WO2018166285A1 - Pci混淆的优化判决方法及装置 - Google Patents

Pci混淆的优化判决方法及装置 Download PDF

Info

Publication number
WO2018166285A1
WO2018166285A1 PCT/CN2018/071746 CN2018071746W WO2018166285A1 WO 2018166285 A1 WO2018166285 A1 WO 2018166285A1 CN 2018071746 W CN2018071746 W CN 2018071746W WO 2018166285 A1 WO2018166285 A1 WO 2018166285A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
pci
candidate
pci confusion
confusion
Prior art date
Application number
PCT/CN2018/071746
Other languages
English (en)
French (fr)
Inventor
唐琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18766699.5A priority Critical patent/EP3598789A4/en
Priority to JP2019551289A priority patent/JP2020510359A/ja
Publication of WO2018166285A1 publication Critical patent/WO2018166285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a Long Term Evolution (LTE) system in the field of mobile communication technologies, and in particular, to an optimized decision method and apparatus for physical layer Identifier (PCI) confusion.
  • LTE Long Term Evolution
  • PCI physical layer Identifier
  • PCI is a physical layer identifier used to uniquely identify a cell in an LTE network.
  • UE User equipment
  • the LTE system includes, for example, a total of 504 PCIs.
  • PCI confusion detection and optimization scheme PCI reconfiguration is performed as long as PCI confusion is detected, which may cause cell deletion caused by unnecessary PCI reconfiguration, which affects the UE experience.
  • an optimization decision method for cell physical cell identity (PCI) confusion comprising: detecting a cell adjacent to a serving cell having the same frequency point and the same PCI as a candidate PCI confusion a cell in which the candidate PCI confounding cell is paired into a candidate PCI confounding cell pair, and the candidate PCI confounding cell is paired to obtain all the candidate PCI confoundings.
  • the cell pair determines the degree of influence of each candidate PCI confusion cell on the communication performance; according to the degree of influence of each candidate PCI confusion cell on the communication performance, the corresponding candidate PCI confusion cell pair is determined to need PCI optimization. PCI confuses the cell pair.
  • the detecting that a cell having the same frequency point and the same PCI as the candidate cell adjacent to the serving cell as the candidate PCI confusion cell comprises: using the E-UTRAN reported by the user terminal (UE) An E-UTRAN Cell Global Identifier (ECGI) measurement report determines whether the same PCI corresponds to at least two different ECGIs; if it is determined that the same PCI corresponds to at least two different ECGIs, the at least two different ones are The corresponding cell of the ECGI is determined as the candidate PCI confusion cell.
  • E-UTRAN Cell Global Identifier ECGI
  • the determining the degree of influence of each candidate PCI confusion cell pair on communication performance comprises: calculating an optimization probability total coefficient of each candidate PCI confusion cell pair, according to the optimization The total likelihood factor determines the extent of the impact.
  • the calculating a total likelihood of optimization for each candidate PCI confusion cell pair comprises: utilizing a first optimization probability coefficient of each of the candidate PCI confusion cell pairs, And calculating, by the at least one of the optimization probability coefficient, the third optimization possibility coefficient and the fourth optimization possibility coefficient, a total optimization probability coefficient of each candidate PCI confusion cell pair.
  • the first optimization possibility coefficient of each candidate PCI confusion cell pair is determined according to a Reference Signal Receiving Power (RSRP) value in an ECGI measurement report reported by the UE;
  • the second optimization possibility coefficient of the candidate PCI confusion cell pair is determined according to the number of the serving cell corresponding to each candidate PCI confusion cell pair;
  • the third optimization possibility coefficient is determined according to the handover performance between each candidate PCI confusion cell pair and the corresponding serving cell; and the fourth optimization possibility of each candidate PCI confusion cell pair
  • the coefficient of performance is determined according to a PCI multiplexing distance between two candidate PCI alias cells in each candidate PCI confusion cell pair.
  • the determining, according to the degree of influence of each candidate PCI confusion cell on communication performance determining, by the corresponding candidate PCI confusion cell pair, a PCI confusion cell pair that needs to be PCI optimized And comparing the total optimization probability coefficient of each candidate PCI confusion cell pair with a preset total coefficient threshold; if the total optimization probability coefficient of a candidate PCI confusion cell pair is greater than the preset total coefficient threshold And determining, by the candidate PCI confusion cell pair, a PCI confusion cell pair that needs to be PCI optimized.
  • an optimization decision apparatus for cell PCI confusion comprising: a detection module configured to detect a cell adjacent to a serving cell having the same frequency point and the same PCI as a candidate PCI confusion a pairing module configured to pair the candidate PCI confounding cells into a candidate PCI confounding cell pair in a manner of pairing the candidate PCI confounding cells in the candidate PCI confounding cell All the candidate PCI confusion cell pairs; the calculation module is configured to determine the degree of influence of each candidate PCI confusion cell on the communication performance; and the decision module is configured to influence the communication performance according to each candidate PCI confusion cell The corresponding candidate PCI confusion cell pair is determined as a PCI confusion cell pair that needs to be PCI optimized.
  • an optimization decision method for cell PCI confusion in an LTE network of a co-frequency network comprising: utilizing ECGI measurement reported by a UE for each cell in the LTE network Reporting, determining whether at least two cells having the same frequency point and the same PCI except the cell are detected, and if the determination result is yes, the cell is used as a serving cell, and the at least two have the same frequency point and the same a cell of the PCI is a candidate PCI confounding cell corresponding to the serving cell; and for each of the serving cells in the LTE network, any of the candidate PCI confounding cells corresponding to the serving cell Pairing the candidate PCI confusion cells into a candidate PCI confusion cell pair, pairing the candidate PCI confusion cells to obtain all the candidate PCI confusion cell pairs corresponding to the serving cell; and according to each The extent to which the candidate PCI confusion cell affects the communication performance, and determines whether to optimize the PCI for the candidate PCI confusion cell pair.
  • Figure 1 is a schematic diagram of PCI collisions
  • Figure 2 is a schematic diagram of PCI confusion
  • FIG. 3 is a block diagram of a method for optimizing PCI confusion according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an apparatus for optimizing PCI confusion according to an embodiment of the present invention.
  • Figure 5 is a basic block diagram of PCI collision/confusion detection and optimization
  • FIG. 7 is a flow chart of an PCI peer-optimized decision method according to Embodiments 7 through 9.
  • PCI does not conflict: A wireless cell cannot use the same PCI as its co-frequency neighbor.
  • Figure 1 is a schematic diagram of a PCI collision. As shown in FIG. 1, if two or more co-frequency cells having the same frequency point and the same PCI are geographically adjacent or too small, the UE overlaps signals in the two or more co-frequency cells. Synchronization and decoding of signals cannot be performed normally.
  • PCI is not confusing: multiple co-frequency neighbors of a wireless cell cannot use the same PCI.
  • Figure 2 is a schematic diagram of PCI confusion.
  • two cells having the same frequency point and the same PCI are isolated in terms of coverage, but are neighbors of the same cell.
  • the UE may be confused during the handover, and the handover target cell of the UE cannot be determined, so that the UE may drop the call due to the handover failure.
  • cell A and cell B have the same frequency point and the same PCI
  • cell C has a neighbor relationship with cell B
  • cell C and cell A may also have a neighbor relationship.
  • the PCI measured by the UE at the location in FIG. 2 is actually the signal of cell A.
  • the cell C may match the cell B according to the PCI information in the neighbor table, and therefore sends a handover request HO Request to the cell B.
  • the cell B returns the ACK, the cell C notifies the UE to initiate the random access, but the UE initiates the access to the cell A according to the RRC reconfiguration message, and the access fails.
  • PCI collisions can cause severe interference between neighboring cells, and the UE cannot distinguish signals from different cells, which must be avoided. Therefore, during the operation of the PCI initially planned network, PCI reconfiguration is performed whenever a PCI collision is detected.
  • PCI confusion the inventors have found that there may be PCI confusion in multiple neighboring cells, but there is no impact on the handover success rate, for example, the number of neighboring handovers in which the UE is confused with the presence of PCI is small, or the detected PCI confusion, There is a PCI confusion cell from a far-reaching coverage area, and the UE can always switch successfully. In this scenario, optimizing PCI confusion is of little significance, because usually PCI reconfiguration leads to cell deletion, migration of online users, and prohibition of new users and handover users from accessing the cell, so the impact on the UE is very big.
  • PCI reconfiguration is performed as long as PCI confusion is detected, which may cause cell deletion caused by unnecessary PCI reconfiguration. Affects the experience of the UE.
  • FIG. 3 is a block diagram of an optimization method of PCI confusion provided by this embodiment. As shown in FIG. 3, the steps of the PCI confusion optimization method include:
  • Step S101 Detecting cells adjacent to the serving cell that have the same frequency point and the same PCI as the candidate PCI aliasing cell.
  • the step S101 may include: determining whether the same PCI corresponds to at least two different ECGIs by using an E-UTRAN Cell Global Identifier (ECGI) measurement report reported by the UE. If it is determined that the same PCI corresponds to at least two different ECGIs, the cells corresponding to the at least two different ECGIs are determined as the candidate PCI confusion cells.
  • ECGI E-UTRAN Cell Global Identifier
  • step S101 the candidate PCI confusion cell is detected by using the ECGI measurement report reported by the UE of the serving cell.
  • the UE performs ECGI detection on a neighboring cell of the serving cell.
  • the ECGI may include a Public Land Mobile Network (PLMN), a Cell Identifier, and an RSRP for globally identifying a cell in the PLMN. If the PCI is corresponding to a neighboring cell, the UE reports multiple different ECGIs, indicating that the PCI is confusing. For example, the serving cell is A, and the PCI corresponding to the neighboring cell B is 3.
  • the UE in the cell A performs ECGI detection on the cell with the PCI 3, and reports two different ECGIs, corresponding to the cell B and the cell C, that is,
  • the serving cell A is an intermediate cell of the cell B and the cell C, and the cells B and C are the pair of candidate PCI confusing cells corresponding to the serving cell A.
  • One of the cells B and C is the local cell, and the other is the opposite cell.
  • Step S102 pairing the candidate PCI confounding cells into a candidate PCI confounding cell pair in a manner of pairing the candidate PCI confounding cells in the candidate PCI confounding cell, and obtaining all the candidate PCIs to be selected. Confuse the cell pair.
  • any two candidate PCI confounding cells having the same frequency point and the same PCI are paired, and finally all the candidate PCI confounding cell pairs are obtained.
  • the same PCI corresponds to 4 different ECGIs, which are ECGI1 to ECGI4, respectively.
  • the candidate PCI confusion cell pairs obtained by the pairing at this time include: (ECGI1, ECGI2), (ECGI1, ECGI3), (ECGI1, ECGI4), (ECGI2, ECGI3), (ECGI2, ECGI4), (ECGI3, ECGI4).
  • Step S103 Determine the degree of influence of each candidate PCI confusion cell on communication performance.
  • step S103 may include: calculating an optimization probability total coefficient of each candidate PCI confusion cell pair, and determining the impact degree according to the optimization possibility total coefficient. That is to say, the degree of influence of each candidate PCI confusion cell on communication performance is measured by optimizing the total coefficient of possibility.
  • the optimization possibility total coefficient may be calculated by using a first optimization possibility coefficient, a second optimization possibility coefficient, a third optimization possibility coefficient, and a fourth optimization possibility by using each of the candidate PCI confusion cell pairs. At least one of the coefficient of interest calculates a total likelihood of optimization for each pair of candidate PCI confounding cells.
  • the first optimization possibility coefficient of each candidate PCI confusion cell pair is determined according to a reference signal received power (RSRP) value in an ECGI measurement report reported by the UE; each of the candidate PCI confusions is selected.
  • RSRP reference signal received power
  • the second optimization possibility coefficient of the cell pair is determined according to the number of the serving cell corresponding to each candidate PCI confusion cell pair; the third optimization possibility of each candidate PCI confusion cell pair The coefficient of performance is determined according to the handover performance between each candidate PCI confusion cell pair and the corresponding serving cell; the fourth optimization possibility coefficient of each candidate PCI confusion cell pair is according to the The PCI multiplexing distance between two candidate PCI confusion cells in each candidate PCI confusion cell pair is determined.
  • Step S104 Determine, according to the degree of influence of each candidate PCI confusion cell on communication performance, the corresponding candidate PCI confusion cell pair as a PCI confusion cell pair that needs to be PCI optimized.
  • the step S104 includes: comparing the total optimization probability coefficient of each candidate PCI confusion cell pair with a preset total coefficient threshold, if an optimization of a candidate PCI confusion cell pair is performed. If the total likelihood coefficient is greater than the preset total coefficient threshold, the candidate PCI confusion cell pair is determined as a PCI confusion cell pair that needs to be PCI optimized.
  • the measurement of the UE may be random. For example, the super-far coverage cell has no neighbor relationship with the serving cell, but the UE may measure the ECGI measurement in a certain time.
  • the super-far coverage cell finds that the PCI of the super-far coverage cell and the PCI of a neighboring cell of the serving cell are the same, and it is determined that the super-far coverage cell is confused with the PCI of the neighboring cell (in this case, the ultra-far coverage cell is considered as the leakage of the serving cell) With adjacent areas).
  • some cells have complex geographic locations.
  • the UE may detect a weak signal of the cell after multiple reflections of the obstacle in a certain ECGI measurement, and find the cell.
  • the PCI is the same as the PCI of a neighboring cell in the serving cell, and may also be misjudged as PCI confusion.
  • step S102 before the PCI confusion optimization is performed, all the candidate PCI confusion cell pairs are obtained (step S102), and the degree of influence of each candidate PCI confusion cell pair on the communication performance is determined (step S103), and then according to The degree of influence of each candidate PCI confusion cell on the communication performance determines that a PCI-optimized candidate PCI confusion cell pair needs to be performed (step S104).
  • step S104 the necessity of optimizing the pair of PCI confusion cells can be determined in advance to avoid unnecessary optimization. Therefore, cell deletion caused by unnecessary PCI reconfiguration is avoided, and the UE experience is improved.
  • all the candidate PCI confusion cell pairs of each cell in the LTE network may be acquired at one time, so that the set of the candidate PCI confusion cell pairs of all the cells is obtained, and then according to each different set in the set.
  • the extent to which the candidate PCI confusion cell affects the communication performance selects the PCI confusion cell pair that needs to be PCI optimized in the LTE network. In this way, PCI confusion optimization can be performed on the entire LTE network at one time.
  • the corresponding candidate PCI confusion cell pair is determined as a PCI confusion cell pair that needs to be PCI optimized.
  • the storage medium may be a ROM/RAM, a magnetic disk, an optical disk, or the like.
  • the apparatus includes a detection module, a pairing module, a calculation module, and a decision module.
  • the detecting module is configured to detect a cell adjacent to the serving cell having the same frequency point and the same PCI as the candidate PCI confusing cell.
  • the detecting module may be configured to determine whether the same PCI corresponds to at least two different ECGIs by using an ECGI measurement report reported by the UE, and if it is determined that the same PCI corresponds to at least two different ECGIs, The respective cells corresponding to the at least two different ECGIs are determined as the candidate PCI aliasing cells.
  • the pairing module is configured to pair the candidate PCI confusion cells to obtain all candidate PCI confusion cell pairs.
  • the pairing module may be configured to pair any two detected candidate PCI confusing cells to obtain all possible candidate PCI confusing cell pairs.
  • the computing module is configured to determine the extent to which each candidate PCI confused cell has an impact on communication performance.
  • the degree of influence of each candidate PCI confusion cell on communication performance is determined by the calculation module by calculating a total optimization probability coefficient of each candidate PCI confusion cell pair.
  • the calculating module determines, according to the RSRP value in the ECGI measurement report reported by the UE, a first optimization possibility coefficient of each candidate PCI confusion cell pair; Selecting a number of the serving cell corresponding to the PCI obfuscated cell pair, and determining a second optimization possibility coefficient of each candidate PCI confounding cell pair; according to each of the candidate PCI confounding cell pairs and the corresponding serving cell The switching performance, determining a third optimization possibility coefficient of each candidate PCI confusion cell pair; according to the PCI multiplexing distance between the two candidate PCI confusion cells in each candidate PCI confusion cell pair And determining a fourth optimization probability coefficient of each candidate PCI confusion cell pair.
  • the calculating module may utilize at least one of a first optimization possibility coefficient, a second optimization possibility coefficient, a third optimization possibility coefficient, and a fourth optimization possibility coefficient of each candidate PCI confusion cell pair And calculating a total coefficient of optimization possibility of each candidate PCI confusion cell pair.
  • the calculating module is configured to calculate only a part of the first to fourth optimization possibility coefficients, and calculate the candidate for each candidate PCI confusion cell according to the part of the coefficients. Optimize the total coefficient of possibility.
  • the decision module is configured to determine, according to the degree of influence of each candidate PCI confusion cell on the communication performance, the corresponding candidate PCI confusion cell pair as the PCI confusion cell pair that needs to be PCI optimized.
  • the determining module may be configured to compare the total optimization probability coefficient of each candidate PCI confusion cell pair with a preset total coefficient threshold, if a candidate PCI confusion cell is selected If the total optimization probability of the pair is greater than the preset total coefficient threshold, the candidate PCI confusion cell pair is determined as a PCI confusion cell pair that needs to be PCI optimized.
  • FIG. 5 is a basic block diagram of PCI collision/confusion detection and optimization according to the present embodiment. As shown in FIG. 5, it can be determined whether PCI reconfiguration is performed after the PCI confusion is found.
  • PCI conflict/confusion detection and optimization involves three modules: PCI collision/confusion detection module (at least the function of the detection module of FIG. 4), PCI confusion optimization decision module (at least the pairing module, calculation module, and decision of FIG. 4 are implemented). Module functionality) and PCI optimization module. among them:
  • the PCI conflict/confusion detection module is mainly responsible for detecting PCI conflict/confusion in the network and reporting it to the PCI confusion optimization decision module.
  • the PCI obfuscation optimization decision module is mainly responsible for collecting the detected PCI conflicts/confusions, and giving a decision strategy according to information such as the number of PCI conflicts/confusions and the key performance indicator KPIs (such as handover performance) saved by the network management. It is finally decided whether to optimize the detected obfuscated PCI and send the confusing PCI information that needs to be optimized to the PCI optimization module.
  • the PCI optimization module is mainly responsible for optimizing the conflict/confuse PCI that is optimized by the PCI confusion optimization decision module, that is, the target cell is re-matched with no conflict, no confusion, and other requirements (for example, the adjacent cell PCI mode 3 is different). New PCI for PCI multiplexing layer requirements, etc.)
  • all the candidate PCI confusion cell pairs are obtained through the ECGI measurement report reported by the UE, all the candidate PCI confusion cells are collated according to the following Table 1. It is assumed that one candidate PCI confusion cell in the candidate PCI confusion cell is the local cell, and the other candidate PCI confusion cell is the opposite cell, and the cell corresponding to the local cell and the opposite cell is the serving cell (the same The candidate PCI confusion cell pair may correspond to multiple serving cells). Arrange according to the number of serving cells.
  • the number of serving cells in Table 1 indicates the number of serving cells that detect the same candidate PCI confusion cell pair. The more the number of serving cells in Table 1, the lower the chance of the detected PCI confusion cell being detected. The more service cells that the candidate PCI confusion cell affects, the higher the necessity of optimizing the candidate PCI confusion cell pair.
  • the KPI history record of the serving cell assists in determining whether the detected candidate PCI confounding cell actually affects the performance of the serving cell. Specifically, the number of handover attempts and the handover success rate of each candidate cell to the selected PCI confusion cell (the local cell and the opposite cell) in the candidate PCI confusion cell pair are counted. After the number of handover attempts reaches a certain statistical value, if the handover success rate is low, this is likely to be caused by PCI confusion, and the necessity for optimizing the candidate PCI confusion cell pair is high.
  • FIG. 6 is a flowchart of an optimization decision method of PCI confusion according to the present embodiment. As shown, the method includes the following steps:
  • Step S01 Obtain a candidate PCI confusion cell pair.
  • the candidate PCI confusion cell pair can be obtained according to step S101 and step S102 in Embodiment 1.
  • Step S02 Calculate a first optimization possibility coefficient of the candidate PCI confusion cell pair according to the RSRP value in the ECGI measurement report reported by the UE.
  • the ECGI measurement report corresponding to the serving cell that the UE reports with the signal strength RSRP of the UE received by the UE (that is, the RSPR value when the EU measurement reports the ECGI) is considered to be the UE only when the signal strength exceeds a certain threshold.
  • the measurement report is reliable. That is, in the ECGI measurement report reported by the UE, if two or more different ECGIs are detected for the same PCI (PCI of the serving cell where the UE is located), when the RSRP in the ECGI measurement report is greater than or equal to When the threshold is set (RSRP threshold), the measurement report of the ECGI is considered to be valid, and the first optimization possibility coefficient of the corresponding candidate PCI confusion cell pair is correspondingly higher.
  • PCI PCI of the serving cell where the UE is located
  • the UE reports two different ECGI1 and ECGI2 (to be selected PCI confusion cell pairs) for the same PCI, and the measured signal strengths are RSRP1 and RSRP2, respectively:
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair is a1;
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair is a2;
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair is a3;
  • Step S03 Calculate a second optimization possibility coefficient of the candidate PCI confusion cell pair according to the number of the serving cell corresponding to the candidate PCI confusion cell.
  • all the candidate PCI confusion cell pairs are collated. It is assumed that one of the candidate PCI confusion cell pairs is the local cell, and the other is the peer cell, and the cell corresponding to the local cell and the opposite cell respectively serves.
  • the cell (the same candidate PCI confusion cell pair may correspond to multiple serving cells) is arranged according to the number of serving cells.
  • the optimization possibility coefficients of different candidate PCI confusion cell pairs may be set according to different number of serving cells, for example:
  • the number of serving cells corresponding to the same candidate PCI confusion cell pair ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair is b1;
  • the number of serving cells corresponding to the same candidate PCI confusion cell pair ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair is b2;
  • At least two different levels of thresholds may be set according to the number of serving cells, so as to divide the second optimization possibility coefficient of the candidate PCI confusion cell pair into more levels.
  • Step S04 Calculate a third optimization possibility coefficient of the candidate PCI confusion cell pair according to the handover performance between the candidate PCI confusion cell pair and the corresponding serving cell (intermediate cell).
  • the number of handover attempts and the handover success rate of the candidate PCI confounding cell (the local cell and the opposite cell) from each serving cell to the corresponding candidate PCI confounding cell pair in the historical information of one cycle is counted.
  • the switchover success rate is counted, the number of times the switchover fails to be prepared can be eliminated, and only the number of failed switchover attempts is counted, because the switchover failure caused by PCI confusion mainly occurs in the switchover execution phase (the UE cannot access the target cell). If the candidate PCI converged cell pair corresponding to the serving cell satisfies the following two conditions, the candidate PCI confounding cell pair is considered to affect the handover performance of the serving cell:
  • the cell C and the cell D are the to-be-selected PCI confusing cell pairs. If the serving cell to be selected is the cell A and the cell B, the cell A->Cell C and the cell A are respectively counted. >Cell D, Cell B->Cell C, Cell B->Cell D number of handover attempts and handover success rate, as long as any one of the handover attempts and handover success rate meets the above conditions, the candidate PCI confusion
  • the optimization probability coefficient of the cell pair is c1, otherwise it is c2, where c1>c2.
  • Step S05 Calculate a fourth optimization possibility coefficient of the candidate PCI confusion cell pair according to the PCI multiplexing distance between the two candidate PCI confusion cells in the candidate PCI confusion cell pair.
  • the candidate PCI confusion cell pair is selected.
  • the fourth optimization possibility coefficient is d1; if the distance between the two cells in the candidate PCI confusion cell pair is ⁇ PCI multiplexing distance, the fourth optimization possibility coefficient of the candidate PCI confusion cell pair is d2; wherein d1 >d2.
  • the PCI multiplexing distance is defined as: if the latitude and longitude of the serving cell is taken as the origin and the PCI multiplexing distance is used as the radius, all PCIs within the circle are PCIs that are not multiplexable in the serving cell, but There is a reusable PCI outside the circle.
  • the parameters of the PCI multiplexing distance are set in advance according to the network scenario.
  • Step S06 Integrate all the optimization possibility coefficients obtained in the above steps S02 to S05 to perform optimization judgment of the candidate PCI confusion cell pair.
  • the optimization possibility coefficient of the candidate PCI confusion cell pair obtained in the above four steps weighted addition is used to obtain an optimized total probability coefficient, and if the content of the candidate PCI confusion cell is optimized, the possibility of optimization is satisfied. If the total coefficient ⁇ the total coefficient threshold, it is determined that the candidate PCI confusion cell needs to be optimized.
  • step S06 The weighting addition coefficients of the candidate PCI candidate cell pairs obtained in the remaining steps in steps S02 to S05 are weighted and added. That is to say, the PCI optimization may be determined according to one or more of the above four coefficients, and finally determining whether the candidate PCI confusion cell pair obtained after the detection is a PCI confusion cell pair that needs to be PCI optimized. Further, it will be readily understood by those skilled in the art that the order of steps S02 to S05 is not important, and the steps may be performed in any order or simultaneously.
  • the method further includes step S07 (not shown in FIG. 6): managing the candidate PCI confusion cell pair that does not satisfy the optimization condition.
  • PCI optimization will not be performed, but history will be made. If the number of occurrences of a candidate PCI confusion cell to the candidate PCI confusion cell that does not satisfy the optimization condition is ⁇ the history record threshold, the candidate PCI confusion cell pair is added to the blacklist of the PCI optimization list. .
  • the history is searched. If it is found that a candidate PCI confusion cell pair is reported again, and the corresponding serving cell does not change, according to the foregoing steps S02 to S06, the candidate PCI confusion cell pair may still not need to perform PCI optimization.
  • the history threshold By setting the history threshold, a plurality of candidate PCI confusion cell pairs that are determined to not satisfy the optimization condition may be added to the blacklist of the PCI optimization list.
  • the PCI confusion optimization decision module uses the decision method described in Embodiment 5 to judge the reliability of PCI confusion, and gives an optimization possibility coefficient of the PCI confusion cell.
  • the optimization decision device may further include:
  • a data acquisition module that collects measurement data and switching data required in Embodiment 5.
  • the measurement data includes a signal strength RSRP in an ECGI measurement report of the UE.
  • the handover data includes a number of handovers and a handover success rate between a serving cell and a candidate PCI confusion cell pair in a statistical period.
  • the optimization decision device may further include:
  • the result presentation module includes but is not limited to the following:
  • the unoptimized candidate PCI confusion cell pair has also been detected in the history.
  • the PCI confusing optimization decision step of this embodiment includes:
  • Step 201 Collect the PCI confusion reported by the UE, and determine whether each candidate PCI confusion cell pair obtained by the pairing appears in the blacklist of the PCI optimization list.
  • the UE reports 3 different ECGIs for the same PCI: ECGI1, ECGI2, and ECGI3, and the paired candidate PCI confusion cell pairs (ECGI1 and ECGI3), (ECGI1 and ECGI2), and (ECGI2 and ECGI3) are not in the PCI optimization list. In the blacklist, it is necessary to continue to judge.
  • Step 202 Calculate a first optimization possibility coefficient of the candidate PCI confusion cell pair according to the RSRP value in the reported ECGI measured by the UE.
  • the measured signal strengths RSRP1, RSRP2, and RSRP3 are -80dB, -112dB, and -100dB, respectively, and the RSRP threshold is set to -110dB, then:
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1;
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 0.5;
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI2 and ECGI3) is 0.5;
  • Step 203 Calculate a second optimization possibility coefficient of the candidate PCI confusion cell pair according to the number of the serving cell corresponding to the candidate PCI confusion cell.
  • the three candidate PCI confusing cell pairs detected above are collated, and the number of serving cells corresponding to each candidate PCI confusing cell pair is listed.
  • the threshold of the number of serving cells is set to 2, as shown in Table 2.
  • the number of serving cells corresponding to the candidate PCI confusion cell pair (ECGI1 and ECGI3) ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1;
  • the number of serving cells corresponding to the candidate PCI confusion cell pair (ECGI1 and ECGI2) is ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 1;
  • the number of serving cells corresponding to the candidate PCI confusion cell pair (ECGI2 and ECGI3) ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI2 and ECGI3) is 0.5;
  • Step 204 Calculate a third optimization possibility coefficient of the candidate PCI confusion cell pair according to the handover performance between the candidate PCI confusion cell pair and the corresponding serving cell.
  • the third optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1.
  • the third optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 1 .
  • the third optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI2 and ECGI3) is 0.
  • Step 205 Calculate a fourth optimization possibility coefficient of the candidate PCI confusion cell pair according to the PCI multiplexing distance between the two candidate PCI confusion cells in the candidate PCI confusion cell pair.
  • the distance between the two cells in the candidate PCI confusion cell pair (ECGI1 and ECGI3) is ⁇ PCI multiplexing distance, and the fourth optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 0;
  • the distance between the two cells in the candidate PCI confusion cell pair (ECGI1 and ECGI2) is ⁇ PCI multiplexing distance, and the fourth optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 0;
  • the distance between the two cells in the candidate PCI confusion cell pair (ECGI2 and ECGI3) is ⁇ PCI multiplexing distance, and the fourth optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI2 and ECGI3) is 0.
  • Step 206 Integrate all the optimization probability coefficients above to finally perform an optimization judgment of PCI confusion.
  • the first to fourth optimization possibility coefficients of the candidate PCI confusion cell pair obtained in the previous four steps are weighted and added to obtain a total coefficient, and the total coefficient threshold is set to 1.5, and each weighting coefficient is set. Is 1, then:
  • PCI optimization module The final PCI optimized queue is sent to the PCI reconfiguration optimization module (PCI optimization module).
  • Step 207 Management of the candidate PCI confusion cell pair that does not satisfy the optimization condition.
  • the candidate PCI confusion cell pair (ECGI2 and ECGI3) has never appeared in the blacklist of the PCI optimization list before, the candidate PCI confusion cell pair (ECGI2 and ECGI3) and the corresponding service cell are recorded and placed unsatisfied.
  • the optimized condition of the candidate PCI confusion cell pair in the history list Since the candidate PCI confusion cell pair (ECGI2 and ECGI3) has never appeared in the blacklist of the PCI optimization list before, the candidate PCI confusion cell pair (ECGI2 and ECGI3) and the corresponding service cell are recorded and placed unsatisfied. The optimized condition of the candidate PCI confusion cell pair in the history list.
  • the paired PCI confounding cell pair obtained in the pairing is found in the blacklist of the PCI optimization list, no further judgment is made, and it is directly determined that the candidate PCI confounding cell pair will not be PCI optimized.
  • Step 301 Determine whether the pair of PCI confusion cells obtained by the pairing appears in the blacklist of the PCI optimization list.
  • the UE reported 3 different ECGI1, ECGI2, and ECGI3 for the same PCI. Pairing results in a candidate PCI confusion cell pair (ECGI1 and ECGI3), (ECGI1 and ECGI2), and (ECGI2 and ECGI3). It is found that the candidate PCI confusion cell pair (ECGI2 and ECGI3) has appeared in the blacklist of the PCI optimization list, and the corresponding serving cell does not change, then no other judgment is made, and it is directly determined that the candidate is to be selected. PCI confusion cell pairs (ECGI2 and ECGI3) will not be PCI optimized. Other candidate PCI confusion cell pairs (ECGI1 and ECGI3) and (ECGI1 and ECGI2) need to continue to judge.
  • Step 302 Calculate a first optimization possibility coefficient of the candidate PCI confusion cell pair according to the RSRP value in the reported ECGI measured by the UE.
  • the measured signal strengths RSRP1, RSRP2, and RSRP3 are -90dB, -115dB, and -108dB, respectively, and the RSRP threshold is set to -110dB, then:
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1;
  • the first optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 0.5;
  • Step 303 Calculate a second optimization possibility coefficient of the candidate PCI confusion cell pair according to the number of the serving cell corresponding to the candidate PCI confusion cell.
  • the remaining two candidate PCI confusion cell pairs are arranged one by one, and the number of serving cells corresponding to each candidate PCI confusion cell pair is listed, and the threshold number of the serving cell is set to 2.
  • the number of serving cells corresponding to the candidate PCI confusion cell pair (ECGI1 and ECGI3) ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1;
  • the number of serving cells corresponding to the candidate PCI confusion cell pair (ECGI1 and ECGI2) ⁇ the number of serving cell thresholds, and the second optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 0.5.
  • Step 304 Calculate a third optimization possibility coefficient of the candidate PCI confusion cell pair according to the handover performance between the candidate PCI confusion cell pair and the corresponding serving cell.
  • the number of handover attempts ⁇ the PCI redistribution handover attempt threshold and the handover success rate ⁇ PCI redistribution handover success threshold. If a handover performance satisfies the above conditions in the handover performance of all the serving cell->ECGI1 and the serving cell->ECGI3, the third optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 1. If a handover performance satisfies the above conditions in the handover performance of all the serving cell->ECGI1 and the serving cell->ECGI2, the third optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 1.
  • Step 305 Calculate a fourth optimization possibility coefficient of the candidate PCI confusion cell pair according to the PCI multiplexing distance between the two candidate PCI confusion cells in the candidate PCI confusion cell pair.
  • the distance between two cells in the candidate PCI confusion pair (to be selected PCI confusion cell) is calculated according to the latitude and longitude of the cell.
  • the distance between the two cells in the candidate PCI confusion cell pair (ECGI1 and ECGI3) is ⁇ PCI multiplexing distance, and the fourth optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI3) is 0;
  • the distance between the two cells in the candidate PCI confusion cell pair (ECGI1 and ECGI2) is ⁇ PCI multiplexing distance, and the fourth optimization possibility coefficient of the candidate PCI confusion cell pair (ECGI1 and ECGI2) is 0;
  • Step 306 Integrate all the optimization probability coefficients above to finally perform an optimization judgment of PCI confusion.
  • the final PCI optimized queue is sent to the PCI reconfiguration optimization module.
  • Step 307 Management of the candidate PCI confusion cell pair that does not satisfy the optimization condition.
  • the PCI confusion optimization decision method of this embodiment includes the following steps:
  • Step 401 Determine whether the paired PCI confusion cell pair obtained in the pairing appears in the blacklist of the PCI optimization list.
  • Step 402 Calculate a second optimization possibility coefficient of the candidate PCI confusion cell pair according to the number of the serving cell corresponding to the candidate PCI confusion cell.
  • the detected candidate PCI confusion cell pairs are collated, and the number of serving cells corresponding to each candidate PCI confusion cell pair is listed, and the threshold number of the serving cell is set to 2, assuming:
  • the second optimization possibility coefficient of the pair of candidate PCI cells is 0.5.
  • Step 402 Calculate a third optimization possibility coefficient of the candidate PCI confusion cell pair according to the handover performance between the candidate PCI confusion cell pair and the corresponding serving cell.
  • Step 403 Calculate a fourth optimization possibility coefficient of the candidate PCI confusion cell pair according to the PCI multiplexing distance between the two cells in the candidate PCI confusion cell pair.
  • the fourth optimization possibility coefficient of the candidate PCI confusion cell pair is 0 (otherwise, 1).
  • Step 404 Integrate all the optimization probability coefficients above to finally perform an optimization judgment of PCI confusion.
  • weighted addition is performed to obtain a total coefficient, and the total coefficient threshold is set to 1, and each weighting coefficient is 1, :
  • Step 405 Management of the candidate PCI confusion cell pair that does not satisfy the optimization condition.
  • the optimization probability coefficients of the pair of PCI confusion cell pairs to be selected are weighted and added by the pair of PCI confusion cell pairs to be selected, and each weighting coefficient is 1.
  • each weighting coefficient is 1.
  • the various weighting coefficients may also differ from each other or partially.
  • other calculation methods other than weighted addition may be employed.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • Embodiments of the present invention propose an optimized decision method and apparatus for cell PCI confusion applicable to an LTE network. After the PCI confusion is detected, the PCI is not optimized immediately. Instead, information such as Key Performance Indicator (KPI) records stored by the network management, such as handover performance, is given to determine the decision strategy. Confounded PCI detected. Therefore, it is possible to screen out PCI confusion cell pairs that really have an impact on the system. At the same time, the network management can be reduced to perform unnecessary PCI optimization operations, avoiding cell deletion caused by unnecessary PCI reconfiguration, reducing the impact on the UE experience and the impact of cell deletion on the network.
  • KPI Key Performance Indicator

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种PCI混淆的优化判决方法及装置。所述方法包括:检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;确定每个待选PCI混淆小区对对通信性能的影响程度;根据所述影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。摘图1

Description

PCI混淆的优化判决方法及装置 技术领域
本发明涉及移动通信技术领域的长期演进(Long Term Evolution,LTE)系统,特别涉及一种物理层小区标识(Physical Cell Identifier,PCI)混淆的优化判决方法及装置。
背景技术
PCI是LTE网络中用来唯一标识一个小区的物理层标识,LTE中的用户终端(User Equipment,UE)以PCI区分不同小区的无线信号。LTE系统例如一共包括504个PCI,当同频组网的LTE网络中的小区数目较多时,不可避免地会出现PCI复用,即多个小区使用同一个PCI。而PCI复用会导致PCI冲突和PCI混淆的情况。在PCI初始规划好的网络的运营期间,由于LTE中基站(Evolved NodeB,eNodeB)的本地小区频点、PCI的改变,eNodeB外部小区的PCI、频点发生变化,外部小区的增加或删除,或者eNodeB中邻区关系的增加或删除,都会造成PCI冲突和PCI混淆。在根据相关技术的PCI混淆检测和优化方案中,只要检测到PCI混淆就会进行PCI重配,这样会引起由不必要的PCI重配导致的小区删建,影响了UE的体验。
发明内容
根据本发明的一方面,提供一种小区物理小区标识(PCI)混淆的优化判决方法,该方法包括:检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;确定每个待选PCI混淆小区对对通信性能的影响程度;根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
在根据所述方面的一个实施例中,所述检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区包括:利用用户终端(UE)上报的E-UTRAN小区全局标识符(E-UTRAN Cell Global Identifier,ECGI)测量 报告,确定同一PCI是否对应至少两个不同的ECGI;若确定同一PCI对应至少两个不同的ECGI,则将所述至少两个不同的ECGI各自对应的小区确定为所述待选PCI混淆小区。
在根据所述方面的一个实施例中,所述确定每个待选PCI混淆小区对对通信性能的影响程度包括:计算每个待选PCI混淆小区对的优化可能性总系数,根据所述优化可能性总系数确定所述影响程度。
在根据所述方面的一个实施例中,所述计算每个待选PCI混淆小区对的优化可能性总系数包括:利用所述每个待选PCI混淆小区对的第一优化可能性系数、第二优化可能性系数、第三优化可能性系数和第四优化可能性系数中的至少一个,计算所述每个待选PCI混淆小区对的优化可能性总系数。其中,所述每个待选PCI混淆小区对的所述第一优化可能性系数是根据UE上报的ECGI测量报告中的参考信号接收功率(Reference Signal Receiving Power,RSRP)值确定的;所述每个待选PCI混淆小区对的所述第二优化可能性系数是根据所述每个待选PCI混淆小区对所对应的服务小区的数量确定的;所述每个待选PCI混淆小区对的所述第三优化可能性系数是根据所述每个待选PCI混淆小区对与对应的服务小区之间的切换性能确定的;并且所述每个待选PCI混淆小区对的所述第四优化可能性系数是根据所述每个待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离确定的。
在根据所述方面的一个实施例中,所述根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对包括:将所述每个待选PCI混淆小区对的优化可能性总系数与预设总系数门限进行比较;若某一待选PCI混淆小区对的优化可能性总系数大于所述预设总系数门限,则将所述待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
根据本发明的另一方面,提供一种小区PCI混淆的优化判决装置,该装置包括:检测模块,构造为检测与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;配对模块,构造为以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;计算模块,构造为确定每个待选PCI混淆小区对对通信性能的影响程度;以及判决模块,构造为根据每 个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
根据本发明的另一方面,提供一种同频组网的LTE网络中的小区PCI混淆的优化判决方法,所述方法包括:针对所述LTE网络中的每个小区,利用UE上报的ECGI测量报告判断是否检测到所述小区以外的至少两个具有相同频点和相同PCI的小区,如果判断结果为是,则将所述小区作为服务小区,将所述至少两个具有相同频点和相同PCI的小区作为与所述服务小区对应的待选PCI混淆小区;针对所述LTE网络中的每个所述服务小区,以将与所述服务小区对应的所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有与所述服务小区对应的待选PCI混淆小区对;以及根据每个待选PCI混淆小区对对通信性能的影响程度,确定是否要对该待选PCI混淆小区对进行PCI优化。
附图说明
图1是PCI冲突的示意图;
图2是PCI混淆的示意图;
图3是本发明实施例提供的PCI混淆的优化方法框图;
图4是本发明实施例提供的PCI混淆的优化装置框图;
图5是PCI冲突/混淆检测和优化的基本模块框图;
图6是根据实施例5的PCI混淆的优化判决方法的流程图。
图7是根据实施例7至9的PCI混淆的优化判决方法的流程图。
具体实施方式
如上文所述,当同频组网的LTE网络中的小区数目较多时,不可避免地会出现PCI复用。
在PCI规划分配时需要满足下面2个基本原则:
1)PCI不冲突:一个无线小区不能与同频邻区使用相同的PCI。
图1是PCI冲突的突示意图。如图1所示,如果具有相同频点和相同PCI的两个 或多个同频小区在地理位置上邻接或间隔过小,则UE在这两个或多个同频小区的信号交叠区域不能正常实现信号的同步、解码。
2)PCI不混淆:一个无线小区的多个同频邻区不能使用相同的PCI。
图2是PCI混淆的示意图。如图2所示,具有相同频点和相同PCI的两个小区虽然就覆盖范围而言是隔离的,但却是同一个小区的邻区。这样,当UE测量并上报该混淆的PCI时,就可能导致UE在切换时发生混淆,无法确定UE的切换目标小区,从而UE可能因切换失败而掉话。例如,小区A和小区B具有相同频点和相同PCI,小区C与小区B有邻区关系,且小区C与小区A也可能有邻区关系。UE在图2中所处位置测量到的PCI实际为小区A的信号。UE上报测量报告后,小区C可能根据邻区表中的PCI信息匹配到小区B,因此向小区B发送切换请求HO Request。小区B回ACK后,小区C通知UE发起随机接入,但UE根据RRC重配消息向小区A发起接入,从而接入失败。
在PCI初始规划好的网络运营期间,由于LTE中基站(Evolved NodeB,eNodeB)本地小区频点、PCI的改变,eNodeB中外部小区的PCI、频点发生变化,外部小区的增加或删除,或者eNodeB中邻区关系的增加或删除,都会造成PCI冲突和混淆,这样就需要通过一些检测手段及时检测出PCI冲突和混淆,并进行小区PCI的优化,即重新分配一个不冲突且不混淆的新的PCI。
PCI冲突会导致相邻小区间严重干扰,且UE无法区分来自不同小区的信号,这是必须避免的。因此,在PCI初始规划好的网络的运营期间,只要检测到PCI冲突就会进行PCI重配。
但是对于PCI混淆,本发明人发现,可能多个邻区存在PCI混淆,但是对切换成功率并没有影响,例如UE与存在PCI混淆的邻区切换次数很少,或者检测到的PCI混淆中,有一个PCI混淆小区来自很远的越区覆盖小区,而UE总能成功切换。在这种场景下,优化PCI混淆意义不大,因为通常PCI重配会导致小区删建,需要对在线用户进行迁移,以及禁止新用户和切换用户接入该小区,所以对UE的影响是非常大的。
现有的PCI混淆检测和优化方案中,在PCI初始规划好的网络的运营期间,只要检测到PCI混淆就会进行PCI重配,这样会引起由不必要的PCI重配导致的小区删建,影响了UE的体验。
以下结合附图对本发明的实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
图3是由本实施例提供的PCI混淆的优化方法框图。如图3所示,该PCI混淆的优化方法的步骤包括:
步骤S101:检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区,作为待选PCI混淆小区。
在本实施例的一个实例中,步骤S101可包括:利用UE上报的E-UTRAN小区全局标识符(E-UTRAN Cell Global Identifier,ECGI)测量报告,确定同一PCI是否对应至少两个不同的ECGI,若确定同一PCI对应至少两个不同的ECGI,则将所述至少两个不同的ECGI各自对应的小区确定为待选PCI混淆小区。
如果某一小区的同频邻区中存在至少两个同一PCI的小区,那么这些同频同PCI的小区互为PCI混淆小区。
步骤S101中,待选PCI混淆小区是利用服务小区的UE上报的ECGI测量报告而检测出来的。
具体地,首先,UE对服务小区的邻区进行ECGI检测。ECGI可包括公共陆地移动网络(Public Land Mobile Network,PLMN)、小区标识(Cell Identifier)、RSRP,用于在PLMN中全局标识一个小区。如果对应某一个邻区的PCI,UE上报了多个不同的ECGI,说明该PCI出现了混淆。例如,服务小区为A,其邻区B对应的PCI为3,小区A中的UE对PCI为3的小区进行ECGI检测,上报上来2个不同的ECGI,分别对应小区B和小区C,即,服务小区A为小区B和小区C的中间小区,小区B和C为与服务小区A对应的待选PCI混淆小区对。小区B和C中一个为本端小区,另一个为对端小区。
步骤S102:以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对, 得到所有待选PCI混淆小区对。
具体地,在步骤S102中,将任意两个彼此具有相同频点和相同PCI的待选PCI混淆小区均进行配对,最终得到所有的待选PCI混淆小区对。例如,同一PCI对应4个不同的ECGI,分别为ECGI1至ECGI4。此时配对得到的待选PCI混淆小区对包括:(ECGI1,ECGI2)、(ECGI1,ECGI3)、(ECGI1,ECGI4)、(ECGI2,ECGI3)、(ECGI2,ECGI4)、(ECGI3,ECGI4)。
步骤S103:确定每个待选PCI混淆小区对对通信性能的影响程度。
在本实施例的一个实例中,步骤S103可包括:计算每个待选PCI混淆小区对的优化可能性总系数,根据所述优化可能性总系数确定所述影响程度。也就是说,通过优化可能性总系数来衡量每个待选PCI混淆小区对对通信性能的影响程度。
其中,优化可能性总系数可以通过以下步骤计算:利用所述每个待选PCI混淆小区对的第一优化可能性系数、第二优化可能性系数、第三优化可能性系数和第四优化可能性系数中的至少一个,计算所述每个待选PCI混淆小区对的优化可能性总系数。其中,所述每个待选PCI混淆小区对的所述第一优化可能性系数是根据UE上报的ECGI测量报告中的参考信号接收功率(RSRP)值确定的;所述每个待选PCI混淆小区对的所述第二优化可能性系数是根据所述每个待选PCI混淆小区对所对应的服务小区的数量确定的;所述每个待选PCI混淆小区对的所述第三优化可能性系数是根据所述每个待选PCI混淆小区对与对应的服务小区之间的切换性能确定的;所述每个待选PCI混淆小区对的所述第四优化可能性系数是根据所述每个待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离确定的。
步骤S104:根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
在本实施例的一个实例中,步骤S104包括:将所述每个待选PCI混淆小区对的优化可能性总系数与预设总系数门限进行比较,若某一待选PCI混淆小区对的优化可能性总系数大于所述预设总系数门限,则将所述待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
如上所述,利用服务小区的UE上报的ECGI测量报告,可确定一个PCI 是否对应多个不同的ECGI。若该PCI对应多个不同的ECGI,则认为存在PCI混淆。但是,由于无线环境的特殊性和复杂性,UE的测量可能带有随机性,例如,超远覆盖小区与服务小区并没有邻区关系,但是UE可能在某次的ECGI的测量中测到了该超远覆盖小区,发现该超远覆盖小区的PCI和服务小区的某个邻区PCI相同,被判定超远覆盖小区和该邻区PCI混淆(这时会认为超远覆盖小区为服务小区的漏配邻区)。另外,有些小区地理位置复杂,尽管该小区与服务小区并没有邻区关系,但UE可能在某次的ECGI的测量中测到该小区的经过障碍物多次反射后的微弱信号,发现该小区的PCI和服务小区的某个邻区PCI相同,也可能误判为PCI混淆。因此,根据本实施例,在进行PCI混淆优化之前,通过获得所有待选PCI混淆小区对(步骤S102),确定每个待选PCI混淆小区对对通信性能的影响程度(步骤S103),随后根据每个待选PCI混淆小区对对通信性能的影响程度确定需要进行PCI优化的待选PCI混淆小区对(步骤S104)。这样,可以预先判断对待选PCI混淆小区对进行优化的必要性,避免不必要的优化。因此,避免了不必要的PCI重配导致的小区删建,改善了UE的体验。
在本实施例的一个实例中,可以一次性获取LTE网络中的每个小区的所有待选PCI混淆小区对,从而获取所有小区的待选PCI混淆小区对的集合,然后根据集合中每个不同的待选PCI混淆小区对对通信性能的影响程度,选出LTE网络中需要进行PCI优化的PCI混淆小区对。这样,可以一次性地对整个LTE网络进行PCI混淆优化。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中。也就是说,本实施例还可以提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如下步骤:
检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;
以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;
确定每个待选PCI混淆小区对对通信性能的影响程度;
根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
其中,所述的存储介质可以为ROM/RAM、磁碟、光盘等。
实施例2
图4是本实施例提供的PCI混淆的优化装置框图,如图4所示,该装置包括检测模块、配对模块、计算模块和判决模块。
检测模块构造为检测与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区。在本实施例的一个实例中,所述检测模块可构造为利用UE上报的ECGI测量报告,确定同一PCI是否对应至少两个不同的ECGI,若确定同一PCI对应至少两个不同的ECGI,则将所述至少两个不同的ECGI各自对应的小区确定为所述待选PCI混淆小区。
配对模块构造为对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对。在本实施例的一个实例中,配对模块可构造为将任意两个检测出来的待选PCI混淆小区进行配对,得到所有可能的待选PCI混淆小区对。
计算模块构造为确定每个待选PCI混淆小区对对通信性能的影响程度。在本实施例的一个实例中,每个待选PCI混淆小区对对通信性能的影响程度是计算模块通过计算所述每个待选PCI混淆小区对的优化可能性总系数来确定的。在本实施例的一个实例中,所述计算模块根据UE上报的ECGI测量报告中的RSRP值,确定所述每个待选PCI混淆小区对的第一优化可能性系数;根据所述每个待选PCI混淆小区对所对应的服务小区的数量,确定所述每个待选PCI混淆小区对的第二优化可能性系数;根据所述每个待选PCI混淆小区对与对应的服务小区之间的切换性能,确定所述每个待选PCI混淆小区对的第三优化可能性系数;根据所述每个待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离,确定所述每个待选PCI混淆小区对的第四优化可能性系数。然后,所述计算模块可利用所述每个待选PCI混淆小区对的第一优化可能性系数、第二优化可能性系数、第三优化可能性系数和第四优化可能性系数中的至少一个,计算所述每个待选PCI混淆小区对的优化可能 性总系数。在本实施例的一个实例中,所述计算模块构造为仅计算所述第一至第四优化可能性系数中的一部分,并根据所述一部分系数计算所述每个待选PCI混淆小区对的优化可能性总系数。
判决模块,构造为根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。在本实施例的一个实例中,所述判决模块可构造为将所述每个待选PCI混淆小区对的优化可能性总系数与预设总系数门限进行比较,若某一待选PCI混淆小区对的优化可能性总系数大于所述预设总系数门限,则将所述待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
实施例3
图5是根据本实施例的PCI冲突/混淆检测和优化的基本模块框图。如图5所示,能够在发现PCI混淆后对是否进行PCI重配进行判决。PCI冲突/混淆检测和优化一共涉及如下3个模块:PCI冲突/混淆检测模块(至少实现图4的检测模块的功能)、PCI混淆优化判决模块(至少实现图4的配对模块、计算模块、判决模块的功能)和PCI优化模块。其中:
PCI冲突/混淆检测模块主要负责检测网络中存在的PCI冲突/混淆,并上报给PCI混淆优化判决模块。
PCI混淆优化判决模块主要负责收集检测到的PCI冲突/混淆,并根据PCI冲突/混淆数量、网管保存的关键绩效指标(Key Performance Indicator KPI)(例如切换性能)记录等信息,给出判决策略,最终决定是否优化检测到的混淆PCI,并将需要优化的混淆PCI信息发送给PCI优化模块。
PCI优化模块主要负责对经过PCI混淆优化判决模块确认有优化必要的冲突/混淆PCI进行优化,即为目标小区重配一个不冲突、不混淆、满足其他需求(例如相邻小区PCI模三不等、PCI复用层数要求等)的新的PCI。
实施例4
在本实施例中,在确定每个待选PCI混淆小区对对通信性能的影响程度,即 计算每个待选PCI混淆小区对的优化可能性总系数时,考虑以下因素中的至少一个:
1.收集UE上报的ECGI测量报告,对于报告中的测量到的接收信号的RSRP进行记录。由于UE测量到的ECGI可能带有偶然性,因此可以通过RSRP的强度值对UE测量到的ECGI进行一定程度的甄别。如果UE测量到的接收信号的RSRP很低,说明这次的测量并不是很可靠,可能具有偶然性,应降低对相应的待选PCI混淆小区对进行优化的必要性。
2.在通过UE上报的ECGI测量报告得到所有待选PCI混淆小区对后,将所有待选PCI混淆小区对按照下面表格1的方式进行整理。这里假设待选PCI混淆小区对中一个待选PCI混淆小区为本端小区,另一个待选PCI混淆小区为对端小区,与本端小区和对端小区分别对应的小区为服务小区(同一个待选PCI混淆小区对可能会对应多个服务小区)。按照服务小区数量由多到少进行排列。
表1.实施例4的待选PCI混淆小区对配对表
Figure PCTCN2018071746-appb-000001
表1中服务小区的数量表示检测到同一待选PCI混淆小区对的服务小区的数量,表1中服务小区的数量越多,说明该待选PCI混淆小区对被检测到的偶然性越低,该待选PCI混淆小区对影响到的服务小区越多,对该待选PCI混淆小区对进行优化的必要性就越高。
3.通过服务小区的KPI历史记录来辅助判断检测出来的待选PCI混淆小区是否真的影响了服务小区的性能。具体地说,统计每一个服务小区到待选PCI混淆小区对中的待选PCI混淆小区(本端小区和对端小区)的切换尝试次数和切换成功率。在切换尝试次数达到一定的统计值后,如果切换成功率较低,则这很有可能是PCI混淆造成的,对该待选PCI混淆小区对进行优化的必要性较高。
4.考虑每个待选PCI混淆小区对的PCI复用距离。检测出来的待选PCI混淆小区对可能对服务小区的切换性能并没有影响,但是可能由于待选PCI混淆小区对之间的距离过近,造成两个小区的覆盖有交叠,影响到UE的接入性能。在这种情况下,对待选PCI混淆小区对进行优化的必要性也较高。
实施例5
本实施例提供一种LTE网络中小区PCI混淆的优化判决方法。图6是根据本实施例的PCI混淆的优化判决方法的流程图。如图所示,该方法包括如下步骤:
步骤S01:得到待选PCI混淆小区对。作为一个实例,可以根据实施例1中的步骤S101和步骤S102来得到待选PCI混淆小区对。
步骤S02:根据UE上报的ECGI测量报告中的RSRP值来计算待选PCI混淆小区对的第一优化可能性系数。
UE上报的与所在服务小区对应的ECGI测量报告带有UE接收到该小区的信号强度RSRP(即,EU测量上报ECGI时的RSPR值),只有当该信号强度超过一定门限时,才认为UE的测量报告是可靠的。也就是说,在UE上报的ECGI测量报告中,如果对于同一个PCI(非UE所在服务小区的PCI)测到两个或两个以上不同的ECGI,则当该ECGI测量报告中的RSRP大于等于所设定的门限(RSRP门限)时,认为该ECGI的测量报告是有效的,并且对应的待选PCI混淆小区对的第一优化可能性系数相应地较高。
例如,UE对于同一个PCI上报两个不同的ECGI1和ECGI2(待选PCI混淆小区 对),测量得的信号强度分别为RSRP1和RSRP2,如果:
RSRP1≥RSRP门限,且RSRP2≥RSRP门限,该待选PCI混淆小区对的第一优化可能性系数为a1;
RSRP1≥RSRP门限,且RSRP2<RSRP门限,该待选PCI混淆小区对的第一优化可能性系数为a2;
RSRP1<RSRP门限,且RSRP2<RSRP门限,该待选PCI混淆小区对的第一优化可能性系数为a3;
其中,a1>a2>a3。
步骤S03:根据待选PCI混淆小区对所对应的服务小区的数量来计算待选PCI混淆小区对的第二优化可能性系数。
例如,将所有待选PCI混淆小区对做一个整理,这里假设待选PCI混淆小区对中一个为本端小区,另一个为对端小区,与本端小区和对端小区分别对应的小区为服务小区(同一个待选PCI混淆小区对可能会对应多个服务小区),按照服务小区的数量由多到少进行排列。这里,可根据不同的服务小区数量,设置不同的待选PCI混淆小区对的优化可能性系数,例如:
同一个待选PCI混淆小区对所对应的服务小区的数量≥服务小区数量门限,该待选PCI混淆小区对的第二优化可能性系数为b1;
同一个待选PCI混淆小区对所对应的服务小区的数量<服务小区数量门限,该待选PCI混淆小区对的第二优化可能性系数为b2;
其中,b1>b2。
在本实施例的一个实例中,可以根据服务小区的数量设置至少两个不同等级的门限,以便将待选PCI混淆小区对的第二优化可能性系数分成更多的等级。
步骤S04:根据待选PCI混淆小区对与相应的服务小区(中间小区)之间的切换性能来计算待选PCI混淆小区对的第三优化可能性系数。
统计一个周期的历史信息中从每一个服务小区到相应的待选PCI混淆小区对中的待选PCI混淆小区(本端小区和对端小区)的切换尝试次数和切换成功率。在统计切换成功率时,可以排除切换出准备失败的次数,只统计切换出执行失败次数,因为PCI混淆造成的切换失败主要发生在切换出执行阶段(UE无法接入目标小区)。其中,如果服务小区对应的一个待选PCI混淆小区对同时满足以下两 个条件,则认为该待选PCI混淆小区对影响了该服务小区的切换性能:
切换尝试次数≥PCI重分配切换尝试次数门限;
切换成功率≤PCI重分配切换成功率门限。
举一个例子,假设小区C和小区D为待选PCI混淆小区对,该待选PCI混淆小区对所对应的服务小区为小区A和小区B,则分别统计小区A->小区C、小区A->小区D、小区B->小区C、小区B->小区D的切换尝试次数和切换成功率,只要其中任何一组的切换尝试次数和切换成功率满足上面的条件,则该待选PCI混淆小区对的优化可能性系数为c1,否则为c2,其中c1>c2。
步骤S05:根据待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离来计算待选PCI混淆小区对的第四优化可能性系数。
根据小区的经纬度计算待选PCI混淆小区对中的两个小区间的距离,如果待选PCI混淆小区对中的两个小区间的距离<PCI复用距离,则该待选PCI混淆小区对的第四优化可能性系数为d1;如果待选PCI混淆小区对中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对的第四优化可能性系数为d2;其中d1>d2。
PCI复用距离定义为:如果以服务小区的经纬度为原点,以所述PCI复用距离为半径画圆,则恰在该圆内的所有PCI为在该服务小区不可复用的PCI,而在该圆外存在可复用的PCI。通常PCI复用距离的参数是根据网络场景事先设置的。
步骤S06:综合上述步骤S02至S05中获得的所有优化可能性系数来进行待选PCI混淆小区对的优化判断。
具体地说,可根据上述4个步骤中得到的待选PCI混淆小区对的优化可能性系数,进行加权相加得到优化的可能性总系数,若满足:待选PCI混淆小区对优化的可能性总系数≥总系数门限,则判决该待选PCI混淆小区对需要进行优化。
应当注意,如果步骤S02至S05中的部分步骤无法执行或部分步骤中的系数无法获得,例如没有历史信息记录切换性能,或UE上报的ECGI测量报告中没有对RSRP进行保留收集,则在步骤S06中,对在步骤S02至S05中的其余步骤中获得的待选PCI混淆小区对的优化可能性系数进行加权相加。也就是说,可以根据上述4个系数中的一个或多个对PCI优化进行判决,最终确定检测后配对得到的待选PCI混淆小区对是否为需要进行PCI优化的PCI混淆小区对。另外,本领域技术人员容易理解的是,步骤S02至S05的顺序是不重要的,这些步骤可以按任何顺序执行或 同时执行。
在本实施例的一个实例中,所述方法还包括步骤S07(在图6中未示出):对不满足优化条件的待选PCI混淆小区对进行管理。
对于不满足优化条件的待选PCI混淆小区对将不进行PCI优化,但是会做历史记录。如果某一个待选PCI混淆小区对在不满足优化条件的待选PCI混淆小区对历史记录中出现的次数≥历史记录门限,则将该待选PCI混淆小区对加入到PCI优化列表的黑名单中。
具体地说,当上报一批检测到的待选PCI混淆时,查找历史记录。如果发现某一待选PCI混淆小区对被再次上报上来,且对应的服务小区没有发生变化,则根据前面步骤S02至S06的判断,该待选PCI混淆小区对可能仍然不需要进行PCI优化。通过设置历史记录门限,可以将多次被判定为不满足优化条件的待选PCI混淆小区对加入PCI优化列表的黑名单。这样,当下次再收到该待选PCI混淆小区对的上报信息,且对应的服务小区没有发生变化时,可不再进行步骤S02至S06的判断,直接将该待选PCI混淆小区对判定为不进行PCI优化(该步骤可在步骤S01与S02之间进行)。
实施例6
根据本实施例的一种LTE网络中小区PCI混淆的优化判决装置包括:
PCI混淆的优化判决模块,其采用实施例5中所述的判决方法判断PCI混淆的可靠性,并给出PCI混淆小区的优化可能性系数。
所述优化判决装置可以进一步包括:
数据采集模块,其采集实施例5中所需的测量数据和切换数据。其中,所述测量数据包括UE的ECGI测量报告中的信号强度RSRP。所述切换数据包括统计周期内服务小区和待选PCI混淆小区对之间的切换次数和切换成功率。
所述优化判决装置还可以进一步包括:
结果呈现模块,其输出结果包括但不限于以下内容:
(1)判决为不优化的待选PCI混淆小区对的基本信息;
(2)进一步可选地,包括不优化的待选PCI混淆小区对的每个条件的可能 性系数;
(3)进一步可选地,不优化的待选PCI混淆小区对在历史中是否曾经也检测到过。
实施例7
图7是根据本发明的一个PCI混淆的优化判决方法的流程图。根据该流程图,本实施例的PCI混淆的优化判决步骤包括:
步骤201:收集UE上报的PCI混淆,判断配对得到的每个待选PCI混淆小区对是否出现在PCI优化列表的黑名单中。
UE对于同一个PCI上报了3个不同的ECGI:ECGI1、ECGI2和ECGI3,配对得到的待选PCI混淆小区对(ECGI1和ECGI3)、(ECGI1和ECGI2)和(ECGI2和ECGI3)都不在PCI优化列表的黑名单中,因此需要继续进行判断。
步骤202:根据UE测量上报的ECGI中的RSRP值来计算待选PCI混淆小区对的第一优化可能性系数。
UE对于同一个PCI上报3个不同的ECGI,即ECGI1、ECGI2和ECGI3时,测量得到的信号强度RSRP1、RSRP2和RSRP3分别为-80dB、-112dB和-100dB,RSRP门限设置为-110dB,则:
RSRP1≥RSRP门限,且RSRP3≥RSRP门限,该待选PCI混淆小区对(ECGI1和ECGI3)的第一优化可能性系数为1;
RSRP1≥RSRP门限,且RSRP2<RSRP门限,该待选PCI混淆小区对(ECGI1和ECGI2)的第一优化可能性系数为0.5;
RSRP3≥RSRP门限,且RSRP2<RSRP门限,该待选PCI混淆小区对(ECGI2和ECGI3)的第一优化可能性系数为0.5;
步骤203:根据待选PCI混淆小区对所对应的服务小区的数量来计算待选PCI混淆小区对的第二优化可能性系数。
将上面检测到的3个待选PCI混淆小区对做一个整理,列出每个待选PCI混淆小区对所对应的服务小区的数量,设置服务小区数量门限为2,具体如表2所示。
表2.实施例7的待选PCI混淆小区对配对表
本端小区 对端小区 服务小区(中间小区)数量
ECGI1 ECGI3 3
ECGI1 ECGI2 2
ECGI2 ECGI3 1
待选PCI混淆小区对(ECGI1和ECGI3)所对应的服务小区的数量≥服务小区数量门限,该待选PCI混淆小区对(ECGI1和ECGI3)的第二优化可能性系数为1;
待选PCI混淆小区对(ECGI1和ECGI2)所对应的服务小区的数量≥服务小区数量门限,该待选PCI混淆小区对(ECGI1和ECGI2)的第二优化可能性系数为1;
待选PCI混淆小区对(ECGI2和ECGI3)所对应的服务小区的数量<服务小区数量门限,该待选PCI混淆小区对(ECGI2和ECGI3)的第二优化可能性系数为0.5;
步骤204:根据待选PCI混淆小区对与相应的服务小区之间的切换性能来计算待选PCI混淆小区对的第三优化可能性系数。
统计一个周期的历史信息中从每一个服务小区到相应的待选PCI混淆小区对中的待选PCI混淆小区(本端小区和对端小区)的切换尝试次数和切换成功率,判断是否同时满足条件:“切换尝试次数≥PCI重分配切换尝试次数门限”和“切换成功率≤PCI重分配切换成功率门限”。
在所有的服务小区->ECGI1和服务小区->ECGI3的切换性能中,有一组切换性能同时满足上面的条件,则该待选PCI混淆小区对(ECGI1和ECGI3)的第三优化可能性系数为1。
在所有的服务小区->ECGI1和服务小区->ECGI2的切换性能中,有一组切换性能满足上面的条件,则该待选PCI混淆小区对(ECGI1和ECGI2)的第三优化可能性系数为1。
在所有的服务小区->ECGI2和服务小区->ECGI3的切换性能中,没有一组切换性能满足上面的条件,则该待选PCI混淆小区对(ECGI2和ECGI3)的第三优化可能性系数为0。
步骤205:根据待选PCI混淆小区对中的两个待选PCI混淆小区之间的 PCI复用距离来计算待选PCI混淆小区对的第四优化可能性系数。
根据小区的经纬度计算待选PCI混淆小区对中的两个小区(待选PCI混淆小区)间的距离。
待选PCI混淆小区对(ECGI1和ECGI3)中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对(ECGI1和ECGI3)的第四优化可能性系数为0;
待选PCI混淆小区对(ECGI1和ECGI2)中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对(ECGI1和ECGI2)的第四优化可能性系数为0;
待选PCI混淆小区对(ECGI2和ECGI3)中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对(ECGI2和ECGI3)的第四优化可能性系数为0。
步骤206:综合上面所有优化可能性系数来最终进行PCI混淆的优化判断。
将前面4步(步骤202至205)中得到的待选PCI混淆小区对的第一至第四优化可能性系数,进行加权相加得到总的系数,设置总系数门限为1.5,各项加权系数为1,则:
待选PCI混淆小区对(ECGI1和ECGI3)的优化可能性总系数=1+1+1+0=3,3≥总系数门限,将该待选PCI混淆小区对(ECGI1和ECGI3)放入PCI优化队列中;
待选PCI混淆小区对(ECGI1和ECGI2)的优化可能性总系数=0.5+1+1+0=2.5,2.5≥总系数门限,将该待选PCI混淆小区对(ECGI1和ECGI2)放入PCI优化队列中;
待选PCI混淆小区对(ECGI2和ECGI3)的优化可能性总系数=0.5+0.5+0+0=1,1<总系数门限,将该待选PCI混淆小区对(ECGI2和ECGI3)排除,并做记录。
将最终的PCI优化队列送入PCI重配优化模块(PCI优化模块)中。
步骤207:对不满足优化条件的待选PCI混淆小区对的管理。
由于待选PCI混淆小区对(ECGI2和ECGI3)之前从未出现在PCI优化列表的黑名单中,因此将待选PCI混淆小区对(ECGI2和ECGI3)以及对应的服务小区记录下来,放入不满足优化条件的待选PCI混淆小区对的历史列表中。
实施例8
根据本实施例,如果发现配对得到的待选PCI混淆小区对在PCI优化列表的黑 名单中,那么不再进行其他的判断,直接判定为对该待选PCI混淆小区对将不进行PCI优化。
步骤301:判断配对得到的PCI混淆小区对是否出现在PCI优化列表的黑名单中。
UE对于同一个PCI上报了3个不同的ECGI1、ECGI2和ECGI3。配对得到待选PCI混淆小区对(ECGI1和ECGI3)、(ECGI1和ECGI2)和(ECGI2和ECGI3)。判断发现,待选PCI混淆小区对(ECGI2和ECGI3)已经出现在PCI优化列表的黑名单中,且与之对应的服务小区没有发生变化,则不再进行其他判断,直接判定为对该待选PCI混淆小区对(ECGI2和ECGI3)将不进行PCI优化。其他待选PCI混淆小区对(ECGI1和ECGI3)和(ECGI1和ECGI2)则需要继续进行判断。
步骤302:根据UE测量上报的ECGI中的RSRP值来计算待选PCI混淆小区对的第一优化可能性系数。
UE对于同一个PCI上报3个不同的ECGI,即ECGI1、ECGI2和ECGI3时,测量得到的信号强度RSRP1、RSRP2和RSRP3分别为-90dB、-115dB和-108dB,RSRP门限设置为-110dB,则:
RSRP1≥RSRP门限,且RSRP3≥RSRP门限,该待选PCI混淆小区对(ECGI1和ECGI3)的第一优化可能性系数为1;
RSRP1≥RSRP门限,且RSRP2<RSRP门限,该待选PCI混淆小区对(ECGI1和ECGI2)的第一优化可能性系数为0.5;
步骤303:根据待选PCI混淆小区对所对应的服务小区的数量来计算待选PCI混淆小区对的第二优化可能性系数。
将上面剩下的2个待选PCI混淆小区对做一个整理,列出每个待选PCI混淆小区对所对应的服务小区的数量,设置服务小区数量门限为2。
表3.实施例8的待选PCI混淆小区对配对表
本端小区 对端小区 服务小区(中间小区)数量
ECGI1 ECGI3 3
ECGI1 ECGI2 1
待选PCI混淆小区对(ECGI1和ECGI3)所对应的服务小区的数量≥服务小区数量门限,该待选PCI混淆小区对(ECGI1和ECGI3)的第二优化可能性系数为1;
待选PCI混淆小区对(ECGI1和ECGI2)所对应的服务小区的数量<服务小区数量门限,该待选PCI混淆小区对(ECGI1和ECGI2)的第二优化可能性系数为0.5。
步骤304:根据待选PCI混淆小区对与相应的服务小区之间的切换性能来计算待选PCI混淆小区对的第三优化可能性系数。
统计一个周期的历史信息中从每一个服务小区到相应的待选PCI混淆小区对中的待选PCI混淆小区(本端小区和对端小区)的切换尝试次数和切换成功率,判断是否同时满足条件:切换尝试次数≥PCI重分配切换尝试次数门限且切换成功率≤PCI重分配切换成功率门限。若在所有的服务小区->ECGI1和服务小区->ECGI3的切换性能中,有一组切换性能满足上面的条件,则该待选PCI混淆小区对(ECGI1和ECGI3)的第三优化可能性系数为1。若在所有的服务小区->ECGI1和服务小区->ECGI2的切换性能中,有一组切换性能满足上面的条件,则该待选PCI混淆小区对(ECGI1和ECGI2)的第三优化可能性系数为1。
步骤305:根据待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离来计算待选PCI混淆小区对的第四优化可能性系数。
根据小区的经纬度计算待选PCI混淆对中的两个小区(待选PCI混淆小区)间的距离。
待选PCI混淆小区对(ECGI1和ECGI3)中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对(ECGI1和ECGI3)的第四优化可能性系数为0;
待选PCI混淆小区对(ECGI1和ECGI2)中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对(ECGI1和ECGI2)的第四优化可能性系数为0;
步骤306:综合上面所有优化可能性系数来最终进行PCI混淆的优化判断。
根据前面4步(步骤302至305)中得到的待选PCI混淆小区对的第一至第四优化可能性系数,进行加权相加得到总的系数,设置总系数门限为1.5,各项加权系 数为1,则:
待选PCI混淆小区对(ECGI1和ECGI3)的优化可能性总系数=1+1+1+0=3,3≥总系数门限,将该待选PCI混淆小区对(ECGI1和ECGI3)放入PCI优化队列中;
待选PCI混淆小区对(ECGI1和ECGI2)的优化可能性总系数=0.5+0.5+1+0=2,2≥总系数门限,将该待选PCI混淆小区对(ECGI1和ECGI2)放入PCI优化队列中。
将最终的PCI优化队列送入PCI重配优化模块中。
步骤307:对不满足优化条件的待选PCI混淆小区对的管理。
由于待选PCI混淆小区对(ECGI2和ECGI3)已经出现在PCI优化列表的黑名单中,将不再对待选PCI混淆小区对的历史列表进行添加。
实施例9
收集UE上报的ECGI测量报告,对于测量到的接收信号的RSRP进行记录,这通常会增加网元负担。如果没有ECGI上报的信号强度RSRP,也可以通过其余的几个条件来判定哪些待选PCI混淆小区对需要进行优化。本实施例的PCI混淆的优化判决方法包括如下步骤:
步骤401:判断配对得到的待选PCI混淆小区对是否出现在PCI优化列表的黑名单中。
若发现该待选PCI混淆小区不在黑名单中,进入步骤402。
步骤402:根据待选PCI混淆小区对所对应的服务小区的数量来计算待选PCI混淆小区对的第二优化可能性系数。
将检测到的待选PCI混淆小区对做一个整理,列出每个待选PCI混淆小区对所对应的服务小区的数量,设置服务小区数量门限为2,假设:
待选PCI混淆小区对所对应的服务小区的数量<服务小区数量门限,则该待选PCI混淆小区对的第二优化可能性系数为0.5。
步骤402:根据待选PCI混淆小区对与相应的服务小区之间的切换性能来计算待选PCI混淆小区对的第三优化可能性系数。
统计一个周期的历史信息中从每一个服务小区到相应的待选PCI混淆小区对 中的待选PCI混淆小区(本端小区和对端小区)的切换尝试次数和切换成功率,判断是否同时满足条件:“切换尝试次数≥PCI重分配切换尝试次数门限”和“切换成功率≤PCI重分配切换成功率门限”。若在所有的服务小区->PCI混淆小区的切换性能中,有一组切换性能同时满足上面的条件,则该PCI混淆小区对的第三优化可能性系数为1(否则为0)。
步骤403:根据待选PCI混淆小区对中的两个小区之间的PCI复用距离来计算待选PCI混淆小区对的第四优化可能性系数。
根据小区的经纬度计算待选PCI混淆小区对中的两个小区间的距离,如果:
待选PCI混淆小区对中的两个小区间的距离≥PCI复用距离,则该待选PCI混淆小区对的第四优化可能性系数为0(否则为1)。
步骤404:综合上面所有优化可能性系数来最终进行PCI混淆的优化判断。
具体地说,可根据前面步骤中得到的PCI混淆小区对的第一至第四优化可能性系数,进行加权相加得到总的系数,设置总系数门限为1,各项加权系数为1,则:
待选PCI混淆小区对的优化可能性系数=0.5+1+0=1.5,1.5≥总系数门限,将该待选PCI混淆小区对放入PCI优化队列中。
步骤405:对不满足优化条件的待选PCI混淆小区对的管理。
由于待选PCI混淆小区对需要进行PCI优化,不需要对待选PCI混淆小区对的历史列表进行处理。
在前述实施例中,通过对待选PCI混淆小区对的各优化可能性系数进行加权相加得到待选PCI混淆小区对的的优化可能性总系数,各项加权系数均为1。但是,本领域的技术人员应该明白,各项加权系数也可互不相同或部分相同。此外,在利用各优化可能性系数计算待选PCI混淆小区对的的优化可能性总系数时,可采用除加权相加外的其他计算方法。
另外,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布 在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
综上所述,本发明的实施例具有以下技术效果:
本发明的实施例提出了适用于LTE网络的小区PCI混淆的优化判决方法和装置。在检测到PCI混淆后,不会立即对PCI进行优化,而是根据例如由网管保存的诸如切换性能的关键绩效指标(Key Performance Indicator,KPI)记录等信息,给出判决策略,最终决定是否优化检测到的混淆PCI。因此,能够筛选出真正对系统有影响的PCI混淆小区对。同时,能够减少网管进行不必要的PCI优化操作,避免引起不必要的PCI重配所导致的小区删建,减少对UE体验的影响以及小区删建对网络的影响。
尽管上文对本发明进行了详细说明,但是本发明不限于此,本技术领域技术人员可以根据本发明的原理进行各种修改。因此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (12)

  1. 一种小区物理小区标识(PCI)混淆的优化判决方法,包括:
    检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;
    以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;
    确定每个待选PCI混淆小区对对通信性能的影响程度;以及
    根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
  2. 根据权利要求1所述的方法,其中,所述检测出与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区包括:
    利用用户终端(UE)上报的E-UTRAN小区全局标识符(ECGI)测量报告,确定同一PCI是否对应至少两个不同的ECGI;
    若确定同一PCI对应至少两个不同的ECGI,则将所述至少两个不同的ECGI各自对应的小区确定为所述待选PCI混淆小区。
  3. 根据权利要求2所述的方法,其中,所述确定每个待选PCI混淆小区对对通信性能的影响程度包括:
    计算每个待选PCI混淆小区对的优化可能性总系数,根据所述优化可能性总系数确定所述影响程度。
  4. 根据权利要求3所述的方法,其中,所述计算每个待选PCI混淆小区对的优化可能性总系数包括:
    利用所述每个待选PCI混淆小区对的第一优化可能性系数、第二优化可 能性系数、第三优化可能性系数和第四优化可能性系数中的至少一个,计算所述每个待选PCI混淆小区对的优化可能性总系数,其中
    所述每个待选PCI混淆小区对的所述第一优化可能性系数是根据UE上报的ECGI测量报告中的参考信号接收功率(RSRP)值确定的;
    所述每个待选PCI混淆小区对的所述第二优化可能性系数是根据所述每个待选PCI混淆小区对所对应的服务小区的数量确定的;
    所述每个待选PCI混淆小区对的所述第三优化可能性系数是根据所述每个待选PCI混淆小区对与对应的服务小区之间的切换性能确定的;
    所述每个待选PCI混淆小区对的所述第四优化可能性系数是根据所述每个待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离确定的。
  5. 根据权利要求3或4所述的方法,其中,所述根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对包括:
    将所述每个待选PCI混淆小区对的优化可能性总系数与预设总系数门限进行比较;
    若某一待选PCI混淆小区对的优化可能性总系数大于所述预设总系数门限,则将所述待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
  6. 一种小区PCI混淆的优化判决装置,包括:
    检测模块,构造为检测与服务小区相邻的彼此具有相同频点和相同PCI的小区作为待选PCI混淆小区;
    配对模块,构造为以将所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有待选PCI混淆小区对;
    计算模块,构造为确定每个待选PCI混淆小区对对通信性能的影响程度; 以及
    判决模块,构造为根据每个待选PCI混淆小区对对通信性能的影响程度,将相应的待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
  7. 根据权利要求6所述的装置,其中,所述检测模块构造为利用UE上报的ECGI测量报告,确定同一PCI是否对应至少两个不同的ECGI,若确定同一PCI对应至少两个不同的ECGI,则将所述至少两个不同的ECGI各自对应的小区确定为所述待选PCI混淆小区。
  8. 根据权利要求7所述的装置,其中,所述计算模块构造为计算每个待选PCI混淆小区对的优化可能性总系数,根据所述优化可能性总系数来确定所述每个待选PCI混淆小区对对通信性能的影响程度。
  9. 根据权利要求8所述的装置,其中,所述计算模块构造为确定所述每个待选PCI混淆小区对的以下优化可能性系数中的至少一个,并根据所确定的至少一个优化可能性系数计算所述每个待选PCI混淆小区对的优化可能性总系数:
    第一优化可能性系数,其由所述计算模块根据UE上报的ECGI测量报告中的RSRP值而确定;
    第二优化可能性系数,其由所述计算模块根据所述每个待选PCI混淆小区对所对应的服务小区的数量而确定;
    第三优化可能性系数,其由所述计算模块根据所述每个待选PCI混淆小区对与对应的服务小区之间的切换性能而确定;
    第四优化可能性系数,其由所述计算模块根据所述每个待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离而确定。
  10. 根据权利要求8或9所述的装置,其中,所述判决模块构造为将所述每个待选PCI混淆小区对的优化可能性总系数与预设总系数门限进行比较, 若所述优化可能性总系数大于所述预设总系数门限,则将所述待选PCI混淆小区对确定为需要进行PCI优化的PCI混淆小区对。
  11. 一种同频组网的LTE网络中的小区PCI混淆的优化判决方法,包括:
    针对所述LTE网络中的每个小区,利用UE上报的ECGI测量报告判断是否检测到所述小区以外的至少两个具有相同频点和相同PCI的小区,如果判断结果为是,则将所述小区作为服务小区,将所述至少两个具有相同频点和相同PCI的小区作为与所述服务小区对应的待选PCI混淆小区;
    针对所述LTE网络中的每个所述服务小区,以将与所述服务小区对应的所述待选PCI混淆小区中的任意两个待选PCI混淆小区配对成一个待选PCI混淆小区对的方式,对所述待选PCI混淆小区进行配对,得到所有与所述服务小区对应的待选PCI混淆小区对;以及
    根据每个待选PCI混淆小区对对通信性能的影响程度,确定是否要对该待选PCI混淆小区对进行PCI优化。
  12. 根据权利要求11所述的方法,其中,根据每个待选PCI混淆小区对的以下优化可能性系数中的至少一个确定所述待选PCI混淆小区对对通信性能的影响程度:
    第一优化可能性系数,其是根据所述待选PCI混淆小区对所对应的ECGI测量报告中的RSRP值确定的;
    第二优化可能性系数,其是根据所述待选PCI混淆小区对所对应的服务小区的数量确定的;
    第三优化可能性系数,其是根据所述待选PCI混淆小区对与对应的服务小区之间的切换性能确定的;
    第四优化可能性系数,其是根据所述待选PCI混淆小区对中的两个待选PCI混淆小区之间的PCI复用距离和所述两个待选PCI混淆小区之间的距离确定的。
PCT/CN2018/071746 2017-03-16 2018-01-08 Pci混淆的优化判决方法及装置 WO2018166285A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18766699.5A EP3598789A4 (en) 2017-03-16 2018-01-08 OPTIMIZED DETERMINATION PROCEDURE AND DEVICE FOR PCI CONFUSION
JP2019551289A JP2020510359A (ja) 2017-03-16 2018-01-08 Pci混同の最適化判定方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710157354.0 2017-03-16
CN201710157354.0A CN108632845A (zh) 2017-03-16 2017-03-16 一种pci混淆的优化判决方法及装置

Publications (1)

Publication Number Publication Date
WO2018166285A1 true WO2018166285A1 (zh) 2018-09-20

Family

ID=63521768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071746 WO2018166285A1 (zh) 2017-03-16 2018-01-08 Pci混淆的优化判决方法及装置

Country Status (4)

Country Link
EP (1) EP3598789A4 (zh)
JP (1) JP2020510359A (zh)
CN (1) CN108632845A (zh)
WO (1) WO2018166285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167463A (ja) * 2019-03-28 2020-10-08 Kddi株式会社 設定装置、携帯端末システム、設定方法、およびプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258031A (zh) * 2020-09-23 2022-03-29 中兴通讯股份有限公司 一种未知邻区的配置方法及配置装置
GB2622847A (en) * 2022-09-30 2024-04-03 British Telecomm Cellular telecommunications network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038279A1 (en) * 2009-08-17 2011-02-17 Electronics And Telecommunications Research Institute Apparatus and method for assigning pci of home base station
CN103636248A (zh) * 2012-08-24 2014-03-12 华为技术有限公司 Pci混淆检测的方法、用户设备及基站
CN105792242A (zh) * 2014-12-22 2016-07-20 中兴通讯股份有限公司 优化小区pci的方法及装置
WO2016115131A1 (en) * 2015-01-16 2016-07-21 Qualcomm Incorporated Efficient physical cell identifier collision and confusion avoidance using lte-direct

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778395B (zh) * 2010-01-08 2012-05-23 华为技术有限公司 一种物理小区标识规划方法及装置
WO2015185518A1 (en) * 2014-06-03 2015-12-10 Deutsche Telekom Ag Method for improving overall network performance and/or overall quality of service of user equipments in a mobile communication network, system for improving overall network performance and/or overall quality of service of user equipments in a mobile communication network, mobile communication network, program and computer program product
CN105451246A (zh) * 2014-06-28 2016-03-30 北京神州泰岳软件股份有限公司 Lte网络中基于小区干扰总量的信号优化方法及系统
CN105208580B (zh) * 2014-06-28 2019-05-24 北京神州泰岳软件股份有限公司 Lte网络中物理层小区标识pci优化方法及系统
WO2016019977A1 (en) * 2014-08-05 2016-02-11 Nokia Solutions And Networks Oy Signaling physical cell identifier problems
CN104168588B (zh) * 2014-08-08 2018-10-30 中国联合网络通信集团有限公司 一种lte系统干扰核查方法及装置
US10341851B2 (en) * 2015-03-25 2019-07-02 Nokia Solutions And Networks Oy Method and system for cell identifier optimization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038279A1 (en) * 2009-08-17 2011-02-17 Electronics And Telecommunications Research Institute Apparatus and method for assigning pci of home base station
CN103636248A (zh) * 2012-08-24 2014-03-12 华为技术有限公司 Pci混淆检测的方法、用户设备及基站
CN105792242A (zh) * 2014-12-22 2016-07-20 中兴通讯股份有限公司 优化小区pci的方法及装置
WO2016115131A1 (en) * 2015-01-16 2016-07-21 Qualcomm Incorporated Efficient physical cell identifier collision and confusion avoidance using lte-direct

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "Enhanced maco/femto and femto/femto ICIC solutions for data channels", 3GPP TSG RAN WG1 #61BIS MEETING RL-103625, 2 July 2010 (2010-07-02), XP050449085 *
See also references of EP3598789A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167463A (ja) * 2019-03-28 2020-10-08 Kddi株式会社 設定装置、携帯端末システム、設定方法、およびプログラム

Also Published As

Publication number Publication date
EP3598789A4 (en) 2020-09-16
EP3598789A1 (en) 2020-01-22
CN108632845A (zh) 2018-10-09
JP2020510359A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
KR101381132B1 (ko) Pci 충돌들을 검출하기 위한 방법
US9179348B2 (en) Methods and radio base stations for determining performance state of a cell
JP6009014B2 (ja) ハンドオーバ制御
US9380500B1 (en) Methods and apparatus for radio link failure reporting
EP2139277A1 (en) Method and system for detecting insufficient coverage location in mobile network
US20120164952A1 (en) Method and apparatus for optimization to minimize radio link failure
WO2018166285A1 (zh) Pci混淆的优化判决方法及装置
US20140200029A1 (en) Measurement Configuration Map for Measurement Event Reporting in Cellular Communications Network
US10517007B2 (en) Received signal strength based interferer classification of cellular network cells
Chernov et al. Location accuracy impact on cell outage detection in LTE-A networks
US20130265939A1 (en) Network Element and Method of Communication in a Wireless Communication Network
EP3063985A1 (en) Wireless device, radio access network node and methods therein for providing handover information including cell identity
WO2018046403A1 (en) A network entity, a wireless communication system and a method for deriving a cell candidate list from a neighbour list
JP2014082604A (ja) 無線通信システム、集約管理装置及びそのpci設定方法
Chernov et al. The influence of dataset size on the performance of cell outage detection approach in LTE-A networks
JP2018085744A (ja) ユーザ機器(ue)、プログラム、方法、およびコンピュータ可読記録媒体
KR20230119805A (ko) 품질 이상 이벤트의 발생을 판단하는 장치, 방법 및 컴퓨터 프로그램
CN117858182A (zh) 小区切换的方法、基站、计算机可读介质
JP2017188769A (ja) 情報処理装置及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018766699

Country of ref document: EP

Effective date: 20191016