WO2018166295A1 - 压裂液摩阻测试仪 - Google Patents

压裂液摩阻测试仪 Download PDF

Info

Publication number
WO2018166295A1
WO2018166295A1 PCT/CN2018/073714 CN2018073714W WO2018166295A1 WO 2018166295 A1 WO2018166295 A1 WO 2018166295A1 CN 2018073714 W CN2018073714 W CN 2018073714W WO 2018166295 A1 WO2018166295 A1 WO 2018166295A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
simulation tube
simulation
pipe
differential pressure
Prior art date
Application number
PCT/CN2018/073714
Other languages
English (en)
French (fr)
Inventor
金雪松
金宇
Original Assignee
海安县石油科研仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海安县石油科研仪器有限公司 filed Critical 海安县石油科研仪器有限公司
Publication of WO2018166295A1 publication Critical patent/WO2018166295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties

Definitions

  • the invention relates to a petroleum scientific research instrument, in particular to an advanced instrument for simulating the flow state of a liquid on-site construction, determining the frictional resistance of the pipeline, and thereby determining the advantages and disadvantages of the resistance reducing agent.
  • None of the prior art techniques can simulate the flow state of a liquid on-site construction, determine the frictional resistance of the pipeline, and thereby determine the advantages and disadvantages of the resistance reducer.
  • the detailed description is: no instrument can measure the friction of clear water and different fracturing fluids at different shear rates through pipelines, and obtain the ratio of friction friction of fresh water and frictional resistance of different fracturing fluids at different shear rates.
  • fracturing fluid friction / water friction.
  • the invention overcomes the deficiencies of the background art and provides a fracturing fluid friction resistance tester: design and development purposes: 1. It can correspond to the simulated on-site construction displacement; 2.
  • the experimental liquid includes water, base liquid, and resistance reducing agent, which can be compared in liquid viscosity. Experiments are carried out under high conditions; 3.
  • the equipment design scheme is to use circulating lines, using a variety of pipelines to simulate the flow of on-site fracturing fluid in the pipeline; 4. Using the most advanced closed loop process system, continuous test; 5. Multiple test results can be obtained in one test, saving time and less need for test liquid; 6.
  • the test liquid is circulated in a straight line in the pipeline, and the liquid structure will not be destroyed; 7.
  • Over-temperature is set on the test pipeline Overpressure alarm and shutdown device to ensure safe operation; 8 parameter measurement and control using high-precision differential pressure transmitter, pressure sensor, electronic flowmeter, precision temperature controller, etc., to ensure reliable test results.
  • a fracturing fluid friction tester comprises an injection system, a simulation system, a constant temperature system, a pressure measurement system, a differential pressure measurement system, a window, a flow meter, Pressure protection system, data acquisition and processing system.
  • the injection system includes an injection pump, a liquid storage tank, and an elastic buffer;
  • the simulation system includes a first simulation tube, a second simulation tube, a third simulation tube, a fourth simulation tube, and a fifth simulation tube;
  • the system includes a pressure sensor;
  • the differential pressure measurement system includes a differential pressure sensor;
  • the pressure protection system includes a pressure gauge.
  • One ends of the first analog tube, the second analog tube, the third analog tube, the fourth analog tube, and the fifth analog tube are all inlet ends; the first analog tube, the second analog tube, and the third analog tube
  • the other ends of the fourth simulation tube and the fifth simulation tube are both liquid outlet ends, and the liquid inlet end is connected to the liquid storage tank through a first pipe, and the liquid discharge end passes through the second pipe and the liquid storage end a tank connection;
  • the first pipe is provided with the injection pump, an elastic buffer, a flow meter, a pressure gauge, and a pressure sensor;
  • the differential pressure sensor is installed on the first simulation tube, the second simulation tube, and the third simulation a tube, a fourth analog tube, and a fifth analog tube;
  • the fifth analog tube is an L-shaped tube, the first simulated tube has an inner diameter of 6 mm, the second simulated tube has an inner diameter of 10 mm, and the third simulated tube has an inner diameter of 15 mm.
  • the fourth simulation tube has an inner diameter of 8 mm, and
  • the liquid storage tank is provided with a stirring motor.
  • the inner chamber of the liquid storage tank is provided with a heating body, and the liquid storage tank is connected with a thermometer.
  • the injection pump is a magnetic pump with a maximum flow rate of 110 L/min and a rated pressure of 3 MPa.
  • the volume of the elastic damper is 10 L and the maximum working pressure is 3 MPa.
  • the number of the differential pressure sensors is two, and the two differential pressure sensors are connected in parallel.
  • the differential pressure ranges of the two differential pressure sensors are 0-0.5 MPa, 0 MPa-2 MPa, absolute pressure 6 MPa, and accuracy 0.25% FS.
  • the first pipe 16 and the second pipe 17 are each wrapped with an outer insulation layer.
  • the first simulation tube 4, the second simulation tube 5, the third simulation tube 6, the fourth simulation tube 7, and the fifth simulation tube 8 are used, different diameters, different specifications of the pipeline, and the same according to the specifications of the on-site pipeline
  • the design, the same specification liquid with its uniform temperature and pressure on the site, can correspond to the simulated site construction displacement.
  • the experimental liquid includes water, base liquid, and a drag reducing agent, and the experiment can be carried out under the condition that the viscosity of the liquid is high.
  • the equipment design scheme uses cyclic lines and uses a variety of pipelines to simulate the flow of on-site fracturing fluid in the pipeline.
  • test liquid flows out of the liquid storage tank 2 and passes through the pipeline to complete the test, and then flows into the liquid storage tank 2, and adopts the most advanced closed circulation flow system for continuous test.
  • the first simulation tube 4, the second simulation tube 5, the third simulation tube 6, the fourth simulation tube 7, and the fifth simulation tube 8 are simultaneously tested, and multiple test results can be obtained in one test, saving time and testing liquid requirement. less;
  • test liquid flows out of the liquid storage tank 2 through the pipeline and then flows into the liquid storage tank 2, and the test liquid is circulated in a straight line in the pipeline, and the liquid structure is not destroyed.
  • the over-temperature and over-pressure alarm and stop device are set on the test pipeline to ensure the safety of the test; 6.
  • the parameter measurement and control adopts high-precision differential pressure transmitter, pressure sensor, electronic flowmeter, precision temperature controller, etc. to ensure The test results are reliable.
  • FIG. 1 is a schematic view showing the structure of a fracturing fluid friction tester according to the present invention.
  • FIG. 1 injection pump 1, liquid storage tank 2, elastic buffer 3, first simulation tube 4, second simulation tube 5, third simulation tube 6, fourth simulation tube 7, fifth simulation tube 8, window 9 Flow meter 10, pressure gauge 11, pressure sensor 12, differential pressure sensor 13, liquid outlet end 14, liquid inlet end 15, first conduit 16, second conduit 17, agitating motor 18-1, quick connector 19, heating body 19-1, 20.
  • Fracturing fluid friction tester the fracturing fluid friction tester includes injection system, simulation system, constant temperature system, pressure measurement system, differential pressure measurement system, window 9, flow meter 10, pressure protection system, data acquisition and processing System; Window 9 is mainly used to observe the internal fluid flow.
  • the flow meter 10 uses a mass flow meter with a maximum range of 80 L/min and an RS232 interface.
  • the data acquisition system is the key to the whole system. It guarantees the test accuracy of the whole system and realizes the intelligence of each system. It mainly includes the formation of pressure signal, the formation of differential pressure signal, the formation of flow signal, the formation of temperature signal and the interface with the microcomputer.
  • the system mainly adopts HY1232, MOXAC168H/PCI communication adapter card, combined with acquisition software to achieve timely acquisition.
  • the injection system includes an injection pump 1, a reservoir 2, and an elastic buffer 3.
  • the simulation system includes a first simulation tube 4, a second simulation tube 5, a third simulation tube 6, a fourth simulation tube 7, and a fifth simulation tube 8;
  • the pressure measurement system includes a pressure sensor 12;
  • the differential pressure measurement includes a differential pressure sensor 13;
  • the pressure protection system includes a pressure gauge 11; one end of the first analog tube 4, the second analog tube 5, the third analog tube 6, the fourth analog tube 7, and the fifth analog tube 8
  • the first simulation tube 4, the second simulation tube 5, the third simulation tube 6, the fourth simulation tube 7, and the fifth simulation tube 8 are all the liquid outlet ends 14
  • the liquid inlet end 15 is connected to the liquid storage tank 2 through a first pipe 16, and the liquid discharge end 14 is connected to the liquid storage tank 2 through a second pipe 17;
  • the injection pump 1 and the first pipe 16 Connecting, the elastic buffer 3 is connected to the first pipe 16, the flow meter 10 is connected to the first pipe 16, the pressure gauge 11 is connected to the first pipe 16, and the pressure sensor 12 is connected The first conduit 16 is connected.
  • Both ends of the differential pressure sensor 13 are fixedly connected to both ends of the first dummy tube 4 through a quick connector 19, respectively.
  • Both ends of the differential pressure sensor 13 are fixedly connected to both ends of the second dummy tube 5 through a quick connector 19, respectively.
  • Both ends of the differential pressure sensor 13 are fixedly connected to both ends of the third simulation tube 6 through a quick connector 19, respectively.
  • Both ends of the differential pressure sensor 13 are fixedly connected to both ends of the fourth simulation tube 7 through a quick connector 19, respectively.
  • Both ends of the differential pressure sensor 13 are fixedly connected to both ends of the fifth simulation tube 8 through a quick connector 19, respectively.
  • the fifth simulation tube 8 is an L-shaped tube, the first simulation tube 4 has an inner diameter of 6 mm, and the second simulation tube 5 has an inner diameter of 10 mm.
  • the third simulation tube 6 has an inner diameter of 15 mm
  • the fourth simulation tube 7 has an inner diameter of 8 mm
  • the fifth simulation tube 8 has an inner diameter of 10 mm.
  • the inner chamber of the liquid storage tank 2 is provided with a heating body 19-1, and the liquid storage tank 2 is connected with 20.
  • the liquid storage tank 2 is provided with a stirring motor 18-1. It is easy to mix well during the preparation of liquid and prepare liquids that meet the specifications.
  • the injection pump 1 is a magnetic pump with a maximum flow rate of 110 L/min and a rated pressure of 3 MPa; the volume of the elastic damper 3 is 10 L, and the maximum working pressure is 3 MPa.
  • the elastic damper 3 employs a bladder-type elastic damper to buffer the pulsation generated by the injection pump.
  • the liquid storage tank 2 is made of stainless steel material, the volume is 70L with stirring system, the stirring speed is stepless speed regulation, 50-1400r/min adjustable, the external heating and insulation system, the temperature control range: 0 ⁇ 85°C, digital display automatic Temperature control with PID adjustment.
  • the number of the differential pressure sensors 13 is two, and the two differential pressure sensors 13 are connected in parallel.
  • the differential pressure ranges of the two differential pressure sensors 13 are 0-0.5 MPa, 0 MPa-2 MPa, absolute pressure 6 MPa, and accuracy 0.25% FS.
  • the first analog tube 4, the second analog tube 5, the third analog tube 6, the fourth analog tube 7, and the fifth analog tube 8 of the embodiment are connected to two parallel differential pressure sensors 13, so that the difference is
  • the number of pressure sensors 13 is ten.
  • the first pipe 16 and the second pipe 17 are each wrapped with an outer insulation layer.
  • the temperature control range is 0 to 85 °C.
  • all auxiliary flow path valves, pipelines, and pipe joints have been insulated.
  • Liquid storage tank made of stainless steel material, volume 70L with stirring system, stirring speed stepless speed regulation, 50-1400r/min adjustable, external heating and insulation system, temperature control range: room temperature ⁇ 85 °C, digital display automatic Temperature control with PID adjustment.

Abstract

一种压裂液摩阻测试仪,其包括注入系统、模拟系统、恒温系统、压力测量系统、差压测量系统、视窗(9)、流量计(10)、压力保护系统、数据采集处理系统。该测试仪具有以下优点:1、模拟现场施工排量;2、可在液体粘度较高的情况下进行实验;3、模拟现场压裂液在管路中流动情况;4、连续试验;5、一次试验可得多个试验结果,节省时间;6、试验液体在管路中以直线推进方式进行循环,液体结构不会被破坏;7、试验管路上设置超温超压报警和停机装置,以保证试验安全进行;8、采用高精度差压传感器(13)、压力传感器(12)、流量计(10)、精密控温仪,确保试验结果可靠。

Description

压裂液摩阻测试仪 技术领域
本发明涉及石油科研仪器,具体涉及一种用来模拟液体现场施工时的流动状态,确定管路摩阻,从而确定降阻剂的优劣的高级仪器。
背景技术
现有的技术中没有一种能够模拟液体现场施工时的流动状态,确定管路摩阻,从而确定降阻剂的优劣的仪器。详细说明是:没有一种仪器能通过管路测定在不同剪切速率下清水和不同压裂液的摩阻,得到不同剪切速率下清水摩阻和不同压裂液摩阻的比值β。β=压裂液摩阻/清水摩阻。同时可以根据计算机采集系统从而画出相应的曲线图。
发明内容
本发明克服背景技术的不足提供了压裂液摩阻测试仪:设计开发目的:1、能对应模拟现场施工排量;2、实验液体包括清水、基液、降阻剂,可在液体粘度较高的情况下进行实验;3、设备设计方案为采用循环线路,使用多种规格管线,模拟现场压裂液在管路中流动情况;4.采用最先进的闭式循环流程系统,连续试验;5.一次试验可得多个试验结果,节省时间,试验液体需要量少;6.试验液体在管路中以直线推进方式进行循环,液体结构不会被破坏;7.试验管路上设置超温超压报警和停机装置,以保试验安全进行;8参数测量和控制采用高精度差压变送器、压力传感器、电子流量计、精密控温仪等,确保试验结果可靠。
本发明提供了下述技术方案:压裂液摩阻测试仪,所述压裂液摩阻测试仪包括注入系统、模拟系统、恒温系统、压力测量系统、差压测量系统、视窗、流量计、压力保护系统、数据采集处理系统。
所述注入系统包括注入泵、储液罐、弹性缓冲器;所述模拟系统包括第一模拟管、第二模拟管、第三模拟管、第四模拟管、第五模拟管;所述压力测量系统包括压力传感器;所述差压测量系统包括差压传感器;所述压力保护系统包括压力表。
所述第一模拟管、第二模拟管、第三模拟管、第四模拟管、第五模拟管的一端均为进液端;所述第一模拟管、第二模拟管、第三模拟管、第四模拟管、第五模拟管的另一端均为出液端,所述进液端通过第一管道与所述储液罐连接,所述出液端通过第二管道与所述储液罐连接;所述第一管道设有所述注入泵、弹性缓冲器、流量计、压力表、压力传感器;所述差压传感器安装于所述第一模拟管、第二模拟管、第三模拟管、第四模拟管、第五模拟管; 所述第五模拟管为L形管,所述第一模拟管内径6mm,所述第二模拟管内径10mm,所述第三模拟管内径15mm,所述第四模拟管内径8mm,所述第五模拟管内径10mm。
所述储液罐设有搅拌电机。所述储液罐的内腔设有加热体,所述储液罐连接有温度计。
注入泵为磁力泵,最大流量110L/min,额定压力3MPa;弹性缓冲器的容积为10L,最大工作压力3MPa。
所述差压传感器的数量为两只,两只的所述差压传感器并联连接。两只的所述差压传感器差压量程分别为0-0.5MPa、0MPa-2MPa,绝压6MPa,精度0.25%FS。
所述第一管道16、第二管道17均裹设有外保温层。
本发明的有益效果如下。
1、第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8采用,不同管径、不同规格的管道,并且根据现场管道的规格作相同的设计,对其通入和现场一致温度、压力的同规格液体,能对应模拟现场施工排量。实验液体包括清水、基液、降阻剂,可在液体粘度较高的情况下进行实验。设备设计方案为采用循环线路,使用多种规格管线,模拟现场压裂液在管路中流动情况。
2、试验液体从储液罐2流出经过管道完成试验后又流进储液罐2,采用最先进的闭式循环流程系统,连续试验。
3、第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8同时试验,一次试验可得多个试验结果,节省时间,试验液体需要量少;
4、试验液体从储液罐2流出经过管道完成试验后又流进储液罐2,试验液体在管路中以直线推进方式进行循环,液体结构不会被破坏。
5、试验管路上设置超温超压报警和停机装置,以保试验安全进行;6.参数测量和控制采用高精度差压变送器、压力传感器、电子流量计、精密控温仪等,确保试验结果可靠。
附图说明
图1是本发明所述压裂液摩阻测试仪的结构简图。
具体实施方式
以下结合附图与具体实施例对本发明作进一步描述。
图1中:注入泵1、储液罐2、弹性缓冲器3、第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8、视窗9、流量计10、压力表11、压力传感器12、差压传感器13、出液端14、进液端15、第一管道16、第二管道17、搅拌电机18-1、快速接头19、加热体19-1、20。
压裂液摩阻测试仪,所述压裂液摩阻测试仪包括注入系统、模拟系统、恒温系统、压力测量系统、差压测量系统、视窗9、流量计10、压力保护系统、数据采集处理系统;视窗9主要用来观察内部流体流动的情况。流量计10采用质量流量计,最大量程80L/min,带RS232接口。数据采集系统是整个系统的关键,它保证整个系统的测试精度,并实现各个系统的智能化。主要包括压力信号的形成、差压信号的形成、流量信号的形成、温度信号的形成以及与微机的接口,本系统主要采用HY1232、MOXAC168H/PCI通讯转接卡,结合采集软件实现适时采集。
所述注入系统包括注入泵1、储液罐2、弹性缓冲器3。
所述模拟系统包括第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8;所述压力测量系统包括压力传感器12;所述差压测量系统包括差压传感器13;所述压力保护系统包括压力表11;所述第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8的一端均为进液端15;所述第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8的另一端均为出液端14,所述进液端15通过第一管道16与所述储液罐2连接,所述出液端14通过第二管道17与所述储液罐2连接;所述注入泵1与所述第一管道16连接,所述弹性缓冲器3与所述第一管道16连接连接,流量计10与所述第一管道16连接,所述压力表11与所述第一管道16连接,所述压力传感器12与所述第一管道16连接。
所述差压传感器13的两端分别通过快速接头19与所述第一模拟管4的两端固定连接。
所述差压传感器13的两端分别通过快速接头19与所述第二模拟管5的两端固定连接。
所述差压传感器13的两端分别通过快速接头19与所述第三模拟管6的两端固定连接。
所述差压传感器13的两端分别通过快速接头19与所述第四模拟管7的两端固定连接。
所述差压传感器13的两端分别通过快速接头19与所述第五模拟管8的两端固定连接。
所述第五模拟管8为L形管,所述第一模拟管4内径6mm,所述第二模拟管5内径10mm,
所述第三模拟管6内径15mm,所述第四模拟管7内径8mm,所述第五模拟管8内径10mm。
所述储液罐2的内腔设有加热体19-1,所述储液罐2连接有20。
所述储液罐2设有搅拌电机18-1。便于配制液体过程中充分搅拌,配制符合规格的液体。
注入泵1为磁力泵,最大流量110L/min,额定压力3MPa;弹性缓冲器3的容积为10L,最大工作压力3MPa。弹性缓冲器3采用皮囊式弹性缓冲器来缓冲注入泵产生的脉流。储液罐2采用不锈钢材料制作而成,容积为70L带搅拌系统,搅拌速度无极调速,50-1400r/min可调,外带加热保温系统,控温范围:0~85℃,数显自动控温,带PID调节。
所述差压传感器13的数量为两只,两只的所述差压传感器13并联连接。两只的所述差压传感器13差压量程分别为0~0.5MPa、0MPa-2MPa,绝压6MPa,精度0.25%FS。实施过程中,本实施例第一模拟管4、第二模拟管5、第三模拟管6、第四模拟管7、第五模拟管8均接入两只并联的差压传感器13,从而差压传感器13的数目为10只。所述第一管道16、第二管道17均裹设有外保温层。温控范围0~85℃。另外所有的附属流路阀门、管线、管连接件均采取了保温措施。
储液罐:采用不锈钢材料制作而成,容积为70L带搅拌系统,搅拌速度无极调速,50-1400r/min可调,外带加热保温系统,控温范围:室温~85℃,数显自动控温,带PID调节。

Claims (4)

  1. 压裂液摩阻测试仪,其特征在于,所述压裂液摩阻测试仪包括注入系统、模拟系统、恒温系统、压力测量系统、差压测量系统、视窗(9)、流量计(10)、压力保护系统、数据采集处理系统;
    所述注入系统包括注入泵(1)、储液罐(2)、弹性缓冲器(3);
    所述模拟系统包括第一模拟管(4)、第二模拟管(5)、第三模拟管(6)、第四模拟管(7)、第五模拟管(8);
    所述压力测量系统包括压力传感器(12);
    所述差压测量系统包括差压传感器(13);
    所述压力保护系统包括压力表(11);
    所述第一模拟管(4)、第二模拟管(5)、第三模拟管(6)、第四模拟管(7)、第五模拟管(8)的一端均为进液端(15);所述第一模拟管(4)、第二模拟管(5)、第三模拟管(6)、第四模拟管(7)、第五模拟管(8)的另一端均为出液端(14),所述进液端(15)通过第一管道(16)与所述储液罐(2)连接,所述出液端(14)通过第二管道(17)与所述储液罐(2)连接;所述注入泵(1)与所述第一管道(16)连接,所述弹性缓冲器(3)与所述第一管道(16)连接连接,流量计(10)与所述第一管道(16)连接,所述压力表(11)与所述第一管道(16)连接,所述压力传感器(12)与所述第一管道(16)连接;
    所述差压传感器(13)的两端分别与所述第一模拟管(4)的两端固定连接;
    所述差压传感器(13)的两端分别与所述第二模拟管(5)的两端固定连接;
    所述差压传感器(13)的两端分别与所述第三模拟管(6)的两端固定连接;
    所述差压传感器(13)的两端分别与所述第四模拟管(7)的两端固定连接;
    所述差压传感器(13)的两端分别与所述第五模拟管(8)的两端固定连接;
    所述第五模拟管(8)为L形管。
  2. 根据权利要求1所述的压裂液摩阻测试仪,其特征在于,所述储液罐(2)的内腔设有加热体(19-1),所述储液罐(2)连接有温度计(20)。
  3. 根据权利要求1所述的压裂液摩阻测试仪,其特征在于,所述储液罐(2)设有搅拌电机(18-1)。
  4. 根据权利要求1所述的压裂液摩阻测试仪,其特征在于,所述第一管道(16)、第二管道(17)均裹设有外保温层。
PCT/CN2018/073714 2017-03-11 2018-01-23 压裂液摩阻测试仪 WO2018166295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710143347.5 2017-03-11
CN201710143347.5A CN106769671A (zh) 2017-03-11 2017-03-11 压裂液摩阻测试仪

Publications (1)

Publication Number Publication Date
WO2018166295A1 true WO2018166295A1 (zh) 2018-09-20

Family

ID=58962261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073714 WO2018166295A1 (zh) 2017-03-11 2018-01-23 压裂液摩阻测试仪

Country Status (2)

Country Link
CN (1) CN106769671A (zh)
WO (1) WO2018166295A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769671A (zh) * 2017-03-11 2017-05-31 海安县石油科研仪器有限公司 压裂液摩阻测试仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004890A1 (en) * 2008-07-02 2010-01-07 Halliburton Energy Services, Inc. Device and method for testing friction reduction efficiency and suspension systems
CN104007043A (zh) * 2014-03-27 2014-08-27 中国华能集团清洁能源技术研究院有限公司 一种大型多功能压裂液实验系统
CN104880386A (zh) * 2015-06-16 2015-09-02 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳无水压裂液摩阻测试系统
CN104914014A (zh) * 2015-07-01 2015-09-16 中国华能集团清洁能源技术研究院有限公司 一种清水压裂液磨阻测试系统及测试方法
CN105628557A (zh) * 2016-02-24 2016-06-01 中国地质大学(武汉) 压裂液摩阻测试装置及测试方法
CN106769671A (zh) * 2017-03-11 2017-05-31 海安县石油科研仪器有限公司 压裂液摩阻测试仪
CN206594008U (zh) * 2017-03-11 2017-10-27 海安县石油科研仪器有限公司 压裂液摩阻测试仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004890A1 (en) * 2008-07-02 2010-01-07 Halliburton Energy Services, Inc. Device and method for testing friction reduction efficiency and suspension systems
CN104007043A (zh) * 2014-03-27 2014-08-27 中国华能集团清洁能源技术研究院有限公司 一种大型多功能压裂液实验系统
CN104880386A (zh) * 2015-06-16 2015-09-02 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳无水压裂液摩阻测试系统
CN104914014A (zh) * 2015-07-01 2015-09-16 中国华能集团清洁能源技术研究院有限公司 一种清水压裂液磨阻测试系统及测试方法
CN105628557A (zh) * 2016-02-24 2016-06-01 中国地质大学(武汉) 压裂液摩阻测试装置及测试方法
CN106769671A (zh) * 2017-03-11 2017-05-31 海安县石油科研仪器有限公司 压裂液摩阻测试仪
CN206594008U (zh) * 2017-03-11 2017-10-27 海安县石油科研仪器有限公司 压裂液摩阻测试仪

Also Published As

Publication number Publication date
CN106769671A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106683722B (zh) 棒束通道流动测压实验装置
CN203178161U (zh) 一种压裂液管路摩阻测定装置
WO2016180215A1 (zh) 一种基于ct数字岩心的微观驱替实验系统及微观驱替实验方法
CN105910951B (zh) 油气井井筒流体中气体溶解度的测量装置及测量方法
CN204177704U (zh) 一种高温高压减阻剂评价装置
CN107246262A (zh) 一种模拟抽油泵工作环境的漏失量检测装置及方法
CN104500978A (zh) 埋地油水管道泄漏扩散实验装置及其工作方法
US11946327B2 (en) Automatic rheological parameter measuring system and use method for flowing drilling fluid with high temperature and high-pressure
CN105136581A (zh) 一种多功能致裂模拟测试系统及方法
CN104807850A (zh) 一种测量油气井井筒流体、油井管热力学参数的实验装置及方法
CN205300835U (zh) 一种阀门的流量流阻系数检测装置
CN105675444B (zh) 一种三管混联式塑性流体漏斗黏度在线测量方法
CN205643081U (zh) 一种清蜡率、防蜡率测定实验装置
WO2018166295A1 (zh) 压裂液摩阻测试仪
CN108663289A (zh) 一种高压条件下利用毛细管测量液态co2/n2两相体系粘度的装置及其测量方法
CN110174237A (zh) 一种测量油管内流体状态的实验平台
CN205138983U (zh) 一种油井管屈曲管柱的高温腐蚀和冲蚀试验装置
CN204536240U (zh) 一种测量油气井井筒流体、油井管热力学参数的实验装置
CN204964305U (zh) 一种多功能致裂模拟测试系统
CN107340357A (zh) 水合物循环回路实验装置
CN106680145B (zh) 液体管路摩阻测定装置及使用其的方法
CN103743541B (zh) 评估仿生非光滑表面减阻效果的试验装置及方法
CN206594008U (zh) 压裂液摩阻测试仪
CN108519298A (zh) 一种高温水蒸汽环境蠕变持久试验机
CN210155008U (zh) 一种残余水状态下三轴煤岩瓦斯单相渗流实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767905

Country of ref document: EP

Kind code of ref document: A1