WO2018167998A1 - 無線端末と無線端末の送信電力制御方法、および無線基地局 - Google Patents

無線端末と無線端末の送信電力制御方法、および無線基地局 Download PDF

Info

Publication number
WO2018167998A1
WO2018167998A1 PCT/JP2017/027389 JP2017027389W WO2018167998A1 WO 2018167998 A1 WO2018167998 A1 WO 2018167998A1 JP 2017027389 W JP2017027389 W JP 2017027389W WO 2018167998 A1 WO2018167998 A1 WO 2018167998A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
base station
radio base
transmission
power
Prior art date
Application number
PCT/JP2017/027389
Other languages
English (en)
French (fr)
Inventor
福井 範行
啓二郎 武
充弘 橋本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/486,435 priority Critical patent/US11012121B2/en
Priority to CN201780088269.1A priority patent/CN110463062B/zh
Priority to JP2019505683A priority patent/JP6567217B2/ja
Priority to EP17900487.4A priority patent/EP3576311B1/en
Publication of WO2018167998A1 publication Critical patent/WO2018167998A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a transmission power control technique for a wireless terminal that communicates with a wireless base station.
  • a radio base station transmits a channel state information reference signal (CSI-RS: Channel State Information Reference Signal) to the radio terminal.
  • CSI-RS Channel State Information Reference Signal
  • the channel quality measured by CSI-RS is reported to the radio base station as channel state information (CSI).
  • the wireless terminal periodically transmits CSI to the wireless base station.
  • An uplink control channel (PUCCH: Physical-Uplink-Control-Channel) is used for CSI transmission to the radio base station. If a wireless terminal transmits PUCCH with a transmission power larger than necessary, it interferes with the communication of other wireless terminals. Therefore, the wireless terminal adjusts the transmission power of PUCCH to suppress interference.
  • LTE defines two methods, open loop control and closed loop control (Non-Patent Document 1).
  • the open loop control is a method performed when a wireless terminal starts communication with a wireless base station or when communication is started by connecting to another wireless base station by handover.
  • the radio base station measures the received power of the preamble transmitted through the physical random access channel (PRACH: Physical Random Access Channel) in the random access control performed by the radio terminal at the start of communication, and receives the preamble received power value for the radio terminal To be notified.
  • PRACH Physical Random Access Channel
  • the path loss of downlink transmission is estimated from the received power value of the signal transmitted from the radio base station and the transmission power value of the radio base station separately broadcast from the radio base station, and the power for the estimated path loss And the received power value of the preamble notified from the radio base station are added to determine the uplink signal transmission power.
  • closed-loop control controls the transmission power of a wireless terminal by transmitting a transmission power control command (TPC: Transmission Power Control) that explicitly specifies increase / decrease of transmission power from the wireless base station to the wireless terminal after communication is started. It is a method to do. While the radio terminal is communicating with the radio base station, the radio terminal performs transmission power control according to the closed loop control from the radio base station.
  • TPC Transmission Power Control
  • a wireless base station communicates with a wireless terminal using a plurality of beams having directivity (directional beams) formed by beam forming technology is being studied. Yes.
  • a radio base station covers a service area (cell) with a plurality of beams covering a narrow area.
  • the wireless terminal communicates with the wireless base station using one of a plurality of beams transmitted by the wireless base station, and when the wireless terminal moves, the communication beam is switched to another appropriate beam and communication is continued. Become.
  • open loop control is a method that adjusts the uplink transmission power from the radio terminal based on the path loss estimated from the downlink radio wave transmitted by the radio base station, so the accuracy of the transmission power adjustment deteriorates before and after beam switching. There is a problem of doing.
  • the present invention has been made in view of the above, and in a wireless communication system in which a wireless base station covers a service area using a plurality of directional beams, a wireless terminal is used for communication with the wireless base station. It is an object of the present invention to obtain a wireless terminal capable of performing transmission power control with high accuracy even when switching the active beam.
  • the radio terminal according to the present invention is used before switching in beam switching for switching an antenna for receiving a plurality of beams formed by a radio base station and a beam used for communication with the radio base station between the plurality of beams.
  • a power control unit that adjusts transmission power of an uplink signal transmitted from the antenna to the radio base station after switching based on a received power difference between the beam and a beam used after switching.
  • a transmission power control method for a wireless terminal is a transmission power control method in a wireless terminal that switches a beam used for communication with a wireless base station between a plurality of beams formed by the wireless base station, and is used for communication A radio base station after switching based on the received power difference between the beam used before switching and the beam used after switching when switching the beam used for communication A step of adjusting the transmission power of the uplink signal to be transmitted, and a step of transmitting the uplink signal after switching by the adjusted transmission power.
  • the radio base station provides a transmission source of a beam used before switching in beam switching for switching an antenna that simultaneously forms a plurality of beams and a beam used for communication with a radio terminal between the plurality of beams.
  • a power control unit that selects a method for determining transmission power of an uplink signal transmitted by a wireless terminal after switching based on position information and position information of a transmission source of a beam used after switching. is there.
  • the radio base station acquires each received power of a plurality of beams based on an antenna that simultaneously forms a plurality of beams and a signal received by a plurality of beams from a signal transmitted by a radio terminal, and the plurality of beams
  • a power control unit that notifies a wireless terminal of a difference in received power between a beam used before switching and a beam used after switching in beam switching for switching a beam used for communication between the wireless terminals It is what I did.
  • the radio base station switches the beam used for communication among a plurality of beams formed in different areas. In this case, transmission power control after beam switching can be appropriately performed.
  • FIG. 1 is a system configuration diagram showing a configuration example of a radio communication system according to Embodiment 1 of the present invention.
  • 6 is a block diagram illustrating an example of a functional configuration of a radio base station according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of a radio base station according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of a wireless terminal according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of a wireless terminal according to Embodiment 1.
  • FIG. 6 is a sequence diagram showing an example of a beam switching procedure in the radio communication system according to Embodiment 1.
  • FIG. 3 is a flowchart illustrating an example of a processing flow of a power control unit of the wireless terminal according to the first embodiment.
  • 6 is a sequence diagram illustrating an example of a procedure of transmission power control after beam switching in the wireless communication system according to Embodiment 1.
  • FIG. 7 is a table illustrating an example of a measurement result of beam reception quality measured by the wireless terminal according to the first embodiment.
  • 3 is a schematic diagram illustrating an example of beam switching of a radio terminal in the radio communication system according to Embodiment 1.
  • FIG. 4 is a table illustrating an example of a relationship between transmission power of a wireless terminal and reception power of a wireless base station in the wireless communication system according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of a processing flow of transmission power control in a power control unit of a wireless terminal according to a second embodiment.
  • 12 is a flowchart illustrating an example of a processing flow of transmission power control in a power control unit of a radio base station according to a third embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of a procedure of transmission power control after beam switching in the wireless communication system according to the fourth embodiment.
  • 10 is a flowchart illustrating an example of a processing flow of a power control unit of a radio base station according to a fourth embodiment.
  • 10 is a flowchart illustrating an example of a processing flow of a power control unit of a wireless terminal according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating an example of transmission power determination of a wireless terminal according to a fifth embodiment.
  • FIG. 20 is a diagram illustrating an example of transmission power determination of a wireless terminal according to the sixth embodiment.
  • a radio base station forms a plurality of beams that cover different areas (cover areas), and the service area provided by the radio base station is the radio base station. Is formed by a set of cover areas of a plurality of beams formed by.
  • the wireless terminal in the service area communicates with the wireless base station using a beam corresponding to the cover area where the device itself is located.
  • the mobile communication system will be described as an example of a wireless communication system.
  • the present invention can be applied only to a wireless communication system in which a wireless base station forms a plurality of beams, and is limited to the mobile communication system. Is not to be done.
  • FIG. 1 is a block diagram showing an example of a system configuration of a radio communication system according to this embodiment.
  • a radio communication system 10 includes a radio base station 1 and radio terminals (hereinafter also referred to as UE: User Equipment) 2-1, 2-2, 2-3, 2-4.
  • UE User Equipment
  • UE2-1, 2-2, 2-3, 2-4 are shown without distinction, they will be referred to as UE2.
  • UE2 User Equipment
  • the radio base station 1 can simultaneously form four beams 4-1 to 4-4 having different directivity directions. Also.
  • the service area 5 of the radio base station 1 is composed of eight areas 3-1 to 3-8.
  • beams 4 are simultaneously formed in a maximum of four areas among the eight areas 3, and the communication service is provided to all areas 3 in the service area 5 by switching the directing direction of the beams 4. Is provided.
  • the beam forming performed by the radio base station 1 may include not only beam forming at the time of transmission but also beam forming at the time of reception.
  • FIG. 1 shows an example of four UEs 2 configuring the radio communication system 10, but the number of UEs 2 is not limited to four.
  • the UE 2 is a mobile terminal, and the number of UEs 2 that can communicate with the radio base station 1 increases or decreases as the UE 2 moves. Therefore, the number of UEs 2 constituting the wireless communication system of this embodiment is not fixed.
  • the number of areas 3 constituting the service area 5 is not limited to eight, and the number of beams 4 that can be simultaneously formed is not limited to four. Two or more areas 3 may overlap, and UE2 may communicate with a radio base station using a plurality of beams.
  • FIG. 1 shows a state in which the radio base station 1 forms beams 4-1, 4-2, 4-3, and 4-4 in areas 3-1, 3-2, 3-3, and 3-4, respectively.
  • UE 2-1, 2-2, 2-3, 2-4 use the beam 4 formed in the area 3-1, 3-2, 3-3, 3-4 where each is located.
  • the beams 4-1 and 4-2 are time-divided with the areas 3-1 and 3-2, 3-3 and 3-4, respectively. 4-3 and 4-4 are formed.
  • the beam 4 formed in the area 3-1 is referred to as an area beam 4a-1
  • the beam 4 formed in the area 3-8 is referred to as an area beam 4a-8.
  • FIG. 2 is a block diagram showing an example of a functional configuration of the radio base station 1 according to this embodiment.
  • the radio base station 1 includes a control unit 11, a modem unit 12, a transmission / reception unit 13, and an antenna unit 14.
  • the control unit 11 includes a power control unit 16 and a beam control unit 17.
  • the power control unit 16 is a block that controls transmission power of an uplink signal transmitted from the UE 2 to the radio base station 1.
  • the power control unit 16 generates information instructing increase / decrease of the transmission power of the uplink signal of the UE 2 that is transmitted to the UE 2 as a downlink signal, and outputs the information to the modem unit 22 as transmission data.
  • the information for instructing increase / decrease in the transmission power of the uplink signal of UE2 is information obtained by the existing uplink signal power control method, for example, TPC (Transmission Power Control) defined by the 3GPP standard or the own device Is information on the received power difference, which is the difference between the measured value of the signal received and the target value.
  • the control unit 11 may include other functions performed by the radio communication base station, such as processing of other communication data between the radio base station 1 and the UE 2, and management of radio resources.
  • the beam control unit 17 controls beam forming performed by the antenna unit 14 for each beam forming period. Under the control of the beam control unit 17, the beam 4 formed by the antenna unit 14 is directed to the UE 2 to be communicated.
  • the beam forming period is a time as a unit for switching the directivity direction of the beam 4.
  • the beam control unit 17 calculates information for controlling the amplitude and phase of the radio wave radiated from each of the plurality of antenna elements of the antenna unit 14 by using a beam forming technique, and uses this information. Input to the antenna unit 14.
  • the beam forming technique is a technique for controlling the direction and shape of a beam by adjusting the phase and amplitude of radio waves radiated from each of a plurality of antenna elements.
  • the control method using the beam forming technique performed by the beam control unit 17 may be any method according to the communication standard applied in the wireless communication system 10, and there is no particular limitation on a specific algorithm.
  • the beam control unit 17 controls the antenna unit 14 so that the beam 4 is periodically formed in each area 3 in order to confirm the position where the UE 2 exists.
  • the UE 2 measures the signal intensity of the received beam 4 and transmits the measurement result to the radio base station 1 as an uplink signal.
  • the beam control unit 17 receives the measurement result transmitted from the UE 2 as received data from the modem unit 22.
  • the beam control unit 17 can confirm the position where the UE 2 exists based on the received measurement result and the directivity direction of the beam 4 corresponding to the measurement result.
  • the number of beams 4 that can be formed simultaneously is four. Therefore, in order to form the beams 4 in the eight areas 3, the beams 4 are first applied to the four areas 3. Then, the beam 4 is formed in the remaining area 3.
  • the directivity direction and the shape of the beam 4 with respect to the eight areas 3 in which the antenna unit 14 can form the beam are predetermined, and the beam control unit 17 applies the beam 4 to each of the eight areas 3.
  • information indicating the phase and amplitude of a radio wave to be formed is held.
  • the beam control unit 17 determines the area 3 in which the beam 4 is to be formed, the beam control unit 17 inputs information indicating the phase and amplitude for forming the beam 4 in the area 3 to the antenna unit 14.
  • the modulation / demodulation unit 12 modulates transmission data input from the control unit 11 by a modulation scheme such as QPSK (Quadrature Phase Shift Keying) or 64QAM (Quadrature Amplified Modulation), and inputs the modulated data, that is, a baseband signal, to the transmission / reception unit 13. To do. Further, the modem unit 12 demodulates the baseband signal input from the transmission / reception unit 13 and inputs the demodulated data to the control unit 11 as reception data.
  • the demodulation scheme performed by the modem unit 12 corresponds to the modulation scheme performed by the UE 2 during transmission, and the modulation scheme of the UE 2 is known.
  • the transmission / reception unit 13 converts a baseband signal, which is a digital signal, into an analog signal, converts the analog signal into a radio frequency signal, that is, a radio signal, and inputs the signal to the antenna unit 14. Further, the transmission / reception unit 13 frequency-converts the radio signal input from the antenna unit 14 to a baseband frequency, and inputs the baseband signal obtained by analog-digital conversion of the frequency-converted signal to the modulation / demodulation unit 12.
  • the antenna unit 14 is an antenna that forms a plurality of beams 4 having different directivity directions according to the control from the beam control unit 17, transmits a radio signal input from the transmission / reception unit 13 by the formed beam 4, and The received radio signal is input to the transmission / reception unit 13.
  • the beam formation performed by the antenna unit 14 is performed by controlling the amplitude and phase of radio waves radiated from a plurality of antenna elements when transmitting a radio signal. In addition, when receiving a radio signal, the amplitude and phase of radio waves received by a plurality of antenna elements are adjusted.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the radio base station 1 according to this embodiment.
  • the radio base station 1 includes a processor 101, a memory 102, a transmitter 103, a receiver 104, and an antenna 105.
  • the processor 101 may be a general-purpose processor or a circuit that executes a program such as a DSP (Digital Signal Processor), or may be a circuit such as an ASIC (Application Specific Integrated Circuit) or a system LSI (Large Scale Integration). Good.
  • the memory 102 is a volatile or nonvolatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a storage device such as a magnetic disk or a hard disk.
  • the processor 101 executes a program, the program is stored in the memory 102.
  • the control unit 11 and the modem unit 12 illustrated in FIG. 2 are realized by the processor 101 and the memory 102 illustrated in FIG.
  • the transmitter 103 and the receiver 104 are dedicated circuits.
  • the transmitter 103 and the receiver 104 correspond to the transmission / reception unit 13, processing related to transmission in the transmission / reception unit 13 is realized by the transmitter 103, and processing related to reception is realized by the receiver 104.
  • FIG. 3 shows an example of a hardware configuration, and at least a part of the functions of the transmission / reception unit 13 may be realized by a program.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the UE 2 according to this embodiment.
  • the UE 2 includes a control unit 21, a modem unit 22, a transmission / reception unit 23, and an antenna unit 24.
  • the control unit 21 includes a power control unit 26.
  • the power control unit 26 determines the transmission power of the radio wave transmitted from the antenna unit 24 and notifies the antenna unit 24 of information on the determined transmission power. A method for determining transmission power will be described later.
  • the power control unit 26 has a function of outputting the measurement result of the received power of each beam 4 transmitted by the radio base station 1 to the modem unit 22 as transmission data.
  • the control unit 21 may include other functions performed by a terminal for wireless communication, such as processing of other communication data between the UE 2 and the wireless base station 1, and management of wireless resources.
  • the modem unit 22 modulates the transmission data input from the control unit 21 by a modulation method such as QPSK or 64QAM, and inputs the modulated data, that is, a baseband signal, to the transmission / reception unit 23. Further, the modem unit 22 demodulates data input from the transmission / reception unit 23 and inputs the demodulated reception data to the control unit 21.
  • the demodulation method performed by the modem unit 22 corresponds to the modulation method performed by the radio base station 1 during transmission, and the modulation method of the radio base station 1 is known.
  • the transmitting / receiving unit 23 converts a baseband signal, which is a digital signal, into an analog signal, converts the analog signal into a radio frequency signal, that is, a radio signal, and inputs the signal to the antenna unit 24.
  • the transmission / reception unit 23 frequency-converts the radio signal input from the antenna unit 24 to a baseband frequency, and inputs the baseband signal obtained by analog-digital conversion of the frequency-converted signal to the modulation / demodulation unit 22.
  • the transmission / reception unit 23 has a function of measuring the reception power of each beam 4 transmitted by the radio base station 1 (not shown in FIG. 4).
  • the antenna unit 24 transmits a radio signal input from the transmission / reception unit 23 as a radio wave, and inputs the received radio signal to the transmission / reception unit 23. Further, the transmission power of the radio wave when transmitting the radio signal is adjusted according to the transmission power information notified from the control unit 21.
  • FIG. 5 is a block diagram illustrating an example of a hardware configuration of the UE 2 according to this embodiment.
  • the UE 2 includes a processor 201, a memory 202, a transmitter 203, a receiver 204, and an antenna 205.
  • the processor 201, the memory 202, the transmitter 203, and the receiver 204 are the same as the processor 101, the memory 102, the transmitter 103, and the receiver 104 of the radio base station 1, respectively.
  • the antenna 205 may be an antenna having directivity like the antenna 105 or may be an antenna having no directivity.
  • the control unit 21 and the modem unit 22 shown in FIG. 4 are realized by the processor 201 and the memory 202 shown in FIG.
  • the transmission / reception unit 23 is realized by a transmitter 203 and a receiver 204. Note that at least part of the functions of the transmission / reception unit 23 may be realized by a program executed by the processor 201.
  • FIG. 6 is a sequence diagram showing the procedure between the beam switching devices in this embodiment.
  • area beams 4a-1 to 4a-8 are formed in areas 3-1 to 3-8, respectively.
  • the radio base station 1 transmits a reference signal (RS: Reference signal) used for signal strength measurement by the area beam 4a-1 (M1-1).
  • RS Reference signal
  • the UE 2 measures the signal strength of the reference signal transmitted by the radio base station 1, and reports the measurement result to the radio base station 1 as the reception quality of the area beam 4a-1 (M1-2).
  • the signal to be measured for signal strength is not limited to the reference signal.
  • a signal for normal communication can be a measurement target.
  • the radio base station 1 receives the reception received from the UE2. Based on the quality report, it is determined to use the area beams 4a-1 to 4a-8 having the best reception quality for communication with the UE2.
  • the radio base station 1 transmits a beam switching instruction to the UE 2 when changing the area beam 4a (M9). For example, when the area beam 4a-2, which is the beam 4 formed in the area 3-2, has the best reception quality, the UE 2 is instructed to switch to the area beam 4a-2 by a beam switching instruction.
  • the radio base station 1 can perform beam switching according to the movement of the UE 2 by periodically transmitting a reference signal using the beam 4 formed in each area.
  • the processing for the area beams 4a-1 to 4a-4 may be performed at the same timing.
  • the present invention does not limit the beam switching procedure to the above-described method, and beam switching may be performed by a method different from the above-described method as long as it matches the transmission power control described below.
  • FIG. 7 is a flowchart illustrating an example of a processing procedure of transmission power control in the UE 2 according to this embodiment.
  • the beam 4 transmitted from the radio base station 1 is processed in the order of the antenna unit 24, the transmission / reception unit 23, and the modem unit 22 in the UE 2, and is input to the control unit 21.
  • the power control unit 26 determines whether or not the signal input from the modem unit 22 has received a signal strength measurement signal from the radio base station 1 (step S1-1).
  • the power control unit 26 of the UE 2 When receiving the signal strength measurement signal (Yes in step S1-1), the power control unit 26 of the UE 2 measures the reception quality of the received signal and reports the measured reception quality to the radio base station 1 (step S1). S1-2). The power control unit 26 stores the reported reception quality.
  • the reception quality is sequentially processed by the modem unit 22, the transmission / reception unit 23, and the antenna unit 24, and is transmitted to the radio base station 1 by radio.
  • the power control unit 26 of the UE 2 determines whether or not to perform beam switching (step S1-3). In the case of the sequence example of FIG. 6, it is determined whether a beam switching instruction is received from the radio base station 1. When beam switching is performed (Yes in step S1-3), the power control unit 26 receives power of the area beam 4a before beam switching (P0), and receives power of the area beam 4a after beam switching (P1). From this, the received power difference ⁇ P before and after beam switching is obtained by the following equation (1) (step S1-4). The acquisition of the received powers P0 and P1 will be described later.
  • the power control unit 26 obtains the transmission power TxP of the UE 2 after beam switching by the following equation (2) (step S1-5).
  • TxP on the left side in Equation (2) is the transmission power of UE2 after beam switching
  • TxP on the right side indicates the transmission power of UE2 set before beam switching.
  • the transmission power of the first PUCCH (Physical Uplink Control Channel) to be transmitted after switching is set according to Equation (2). Further, after transmission of the first PUCCH after beam switching, UE 2 is assumed to control transmission power by closed-loop control of the prior art.
  • FIG. 8 is a diagram illustrating an example of a communication sequence before and after beam switching between the radio base station 1 and the UE 2.
  • FIG. 8 it is assumed that normal communication addressed to the UE 2 from the radio base station 1 occurs before the beam switching process illustrated in FIG.
  • the measurement of the reception quality is also performed for a normal communication signal.
  • the reception quality is the signal intensity (reception power) of the reception beam, and the higher the reception power, the better the quality.
  • a normal communication signal is transmitted from the radio base station 1 to the UE 2 (M0-1).
  • the area beam 4a-1 formed in the area 3-1 is used for communication.
  • the power control unit 26 of the UE 2 measures the received power of the received area beam 4a-1. Thereafter, the received power of each area beam 4a is measured by the procedure shown in FIG.
  • the power control unit 26 holds the measured received power. Even when the received power of the reference signal is being measured, when the UE 2 receives the communication signal, the UE 2 measures the received power (M0-2).
  • UE2 for example, upon receiving a beam switching instruction such as switching to the area beam 4a-2 (M9), the beam switching is performed, and the transmission power control of the signal transmitted in the uplink is performed as shown in the flowchart above, The uplink signal after switching is transmitted (M10). At this time, the received power corresponding to the beam before switching and the beam after switching is used as P0 and P1 from the received power measured for the area beam 4a received by the procedure of M1-1 to M8-1. it can.
  • a beam switching instruction such as switching to the area beam 4a-2 (M9)
  • M9 the transmission power control of the signal transmitted in the uplink is performed as shown in the flowchart above
  • the uplink signal after switching is transmitted (M10).
  • the received power corresponding to the beam before switching and the beam after switching is used as P0 and P1 from the received power measured for the area beam 4a received by the procedure of M1-1 to M8-1. it can.
  • the received power when the received power is being measured when a normal communication signal is received before switching (M0-1, M0-2), these can be used as P0. Further, when the received power is measured when a signal for normal communication is received after beam switching (M0-3), the received power can be used as P1. It is also conceivable to use the received power of the area beam 4a that transmits the beam switching instruction as P0.
  • FIG. 9 is a table showing an example of measurement results of reception quality of each area beam 4a held by the power control unit 26 of the UE 2 according to this embodiment.
  • FIG. 9A shows a measurement result when the radio base station 1 transmits a reference signal at a certain timing
  • FIG. 9B shows a measurement result of the next measurement timing of FIG. 9A. If UE2 communicates with the radio base station 1 using the area beam 4a-3 at the timing shown in FIG. 9A, the received power of the area beam 4a-3 is the highest in the measurement result shown in FIG. That is, since the reception quality is the best, beam switching is not performed and communication by the area beam 4a-3 is continued. When the measurement result of FIG. 9B is obtained at the timing of the next measurement, the reception power is highest in the area beam 4a-4, so that the UE2 transmits the beam from the area beam 4a-3 to the area beam 4a-4. Switch.
  • FIG. 10 shows an example of beam switching corresponding to FIG. FIG. 10 shows that UE2 is located at the boundary between area 3-3 where area beam 4a-3 is formed and area 3-4 where area beam 4a-4 is formed at the timing of FIG. 9B. .
  • the reception power of the UE 2 is determined by the path loss and the transmission antenna gain of the radio base station 1.
  • the reception position of UE2 does not change before and after beam switching, so the path loss does not change before and after beam switching.
  • the transmission antenna gain of the radio base station 1 tends to decrease as the distance from the center of the area 3 increases.
  • the UE 2 has the transmission antenna gain of the area beam 4a-4 as the area beam. It is located in a place larger than the transmission antenna gain of 4a-3.
  • FIG. 11 is a table showing an example of transmission power in UE 2 of this embodiment.
  • the UE 2 is assumed to control transmission power by closed loop control of the prior art when communicating with the radio base station 1 before beam switching.
  • the target value of the reception power in the radio base station 1 is ⁇ 50 [dBm]
  • the UE 2 is appropriate when the path loss is 90 [dB] and the reception antenna gain of the area beam 4a-3 is 20 [dB].
  • the transmission power TxP can be calculated as 20 [dBm] based on the following equation (3).
  • the radio base station 1 controls the transmission power of the UE 2 by closed loop control so that the obtained transmission power value of the UE 2 is obtained.
  • FIG. 11B shows the transmission power TxP of UE2 and the path loss when the transmission power TxP of UE2 is determined according to equation (2) when beam switching is performed based on the measurement result of FIG. 9B.
  • the relationship of the receiving antenna gain of the area beam 4a-4 is shown. As described with reference to FIG. 10, the reception antenna gain (transmission antenna gain) of the area beam 4a-4 of the radio base station 1 is better than that of the area beam 4a-3 of FIG.
  • the transmission power TxP of the UE 2 after beam switching is 10 [dBm]
  • the reception power difference ⁇ P between the reception power of the area beam 4a-3 before switching and the reception power of the area beam 4a-4 after switching is 10
  • the transmission power TxP of UE2 is 10 [dBm] by subtracting 10 [dBm] of the downlink reception power difference from the transmission power 20 [dBm] before switching.
  • the reception power at the radio base station 1 of the transmission signal of UE2 is expressed by the following equation (4), and the transmission power of UE2 is an appropriate value.
  • FIG. 11C shows an example of the transmission power after the beam switching of the UE 2 when the transmission power control of this embodiment is not used.
  • the transmission power value before beam switching is continuously used, when the transmission power TxP is 20 [dBm], the path loss is 90 [dB], and the reception antenna gain of the area beam 4a-4 is 30 [dB],
  • the reception power of the transmission signal at the radio base station 1 is expressed by the following equation (5), which is excessive by 10 [dBm] with respect to the target value of the reception power of the radio base station 1.
  • the wireless terminal obtains the difference between the received power of the downlink beam used for communication before beam switching and the received power of the downlink beam used for communication after beam switching, Since the transmission power after beam switching is adjusted based on the obtained difference, the transmission power control of the radio terminal after beam switching can be performed with high accuracy.
  • the path loss and the antenna gain are described separately, but in actuality, it is not possible to obtain each value by distinguishing them.
  • the path loss + receiving antenna gain in the switching destination beam always increases when beam switching is performed, the two are described separately. Even if the two values are not distinguished to obtain the respective values, the method of the present invention is not affected.
  • Embodiment 2 transmission power control of the wireless terminal when the beam transmission source position changes before and after beam switching will be described. Even within the service area of the same radio base station, for example, when multiple antennas are connected to the radio base station and the antenna installation positions are different, the antenna position changes before and after beam switching. There can be.
  • the configuration of the wireless communication system 10 of this embodiment is the same as that of the first embodiment.
  • the configurations of the radio terminal 2 and the radio base station 1 that constitute the radio communication system 10 are the same as those in the first embodiment.
  • the transmission power control operation of the wireless terminal 2 in this embodiment will be described focusing on the differences from the first embodiment.
  • the radio base station 1 transmits the RS
  • the position information of the beam transmission source is transmitted together with the RS as the radio base station position information.
  • FIG. 12 is a flowchart illustrating an example of a processing procedure of transmission power control performed by the power control unit 26 of the UE 2 according to this embodiment.
  • the processing in steps S1-1, S1-2, and S1-3 is as described in the first embodiment.
  • the power control unit 26 determines whether or not the radio base station position information is changed before and after beam switching based on the radio base station position information transmitted together with the RS when it is determined to perform beam switching in step S1-3. Is determined (step S2-1). If not changed (No in step S2-1), the power control unit 26 performs the processes of steps S1-4 and S1-5 described in the first embodiment.
  • step S2-1 When the power control unit 26 determines in step S2-1 that the radio base station position information is to be changed (step S2-1: Yes), the power control unit 26 performs the open loop control method of the prior art based on the beam 4 that has received the RS. Then, the transmission power of the UE 2 is determined from the path loss value and the received power target value of the uplink signal broadcasted by the radio base station 1 (step S2-2).
  • the mobile terminal switches the transmission power control method depending on whether or not the position of the beam transmission source changes before and after beam switching.
  • the mobile terminal uses open loop control. Transmission power control is performed, and when the position does not change, transmission power control similar to that in Embodiment 1 is performed. Thereby, even when the position of the radio base station differs before and after beam switching, the radio terminal can transmit an uplink signal with appropriate transmission power.
  • the radio base station position information of each beam is notified to all terminals using the broadcast channel, The base station position information of each beam may be notified to the terminal using the individual signal.
  • Embodiment 3 FIG.
  • the mobile terminal selects and switches the transmission power control method after beam switching depending on whether or not the position of the beam transmission source is changed before and after beam switching. It is also possible for the radio base station to select a control method and notify the radio terminal.
  • a mode in which a radio base station selects a transmission power control method will be described.
  • the configuration of the radio communication system 10 of this embodiment is the same as that of the second embodiment, and the configurations of the radio base station 1 and the radio terminal 2 are also the same as those of the second embodiment.
  • the transmission power control operation of the wireless terminal 2 in this embodiment will be described with a focus on differences from the second embodiment.
  • the radio base station 1 does not need to transmit the position information of the beam transmission source as the radio base station position information.
  • FIG. 13 is a flowchart illustrating an example of a processing procedure of transmission power control selection performed by the power control unit 16 of the radio base station 1 according to this embodiment.
  • the process shown in FIG. 13 is executed when it is decided to change the area beam 4a in the beam decision performed by the radio base station in the sequence diagram of FIG.
  • the power control unit 16 determines whether or not the position of the beam transmission source is changed before and after beam switching (step S3-1). It is assumed that the radio base station 1 holds the position of the transmission source of each area beam 4a in advance.
  • the transmission power control method after the beam switching of the UE2 is determined to be open loop control (S3-2).
  • step S3-1 when the position of the beam transmission source is not changed (No in step S3-1), the transmission power control method after the beam switching of UE2 is described based on the power difference between the received beams before and after the beam switching described in the first embodiment. (S3-3).
  • the power control unit 16 notifies the UE 2 of the determined transmission power control method.
  • the notification to the UE 2 is performed through normal radio communication processing via the modem unit 12, the transmission / reception unit 13, and the antenna unit 14.
  • the notification of the transmission power control method may be performed together with the transmission of the beam switching instruction (M9).
  • UE 2 may perform the same operation as in Embodiment 2 except that the transmission power control after beam switching is performed by the transmission power control method specified by radio base station 1.
  • the transmission power by the open loop control when the position of the transmission source changes based on whether or not the position of the transmission source of the beam changes before and after the beam switching by the radio base station, the transmission power by the open loop control
  • the same transmission power control as that of the first embodiment is selected as the transmission power control method after beam switching of the radio terminal, and the selected power control method is notified to the mobile terminal. did.
  • the radio base station does not need to notify the mobile terminal of location information.
  • Embodiment 4 a beam in a radio communication system in which a radio terminal transmits a measurement signal to the radio base station, receives a measurement signal transmitted from the radio terminal with a reception beam that can be formed by the radio base station, and performs beam switching
  • the transmission power control of the wireless terminal after switching will be described.
  • the configuration of the radio communication system 10 of this embodiment is the same as that of the first embodiment, and the configurations of the radio base station 1 and the radio terminal 2 are also the same as those of the first embodiment.
  • the operation of this embodiment will be described focusing on the difference from the first embodiment. It is assumed that the radio base station 1 of this embodiment performs both transmission beam forming and reception beam forming, and the beam 4 or area beam 4a represents both the transmission beam and the reception beam.
  • FIG. 14 is a sequence diagram showing an example of a procedure of beam switching processing between the radio base station 1 and the radio terminal 2 according to this embodiment.
  • the power control unit 16 of the radio base station 1 first transmits an uplink signal instruction to the UE 2 (step M11).
  • the uplink signal instruction is a signal that notifies the transmission timing, the number of transmissions, and the like of the measurement signal transmitted from the UE 2 to the radio base station 1.
  • the radio base station 1 covers eight areas 3 with four beams 4 that can be generated simultaneously.
  • Area beam 4a is formed in area 3 (for example, area 3-1, area 3-2, area 3-3, area 3-4), and area beam 4a is formed in the remaining four areas 3 at the second timing.
  • the timing is determined so as to form the signal, and the UE2 notifies the upstream signal instruction so that the UE2 transmits the measurement signal at the first and second timings.
  • the radio base station 1 receives the measurement signal transmitted by the UE 2 with the area beam 4a that can be formed.
  • the antenna unit 14, the transmission / reception unit 13, and the modem unit 12 process the measurement signal transmitted by the UE 2, and the power control unit 16 measures the received power as the reception quality of each area beam 4a based on the result. Then, the power control unit 16 of the radio base station 1 determines beam switching based on the measured reception quality. For example, it is determined that the area beam 4a having the best reception quality is used for communication with the UE, and when beam switching is necessary, the beam switching instruction is notified to the UE 2 (M13). At this time, along with the beam switching instruction, the reception power difference between the area beam 4a before beam switching and the area beam 4a after beam switching is notified. The received power difference can be obtained from the received power measured for the measurement signal transmitted by UE2.
  • UE2 determines the transmission power of uplink transmission after beam switching based on the received power difference notified in the procedure of M13 after beam switching, and performs uplink transmission (M14).
  • the power control unit 16 first transmits an uplink signal instruction to the UE 2 (step S4-1). Next, the power control unit 16 receives the measurement signal transmitted from the UE 2 with all the formable area beams 4a, and measures the received power (step S4-2). The power control unit 16 holds each received power measured. Then, the power control unit 16 determines the area beam 4a used for communication with the UE 2 based on the measurement result of the received power (step S4-3), and determines whether beam switching is necessary (step S4-4). ).
  • step S4-4 If the power control unit 16 determines that beam switching is necessary (step S4-4, Yes), the received power difference ⁇ P between the area beam 4a before and after beam switching based on the received power obtained in step S4-2. Is obtained (step S4-5). Then, the power control unit 16 notifies the UE 2 of a beam switching instruction and a received power difference ⁇ P (step S4-6). Note that ⁇ P is calculated by the same calculation as Expression (1) in the first embodiment.
  • step S5-1 The power control unit 26 of the UE 2 determines whether an uplink instruction signal has been received from the radio base station 1 (step S5-1).
  • the power control unit 26 transmits the measurement signal to the radio base station 1 at the transmission timing and the number of transmissions notified from the radio base station 1 (Ste S5-2). Then, the power control unit 26 determines whether or not a beam switching instruction has been received from the radio base station 1 (step S5-3).
  • the power control unit 26 determines the transmission power of the uplink transmission signal after beam switching based on the received power difference ⁇ P notified from the radio base station 1 (Step S5-4). Note that the transmission power is obtained by the same calculation as the equation (2) in the first embodiment.
  • Embodiment 4 and Embodiment 3 can be combined.
  • the power control unit 16 of the radio base station 1 determines to perform beam switching, the radio base station position information of the beam transmission source before the beam switching and the beam transmission source radio base station position after the beam switching. The information may be confirmed and it may be determined whether the radio base station position information is different before and after beam switching.
  • the power control unit 16 notifies the UE 2 that transmission power control is performed using a beam switching instruction and open loop control.
  • the power control unit 16 notifies the radio terminal to perform transmission power control based on the beam switching instruction, the received power difference, and the received power difference. To do.
  • the determination may be made by another method instead of the determination based on the radio base station position information before and after beam switching. For example, as a result of measurement in advance by the radio base station 1, it is determined whether or not the quality of the beam before switching and the beam after switching including the interference status are similar, and thus whether this control is applied, It can be determined whether only open-loop control is performed.
  • the radio base station 1 receives each beam capable of forming a measurement signal transmitted by the radio terminal, measures the received power as the reception quality, and based on the measured received power. Whether or not beam switching is performed is determined, and when beam switching is performed, a difference in received power for determining the transmission power after beam switching and beam switching is notified. Further, the radio terminal determines the transmission power based on the received power difference notified from the radio base station 1 after beam switching. Thereby, even in a wireless communication system in which beam switching is determined based on the measurement result of the reception quality of the measurement signal transmitted by the wireless terminal, transmission power control after the beam switching of the wireless terminal can be appropriately performed. it can.
  • Embodiment 5 FIG.
  • the radio communication system according to the above-described embodiment is a radio communication system on the premise that the transmission antenna gain and the reception antenna gain of the radio base station are the same.
  • beam transmission may not occur simultaneously in uplink and downlink when the transmit antenna gain and the receive antenna gain are different even in the same direction, that is, when there is no Beam Correspondence. Absent.
  • transmission power control of a radio terminal after beam switching in a radio communication system when the transmission antenna gain and the reception antenna gain of a radio base station are different will be described.
  • the configuration of the radio communication system 10 of this embodiment is the same as that of the first embodiment, and the configurations of the radio base station 1 and the radio terminal 2 are also the same as those of the first embodiment.
  • the operation of this embodiment will be described focusing on the difference from the first embodiment. It is assumed that the radio base station 1 of this embodiment performs both transmission beam forming and reception beam forming, and the beam 4 or area beam 4a represents both the transmission beam and the reception beam.
  • the transmission power TxP when the transmission antenna gain and the reception antenna gain of the radio base station 1 are the same and when they are different will be described.
  • the transmission antenna gain and the reception antenna gain of the radio base station 1 are the same, and the open power control and the closed loop control are mixed to control the transmission power, it is expressed by the relational expression (6). .
  • Pt and PLd in the equation (6) are related to the open loop control, and Pt represents a reception power value targeted by the radio base station 1.
  • PLd indicates a path loss value estimated by the radio terminal 2 and includes the path loss (power attenuation generated in radio transmission) and the transmission antenna gain of the radio base station 1 shown in the first to fourth embodiments.
  • Tc relates to closed-loop control, and is a power value by a transmission power control command sent from the radio base station 1 to the radio terminal 2 or an accumulated value thereof. For example, when closed loop control is not performed, TxP is obtained by the sum of Pt and PLd without considering Tc.
  • the power control unit 26 in the wireless communication system determines the transmission power TxP after beam switching based on the relational expression (7).
  • Pt, Tc, and PLd in equation (7) are the same as in equation (6).
  • PLd uses a path loss value obtained by measuring a beam to be used after switching in advance or a path loss value obtained from a result measured immediately after switching.
  • ⁇ Pd is the same as the equation (1), and is a value obtained by subtracting the received power P0 of the beam before switching from the received power P1 of the beam after switching in the beam switching generated in the downlink.
  • FIG. 17 shows the transmission power TxP and the radio power of the radio terminal 2 when the beam 4a-3 is switched to the beam 4a-4 in the radio communication system when the transmit antenna gain and the receive antenna gain of the radio base station 1 are different.
  • FIG. 4 is a diagram illustrating received power of a base station 1. From left, the transmission power of the radio terminal 2 before beam switching (4a-3), the transmission power of the radio terminal 2 after beam switching (4a-4), and the radio base station after beam switching (4a-4) 1 shows the received power.
  • FIG. 17A shows the transmission power TxP obtained based on Expression (6) when there is a difference between the transmission antenna gain and the reception antenna gain of the radio base station 1.
  • FIG. 17B shows the transmission power TxP obtained based on Expression (7) when there is a difference between the transmission antenna gain and the reception antenna gain of the radio base station 1.
  • the attenuation of ⁇ Pd which is a value obtained by subtracting the reception power P0 of the beam before switching (beam 4a-3) from the reception power P1 of the beam after switching (beam 4a-4), is the transmission after beam switching. Since it is not considered when setting the power TxP, the TxP set based on the equation (6) is a power that does not satisfy the effective target received power indicating the signal received power that allows the base station received power to correctly demodulate the signal. Will be received.
  • TxP set based on Equation (7) TxP is determined such that the base station received power satisfies the effective target received power.
  • Equation (7) is used by using Pd_new updated by further adding new ⁇ Pd to ⁇ Pd_old so far as Equation (8) shown below. Based on the relational expression, the transmission power TxP after beam switching is newly determined.
  • the received power P0 of the beam 4a-3 is changed from the received power P1 of the beam 4a-4.
  • ⁇ Pd which is a value obtained by subtracting the reception power of the beam 4a-4 from the reception power of the beam 4a-5, is added by ⁇ Pd, which is the subtracted value, to obtain ⁇ Pd_new.
  • the radio base station 1 can receive the signal with the target reception power, the signal may not be correctly demodulated due to interference or the like.
  • the signal reception power that can correctly demodulate the signal is described in this specification. This is called effective target received power. While beam switching is not occurring, adjustment is made so that the target target received power is gradually reached at Tc.
  • the wireless terminal 2 is described as an operation for calculating ⁇ Pd.
  • the wireless base station 1 may notify ⁇ Pd.
  • the wireless base station 1 since the wireless terminal 2 reports the measurement result to the wireless base station 1, the wireless base station 1 can calculate ⁇ Pd by the power control unit 16. In this case, the radio base station 1 notifies the new ⁇ Pd information together with the beam switching instruction.
  • the transmission power TxP after beam switching is set based on the relational expression of Expression (7).
  • Pt used after switching from the beam 4a-3 to the beam 4a-4 is used.
  • Pt is updated as Pt_old and notified from the radio base station 1 to the radio terminal 2.
  • ⁇ Pd can be reflected in Tc, and a new Tc can be notified from the radio base station 1 to the radio terminal 2 at a prescribed Tc transmission timing.
  • the transmission power TxP after beam switching is set based on the relational expression of Expression (7).
  • uplink transmission power is determined using the reception power difference between the beam before switching and the beam after switching. Therefore, even if the downlink path loss value and the uplink path loss value are different, the radio base station 1 can acquire appropriate received power. Also, by reflecting ⁇ Pd on Pt or Tc, the parameters managed by the wireless terminal 2 are reduced, so that control is simplified.
  • Embodiment 6 when the transmit antenna gain and the receive antenna gain are different, only uplink beam switching occurs, and at that time, the downlink beam uses the same beam as before, and the downlink beam is The transmission power control in the case of using the path loss obtained from the measurement result is shown.
  • the configuration of the radio communication system 10 of this embodiment is the same as that of the fourth embodiment, and the configurations of the radio base station 1 and the radio terminal 2 are also the same as those of the fourth embodiment.
  • the operation of this embodiment will be described focusing on the difference from the fourth embodiment. It is assumed that the radio base station 1 of this embodiment performs both transmission beam forming and reception beam forming, and the beam 4 or area beam 4a represents both the transmission beam and the reception beam.
  • the power control unit 26 in the wireless communication system sets the transmission power TxP at the time of uplink signal transmission immediately after the uplink beam switching occurs, based on the relational expression (11) shown below. .
  • Pt and Tc in equation (11) are the same as in equation (6).
  • PLd is the latest path loss value obtained from the downlink signal measurement.
  • ⁇ Pu is a value obtained by subtracting the received power P0 of the beam before switching from the received power P1 of the beam after switching in the beam switching generated in the uplink.
  • FIG. 18 shows the transmission power TxP of the radio terminal 2 and the reception power of the radio base station 1 when the uplink beam is switched in the radio communication system when the transmission antenna gain and the reception antenna gain of the radio base station 1 are different.
  • FIG. FIG. 18A shows the transmission power TxP obtained based on Expression (6) when there is a difference between the transmission antenna gain and the reception antenna gain of the radio base station 1.
  • FIG. 18B shows the transmission power TxP obtained based on Expression (11) when there is a difference between the transmission antenna gain and the reception antenna gain of the radio base station 1.
  • FIG. 18 (a) from the left, the transmission power of the radio terminal 2, the reception power of the radio base station 1 before beam switching, and the reception power of the radio base station 1 after beam switching are shown.
  • FIG. 18B shows the transmission power of the radio terminal 2 before beam switching, the transmission power of the radio terminal 2 after beam switching, and the reception power of the radio base station 1 after beam switching are shown from the left.
  • ⁇ Pu which is a value obtained by subtracting the received power P0 of the beam before switching from the received power P1 of the beam after switching, is not considered when setting the transmission power TxP after beam switching.
  • TxP set based on (6) the base station received power is received at a power larger than the effective target received power indicating the signal received power that can correctly demodulate the signal, and the efficiency is deteriorated.
  • ⁇ Pu which is a value obtained by subtracting the reception power P0 of the beam before switching from the reception power P1 of the beam after switching, is considered when setting the transmission power TxP after beam switching.
  • TxP set based on Equation (11) the base station received power can be set to an appropriate value of TxP that satisfies the effective target received power.
  • beam switching is performed based on the relational expression (11) using Pu_new updated by adding new ⁇ Pu to ⁇ Pu_old as in the fifth embodiment.
  • a later transmission power TxP is newly determined.
  • ⁇ Pu is notified to the wireless terminal 2 by the wireless base station 1. Since the radio base station 1 measures the received power of each beam to determine uplink beam switching, the power control unit 16 can calculate ⁇ Pu. Further, instead of notifying ⁇ Pu alone, it is also possible to reflect the newly obtained ⁇ Pu to Pt and notify the radio terminal 2 from the radio base station 1 as a new Pt, and to reflect ⁇ Pu to Tc and to create a new Tc Can be notified from the radio base station 1 to the radio terminal 2 at a prescribed Tc transmission timing.
  • the radio base station 1 can determine whether to apply this control at the time of beam switching or only to perform open loop control.
  • the power control unit 16 notifies the UE 2 that transmission power control is performed using a beam switching instruction and open loop control.
  • the power control unit 16 performs transmission power control on the radio terminal 2 based on the beam switching instruction, the received power difference, and the received power difference. Notice. Further, the determination may be made by another method instead of the determination based on the radio base station position information before and after beam switching.
  • the radio base station 1 determines whether or not the quality of the beam before switching and the beam after switching including the interference status are similar, and thus whether this control is applied, It can be determined whether only open-loop control is performed.
  • uplink transmission power is determined using the reception power difference between the beam before switching and the beam after switching. Therefore, even if the downlink path loss value and the uplink path loss value are different, the radio base station 1 can acquire appropriate received power. Also, by reflecting ⁇ Pd on Pt or Tc, the parameters managed by the wireless terminal 2 are reduced, so that control is simplified.
  • Embodiment 7 FIG. In this embodiment, when the transmit antenna gain and the receive antenna gain are different, when downlink beam switching and uplink beam switching occur at the same time, and when path loss obtained from the measurement result of the downlink beam is used The transmission power control is shown.
  • the configuration of the radio communication system 10 of this embodiment is the same as that of the first and fourth embodiments.
  • the configurations of the radio terminal 2 and the radio base station 1 configuring the radio communication system 10 are the same as those in the first and fourth embodiments.
  • the power control unit 26 in the radio communication system uses the transmission power TxP at the time of uplink signal transmission immediately after downlink and uplink beam switching has occurred, based on the relational expression (12) shown below. Set.
  • the transmit beam gain and the receive beam gain are different, but even when downlink beam switching and uplink beam switching occur at the same time, the beam before switching and the beam after switching for each of downlink and uplink. Since the uplink transmission power is determined using the received power difference, the radio base station 1 can acquire appropriate received power even if the downlink path loss value is different from the uplink path loss value.
  • the case where only the radio base station 1 is performing beam forming has been described, but the case where the radio terminal 2 also performs beam forming is being considered in 3GPP. Even in this case, the measurement for beam switching determination is not different from the sequence shown in FIG. 6 or FIG.
  • the radio terminal 2 selects the optimum reception beam for each transmission beam of the radio base station 1, the gain of the reception beam is included in the path loss value. Based on this, PLd and ⁇ Pd are calculated.
  • the base station selects the optimum reception beam for each transmission beam of the radio terminal 2, and therefore the gain of the terminal transmission beam is also reflected in the value of ⁇ Pu. That is, whether or not the wireless terminal 2 is performing beamforming is not affected by the method described so far, and can be applied to the case where the wireless terminal 2 is performing beamforming.
  • the transmission power control method shown in the above embodiment is not limited to the PUCCH, but also to an uplink shared channel (PUSCH) for transmitting data, and an uplink channel quality measurement reference signal (SRS: Sounding Reference Signal).
  • PUSCH uplink shared channel
  • SRS Sounding Reference Signal
  • the configuration shown in the above embodiment shows an example of the content of the present invention, and can be combined with another known technique, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

無線基地局が形成する複数のビームを受信するアンテナ(24)と、無線基地局が形成する複数のビーム間で当該無線基地局との通信に使用されるビームを切り替えるビーム切り替えにおいて、ビーム切り替え前に使用されるビームの下り信号とビーム切り替え後に使用されるビームの下り信号との受信電力差に基づいて、切り替え後にアンテナから無線基地局に対して送信される上り信号の送信電力を調整する電力制御部(26)と、を備える。

Description

無線端末と無線端末の送信電力制御方法、および無線基地局
 本発明は、無線基地局と通信する無線端末の送信電力制御技術に関する。
 一般に、無線基地局と通信する無線端末では、無線基地局に対して送信する電波の送信電力制御が行われる。3GPP(3rd Generation Partnership Project)において定められたLTE(Long Term Evolution)規格では、無線基地局がチャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)を無線端末に送信し、無線端末はCSI-RSにより測定したチャネル品質をチャネル状態情報(CSI:Channel State Information)として無線基地局に報告する。無線端末は周期的にCSIを無線基地局に送信する。無線基地局へのCSIの送信には、上り制御チャネル(PUCCH:Physical Uplink Control Channel)が用いられている。必要以上に大きい送信電力で無線端末がPUCCHを送信すると他の無線端末の通信に干渉してしまうので、干渉を抑止するために無線端末はPUCCHの送信電力を調整する。
 送信電力制御の方法として、LTEではオープンループ制御とクローズドループ制御の二つの方法が定められている(非特許文献1)。オープンループ制御は、無線端末が無線基地局との通信を開始する場合や、ハンドオーバにより別の無線基地局に接続して通信を開始する場合に行われる方法である。無線基地局は、通信開始時に無線端末が行うランダムアクセス制御において物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)で送信されるプリアンブルの受信電力を測定し、無線端末に対してプリアンブルの受信電力値を通知する。無線端末では、無線基地局から送信された信号の受信電力値と、別途無線基地局から報知されている無線基地局の送信電力値とから下り送信のパスロスを推定し、推定したパスロス分の電力と無線基地局から通知されたプリアンブルの受信電力値を加算して、上り信号の送信電力を決定する。
 一方、クローズドループ制御は通信開始後に無線基地局から無線端末に対して送信電力の増減を明示的に指定する送信電力制御コマンド(TPC:Transmission Power Control)を送信して無線端末の送信電力を制御する方法である。無線端末は無線基地局と通信している間は、当該無線基地局からのクローズドループ制御に従って送信電力制御を行う。
3GPP TS 36.213 V14.1.0 (2016-12)
 3GPPの第5世代移動通信システム(5Gシステム)では、無線基地局がビームフォーミング技術により形成される指向性を有する複数のビーム(指向性ビーム)を用いて無線端末と通信する方式が検討されている。このような無線通信システムでは、無線基地局は狭域エリアをカバーする複数のビームでサービスエリア(セル)をカバーする。無線端末は無線基地局が送信する複数のビームのいずれかにより無線基地局と通信し、無線端末が移動した場合は、通信中のビームから適切な別のビームに切り替えて通信を継続することになる。
 無線端末と無線基地局との通信に用いるビームが切り替えられた場合、従来のクローズドループ制御による送信電力制御では、無線端末は切り替え後のビームに合わせた送信電力での送信をすることができない。また、オープンループ制御は無線基地局が送信する下りの電波から推定したパスロスに基づいて無線端末からの上りの送信電力を調整する方式であるため、ビーム切り替えの前後で送信電力調整の精度が劣化するという問題がある。
 この発明は、上記に鑑みてなされたものであって、無線基地局が複数の指向性ビームを用いてサービスエリアをカバーする無線通信システムにおいて、無線端末が無線基地局との通信に使用する指向性ビームを切り替える場合においても、精度よく送信電力制御を行うことができる無線端末を得ることを目的とする。
 この発明の無線端末は、無線基地局が形成する複数のビームを受信するアンテナと、複数のビーム間で無線基地局との通信に使用されるビームを切り替えるビーム切り替えにおいて、切り替え前に使用されるビームと切り替え後に使用されるビームとの受信電力差に基づいて、切り替え後にアンテナから無線基地局に送信される上り信号の送信電力を調整する電力制御部と、を備えるようにしたものである。
 この発明の無線端末の送信電力制御方法は、無線基地局が形成する複数のビーム間で無線基地局との通信に使用されるビームを切り替える無線端末における送信電力制御方法であって、通信に使用されるビームを切り替えるか否か判断するステップと、通信に使用されるビームを切り替える場合に、切り替え前に使用されるビームと切り替え後に使用されるビームの受信電力差に基づいて切り替え後に無線基地局に送信する上り信号の送信電力を調整するステップと、調整した送信電力により切り替え後の上り信号を送信するステップと、を備えるようにしたものである。
 この発明の無線基地局は、同時に複数のビームを形成するアンテナと、複数のビーム間で無線端末との通信に使用されるビームを切り替えるビーム切り替えにおいて、切り替え前に使用されるビームの送信元の位置情報と切り替え後に使用されるビームの送信元の位置情報とに基づいて、切り替え後に無線端末が送信する上り信号の送信電力の決定方法を選択する電力制御部と、を備えるようにしたものである。
 この発明の無線基地局は、複数のビームを同時に形成するアンテナと、無線端末が送信する信号を複数のビームで受信した信号に基づいて複数のビームのそれぞれの受信電力を取得し、複数のビーム間で無線端末が通信に使用されるビームを切り替えるビーム切り替えにおいて、切り替え前に使用されるビームと切り替え後に使用されるビームとの受信電力の差を無線端末に通知する電力制御部と、を備えるようにしたものである。
 上述のように、この発明の無線端末、無線端末の送信電力制御方法、無線基地局によれば、無線基地局が異なるエリアに形成する複数のビーム間で無線端末が通信に使用するビームを切り替える際に、ビーム切り替え後の送信電力制御を適切に行うことができる。
この発明の実施の形態1に係る無線通信システムの構成例を示すシステム構成図である。 実施の形態1に係る無線基地局の機能構成の一例を示すブロック図である。 実施の形態1に係る無線基地局のハードウェア構成の一例を示すブロック図である。 実施の形態1に係る無線端末の機能構成の一例を示すブロック図である。 実施の形態1に係る無線端末のハードウェア構成の一例を示すブロック図である。 実施の形態1に係る無線通信システムにおけるビーム切り替えの手順の一例を示すシーケンス図である。 実施の形態1の無線端末の電力制御部の処理フローの一例を示すフローチャートである。 実施の形態1に係る無線通信システムにおけるビーム切り替え後の送信電力制御の手順の一例を示すシーケンス図である。 実施の形態1の無線端末が測定したビームの受信品質の測定結果の一例を示す表である。 実施の形態1の無線通信システムにおける無線端末のビーム切り替えの一例を説明する概略図である。 実施の形態1の無線通信システムにおける無線端末の送信電力と無線基地局の受信電力と関係の一例を示す表である。 実施の形態2の無線端末の電力制御部における送信電力制御の処理フローの一例を示すフローチャートである。 実施の形態3の無線基地局の電力制御部における送信電力制御の処理フローの一例を示すフローチャートである。 実施の形態4に係る無線通信システムにおけるビーム切り替え後の送信電力制御の手順の一例を示すシーケンス図である。 実施の形態4の無線基地局の電力制御部の処理フローの一例を示すフローチャートである。 実施の形態4の無線端末の電力制御部の処理フローの一例を示すフローチャートである。 実施の形態5の無線端末の送信電力決定の一例を示す図である。 実施の形態6の無線端末の送信電力決定の一例を示す図である。
 以下に、この発明の実施の形態を図面に基づいて説明する。以下で参照する図面においては、同一もしくは相当する部分には同一の符号を付している。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 この発明の実施の形態1に係る無線通信システムでは、無線基地局はカバーするエリア(カバーエリア)が異なる複数のビームを形成し、無線基地局がサービスを提供するサービスエリアは、当該無線基地局が形成する複数のビームのカバーエリアの集合により構成される。サービスエリア内の無線端末は自装置が位置するカバーエリアに対応するビームにより無線基地局と通信を行う。以降の説明では、移動体通信システムを無線通信システムの例として説明するが、この発明の適用先は無線基地局が複数のビームを形成する無線通信ステムであれば良く、移動体通信システムに限定されるものではない。
 図1はこの実施の形態に係る無線通信システムのシステム構成の一例を示すブロック図である。図1において、無線通信システム10は無線基地局1と無線端末(以降、UE:User Equipmentとも称す)2-1、2-2、2-3、2-4を備えている。以降では、UE2-1、2-2、2-3、2-4を区別せずに示す場合はUE2と表記することにする。これは他の部分についても同様である。
 無線基地局1は指向方向が異なるビーム4-1から4-4の4個のビームを同時に形成可能である。また。無線基地局1のサービスエリア5は、8個のエリア3-1から3-8により構成されている。図1の無線通信システムでは、8個のエリア3のうち最大で4個のエリアに同時にビーム4が形成され、ビーム4の指向方向を切り替えることでサービスエリア5内のすべてのエリア3に通信サービスが提供される。なお、無線基地局1が行うビーム形成は送信時のビーム形成だけでなく、受信時のビーム形成を含んでよい。
 図1では、無線通信システム10を構成するUE2が4台の例を示しているが、UE2の数は4台に限定されない。UE2は移動可能な端末であり、UE2の移動に伴い、無線基地局1と通信可能なUE2の数は増加または減少する。従って、この実施の形態の無線通信システムを構成するUE2の数は固定ではない。また、サービスエリア5を構成するエリア3の個数は8個に限定されるものではなく、同時に形成可能なビーム4の個数も4個に限定されるものではない。また、2つ以上のエリア3が重複してもよいし、UE2は複数のビームを用いて無線基地局と通信してもよい。
 図1は、無線基地局1がエリア3-1、3-2、3-3、3-4にそれぞれビーム4-1、4-2、4-3、4-4を形成している状態を示しており、UE2-1、2-2、2-3、2-4は、それぞれが位置するエリア3-1、3-2、3-3、3-4に形成されたビーム4を用いて無線基地局1と通信している。ここで、エリア3-5、3-6、3-7、3-8についてはそれぞれエリア3-1、3-2、3-3、3-4と時分割でビーム4-1、4-2、4-3、4-4が形成されるものとする。以降ではエリア3-1に形成されるビーム4をエリアビーム4a-1、エリア3-8に形成されるビーム4をエリアビーム4a-8などと表記する。
 図2は、この実施の形態の無線基地局1の機能構成の一例を示すブロック図である。無線基地局1は、制御部11、変復調部12、送受信部13、アンテナ部14を備えている。
 制御部11は、電力制御部16、ビーム制御部17を備えている。電力制御部16は、UE2が無線基地局1に対して送信する上り信号の送信電力の制御を行うブロックである。電力制御部16は、UE2に対して下り信号で送信される、UE2の上り信号の送信電力の増減を指示する情報を生成し、送信データとして変復調部22に出力する。なお、UE2の上り信号の送信電力の増減を指示する情報とは、既存の上り信号の電力制御方法で得られる情報であり、例えば3GPPの規格で定められたTPC(Transmission Power Control)や自装置が受信する信号の実測値と目標値の差分である受信電力差の情報である。なお、制御部11は無線基地局1とUE2との他の通信データの処理や、無線リソースの管理など無線通信用の基地局が行う他の機能を備えてよい。
 ビーム制御部17は、1回のビーム形成期間ごとのアンテナ部14が行うビーム形成を制御する。ビーム制御部17の制御により、アンテナ部14が形成するビーム4は通信対象のUE2に向けられる。ここで、ビーム形成期間とはビーム4の指向方向の切り替え単位となる時間である。詳細には、ビーム制御部17は、ビームフォーミング技術を用いて、アンテナ部14が有する複数のアンテナ素子のそれぞれから放射される電波の振幅および位相を制御するための情報を算出し、この情報をアンテナ部14へ入力する。ビームフォーミング技術は、複数のアンテナ素子のそれぞれから放射される電波の位相および振幅を調整することで、ビームの指向方向および形状を制御する技術である。ビーム制御部17が実施するビームフォーミング技術を用いた制御の方法は、無線通信システム10において適用される通信規格に従った方法であればよく、具体的なアルゴリズムに特に制約はない。
 また、ビーム制御部17は、UE2の存在する位置を確認するために、定期的にそれぞれのエリア3にビーム4が形成されるようにアンテナ部14を制御する。UE2は受信したビーム4の信号強度の測定を行って、その測定結果を無線基地局1に上り信号で送信する。ビーム制御部17はUE2から送信された測定結果を変復調部22から受信データとして受け取る。ビーム制御部17は、受け取った測定結果とその測定結果に対応するビーム4の指向方向に基づいてUE2の存在する位置を確認することができる。図1の例の無線通信システムでは、同時に形成可能なビーム4の数は4個であるので、8個のエリア3にビーム4を形成するために、まず4個のエリア3に対してビーム4を形成し、次に残りのエリア3にビーム4を形成する。
 ここで、アンテナ部14がビームを形成することができる8個のエリア3に対するビーム4の指向方向および形状はあらかじめ定められており、ビーム制御部17は8個のエリア3のそれぞれにビーム4を形成するための電波の位相および振幅を示す情報を保持しているものとする。ビーム制御部17は、ビーム4を形成するエリア3を決定すると、当該エリア3にビーム4を形成するための位相および振幅を示す情報をアンテナ部14へ入力する。
 変復調部12は、制御部11から入力される送信データをQPSK(Quadrature Phase Shift Keying)、64QAM(Quadrature Amplified Modulation)といった変調方式により変調し、変調後のデータすなわちベースバンド信号を送受信部13へ入力する。また、変復調部12は、送受信部13から入力されるベースバンド信号を復調し、復調後のデータを受信データとして制御部11へ入力する。変復調部12が実施する復調の方式は、UE2が送信時に行う変調方式に対応したものであり、UE2の変調方式は既知であるとする。
 送受信部13は、デジタル信号であるベースバンド信号をアナログ信号に変換し、アナログ信号を無線周波数の信号すなわち無線信号へ周波数変換してアンテナ部14に入力する。また、送受信部13は、アンテナ部14から入力される無線信号をベースバンド周波数へ周波数変換し、周波数変換後の信号をアナログデジタル変換したベースバンド信号を変復調部12に入力する。
 アンテナ部14は、ビーム制御部17からの制御に応じて指向方向が異なる複数のビーム4を形成するアンテナであり、形成されたビーム4により送受信部13から入力される無線信号を送信し、また、受信した無線信号を送受信部13に入力する。アンテナ部14が行うビームの形成は、無線信号を送信する際には、複数のアンテナ素子から放射される電波の振幅および位相を制御することにより行う。また、無線信号を受信する際には、複数のアンテナ素子が受信した電波の振幅および位相を調整することにより行う。
 図3は、この実施の形態の無線基地局1のハードウェア構成の一例を示すブロック図である。無線基地局1は、プロセッサ101、メモリ102、送信器103、受信器104およびアンテナ105を備える。プロセッサ101は、汎用プロセッサあるいはDSP(Digital Signal Processor)などのプログラムを実行する回路であってもよいし、あるいはASIC(Application Specific Integrated Circuit)やシステムLSI(Large Scale Integration)などの回路であってもよい。メモリ102は、RAM(Random Access memory)、ROM(Read Only Memory)、フラッシュメモリーなどの揮発性あるいは不揮発性の半導体メモリや、磁気ディスク、ハードディスク等の記憶装置である。プロセッサ101がプログラムを実行する場合、当該プログラムはメモリ102に記憶される。図2に示した制御部11および変復調部12は、図3に示したプロセッサ101、メモリ102により実現される。
 送信器103および受信器104は専用の回路である。送信器103および受信器104は送受信部13に対応し、送受信部13における送信に関わる処理は送信器103により実現され、受信にかかわる処理は受信器104により実現される。なお、図3はハードウェア構成の例であり、送受信部13の機能の少なくとも一部をプログラムで実現するようにしてもよい。
 図4は、この実施の形態のUE2の機能構成の一例を示すブロック図である。UE2は、制御部21、変復調部22、送受信部23、アンテナ部24を備える。
 制御部21は、電力制御部26を備える。電力制御部26は、アンテナ部24から送信される電波の送信電力を決定し、決定した送信電力の情報をアンテナ部24に通知する。なお、送信電力の決定方法については後述する。また、電力制御部26は無線基地局1が送信するそれぞれのビーム4の受信電力の測定結果を送信データとして変復調部22に出力する機能を有する。なお、制御部21はUE2と無線基地局1との他の通信データの処理、無線リソースの管理など無線通信用の端末が行う他の機能を備えてよい。
 変復調部22は、制御部21から入力される送信データをQPSK、64QAMといった変調方式により変調し、変調後のデータすなわちベースバンド信号を送受信部23へ入力する。また、変復調部22は、送受信部23から入力されるデータを復調し、復調後の受信データを制御部21へ入力する。変復調部22が実施する復調の方式は、無線基地局1が送信時に行う変調方式に対応したものであり、無線基地局1の変調方式は既知であるとする。
 送受信部23は、デジタル信号であるベースバンド信号をアナログ信号に変換し、アナログ信号を無線周波数の信号すなわち無線信号へ周波数変換してアンテナ部24に入力する。また、送受信部23は、アンテナ部24から入力される無線信号をベースバンド周波数へ周波数変換し、周波数変換後の信号をアナログデジタル変換したベースバンド信号を変復調部22に入力する。また、送受信部23は、図4に図示しない無線基地局1が送信するそれぞれのビーム4の受信電力を測定する機能を有する。
 アンテナ部24は、送受信部23から入力される無線信号を電波として送信し、また、受信した無線信号を送受信部23に入力する。また、制御部21から通知される送信電力の情報に応じて、無線信号を送信する際の電波の送信電力を調整する。
 図5はこの実施の形態のUE2のハードウェア構成の一例を示すブロック図である。UE2は、プロセッサ201、メモリ202、送信器203、受信器204およびアンテナ205を備える。プロセッサ201、メモリ202、送信器203、受信器204は、それぞれ無線基地局1のプロセッサ101、メモリ102、送信器103、受信器104と同様である。また、アンテナ205はアンテナ105と同様に指向性を有するアンテナであってもよいし、指向性を有さないアンテナであってもよい。
 図4に示した制御部21および変復調部22は、図5に示したプロセッサ201およびメモリ202により実現される。送受信部23は送信器203、受信器204により実現される。なお、送受信部23の機能の少なくとも一部をプロセッサ201で実行されるプログラムで実現してもよい。
 ここで、無線基地局1とUE2との間のビーム切り替えについて、図1に示したシステムに基づいて具体例を説明する。ビーム切り替えは無線基地局1とUE2とがどのエリア3に形成されるどのビーム4を用いて通信するかを切り替える処理である。図6はこの実施の形態におけるビーム切り替えの装置間の手順を示すシーケンス図である。前述の通り、図1のシステムではエリア3-1からエリア3-8にはそれぞれエリアビーム4a-1から4a-8が形成される。無線基地局1はエリアビーム4a-1により信号強度測定に用いられる参照信号(RS:Reference signal)を送信する(M1-1)。UE2は無線基地局1が送信した参照信号について信号強度を測定し、測定結果をエリアビーム4a-1の受信品質として無線基地局1に報告する(M1-2)。なお、信号強度を測定する対象の信号は参照信号に限定されない。例えば、通常の通信用の信号を測定の対象にすることも可能である。
 同様の処理が順次それぞれのエリア3について行われる。エリア3-8に形成されるエリアビーム4a-8で送信された参照信号についての測定結果がUE2から報告される(M8-1、M8-2)と、無線基地局1ではUE2から受信した受信品質の報告に基づいて、エリアビーム4a-1から4a-8のうち最も受信品質が良いものをUE2との通信に使用することを決定する。そして、無線基地局1は、エリアビーム4aを変更する場合にUE2に対してビーム切替指示を送信する(M9)。例えば、エリア3-2に形成されるビーム4であるエリアビーム4a-2が最も受信品質が良い場合には、エリアビーム4a-2に切り替えることをビーム切替指示によりUE2に対して指示する。無線基地局1はそれぞれのエリアに形成するビーム4による参照信号の送信を定期的に行うことでUE2の移動に合わせてビーム切り替えを行うことができる。
 なお、図1に示したシステムでは4個のビーム4を同時に形成できるので、例えばエリアビーム4a-1から4a-4についての処理を同じタイミングで行うようにしてもよい。この発明はビーム切り替えの手順を上述の方法に限定するものではなく、以下に説明する送信電力制御に整合する範囲で、上述の説明とは異なる方法でビーム切り替えが行われてもよい。
 次に、この実施の形態に係る送信電力制御の動作について説明する。図7は、この実施の形態のUE2における送信電力制御の処理手順の一例を示すフローチャートである。無線基地局1から送信されたビーム4は、UE2においてアンテナ部24、送受信部23、変復調部22の順で処理され、制御部21に入力される。制御部21では電力制御部26が、変復調部22から入力された信号について、無線基地局1からの信号強度測定の信号を受信したか否か判断する(ステップS1-1)。
 UE2の電力制御部26は、信号強度測定の信号を受信した場合(ステップS1-1 Yes)、受信した信号について受信品質を測定し、その測定した受信品質を無線基地局1に報告する(ステップS1-2)。電力制御部26は報告した受信品質を記憶しておく。なお、受信品質は変復調部22、送受信部23、アンテナ部24で順に処理されて、無線基地局1に対して無線で送信される。
 次に、UE2の電力制御部26はビーム切り替えを行うか否か判断する(ステップS1-3)。図6のシーケンスの例の場合、無線基地局1からビーム切替指示を受信しているか否かを判断する。電力制御部26は、ビーム切り替えを行う場合(ステップS1-3 Yes)、ビーム切り替え前のエリアビーム4aの受信電力(P0とする)、ビーム切り替え後のエリアビーム4aの受信電力(P1とする)から、ビーム切り替え前と切り替え後の受信電力差ΔPを以下の式(1)により求める(ステップS1-4)。なお、受信電力P0とP1の取得については後述する。
Figure JPOXMLDOC01-appb-M000001
 電力制御部26は、次に、ビーム切り替え後のUE2の送信電力TxPを下記の式(2)により求める(ステップS1-5)。ここで、式(2)における左辺のTxPがビーム切り替え後のUE2の送信電力であって、右辺のTxPはビーム切り替え前に設定したUE2の送信電力を示す。
Figure JPOXMLDOC01-appb-M000002
 ここでは、切り替え後に最初に送信するPUCCH(Physical Uplink Control Channel)の送信電力を式(2)により設定することとする。また、ビーム切り替え後の最初のPUCCHの送信以降は、UE2は従来技術のクローズドループ制御で送信電力を制御するものとする。
 次に、上述のステップS1-4で用いたP0とP1の取得について図8に示すシーケンス図を用いて説明する。図8は、無線基地局1とUE2における、ビーム切り替え前後の通信のシーケンスの一例を示す図である。図8では、図6に例を示したビーム切り替え処理の前に、無線基地局1からUE2宛ての通常の通信が発生する場合を想定している。ここで、受信品質の測定は通常の通信の信号についても実施されるものとする。また、受信品質とは受信ビームの信号強度(受信電力)であり、受信電力が高いほど品質が良いものとする。
 図8において、無線基地局1から通常の通信の信号がUE2に送信される(M0-1)。ここでは、エリア3-1に形成されるエリアビーム4a-1が通信に用いられているものとする。UE2の電力制御部26は受信したエリアビーム4a-1の受信電力を測定する。このあと、図6に示した手順でそれぞれのエリアビーム4aの受信電力を測定する。測定した受信電力を電力制御部26は保持しておく。また、参照信号の受信電力を測定している間であっても、UE2は通信用信号を受信した場合には、受信電力を測定する(M0-2)。
 UE2では、例えばエリアビーム4a-2への切り替えなど、ビーム切替指示を受信すると(M9)、ビーム切り替えを行って、前述のフローチャートに示した通り、上りで送信する信号の送信電力制御を行い、切り替え後の上り信号を送信する(M10)。このとき、P0およびP1として、M1-1からM8-1の手順で受信したエリアビーム4aについて測定した受信電力のなかからそれぞれ切り替え前のビームと切り替え後のビームに対応する受信電力を用いることができる。
 また、切り替え前に通常の通信用の信号を受信している場合(M0-1、M0-2)で受信電力を測定している場合は、これらをP0として用いることができる。さらに、ビーム切り替え後に通常の通信用の信号を受信している場合(M0-3)で受信電力を測定している場合は、その受信電力をP1として用いることも可能である。また、ビーム切替指示を伝送するエリアビーム4aの受信電力をP0として用いることも考えられる。
 図9は、この実施の形態のUE2の電力制御部26が保持するそれぞれのエリアビーム4aの受信品質の測定結果の一例を示す表である。図9(a)は無線基地局1があるタイミングで参照信号を送信した時の測定結果であり、図9(b)は図9(a)の次の測定のタイミングの測定結果である。図9(a)のタイミングでUE2はエリアビーム4a-3による無線基地局1と通信していたとすると、図9(a)に示す測定結果では、エリアビーム4a-3の受信電力が最も高い、すなわち最も受信品質が良いので、ビーム切り替えは行われず、エリアビーム4a―3による通信が継続される。そして、次の測定のタイミングで図9(b)の測定結果が得られた場合、受信電力はエリアビーム4a―4が最も高いので、UE2はエリアビーム4a-3からエリアビーム4a-4にビーム切り替えを行う。
 図10は図9(b)に対応するビーム切り替えの一例を示している。図10はUE2が図9(b)のタイミングにエリアビーム4a-3が形成されるエリア3-3からエリアビーム4a-4が形成されるエリア3-4の境界に位置することを示している。UE2の受信電力は、パスロスと無線基地局1の送信アンテナ利得によって決定される。図9(b)のタイミングでは、UE2の受信位置はビーム切り替えの前後で変わらないので、パスロスはビーム切り替えの前後で変わらない。一方、無線基地局1の送信アンテナ利得はエリア3の中心部から離れるほど下がる傾向がある。図9(b)のタイミングでより受信電力が高いエリアビーム4aとしてエリアビーム4a-4が検出された場合、パスロスが同じであることから、UE2はエリアビーム4a-4の送信アンテナ利得がエリアビーム4a-3の送信アンテナ利得よりも大きい場所に位置していることになる。
 図11は、この実施の形態のUE2における送信電力の一例を示す表である。ここで、無線基地局1の送信アンテナ利得と受信アンテナ利得は同一であるとする。図11(a)は図9(a)の測定タイミングに対応し、エリアビーム4a-3で通信をしているときの送信電力を示している。UE2はビーム切り替え前の無線基地局1との通信時には従来技術のクローズドループ制御により送信電力を制御しているものとする。このとき、無線基地局1における受信電力の目標値が-50[dBm]とすると、パスロスが90[dB]、エリアビーム4a-3の受信アンテナ利得が20[dB]であるとき、UE2の適正な送信電力TxPは下式(3)に基づいて20[dBm]と求めることができる。無線基地局1は得られたUE2の送信電力値となるようにクローズドループ制御によりUE2の送信電力を制御する。
Figure JPOXMLDOC01-appb-M000003
 図11(b)は、図9(b)の測定結果に基づいてビーム切り替えが行われた場合に、式(2)によりUE2の送信電力TxPを決定した場合の、UE2の送信電力TxPとパスロス、エリアビーム4a-4の受信アンテナ利得の関係を表している。図10を用いて説明したように、無線基地局1のエリアビーム4a-4の受信アンテナ利得(送信アンテナ利得)は図11(a)のエリアビーム4a-3のものよりも良い。ビーム切り替え後のUE2の送信電力TxPは、切り替え前のエリアビーム4a-3の受信電力と、切り替え後のエリアビーム4a-4の受信電力との受信電力差ΔPが10[dBm]であるので、式(2)よりUE2の送信電力TxPは切り替え前の送信電力20[dBm]から、下り受信電力差の10[dBm]を差し引いて、10[dBm]となる。このとき、UE2の送信信号の無線基地局1での受信電力は次式(4)となり、UE2の送信電力は適正な値となる。
Figure JPOXMLDOC01-appb-M000004
 なお、図11(c)はこの実施の形態の送信電力制御を用いなかった場合のUE2のビーム切り替え後の送信電力の例を示している。ビーム切り替え前の送信電力値を使用し続けるとすると、送信電力TxPが20[dBm]、パスロスが90[dB]、エリアビーム4a-4の受信アンテナ利得が30[dB]の場合、UE2からの送信信号の無線基地局1での受信電力は次式(5)となり、無線基地局1の受信電力の目標値に対して10[dBm]分過大な電力となる。
Figure JPOXMLDOC01-appb-M000005
 以上のように、この実施の形態の無線端末によれば、無線端末がビーム切り替え前に通信に用いられる下りビームの受信電力とビーム切り替え後に通信に用いられる下りビームの受信電力の差分を求め、求めた差分に基づいてビーム切り替え後の送信電力を調整するようにしたので、ビーム切り替え後の無線端末の送信電力制御を精度よく行うことが可能になる。なお、上記の説明ではパスロスとアンテナ利得を区別して記載したが、実際には区別してそれぞれの値を得ることはできない。しかし、ビーム切り替えを行った場合に必ず切り替え先ビームにおけるパスロス+受信アンテナ利得が大きくなることを説明するために両者を区別して記載した。両者を区別してそれぞれの値を得られなくても本発明の方式に影響は与えない。
実施の形態2.
 次に、ビーム切り替えの前後でビーム送信元の位置が変化する場合の無線端末の送信電力制御について説明する。同一の無線基地局のサービスエリア内であっても、例えば、無線基地局に複数のアンテナが接続され、アンテナの設置位置が異なっている場合には、ビーム切り替えの前後でアンテナの位置が変わることがあり得る。
 この実施の形態の無線通信システム10の構成は実施の形態1と同様である。また、無線通信システム10を構成する無線端末2、無線基地局1の構成も実施の形態1と同様である。以降では、この実施の形態における無線端末2の送信電力制御の動作を実施の形態1との差分を中心に説明する。なお、この実施の形態では無線基地局1はRSを送信する際に、ビーム送信元の位置情報を無線基地局位置情報としてRSと一緒に送信するものとする。
 図12は、この実施の形態のUE2の電力制御部26が行う送信電力制御の処理手順の一例を示すフローチャートである。ステップS1-1、S1-2、S1-3の処理は実施の形態1で説明したとおりである。電力制御部26は、ステップS1-3でビーム切り替え実施を判断した場合に、RSとともに送信された無線基地局位置情報に基づいて、ビーム切り替えの前後で無線基地局位置情報が変更になるか否かを判断する(ステップS2-1)。変更にならない場合(ステップS2-1 No)には、電力制御部26は、実施の形態1で説明したステップS1-4、S1-5の処理を実施する。
 電力制御部26は、ステップS2-1において無線基地局位置情報が変更になると判断した場合(ステップS2-1 Yes)、RSを受信したビーム4に基づいて、従来技術のオープンループ制御の方法により、パスロス値と無線基地局1が報知している上り信号の受信電力目標値とから、UE2の送信電力を決定する(ステップS2-2)。
 上述のようにこの実施の形態の移動端末は、ビーム切り替えの前後でビームの送信元の位置が変わるか否かで送信電力制御方法を切り替え、送信元の位置が変わる場合にはオープンループ制御による送信電力制御を行い、位置が変わらない場合には実施の形態1と同様の送信電力制御を行うようにした。これにより、ビーム切り替え前後で無線基地局の位置が異なった場合にも、無線端末は適切な送信電力で上り信号を送信することが可能になる。
 なお、上述の説明では、無線基地局の位置情報をRSと一緒に送信する例を示したが、報知チャネルを用いてそれぞれのビームの無線基地局位置情報を全端末へ通知したり、端末毎の個別信号を用いてそれぞれのビームの無線基地局位置情報を端末へ通知したりしてもよい。
実施の形態3.
 実施の形態2では、ビーム切り替えの前後でビーム送信元の位置が変更になるか否かで移動端末がビーム切り替え後の送信電力の制御方法を選択して切り替える形態を説明したが、送信電力の制御方法を無線基地局が選択して無線端末に通知することも可能である。実施の形態3では無線基地局が送信電力の制御方法を選択する形態を説明する。この実施の形態の無線通信システム10の構成は実施の形態2と同様であり、無線基地局1および無線端末2の構成も実施の形態2と同様である。以降では、この実施の形態における無線端末2の送信電力制御の動作を実施の形態2との差分を中心に説明する。なお、この実施の形態では無線基地局1はビーム送信元の位置情報を無線基地局位置情報として送信する必要はない。
 図13は、この実施の形態の無線基地局1の電力制御部16が行う送信電力制御選択の処理手順の一例を示すフローチャートである。図13に示す処理は、図8のシーケンス図において、無線基地局が行うビーム決定でエリアビーム4aを変更することを決定した場合に実行される。電力制御部16は、ビーム送信元の位置がビーム切り替えの前後で変更になるか否かを判断する(ステップS3-1)。なお、無線基地局1はそれぞれのエリアビーム4aの送信元の位置を予め保持しているものとする。ビームの送信元の位置が変更になる場合(ステップS3-1 Yes)、UE2のビーム切り替え後の送信電力制御方法をオープンループ制御に決定する(S3-2)。一方、ビームの送信元の位置が変更されない場合(ステップS3-1 No)、UE2のビーム切り替え後の送信電力制御方法を実施の形態1で説明した、ビーム切り替え前後の受信ビームの電力差に基づいて行う方法に決定する(S3-3)。
 そして電力制御部16は、決定した送信電力制御方法をUE2に通知する。なお、UE2への通知は変復調部12、送受信部13、アンテナ部14を介して通常の無線通信の処理により行われる。なお、送信電力制御方法の通知はビーム切り替え指示の送信(M9)と一緒に行ってもよい。なお、UE2は無線基地局1が指定した送信電力制御方法でビーム切り替え後の送信電力制御を行う点を除いて、実施の形態2と同様の動作を行えばよい。
 以上のように、この実施の形態では、無線基地局がビーム切り替えの前後でビームの送信元の位置が変わるか否かに基づいて、送信元の位置が変わる場合にはオープンループ制御による送信電力制御を、位置が変わらない場合には実施の形態1と同様の送信電力制御を、無線端末のビーム切り替え後の送信電力制御方法として選択し、選択した電力制御方法を移動端末に通知するようにした。これにより、実施の形態2で得られるのと同様の効果が得られる一方で、実施の形態2と異なり、無線基地局は位置情報を移動端末に通知する必要がない。
実施の形態4.
 次に無線端末が無線基地局に対して測定用信号を送信し、無線基地局が形成可能な受信ビームで無線端末から送信された測定用信号を受信してビーム切り替えを行う無線通信システムにおけるビーム切り替え後の無線端末の送信電力制御について説明する。この実施の形態の無線通信システム10の構成は、実施の形態1と同様であり、また、無線基地局1および無線端末2の構成も実施の形態1と同様である。以下、実施の形態1との差分を中心にこの実施の形態の動作を説明する。なお、この実施の形態の無線基地局1は送信のビーム形成と受信のビーム形成の双方を行うものとし、ビーム4あるいはエリアビーム4aは送信ビームと受信ビームの双方を表すものとする。
 図14は、この実施の形態の無線基地局1と無線端末2のビーム切り替え処理の手順の一例を示すシーケンス図である。無線基地局1の電力制御部16が、まず上り信号指示をUE2に送信する(ステップM11)。上り信号指示は、UE2が無線基地局1に送信する測定用信号の送信タイミング、送信回数などを通知する信号である。例えば、図1に示した無線通信システム10の場合、無線基地局1は8個のエリア3を同時に生成可能な4個のビーム4でカバーするので、無線基地局1は1回目のタイミングで4個のエリア3(例えばエリア3-1、エリア3-2、エリア3-3、エリア3-4)にエリアビーム4aを形成し、2回目のタイミングで残りの4個のエリア3にエリアビーム4aを形成するようにタイミングを定め、この1回目と2回目のタイミングにUE2が測定用信号を送信するように上り信号指示で通知する。
 無線基地局1ではUE2が送信した測定用信号を形成可能なエリアビーム4aで受信する。UE2が送信した測定用信号をアンテナ部14、送受信部13、変復調部12が処理して、その結果をもとに電力制御部16がそれぞれのエリアビーム4aの受信品質として受信電力を測定する。そして、無線基地局1の電力制御部16は測定した受信品質に基づいてビーム切り替えの判断を行う。例えば、最も受信品質のよいエリアビーム4aをUEとの通信に使用することを決定して、ビーム切り替えが必要な場合は、UE2にビーム切替指示を通知する(M13)。このとき、ビーム切替指示とともに、ビーム切り替え前のエリアビーム4aとビーム切り替え後のエリアビーム4aの受信電力差を通知する。なお、受信電力差は、UE2が送信した測定用信号について測定した受信電力から求めることができる。
 UE2は、ビーム切り替え後、M13の手順で通知された受信電力差に基づいてビーム切り替え後の上り送信の送信電力を決定し、上りの送信を行う(M14)。
 図15のフローチャートは、無線基地局1の電力制御部16が行う、図13に示したシーケンスに対応する処理のフローの一例を示している。電力制御部16は、まず、UE2に対して上り信号指示を送信する(ステップS4-1)。次に電力制御部16は、UE2から送信される測定用信号を、形成可能な全てのエリアビーム4aで受信し、受信電力を測定する(ステップS4-2)。電力制御部16は測定したそれぞれの受信電力を保持する。そして、電力制御部16は、受信電力の測定結果を基にUE2との通信に使用するエリアビーム4aを決定し(ステップS4-3)、ビーム切り替えが必要か否か判断する(ステップS4-4)。
 電力制御部16は、ビーム切り替えが必要と判断した場合(ステップS4-4 Yes)、ステップS4-2で得られた受信電力を基にビーム切り替え前と切り替え後のエリアビーム4aの受信電力差ΔPを求める(ステップS4-5)。そして、電力制御部16はUE2に対してビーム切替指示と受信電力差ΔPの通知を行う(ステップS4-6)。なお、ΔPの算出は実施の形態1の式(1)と同様の計算により行う。
 図16のフローチャートは、UE2の電力制御部26が行う、図14に示したシーケンスに対応する処理のフローの一例を示している。UE2の電力制御部26は、無線基地局1から上り指示信号を受信したか否か判断する(ステップS5-1)。電力制御部26は、上り指示信号を受信した場合(ステップS5-1 Yes)、無線基地局1に対して測定用信号を無線基地局1から通知された送信タイミングと送信回数分で送信する(ステップS5-2)。そして、電力制御部26は無線基地局1からビーム切替指示を受信したか否か判断する(ステップS5-3)。電力制御部26は、ビーム切替指示を受信した場合(ステップS5-3 Yes)、無線基地局1から通知された受信電力差ΔPに基づいて、ビーム切り替え後の上りの送信信号の送信電力を決定する(ステップS5-4)。なお、送信電力は実施の形態1の式(2)と同様の計算により求める。
 ここで、実施の形態4と実施の形態3は組み合わせることが可能である。無線基地局1の電力制御部16は、ビーム切り替えを行うことを決定した場合、ビーム切り替え前のビームの送信元の無線基地局位置情報と、ビーム切り替え後のビームの送信元の無線基地局位置情報を確認し、ビーム切り替え前後で無線基地局位置情報が異なるか否かを判断するようにすればよい。電力制御部16は、ビーム切り替えの前後で無線基地局位置情報が異なる場合、UE2にビーム切替指示とオープンループ制御で送信電力制御を行うことを通知する。また、電力制御部16は、ビーム切り替えの前後で無線基地局位置情報が同じである場合、無線端末にビーム切替指示と受信電力差とその受信電力差に基づいて送信電力制御を行うことを通知する。また、ビーム切り替え前後の無線基地局位置情報で判断するのではなく、別の方法で判断してもよい。たとえば、無線基地局1で事前に測定した結果、切り替え前のビームと切り替え後のビームの品質が干渉状況も含めて類似しているか否かを判断し、これにより、本制御を適用するか、オープンループ制御のみとするかを判断することができる。
 以上のように、実施の形態4では、無線基地局1が、無線端末が送信する測定信号を形成可能なそれぞれのビームで受信して受信品質として受信電力を測定し、測定した受信電力に基づいてビーム切り替えの実施の有無を判断するとともに、ビーム切り替えを行う場合には、ビーム切り替えの実施とビーム切り替え後の送信電力を決定するための受信電力差を通知するようにした。また、無線端末はビーム切り替え実施後に無線基地局1から通知された受信電力差に基づいて送信電力を決定するようにした。これにより、無線端末が送信する測定用信号の受信品質の測定結果に基づいてビーム切り替えの実施が判断される無線通信システムにおいても、無線端末のビーム切り替え後の送信電力制御を適切に行うことができる。
実施の形態5.
 上述の実施の形態にかかる無線通信システムにおいては、無線基地局の送信アンテナ利得と受信アンテナ利得とが同じであることを前提にした無線通信システムであった。しかし、無線通信システムにおいてコストの低減を目的として、同一方向であっても送信アンテナ利得と受信アンテナ利得が異なる場合、つまりBeam Correspondenceがない場合は、ビーム切り替えが上りと下りで同時に発生するとは限らない。実施の形態5では、無線基地局の送信アンテナ利得と受信アンテナ利得とが異なる場合での無線通信システムにおけるビーム切り替え後の無線端末の送信電力制御について説明する。この実施の形態の無線通信システム10の構成は、実施の形態1と同様であり、また、無線基地局1および無線端末2の構成も実施の形態1と同様である。以下、実施の形態1との差分を中心にこの実施の形態の動作を説明する。なお、この実施の形態の無線基地局1は送信のビーム形成と受信のビーム形成の双方を行うものとし、ビーム4あるいはエリアビーム4aは送信ビームと受信ビームの双方を表すものとする。
 まず無線基地局1の送信アンテナ利得及び受信アンテナ利得が同じである場合と異なる場合とでの送信電力TxPについて説明する。無線基地局1の送信アンテナ利得と受信アンテナ利得とが同じであって、オープンループ制御とクローズドループ制御とが混在して送信電力を制御する場合は、式(6)の関係式で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(6)におけるPt及びPLdは、オープンループ制御に関連するものであって、Ptは無線基地局1が目標とする受信電力値を示す。PLdは無線端末2が推定したパスロス値を示し、実施の形態1から実施の形態4において示したパスロス(無線伝送で発生する電力減衰)と無線基地局1の送信アンテナ利得とを含むものである。Tcは、クローズドループ制御に関連するものであって、無線基地局1から無線端末2へ送られる送信電力制御コマンドによる電力値、あるいはその累積値である。例えばクローズドループ制御を行わない場合は、Tcを考慮することなく、PtとPLdとの和でTxPを求めることになる。
 一方、本実施の形態にかかる無線通信システムにおける電力制御部26は、式(7)の関係式に基づいてビーム切り替え後の送信電力TxPを決定する。
Figure JPOXMLDOC01-appb-M000007
 ここで、式(7)におけるPt、Tc、及びPLdは式(6)と同様である。ビーム切り替え後の送信電力TxPを求める場合、PLdは切り替え後に使用するビームを事前に測定したパスロス値、または切り替え直後に測定した結果から得たパスロス値を用いる。ΔPdは、式(1)と同じものであって、下りで発生したビーム切り替えにおける、切り替え後ビームの受信電力P1から切り替え前ビームの受信電力P0を引いた値である。
 図17は、無線基地局1の送信アンテナ利得と受信アンテナ利得とが異なる場合での無線通信システムにおいて、ビーム4a-3からビーム4a-4に切り替えたときの無線端末2の送信電力TxPと無線基地局1の受信電力を示す図である。左から、ビーム切り替え前(4a-3)での無線端末2の送信電力、ビーム切り替え後(4a-4)での無線端末2の送信電力、ビーム切り替え後(4a-4)での無線基地局1の受信電力を示す。図17(a)は、無線基地局1の送信アンテナ利得と受信アンテナ利得との差がある場合に、式(6)に基づいて求めた送信電力TxPを示す。一方、図17(b)は、無線基地局1の送信アンテナ利得と受信アンテナ利得との差がある場合に、式(7)に基づいて求めた送信電力TxPを示す。
 図17(a)では、切り替え後ビーム(ビーム4a-4)の受信電力P1から切り替え前ビーム(ビーム4a-3)の受信電力P0を引いた値であるΔPd分の減衰がビーム切り替え後の送信電力TxPを設定するときに考慮されていないため、式(6)に基づいて設定されたTxPでは、基地局受信電力が信号を正しく復調できる信号受信電力を示す実効目標受信電力を満たさない電力で受信されることになる。
 一方、図17(b)では、切り替え後ビーム(ビーム4a-4)の受信電力P1から切り替え前ビーム(ビーム4a-3)の受信電力P0を引いた値であるΔPd分の減衰をビーム切り替え後の送信電力TxPを設定するときに考慮しているため、式(7)に基づいて設定されたTxPでは、基地局受信電力が実効目標受信電力を満たすようにTxPが決定されることになる。
 なお、時間経過によってさらに下りビーム切り替えが発生した場合には、下に示す式(8)のようにそれまでのΔPd_oldに、新しいΔPdをさらに加算して更新したPd_newを用いて式(7)の関係式に基づいてビーム切り替え後の送信電力TxPを新たに決定する。
Figure JPOXMLDOC01-appb-M000008
 例えば、ビーム4a-3からビーム4a-4に切り替えた後、さらにビーム4a-4からビーム4a-5に切り替えた場合は、ビーム4a-4の受信電力P1からビーム4a-3の受信電力P0を引いた値であるΔPdをΔPd_oldとして、ビーム4a-5の受信電力からビーム4a-4の受信電力を引いた値であるΔPdを加算してΔPd_newを求める。
 ここで、目標受信電力で無線基地局1が信号を受信できたとしても干渉等で信号を正しく復調できない場合があり、これを考慮し、信号を正しく復調できる信号受信電力のことを、本明細書では実効目標受信電力と呼んでいる。ビーム切り替えが発生していない間は、Tcにて徐々に実行目標受信電力になるよう調整がされている。
 上記では、無線端末2がΔPdを計算する動作として記載したが、無線基地局1がΔPdを通知することでも良い。図6で説明したように、無線端末2は測定結果を無線基地局1へ報告するので、無線基地局1は電力制御部16でΔPdを計算することができる。この場合、無線基地局1はビーム切替指示と共に新しいΔPdの情報を通知する。
 また、ΔPdを単独で通知するのではなく、Ptに新たに求めたΔPdを反映させ、新しいPtとして無線基地局1から無線端末2へ通知することもできる。この場合は下に示す式(9)のようにPtを更新した上で、式(7)の関係式に基づいてビーム切り替え後の送信電力TxPを設定する。
Figure JPOXMLDOC01-appb-M000009
 例えば、ビーム4a-3からビーム4a-4に切り替えた後に、さらにビーム4a-4からビーム4a-5に切り替えた場合は、ビーム4a-3からビーム4a-4に切り替えた後に用いていたPtをPt_oldとして、Ptを更新し、無線基地局1から無線端末2へ通知する。
 同様に、TcにΔPdを反映させ、新しいTcとして規定のTc送信タイミングにて、無線基地局1から無線端末2へ通知することもできる。この場合は下に示す式(10)のようにPtを更新した上で、式(7)の関係式に基づいてビーム切り替え後の送信電力TxPを設定する。
Figure JPOXMLDOC01-appb-M000010
 以上のように、送信ビーム利得と受信ビーム利得が異なり、下りビームの切り替えのみが発生した場合でも、切り替え前のビームと切り替え後のビームの受信電力差を用いて、上り送信電力を決定しているため、下りのパスロス値と上りのパスロス値が異なっていても、無線基地局1において適切な受信電力を獲得することができる。また、ΔPdをPtまたはTcに反映させることで、無線端末2は管理するパラメータが減るため、制御が簡易化される。
実施の形態6.
 本実施の形態は、送信アンテナ利得と受信アンテナ利得が異なる場合で、上りのビーム切り替えのみが発生し、その時に下りのビームはこれまでと同じビームを使用する場合で、かつ、下りのビームを測定した結果から得たパスロスを用いる場合の送信電力制御を示す。
 この実施の形態の無線通信システム10の構成は、実施の形態4と同様であり、また、無線基地局1および無線端末2の構成も実施の形態4と同様である。以下、実施の形態4との差分を中心にこの実施の形態の動作を説明する。なお、この実施の形態の無線基地局1は送信のビーム形成と受信のビーム形成の双方を行うものとし、ビーム4あるいはエリアビーム4aは送信ビームと受信ビームの双方を表すものとする。
 本実施の形態にかかる無線通信システムにおける電力制御部26は、下に示す式(11)の関係式に基づいて、上りのビーム切り替えが発生した直後の上り信号送信時の送信電力TxPを設定する。
Figure JPOXMLDOC01-appb-M000011
 ここで、式(11)におけるPt及びTcは式(6)と同様である。PLdは下り信号測定から得た最新のパスロス値である。ΔPuは、上りで発生したビーム切り替えにおける、切り替え後ビームの受信電力P1から切り替え前ビームの受信電力P0を引いた値である。
 図18は、無線基地局1の送信アンテナ利得と受信アンテナ利得とが異なる場合での無線通信システムにおいて、上りのビームを切り替えたときの無線端末2の送信電力TxPと無線基地局1の受信電力を示す図である。図18(a)は、無線基地局1の送信アンテナ利得と受信アンテナ利得との差がある場合に、式(6)に基づいて求めた送信電力TxPを示す。一方、図18(b)は、無線基地局1の送信アンテナ利得と受信アンテナ利得との差がある場合に、式(11)に基づいて求めた送信電力TxPを示す。図18(a)において、左から、無線端末2の送信電力、ビーム切り替え前での無線基地局1の受信電力、ビーム切り替え後での無線基地局1の受信電力を示す。図18(b)において、左から、ビーム切り替え前での無線端末2の送信電力、ビーム切り替え後での無線端末2の送信電力、ビーム切り替え後での無線基地局1の受信電力を示す。
 上りのビーム切り替えが発生した場合、切り替え前に比べると上りのパスロス値は小さくなる傾向にある。図18(a)では、切り替え後ビームの受信電力P1から切り替え前ビームの受信電力P0を引いた値であるΔPu分がビーム切り替え後の送信電力TxPを設定するときに考慮されていないため、式(6)に基づいて設定されたTxPでは、基地局受信電力が信号を正しく復調できる信号受信電力を示す実効目標受信電力よりも大きい電力で受信されることになり、効率が悪くなる。
 一方、図18(b)では、切り替え後ビームの受信電力P1から切り替え前ビームの受信電力P0を引いた値であるΔPu分をビーム切り替え後の送信電力TxPを設定するときに考慮しているため、式(11)に基づいて設定されたTxPでは、基地局受信電力が実効目標受信電力を満たす適当なTxPの値に設定することができる。
 なお、時間経過によってさらに下りビーム切り替えが発生した場合は、実施の形態5と同様にΔPu_oldに、新しいΔPuをさらに加算して更新したPu_newを用いて式(11)の関係式に基づいてビーム切り替え後の送信電力TxPを新たに決定する。
 ΔPuは、無線基地局1が無線端末2へ通知する。上りのビーム切り替え判断のために無線基地局1が各ビームの受信電力を測定しているため、電力制御部16でΔPuを計算することができる。さらに、ΔPuを単独で通知するのではなく、Ptに新たに求めたΔPuを反映させ、新しいPtとして無線基地局1から無線端末2へ通知することもでき、TcにΔPuを反映させ、新しいTcとして規定のTc送信タイミングにて、無線基地局1から無線端末2へ通知することもできる。
 さらには、実施の形態4と同様に、ビーム切り替え時に本制御を適用するか、オープンループ制御のみとするかを無線基地局1が判断することもできる。電力制御部16は、上りビーム切り替えの前後で無線基地局位置情報が異なる場合、UE2にビーム切替指示とオープンループ制御で送信電力制御を行うことを通知する。また、電力制御部16は、ビーム切り替えの前後で無線基地局位置情報が同じである場合、無線端末2にビーム切替指示と受信電力差とその受信電力差に基づいて送信電力制御を行うことを通知する。また、ビーム切り替え前後の無線基地局位置情報で判断するのではなく、別の方法で判断してもよい。たとえば、無線基地局1で事前に測定した結果、切り替え前のビームと切り替え後のビームの品質が干渉状況も含めて類似しているか否かを判断し、これにより、本制御を適用するか、オープンループ制御のみとするかを判断することができる。
 以上のように、送信ビーム利得と受信ビーム利得が異なり、上りビームの切り替えのみが発生した場合でも、切り替え前のビームと切り替え後のビームの受信電力差を用いて、上り送信電力を決定しているため、下りのパスロス値と上りのパスロス値が異なっていても、無線基地局1において適切な受信電力を獲得することができる。また、ΔPdをPtまたはTcに反映させることで、無線端末2は管理するパラメータが減るため、制御が簡易化される。
実施の形態7.
 本実施の形態は、送信アンテナ利得と受信アンテナ利得が異なる場合で、下りのビーム切り替えと上りのビーム切り替えが同時に発生した場合で、かつ、下りのビームを測定した結果から得たパスロスを用いる場合の送信電力制御を示す。
この実施の形態の無線通信システム10の構成は実施の形態1および4と同様である。また、無線通信システム10を構成する無線端末2、無線基地局1の構成も実施の形態1および4と同様である。
 本実施の形態にかかる無線通信システムにおける電力制御部26は、下に示す式(12)の関係式に基づいて、下りおよび上りのビーム切り替えが発生した直後の上り信号送信時の送信電力TxPを設定する。
Figure JPOXMLDOC01-appb-M000012
 すなわち、実施の形態5および6で説明した動作の組合せとなる
 以上のように、送信ビーム利得と受信ビーム利得が異なっているが、下りビームの切り替えと上りビームの切り替えが同時に発生した場合でも、下りと上りのそれぞれについて、切り替え前のビームと切り替え後のビームの受信電力差を用いて、上り送信電力を決定しているため、下りのパスロス値と上りのパスロス値が異なっていても、無線基地局1において適切な受信電力を獲得することができる。
 なお、ここまでは、無線基地局1のみがビームフォーミングを行っている場合について述べてきたが、無線端末2もビームフォーミングを行う場合が3GPPで検討されている。この場合でも、ビーム切り替え判断のための測定は、図6や図14で示したシーケンスと変わらない。下り信号を測定し、パスロスを計算する場合、無線基地局1の各送信ビームに最適な受信ビームを無線端末2は選択するため、パスロス値にその受信ビームの利得も含まれる。これに基づいてPLdやΔPdが計算される。また、上り信号を測定し、ΔPuを計算する場合、無線端末2の各送信ビームに最適な受信ビームを基地局は選択するため、ΔPuの値にその端末送信ビームの利得も反映される。つまり、無線端末2がビームフォーミングを行っているか否かは、これまでに説明した方法は影響を受けず、無線端末2がビームフォーミングを行っている場合にも適用できる。
 以上の実施の形態に示した送信電力制御方法は、PUCCHだけでなく、データを伝送する上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上りチャネル品質測定用参照信号(SRS:Sounding Reference Signal)にも同じ方法を適用でき、送信電力制御を行うチャネル全てに適用することが可能である。
 また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 無線基地局、2、2-1、2-2、2-3、2-4 無線端末、3、3-1、3-2、3-3、3-4、3-5、3-6、3-7、3-8 エリア、4、4-1、4-2、4-3、4-4 ビーム、4a、4a-1、4a-2、4a-3、4a-4、4a-5、4a-6、4a-7、4a-8 エリアビーム、5 サービスエリア、10 無線通信システム、11 制御部、12 変復調部、13 送受信部、14 アンテナ部、16 電力制御部、17 ビーム制御部、101 プロセッサ、102 メモリ、103 送信器、104 受信器、105 アンテナ、21 制御部、22 変復調部、23 送受信部、24 アンテナ部、26 電力制御部、201 プロセッサ、202 メモリ、203 送信器、204 受信器、205 アンテナ。

Claims (9)

  1.  無線基地局が形成する複数のビームを受信するアンテナと、
     前記複数のビーム間で前記無線基地局との通信に使用されるビームを切り替えるビーム切り替えにおいて、切り替え前に使用される前記ビームと切り替え後に使用される前記ビームとの受信電力差に基づいて、切り替え後に前記アンテナから前記無線基地局に送信される上り信号の送信電力を調整する電力制御部と、
     を備えることを特徴とする無線端末。
  2.  前記電力制御部は、切り替え前に使用される前記ビームの送信元の位置情報と切り替え後に使用されるビームの送信元の位置情報とが異なる場合、切り替え後に使用される前記ビームの下り信号のパスロス推定値と前記無線基地局の受信電力目標値とに基づいて、前記上り信号の送信電力を決定することを特徴とする請求項1に記載の無線端末。
  3.  無線基地局が形成する複数のビーム間で前記無線基地局との通信に使用されるビームを切り替える無線端末における送信電力制御方法であって、
     通信に使用される前記ビームを切り替えるか否か判断するステップと、
     通信に使用される前記ビームを切り替える場合に、切り替え前に使用される前記ビームと切り替え後に使用される前記ビームの受信電力差に基づいて切り替え後に前記無線基地局に送信する上り信号の送信電力を調整するステップと、
     前記調整した送信電力により切り替え後の前記上り信号を送信するステップと、
     を備えることを特徴とする無線端末の送信電力制御方法。
  4.  同時に複数のビームを形成するアンテナと、
     前記複数のビーム間で無線端末との通信に使用されるビームを切り替えるビーム切替えにおいて、切り替え前に使用されるビームの送信元の位置情報と切り替え後に使用されるビームの送信元の位置情報とに基づいて、切り替え後に前記無線端末が送信する上り信号の送信電力の決定方法を選択する電力制御部と、
     を備えることを特徴とする無線基地局。
  5.  前記電力制御部は、
     切り替え前の前記送信元の位置情報と切り替え後の前記送信元の位置情報とが異なる場合、切り替え後に使用される前記ビームの下り信号のパスロス推定値と前記無線基地局の受信電力目標値とに基づいて、前記上り信号の送信電力を決定する方法を選択し、
     切り替え前の前記送信元の位置情報と切り替え後の前記送信元の位置情報とが同じである場合、前記無線端末における切り替え前に使用される前記ビームと切り替え後に使用される前記ビームとの送信電力差に基づいて前記上り信号の送信電力を決定する方法を選択する、ことを特徴とする請求項4に記載の無線基地局。
  6.  複数のビームを同時に形成するアンテナと、
     無線端末が送信する信号を前記複数のビームで受信した信号に基づいて前記複数のビームのそれぞれの受信電力を取得し、前記複数のビーム間で前記無線端末が通信に使用されるビームを切り替えるビーム切り替えにおいて、切り替え前に使用される前記ビームと切り替え後に使用されるビームとの前記受信電力の差を前記無線端末に通知する電力制御部と、
     を備えることを特徴とする無線基地局。
  7.  前記電力制御部は、前記ビーム切り替えにおいて、切り替え前に使用される前記ビームの送信元の位置情報と切り替え後に使用される前記ビーム送信元の位置情報とが異なる場合、前記切り替え後に使用されるビームの下り信号のパスロス推定値と前記無線基地局の受信電力目標値とに基づいて、前記無線端末が前記ビーム切り替え後に送信する上り信号の送信電力を決定することを前記無線端末に指示する、
     ことを特徴とする請求項6に記載の無線基地局。
  8.  前記電力制御部は、前記無線端末へ前記無線基地局の受信電力目標値を通知するものであって、
     前記ビームの切り替え前に使用される前記ビームと切り替え後に使用される前記ビームとの前記受信電力の差を、切り替え前に送信した前記受信電力目標値に反映させて前記無線端末に通知する
    ことを特徴とする請求項4から請求項7のいずれか1項に記載の無線基地局。
  9.  前記電力制御部は、前記無線端末へ送信電力の増減を明示的に指定する送信電力制御コマンドを通知するものであって、
     前記ビームの切り替え前に使用される前記ビームと切り替え後に使用される前記ビームとの前記受信電力の差を、切り替え前に送信した前記送信電力制御コマンドで示した電力値あるいは累積値に反映させて前記無線端末に通知する
    ことを特徴とする請求項4から請求項7のいずれか1項に記載の無線基地局。
PCT/JP2017/027389 2017-03-15 2017-07-28 無線端末と無線端末の送信電力制御方法、および無線基地局 WO2018167998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/486,435 US11012121B2 (en) 2017-03-15 2017-07-28 Wireless terminal, transmission power control method of wireless terminal, and radio base station
CN201780088269.1A CN110463062B (zh) 2017-03-15 2017-07-28 无线终端和无线终端的发送功率控制方法以及无线基站
JP2019505683A JP6567217B2 (ja) 2017-03-15 2017-07-28 無線端末と無線端末の送信電力制御方法、および無線基地局
EP17900487.4A EP3576311B1 (en) 2017-03-15 2017-07-28 Wireless terminal and method for controlling transmitted power of wireless terminal, and wireless base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/010342 WO2018167864A1 (ja) 2017-03-15 2017-03-15 無線端末と無線端末の送信電力制御方法、および無線基地局
JPPCT/JP2017/010342 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018167998A1 true WO2018167998A1 (ja) 2018-09-20

Family

ID=63522893

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/010342 WO2018167864A1 (ja) 2017-03-15 2017-03-15 無線端末と無線端末の送信電力制御方法、および無線基地局
PCT/JP2017/027389 WO2018167998A1 (ja) 2017-03-15 2017-07-28 無線端末と無線端末の送信電力制御方法、および無線基地局

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010342 WO2018167864A1 (ja) 2017-03-15 2017-03-15 無線端末と無線端末の送信電力制御方法、および無線基地局

Country Status (5)

Country Link
US (1) US11012121B2 (ja)
EP (1) EP3576311B1 (ja)
JP (1) JP6567217B2 (ja)
CN (1) CN110463062B (ja)
WO (2) WO2018167864A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021094082A1 (en) * 2019-11-12 2021-05-20 Nokia Technologies Oy Propagation link selection in telecommunication systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9769594B2 (en) * 2015-01-30 2017-09-19 Cassia Networks Inc. Methods, devices and systems for increasing wireless communication range
US10945214B2 (en) * 2017-08-18 2021-03-09 Qualcomm Incorporated Uplink power control
US11356871B2 (en) * 2018-07-05 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for spectrum license management
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
US11019513B2 (en) * 2018-07-25 2021-05-25 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measuring method for low-attenuation measuring environments
US11395154B2 (en) * 2019-04-18 2022-07-19 Qualcomm Incorporated Methods and apparatuses for determining sensing beam for an LBT procure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129661A1 (ja) * 2005-06-01 2006-12-07 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置及び送信電力制御方法
JP2013531920A (ja) * 2010-05-07 2013-08-08 クゥアルコム・インコーポレイテッド アドバンスドテレコミュニケーションネットワークにおけるアップリンク電力制御モードの調整
WO2015045659A1 (ja) * 2013-09-30 2015-04-02 ソニー株式会社 通信制御装置、通信制御方法、端末装置及び情報処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008301B2 (ja) 2002-08-01 2007-11-14 株式会社エヌ・ティ・ティ・ドコモ 基地局接続方法、無線ネットワーク制御装置及び移動局
JP4708351B2 (ja) 2004-08-11 2011-06-22 パナソニック株式会社 通信システム、基地局制御装置、基地局装置、通信方法、送信信号形成方法、及び制御情報送出方法
US20060270434A1 (en) * 2005-05-27 2006-11-30 Interdigital Technology Corporation Uplink power control optimization for a switched beam wireless transmit/receive unit
CN101548488B (zh) * 2006-12-07 2012-10-24 三菱电机株式会社 无线通信系统、无线终端站、无线基站以及无线通信方法
BR112012007967B1 (pt) 2009-10-09 2021-05-04 Telefonaktiebolaget Lm Ericsson (Publ) método para controlar operação de diversidade de transmissão de uplink, e, equipamento de usuário
EP2334122B1 (en) * 2009-12-14 2014-03-26 Intel Mobile Communications GmbH Method and apparatus for data communication in LTE cellular networks
US20150346345A1 (en) * 2011-09-19 2015-12-03 Ohio University Global navigation systems antenna
TWI611708B (zh) * 2012-08-28 2018-01-11 Idac控股公司 從主波束的通信鏈路交遞的方法及裝置
EP2830369B1 (en) * 2013-07-23 2016-05-25 Alcatel Lucent Apparatus, vehicle, method, and computer program for setting a transmission power
CN105307254B (zh) * 2015-09-21 2018-11-02 中国人民解放军国防科学技术大学 一种用户设备发射功率控制系统及其控制方法
US10341959B2 (en) * 2016-04-28 2019-07-02 Qualcomm Incorporated Uplink transmit power control after beam change
US20200028599A1 (en) * 2016-09-22 2020-01-23 Huawei Technologies Co., Ltd. Measurement Configuration Method and Apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129661A1 (ja) * 2005-06-01 2006-12-07 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置及び送信電力制御方法
JP2013531920A (ja) * 2010-05-07 2013-08-08 クゥアルコム・インコーポレイテッド アドバンスドテレコミュニケーションネットワークにおけるアップリンク電力制御モードの調整
WO2015045659A1 (ja) * 2013-09-30 2015-04-02 ソニー株式会社 通信制御装置、通信制御方法、端末装置及び情報処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576311A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021094082A1 (en) * 2019-11-12 2021-05-20 Nokia Technologies Oy Propagation link selection in telecommunication systems

Also Published As

Publication number Publication date
CN110463062B (zh) 2022-04-29
US11012121B2 (en) 2021-05-18
CN110463062A (zh) 2019-11-15
EP3576311B1 (en) 2021-10-27
US20200112347A1 (en) 2020-04-09
WO2018167864A1 (ja) 2018-09-20
EP3576311A4 (en) 2020-01-22
JPWO2018167998A1 (ja) 2019-11-07
EP3576311A1 (en) 2019-12-04
JP6567217B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6567217B2 (ja) 無線端末と無線端末の送信電力制御方法、および無線基地局
US7966033B2 (en) Serving sector directed power control
TWI608755B (zh) 無線電節點、使用者設備及傳輸管理方法
US9226301B2 (en) System and method to shorten the time taken to improve inter-cell interference mitigation performance using adaptive fractional frequency reuse
US9838925B2 (en) Method and a network node for determining an offset for selection of a cell of a first radio network node
US20050070285A1 (en) Handover for use with adaptive antennas
CN109997389B (zh) 终端装置、基站装置以及通信方法
US20120008510A1 (en) Method and Apparatus for Performing Uplink Antenna Transmit Diversity
JP5776791B2 (ja) 無線基地局、無線通信システム、送信電力制御方法及び無線端末
KR20110068052A (ko) 셀룰러 시스템에서 전송전력 제어방법
US8914057B2 (en) Cellular communications network operation
WO2019155578A1 (ja) 無線基地局、無線端末、無線通信システムおよび送信電力制御方法
EP2947929B1 (en) Power control method and apparatus
JP5805295B2 (ja) 伝送方法およびその方法を実行する移動局
CN113228530A (zh) 波束选择性发射功率控制方案
KR20100098751A (ko) 펨토 기지국과 통신 단말기를 갖는 통신 시스템 및 그의 통신 방법
US20110286399A1 (en) Device and method for controlling uplink data transmission
US20170279641A1 (en) Methods Used in Control Node and Serving Radio Node, and Associated Devices
US9622185B2 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal for adjusting transmission power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505683

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017900487

Country of ref document: EP

Effective date: 20190829

NENP Non-entry into the national phase

Ref country code: DE