方向に制御する間、シミュレータイン弁78を開方向に制御することで、シミュレータ増圧液路18Aの流路断面積を大きくしてもよい。 It should be noted that the simulator out valve 77 may be controlled in the closing direction until the first pump 81A can generate a sufficiently high wheel cylinder hydraulic pressure after the start of the depression operation of the brake pedal 100. As a result, the brake fluid flowing out from the back pressure chamber 56 is supplied to the connecting fluid passage 11A through the simulator pressure-increasing fluid passage 18A (the bypass fluid passage 180 and the check valve 780), and is supplied toward the wheel cylinder 102. . Thereby, the pressure | voltage rise responsiveness of wheel cylinder hydraulic pressure can be improved. When the first pump 81A enters an operation state in which a sufficiently high wheel cylinder hydraulic pressure can be generated, the simulator out valve 77 is controlled in the opening direction so that the brake fluid is discharged from the back pressure chamber 56 to the first reservoir 47. Can be switched to. Note that the flow path cross-sectional area of the simulator pressure increasing liquid path 18A may be increased by controlling the simulator in valve 78 in the opening direction while the simulator out valve 77 is controlled in the closing direction.
 失陥報知部903は、第1液圧ユニット1Aによる倍力制御が正常に作動可能である間、当該倍力制御が正常に作動可能であることを示す信号(正常信号)を生成し、これを信号線に出力し続ける。正常信号は、例えば所定デューティ比の方形波である。失陥報知部903は、上記倍力制御が正常に作動可能でない場合、正常信号を生成せず、これを信号線に出力しない。上記倍力制御が正常に作動可能でない場合とは、ECU90やセンサ92等や第1液圧ユニット1Aのアクチュエータが失陥した場合(第1液圧ユニット1Aの電源失陥を含む)である。「失陥報知部903が正常信号を出力しない状態」が、上記倍力制御の失陥(上記倍力制御が正常に作動可能でないこと)を他所に「報知する」ことに相当する。 The failure notification unit 903 generates a signal (normal signal) indicating that the boost control can be normally operated while the boost control by the first hydraulic pressure unit 1A is normally operable. Is continuously output to the signal line. The normal signal is, for example, a square wave having a predetermined duty ratio. If the boost control is not normally operable, the failure notification unit 903 does not generate a normal signal and does not output it to the signal line. The case where the boost control is not normally operable is a case where the ECU 90, the sensor 92, or the like, or the actuator of the first hydraulic unit 1A has failed (including power failure of the first hydraulic unit 1A). “The state in which the failure notifying unit 903 does not output a normal signal” corresponds to “notifying” the failure of the boost control (that the boost control is not normally operable) to other places.
 第2制御部902は、第2液圧ユニット1Bのアクチュエータ(開閉弁71B及び第2モータ80B)と共に、液圧制御装置として機能する。第2制御部902は、第2液圧ユニット1Bの第2ポンプ81B及び開閉弁71Bを制御することで、倍力制御を実行可能である。図8に示すように、第2制御部902は、第2液圧ユニット1Bのアクチュエータの駆動回路907と共に、第2液圧ユニット1Bの制御システムを構成する。第2制御部902及び駆動回路907は、ECU90の内部に、第1制御部901及び第1液圧ユニット1Aのアクチュエータの駆動回路から独立した回路としてある。駆動回路907は、電源(バッテリ)とアースとの間を延びる電源ライン909の上にリレー908を有する。リレー908は、半導体リレー(例えばパワーMOSFET)である。なお、メカニカルリレーでもよい。電源ライン909の上には、第2モータ80Bのコイル及び開閉弁71Bのソレノイドが並列に接続される。駆動回路907は電流駆動回路であり、リレー908はコイル等とアースとの間にある。なお、駆動回路907は電圧駆動回路でもよい。リレー908には、信号線を介して、第2制御部902が接続される。第2制御部902には、信号線を介して、失陥報知部903及びストロークセンサ91が接続される。 The second control unit 902 functions as a hydraulic pressure control device together with the actuators (the on-off valve 71B and the second motor 80B) of the second hydraulic pressure unit 1B. The second control unit 902 can execute boost control by controlling the second pump 81B and the on-off valve 71B of the second hydraulic pressure unit 1B. As shown in FIG. 8, the second control unit 902 and the actuator drive circuit 907 of the second hydraulic unit 1B constitute a control system for the second hydraulic unit 1B. The second control unit 902 and the drive circuit 907 are circuits that are independent of the drive circuit of the actuator of the first control unit 901 and the first hydraulic unit 1A inside the ECU 90. The drive circuit 907 has a relay 908 on a power supply line 909 extending between a power supply (battery) and ground. The relay 908 is a semiconductor relay (for example, a power MOSFET). A mechanical relay may be used. On the power line 909, the coil of the second motor 80B and the solenoid of the on-off valve 71B are connected in parallel. The drive circuit 907 is a current drive circuit, and the relay 908 is between a coil or the like and ground. Note that the drive circuit 907 may be a voltage drive circuit. The second control unit 902 is connected to the relay 908 via a signal line. A failure notification unit 903 and a stroke sensor 91 are connected to the second control unit 902 via a signal line.
 第2制御部902は、信号を生成可能な電気回路であり、例えばリレーシーケンスを有する。第2制御部902は、失陥報知部903からの正常信号の入力が(例えば所定時間以上)なく、かつストロークセンサ91から入力される検出値が所定値を超えると、リレー駆動信号を生成し、これをリレー908へ出力する。リレー駆動信号は、リレー908をオフからオンへ切り替えるためのスイッチング信号である。第2制御部902は、失陥報知部903からの正常信号の入力があるか、又はストロークセンサ91から入力される検出値が上記所定値以下であると、リレー駆動信号を生成しない。正常信号の入力がない状態で(ストロークセンサ91から入力される信号に応じて)リレー駆動信号を生成可能とすることが、第1液圧ユニット1Aによる倍力制御の失陥(上記倍力制御が正常に作動可能でないこと)を「検知する」ことに相当する。ここで第2制御部902は失陥検知部として機能する。なお、第2制御部902は、リレー駆動信号を生成すると共に、計器パネルにアラートを表示させたり警報音を発生させたりするための信号(アラート信号)を生成し、これを出力するようにしてもよい。 The second control unit 902 is an electric circuit that can generate a signal, and has a relay sequence, for example. The second control unit 902 generates a relay drive signal when there is no normal signal input from the failure notification unit 903 (for example, a predetermined time or more) and the detection value input from the stroke sensor 91 exceeds a predetermined value. This is output to the relay 908. The relay drive signal is a switching signal for switching the relay 908 from OFF to ON. The second control unit 902 does not generate a relay drive signal when a normal signal is input from the failure notification unit 903 or when the detection value input from the stroke sensor 91 is equal to or less than the predetermined value. It is possible to generate a relay drive signal in the absence of a normal signal input (in response to a signal input from the stroke sensor 91), the failure of the boost control by the first hydraulic unit 1A (the boost control described above) Is equivalent to “detect”. Here, the second control unit 902 functions as a failure detection unit. The second control unit 902 generates a relay drive signal, generates a signal (alert signal) for displaying an alert on the instrument panel or generating an alarm sound, and outputs the signal. Also good.
 次に作用効果を説明する。図9に基づき、第1液圧ユニット1Aによる倍力制御が正常に作動可能でない(作動していない)ときのブレーキシステム1の作動を説明する。図9に示す一例では、時刻t1からt6までブレーキペダル100が踏み込まれ、時刻t6からt7まで踏込み量が維持され、時刻t7からt8までブレーキペダル100が踏み戻される。時刻t1以後、踏力Fが0から増大する。時刻t2の直前、踏力Fが、ブレーキペダル100が動き始める[0]所定の初期踏力(例えば15N程度)に達する。時刻t2で、ペダルストロークS(ストロークセンサ91の検出値)が所定値S0を超える。また、ブレーキランプスイッチがオフからオンへ切り替わる。第1液圧ユニット1Aによる倍力制御が正常に作動可能でない(上記倍力制御が非作動である)ため、失陥報知部903は正常信号を生成せず、第2制御部902には正常信号の入力がない。よって、時刻t2で、第2制御部902に入力されるストロークセンサ91の検出値が所定値S0を超えると、第2制御部902はリレー駆動信号を生成してリレー908に出力する。これによりリレー908がオフからオンへ切り替わり、第2モータ80B及び開閉弁71Bへの通電が開始される。開閉弁71Bが閉じると共に、第2ポンプ81Bが作動する。なお、第2制御部902は、第2ポンプ81Bの回転数を特に制御しない。第2ポンプ81Bにより昇圧されたブレーキ液は前輪ホイルシリンダ102a,102bへ供給される。よって、時刻t2以後、図9に実線で示す前輪ホイルシリンダ102a,102bの液圧は徐々に上昇する。一方、第1液圧ユニット1Aの各アクチュエータは非作動状態であるため、ストロークシミュレータ5は非作動であり、マスタシリンダ3の液圧室34から流出したブレーキ液は接続液路11(第1接続液路11A)を介して後輪ホイルシリンダ102c,102dへ供給される。時刻t2以後、後輪RL,RRにおいてブレーキ作動ユニットの摩擦部材(ブレーキパッド)と車輪側の回転部材(ブレーキディスク)との間のクリアランスが埋まる(後輪ホイルシリンダ102c,102dのブカ詰めが終了する)まで、踏力Fの増大に応じてペダルストロークSは緩やかに増加すると共に、図9に破線で示す後輪ホイルシリンダ102c,102dの液圧は殆ど上昇しない。 Next, the function and effect will be described. Based on FIG. 9, the operation of the brake system 1 when the boost control by the first hydraulic pressure unit 1A is not normally operable (not operating) will be described. In the example shown in FIG. 9, the brake pedal 100 is depressed from time t1 to t6, the depression amount is maintained from time t6 to t7, and the brake pedal 100 is depressed from time t7 to t8. After time t1, the pedal effort F increases from zero. Immediately before time t2, the pedaling force F reaches a predetermined initial pedaling force (for example, about 15N) [0] at which the brake pedal 100 starts to move. At time t2, the pedal stroke S (detected value of the stroke sensor 91) exceeds the predetermined value S0. In addition, the brake lamp switch is switched from OFF to ON. Since the boost control by the first hydraulic pressure unit 1A is not normally operable (the boost control is not activated), the failure notification unit 903 does not generate a normal signal, and the second control unit 902 is normal. There is no signal input. Therefore, when the detection value of the stroke sensor 91 input to the second control unit 902 exceeds the predetermined value S0 at time t2, the second control unit 902 generates a relay drive signal and outputs it to the relay 908. As a result, the relay 908 is switched from OFF to ON, and energization of the second motor 80B and the on-off valve 71B is started. The on-off valve 71B is closed and the second pump 81B is activated. The second control unit 902 does not particularly control the rotational speed of the second pump 81B. The brake fluid boosted by the second pump 81B is supplied to the front wheel cylinders 102a and 102b. Therefore, after time t2, the hydraulic pressure in the front wheel cylinders 102a and 102b indicated by the solid line in FIG. 9 gradually increases. On the other hand, since each actuator of the first hydraulic pressure unit 1A is inactive, the stroke simulator 5 is inactive, and the brake fluid flowing out from the hydraulic chamber 34 of the master cylinder 3 is connected to the connection fluid path 11 (first connection). It is supplied to the rear wheel cylinders 102c and 102d via the liquid passage 11A). After time t2, the clearance between the friction member (brake pad) of the brake operating unit and the wheel-side rotating member (brake disc) is filled in the rear wheels RL and RR (the rear wheel wheel cylinders 102c and 102d are finished filling) The pedal stroke S gradually increases as the pedal effort F increases, and the hydraulic pressure in the rear wheel cylinders 102c and 102d indicated by the broken line in FIG. 9 hardly increases.
 時刻t3で、上記ブカ詰めが終了する。よって、時刻t3以後、Fの増大に対するSの増加割合が小さくなると共に、Fの増大に応じて後輪ホイルシリンダ102c,102dの液圧は徐々に上昇する。ここで、第2ポンプ81Bによる前輪ホイルシリンダ102a,102bの液圧の上昇速度は、Fによる後輪ホイルシリンダ102c,102dの液圧の上昇速度よりも高く、例えば1~5MPa/sである。また、前輪ホイルシリンダ102a,102bの液圧は後輪ホイルシリンダ102c,102dの液圧よりも高い。前後輪のホイルシリンダ液圧により実現される車両の減速度は増大する。 At time t3, the above stuffing ends. Therefore, after time t3, the rate of increase of S relative to the increase of F decreases, and the hydraulic pressure of the rear wheel cylinders 102c, 102d gradually increases as F increases. Here, the rising speed of the hydraulic pressure of the front wheel cylinders 102a and 102b by the second pump 81B is higher than the rising speed of the hydraulic pressure of the rear wheel cylinders 102c and 102d by F, and is, for example, 1 to 5 MPa / s. The hydraulic pressure in the front wheel cylinders 102a and 102b is higher than the hydraulic pressure in the rear wheel cylinders 102c and 102d. The vehicle deceleration realized by the wheel cylinder hydraulic pressure of the front and rear wheels increases.
 時刻t4で、第2ポンプ81Bの吐出圧(第2ポンプ81Bによる前輪ホイルシリンダ102a,102bの液圧)が上限値(例えば3.7MPa。以下、数値は参考のための一例である。)に達する。このとき、Fは200Nであり、Sは略30mmであり、後輪ホイルシリンダ102c,102dの液圧は2.4Mpaであり、前後輪のホイルシリンダ液圧により実現される車両の減速度は0.46Gである。時刻t4以後、前輪ホイルシリンダ102a,102bの液圧は上限値のままであり、後輪ホイルシリンダ102c,102dの液圧はFの増大に応じて上昇する。前輪ホイルシリンダ102a,102bの液圧は後輪ホイルシリンダ102c,102dの液圧よりも高いままである。前後輪のホイルシリンダ液圧により実現される車両の減速度は0.46Gから若干増大する。 At time t4, the discharge pressure of the second pump 81B (the hydraulic pressure of the front wheel cylinders 102a and 102b by the second pump 81B) reaches an upper limit (eg, 3.7 MPa. The following is an example for reference). . At this time, F is 200 N, S is approximately 30 mm, the hydraulic pressure of the rear wheel cylinders 102c and 102d is 2.4 MPa, and the vehicle deceleration realized by the wheel cylinder hydraulic pressure of the front and rear wheels is 0.46G. It is. After time t4, the hydraulic pressure in the front wheel cylinders 102a, 102b remains at the upper limit, and the hydraulic pressure in the rear wheel cylinders 102c, 102d increases as F increases. The hydraulic pressure in the front wheel cylinders 102a and 102b remains higher than the hydraulic pressure in the rear wheel cylinders 102c and 102d. The vehicle deceleration achieved by the front and rear wheel cylinder hydraulic pressures increases slightly from 0.46G.
 時刻t5で、Fが310Nとなり、後輪ホイルシリンダ102c,102dの液圧が前輪ホイルシリンダ102a,102bの液圧に達する。よって、時刻t3~t5では、Fに応じた減速度よりも大きい減速度が発生する(Fが倍力される)。時刻t5以後、後輪ホイルシリンダ102c,102dの液圧の上昇に応じて、チェック弁710が開き、ブレーキ液がマスタシリンダ3の側から前輪ホイルシリンダ102a,102bの側へ流れる。これにより、前輪ホイルシリンダ102a,102bの液圧が後輪ホイルシリンダ102c,102dの液圧と同じく上昇する。マスタシリンダ3の液圧室34から流出したブレーキ液が、後輪ホイルシリンダ102c,102dだけでなく、接続液路11(第1,第2接続液路11A,11B)を介して前輪ホイルシリンダ102a,102bへ供給される。よって、前後輪のホイルシリンダ液圧により実現される車両の減速度は増大すると共に、Fの増大に対するSの増加割合が大きくなる。 At time t5, F becomes 310N, and the hydraulic pressure in the rear wheel cylinders 102c and 102d reaches the hydraulic pressure in the front wheel cylinders 102a and 102b. Therefore, at times t3 to t5, a deceleration larger than the deceleration according to F occurs (F is boosted). After time t5, the check valve 710 opens according to the increase in the hydraulic pressure of the rear wheel cylinders 102c, 102d, and the brake fluid flows from the master cylinder 3 side to the front wheel cylinders 102a, 102b side. As a result, the hydraulic pressure in the front wheel cylinders 102a and 102b increases in the same manner as the hydraulic pressure in the rear wheel cylinders 102c and 102d. The brake fluid that has flowed out of the hydraulic chamber 34 of the master cylinder 3 is connected not only to the rear wheel cylinders 102c and 102d but also to the front wheel cylinder 102a via the connection fluid passage 11 (first and second connection fluid passages 11A and 11B). , 102b. Therefore, the deceleration of the vehicle realized by the wheel cylinder hydraulic pressures of the front and rear wheels increases, and the rate of increase of S with respect to the increase of F increases.
 時刻t6~t7で、Fが一定に保持されるのに対応し、S,P,及び減速度も一定である。よって、時刻t5~t7では、Fに応じた減速度が発生する。時刻t7で、Fが減少を開始する。後輪ホイルシリンダ102c,102dからブレーキ液が接続液路11(第1接続液路11A)を介してマスタシリンダ3の液圧室34に戻される。一方、前輪ホイルシリンダ102a,102bから液圧室34へのブレーキ液の流れはチェック弁710により抑制される。よって、時刻t7以後、Fの減少に応じてSは緩やかに減少し、後輪ホイルシリンダ102c,102dの液圧は低下するが、前輪ホイルシリンダ102a,102bの液圧は保持される。前後輪のホイルシリンダ液圧により実現される車両の減速度は若干減少する。時刻t8で、Fが0となる。ペダルストロークS(ストロークセンサ91の検出値)がS0以下になる。また、ブレーキランプスイッチがオンからオフへ切り替わる。ストロークセンサ91から第2制御部902に入力される検出値が所定値S0以下になると、第2制御部902はリレー駆動信号を生成しなくなる。これにより第2液圧ユニット1Bの作動が解除される。リレー908がオンからオフへ切り替わり、第2モータ80B及び開閉弁71Bへの通電が終了する。開閉弁71Bが開くと共に、第2ポンプ81Bが停止する。前輪ホイルシリンダ102a,102bからブレーキ液が接続液路11(第1,第2接続液路11A,11B)を介してマスタシリンダ3の液圧室34に戻される。よって、時刻t8以後、前輪ホイルシリンダ102a,102bの液圧が急速に0まで低下し、前後輪のホイルシリンダ液圧により実現される車両の減速度も0まで減少する。 Corresponding to F being held constant from time t6 to t7, S, P, and deceleration are also constant. Therefore, at times t5 to t7, deceleration corresponding to F occurs. At time t7, F starts to decrease. Brake fluid is returned from the rear wheel cylinders 102c and 102d to the hydraulic pressure chamber 34 of the master cylinder 3 via the connection fluid path 11 (first connection fluid path 11A). On the other hand, the flow of brake fluid from the front wheel cylinders 102a and 102b to the hydraulic chamber 34 is suppressed by the check valve 710. Therefore, after time t7, S gradually decreases as F decreases, and the hydraulic pressure in the rear wheel cylinders 102c and 102d decreases, but the hydraulic pressure in the front wheel cylinders 102a and 102b is maintained. The vehicle deceleration achieved by the front and rear wheel cylinder hydraulic pressures is slightly reduced. At time t8, F becomes 0. The pedal stroke S (detected value of the stroke sensor 91) becomes S0 or less. In addition, the brake lamp switch is switched from on to off. When the detection value input from the stroke sensor 91 to the second control unit 902 is equal to or less than the predetermined value S0, the second control unit 902 does not generate a relay drive signal. As a result, the operation of the second hydraulic pressure unit 1B is released. The relay 908 is switched from on to off, and energization of the second motor 80B and the on-off valve 71B is completed. The on-off valve 71B is opened and the second pump 81B is stopped. Brake fluid is returned from the front wheel cylinders 102a, 102b to the hydraulic pressure chamber 34 of the master cylinder 3 via the connection fluid passage 11 (first and second connection fluid passages 11A, 11B). Therefore, after time t8, the hydraulic pressure in the front wheel cylinders 102a, 102b rapidly decreases to 0, and the vehicle deceleration realized by the wheel cylinder hydraulic pressure in the front and rear wheels also decreases to 0.
 このように、ブレーキシステム1は、第1液圧ユニット1Aとは別に、第2液圧ユニット1Bを備える。通常は第1液圧ユニット1Aのみが作動してブレーキ液圧を発生させ、ペダル踏力を補助する倍力制御を実行する。第1液圧ユニット1Aによる倍力制御が失陥した状態では、第2液圧ユニット1Bが作動してブレーキ液圧を発生させる。これにより、図9の時刻t2~t5に示すように、マスタシリンダ液圧によるブレーキ液圧(後輪ホイルシリンダ液圧)よりも高いブレーキ液圧(前輪ホイルシリンダ液圧)を発生し、ペダル踏力の補助を継続することができる。すなわち、ECU90の失陥報知部903は正常信号を出力しない。第2制御部902は、上記倍力制御の失陥を検知し、ブレーキペダル100の操作時に、第2ポンプ81Bを作動させ開閉弁71Bを閉方向に作動させる。よって、第2液圧ユニット1Bにより(本実施例では前輪FL,FRの)ホイルシリンダ102にブレーキ液圧が供給されるため、ブレーキシステム1の全体として倍力制御を継続可能である。こうして、第2液圧ユニット1Bは、失陥時用の補助液圧ユニットとして機能する。 Thus, the brake system 1 includes the second hydraulic unit 1B separately from the first hydraulic unit 1A. Normally, only the first hydraulic pressure unit 1A is activated to generate a brake hydraulic pressure, and a boost control that assists the pedal effort is executed. In a state where the boost control by the first hydraulic unit 1A has failed, the second hydraulic unit 1B is activated to generate the brake hydraulic pressure. As a result, as shown at times t2 to t5 in FIG. 9, a brake fluid pressure (front wheel wheel cylinder fluid pressure) higher than the brake fluid pressure (rear wheel wheel cylinder fluid pressure) due to the master cylinder fluid pressure is generated, and the pedal depression force Can continue assistance. That is, the failure notification unit 903 of the ECU 90 does not output a normal signal. The second control unit 902 detects the failure of the boost control, and operates the second pump 81B to operate the on-off valve 71B in the closing direction when the brake pedal 100 is operated. Therefore, since the brake hydraulic pressure is supplied to the wheel cylinder 102 (in the present embodiment, the front wheels FL and FR) by the second hydraulic pressure unit 1B, the boost control can be continued as a whole of the brake system 1. Thus, the second hydraulic pressure unit 1B functions as an auxiliary hydraulic pressure unit for failure.
 図9の時刻t3~t4に示すように、第2ポンプ81Bによる前輪ホイルシリンダ102a,102bの増圧速度は、例えば1~5MPa/sであり、車両の運動制御のためのブレーキ制御における最大ホイルシリンダ増圧速度よりも低く設定することが可能である。これは、第2液圧ユニット1Bの本来の機能が、第1液圧ユニット1Aによる倍力制御の失陥時の補助(倍力制御の継続)だからであり、運動制御のためのブレーキ制御におけるような増圧速度は必要ないからである。よって、第2ポンプ81B(第2モータ80B)の出力ないし性能を、第1ポンプ81A(第1モータ80A)の出力ないし性能よりも低く設定できる。これにより、第2液圧ユニット1Bの構成を簡略化し、小型化を図ることができる。 As shown at times t3 to t4 in FIG. 9, the pressure increase speed of the front wheel cylinders 102a and 102b by the second pump 81B is, for example, 1 to 5 MPa / s, and the maximum wheel in brake control for vehicle motion control It can be set lower than the cylinder pressure increase speed. This is because the original function of the second hydraulic pressure unit 1B is assistance in the case of failure of boost control by the first hydraulic pressure unit 1A (continuation of boost control). This is because such a pressure increase rate is not necessary. Therefore, the output or performance of the second pump 81B (second motor 80B) can be set lower than the output or performance of the first pump 81A (first motor 80A). Thereby, the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved.
 図9の時刻t4に示すように、第1液圧ユニット1Aによる倍力制御の失陥時、踏力Fが200Nで0.4G以上の減速度を実現できる。このときのペダルストロークSは略30mmであり、Sは50mm以内に抑制される。よって、ペダルストロークの短縮化を図ることができる。言換えると、小さい踏力及び短いペダルストロークで、大きな減速度を出すことができる。なお、マスタシリンダ3に電動ブースタ等の倍力装置を設けた場合を仮定すると、第1液圧ユニット1Aによる倍力制御の失陥を検出した状態で、ブレーキペダル100の操作信号をトリガーにして上記倍力装置を作動させることも考えられる。しかしこの場合、上記倍力装置はマスタシリンダ3に連動する(液圧室34のブレーキ液を用いる)ため、ペダルストロークの短縮化が容易でない。これに対し、本実施形態では、第2液圧ユニット1Bは、マスタシリンダ3の作動から独立してホイルシリンダ102を増圧可能である(液圧室34のブレーキ液を用いない)。このため、上記失陥状態でブレーキペダル100の操作時に第2液圧ユニット1Bによりホイルシリンダ102を増圧する際、マスタシリンダ3から送り出すブレーキ液量が少なくて済む。よって、ペダルストロークの短縮化が容易である。 As shown at time t4 in FIG. 9, when the boost control by the first hydraulic unit 1A fails, a deceleration of 0.4G or more can be realized when the pedal force F is 200N. The pedal stroke S at this time is approximately 30 mm, and S is suppressed within 50 mm. Therefore, it is possible to shorten the pedal stroke. In other words, a large deceleration can be obtained with a small pedaling force and a short pedal stroke. Assuming that the master cylinder 3 is provided with a booster such as an electric booster, the operation signal of the brake pedal 100 is used as a trigger in the state where the failure of the boost control by the first hydraulic unit 1A is detected. It is also conceivable to activate the booster. However, in this case, since the booster is interlocked with the master cylinder 3 (using the brake fluid in the hydraulic pressure chamber 34), it is not easy to shorten the pedal stroke. On the other hand, in the present embodiment, the second hydraulic pressure unit 1B can increase the pressure of the wheel cylinder 102 independently of the operation of the master cylinder 3 (not using the brake fluid in the hydraulic pressure chamber 34). For this reason, when the pressure of the wheel cylinder 102 is increased by the second hydraulic unit 1B when the brake pedal 100 is operated in the above-described failure state, the amount of brake fluid delivered from the master cylinder 3 can be reduced. Therefore, it is easy to shorten the pedal stroke.
 第2液圧ユニット1Bは、開閉弁71Bと並列にチェック弁710を有する。これにより、図9の時刻t5~t6に示すように、ブレーキペダル100の踏込み操作によるマスタシリンダ液圧のほうが第2ポンプ81Bにより実現可能な最大ホイルシリンダ液圧よりも高くなった場合でも、マスタシリンダ3からチェック弁710を通ってホイルシリンダ102へブレーキ液が供給されうる。よって、ブレーキペダル100のストロークが妨げられず、より自然なペダル操作フィーリングが得られる。その一方で、例えば第2ポンプ81B(第2モータ80B)の出力ないし性能を低めに設定した場合でも、十分な制動力を実現可能である。すなわち、少なくともブレーキペダル100の踏込み操作の初期(時刻t2~t5)に、マスタシリンダ液圧によるブレーキ液圧(後輪ホイルシリンダ液圧)よりも高いブレーキ液圧(前輪ホイルシリンダ液圧)を第2ポンプ81Bによって発生できる。その後(時刻t5~t6)、マスタシリンダ液圧のほうが第2ポンプ81Bによる最大ホイルシリンダ液圧よりも高くなっても、当該マスタシリンダ液圧をホイルシリンダ102に供給できる。 The second hydraulic unit 1B has a check valve 710 in parallel with the on-off valve 71B. As a result, even when the master cylinder hydraulic pressure by the depression operation of the brake pedal 100 becomes higher than the maximum wheel cylinder hydraulic pressure achievable by the second pump 81B, as shown at times t5 to t6 in FIG. Brake fluid can be supplied from the cylinder 3 to the wheel cylinder 102 through the check valve 710. Therefore, the stroke of the brake pedal 100 is not hindered, and a more natural pedal operation feeling is obtained. On the other hand, even when the output or performance of the second pump 81B (second motor 80B) is set low, for example, a sufficient braking force can be realized. That is, at least at the initial stage (time t2 to t5) of the depression of the brake pedal 100, the brake fluid pressure (front wheel wheel cylinder fluid pressure) higher than the brake fluid pressure (rear wheel wheel cylinder fluid pressure) due to the master cylinder fluid pressure is changed. It can be generated by two pumps 81B. Thereafter (time t5 to t6), even if the master cylinder hydraulic pressure becomes higher than the maximum wheel cylinder hydraulic pressure by the second pump 81B, the master cylinder hydraulic pressure can be supplied to the wheel cylinder 102.
 なお、第2液圧ユニット1Bが全部の車輪(前輪FL,FRのみならず後輪RL,RR)のホイルシリンダ102を増圧可能な構成であってもよい。例えば、後輪RL,RRのホイルシリンダ102c,102dに接続する接続液路11の上にも開閉弁71Bがあり、この開閉弁71Bと後輪ホイルシリンダ102d,102dとの間に第2吐出液路13Bが接続するようにしてもよい。本実施形態では、第2液圧ユニット1B(第2ポンプ81B)は全車輪のうち一部(前輪FL,FR)のみのホイルシリンダ102a,102bに接続し、この一部のホイルシリンダ102を増圧する。よって、ホイルシリンダ102の増圧に必要な第2ポンプ81Bの吐出液量が少なくて済む。その分、第2モータ80Bの回転数を抑制することが可能である。モータ回転数を抑制することで、音振を低減することが可能である。全車輪のうち他の一部の車輪(後輪RL,RR)のホイルシリンダ102c,102dにはマスタシリンダ3(液圧室34)が第2液圧ユニット1B(開閉弁71B)を介さず接続し、このホイルシリンダ102にマスタシリンダ液圧が直接作用する。よって、ブレーキペダル100が適度にストロークすることができ、より自然なペダル操作フィーリングが得られる。なお、第2液圧ユニット1Bが接続する車輪は前輪FL,FRと後輪RL,RRの両方を含んでもよい。これに対し、前輪FL,FRと後輪RL,RRの一方のみに第2液圧ユニット1Bが接続する場合、第2液圧ユニット1によるホイルシリンダ102の増圧時、車両にヨーモーメントが発生することを容易に抑制できる。例えば、第2液圧ユニット1Bは後輪RL,RRのみのホイルシリンダ102c,102dを増圧するようにしてもよい。本実施形態では、第2液圧ユニット1Bは前輪FL,FRのみのホイルシリンダ102a,102bを増圧する。よって、後輪RL,RRのみのホイルシリンダ102c,102dを増圧する場合に比べ、車両の減速度を効果的に発生できる。 The second hydraulic pressure unit 1B may be configured to increase the pressure of the wheel cylinders 102 of all wheels (not only the front wheels FL and FR but also the rear wheels RL and RR). For example, there is an on-off valve 71B on the connecting fluid passage 11 connected to the wheel cylinders 102c, 102d of the rear wheels RL, RR, and the second discharge liquid is provided between the on-off valve 71B and the rear wheel cylinders 102d, 102d. The path 13B may be connected. In the present embodiment, the second hydraulic pressure unit 1B (second pump 81B) is connected to the wheel cylinders 102a, 102b of only a part (front wheels FL, FR) of all the wheels, and this part of the wheel cylinders 102 is increased. Press. Therefore, the amount of discharge liquid of the second pump 81B necessary for increasing the pressure of the wheel cylinder 102 can be reduced. Accordingly, the rotation speed of the second motor 80B can be suppressed. By suppressing the motor rotation speed, it is possible to reduce sound vibration. The master cylinder 3 (hydraulic pressure chamber 34) is connected to the wheel cylinders 102c, 102d of some other wheels (rear wheels RL, RR) of all the wheels without the second hydraulic pressure unit 1B (open / close valve 71B). The master cylinder hydraulic pressure directly acts on the wheel cylinder 102. Therefore, the brake pedal 100 can stroke appropriately, and a more natural pedal operation feeling can be obtained. The wheels connected to the second hydraulic pressure unit 1B may include both front wheels FL and FR and rear wheels RL and RR. On the other hand, when the second hydraulic unit 1B is connected to only one of the front wheels FL, FR and the rear wheels RL, RR, yaw moment is generated in the vehicle when the wheel cylinder 102 is pressurized by the second hydraulic unit 1 Can be easily suppressed. For example, the second hydraulic pressure unit 1B may increase the pressure of the wheel cylinders 102c and 102d for only the rear wheels RL and RR. In the present embodiment, the second hydraulic pressure unit 1B increases the pressure of the wheel cylinders 102a, 102b for the front wheels FL, FR only. Therefore, the deceleration of the vehicle can be effectively generated as compared with the case where the wheel cylinders 102c and 102d with only the rear wheels RL and RR are increased.
 本実施形態では第2ポンプ81Bが2つある。よって、系統毎に第2ポンプ81Bを配置することで、第2ポンプ81Bの吐出側の液路を系統間で遮断するための弁が不要になる。これにより、第2液圧ユニット1Bの構成を簡略化し、小型化を図ることができる。なお、第2ポンプ81B毎に第2モータ80Bを設けてもよい。本実施形態では、第2モータ80Bが1つであり、1つの第2モータ80Bにより2つの第2ポンプ81Bを駆動する。よって、構成を簡略化し、小型化を図ることができる。 In this embodiment, there are two second pumps 81B. Therefore, by disposing the second pump 81B for each system, a valve for shutting off the liquid path on the discharge side of the second pump 81B between the systems becomes unnecessary. Thereby, the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved. A second motor 80B may be provided for each second pump 81B. In the present embodiment, there is one second motor 80B, and two second pumps 81B are driven by one second motor 80B. Therefore, the configuration can be simplified and the size can be reduced.
 第2制御部902は、第1液圧ユニット1Aによる倍力制御の失陥を検出した状態で、ブレーキペダル100の操作があったことを示す信号(ペダル操作信号)としてのストロークセンサ91の検出信号をトリガーに、第2液圧ユニット1Bの第2ポンプ81B及び開閉弁71Bをリレー駆動してホイルシリンダ102を増圧する。第2液圧ユニット1Bの制御システムは、運転者がブレーキペダル100を踏んでいる間だけリレー908がオンとなり、運転者がブレーキペダル100を離すとリレー908がオフとなる簡易なシステムである。このように第2液圧ユニット1Bの作動方法が単純であり、複雑な制御を必要としない。よって、失陥対策のためのブレーキシステム1の複雑化を抑制できる。ここで「複雑化」とは構造的及び制御的の両方の観点からである。例えば、第2液圧ユニット1BもECUを備え、第1液圧ユニット1AのECU90との間で互いの失陥状態を監視し合うようなブレーキシステムも考えられる。この場合、第2液圧ユニット1Bが大型化したり、ブレーキシステムが複雑化したり、相互監視用のプログラムが必要となってコスト高となったりするおそれがある。これに対し、本実施形態のブレーキシステム1では、第2制御部902は、2つの信号(失陥信号及びペダル操作信号)の入力(の有無)に基づきアクチュエータ駆動信号を生成して出力する電気回路であれば足りる。このため、第2制御部902は複雑な制御則や高度な処理能力を備える必要がなく、制御則を実現するためのプログラムやこれを記憶するメモリを簡素化ないし省略できる。よって、単純な回路(本実施形態ではリレーシーケンス)により第2制御部902を構成できる。なお、第2液圧ユニット1Bの制御システムは、第2モータ80Bや開閉弁71Bの状態を監視してこれをフィードバック制御するシステムでない(シーケンス制御を行うオープン型システムである)ため、フィードバック制御則やセンサを省略可能であり、入力インターフェイスも簡素化・省略できる。また、第2制御部902が出力する信号は、リレー908のオン・オフを切り替えるための信号であり、第2モータ80Bの回転数等も特に制御しない。このため、出力インターフェイスも簡素化ないし省略できる。したがって、第2液圧ユニット1Bの作動を制御するためのECUやセンサを省略でき、これにより第2液圧ユニット1Bの小型化を図ることができる。また、ブレーキシステム1の構成の簡素化や低コスト化を図ることができる。なお、上記倍力制御の失陥時に失陥報知部903がこの失陥の発生を示す信号(失陥信号)を出力し、第2制御部902がこの失陥信号を受信したとき上記失陥を検知するようにしてもよい。また、ペダル操作信号として、ブレーキペダル100等に設けられたブレーキランプスイッチ等の検出信号を用いてもよい。ECU90から独立したブレーキランプスイッチ等の検出信号を用いれば、ECU90の電源失陥時における信頼性を向上できる。 The second control unit 902 detects the stroke sensor 91 as a signal (pedal operation signal) indicating that the brake pedal 100 has been operated in a state where the failure of the boost control by the first hydraulic unit 1A is detected. Using the signal as a trigger, the second pump 81B and the on-off valve 71B of the second hydraulic unit 1B are relay-driven to increase the pressure in the wheel cylinder 102. The control system of the second hydraulic pressure unit 1B is a simple system in which the relay 908 is turned on only while the driver steps on the brake pedal 100, and the relay 908 is turned off when the driver releases the brake pedal 100. Thus, the operation method of the second hydraulic pressure unit 1B is simple and does not require complicated control. Therefore, complication of the brake system 1 as a countermeasure against the failure can be suppressed. Here, “complication” is from both a structural and control viewpoint. For example, a brake system is also conceivable in which the second hydraulic unit 1B is also provided with an ECU and the mutual failure state is monitored with the ECU 90 of the first hydraulic unit 1A. In this case, the second hydraulic pressure unit 1B may be increased in size, the brake system may be complicated, or a mutual monitoring program may be required, resulting in an increase in cost. In contrast, in the brake system 1 of the present embodiment, the second control unit 902 generates and outputs an actuator drive signal based on the input (presence / absence) of two signals (failure signal and pedal operation signal). A circuit is sufficient. For this reason, the second control unit 902 does not need to have a complicated control law or a high processing capability, and can simplify or omit a program for realizing the control law and a memory for storing the program. Therefore, the second control unit 902 can be configured by a simple circuit (in this embodiment, a relay sequence). Note that the control system of the second hydraulic pressure unit 1B is not a system that monitors the state of the second motor 80B or the on-off valve 71B and performs feedback control thereof (an open type system that performs sequence control). And sensors can be omitted, and the input interface can be simplified and omitted. The signal output from the second control unit 902 is a signal for switching on / off of the relay 908, and does not particularly control the rotation speed of the second motor 80B. For this reason, the output interface can be simplified or omitted. Therefore, an ECU or a sensor for controlling the operation of the second hydraulic unit 1B can be omitted, and thereby the second hydraulic unit 1B can be downsized. In addition, the configuration of the brake system 1 can be simplified and the cost can be reduced. When the boost control fails, the failure notification unit 903 outputs a signal (failure signal) indicating the occurrence of the failure, and when the second control unit 902 receives the failure signal, the failure notification unit 903 outputs the failure. May be detected. Further, as a pedal operation signal, a detection signal such as a brake lamp switch provided in the brake pedal 100 or the like may be used. If a detection signal such as a brake lamp switch independent of the ECU 90 is used, the reliability of the ECU 90 when the power supply fails can be improved.
 第2制御部902は、第1液圧ユニット1AのECU90の内部に独立した回路として配置される。よって、第2液圧ユニット1Bの更なる小型化を図ることができる。上記のように、第2制御部902を含む第2液圧ユニット1Bの制御システムは簡素化が可能なため、この制御システムを第1液圧ユニット1AのECU90の内部に配置することが容易である。第2液圧ユニット1Bの駆動回路907(リレー908)も、第1液圧ユニット1AのECU90の内部に独立した回路として配置される。これにより、上記と同様の作用効果が得られる。なお、第2制御部902と駆動回路907は、第2液圧ユニット1B(ソレノイドケース600の内部)に配置されてもよい。この場合、第1液圧ユニット1AにおけるECU90の内部のスペースを節約できる。また、第2制御部902と駆動回路907(リレー908)は、液圧ユニット1A,1B間で別々に配置されてもよい。第2制御部902と駆動回路907を同じ液圧ユニットに配置すれば、失陥対策のための制御構成を同じ液圧ユニット内で完結させることができる。また、第2制御部902は、ブレーキシステム1の外における車両側のコントローラ(例えば先進運転支援システムADASにおける自動運転用のECU)内に独立した回路として配置されてもよい。この場合、第1液圧ユニット1Aの失陥(倍力制御が作動していない状態)は、車両側のコントローラ内の第2制御部902により検知されるため、ブレーキシステム1が失陥対策のために複雑化することを抑制できる。同様に、駆動回路907が車両側のコントローラに配置されてもよい。これに対し、第2制御部902と駆動回路907を第1液圧ユニット1A又は第2液圧ユニット1Bに配置すれば、失陥対策のための制御構成をブレーキシステム1の中で完結させることができる。なお、第2制御部902と駆動回路907をマスタシリンダユニット1Cに配置してもよい。 The second control unit 902 is arranged as an independent circuit inside the ECU 90 of the first hydraulic unit 1A. Therefore, further miniaturization of the second hydraulic unit 1B can be achieved. As described above, since the control system of the second hydraulic unit 1B including the second control unit 902 can be simplified, it is easy to arrange this control system inside the ECU 90 of the first hydraulic unit 1A. is there. The drive circuit 907 (relay 908) of the second hydraulic unit 1B is also arranged as an independent circuit inside the ECU 90 of the first hydraulic unit 1A. Thereby, the same effect as the above is obtained. The second controller 902 and the drive circuit 907 may be disposed in the second hydraulic unit 1B (inside the solenoid case 600). In this case, the space inside the ECU 90 in the first hydraulic unit 1A can be saved. Further, the second control unit 902 and the drive circuit 907 (relay 908) may be separately arranged between the hydraulic units 1A and 1B. If the second control unit 902 and the drive circuit 907 are arranged in the same hydraulic unit, the control configuration for countermeasure against failure can be completed in the same hydraulic unit. The second control unit 902 may be arranged as an independent circuit in a vehicle-side controller outside the brake system 1 (for example, an ECU for automatic driving in the advanced driving support system ADAS). In this case, the failure of the first hydraulic pressure unit 1A (the state where the boost control is not activated) is detected by the second control unit 902 in the vehicle-side controller, so that the brake system 1 takes measures against the failure. Therefore, it can suppress complicating. Similarly, the drive circuit 907 may be disposed in the controller on the vehicle side. On the other hand, if the second control unit 902 and the drive circuit 907 are arranged in the first hydraulic unit 1A or the second hydraulic unit 1B, the control configuration for the failure countermeasure is completed in the brake system 1. Can do. Note that the second controller 902 and the drive circuit 907 may be arranged in the master cylinder unit 1C.
 なお、ECU90は、第2液圧ユニット1Bによる倍力制御が失陥しているか否かのイニシャルチェックを実行するための失陥検知部を有してもよい。この失陥検知部は、例えば、イグニッション・オン後、停車中または所定の車速(意図しない制動力が発生したときそれが違和感となるおそれが少ない車速)で、ブレーキペダル100が操作されると、失陥報知部903から第2制御部902への正常信号の出力を中断させる。このとき第2液圧ユニット1Bが正常に作動するか否かを検知する。この場合、一定程度繰り返されるイニシャルチェックに耐え得るような第2液圧ユニット1B(第2モータ80B等)の性能を確保することが好ましい。 The ECU 90 may include a failure detection unit for executing an initial check as to whether or not the boost control by the second hydraulic unit 1B has failed. For example, when the brake pedal 100 is operated while the vehicle is stopped or at a predetermined vehicle speed (a vehicle speed that is less likely to cause a sense of incongruity when an unintended braking force is generated) after the ignition is turned on, The normal signal output from the failure notification unit 903 to the second control unit 902 is interrupted. At this time, it is detected whether or not the second hydraulic pressure unit 1B operates normally. In this case, it is preferable to ensure the performance of the second hydraulic pressure unit 1B (second motor 80B, etc.) that can withstand an initial check that is repeated to a certain extent.
 なお、第1液圧ユニット1Aと第2液圧ユニット1Bは、(例えば互いに連結・固定されたり、同じハウジングを共用したりすることで、)1つの液圧ユニットとして構成されてもよい。この場合も、上記と同じ作用効果が得られる。本実施形態では、両液圧ユニット1A,1Bは別体であり、互いにブレーキ配管10で接続される。第2液圧ユニット1Bは(前輪FL,FRの)ホイルシリンダ102と第1液圧ユニット1Aとの間にある。言換えると、第2液圧ユニット1Bは第1液圧ユニット1Aに対しホイルシリンダ102の側にある。接続液路11において、開閉弁71Bは、遮断弁71Aに対してホイルシリンダ102の側にある。よって、第1液圧ユニット1Aによる倍力制御の失陥時、接続液路11におけるホイルシリンダ102に比較的近い位置から、第2液圧ユニット1B(第2ポンプ81B)がホイルシリンダ102を加圧することになる。このため、配管10による流路抵抗が少なく、その分、ホイルシリンダ102の増圧応答性を向上可能である。 Note that the first hydraulic unit 1A and the second hydraulic unit 1B may be configured as one hydraulic unit (for example, by being connected and fixed to each other or sharing the same housing). In this case, the same effect as described above can be obtained. In the present embodiment, the two hydraulic units 1A and 1B are separate bodies and are connected to each other by a brake pipe 10. The second hydraulic unit 1B is located between the wheel cylinder 102 (of the front wheels FL, FR) and the first hydraulic unit 1A. In other words, the second hydraulic unit 1B is on the wheel cylinder 102 side with respect to the first hydraulic unit 1A. In the connection liquid path 11, the on-off valve 71B is on the wheel cylinder 102 side with respect to the shutoff valve 71A. Therefore, when the boost control by the first hydraulic unit 1A fails, the second hydraulic unit 1B (second pump 81B) adds the wheel cylinder 102 from a position relatively close to the wheel cylinder 102 in the connecting fluid path 11. Will be pressed. For this reason, there is little flow path resistance by the piping 10, and the pressure increase responsiveness of the wheel cylinder 102 can be improved correspondingly.
 以上の作用効果を奏するための各ユニット1A,1B,1Cの具体的な構成は、本実施形態のものに限られない。例えば、ポンプ81はプランジャポンプに限らず例えばギヤポンプ等でもよい。本実施形態のようにプランジャポンプであれば応答性が比較的高い。 The specific configuration of each unit 1A, 1B, 1C for achieving the above-described effects is not limited to that of this embodiment. For example, the pump 81 is not limited to a plunger pump, and may be a gear pump, for example. If it is a plunger pump like this embodiment, responsiveness is comparatively high.
 [第2実施形態]
  本実施形態の第2制御部902は、リレーシーケンスの代わりに、ソフトウェアにより制御を実現する。図10は、第2制御部902に内蔵されたプログラムが実行する制御の流れを示す。ステップS1では、第1液圧ユニット1Aから正常信号を受信しているか否かを判断する。正常信号を(例えば所定時間以上)継続して受信していればS1を繰り返し実行する。正常信号を継続して受信していなければ、第1液圧ユニット1Aによる倍力制御が失陥していることを検知し、S2へ進む。S2では、アラート信号をオンとし、計器パネルにアラートを表示させたり警報音を発生させたりする。S3では、ペダル操作信号が入力されているか否かを判断する。入力されていればS4へ進み、入力されていなければS5へ進む。S4では、リレー駆動信号をオンとし、リレー908をオン状態とする。S5では、リレー駆動信号をオフとし、リレー908をオフ状態とする。ブレーキシステム1の他の構成は第1実施形態と同じである。
[Second Embodiment]
The second control unit 902 of this embodiment implements control by software instead of the relay sequence. FIG. 10 shows the flow of control executed by a program built in the second control unit 902. In step S1, it is determined whether a normal signal is received from the first hydraulic unit 1A. If the normal signal is continuously received (for example, a predetermined time or longer), S1 is repeatedly executed. If the normal signal is not continuously received, it is detected that the boost control by the first hydraulic pressure unit 1A has failed, and the process proceeds to S2. In S2, the alert signal is turned on, an alert is displayed on the instrument panel, and an alarm sound is generated. In S3, it is determined whether or not a pedal operation signal is input. If it has been input, the process proceeds to S4. If it has not been input, the process proceeds to S5. In S4, the relay drive signal is turned on and the relay 908 is turned on. In S5, the relay drive signal is turned off and the relay 908 is turned off. Other configurations of the brake system 1 are the same as those in the first embodiment.
 次に作用効果を説明する。上記のようにプログラムが単純であるため、これを実装するマイクロプロセッサを簡素化・小型化できる。また、第1実施形態と同様、第2液圧ユニット1Bの作動を制御するためのECU等を省略できる。なお、第1液圧ユニット1Aによる倍力制御の失陥時に失陥報知部903が失陥信号を出力し、第2制御部902はステップS1で失陥信号を受信したとき上記失陥を検知してステップS2へ進むようにしてもよい。他の作用効果は第1実施形態と同じである。 Next, the function and effect will be described. Since the program is simple as described above, the microprocessor on which the program is mounted can be simplified and downsized. Further, as in the first embodiment, an ECU or the like for controlling the operation of the second hydraulic unit 1B can be omitted. When the boost control by the first hydraulic unit 1A fails, the failure notification unit 903 outputs a failure signal, and the second control unit 902 detects the failure when receiving the failure signal in step S1. Then, the process may proceed to step S2. Other functions and effects are the same as those of the first embodiment.
 [第3実施形態]
  図11に示すように、第2液圧ユニット1Bの電磁弁7Bは連通弁73Bを有する。連通弁73Bは常閉のオン・オフ弁である。なお、連通弁73Bは比例制御弁でもよい。第2ポンプ81Bは1つであり、1つの第2モータ80Bにより駆動される。第2吐出液路13Bの一端は第2ポンプ81Bの吐出部に接続する。第2吐出液路13Bの他端は第2接続液路11sBであって開閉弁71sBと第2出力ポート62sの間に接続する。連通液路13pBは、第2接続液路11pBであって開閉弁71pBと第2出力ポート62pの間と、第2接続液路11sBであって開閉弁71sBと第2出力ポート62sの間とを接続する。連通液路13pBの上に連通弁73Bがある。電源ライン909の上には、第2モータ80Bのコイル、開閉弁71Bのソレノイド、及び連通弁73Bのソレノイドが並列に接続される。
[Third Embodiment]
As shown in FIG. 11, the electromagnetic valve 7B of the second hydraulic unit 1B has a communication valve 73B. The communication valve 73B is a normally closed on / off valve. The communication valve 73B may be a proportional control valve. There is one second pump 81B, and it is driven by one second motor 80B. One end of the second discharge liquid passage 13B is connected to the discharge portion of the second pump 81B. The other end of the second discharge liquid path 13B is a second connection liquid path 11sB, which is connected between the on-off valve 71sB and the second output port 62s. The communication liquid path 13pB is a second connection liquid path 11pB between the on-off valve 71pB and the second output port 62p, and a second connection liquid path 11sB between the on-off valve 71sB and the second output port 62s. Connecting. A communication valve 73B is provided on the communication liquid path 13pB. On the power supply line 909, the coil of the second motor 80B, the solenoid of the on-off valve 71B, and the solenoid of the communication valve 73B are connected in parallel.
 第2液圧ユニット1Bはマスタシリンダユニット1Cと第1液圧ユニット1Aとの間にある。言換えると、第1液圧ユニット1Aは第2液圧ユニット1Bに対しホイルシリンダ102の側にある。マスタシリンダ配管10Mは、マスタシリンダ3と第2液圧ユニット1Bを接続する。マスタシリンダ配管10Mの一端は供給ポート302に接続し、マスタシリンダ配管10Mの他端は第2入力ポート61に接続する。中継配管10Iは、第2液圧ユニット1Bと第1液圧ユニット1Aを接続する。中継配管10Ip,10Isの一端はそれぞれ第2出力ポート62p,62sに接続し、中継配管10Ip,10Isの他端はそれぞれ第1入力ポート41P,41Sに接続する。ホイルシリンダ配管10Wは、第1液圧ユニット1Aと各車輪FL~RRのホイルシリンダ102を接続する。ホイルシリンダ配管10Wa~10Wdの一端はそれぞれ第1出力ポート42a~42dに接続し、ホイルシリンダ配管10Wa~10Wdの他端はそれぞれホイルシリンダ102a~102dに接続する。開閉弁71Bは、遮断弁71Aに対してマスタシリンダ3の側の接続液路11にある。言換えると、遮断弁71Aは、開閉弁71Bに対してホイルシリンダ102の側の接続液路11にある。第2ポンプ81Bは、開閉弁71Bと遮断弁71Aとの間の接続液路11にブレーキ液を供給可能である。ブレーキシステム1の他の構成は第1実施形態と同じである。 The second hydraulic unit 1B is located between the master cylinder unit 1C and the first hydraulic unit 1A. In other words, the first hydraulic unit 1A is on the wheel cylinder 102 side with respect to the second hydraulic unit 1B. Master cylinder piping 10M connects master cylinder 3 and second hydraulic unit 1B. One end of the master cylinder pipe 10M is connected to the supply port 302, and the other end of the master cylinder pipe 10M is connected to the second input port 61. The relay pipe 10I connects the second hydraulic unit 1B and the first hydraulic unit 1A. One ends of the relay pipes 10Ip and 10Is are connected to the second output ports 62p and 62s, respectively, and the other ends of the relay pipes 10Ip and 10Is are connected to the first input ports 41P and 41S, respectively. The wheel cylinder pipe 10W connects the first hydraulic unit 1A and the wheel cylinders 102 of the wheels FL to RR. One end of each of the wheel cylinder pipes 10Wa to 10Wd is connected to each of the first output ports 42a to 42d, and the other end of each of the wheel cylinder pipes 10Wa to 10Wd is connected to each of the wheel cylinders 102a to 102d. The on-off valve 71B is in the connection liquid path 11 on the master cylinder 3 side with respect to the shutoff valve 71A. In other words, the shut-off valve 71A is in the connection liquid path 11 on the wheel cylinder 102 side with respect to the on-off valve 71B. The second pump 81B can supply brake fluid to the connection fluid path 11 between the on-off valve 71B and the shutoff valve 71A. Other configurations of the brake system 1 are the same as those in the first embodiment.
 次に作用効果を説明する。図12に基づき、第1液圧ユニット1Aによる倍力制御が正常に作動可能でない(作動していない)ときのブレーキシステム1の作動を説明する。時刻t2で、ストロークセンサ91の検出値が所定値S0を超える(またはブレーキランプスイッチの検出信号が入力される)と、第2制御部902はリレー駆動信号を生成してリレー908に出力する。これによりリレー908がオフからオンへ切り替わり、第2モータ80B、開閉弁71B及び連通弁73Bへの通電が開始される。開閉弁71Bが閉じ、連通弁73Bが開くと共に、第2ポンプ81Bが作動する。第2ポンプ81Bにより昇圧されたブレーキ液は、両系統の第2接続液路11Bに供給された後、中継配管10I、第1接続液路11A、及びホイルシリンダ配管10Wを介して前後輪のホイルシリンダ102a~102dへ供給される。よって、時刻t2以後、図12に実線で示す前後輪ホイルシリンダ102の液圧は徐々に上昇する。一方、開閉弁71Bが閉じているため、マスタシリンダ3の液圧室34からのブレーキ液の流出は抑制される。時刻t2以後、踏力Fの増大に対しペダルストロークSの増加量は少ない。 Next, the function and effect will be described. Based on FIG. 12, the operation of the brake system 1 when the boost control by the first hydraulic unit 1A is not normally operable (not operating) will be described. When the detection value of the stroke sensor 91 exceeds the predetermined value S0 (or the brake lamp switch detection signal is input) at time t2, the second control unit 902 generates a relay drive signal and outputs it to the relay 908. As a result, the relay 908 is switched from OFF to ON, and energization of the second motor 80B, the on-off valve 71B, and the communication valve 73B is started. The on-off valve 71B is closed, the communication valve 73B is opened, and the second pump 81B is operated. The brake fluid boosted by the second pump 81B is supplied to the second connection fluid passage 11B of both systems, and then the front and rear wheel foils are connected via the relay piping 10I, the first connection fluid passage 11A, and the wheel cylinder piping 10W. It is supplied to the cylinders 102a to 102d. Therefore, after time t2, the hydraulic pressure in the front and rear wheel wheel cylinders 102 indicated by the solid line in FIG. 12 gradually increases. On the other hand, since the on-off valve 71B is closed, the outflow of the brake fluid from the hydraulic chamber 34 of the master cylinder 3 is suppressed. After time t2, the increase amount of the pedal stroke S is small with respect to the increase of the pedaling force F.
 時刻t3以後、図12に実線で示す前後輪ホイルシリンダ102の液圧の上昇速度は、Fによる(破線で示す)マスタシリンダ3の液圧の上昇速度よりも高く、例えば1~5MPa/sである。また、ホイルシリンダ102の液圧はマスタシリンダ3の液圧よりも高い。時刻t4で、第2ポンプ81Bの吐出圧(第2ポンプ81Bにより増圧されるホイルシリンダ102の液圧)がメカ的な上限値(例えば3.5MPa。以下、数値は参考のための一例である。)に達する。このとき、Fは200Nであり、Sは略20mmであり、前後輪FL~RRのホイルシリンダ液圧により実現される車両の減速度は0.48Gである。時刻t4以後、前後輪ホイルシリンダ102の液圧は上限値のままであり、マスタシリンダ3の液圧はFの増大に応じて上昇する。時刻t5で、Fが290Nとなり、マスタシリンダ3の液圧がホイルシリンダ102の液圧に達する。時刻t5以後、マスタシリンダ3の液圧の上昇に応じて、チェック弁710が開き、ブレーキ液がマスタシリンダ3の側からホイルシリンダ102の側へ流れることで、ホイルシリンダ102の液圧がマスタシリンダ3の液圧と同じく上昇する。よって、ホイルシリンダ液圧により実現される車両の減速度は増大すると共に、Fの増大に対するSの増加割合が大きくなる。他の変化は第1実施形態と同様である。 After time t3, the rate of increase of the hydraulic pressure of the front and rear wheel cylinders 102 shown by the solid line in FIG. 12 is higher than the rate of increase of the hydraulic pressure of the master cylinder 3 by F (shown by the broken line), for example, 1-5 MPa / s. is there. Further, the hydraulic pressure in the wheel cylinder 102 is higher than the hydraulic pressure in the master cylinder 3. At time t4, the discharge pressure of the second pump 81B (the hydraulic pressure of the wheel cylinder 102 increased by the second pump 81B) is a mechanical upper limit value (for example, 3.5 MPa. The following is an example for reference) .) At this time, F is 200 N, S is approximately 20 mm, and the vehicle deceleration realized by the wheel cylinder hydraulic pressure of the front and rear wheels FL to RR is 0.48 G. After time t4, the hydraulic pressure in the front and rear wheel wheel cylinders 102 remains at the upper limit value, and the hydraulic pressure in the master cylinder 3 increases as F increases. At time t5, F becomes 290N, and the hydraulic pressure in the master cylinder 3 reaches the hydraulic pressure in the wheel cylinder 102. After time t5, the check valve 710 opens according to the increase in the hydraulic pressure in the master cylinder 3, and the brake fluid flows from the master cylinder 3 side to the wheel cylinder 102 side, so that the hydraulic pressure in the wheel cylinder 102 is increased. It rises as well as the hydraulic pressure of 3. Therefore, the deceleration of the vehicle realized by the wheel cylinder hydraulic pressure increases, and the rate of increase of S with respect to the increase of F increases. Other changes are the same as in the first embodiment.
 第2液圧ユニット1Bは全部の車輪FL~RRのホイルシリンダ102を加圧する。全ての車輪に同等のブレーキ液圧が作用するため、安定した制動力を確保できる。図12の時刻t4に示すように、踏力Fが200Nで、各輪のホイルシリンダ液圧は3.5MPaであり第1実施形態よりも低い一方、減速度は0.48Gであり第1実施形態よりも高い。時刻t5では、踏力Fが第1実施形態(310N)よりも小さい290Nである一方、減速度は0.48Gであって第1実施形態と同程度かそれよりも高い。言換えると、より小さい踏力で、より大きな減速度を出すことができる。 ¡The second hydraulic pressure unit 1B pressurizes the wheel cylinders 102 of all the wheels FL to RR. Since the same brake fluid pressure acts on all wheels, a stable braking force can be secured. As shown at time t4 in FIG. 12, the pedal force F is 200 N, and the wheel cylinder hydraulic pressure of each wheel is 3.5 MPa, which is lower than that of the first embodiment, while the deceleration is 0.48 G, which is higher than that of the first embodiment. high. At time t5, the pedaling force F is 290N which is smaller than that of the first embodiment (310N), while the deceleration is 0.48G, which is the same as or higher than that of the first embodiment. In other words, a greater deceleration can be achieved with a smaller pedal effort.
 少なくとも第2ポンプ81Bによる増圧の当初は、全ての車輪FL~RRのホイルシリンダ102にマスタシリンダ液圧が作用しない。開閉弁71Bが閉じているため、マスタシリンダ3の液圧室34からのブレーキ液の流出は抑制される。よって、一部の車輪にマスタシリンダ液圧が作用するもの(第1実施形態)に比べ、ペダルストロークを短縮することができる。例えば、図12の時刻t4に示すように、踏力Fが200Nで、ペダルストロークSは略20mmであり第1実施形態よりも短い。 At least at the beginning of the pressure increase by the second pump 81B, the master cylinder hydraulic pressure does not act on the wheel cylinders 102 of all the wheels FL to RR. Since the on-off valve 71B is closed, the outflow of brake fluid from the hydraulic chamber 34 of the master cylinder 3 is suppressed. Therefore, the pedal stroke can be shortened as compared with the one in which the master cylinder hydraulic pressure acts on some of the wheels (first embodiment). For example, as shown at time t4 in FIG. 12, the pedaling force F is 200 N, and the pedal stroke S is approximately 20 mm, which is shorter than that of the first embodiment.
 第2液圧ユニット1Bはマスタシリンダ3と第1液圧ユニット1Aとの間にある。第1実施形態に比べ、第2液圧ユニット1B(開閉弁71B)がマスタシリンダ3の側に近いため、第2液圧ユニット1Bによる制御時、ペダルストロークをより短くできる。第1液圧ユニット1Aはホイルシリンダ102と第2液圧ユニット1Bとの間にある。第1液圧ユニット1Aによる倍力制御が失陥していない通常時、第1実施形態に比べてホイルシリンダ102に近い位置から第1液圧ユニット1A(第1ポンプ81A)がホイルシリンダ102を加圧するため、ブレーキ配管10による流路抵抗が少ない。このため、通常時のホイルシリンダ102の増圧応答性が向上する。 The second hydraulic unit 1B is located between the master cylinder 3 and the first hydraulic unit 1A. Compared to the first embodiment, since the second hydraulic pressure unit 1B (open / close valve 71B) is closer to the master cylinder 3, the pedal stroke can be made shorter during control by the second hydraulic pressure unit 1B. The first hydraulic unit 1A is located between the wheel cylinder 102 and the second hydraulic unit 1B. In normal times when the boost control by the first hydraulic unit 1A has not failed, the first hydraulic unit 1A (first pump 81A) moves the wheel cylinder 102 from a position closer to the wheel cylinder 102 than in the first embodiment. Since the pressure is applied, the flow path resistance by the brake pipe 10 is small. For this reason, the pressure increase response of the wheel cylinder 102 at the normal time is improved.
 第2ポンプ81Bは1つであり、連通液路13pBを介して両系統の第2接続液路11Bにブレーキ液を供給可能である。これにより、第2液圧ユニット1Bの構成を簡略化し、小型化を図ることができる。連通液路13pBに連通弁73Bを設置することで、系統間を遮断可能である。なお、第2吐出液路13Bは、どちらの系統の第2接続液路11Bに接続してもよいし、連通液路13pBに接続してもよい。他の作用効果は第1実施形態と同じである。 The number of the second pump 81B is one, and the brake fluid can be supplied to the second connection fluid passage 11B of both systems via the communication fluid passage 13pB. Thereby, the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved. By installing the communication valve 73B in the communication liquid path 13pB, the systems can be shut off. The second discharge liquid path 13B may be connected to the second connection liquid path 11B of either system or may be connected to the communication liquid path 13pB. Other functions and effects are the same as those of the first embodiment.
 [第4実施形態]
  図13に示すように、第2ポンプ81Bは1つであり、1つの第2モータ80Bにより駆動される。第2吐出液路13Bの一端は第1ポンプ81Aの吐出部に接続する。第2吐出液路13Bの他端側は2つに分岐する。分岐液路13pB,13sBはそれぞれ、第2接続液路11Bであって開閉弁71Bと第2出力ポート62の間に接続する。分岐液路13pB,13sBの上にはそれぞれチェック弁73Bがある。チェック弁73Bは、第2ポンプ81Bの吐出部から第2接続液路11Bへ向うブレーキ液の流れを許容し、反対方向の流れを抑制する。第2液圧ユニット1Bは、第2吐出液路13Bにおいてリリーフ回路を有する。リリーフ回路は、リリーフ液路130、リリーフ弁730、及びチェック弁73Bを有する。リリーフ液路130は、第2吐出液路13Bであって第2ポンプ81Bの吐出部とチェック弁73Bの間と、第2吸入液路12Bとを接続する。リリーフ弁730はリリーフ液路130の上にある。リリーフ弁730の弁体は弾性体としてのばねにより閉弁方向に常時付勢されている。第2吸入液路12Bはリザーバ64(リザーバタンク2)に接続しており、第2吸入液路12Bの液圧は低圧(大気圧)である。第2吐出液路13Bの液圧が所定値(リリーフ圧)以上になると、第2吸入液路12Bの液圧と第2吐出液路13Bの液圧との差による付勢力がばねの付勢力を上回って弁体が移動し、リリーフ弁730が開く。リリーフ圧は、第1液圧ユニット1Aによる倍力制御の失陥時に第2液圧ユニット1Bが倍力制御を継続する際、必要な制動力相当の液圧(例えば3.7MPa)に予め設定される。ブレーキシステム1の他の構成は第1実施形態と同じである。
[Fourth Embodiment]
As shown in FIG. 13, there is one second pump 81B and it is driven by one second motor 80B. One end of the second discharge liquid passage 13B is connected to the discharge portion of the first pump 81A. The other end side of the second discharge liquid passage 13B branches into two. Each of the branch liquid paths 13pB and 13sB is a second connection liquid path 11B and is connected between the on-off valve 71B and the second output port 62. A check valve 73B is provided above each of the branch liquid passages 13pB and 13sB. The check valve 73B allows the flow of brake fluid from the discharge portion of the second pump 81B toward the second connection fluid path 11B and suppresses the flow in the opposite direction. The second hydraulic pressure unit 1B has a relief circuit in the second discharge liquid path 13B. The relief circuit includes a relief liquid passage 130, a relief valve 730, and a check valve 73B. The relief liquid path 130 is the second discharge liquid path 13B, and connects the discharge part of the second pump 81B and the check valve 73B to the second suction liquid path 12B. The relief valve 730 is above the relief fluid path 130. The valve body of the relief valve 730 is always urged in the valve closing direction by a spring as an elastic body. The second suction fluid passage 12B is connected to the reservoir 64 (reservoir tank 2), and the fluid pressure in the second suction fluid passage 12B is low (atmospheric pressure). When the fluid pressure in the second discharge fluid passage 13B becomes a predetermined value (relief pressure) or more, the urging force due to the difference between the fluid pressure in the second suction fluid passage 12B and the fluid pressure in the second discharge fluid passage 13B is the urging force of the spring. The valve body moves above the threshold value, and the relief valve 730 opens. The relief pressure is preset to a hydraulic pressure equivalent to the required braking force (for example, 3.7 MPa) when the second hydraulic unit 1B continues the boost control when the boost control by the first hydraulic unit 1A fails. The Other configurations of the brake system 1 are the same as those in the first embodiment.
 次に作用効果を説明する。第2ポンプ81Bは1つであり、第2吐出液路13B(分岐液路13pB,13sB)を介して両系統の第2接続液路11Bにブレーキ液を供給可能である。これにより、第2液圧ユニット1Bの構成を簡略化し、小型化を図ることができる。分岐液路13pB,13sBにそれぞれチェック弁73Bを設置することで、系統間のブレーキ液の流通を遮断可能である。なお、系統間を遮断可能とするため、チェック弁73pB,73sBの代わりに、分岐液路13pB,13sBにそれぞれ1つの電磁弁を設置してもよい。 Next, the function and effect will be described. The number of the second pump 81B is one, and the brake fluid can be supplied to the second connection fluid passage 11B of both systems via the second discharge fluid passage 13B (branching fluid passages 13pB, 13sB). Thereby, the structure of the 2nd hydraulic-pressure unit 1B can be simplified and size reduction can be achieved. By installing a check valve 73B in each of the branch liquid passages 13pB and 13sB, it is possible to block the flow of brake fluid between the systems. In addition, in order to be able to shut off between the systems, one electromagnetic valve may be installed in each of the branch liquid passages 13pB and 13sB instead of the check valves 73pB and 73sB.
 リリーフ弁730は、必要な制動力相当の液圧(リリーフ圧)で開弁し、第2吐出液路13Bのブレーキ液を低圧部であるリザーバ64(リザーバタンク2)の側に逃がして還流させる。これにより、第2液圧ユニット1Bによる制御時、ホイルシリンダ102の過度な増圧や第2モータ80Bのロックを抑制できる。すなわち、第2液圧ユニット1Bによる制御時、ブレーキペダル100が操作されている間、ブレーキシステム1は第2モータ80Bを駆動し続ける。第2ポンプ81Bの回転は、第2モータ80Bの制御により停止するのではなく、メカ的な限界により停止する。すなわち、第2ポンプ81Bの負荷が一定以上になると、第2モータ80Bは自動的に停止する。ここで、ホイルシリンダ液圧を必要な制動力相当とするために、第2ポンプ81Bの吐出側が上記制動力相当の液圧になると第2モータ80Bが回転を停止する(ロックする)よう第2モータ80B等を設定することも考えられる。しかし、この場合、第2モータ80Bに大きな電流を流し続けることになり、耐久性が低下するおそれがある。これに対し、本実施形態のブレーキシステム1では、リリーフ弁730が、必要な制動力相当の液圧でブレーキ液を逃がすことで負荷が抑制され、第2モータ80Bが回転を続ける。これにより、第2モータ80Bに流れる電流をある設定値以下に抑制することが可能なため、耐久性の低下を抑制できる。また、第2ポンプ81Bが吐出するブレーキ液はリリーフ弁730からマスタシリンダ3の液圧室34でなくリザーバ64(リザーバタンク2)の側に排出される。このため、ブレーキ液のリリーフによりブレーキペダル100に反力が伝わってブレーキ操作フィーリングが低下することを抑制できる。 The relief valve 730 opens at a hydraulic pressure (relief pressure) corresponding to the required braking force, and allows the brake fluid in the second discharge fluid passage 13B to escape to the reservoir 64 (reservoir tank 2) side, which is a low-pressure part. . Thereby, at the time of control by the 2nd hydraulic pressure unit 1B, the excessive pressure increase of the wheel cylinder 102 and the lock | rock of the 2nd motor 80B can be suppressed. That is, during the control by the second hydraulic pressure unit 1B, the brake system 1 continues to drive the second motor 80B while the brake pedal 100 is being operated. The rotation of the second pump 81B is not stopped by the control of the second motor 80B, but is stopped due to a mechanical limit. That is, the second motor 80B automatically stops when the load on the second pump 81B exceeds a certain level. Here, in order to make the wheel cylinder hydraulic pressure equivalent to the necessary braking force, the second motor 80B is stopped so as to stop (lock) when the discharge side of the second pump 81B reaches the hydraulic pressure equivalent to the braking force. It is also conceivable to set the motor 80B or the like. However, in this case, a large current continues to flow through the second motor 80B, which may reduce durability. On the other hand, in the brake system 1 of the present embodiment, the relief valve 730 releases the brake fluid with a hydraulic pressure corresponding to the required braking force, so that the load is suppressed and the second motor 80B continues to rotate. Thereby, since the current flowing through the second motor 80B can be suppressed to a certain set value or less, it is possible to suppress a decrease in durability. Further, the brake fluid discharged from the second pump 81B is discharged from the relief valve 730 to the reservoir 64 (reservoir tank 2) side instead of the hydraulic chamber 34 of the master cylinder 3. For this reason, it can suppress that reaction force is transmitted to the brake pedal 100 by relief of brake fluid, and brake operation feeling falls.
 ここで、第2接続液路11Bとリリーフ弁730との間が常時連通している場合、第2接続液路11Bの液圧がリリーフ圧以上になろうとするとリリーフ弁730が自動的に開く。よって、第2接続液路1Bからリリーフ弁730を介してブレーキ液が排出され、第2接続液路11Bの液圧がリリーフ圧よりも高くならず、ホイルシリンダ液圧をリリーフ圧よりも高く増圧することが困難となる。これに対し、本実施形態では、第2吐出液路13Bであってリリーフ液路130との接続部位と第2接続液路11Bとの接続部位との間に、チェック弁73Bがある。チェック弁73Bは、第2接続液路1Bからリリーフ弁730へ向うブレーキ液の流れを抑制する。よって、第2接続液路1Bの液圧(ホイルシリンダ液圧)をリリーフ圧よりも高く増圧することができる。このようにチェック弁73Bは、系統間を遮断する機能の他に、接続液路11の液圧(ホイルシリンダ液圧)をリリーフ圧よりも高く増圧可能にする機能を有する。チェック弁73Bが複数の機能を有することで、第2液圧ユニット1Bの部品点数を削減し、構成を簡素化できる。なお、第1~第3実施形態の第2吐出液路13Bに、本実施形態と同様のリリーフ回路があってもよい。他の作用効果は第1実施形態と同じである。 Here, when the second connection liquid path 11B and the relief valve 730 are always in communication, the relief valve 730 is automatically opened when the liquid pressure in the second connection liquid path 11B tends to be higher than the relief pressure. Therefore, the brake fluid is discharged from the second connection fluid passage 1B through the relief valve 730, the fluid pressure in the second connection fluid passage 11B is not higher than the relief pressure, and the wheel cylinder fluid pressure is increased higher than the relief pressure. It becomes difficult to press. On the other hand, in the present embodiment, there is a check valve 73B between the second discharge liquid passage 13B and the connection portion with the relief liquid passage 130 and the connection portion with the second connection liquid passage 11B. The check valve 73B suppresses the flow of brake fluid from the second connection fluid path 1B to the relief valve 730. Therefore, the hydraulic pressure (foil cylinder hydraulic pressure) in the second connection liquid passage 1B can be increased higher than the relief pressure. As described above, the check valve 73B has a function of increasing the hydraulic pressure (foil cylinder hydraulic pressure) of the connection liquid passage 11 higher than the relief pressure, in addition to the function of cutting off the systems. Since the check valve 73B has a plurality of functions, the number of parts of the second hydraulic unit 1B can be reduced and the configuration can be simplified. Note that a relief circuit similar to that of this embodiment may be provided in the second discharge liquid passage 13B of the first to third embodiments. Other functions and effects are the same as those of the first embodiment.
 [第5実施形態]
  図14に示すように、第2液圧ユニット1Bはリリーフ液路130とリリーフ弁730を有しない。代わりに、開閉弁71Bがリリーフ弁として機能する。第1液圧ユニット1Aによる倍力制御の失陥時にリレー908をオンして開閉弁71Bを閉じるとき、開閉弁71Bのソレノイドに流れる電流が或る値以下となるように設定されている。具体的には、「第2接続液路11Bにおいて開閉弁71Bに対しホイルシリンダ102の側の液圧がマスタシリンダ3の側の液圧よりも一定値以上高くなるときに開閉弁71Bが開く」ような電流値が開閉弁71Bに通電されるように設定する。ブレーキシステム1の他の構成は第4実施形態と同じである。
[Fifth Embodiment]
As shown in FIG. 14, the second hydraulic pressure unit 1B does not have the relief liquid passage 130 and the relief valve 730. Instead, the on-off valve 71B functions as a relief valve. When the relay 908 is turned on and the on-off valve 71B is closed when the boost control by the first hydraulic unit 1A fails, the current flowing through the solenoid of the on-off valve 71B is set to a certain value or less. Specifically, “the on-off valve 71B opens when the hydraulic pressure on the wheel cylinder 102 side is higher than the hydraulic pressure on the side of the master cylinder 3 relative to the on-off valve 71B in the second connection liquid path 11B” Such a current value is set so that the on-off valve 71B is energized. Other configurations of the brake system 1 are the same as those in the fourth embodiment.
 次に作用効果を説明する。第2液圧ユニット1Bによる制御時、開閉弁71Bに対しホイルシリンダ102の側の液圧がマスタシリンダ3の側の液圧よりも一定値以上高くなろうとすると、開閉弁71Bが自動的に開く。図14において矢印で示すように、第2ポンプ81Bの吐出するブレーキ液の一部は開閉弁71Bを通ってマスタシリンダ3の側に排出される。これにより、マスタシリンダ液圧に対しホイルシリンダ液圧が一定以上高くなることが抑制される。よって、ホイルシリンダ102の過度な増圧や第2モータ80Bのロックを抑制できる。なお、第1~第3実施形態において、本実施形態と同様、開閉弁71Bがリリーフ弁として機能するように設定してもよい。他の作用効果は第4実施形態と同じである。 Next, the function and effect will be described. During the control by the second hydraulic pressure unit 1B, if the hydraulic pressure on the wheel cylinder 102 side is higher than the hydraulic pressure on the master cylinder 3 side relative to the open / close valve 71B, the open / close valve 71B is automatically opened. . As shown by an arrow in FIG. 14, a part of the brake fluid discharged from the second pump 81B is discharged to the master cylinder 3 side through the on-off valve 71B. As a result, the wheel cylinder hydraulic pressure is suppressed from becoming higher than a certain level with respect to the master cylinder hydraulic pressure. Therefore, excessive pressure increase of the wheel cylinder 102 and locking of the second motor 80B can be suppressed. In the first to third embodiments, as in the present embodiment, the on-off valve 71B may be set to function as a relief valve. Other functions and effects are the same as those of the fourth embodiment.
 [第6実施形態]
  図15に示すように、第2液圧ユニット1Bは、第2吐出液路13Bにおいてリリーフ回路を有する。リリーフ回路は、リリーフ液路130、リリーフ弁730、及びチェック弁76を有する。チェック弁76は第2吐出液路13Bの上にある。チェック弁76は第2ポンプ81Bの吐出部から第2接続液路11Bへ向うブレーキ液の流れを許容し、反対方向の流れを抑制する。リリーフ液路130は、第2吐出液路13Bであって第2ポンプ81Bの吐出部とチェック弁76の間と、第2吸入液路12Bとを接続する。リリーフ弁730はリリーフ液路130の上にある。リリーフ弁730の構成は第4実施形態と同じである。
[Sixth Embodiment]
As shown in FIG. 15, the second hydraulic unit 1B has a relief circuit in the second discharge liquid passage 13B. The relief circuit includes a relief liquid path 130, a relief valve 730, and a check valve 76. The check valve 76 is above the second discharge liquid path 13B. The check valve 76 allows the flow of brake fluid from the discharge portion of the second pump 81B toward the second connection fluid path 11B and suppresses the flow in the opposite direction. The relief liquid path 130 is the second discharge liquid path 13B, and connects the discharge part of the second pump 81B and the check valve 76 to the second suction liquid path 12B. The relief valve 730 is above the relief fluid path 130. The configuration of the relief valve 730 is the same as that of the fourth embodiment.
 第2液圧ユニット1Bの電磁弁7Bは出力制御弁78Bを有する。出力制御弁78Bは常閉のオン・オフ弁である。なお、出力制御弁78Bは比例制御弁でもよい。出力制御弁78Bは、第2吐出液路13Bであって第2接続液路11sBとの接続部位とチェック弁76との間にある。電源ライン909の上には、第2モータ80Bのコイル、開閉弁71Bのソレノイド、連通弁73Bのソレノイド、及び出力制御弁78Bのソレノイドが並列に接続される。 The electromagnetic valve 7B of the second hydraulic unit 1B has an output control valve 78B. The output control valve 78B is a normally closed on / off valve. The output control valve 78B may be a proportional control valve. The output control valve 78B is between the check valve 76 and the second discharge liquid passage 13B, which is connected to the second connection liquid passage 11sB. On the power supply line 909, the coil of the second motor 80B, the solenoid of the on-off valve 71B, the solenoid of the communication valve 73B, and the solenoid of the output control valve 78B are connected in parallel.
 第2液圧ユニット1Bは、ファストフィル機構を有する。ファストフィル機構は、バイパス液路18B、補給液路19B、ピストン66、コイルスプリング67、シール部材68、及び出力制御弁78Bを有する。バイパス液路18Bの一端は、第2接続液路11sBであって第2入力ポート61sと開閉弁71sBの間に接続する。バイパス液路18Bの他端は、第2吐出液路13Bであってチェック弁76と出力制御弁78Bの間に接続する。バイパス液路18Bの上には、シリンダ604がある。シリンダ604は段付きの円筒状である。シリンダ604の大径部は第2接続液路11sBの側にあり、小径部は第2吐出液路13Bの側にある。シリンダ604の大径部に第1シール溝607があり、小径部に第2シール溝608がある。各シール溝607,608は、シリンダ604の軸心の周り方向(以下、周方向)に延びる円環状である。ピストン66はシリンダ604の内部に設置され、軸方向に往復移動可能である。ピストン66は段付きの円筒状である。ピストン66の小径部がシリンダ604の小径部に嵌合し、ピストン66の大径部がシリンダ604の大径部に嵌合する。ピストン66は隔壁660で仕切られた2つの凹部661,662を有する。第1凹部661はピストン66の大径部の側に開口し、第2凹部662は小径部の側に開口する。第1凹部661の周壁であってピストン66の大径部を孔665が貫通する。孔665は周方向に複数ある。 The second hydraulic unit 1B has a fast fill mechanism. The fast fill mechanism includes a bypass liquid path 18B, a replenishment liquid path 19B, a piston 66, a coil spring 67, a seal member 68, and an output control valve 78B. One end of the bypass liquid path 18B is a second connection liquid path 11sB and is connected between the second input port 61s and the on-off valve 71sB. The other end of the bypass liquid path 18B is a second discharge liquid path 13B and is connected between the check valve 76 and the output control valve 78B. Above the bypass liquid path 18B is a cylinder 604. The cylinder 604 has a stepped cylindrical shape. The large diameter portion of the cylinder 604 is on the second connection liquid passage 11sB side, and the small diameter portion is on the second discharge liquid passage 13B side. The cylinder 604 has a first seal groove 607 in the large diameter portion and a second seal groove 608 in the small diameter portion. Each of the seal grooves 607 and 608 has an annular shape extending in the direction around the axis of the cylinder 604 (hereinafter referred to as the circumferential direction). The piston 66 is installed inside the cylinder 604 and can reciprocate in the axial direction. The piston 66 has a stepped cylindrical shape. The small diameter portion of the piston 66 is fitted to the small diameter portion of the cylinder 604, and the large diameter portion of the piston 66 is fitted to the large diameter portion of the cylinder 604. The piston 66 has two recesses 661 and 662 separated by a partition wall 660. The first recess 661 opens on the large diameter portion side of the piston 66, and the second recess 662 opens on the small diameter portion side. A hole 665 penetrates the large-diameter portion of the piston 66, which is the peripheral wall of the first recess 661. There are a plurality of holes 665 in the circumferential direction.
 シリンダ604は、ピストン66により、正圧室691と背圧室692と可変容積室693に区画される。ピストン66に対し正圧室691はシリンダ604の大径部の側にあり、背圧室692は小径部の側にある。可変容積室693は、ピストン66の小径部の外周面とシリンダ604の大径部の内周面との間にある。シール部材68はロッドシール用のUパッキンやVパッキンであり、各シール溝607,608に設置される。ピストン66の外周面にはシール部材68のリップが接する。第1シール溝607のシール部材68は、ピストン66の大径部の外周側で正圧室691から可変容積室693へ向うブレーキ液の流れを抑制し、反対方向の流れを許容する。第2シール溝608のシール部材68は、ピストン66の小径部の外周側で背圧室692から可変容積室693へ向うブレーキ液の流れを抑制し、反対方向の流れを許容する。コイルスプリング67は、背圧室692に設置され、ピストン66を正圧室691の側(正圧室691の容積が減少する側)に常時付勢する。補給液路19Bの一端は可変容積室693に接続し、可変容積室693に常時開口する。補給液路19Bの他端は第2吸入液路12B(リザーバ64)に接続する。ハウジング60には、可変容積室693のエア抜き用の弁761及び背圧室692のエア抜き用の弁762が設置される。弁761は補給液路19Bに接続し、弁762はバイパス液路18Bの上記他端側(第2吐出液路13Bと接続する側)に接続する。ブレーキシステム1の他の構成は第3実施形態と同じである。 The cylinder 604 is divided into a positive pressure chamber 691, a back pressure chamber 692, and a variable volume chamber 693 by the piston 66. The positive pressure chamber 691 is on the large diameter portion side of the cylinder 604 with respect to the piston 66, and the back pressure chamber 692 is on the small diameter portion side. The variable volume chamber 693 is located between the outer peripheral surface of the small diameter portion of the piston 66 and the inner peripheral surface of the large diameter portion of the cylinder 604. The seal member 68 is a rod seal U-packing or V-packing, and is installed in each of the seal grooves 607 and 608. The lip of the seal member 68 is in contact with the outer peripheral surface of the piston 66. The seal member 68 of the first seal groove 607 suppresses the flow of brake fluid from the positive pressure chamber 691 to the variable volume chamber 693 on the outer peripheral side of the large diameter portion of the piston 66, and allows the flow in the opposite direction. The seal member 68 of the second seal groove 608 suppresses the flow of brake fluid from the back pressure chamber 692 toward the variable volume chamber 693 on the outer peripheral side of the small diameter portion of the piston 66, and allows the flow in the opposite direction. The coil spring 67 is installed in the back pressure chamber 692, and always urges the piston 66 toward the positive pressure chamber 691 (the side where the volume of the positive pressure chamber 691 decreases). One end of the replenishing liquid channel 19B is connected to the variable volume chamber 693 and is always open to the variable volume chamber 693. The other end of the replenishing liquid path 19B is connected to the second suction liquid path 12B (reservoir 64). The housing 60 is provided with a valve 761 for bleeding air from the variable volume chamber 693 and a valve 762 for bleeding air from the back pressure chamber 692. The valve 761 is connected to the replenishing liquid path 19B, and the valve 762 is connected to the other end side (the side connected to the second discharge liquid path 13B) of the bypass liquid path 18B. The other configuration of the brake system 1 is the same as that of the third embodiment.
 次に作用効果を説明する。第1液圧ユニット1Aによる倍力制御の失陥時、ブレーキペダル100が踏込まれると、リレー908がオフからオンへ切り替わり、第2モータ80B、開閉弁71B、連通弁73B及び出力制御弁78Bへの通電が開始される。開閉弁71Bが閉じ、連通弁73B及び出力制御弁78Bが開くと共に、第2ポンプ81Bが作動する。ブレーキペダル100の踏込み操作の初期には、マスタシリンダ3が発生し正圧室691に供給されるマスタシリンダ液圧によりピストン66が作動(背圧室692の側にストローク)し、背圧室692からブレーキ液が流出する。このブレーキ液は、第2吐出液路13B(出力制御弁78B)を通って第2接続液路11sBに供給され、接続液路11を介してホイルシリンダ102に供給される。これによりホイルシリンダ102のブカ詰めが行われるため、第2ポンプ81Bによるホイルシリンダ102の増圧応答性を向上することができる。 Next, the function and effect will be described. If the brake pedal 100 is depressed when the boost control by the first hydraulic unit 1A fails, the relay 908 switches from OFF to ON, and the second motor 80B, the on-off valve 71B, the communication valve 73B, and the output control valve 78B. Is energized. The on-off valve 71B is closed, the communication valve 73B and the output control valve 78B are opened, and the second pump 81B is operated. In the initial stage of the depression of the brake pedal 100, the master cylinder 3 is generated and the piston 66 is actuated by the master cylinder hydraulic pressure supplied to the positive pressure chamber 691 (stroke toward the back pressure chamber 692). Brake fluid flows out of This brake fluid is supplied to the second connection fluid passage 11sB through the second discharge fluid passage 13B (output control valve 78B), and is supplied to the wheel cylinder 102 via the connection fluid passage 11. As a result, the foil cylinder 102 is stuffed, so that the pressure increase response of the wheel cylinder 102 by the second pump 81B can be improved.
 すなわち、ピストン66において正圧室691に面する部分には正圧室691の液圧が作用し、この液圧による力はピストン66を背圧室692の側に移動させようとする。背圧室692に面する部分には背圧室692の液圧が作用し、この液圧による力はピストン66を正圧室691の側に移動させようとする。ブレーキペダル100の踏込み操作の初期には、第2モータ80Bの回転数が不十分である等により、第2ポンプ81Bによるホイルシリンダ102の増圧応答性が低い。このため、閉じた開閉弁71Bに対して第2入力ポート61の側における第2接続液路11Bのブレーキ液圧(マスタシリンダ液圧)に比べ、第2出力ポート62の側における第2接続液路11Bのブレーキ液圧(ホイルシリンダ液圧)が、十分に高くない。よって、正圧室691の液圧(マスタシリンダ液圧)による力が、背圧室692の液圧(ホイルシリンダ液圧)による力(とコイルスプリング67の付勢力との和)を上回って、ピストン66が背圧室692の側に移動可能である。 That is, the fluid pressure of the positive pressure chamber 691 acts on the portion of the piston 66 facing the positive pressure chamber 691, and the force due to this fluid pressure tries to move the piston 66 to the back pressure chamber 692. The hydraulic pressure of the back pressure chamber 692 acts on the portion facing the back pressure chamber 692, and the force by this hydraulic pressure tries to move the piston 66 to the positive pressure chamber 691 side. In the initial stage of the depression operation of the brake pedal 100, the pressure increase response of the wheel cylinder 102 by the second pump 81B is low due to an insufficient rotation speed of the second motor 80B. For this reason, the second connection fluid on the second output port 62 side compared to the brake fluid pressure (master cylinder fluid pressure) of the second connection fluid passage 11B on the second input port 61 side with respect to the closed on-off valve 71B. The brake fluid pressure (wheel cylinder fluid pressure) on the road 11B is not sufficiently high. Therefore, the force due to the fluid pressure in the positive pressure chamber 691 (master cylinder fluid pressure) exceeds the force due to the fluid pressure in the back pressure chamber 692 (wheel cylinder fluid pressure) (and the sum of the biasing force of the coil spring 67), The piston 66 is movable toward the back pressure chamber 692.
 バイパス液路18B、及び、第2吐出液路13Bであってバイパス液路18Bとの接続部位から第2接続液路11sBとの接続部位までの間は、開閉弁71Bと並列に第2接続液路11sBに接続し、開閉弁71Bを迂回するバイパス液路として機能する。このバイパス液路は、開閉弁71Bに対して第2入力ポート61ないしマスタシリンダ3の側の第2接続液路11Bと、開閉弁71Bに対して第2出力ポート62ないしホイルシリンダ102の側の第2接続液路11Bとを接続する。このバイパス液路上にあるピストン66が作動することで、ホイルシリンダ102へ向けてブレーキ液が供給される。あたかもマスタシリンダ3から上記バイパス液路を介して(開閉弁71Bを迂回して)ホイルシリンダ102へ向けてブレーキ液が流れるのと同等な機能が実現される。出力制御弁78Bは、上記バイパス液路上にあって、開弁することでピストン66の作動を可能とし、閉弁することでピストン66の作動を抑制する。言換えると、ファストフィル機構の出力の有無を制御する。なお、上記バイパス液路として、第2吐出液路13Bとは独立して、開閉弁71Bと並列に第2接続液路11sBに接続し、開閉弁71Bを迂回する液路を設けてもよい。本実施形態では、第2吐出液路13Bの一部を上記バイパス液路としても利用することで、回路構成の簡素化を図ることができる。 Between the bypass liquid path 18B and the second discharge liquid path 13B from the connection site with the bypass liquid path 18B to the connection site with the second connection liquid path 11sB, the second connection liquid is connected in parallel with the on-off valve 71B. Connected to the path 11sB and functions as a bypass liquid path that bypasses the on-off valve 71B. This bypass fluid path is connected to the second connection port 11B on the second input port 61 or the master cylinder 3 side with respect to the on-off valve 71B, and on the second output port 62 or the wheel cylinder 102 side on the side of the on-off valve 71B. The second connection liquid path 11B is connected. By operating the piston 66 on the bypass fluid path, the brake fluid is supplied toward the wheel cylinder 102. A function equivalent to the brake fluid flowing from the master cylinder 3 to the wheel cylinder 102 via the bypass fluid path (bypassing the on-off valve 71B) is realized. The output control valve 78B is on the bypass liquid passage, and enables the operation of the piston 66 by opening the valve, and suppresses the operation of the piston 66 by closing the valve. In other words, it controls the presence or absence of the output of the fast fill mechanism. As the bypass liquid path, a liquid path that is connected to the second connection liquid path 11sB in parallel with the on-off valve 71B and bypasses the on-off valve 71B may be provided independently of the second discharge liquid path 13B. In the present embodiment, the circuit configuration can be simplified by using a part of the second discharge liquid path 13B also as the bypass liquid path.
 第2液圧ユニット1Bによる制御時、正圧室691には、マスタシリンダ3(液圧室34S)から一定量のブレーキ液が流入する。よって、適度にブレーキペダル100がストロークすることができる。一方、マスタシリンダ3から正圧室691へ流入するブレーキ液量は限られているため、ペダルストロークが過度に増大することは抑制される。よって、ペダルストロークを短縮しつつ、ブレーキ操作フィーリングを向上できる。 During control by the second hydraulic pressure unit 1B, a certain amount of brake fluid flows into the positive pressure chamber 691 from the master cylinder 3 (hydraulic pressure chamber 34S). Therefore, the brake pedal 100 can stroke appropriately. On the other hand, since the amount of brake fluid flowing from the master cylinder 3 into the positive pressure chamber 691 is limited, an excessive increase in the pedal stroke is suppressed. Therefore, the brake operation feeling can be improved while shortening the pedal stroke.
 ピストン66は段付きである。ピストン66において正圧室691の液圧(マスタシリンダ3の側の液圧)を受ける部分(大径部)の面積よりも、背圧室692の液圧(ホイルシリンダ102の側の液圧)を受ける部分(小径部)の面積のほうが小さい。よって、(コイルスプリング67の付勢力を無視すれば、)シリンダ604に入力されるマスタシリンダ3の側の液圧よりも、シリンダ604から出力されるホイルシリンダ102の側の液圧が高くなる。よって、ホイルシリンダ102の増圧応答性をより向上できる。また、第2モータ80Bの回転数が十分に上昇し、第2ポンプ81Bの吐出圧(背圧室692の液圧)が十分に増大した後も、正圧室691の液圧(マスタシリンダ液圧)によりピストン66を背圧室692の側の一定位置に停止させたままとすることが可能である。よって、第2液圧ユニット1Bによる制御中、ピストン66の作動を安定化することが容易である。なお、第2液圧ユニット1Bによる制御が終了すると、コイルスプリング67の付勢力によりピストン66は初期位置に戻る。低圧部と連通する補給液路19Bにより、可変容積室693の変化すなわちピストン66の往復移動が円滑化される。 Piston 66 is stepped. The hydraulic pressure in the back pressure chamber 692 (hydraulic pressure on the wheel cylinder 102) is larger than the area (large diameter portion) of the piston 66 that receives the hydraulic pressure in the positive pressure chamber 691 (hydraulic pressure on the master cylinder 3 side). The area of the part (small diameter part) that receives is smaller. Therefore, the hydraulic pressure on the side of the wheel cylinder 102 output from the cylinder 604 becomes higher than the hydraulic pressure on the side of the master cylinder 3 input to the cylinder 604 (ignoring the biasing force of the coil spring 67). Therefore, the pressure increasing response of the wheel cylinder 102 can be further improved. Further, even after the number of rotations of the second motor 80B is sufficiently increased and the discharge pressure of the second pump 81B (hydraulic pressure of the back pressure chamber 692) is sufficiently increased, the hydraulic pressure (master cylinder fluid) of the positive pressure chamber 691 is increased. It is possible to keep the piston 66 stopped at a fixed position on the back pressure chamber 692 side by pressure. Therefore, it is easy to stabilize the operation of the piston 66 during the control by the second hydraulic unit 1B. When the control by the second hydraulic pressure unit 1B is completed, the piston 66 returns to the initial position by the urging force of the coil spring 67. The change of the variable volume chamber 693, that is, the reciprocating movement of the piston 66 is facilitated by the replenishing liquid passage 19B communicating with the low pressure portion.
 リリーフ弁730を含むリリーフ回路により、第4実施形態と同様の作用効果が得られる。他の作用効果は第3実施形態と同じである。 The relief circuit including the relief valve 730 provides the same effects as the fourth embodiment. Other functions and effects are the same as those of the third embodiment.
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, The design change etc. of the range which does not deviate from the summary of invention are included. Even if it exists, it is included in this invention. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 [実施形態から把握しうる他の態様]
  以上説明した実施形態から把握しうる他の態様について、以下に記載する。
 (1) 液圧制御装置は、その1つの態様において、
  ブレーキペダルの操作に応じてブレーキ液圧を発生するマスタシリンダと、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部と、を接続する接続液路と、
  前記接続液路に配置された遮断弁と、
  前記接続液路のうちの、前記遮断弁に対して前記ホイルシリンダ部の側に位置する部分にブレーキ液を供給可能な第1液圧源と、
  前記ブレーキペダルの操作時に前記第1液圧源及び前記遮断弁を制御して前記ホイルシリンダ部にブレーキ液を供給する倍力制御を実行可能な制御部と、
  前記接続液路に配置され、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に閉方向に作動する開閉弁と、
  前記接続液路のうちの、前記開閉弁に対して前記ホイルシリンダ部の側に位置する部分にブレーキ液を供給可能であり、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に作動可能な第2液圧源と、を備える。
 (2) より好ましい態様では、前記態様において、
  前記開閉弁は、前記接続液路のうちの、前記遮断弁に対して前記ホイルシリンダ部に位置する側の前記部分に配置される。
 (3) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記第2液圧源は、前記接続液路のうちの、前記車輪部の前輪に対応する前記ホイルシリンダ部に接続される部分にのみブレーキ液を供給可能である。
 (4) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  低圧部と前記第2液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁を備える。
 (5) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記開閉弁は、前記接続液路のうちの、前記遮断弁に対して前記マスタシリンダの側に位置する部分に配置され、
  前記第2液圧源は、前記接続液路のうちの、前記開閉弁と前記遮断弁との間の部分にブレーキ液を供給可能である。
 (6) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  低圧部と前記第2液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁を備える。
 (7) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記マスタシリンダと、前記接続液路のうちの、前記開閉弁に対して前記ホイルシリンダ部の側に位置する前記部分と、を接続するバイパス液路と、
  前記バイパス液路に配置され、前記マスタシリンダが発生したブレーキ液圧により作動可能なピストンであって、前記マスタシリンダの側のブレーキ液圧を受ける面積よりも、前記ホイルシリンダ部の側のブレーキ液圧を受ける面積の方が小さいピストンとを備える。
 (8) また、他の観点から、ブレーキシステムは、その1つの態様において、
  ブレーキペダルの操作に応じてブレーキ液圧を発生するマスタシリンダを有するマスタシリンダユニットと、
  ブレーキ液圧を増圧可能な第1液圧ユニットと、
 ブレーキ液圧を増圧可能な第2液圧ユニットと
 を備え、
 前記第1液圧ユニットは、
  ブレーキ液が入力される第1入力ポートと、
  前記第1入力ポートに接続される第1接続液路と、
  前記第1接続液路に配置された遮断弁と、
  前記第1接続液路に接続され、ブレーキ液を出力するための第1出力ポートと、
  前記第1接続液路のうちの、前記遮断弁よりも前記第1出力ポートの側に位置する部分にブレーキ液を吐出可能な第1液圧源と、
  前記ブレーキペダルの操作時に前記第1液圧源及び前記遮断弁を制御してブレーキ液圧を発生する倍力制御を実行可能な制御部と
  を備え、
  前記第2液圧ユニットは、
  ブレーキ液が入力される第2入力ポートと、
  前記第2入力ポートに接続される第2接続液路と、
  前記第2接続液路に配置され、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に閉方向に作動する開閉弁と、
  前記第2接続液路に接続され、ブレーキ液を出力するための第2出力ポートと、
  前記第2接続液路のうちの、前記開閉弁よりも前記第2出力ポートの側に位置する部分にブレーキ液を吐出可能であり、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に作動可能な第2液圧源と
  を備える。
 (9) より好ましい態様では、前記態様において、
  前記第1入力ポートは前記マスタシリンダに接続され、
  前記第1出力ポートは前記第2入力ポートに接続され、
  前記第2出力ポートは、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部に接続される。
 (10) 別の好ましい態様では、前記態様のいずれかにおいて、
 前記第2液圧ユニットは、前記車輪部の前輪に対応する前記ホイルシリンダ部にのみブレーキ液を供給可能である。
 (11) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記第2液圧ユニットは、低圧部と前記第2液圧源の吐出側とを接続する液路に配置されたリリーフ弁であって、ブレーキ液を前記低圧部に還流可能なリリーフ弁を備える。
 (12) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記第2入力ポートは前記マスタシリンダに接続され、
  前記第2出力ポートは前記第1入力ポートに接続され、
  前記第1出力ポートは、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部に接続される。
 (13) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記第2液圧ユニットは、低圧部と前記第2液圧源の吐出側とを接続する液路に配置されたリリーフ弁であって、ブレーキ液を前記低圧部に還流可能なリリーフ弁を備える。
 (14) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記第2液圧ユニットは、
  前記第2接続液路のうちの、前記開閉弁に対して前記第2入力ポートの側に位置する部分と、前記第2接続液路のうちの、前記開閉弁に対して前記第2出力ポートの側に位置する部分と、を接続するバイパス液路と、
  前記バイパス液路に配置され、前記マスタシリンダが発生したブレーキ液圧により作動可能なピストンであって、前記第2接続液路のうちの、前記開閉弁に対して前記第2入力ポートの側に位置する前記部分のブレーキ液圧を受ける面積よりも、前記第2接続液路のうちの、前記開閉弁に対して前記第2出力ポートの側に位置する前記部分のブレーキ液圧を受ける面積の方が小さいピストンと、を備える。
 (15) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記倍力制御が作動していない状態は、車両側のコントローラにより検知される。
 (16) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記倍力制御が作動していない状態は、前記第1液圧ユニットの失陥検知部により検知される。
 (17) また、他の観点から、補助液圧ユニットは、その1つの態様において、
  ブレーキペダルの操作時に車輪部のホイルシリンダ部にブレーキ液圧を供給する倍力制御を実行可能な主液圧ユニットが前記倍力制御を実行していない状態で、前記ブレーキペダルの操作時に作動して前記ホイルシリンダ部にブレーキ液圧を供給可能である。
 (18) より好ましい態様では、前記態様において、
  前記ホイルシリンダ部にブレーキ液を供給可能な液圧源と、
  低圧部と前記液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁とを備える。
[Other aspects that can be grasped from the embodiment]
Other aspects that can be understood from the embodiment described above will be described below.
(1) The hydraulic control device, in one embodiment thereof,
A connecting fluid path for connecting a master cylinder that generates a brake fluid pressure in response to an operation of a brake pedal, and a wheel cylinder portion that can apply a braking force to a wheel portion in accordance with the brake fluid pressure;
A shut-off valve disposed in the connection liquid path;
A first hydraulic pressure source capable of supplying brake fluid to a portion of the connection fluid path located on the wheel cylinder portion side with respect to the shutoff valve;
A control unit capable of executing boost control for controlling the first hydraulic pressure source and the shut-off valve during operation of the brake pedal and supplying brake fluid to the wheel cylinder unit;
An on-off valve that is disposed in the connection liquid path and that operates in a closing direction when the brake pedal is operated in a state where the boost control is not operated;
Brake fluid can be supplied to a portion of the connection fluid path located on the wheel cylinder portion side with respect to the on-off valve, and when the brake pedal is operated in a state where the boost control is not activated. A second hydraulic pressure source operable.
(2) In a more preferred embodiment, in the above embodiment,
The on-off valve is disposed in the portion of the connection liquid path on the side located on the wheel cylinder portion with respect to the shutoff valve.
(3) In another preferred embodiment, in any of the above embodiments,
The second hydraulic pressure source can supply brake fluid only to a portion of the connection fluid path that is connected to the wheel cylinder portion corresponding to the front wheel of the wheel portion.
(4) In still another preferred embodiment, in any of the above embodiments,
A relief valve is provided in a fluid path connecting the low pressure portion and the discharge side of the second fluid pressure source, and can recirculate brake fluid to the low pressure portion.
(5) In still another preferred embodiment, in any of the above embodiments,
The on-off valve is disposed in a portion of the connection liquid path located on the master cylinder side with respect to the shutoff valve,
The second hydraulic pressure source can supply brake fluid to a portion of the connection fluid path between the on-off valve and the shutoff valve.
(6) In still another preferred embodiment, in any of the above embodiments,
A relief valve is provided in a fluid path connecting the low pressure portion and the discharge side of the second fluid pressure source, and can recirculate brake fluid to the low pressure portion.
(7) In still another preferred embodiment, in any of the above embodiments,
A bypass fluid path that connects the master cylinder and the portion of the connection fluid path that is located on the wheel cylinder portion side with respect to the on-off valve;
A piston that is disposed in the bypass fluid passage and is operable by a brake fluid pressure generated by the master cylinder, the brake fluid being closer to the wheel cylinder portion than the area receiving the brake fluid pressure on the master cylinder side And a piston having a smaller area for receiving pressure.
(8) From another point of view, the brake system is, in one embodiment thereof,
A master cylinder unit having a master cylinder that generates brake fluid pressure in response to operation of the brake pedal;
A first hydraulic unit capable of increasing the brake hydraulic pressure;
A second hydraulic pressure unit capable of increasing the brake hydraulic pressure,
The first hydraulic unit is
A first input port to which brake fluid is input;
A first connection liquid path connected to the first input port;
A shutoff valve disposed in the first connection liquid path;
A first output port connected to the first connection fluid path for outputting brake fluid;
A first hydraulic pressure source capable of discharging brake fluid to a portion of the first connection fluid path located closer to the first output port than the shutoff valve;
A control unit capable of executing a boost control for controlling the first hydraulic pressure source and the shutoff valve to generate a brake hydraulic pressure when the brake pedal is operated,
The second hydraulic unit is
A second input port to which brake fluid is input;
A second connection liquid path connected to the second input port;
An on-off valve disposed in the second connection liquid path and operating in a closing direction when the brake pedal is operated in a state where the boost control is not operating;
A second output port connected to the second connection fluid path for outputting brake fluid;
Brake fluid can be discharged to a portion of the second connection fluid path that is located closer to the second output port than the on-off valve, and the brake pedal of the brake pedal is not activated when the boost control is not activated. A second hydraulic pressure source operable during operation.
(9) In a more preferred embodiment, in the above embodiment,
The first input port is connected to the master cylinder;
The first output port is connected to the second input port;
The second output port is connected to a wheel cylinder portion that can apply a braking force to the wheel portion according to the brake fluid pressure.
(10) In another preferred embodiment, in any of the above embodiments,
The second hydraulic unit can supply brake fluid only to the wheel cylinder part corresponding to the front wheel of the wheel part.
(11) In still another preferred embodiment, in any of the above embodiments,
The second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. .
(12) In still another preferred embodiment, in any of the above embodiments,
The second input port is connected to the master cylinder;
The second output port is connected to the first input port;
The first output port is connected to a wheel cylinder part capable of applying a braking force to the wheel part according to the brake fluid pressure.
(13) In still another preferred embodiment, in any of the above embodiments,
The second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. .
(14) In still another preferred embodiment, in any of the above embodiments,
The second hydraulic unit is
A portion of the second connection liquid path that is positioned on the second input port side with respect to the on-off valve, and the second output port with respect to the on-off valve of the second connection liquid path. A portion located on the side of the bypass, a bypass liquid path connecting the
A piston disposed in the bypass fluid path and operable by a brake fluid pressure generated by the master cylinder, the second connection fluid path being closer to the second input port than the on-off valve; The area of the second connection fluid path that receives the brake fluid pressure of the part that is located on the second output port side with respect to the on-off valve, rather than the area that receives the brake fluid pressure of the part located. A smaller piston.
(15) In still another preferred embodiment, in any of the above embodiments,
The state where the boost control is not activated is detected by a controller on the vehicle side.
(16) In still another preferred embodiment, in any of the above embodiments,
The state where the boost control is not activated is detected by the failure detection unit of the first hydraulic pressure unit.
(17) From another point of view, the auxiliary hydraulic unit is, in one embodiment thereof,
When the brake pedal is operated, the main hydraulic unit that can execute the boost control that supplies the brake hydraulic pressure to the wheel cylinder portion of the wheel when the brake pedal is operated does not execute the boost control, and operates when the brake pedal is operated. Thus, the brake fluid pressure can be supplied to the wheel cylinder portion.
(18) In a more preferred embodiment, in the above embodiment,
A hydraulic pressure source capable of supplying brake fluid to the wheel cylinder portion;
A relief valve disposed in a fluid path connecting a low pressure portion and a discharge side of the fluid pressure source and capable of returning brake fluid to the low pressure portion.
 本願は、2017年3月14日出願の日本特許出願番号2017-48091号に基づく優先権を主張する。2017年3月14日出願の日本特許出願番号2017-48091号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-48091 filed on Mar. 14, 2017. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2017-48091 filed on Mar. 14, 2017 is incorporated herein by reference in its entirety.
1   ブレーキシステム、100 ブレーキペダル、1C  マスタシリンダユニット、3   マスタシリンダ、1A  第1液圧ユニット、11A 第1接続液路、41  第1入力ポート、42  第1出力ポート、71A 遮断弁、81A 第1ポンプ(第1液圧源)、1B  第2液圧ユニット、11B 第2接続液路、61  第2入力ポート、62  第2出力ポート、71B 開閉弁、81B 第2ポンプ(第2液圧源)、90  電子制御ユニット、901 第1制御部、902 第2制御部 1 Brake system, 100 Brake pedal, 1C Master cylinder unit, 3 Master cylinder, 1A 1st hydraulic unit, 11A 1st connecting fluid path, 41 1st input port, 42 1st output port, 71A shutoff valve, 81A 1st Pump (first hydraulic pressure source), 1B, second hydraulic pressure unit, 11B, second connecting fluid path, 61, second input port, 62, second output port, 71B on-off valve, 81B second pump (second hydraulic pressure source) , 90 Electronic control unit, 901 1st control unit, 902 2nd control unit

Claims (18)

  1.  液圧制御装置であって、
     ブレーキペダルの操作に応じてブレーキ液圧を発生するマスタシリンダと、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部と、を接続する接続液路と、
     前記接続液路に配置された遮断弁と、
     前記接続液路のうちの、前記遮断弁に対して前記ホイルシリンダ部の側に位置する部分にブレーキ液を供給可能な第1液圧源と、
     前記ブレーキペダルの操作時に前記第1液圧源及び前記遮断弁を制御して前記ホイルシリンダ部にブレーキ液を供給する倍力制御を実行可能な制御部と、
     前記接続液路に配置され、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に閉方向に作動する開閉弁と、
     前記接続液路のうちの、前記開閉弁に対して前記ホイルシリンダ部の側に位置する部分にブレーキ液を供給可能であり、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に作動可能な第2液圧源と
     を備える液圧制御装置。
    A hydraulic control device,
    A connecting fluid path for connecting a master cylinder that generates a brake fluid pressure in response to an operation of a brake pedal, and a wheel cylinder portion that can apply a braking force to a wheel portion in accordance with the brake fluid pressure;
    A shut-off valve disposed in the connection liquid path;
    A first hydraulic pressure source capable of supplying brake fluid to a portion of the connection fluid path located on the wheel cylinder portion side with respect to the shutoff valve;
    A control unit capable of executing boost control for controlling the first hydraulic pressure source and the shut-off valve during operation of the brake pedal and supplying brake fluid to the wheel cylinder unit;
    An on-off valve that is disposed in the connection liquid path and that operates in a closing direction when the brake pedal is operated in a state where the boost control is not operated;
    Brake fluid can be supplied to a portion of the connection fluid path located on the wheel cylinder portion side with respect to the on-off valve, and when the brake pedal is operated in a state where the boost control is not activated. A fluid pressure control device comprising: a second fluid pressure source operable.
  2.  請求項1に記載の液圧制御装置において、
     前記開閉弁は、前記接続液路のうちの、前記遮断弁に対して前記ホイルシリンダ部の側に位置する前記部分に配置された
     液圧制御装置。
    The hydraulic control device according to claim 1,
    The on-off valve is disposed in the portion of the connecting fluid path that is located on the wheel cylinder portion side with respect to the shutoff valve.
  3.  請求項2に記載の液圧制御装置において、
     前記第2液圧源は、前記接続液路のうちの、前記車輪部の前輪に対応する前記ホイルシリンダ部に接続される部分にのみブレーキ液を供給可能である
     液圧制御装置。
    The hydraulic control device according to claim 2,
    The second hydraulic pressure source can supply brake fluid only to a portion of the connection fluid path that is connected to the wheel cylinder portion corresponding to the front wheel of the wheel portion.
  4.  請求項3に記載の液圧制御装置において、
     低圧部と前記第2液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁を備える
     液圧制御装置。
    The hydraulic control device according to claim 3,
    A hydraulic pressure control device including a relief valve that is disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source and capable of returning brake fluid to the low pressure portion.
  5.  請求項1に記載の液圧制御装置において、
     前記開閉弁は、前記接続液路のうちの、前記遮断弁に対して前記マスタシリンダの側に位置する部分に配置され、
     前記第2液圧源は、前記接続液路のうちの、前記開閉弁と前記遮断弁との間の部分にブレーキ液を供給可能である
     液圧制御装置。
    The hydraulic control device according to claim 1,
    The on-off valve is disposed in a portion of the connection liquid path located on the master cylinder side with respect to the shutoff valve,
    The second hydraulic pressure source is capable of supplying brake fluid to a portion of the connection fluid path between the on-off valve and the shutoff valve.
  6.  請求項1に記載の液圧制御装置において、
     低圧部と前記第2液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁を備える
     液圧制御装置。
    The hydraulic control device according to claim 1,
    A hydraulic pressure control device including a relief valve that is disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source and capable of returning brake fluid to the low pressure portion.
  7.  請求項1に記載の液圧制御装置において、
     前記マスタシリンダと、前記接続液路のうちの、前記開閉弁に対して前記ホイルシリンダ部の側に位置する前記部分と、を接続するバイパス液路と、
     前記バイパス液路に配置され、前記マスタシリンダが発生したブレーキ液圧により作動可能なピストンであって、前記マスタシリンダの側のブレーキ液圧を受ける面積よりも、前記ホイルシリンダ部の側のブレーキ液圧を受ける面積の方が小さいピストンと
     を備える液圧制御装置。
    The hydraulic control device according to claim 1,
    A bypass fluid path that connects the master cylinder and the portion of the connection fluid path that is located on the wheel cylinder portion side with respect to the on-off valve;
    A piston that is disposed in the bypass fluid passage and is operable by a brake fluid pressure generated by the master cylinder, the brake fluid being closer to the wheel cylinder portion than the area receiving the brake fluid pressure on the master cylinder side A hydraulic control device comprising: a piston having a smaller area for receiving pressure.
  8.  ブレーキシステムであって、
     ブレーキペダルの操作に応じてブレーキ液圧を発生するマスタシリンダを有するマスタシリンダユニットと、
     ブレーキ液圧を増圧可能な第1液圧ユニットと、
     ブレーキ液圧を増圧可能な第2液圧ユニットと
     を備え、
     前記第1液圧ユニットは、
     ブレーキ液が入力される第1入力ポートと、
     前記第1入力ポートに接続される第1接続液路と、
     前記第1接続液路に配置された遮断弁と、
     前記第1接続液路に接続され、ブレーキ液を出力するための第1出力ポートと、
     前記第1接続液路のうちの、前記遮断弁よりも前記第1出力ポートの側に位置する部分にブレーキ液を吐出可能な第1液圧源と、
     前記ブレーキペダルの操作時に前記第1液圧源及び前記遮断弁を制御してブレーキ液圧を発生する倍力制御を実行可能な制御部と
     を備え、
     前記第2液圧ユニットは、
     ブレーキ液が入力される第2入力ポートと、
     前記第2入力ポートに接続される第2接続液路と、
     前記第2接続液路に配置され、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に閉方向に作動する開閉弁と、
     前記第2接続液路に接続され、ブレーキ液を出力するための第2出力ポートと、
     前記第2接続液路のうちの、前記開閉弁よりも前記第2出力ポートの側に位置する部分にブレーキ液を吐出可能であり、前記倍力制御が作動していない状態で前記ブレーキペダルの操作時に作動可能な第2液圧源と
     を備える
     ブレーキシステム。
    A brake system,
    A master cylinder unit having a master cylinder that generates brake fluid pressure in response to operation of the brake pedal;
    A first hydraulic unit capable of increasing the brake hydraulic pressure;
    A second hydraulic pressure unit capable of increasing the brake hydraulic pressure,
    The first hydraulic unit is
    A first input port to which brake fluid is input;
    A first connection liquid path connected to the first input port;
    A shutoff valve disposed in the first connection liquid path;
    A first output port connected to the first connection fluid path for outputting brake fluid;
    A first hydraulic pressure source capable of discharging brake fluid to a portion of the first connection fluid path located closer to the first output port than the shutoff valve;
    A control unit capable of executing a boost control for controlling the first hydraulic pressure source and the shutoff valve to generate a brake hydraulic pressure when the brake pedal is operated,
    The second hydraulic unit is
    A second input port to which brake fluid is input;
    A second connection liquid path connected to the second input port;
    An on-off valve disposed in the second connection liquid path and operating in a closing direction when the brake pedal is operated in a state where the boost control is not operating;
    A second output port connected to the second connection fluid path for outputting brake fluid;
    Brake fluid can be discharged to a portion of the second connection fluid path that is located closer to the second output port than the on-off valve, and the brake pedal of the brake pedal is not activated when the boost control is not activated. A brake system comprising: a second hydraulic pressure source operable during operation.
  9.  請求項8に記載のブレーキシステムにおいて、
     前記第1入力ポートは前記マスタシリンダに接続され、
     前記第1出力ポートは前記第2入力ポートに接続され、
     前記第2出力ポートは、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部に接続される
     ブレーキシステム。
    The brake system according to claim 8, wherein
    The first input port is connected to the master cylinder;
    The first output port is connected to the second input port;
    The second output port is connected to a wheel cylinder part capable of applying a braking force to a wheel part according to the brake fluid pressure.
  10.  請求項9に記載のブレーキシステムにおいて、
     前記第2液圧ユニットは、前記車輪部の前輪に対応する前記ホイルシリンダ部にのみブレーキ液を供給可能である
     ブレーキシステム。
    The brake system according to claim 9,
    The second hydraulic unit can supply brake fluid only to the wheel cylinder portion corresponding to the front wheel of the wheel portion.
  11.  請求項10に記載のブレーキシステムにおいて、
     前記第2液圧ユニットは、低圧部と前記第2液圧源の吐出側とを接続する液路に配置されたリリーフ弁であって、ブレーキ液を前記低圧部に還流可能なリリーフ弁を備える
     ブレーキシステム。
    The brake system according to claim 10, wherein
    The second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. Brake system.
  12.  請求項8に記載のブレーキシステムにおいて、
     前記第2入力ポートは前記マスタシリンダに接続され、
     前記第2出力ポートは前記第1入力ポートに接続され、
     前記第1出力ポートは、前記ブレーキ液圧に応じて車輪部に制動力を付与可能なホイルシリンダ部に接続される
     ブレーキシステム。
    The brake system according to claim 8, wherein
    The second input port is connected to the master cylinder;
    The second output port is connected to the first input port;
    The first output port is connected to a wheel cylinder part capable of applying a braking force to a wheel part according to the brake fluid pressure.
  13.  請求項8に記載のブレーキシステムにおいて、
     前記第2液圧ユニットは、低圧部と前記第2液圧源の吐出側とを接続する液路に配置されたリリーフ弁であって、ブレーキ液を前記低圧部に還流可能なリリーフ弁を備える
     ブレーキシステム。
    The brake system according to claim 8, wherein
    The second hydraulic pressure unit is a relief valve disposed in a liquid path connecting a low pressure portion and a discharge side of the second hydraulic pressure source, and includes a relief valve capable of returning brake fluid to the low pressure portion. Brake system.
  14.  請求項8に記載のブレーキシステムにおいて、
     前記第2液圧ユニットは、
     前記第2接続液路のうちの、前記開閉弁に対して前記第2入力ポートの側に位置する部分と、前記第2接続液路のうちの、前記開閉弁に対して前記第2出力ポートの側に位置する部分と、を接続するバイパス液路と、
     前記バイパス液路に配置され、前記マスタシリンダが発生したブレーキ液圧により作動可能なピストンであって、前記第2接続液路のうちの、前記開閉弁に対して前記第2入力ポートの側に位置する前記部分のブレーキ液圧を受ける面積よりも、前記第2接続液路のうちの、前記開閉弁に対して前記第2出力ポートの側に位置する前記部分のブレーキ液圧を受ける面積の方が小さいピストンと、
     を備える
     ブレーキシステム。
    The brake system according to claim 8, wherein
    The second hydraulic unit is
    A portion of the second connection liquid path that is positioned on the second input port side with respect to the on-off valve, and the second output port with respect to the on-off valve of the second connection liquid path. A portion located on the side of the bypass, a bypass liquid path connecting the
    A piston disposed in the bypass fluid path and operable by a brake fluid pressure generated by the master cylinder, the second connection fluid path being closer to the second input port than the on-off valve; The area of the second connection fluid path that receives the brake fluid pressure of the part that is located on the second output port side with respect to the on-off valve, rather than the area that receives the brake fluid pressure of the part that is located. The smaller piston,
    With brake system.
  15.  請求項8に記載のブレーキシステムにおいて、
     前記倍力制御が作動していない状態は、車両側のコントローラにより検知される
     ブレーキシステム。
    The brake system according to claim 8, wherein
    A state in which the boost control is not activated is detected by a vehicle-side controller.
  16.  請求項8に記載のブレーキシステムにおいて、
     前記倍力制御が作動していない状態は、前記第1液圧ユニットの失陥検知部により検知される
     ブレーキシステム。
    The brake system according to claim 8, wherein
    A state in which the boost control is not activated is detected by a failure detection unit of the first hydraulic pressure unit.
  17.  補助液圧ユニットであって、
     ブレーキペダルの操作時に車輪部のホイルシリンダ部にブレーキ液圧を供給する倍力制御を実行可能な主液圧ユニットが前記倍力制御を実行していない状態で、前記ブレーキペダルの操作時に作動して前記ホイルシリンダ部にブレーキ液圧を供給可能な
     補助液圧ユニット。
    An auxiliary hydraulic unit,
    When the brake pedal is operated, the main hydraulic unit that can execute the boost control that supplies the brake hydraulic pressure to the wheel cylinder portion of the wheel when the brake pedal is operated does not execute the boost control, and operates when the brake pedal is operated. An auxiliary hydraulic pressure unit capable of supplying brake hydraulic pressure to the wheel cylinder.
  18.  請求項17に記載の補助液圧ユニットにおいて、
     前記ホイルシリンダ部にブレーキ液を供給可能な液圧源と、
     低圧部と前記液圧源の吐出側とを接続する液路に配置され、ブレーキ液を前記低圧部に還流させることが可能なリリーフ弁と
     を備える補助液圧ユニット。
    The auxiliary hydraulic unit according to claim 17,
    A hydraulic pressure source capable of supplying brake fluid to the wheel cylinder portion;
    An auxiliary hydraulic unit comprising: a relief valve that is disposed in a liquid path that connects a low-pressure part and a discharge side of the hydraulic pressure source, and is capable of returning brake fluid to the low-pressure part.
PCT/JP2018/005165 2017-03-14 2018-02-15 Hydraulic control device, brake system, and auxiliary hydraulic unit for use in event of failure WO2018168307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018001352.9T DE112018001352T5 (en) 2017-03-14 2018-02-15 Hydraulic pressure control device, brake system and additional hydraulic pressure unit for use in case of failure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048091 2017-03-14
JP2017048091A JP6838263B2 (en) 2017-03-14 2017-03-14 Hydraulic pressure control device, brake system and auxiliary hydraulic pressure unit for failure

Publications (1)

Publication Number Publication Date
WO2018168307A1 true WO2018168307A1 (en) 2018-09-20

Family

ID=63522161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005165 WO2018168307A1 (en) 2017-03-14 2018-02-15 Hydraulic control device, brake system, and auxiliary hydraulic unit for use in event of failure

Country Status (3)

Country Link
JP (1) JP6838263B2 (en)
DE (1) DE112018001352T5 (en)
WO (1) WO2018168307A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449722A (en) * 2019-07-04 2021-03-05 株式会社日立高新技术 Dimension measuring device, dimension measuring program, and semiconductor manufacturing system
DE102019219407A1 (en) * 2019-12-12 2021-06-17 Zf Active Safety Gmbh Braking system
DE102019219414A1 (en) * 2019-12-12 2021-06-17 Zf Active Safety Gmbh Brake system for a motor vehicle
CN113071458A (en) * 2021-04-22 2021-07-06 吉林大学 Active braking system of FSAC racing car based on manned and unmanned driving modes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014041A1 (en) * 2022-07-11 2024-01-18 日立Astemo株式会社 Brake device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158213A (en) * 2011-01-31 2012-08-23 Honda Motor Co Ltd Vehicle brake apparatus
WO2014184840A1 (en) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 Brake device
JP2017213979A (en) * 2016-05-31 2017-12-07 日立オートモティブシステムズ株式会社 Fluid pressure control device and brake system
JP2018034733A (en) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 Fluid pressure control device and brake system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158213A (en) * 2011-01-31 2012-08-23 Honda Motor Co Ltd Vehicle brake apparatus
WO2014184840A1 (en) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 Brake device
JP2017213979A (en) * 2016-05-31 2017-12-07 日立オートモティブシステムズ株式会社 Fluid pressure control device and brake system
JP2018034733A (en) * 2016-09-02 2018-03-08 日立オートモティブシステムズ株式会社 Fluid pressure control device and brake system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449722A (en) * 2019-07-04 2021-03-05 株式会社日立高新技术 Dimension measuring device, dimension measuring program, and semiconductor manufacturing system
CN112449722B (en) * 2019-07-04 2024-04-09 株式会社日立高新技术 Dimension measuring apparatus, dimension measuring program, and semiconductor manufacturing system
DE102019219407A1 (en) * 2019-12-12 2021-06-17 Zf Active Safety Gmbh Braking system
DE102019219414A1 (en) * 2019-12-12 2021-06-17 Zf Active Safety Gmbh Brake system for a motor vehicle
CN113071458A (en) * 2021-04-22 2021-07-06 吉林大学 Active braking system of FSAC racing car based on manned and unmanned driving modes
CN113071458B (en) * 2021-04-22 2021-11-19 吉林大学 Active braking system of FSAC racing car based on manned and unmanned driving modes

Also Published As

Publication number Publication date
JP2018149936A (en) 2018-09-27
JP6838263B2 (en) 2021-03-03
DE112018001352T5 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2018168307A1 (en) Hydraulic control device, brake system, and auxiliary hydraulic unit for use in event of failure
US9428168B2 (en) Brake device
JP6361046B2 (en) Brake device and brake system
JP6063824B2 (en) Brake control device
JP5892706B2 (en) Brake fluid pressure generator
JP5841455B2 (en) Brake device
JP6678996B2 (en) Hydraulic control device and brake system
US20180162332A1 (en) Brake Apparatus
WO2016125813A1 (en) Hydraulic control device and brake system
JP6439170B2 (en) Brake device
WO2017006631A1 (en) Brake control device and braking system
JP2014506538A (en) Brake system for vehicle and method of operating brake system for vehicle
JP5927093B2 (en) Brake device
WO2018096978A1 (en) Brake device and brake device control method
US20150217742A1 (en) Brake apparatus
JP6299035B2 (en) Brake device drive circuit
JP5947691B2 (en) Brake device
JP2019135128A (en) Brake control device
JP2019147458A (en) Brake control device and electromagnetic valve for brake control device
JP2018149998A (en) Fluid pressure control device and brake system
WO2017047312A1 (en) Brake device and brake system
JP6690099B2 (en) Braking device and braking system
JP7141307B2 (en) brake controller
JP7121677B2 (en) brake controller
JP2022099362A (en) Vehicular braking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767629

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18767629

Country of ref document: EP

Kind code of ref document: A1