WO2018164133A1 - 細胞選別法 - Google Patents
細胞選別法 Download PDFInfo
- Publication number
- WO2018164133A1 WO2018164133A1 PCT/JP2018/008615 JP2018008615W WO2018164133A1 WO 2018164133 A1 WO2018164133 A1 WO 2018164133A1 JP 2018008615 W JP2018008615 W JP 2018008615W WO 2018164133 A1 WO2018164133 A1 WO 2018164133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- cell
- membrane fluidity
- difference
- undifferentiated
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/24—Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
Definitions
- the present invention relates to a cell sorting method.
- Organ primordium can regulate and induce multiple cellular materials from stem cells such as human iPS cells, but it contains untargeted cells such as undifferentiated iPS cells and undifferentiated progenitor cells The problem was left in safety and homogeneity.
- Non-Patent Documents For example, although the risk of canceration / proliferation of undifferentiated cells remaining so far has been shown, a simple and easy method for separating undifferentiated cells has not been established at the level of experimenters (Non-Patent Documents). 2: Cunningham et al., Nat. Biothechnol. 2012). In addition, endoderm cells that are in the process of differentiation or cells that have differentiated into unintended intestinal cells remain to form intestinal tissue, and similarly, stromal cells remain to form excessive fibrotic tissue. Although risk has been pointed out, there is no method to selectively remove progenitor cells of such tissues from cell sources.
- Fluorescence activated cell sorting FACS
- Magnetic-activated cell sorting MCS
- FACS Fluorescence activated cell sorting
- MCS Magnetic-activated cell sorting
- This method can selectively isolate only cells that emit fluorescence or magnetic force by reacting with antibodies to which fluorescent or magnetic substances corresponding to surface antigens have been added.
- enormous time and cost are required to identify surface antigens, select fluorescent antibodies, and purchase FACS equipment.
- organ primordia for organ regenerative medicine, it is based on the difference in cell characteristics between target cells and non-target cells (eg, undifferentiated cells). It is necessary to establish a simple and easy method for separating target cells at the level of experimenters, such as by establishing quantitative evaluation criteria for target cells that induce organ primordia. Although there is a technique such as FACS as a conventional technology, it is necessary to introduce an expensive device that requires skill. Therefore, it is essential to establish a new cell separation method that is simple and easy at the experimenter level.
- An object of the present invention is to provide a simple and easy novel cell separation method.
- the present inventors removed cells with poor substrate adhesion by seeding cells on a plastic dish coated with a substrate and then collecting the supernatant after culturing time ⁇ minutes (FIG. 1). Thereafter, the cells were detached under mild conditions that did not rely on enzymes, and only the substrate-adhered cells were selectively recovered. By using this method, it is possible to achieve both safety and homogeneity of cell materials. Details are described below. 1.
- Non-patent Document 2 Cunningham et al., Nat. Biothechnol. 2012
- the present inventors incorporated green tea catechin (EGP) which inhibits adhesion of cancer cells in the culture of FIG.
- the adhesion rate of undifferentiated cells was evaluated using two parameters: separation time and green tea catechin concentration.
- the separation time dependence of the adhesion rate was measured using 4 types of mesenchymal cells (septum transversum mesenchyme, STM) and endothelial cells (endothelial cells, EC). Then, we found that the adhesion dynamics differed between MSC donors (Fig. 4). Interestingly, STM / EC derived from iPS cells has a stronger substrate adhesion curve than donor-derived MSC. These results indicate that the evaluation system can quantitatively distinguish between MSC donor differences and cell type adhesion differences. Furthermore, the present inventors measured the albumin producing ability of the liver primordium induced using the cells collected at each separation time (FIG. 7).
- Non-patent Document 4 Matsuzaki et al., Phys. Chem. Chem. Phys. 2017.
- membrane fluidity is a new physical index that should be focused on the removal of undifferentiated cells, and showed that polyphenol, a natural compound familiar to our daily lives, is very effective for its control. It was.
- the established fluidity assessment assay was used to screen for low molecular weight compounds that react specifically with undifferentiated cells, but this assay can be applied to a wide range of cell types as well as undifferentiated cells. Screening is possible. 4).
- the gist of the present invention is as follows. (1) a) performing a treatment to increase the difference in cell membrane fluidity between target cells and non-target cells; and b) A cell sorting method that involves sorting target cells using differences in cell membrane fluidity. (2) The method according to (1), which is used for removing undifferentiated cells. (3) The method according to (1), which is used for concentrating differentiated cells. (4) The method according to (1), which is used for homogenizing cells constituting a cell population. (5) The treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells is to add a substance capable of changing cell membrane fluidity in a cell type-specific manner to the medium (1) to ( The method according to any one of 4).
- the difference in cell adhesion to the substrate is expanded by enlarging the difference in cell membrane fluidity, and the target cell is selected using this difference (1) to (5) the method of.
- the substance capable of changing cell membrane fluidity in a cell type-specific manner is any one of polyphenol, differentiation-inducing factor, inhibitor, growth factor, drug or amino acid / surfactant (5) or (6) The method described in 1.
- the method according to (7), wherein the substance capable of changing cell membrane fluidity in a cell type-specific manner is at least one compound selected from the following group.
- Polyphenol group resveratrol, epigallocatechin gallate (EGCG), curcumin and genistein
- Differentiation-inducing factors activin-A, wint-3a, sodium butylate, basic fibroblast growth factor (bFGF), oncostatin M (OSM), dexamethasone (DEX), hepatocyte growth factor (HGF), CHIR-99021 and forskolin
- Inhibitor group Y-27632 (rock inhibitor), (s)-(-)-blebbistatin, IWP2, A83-01, LY294002, SB-431542, NVP-BHG, Cyclopamine-KAAD, and PD-0325901
- Growth factors FGF4, LDN-193189, insulin like growth factor (IGF), bone morphogenetic protein (BMP) 2, transforming growth factor (TGF) ⁇ 2, BMP4, FGF-7, platelet-derived growth factor (PDGF ) ⁇ 3, epidermal growth factor (EGF), exendin-4,
- a cell sorting medium containing a reagent for performing a treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells containing a reagent for performing a treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells.
- a reagent for performing a treatment for expanding a difference in cell membrane fluidity between a target cell and a non-target cell comprising a substance capable of changing cell membrane fluidity in a cell type-specific manner.
- a method for quantifying the adhesion of cells to a substrate comprising measuring the proportion of cells adhered to the substrate (adhesion rate) at each culture time.
- the method of the present invention is non-fluorescent labeling and is a routine microscope for observation, so it is inexpensive, quick and simple.
- A Conceptual diagram of this cell separation method. After culturing, the supernatant containing the weakly adherent cells (spherical cells) is washed away and the strong adherent cells (advanced cells) are gently detached and cultured to achieve safety and homogenization of the cell material.
- B Microscopic view of adherent cells at each separation time of undifferentiated cells and differentiated cells. Human iPS was used as an undifferentiated cell, and mesenchymal cell septum transversum mesenchyme, STM was used as a differentiated cell.
- curcumin which has an anticancer effect
- gelatin, fibronectin, and laminin 511 fragments are combined to examine conditions for maximizing resolution at each time ( This was done for each time factor.
- A DE derived from iPS cells and iPS cells (definitive endoderm), HE (hepatic endoderm), EC (endothelial cells, endothelial cells), Pre-STM (STM progenitor cells) There are four types. The higher the cell color is, the higher the adhesion rate.
- B Change in the degree of separation by dividing the adhesion rate of mature cells by the adhesion rate of iPS cells.
- the blacker (> 1) indicates that the adhesion efficiency of mature cells is larger than that of iPS cells, so the separation efficiency is higher.
- This result shows that there are conditions that maximize the separation efficiency in a cell type-specific manner by considering not only the cell separation “time” but also the parameters of the solution factor and the substrate factor. Separation time dependence of cell type adhesion rate.
- the dotted line is the fitting result with an exponential curve. It was found that the adhesion curves were different for STM, EC derived from iPS, and different MSCs of bone marrow donors, indicating that each cell type had unique adhesion dynamics. Removal plot of undifferentiated cells from a solution in which undifferentiated cells (GFP label) are mixed with differentiated cells at the same time.
- A Illustration of experimental operation and after removal rate balloon low.
- B The removal rate of differentiated cells only from differentiated cells (covering all germ layers in the living body) multiplied by time, solute, and substrate.
- C Adhesion dynamics of various cells in the presence of polyphenols.
- D Schematic diagram of the mechanical mechanism that induces polyphenols in the direction of reducing the initial removal rate in endoderm cells and in the direction of spreading in mesoderm. In addition, a new neural crest has been introduced as an ectoderm. Concentration of functional and undifferentiated HE cells from HE-iPSC mixed solution.
- MH The function of MH obtained by culturing for 8 days after selection was evaluated by the albumin producing ability, and the level of undifferentiated cells was also peaked in tra2-49 / 6E (a representative marker of undifferentiated cells) of undifferentiated cells.
- the albumin concentration of the culture supernatant was measured using ELISA (Enzyme-Linked ImmunoSorbent Assay) reagent on Day 10, 13, and 16 days after culturing.
- ELISA Enzyme-Linked ImmunoSorbent Assay
- rBC2LCN-PE23 which recognizes surface sugar chains that are highly expressed specifically in undifferentiated cells, is expressed moderately in halfway differentiated cells, thus promoting cell detachment.
- Viable cells were stained with live dead staging reagent (Lifetechnologies Japan Inc), and the fluorescent region was quantified.
- the vertical axis shows the proportion of undifferentiated cells
- the horizontal axis shows the maturity of the target cells (the number of days it takes to induce differentiation from undifferentiated cells)
- the black dotted line decreases with differentiation induction The ratio of is shown schematically.
- the cells are examples of hepatic endoderm induction, from undifferentiated cells (iPSC) to DE (definitive endoderm), HE (hepatic endoderm), MH (matured hepatocye). Has been used for mature differentiated cells (grey dotted line, MH).
- FACS which is a representative example of the existing method, sorts cells one by one, so the sorting speed is very slow and the recovery time due to cytotoxicity is a problem due to the length of time exposed to non-physiological environments. (FIG. 8A).
- lectin which is an undifferentiated cell removing agent, shows a killing effect not only on undifferentiated cells but also on cells undergoing differentiation (FIG. 9A, DE & HE).
- the target of the existing method is a mature cell (they remain undifferentiated by long-term culture in the first place) and does not fit into the “differentiating” cell that is the raw material of the organ primordium (organoid) (Black solid line, DE, HE).
- this method targets mature cells and does not exhibit cytotoxicity while maintaining the function of cells in the middle of differentiation (FIG. 9), and its sorting speed is as fast as 30 minutes or less (FIG. 9). 5) A large amount of cells that can be used for clinical applications can be rapidly bulk sorted.
- Lipid molecule orientation and cholesterol level are factors that determine lipid membrane fluidity, but the cholesterol level in the membrane can be estimated by subtracting it from native in the cholesterol desorption graph (right in the figure).
- A The fluidity of a cell membrane to which Native and M ⁇ CD are added is expressed as a GP value. Even before cholesterol desorption, Endo / Ectoderm has low fluidity, and Mesoderm is in a state close to that of undifferentiated cells. On the other hand, when cholesterol is removed, most undifferentiated cells are fluidized.
- B Shows a radar plot of a histogram (Number of pixels vs.
- GP value GP value to show what fluidity personality actually exists.
- the peak value in each condition is indicated by an arrow, and the native-cholesterol desorption membrane indicates the cholesterol level in the membrane (blue arrow vector).
- the strength of the orientation of the lipid membrane is iPSC ⁇ MC ⁇ NC ⁇ EC ⁇ HE, while the cholesterol level is iPSC >> EC, MC, NC> HE, which is a characteristic lipid membrane fluidity for each cell type. It shows that there is a difference in individuality. Search for membrane fluidity modulators of undifferentiated cells using a library of unique low molecular weight compounds.
- GP value on the Y-axis, library of low-molecular compounds on the X-axis, and Z-axis the GP histogram minus the frequency before and after the reaction. As the color becomes darker, the difference between after reaction and before reaction increases, indicating that the fluidity of undifferentiated cells is well changed.
- the intensity (vertical axis) is not 0, indicating that there is a difference in membrane fluidity between differentiated and undifferentiated cells. This shows that the strength (vertical axis) increases with the addition of polyphenols (here resveratrol, EGCG, Curcumin, Genistein).
- B The sum of the positive ratios of the vertical axis intensity in A is summarized for each cell type before and after the reaction. Curcumin and Genistein have improved the sum more than several times in almost all cell types, and this result indicates that polyphenols increase the difference in fluidity between undifferentiated cells and differentiated cells.
- the present invention includes: a) performing a treatment that increases the difference in cell membrane fluidity between target cells and non-target cells; and b) To provide a cell sorting method including sorting target cells using the difference in cell membrane fluidity.
- the cells to be selected may be adherent cells, iPS cells, definitive endoderm cells, hepatic endoderm cells, endothelial cells, mesenchymal cells, lateral septal stromal cells, Examples include umbilical vein endothelial cells and mesenchymal stem cells, but cells that can differentiate into organs such as kidney, heart, lung, spleen, esophagus, stomach, thyroid, parathyroid, thymus, gonad, brain, spinal cord, etc.
- brain There may be brain, spinal cord, adrenal medulla, epidermis, hair / nail / cutaneous gland, sensory organ, peripheral nerve, cells that can differentiate into ectodermal organs such as lens, kidney, ureter, heart, blood, gonad, Cells that can differentiate into mesodermal organs such as adrenal cortex, muscle, skeleton, dermis, connective tissue, mesothelial cells, cells that can differentiate into endoderm organs such as liver, pancreas, intestine, lung, thyroid, parathyroid gland, urinary tract , Pancreatic endocrine cells, pancreatic ductal epithelial cells, liver hepatocytes, intestine Epithelial cells, renal tubular epithelial cells, renal glomerular epithelial cells, cardiac cardiomyocytes, blood lymphocytes and granulocytes, red blood cells, brain neurons and glial cells, spinal neurons and Schwann cells, endothelial cells, umbilical vein endothelial cells
- the target cell and the non-target cell are cells having the same lineage and different degrees of differentiation (eg, differentiated cells derived from iPS cells and undifferentiated cells), cells provided from a donor specimen.
- Examples include cells derived from certain donors, cells derived from other donors, differentiated cells derived from iPS cells, and cells unintentionally differentiated into unintended tissues, but are not limited thereto. Do not mean.
- halfway undifferentiated cells can be selected from a cell population containing undifferentiated cells and halfway differentiated cells.
- cells at a specific stage for example, early stage, late stage, etc.
- cell membrane fluidity refers to the one defined by Equation 1 (Example) as an index of membrane softness such as the diffusion coefficient of lipid molecules and protein molecules in biological membranes. Means. In order for cells to adhere strongly, it is important that the adhesion proteins assemble on a fluid membrane. The movement to adhere strongly depends on the flexibility of the membrane. Since the flexible fluctuation of the membrane changes faster than the time scale when gene expression changes ( ⁇ 15 minutes), it can be seen that cell adhesion is governed by membrane fluidity. Cell membrane fluidity can be evaluated using radan, whose fluorescence intensity varies with membrane fluidity (see Examples below).
- a substance that can change cell membrane fluidity in a cell type-specific manner is brought into contact with target cells and non-target cells (for example, in a culture medium).
- target cells and non-target cells for example, in a culture medium.
- substances that can change cell membrane fluidity in a cell type-specific manner include polyphenols, differentiation-inducing factors, inhibitors, growth factors, drugs, amino acids and surfactants, but are not limited to these. Do not mean. More specifically, the following compounds are exemplified.
- Polyphenol group resveratrol, epigallocatechin gallate (EGCG), curcumin and genistein
- Differentiation-inducing factors activin-A, wint-3a, sodium butylate, basic fibroblast growth factor (bFGF), oncostatin M (OSM), dexamethasone (DEX), hepatocyte growth factor (HGF), CHIR-99021 and forskolin
- Inhibitor group Y-27632 (rock inhibitor), (s)-(-)-blebbistatin, IWP2, A83-01, LY294002, SB-431542, NVP-BHG, Cyclopamine-KAAD, and PD-0325901
- Growth factors FGF4, LDN-193189, insulin like growth factor (IGF), bone morphogenetic protein (BMP) 2, transforming growth factor (TGF) ⁇ 2, BMP4, FGF-7, platelet-derived growth factor (PDGF ) ⁇ 3, epidermal growth factor (EGF), exendin-4,
- the concentration of the substance added to the medium may be adjusted as appropriate, for example, 1 ⁇ M or more, preferably 1 to 100 ⁇ M, more preferably 10 to 100 ⁇ M.
- the difference in cell membrane fluidity By expanding the difference in cell membrane fluidity, the difference in cell adhesion to the substrate is expanded, and target cells can be selected using this difference.
- the adhesive force of the target cell is smaller than that of the non-target cell, the target cell may be recovered from the cell culture supernatant.
- the adhesive force of the target cell is larger than that of the non-target cell, the target cell adhered to the substrate (substrate) of the culture container may be recovered.
- a substrate is a molecule that serves as a scaffold to which cells adhere when cells are cultured.
- a scaffolding substrate is required.
- a culture vessel (substrate) coated with a substrate such as matrigel, laminin, collagen, gelatin, fibronectin, or extracellular matrix is used. At this time, cells adhere to the culture vessel via the substrate. , Have secured a scaffold.
- the molecules constituting the culture surface of the culture container can be regarded as a substrate.
- the adhesion of cells to the substrate can be quantified by measuring the percentage of cells adhered to the substrate (adhesion rate) at each incubation time.
- the present invention also provides a method for quantifying the adhesion of cells to a substrate, which comprises measuring the percentage of cells adhered to the substrate (adhesion rate) at each incubation time.
- the adhesion of cells to the substrate can vary depending on the donor who provides the cells and between cell types. Therefore, cell adhesion to the substrate should be measured to examine differences between donors that donate cells. In addition, cell adhesion to the substrate should be measured to examine differences between cell types.
- the “physical properties (hardness etc.)” of the substrate may be changed (or adjusted).
- the “biochemical characteristics (type)” of the substrate may be changed (or optimized).
- the “physical properties (hardness, etc.)” of a substrate As a method of changing (or adjusting) the “physical properties (hardness, etc.)” of a substrate, adjusting the concentration of the substrate, changing the type of the substrate, adding a substance that can change the hardness of the substrate It can be exemplified by changing the composition (mixing ratio) of the components constituting the substrate, but is not limited thereto.
- the “biochemical characteristics (type)” of a substrate for example, a protein group involved in cell adhesion and growth is selected from components of an extracellular matrix in a living body.
- the method can be exemplified by, but not limited to, a method of quantifying the adhesion of cells to a plurality of substrates and selecting a substrate in which the cells exhibit a desired adhesion.
- Cells should be cultured in adherents in cell culture vessels coated with substrate.
- the culture medium for cell culture should be appropriately selected according to the type of cell and the type of differentiation induction of the target cell.
- substances that can change cell membrane fluidity in a cell type-specific manner polyphenols, differentiation-inducing factors, inhibitors, growth factors, drugs or amino acids / surfactants, etc.), phenol red, pyruvate, HEPES, Trace metals, phosphates, acetates, vitamins, ascorbic acid, nicotinamide, 2-mercaptoethanol, dexamethasone, insulin, epidermal growth factor (EGF), hepatocyte growth factor (HGF), activin A, basic fibroblasts Cell growth factor (bFGF), bone morphogenetic protein (BMP) 4, oncostatin M, hydrocortisone, heparin, vascular endothelial growth factor (VEGF), insulin-like growth factor (R3-IGF) -1, bovine brain extract (B
- DMEM Dulbecco's Modified Eagle Medium
- E-MEM E-MEM
- IMDM lactose-containing glucose-free DMEM
- Ham F12 Ham F12
- RPMI-1640 RPMI-1640
- Williams E and mixtures thereof
- Cells are cultured at a temperature of 34 ° C. to 38 ° C., preferably 37 ° C., and the CO 2 concentration is preferably 2% to 10%, most preferably 5%.
- a substance capable of changing cell membrane fluidity in a cell type-specific manner is added to the medium, so that target cells and non-target cells can be selected.
- the difference in adhesion to the substrate is expanded, and the culture is performed until the time when the value (separation) obtained by dividing the adhesion rate of the target cells by the adhesion rate of the non-target cells is maximized or a time close thereto.
- the adhesion of the target cell to the substrate is smaller than that of the non-target cell, the target cell can be isolated by washing away the floating cell.
- the adhesive force of the target cell to the substrate is larger than that of the non-target cell, the target cell adhered to the substrate may be recovered.
- the method of the present invention can be used to remove undifferentiated cells. For example, it is possible to sort cells at a specific differentiation stage from cell populations of the same lineage. For example, undifferentiated cells can be removed from differentiated cells derived from iPS cells. “Undifferentiated” of an undifferentiated cell means a state in which differentiation is not completely completed, and an undifferentiated cell is any cell that can be differentiated (for example, the fate of differentiation to a specific cell is determined, It is a concept that includes cells that have not yet differentiated into the cell). Examples of undifferentiated cells include pluripotent stem cells such as iPS cells and ES cells, and undifferentiated tissue / organ (eg, liver) cells derived from living tissues (including organs). Examples of undifferentiated tissue / organ cells include stem cells and progenitor cells derived from living tissues.
- the present invention a1) in inducing differentiation of undifferentiated cells, performing a treatment for expanding the difference in cell membrane fluidity between undifferentiated cells before and after differentiation; and b1)
- a method for inducing cell differentiation which includes selecting differentiated cells using the difference in cell membrane fluidity.
- the present invention also provides: a1) performing a treatment for expanding the difference in cell membrane fluidity between undifferentiated cells before and after differentiation in inducing differentiation of undifferentiated cells; and b1)
- the present invention also provides a method for preparing differentiated cells including sorting differentiated cells using the difference in cell membrane fluidity.
- the method of the present invention can be used to concentrate differentiated cells.
- differentiated cells derived from iPS cells can be enriched.
- the method of the present invention can also be used to homogenize cells constituting a cell population. For example, it is effective not only for the safety of cell material provided from mature cells derived from iPS cells and human donors, but also as a cell separation method that guarantees the homogeneity of cell materials that improve the function of three-dimensional tissues.
- the present invention also provides a cell selection kit including a reagent for performing a treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells.
- Reagents for processing to increase the difference in cell membrane fluidity between target and non-target cells may contain substances that can change cell membrane fluidity in a cell type-specific manner. As described above.
- the present invention also provides a reagent for performing a treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells, which contains a substance capable of changing cell membrane fluidity in a cell type-specific manner.
- Reagents for processing to increase the difference in cell membrane fluidity between target cells and non-target cells include diluents, substrates, substances that can change substrate hardness, and substrates used as substrate scaffolds. It is recommended to include a polymer gel that can be adjusted. These substances can further expand the difference in adhesion of target cells and non-target cells to the substrate.
- the reagent for performing the treatment for expanding the difference in cell membrane fluidity between the target cell and the non-target cell may contain a plurality of substrates. If it does so, the adhesiveness of the cell with respect to a some substrate can be quantified, and the substrate which a cell shows desired adhesiveness can be selected.
- the present invention also provides a cell sorting medium containing a reagent for performing a treatment for expanding the difference in cell membrane fluidity between target cells and non-target cells.
- the present invention is based on an inexpensive and simple method of adding inexpensive, familiar, and safe substances (green tea catechin and curcumin), which can dramatically reduce the cost for industrial production of human organ cells.
- Culture technology In conjunction with the technology developed by the present inventors in the past (“Tissue / Organ Production Method” WO2013 / 047639), this cell manipulation technology is extremely useful for regenerative medicine and industrial applications.
- the present invention can selectively remove contaminating iPS cells from liver cells differentiated from human iPS cells, and provides a large amount of safe human mature hepatocytes necessary for clinical application and drug development. It can be manufactured at low cost.
- immature cells are human iPS cells, and mature cells are differentiated cells derived from iPS cells.
- immature cells are human iPS cells, and mature cells are differentiated cells derived from iPS cells.
- Example 1 The Safe cell materials (removal of undifferentiated cells) 1.1 Safety of cell raw materials by focusing on cell type-specific separation dynamics (removal of undifferentiated cells) While various cell therapy methods based on stem cells have been proposed, a drastic method for removing undifferentiated cells that may cause canceration has not been established (Non-patent Document 2: Cunningham et al., Nat. Biothechnol. 2012). Therefore, the inventor removed undifferentiated cells using the difference in cell-specific adhesion dynamics (Fig. 1).
- the supernatant containing weakly adherent cells was washed away at ⁇ minutes after culturing, and strongly adherent cells (advanced cells in the figure) were gently detached and cultured. By doing so, safety and homogenization of the cell material can be achieved.
- the undifferentiated cells were human iPS, and the differentiated cells were mesenchymal cells derived from iPS, septum transversum mesenchyme, STM.
- each adhesion rate was normalized by the adhesion rate of iPS cells (FIG. 4B).
- the denominator numerator is the same for iPS cell cells, all of them take the same value of 1, whereas for mature cell cells, when the adhesion rate is larger than iPS cells, the separation value is high ( On the other hand, when the adhesion rate is smaller than iPS cells, the degree of separation is small (blue).
- the separation degree is 1, indicating that the white cells, that is, the separation efficiency is very poor.
- the removal rate in the strongly adherent cells is large
- the removal rate in the weakly adherent cells is the colored balloon. In many cases, it is indicated by a balloon with no color (Fig. 5A).
- x substrate conditions no coat, gelatin, fibronectin laminin, matrigel, collagen, concentration conditions are (2 conditions each)
- x solute conditions resveratrol, EGCG, curcumin, Genistein, concentration conditions were 3 each
- High-function cell concentration from cell sources 2.1. Selection of highly functional and safe cell population from iPSC-HE mixed solution ⁇ br/> Is polyphenols ineffective for systems with weaker adhesion than undifferentiated cells such as endoderm? In order to verify this, a mixed solution of HE and undifferentiated cells was seeded, and the remaining non-adherent cells (weakly adhering cells) and strongly adhering cells (strongly adhering cells) remaining in the supernatant were recovered, and the matured hepatocytes ( MH), and the functionality and the remaining rate of undifferentiated cells were quantitatively evaluated.
- albumin-producing ability was very high under all weakly adherent cell conditions, and that albumin-producing ability was improved compared to unselected conditions (control, black). This is because not only undifferentiated cells but also low-functional cells originally contained in differentiated cells are removed, and high-function cells are concentrated. Further, the level of remaining undifferentiated cells plotted in the high expression region (from peak fluorescence intensity to maximum value) of undifferentiated cells tra2-49 / 6E (representative undifferentiated marker) is shown on the right side of FIG. .
- MSC mesenchymal stem cells
- the inventor measured the albumin producing ability of the liver primordium induced using the cells collected at each separation time (FIG. 5A).
- Fig. 5B the structure of the corresponding liver primordium was evaluated. In donor 1, the number of liver primordium was maximized at 7.5 minutes, approaching that of donor 2.
- EC although the number of liver primordia has decreased, large and large liver primordia are formed, suggesting that the function per liver primordium is improved.
- the liver in the present invention is an ultrafast, simple and inexpensive cell sorting method using polyphenols that react specifically with undifferentiated cells. Therefore, by knowing why polyphenols react specifically with undifferentiated cells, it becomes possible to search and synthesize new substances with higher reaction specificity.
- the focus was on the changes in membrane properties that Matsuzaki et al. Focused on as one of the anti-cancer mechanisms of green tea.
- Non-Patent Document 4 Matsuzaki et al., Phys Chem. Chem. Phys. 2017. Therefore, the membrane fluidity of undifferentiated cells, which changes flexibly in the early stages of development, may closely resemble that of cancer cells.
- the membrane fluidity (Generalized polarization factor, GP value) was evaluated using Radan (Non-Patent Document 5: Owen et al., Nature protocols 2011) whose fluorescence wavelength actually changes according to the membrane fluidity. .
- FIG. 10 shows a comparison between the membrane fluidity of undifferentiated cells and cells undergoing “endoderm” induction. Is this the same for other germ layers?
- Membrane fluidity of undifferentiated cells and endoderm (FIG. 10 is DE, here, late HE), mesoderm (EC / MC), and ectoderm (NC) cell populations were evaluated by the same method as before. Then, the fluidity of the early endoderm and the undifferentiated cells was almost the same, but it was found that the inner and outer ectoderm became harder and the mesoderm became a soft membrane with the later induction (FIG. 11A). left).
- FIG. 11A shows a radar-plot for making this change easy to see in terms of expression.
- the peak value of cholesterol elimination is indicated by an arrow (gray, practice)
- the native one is indicated by a blue region and the peak value is indicated by an arrow (gray line)
- the cholesterol level is the same as in FIG. 10B. It is expressed by the subtracted vector intensity (solid arrow, black).
- undifferentiated cells are fluid lipid membranes (+ M ⁇ CD, counterclockwise) and have very high cholesterol levels (solid arrows, black).
- endoderm has a low cholesterol level and is hard as a lipid membrane.
- the mesoderm / ectoderm has higher cholesterol levels than the endoderm, and its lipid membrane fluidity is relatively high.
- the lipid membrane orientation level is iPSC ⁇ MC ⁇ NC ⁇ EC ⁇ HE, and the cholesterol levels are iPSC >> EC, MC, NC> HE. . Therefore, it was found that not only specific lipid membrane physical properties of undifferentiated cells (cholesterol rich, lowly ordered lipid) but also germline-specific fluidity-specific differences.
- Non-patent Document 11 Schaeffer and Curtis, J. Cell). Sci. 1977
- intracellular signals and the like Non-Patent Document 12: Salaita et al., Science 2010
- Non-Patent Document 12 Salaita et al., Science 2010
- FACS is a representative technique that can be used to select cells one by one with ultrapure (FIG. 8A).
- CXCR4 a representative marker of DE
- tra2-49 / 6E under conditions where HE and iPSC are mixed at a ratio of 9: 1, conditions for separating HE and iPSC populations (blue gate and red gate) ) Is found.
- Non-Patent Document 6 Stem Cell Reports 2015.
- FACS Fluorescence Activated Cell Sorting
- rBC2LCN-PE23 still has the properties of undifferentiated cells such as prematurely differentiated cells. It becomes poisonous for those who share. Focusing on the membrane fluidity characteristics of undifferentiated cells, this technique was found to be a technique that can select cells with minimal damage to cells using a natural compound (polyphenol) that is familiar to the fluidity. . It is considered that this method can be used as a powerful tool for selection of cell materials during differentiation, which is indispensable for the creation of organ buds (organoids).
- the iPS cell is a GFP-TKDA strain (provided by the University of Tokyo) into which a green fluorescent protein has been introduced.
- the iPS cell used for differentiation induction is the FF-I01 strain (iPS Cell Research Institute, Kyoto University). (Provided by (CiRA)).
- StemFit AK02N (Reprocell) was used for cell culture.
- Reprocell When used for the following differentiation induction, after aspirating the culture, wash twice with 8 mL of PBS, react with 8 mL of Funakoshi for 8 minutes to detach the cells.
- HE which is induced to differentiate from iPS cells (FF-I01 strain), is a late-stage differentiated cell in DE, so the protocol up to this point is the same.
- Non-patent document 13 Si-Tayeb, Karim, et al. Hepatology 2010, Non-patent document 1: Takebe, T et al., Nature, 2013 and Patent document 1: WO2013 / 047639 A1: Based on tissue and organ production methods).
- Laminin 511 is coated on a 6 cm dish plastic dish (BD) at a concentration of 10 ⁇ L / 8 mL PBS of Laminin511 stock solution that is lower than the concentration used to maintain iPS undifferentiated. After aspirating the supernatant, add 4 mL of 2x10 6 suspension of iPS cells.
- the culture medium used at this time is based on RPMI-1640 (Wako) and supplemented with 1% Peniciline / streptomycine (Wako) and 0.1% Activin (Wako) and 0.1% Wint3a (Wako) as differentiation inducers to inhibit iPS cell death
- the medium is supplemented with 0.001% rock inhibitor.
- Rock inhibitor Y-27632
- iPS cells are seeded on day 0, and cells are used as DE on day 6.
- HE 1% Peniciline / streptomycine (Wako), 1% serum-free supplement B27 (Thermo), 0.2% bFGF (basic fibroblast growth factor, Wako) was added on the 6th day based on RPMI-1640 (Wako)
- Wako Peniciline / streptomycine
- bFGF basic fibroblast growth factor
- the cell suspension medium is StemPro-34 SFM (Thermo) with 1% Peniciline / streptmycine, 2 ⁇ M Forskolin, 200 ng / mL VEGF (Vascular epidermal growth factor), and 10 ⁇ M rock inhibitor.
- the seeding date is 0 day, and on the first day, the culture medium is replaced with 4 mL of differentiation-inducing medium from which rock inhibitor is removed, and 4 mL of the culture medium is changed every day from 3 days to 8 days.
- On day 9 replace StemPro-34 SFM (Thermo) with 1% Peniciline / streptmycine, 50 ng / mL VEGF differentiation maintenance medium, and use as EC on day 10.
- the culture medium in which cells are suspended is DMEM / F12 (Thermo), 1% Peniciline / streptmycine, 1% Glutamax (Life technology), 1% B27 (Thermo), 25 ng / mL BMP4 (Wako), 8 ⁇ M CHIR 99021 (Wako), Mesoderm differentiation induction medium supplemented with 10 ⁇ M rock inhibitor.
- the seeding date is 0 day, and on day 1 the medium is replaced with 4 mL of Mesoderm differentiation-inducing medium without rock inhibitor, and cultured on days 2 to 3 (day 2 without medium change). Replace with induction medium A on Day 4.
- the medium for induction is DMEM / F12, 1% Peniciline / streptmycine, 1% Glutamax, 1% B27, 10 ng / mL PDGF BB (Wako), 2 ng / nL Activin. Incubate from Day 4 to Day 5. From day 6, replace with induction B medium.
- the induction B medium is a culture medium of 1% Peniciline / streptmycine, 1% Glutamax, 1% B27, 10 ng / mL bFGF, 12 ng / mL BMP4 in DMEM / F12. Incubate from Day 6 to Day 7.
- MSC MSC culture medium
- MGM MSC culture medium
- marrow donor 1 Lit. 307219
- bone marrow donor 2 Lit. 458207
- Wako Trypsin-EDTA
- typical substrate factors used in this example include gelatin, fibronectin and laminin 511.
- gelatin For gelatin, add gelatin powder (Thermo) to MilliQ water at 0.1 w / v and heat and dissolve in an autoclave for 10 minutes at 120 ° C. Using a gelatin solution that has been returned to room temperature, add 300 ⁇ L each to 0.09 mg / cm 2 (x1 gelatin) and 0.27 ⁇ g / well (x3 gelatin), and coat for 1 hour in a 37 ° C 5% CO2 incubator. . x1 gelatin is equivalent to the coating density ( ⁇ g / cm2) of 10cm dish on Day 8 of STM.
- fibronectin human fibronectin powder (Wako) dissolved in sterilized water and adjusted to 1 mg / mL has been used to evaluate growth after cell seeding on Day 10.
- fibronectin solution to 0.91 ⁇ g / cm 2 (x1 fibronectin) and 2.73 ⁇ g / cm 2 (x3 fibronectin) so that the concentration is the same, and coat in a 5% CO2 incubator at 37 ° C for 1 hour.
- laminin 511 (Nippi) was used, and the laminin solution was 0.24 ⁇ g / cm 2 (x1 laminin) and 0.48 ⁇ g / well (x2 laminin, so that it was equivalent to the laminin concentration used for induction of iPS cell differentiation. (iPS concentration is high enough to maintain undifferentiation) and coat in a 5% CO2 incubator at 37 ° C for 1 hour.
- Typical solution factors used in this Example are green tea catechin (EGCG) and curcumin, which is a component of turmeric. Dissolve green tea catechin (Sigma) and curcumin (Sigma) powder in PBS to a final concentration of 6 mM.
- ethanol was added to a final concentration of 10%.
- dissolve the solution factor to 10 ⁇ M and 100 ⁇ M, respectively, in the culture medium before adding cells, then add the target cells and seed them in a 48-well plate.
- PBS-EDTA solution not only improves the ease of counting cells by detaching the cells, but also agitates and homogenizes the cell population that adheres unevenly to the substrate.
- Quantitative evaluation of cell adhesion rate In the present invention, the following two methods are separately used as quantitative evaluation methods of cell adhesion rate.
- A a small number of cells when a small number of precious cells are added to a 48-well plate with a huge amount of substrate and solution factors is counted comprehensively and easily by image analysis.
- B a large number of precious cells are prepared for the homogenization of the actual cell material, and the number of adhered cells can be easily counted, and the adhered cells can be recovered under mild conditions.
- A In the case of a well plate in which substrate and culture medium factors are controlled independently and strictly, the method B described later is not suitable for counting the number of cells adhered in wells with a large number of substrate and solution factor conditions.
- centrifuge at 1000 rpm for 3 minutes to obtain sorted cells.
- centrifuge tube Suditomo Bakelite
- the cells were suspended in 1 mL of the culture solution, diluted 2-fold with trypan blue (Wako), and the number of cells was counted with a waken counter (Wako).
- Wako trypan blue
- Wako waken counter
- liver primordium using human iPS cells
- Patent Document 1 “Method for producing tissue / organ” WO2013 / 047639
- Non-Patent Document 1 Takebe, T et al., Nature , 2013).
- Three cell types are important for the creation of liver primordium. Firstly, human iPS cell-derived liver cells (iPS-hepatic endoderm, HE) that are in the differentiation stage corresponding to hepatic progenitor cells.
- human umbilical vein endothelial cells (HUVEC) promote blood vessel induction after transplantation.
- liver primordia can be induced by co-culturing three types of mesenchymal stem cells (MSCs).
- MSCs mesenchymal stem cells
- the combinations of liver primordia used for induction in this cell sorting method are as follows.
- Donor 1MSC-LB (liver bud) and donor 2MSC-LB mixed with 10: 7: 2 of iPS-HE: HUVEC: MSC were derived using different donor 1MSC and donor 2MSC.
- STM-LB that uses STM instead of MSC in normal LB can be mentioned.
- liver primordium induction culture is mixed with 40 mL of HCM (Lonza) and 40 mL of EGM (Lonza), and the 20 ng / mL OSM (Oncostatin M, Wako) and 20 ng / mL HGF (20 ng / mL) required for liver induction are mixed.
- Hepatic growth factor (Wako) contains 10 ⁇ M rock inhibitor on Day 0 after seeding.
- ELISA is quantified by the method described in Bethyl's human albumin quantification kit.
- Membrane fluidity evaluation method Membrane fluidity was evaluated based on the published protocol (Owen et al., Nature protocols 2011). Specifically, DMSO solution was prepared using dimethyl-6-dodecanoyl-2-naphthylamine (Radan, AdipoGen life science Inc., CA, USA) as a membrane fluidity probe (final concentration 9 mM). The cells were added to RPMI 1640 medium (+ 10 mM M ⁇ CD) and StemFit AK02N (iPSC culture medium) so that the final concentration was constant at 33 ⁇ M. After addition, the cells were incubated at 37 ° C for 30 minutes, and the incubation function (Tokken (TCS-SP8, Leica microsystems, Tokyo, Japan).
- Equations 1 and 2 were used to calculate the GP value (Generalized polarization factor), which is an index of membrane fluidity.
- GP meas is a corrected value (equation 3) of radan (33 ⁇ M) melted in DMSO measured using the same optical setup: It should be noted that all cells used in the evaluation of membrane fluidity are floating cells immediately after being detached with Accutate.
- the substrate to be seeded is a 96-well glass plate with a glass substrate on the bottom so that the fluorescence from radan can be collected efficiently, and the surface is untreated so that cell adhesion is inhibited and cell observation in a floating state is possible. It is. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
- the present invention is based on an inexpensive and simple method of adding inexpensive, familiar, and safe substances (green tea catechin and curcumin), which can dramatically reduce the cost for industrial production of human organ cells.
- Culture technology In conjunction with the technology developed by the present inventors in the past (“Tissue / Organ Production Method” WO2013 / 047639), this cell manipulation technology is extremely useful for regenerative medicine and industrial applications.
- the present invention can selectively remove contaminating iPS cells from liver cells differentiated from human iPS cells, and provides a large amount of safe human mature hepatocytes necessary for clinical application and drug development. It can be manufactured at low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
簡便かつ容易な新規細胞分離法を提供する.a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及びb) 細胞膜流動性の差を利用して,標的細胞を選別することを含む,細胞選別法.細胞選別用キット,細胞選別用培地,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬,基質に対する細胞の接着性を定量する方法も提供する.
Description
本発明は,細胞選別法に関する.
Takebeらは肝臓発生の初期プロセスの出芽現象(形態形成)に関わる3つの細胞群を同定し,それらをin vitroで混合することで肝臓原基(臓器の種)の創出に成功した(非特許文献1:Nature 2013, 特許文献1:WO2013/047639 A1:組織及び臓器の作製方法).この肝臓原基は移植後に肝臓機能を発現するため,臓器不全の患者に対する画期的な治療法として脚光を浴びている.また,同手法は腸,腎臓,膵臓,脳,肺,癌,心臓など,多様な組織へと拡張可能である(特許文献2:WO2015/012158 A1,特許文献3:WO2015/129822 A1)ことから,器官原基の構築する基盤原理として,さまざまな分野への応用が期待されている.そこで,実際の臓器再生医療へ応用するためには,均質でかつ安全性が担保された器官原基を誘導する手法を確立する必要性がある.しかしながら,本システムが抱える大きな問題点として,細胞原料における「安全性」と「均質性」の問題がある.
器官原基はヒトiPS細胞などの幹細胞から複数の細胞材料を調整し,誘導することが可能であるが,未分化iPS細胞や,分化途上にある未分化な前駆細胞などの非標的細胞が混入する可能性があり,安全性や均質性に課題が残されていた.例えば,これまでに残存する未分化細胞ががん化・増殖するリスクが示されてきているものの,実験実施者レベルで簡便かつ容易な未分化細胞の分離手法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).また,分化途上にある内胚葉細胞や目的外の腸細胞へ分化した細胞が残存することで腸管組織を形成したり,同様に間質細胞の残存が過剰な線維化組織を形成することなどのリスクが指摘されているものの,このような組織の前駆細胞を細胞原料から選択的に除去する手法は存在しない.実際の研究室レベルでは,数多くのドナー細胞を用いた器官原基機能の網羅解析という研究者の経験論に依存した手法がとられており,産業応用上の決定的な障壁となっていた.
細胞選別法として再生医療研究・創薬研究の分野で広く用いられるのがFluorescence activated cell sorting (FACS)や,Magnetic-activated cell sorting (MACS)である(非特許文献3:Maecker et al., Nature Immunology 2010).本手法は表面抗原に対応する蛍光や磁性物質を付与した抗体を反応させ,蛍光や磁力を発する細胞のみを選択的に単離できる.しかしながら,表面抗原の同定と蛍光抗体の選定,さらにFACS装置の購入に膨大な時間とコストが必要である.また,実際の再生医療の現場での利用を想定した場合,固形臓器などの疾患治療に必要な超大量(1010~)の細胞の正確な選別が必要となるが, 選別に要する時間や伴う細胞へのダメージのため利用が困難である.さらに,標識物質の残存およびそのリスク評価についても大きな課題が残っていた.そこで非標識であり,安価・迅速な細胞選別法の開発が期待されている.
器官原基はヒトiPS細胞などの幹細胞から複数の細胞材料を調整し,誘導することが可能であるが,未分化iPS細胞や,分化途上にある未分化な前駆細胞などの非標的細胞が混入する可能性があり,安全性や均質性に課題が残されていた.例えば,これまでに残存する未分化細胞ががん化・増殖するリスクが示されてきているものの,実験実施者レベルで簡便かつ容易な未分化細胞の分離手法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).また,分化途上にある内胚葉細胞や目的外の腸細胞へ分化した細胞が残存することで腸管組織を形成したり,同様に間質細胞の残存が過剰な線維化組織を形成することなどのリスクが指摘されているものの,このような組織の前駆細胞を細胞原料から選択的に除去する手法は存在しない.実際の研究室レベルでは,数多くのドナー細胞を用いた器官原基機能の網羅解析という研究者の経験論に依存した手法がとられており,産業応用上の決定的な障壁となっていた.
細胞選別法として再生医療研究・創薬研究の分野で広く用いられるのがFluorescence activated cell sorting (FACS)や,Magnetic-activated cell sorting (MACS)である(非特許文献3:Maecker et al., Nature Immunology 2010).本手法は表面抗原に対応する蛍光や磁性物質を付与した抗体を反応させ,蛍光や磁力を発する細胞のみを選択的に単離できる.しかしながら,表面抗原の同定と蛍光抗体の選定,さらにFACS装置の購入に膨大な時間とコストが必要である.また,実際の再生医療の現場での利用を想定した場合,固形臓器などの疾患治療に必要な超大量(1010~)の細胞の正確な選別が必要となるが, 選別に要する時間や伴う細胞へのダメージのため利用が困難である.さらに,標識物質の残存およびそのリスク評価についても大きな課題が残っていた.そこで非標識であり,安価・迅速な細胞選別法の開発が期待されている.
臓器再生医療への安全でかつ均質性が担保された器官原基を誘導するためには,標的細胞と非標的細胞(例えば,未分化細胞)の細胞特性の違いに基づき,均質で高機能な器官原基を誘導する標的細胞の定量評価基準を確立するなどを通じ, 実験実施者レベルで簡便かつ容易な標的細胞の分離手法を確立することが必要である.
従来技術としてFACSなどの手法が存在するものの,熟練を要する高コストな装置を導入する必要がある.そのため実験実施者レベルで簡便かつ容易な新規細胞分離法の確立が必須である.
本発明は,簡便かつ容易な新規細胞分離法を提供することを目的とする.
従来技術としてFACSなどの手法が存在するものの,熟練を要する高コストな装置を導入する必要がある.そのため実験実施者レベルで簡便かつ容易な新規細胞分離法の確立が必須である.
本発明は,簡便かつ容易な新規細胞分離法を提供することを目的とする.
本発明者らは,基質をコーティングしたプラスチックディッシュ上へ細胞を播種後,培養時間τ分後に上澄みを回収することで基板接着性の悪い細胞を除去した(図1).その後,酵素に頼らない温和条件で細胞を剥離し,基板(基質)接着細胞のみを選択的に回収した.本手法を用いることで細胞原料の安全性と均質性の両立が可能である.以下詳細を述べる.
1.非標的細胞の除去による標的細胞の分離 (例.間質細胞に混入する未分化細胞の除去)
幹細胞ベースの様々な細胞治療法が提案される一方で,がん化の恐れのある未分化細胞を除去する抜本的な方法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).そこで,本発明者らは,図1の培養において,がん細胞の接着を阻害する緑茶カテキン(Epigallocatechin gallate, EGCG)を組み込んだ.つまり分離時間と緑茶カテキンの濃度の2つのパラメータで未分化細胞の接着率を評価した.すると100μM EGCGの添加で分離時間とともにiPS細胞(未分化細胞)の接着数が減少する一方で,ヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)(分化細胞)の接着性は向上していることがわかる(図2A).接着率を定量してみると,τ=22.5分に置いて顕著にiPS細胞の接着率の減少する一方で,STMについてはその接着率に変化が見られない.緑茶カテキンを組み合わせることで,分化細胞の接着を維持したまま,未分化細胞の混入を約2.6倍減少させることに成功した.EGCGが存在しない条件でSTMを細胞分離し,肝臓原基を誘導すると,アルブミン産生能に違いは見られない(図7A).しかしながらτ=22.5分において未分化細胞の混入率は減量していることが推測され,本細胞分離法により細胞自身へダメージを与えることなく未分化細胞の除去を促進していることが期待される.
2.細胞原料の均質化と肝臓原基の高機能化
肝臓原基の集合運動に大きく寄与する間葉系幹細胞(Mesenchymal stem cells, MSC)のドナー細胞を2種,さらにヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)及び内皮細胞(endothelial cell, EC)の計4種を用いて接着率の分離時間依存性を測定した.するとMSCドナー間で接着ダイナミクスが異なるカーブを描くことを見出した(図4).さらに興味深いことにiPS細胞から誘導したSTM・ECはドナー由来のMSCよりも強い基板接着率のカーブを描いている.これらの結果は本評価システムがMSCドナー間差,及び細胞種間の接着性の違いを定量区別可能であることを示している.
さらに,本発明者らは,各分離時間において回収した細胞を用いて誘導した肝臓原基のアルブミン産生能を測定した(図7). MSC Donor1ではτ=7.5分において極大値を取るアルブミン産生能を示し,ECにおいてはτが増大するにつれアルブミン産生能が向上することを見出した.よって本細胞選別法により均質な細胞が選別され,より高機能な肝臓原基が誘導されたことを示している.
3.未分化細胞の特異的な膜流動性を利用した,新規膜流動性ソーティング法の開発
なぜポリフェノールは未分化細胞の接着を特異的に阻害するのだろうか?その原理を理解することで,未分化細胞の着目すべき物理指標に合わせた論理的な薬剤スクリーニングが可能となる.緑茶カテキンには細胞膜のタンパク質に対する生化学的な反応(リガンドーレセプター相互作用)だけでなく,それを支える脂質膜を硬化させることを見出している(非特許文献4:Matsuzaki et al., Phys. Chem. Chem. Phys. 2017).膜流動性を物性値(Generalized polarization factor, GP値)で評価可能な蛍光プローブであるラダン(非特許文献5:Owen et al., Nature protocols 2011)を用いて,まずは未分化・分化細胞膜の定量評価を行った(図10).すると未分化細胞は流動的な脂質分子と,コレステロール豊富な細胞膜をしていることを見出した(図10B).さらにこれは内胚葉誘導特異的な現象ではなく,中胚葉・外胚葉由来細胞も同様の傾向を示しており(図11),さらにその胚葉特異的な流動性の個性差があることを見出した.これらの細胞にポリフェノールを作用させると未分化―分化細胞との流動性の個性差が劇的に拡大していることを見出した(図13). さらに未分化細胞に特異的に反応する低分子化合物は他に存在するのであろうか?ポリフェノール以外に,分化誘導因子,阻害剤,成長因子,薬剤,アミンと界面活性剤を含んだ独自のライブラリーを構築し,未分化細胞に反応させたときの流動性変化を測定した(図13).色の強度が強いものほど低分子化合物が良く反応しており, GP値の高い領域でその反応性が強いものはポリフェノール群のみである.本手法によって,未分化細胞の除去に着目すべき新規の物理指標として膜流動性があることを見出し,その制御には我々の生活に身近な天然化合物のポリフェノールが非常に有効であることを示した.本研究においては確立した流動性評価アッセイを未分化細胞特異的に反応する低分子化合物のスクリーニングに用いたが,本アッセイは未分化細胞だけでなく幅広い細胞種に応用可能であり,細胞種毎のスクリーニングか可能となる.
4.新規選別法の優位性~既存手法との比較~
本手法は細胞の機能を維持したまま(図6,図7),未分化細胞の除去を超高速(<30分以内)・超膨大量の選別が可能な手法である.既存手法の一つであるFACSを例にとって見ると,107個の細胞を選別するだけで1日かかるだけでなく,その長時間ソートによる細胞へのダメージが甚大であり,最終的に回収できる細胞数は初期の10%以下となる(図8A).一方でTatenoらが開発した未分化細胞殺傷薬剤(非特許文献6:Tatano et al., Stem cell reports 2015)においては,未分化細胞だけでなく,中途分化細胞まで剥離してしまう(図8B).これは未分化細胞と器官原基(オルガノイド)の原料である中途分化細胞の糖鎖表面マーカーが共通しており,分化途中の細胞にも効率的に毒素が反応してしまうせいだと考えられる.以上をまとめると,FACSはそのソーティングスピードの遅さから,臨床応用に耐えられる超大量の細胞選別には向かず,さらにレクチンについては,中途分化細胞のような未分化細胞の性質をまだ共有しているものたちに対しては毒となってしまう.本手法は未分化細胞の膜流動性の特性に着目し,その流動性を身近な天然化合物(ポリフェノール)を用いて標的細胞へのダメージを最小限に選別可能な手法であることが見出された.器官の芽(オルガノイド)の創出に必要不可欠な分化途中の細胞原料の選別には本手法が強力なツールとして利用可能であることが考えられる.
1.非標的細胞の除去による標的細胞の分離 (例.間質細胞に混入する未分化細胞の除去)
幹細胞ベースの様々な細胞治療法が提案される一方で,がん化の恐れのある未分化細胞を除去する抜本的な方法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).そこで,本発明者らは,図1の培養において,がん細胞の接着を阻害する緑茶カテキン(Epigallocatechin gallate, EGCG)を組み込んだ.つまり分離時間と緑茶カテキンの濃度の2つのパラメータで未分化細胞の接着率を評価した.すると100μM EGCGの添加で分離時間とともにiPS細胞(未分化細胞)の接着数が減少する一方で,ヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)(分化細胞)の接着性は向上していることがわかる(図2A).接着率を定量してみると,τ=22.5分に置いて顕著にiPS細胞の接着率の減少する一方で,STMについてはその接着率に変化が見られない.緑茶カテキンを組み合わせることで,分化細胞の接着を維持したまま,未分化細胞の混入を約2.6倍減少させることに成功した.EGCGが存在しない条件でSTMを細胞分離し,肝臓原基を誘導すると,アルブミン産生能に違いは見られない(図7A).しかしながらτ=22.5分において未分化細胞の混入率は減量していることが推測され,本細胞分離法により細胞自身へダメージを与えることなく未分化細胞の除去を促進していることが期待される.
2.細胞原料の均質化と肝臓原基の高機能化
肝臓原基の集合運動に大きく寄与する間葉系幹細胞(Mesenchymal stem cells, MSC)のドナー細胞を2種,さらにヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)及び内皮細胞(endothelial cell, EC)の計4種を用いて接着率の分離時間依存性を測定した.するとMSCドナー間で接着ダイナミクスが異なるカーブを描くことを見出した(図4).さらに興味深いことにiPS細胞から誘導したSTM・ECはドナー由来のMSCよりも強い基板接着率のカーブを描いている.これらの結果は本評価システムがMSCドナー間差,及び細胞種間の接着性の違いを定量区別可能であることを示している.
さらに,本発明者らは,各分離時間において回収した細胞を用いて誘導した肝臓原基のアルブミン産生能を測定した(図7). MSC Donor1ではτ=7.5分において極大値を取るアルブミン産生能を示し,ECにおいてはτが増大するにつれアルブミン産生能が向上することを見出した.よって本細胞選別法により均質な細胞が選別され,より高機能な肝臓原基が誘導されたことを示している.
3.未分化細胞の特異的な膜流動性を利用した,新規膜流動性ソーティング法の開発
なぜポリフェノールは未分化細胞の接着を特異的に阻害するのだろうか?その原理を理解することで,未分化細胞の着目すべき物理指標に合わせた論理的な薬剤スクリーニングが可能となる.緑茶カテキンには細胞膜のタンパク質に対する生化学的な反応(リガンドーレセプター相互作用)だけでなく,それを支える脂質膜を硬化させることを見出している(非特許文献4:Matsuzaki et al., Phys. Chem. Chem. Phys. 2017).膜流動性を物性値(Generalized polarization factor, GP値)で評価可能な蛍光プローブであるラダン(非特許文献5:Owen et al., Nature protocols 2011)を用いて,まずは未分化・分化細胞膜の定量評価を行った(図10).すると未分化細胞は流動的な脂質分子と,コレステロール豊富な細胞膜をしていることを見出した(図10B).さらにこれは内胚葉誘導特異的な現象ではなく,中胚葉・外胚葉由来細胞も同様の傾向を示しており(図11),さらにその胚葉特異的な流動性の個性差があることを見出した.これらの細胞にポリフェノールを作用させると未分化―分化細胞との流動性の個性差が劇的に拡大していることを見出した(図13). さらに未分化細胞に特異的に反応する低分子化合物は他に存在するのであろうか?ポリフェノール以外に,分化誘導因子,阻害剤,成長因子,薬剤,アミンと界面活性剤を含んだ独自のライブラリーを構築し,未分化細胞に反応させたときの流動性変化を測定した(図13).色の強度が強いものほど低分子化合物が良く反応しており, GP値の高い領域でその反応性が強いものはポリフェノール群のみである.本手法によって,未分化細胞の除去に着目すべき新規の物理指標として膜流動性があることを見出し,その制御には我々の生活に身近な天然化合物のポリフェノールが非常に有効であることを示した.本研究においては確立した流動性評価アッセイを未分化細胞特異的に反応する低分子化合物のスクリーニングに用いたが,本アッセイは未分化細胞だけでなく幅広い細胞種に応用可能であり,細胞種毎のスクリーニングか可能となる.
4.新規選別法の優位性~既存手法との比較~
本手法は細胞の機能を維持したまま(図6,図7),未分化細胞の除去を超高速(<30分以内)・超膨大量の選別が可能な手法である.既存手法の一つであるFACSを例にとって見ると,107個の細胞を選別するだけで1日かかるだけでなく,その長時間ソートによる細胞へのダメージが甚大であり,最終的に回収できる細胞数は初期の10%以下となる(図8A).一方でTatenoらが開発した未分化細胞殺傷薬剤(非特許文献6:Tatano et al., Stem cell reports 2015)においては,未分化細胞だけでなく,中途分化細胞まで剥離してしまう(図8B).これは未分化細胞と器官原基(オルガノイド)の原料である中途分化細胞の糖鎖表面マーカーが共通しており,分化途中の細胞にも効率的に毒素が反応してしまうせいだと考えられる.以上をまとめると,FACSはそのソーティングスピードの遅さから,臨床応用に耐えられる超大量の細胞選別には向かず,さらにレクチンについては,中途分化細胞のような未分化細胞の性質をまだ共有しているものたちに対しては毒となってしまう.本手法は未分化細胞の膜流動性の特性に着目し,その流動性を身近な天然化合物(ポリフェノール)を用いて標的細胞へのダメージを最小限に選別可能な手法であることが見出された.器官の芽(オルガノイド)の創出に必要不可欠な分化途中の細胞原料の選別には本手法が強力なツールとして利用可能であることが考えられる.
本発明の要旨は以下の通りである.
(1)a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及び
b) 細胞膜流動性の差を利用して,標的細胞を選別すること
を含む,細胞選別法.
(2)未分化細胞を除去するために用いられる(1)記載の方法.
(3)分化細胞を濃縮するために用いられる(1)記載の方法.
(4)細胞集団を構成する細胞を均質化するために用いられる(1)記載の方法.
(5)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理が,細胞膜流動性を細胞種特異的に変化させることができる物質を培地に添加することである(1)~(4)のいずれかに記載の方法.
(6)細胞膜流動性の差を拡大することにより、基質に対する細胞の接着性の差を拡大させ、この差を利用して、標的細胞を選別する(1)~(5)のいずれかに記載の方法。
(7)細胞膜流動性を細胞種特異的に変化させることができる物質が、ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤又はアミノ酸・界面活性剤のいずれかである(5)又は(6)に記載の方法。
(8)細胞膜流動性を細胞種特異的に変化させることができる物質が、下記の群から選択される少なくとも1つの化合物である(7)記載の方法。
(1) ポリフェノール群:resveratrol、epigallocatechin gallate (EGCG)、curcumin及びgenistein
(2) 分化誘導因子群:activin-A、wint-3a、sodium butylate、basic fibroblast growth factor (bFGF)、oncostatin M (OSM)、dexamethasone (DEX)、hepatocyte growth factor (HGF)、CHIR-99021及びforskolin
(3) インヒビター群:Y-27632 (rock inhibitor)、(s)-(-)-blebbistatin、IWP2、A83-01、LY294002、SB-431542、NVP-BHG、Cyclopamine-KAAD、及びPD-0325901
(4) 増殖因子群:FGF4、LDN-193189、insulin like growth factor (IGF)、bone morphogenetic protein (BMP)2、transforming growth factor (TGF)β2、BMP4、FGF-7、platelet-derived growth factor (PDGF)β3、epidermal growth factor (EGF)、exendin-4、human neuregulin (hHRG)β3、retionic acid (RA)、L-Ascorbic acid 2-phosphate (AA2P)、ascorbic acid、insulin-transferrin-selenium ethanolamine solution (ITS-X)、及びinsulin
(4) 薬剤群:rifampicin、prostaglandin E2 (PGE2)及びpeniciline/streptomycine solution
(5) アミノ酸・界面活性剤群:2-mercaptoethanol、3-mercaptopropane-1,2-diol (thioglycerol)、L-proline、L-glutamine、non-essential amino acid mixture(NEAA)、sodium pyruvate、trypsin-EDTA及びphosphatidylinositol (PI)
(9)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用キット.
(10)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用培地.
(11)細胞膜流動性を細胞種特異的に変化させることができる物質を含む,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬.
(12)基質に接着した細胞の割合(接着率)を培養時間毎に測定することを含む,基質に対する細胞の接着性を定量する方法.
(13)細胞を提供するドナー間の差を調べるために測定を行う(12)記載の方法.
(14)細胞種間の差を調べるために測定を行う(12)記載の方法.
(15)a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,細胞の分化誘導方法.
(16)a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,分化細胞の調製方法.
本明細書は、本願の優先権の基礎である日本国特許出願、特願2017-43744の明細書および/または図面に記載される内容を包含する。
(1)a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及び
b) 細胞膜流動性の差を利用して,標的細胞を選別すること
を含む,細胞選別法.
(2)未分化細胞を除去するために用いられる(1)記載の方法.
(3)分化細胞を濃縮するために用いられる(1)記載の方法.
(4)細胞集団を構成する細胞を均質化するために用いられる(1)記載の方法.
(5)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理が,細胞膜流動性を細胞種特異的に変化させることができる物質を培地に添加することである(1)~(4)のいずれかに記載の方法.
(6)細胞膜流動性の差を拡大することにより、基質に対する細胞の接着性の差を拡大させ、この差を利用して、標的細胞を選別する(1)~(5)のいずれかに記載の方法。
(7)細胞膜流動性を細胞種特異的に変化させることができる物質が、ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤又はアミノ酸・界面活性剤のいずれかである(5)又は(6)に記載の方法。
(8)細胞膜流動性を細胞種特異的に変化させることができる物質が、下記の群から選択される少なくとも1つの化合物である(7)記載の方法。
(1) ポリフェノール群:resveratrol、epigallocatechin gallate (EGCG)、curcumin及びgenistein
(2) 分化誘導因子群:activin-A、wint-3a、sodium butylate、basic fibroblast growth factor (bFGF)、oncostatin M (OSM)、dexamethasone (DEX)、hepatocyte growth factor (HGF)、CHIR-99021及びforskolin
(3) インヒビター群:Y-27632 (rock inhibitor)、(s)-(-)-blebbistatin、IWP2、A83-01、LY294002、SB-431542、NVP-BHG、Cyclopamine-KAAD、及びPD-0325901
(4) 増殖因子群:FGF4、LDN-193189、insulin like growth factor (IGF)、bone morphogenetic protein (BMP)2、transforming growth factor (TGF)β2、BMP4、FGF-7、platelet-derived growth factor (PDGF)β3、epidermal growth factor (EGF)、exendin-4、human neuregulin (hHRG)β3、retionic acid (RA)、L-Ascorbic acid 2-phosphate (AA2P)、ascorbic acid、insulin-transferrin-selenium ethanolamine solution (ITS-X)、及びinsulin
(4) 薬剤群:rifampicin、prostaglandin E2 (PGE2)及びpeniciline/streptomycine solution
(5) アミノ酸・界面活性剤群:2-mercaptoethanol、3-mercaptopropane-1,2-diol (thioglycerol)、L-proline、L-glutamine、non-essential amino acid mixture(NEAA)、sodium pyruvate、trypsin-EDTA及びphosphatidylinositol (PI)
(9)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用キット.
(10)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用培地.
(11)細胞膜流動性を細胞種特異的に変化させることができる物質を含む,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬.
(12)基質に接着した細胞の割合(接着率)を培養時間毎に測定することを含む,基質に対する細胞の接着性を定量する方法.
(13)細胞を提供するドナー間の差を調べるために測定を行う(12)記載の方法.
(14)細胞種間の差を調べるために測定を行う(12)記載の方法.
(15)a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,細胞の分化誘導方法.
(16)a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,分化細胞の調製方法.
本明細書は、本願の優先権の基礎である日本国特許出願、特願2017-43744の明細書および/または図面に記載される内容を包含する。
上述した従来技術(FACS)に比べて,本発明の手法は非蛍光標識でかつ観察に用いるのはルーチン顕微鏡のため,安価・迅速・簡便である.
以下,本発明を詳細に説明する.
本発明は,a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及び
b) 細胞膜流動性の差を利用して,標的細胞を選別すること
を含む,細胞選別法を提供する。
本発明は,a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及び
b) 細胞膜流動性の差を利用して,標的細胞を選別すること
を含む,細胞選別法を提供する。
本発明の方法において,選別の対象となる細胞は,接着性細胞であるとよく,iPS細胞,胚体内胚葉細胞,肝内胚葉細胞,内皮細胞,間葉系細胞,横中隔間質細胞,臍帯静脈内皮細胞,間葉系幹細胞などが例示されるが,腎臓,心臓,肺臓,脾臓,食道,胃,甲状腺,副甲状腺,胸腺,生殖腺,脳,脊髄などの器官に分化可能な細胞などであってもよく,脳,脊髄,副腎髄質,表皮,毛髪・爪・皮膚腺,感覚器,末梢神経,水晶体などの外胚葉性器官に分化可能な細胞,腎臓,尿管,心臓,血液,生殖腺,副腎皮質,筋肉,骨格,真皮,結合組織,中皮などの中胚葉性器官に分化可能な細胞,肝臓,膵臓,腸管,肺,甲状腺,副甲状腺,尿路などの内胚葉性器官に分化可能な細胞,膵臓の内分泌細胞,膵臓の膵管上皮細胞,肝臓の肝細胞,腸管の上皮細胞,腎臓の尿細管上皮細胞,腎臓の糸球体上皮細胞,心臓の心筋細胞,血液のリンパ球や顆粒球,赤血球,脳の神経細胞やグリア細胞,脊髄の神経細胞やシュワン細胞,endothelial cells,umbilical vein endothelial cells,endothelial progenitor cells,endothelial precursor cells,vasculogenic progenitors,hemangioblast mesenchymal stem cells,mesenchymal progenitor cells,mesenchymal cellsなども例示することができ,ヒト・非ヒト由来のいずれであってもよいが,これらに限定されるわけではない.また,これらの細胞は,,機能細胞又は機能細胞へと分化する未分化細胞のいずれであってもよく,例えば,ES/iPS細胞から分化誘導されたものであってもよい.
本発明の方法において,標的細胞と非標的細胞とは,同じ系譜で、分化の程度が異なる細胞(例えば、iPS細胞から誘導した分化細胞と未分化の細胞),ドナー検体から提供された細胞中のある特定のドナー由来の細胞とその他のドナー由来の細胞,iPS細胞から誘導した分化細胞と意図せず目的外の組織へ分化した細胞、などを例示することができるが,これらに限定されるわけではない.本発明の方法により、未分化細胞と中途分化細胞を含む細胞集団から、中途未分化細胞を選別することができる。また、分化のステージが異なる細胞を含む細胞集団から、特定のステージ(例えば、前期、後期など)の細胞を選別することができる。
本明細書において、「細胞膜流動性」とは、生体膜における脂質分子やタンパク質分子の拡散係数などの膜のやわらかさの指標として式1(実施例)で定義したものをいう。をいう.細胞が強く接着するためにはまず流動的な膜上で接着タンパク質が集合することが重要である。強く接着しようとする動きは膜の柔軟性で決まる。遺伝子発現などが変わる時間スケールよりも超速(<15分)で膜の柔軟な揺らぎが変わるので,細胞の接着性は膜流動性に支配されていることがわかる.
細胞膜流動性は、膜流動性に応じて蛍光強度が変化するラダンを用いて評価することができる(後述の実施例参照)。
細胞膜流動性は、膜流動性に応じて蛍光強度が変化するラダンを用いて評価することができる(後述の実施例参照)。
標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理としては,細胞膜流動性を細胞種特異的に変化させることができる物質を標的細胞と非標的細胞に接触させる(例えば、培地に添加する)ことを例示することができるが,これらに限定されるわけではない.細胞膜流動性を細胞種特異的に変化させることができる物質としては,ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤、アミノ酸・界面活性剤などを例示することができるが、これらに限定されるわけではない。より具体的には、以下の化合物が例示される。
(1) ポリフェノール群:resveratrol、epigallocatechin gallate (EGCG)、curcumin及びgenistein
(2) 分化誘導因子群:activin-A、wint-3a、sodium butylate、basic fibroblast growth factor (bFGF)、oncostatin M (OSM)、dexamethasone (DEX)、hepatocyte growth factor (HGF)、CHIR-99021及びforskolin
(3) インヒビター群:Y-27632 (rock inhibitor)、(s)-(-)-blebbistatin、IWP2、A83-01、LY294002、SB-431542、NVP-BHG、Cyclopamine-KAAD、及びPD-0325901
(4) 増殖因子群:FGF4、LDN-193189、insulin like growth factor (IGF)、bone morphogenetic protein (BMP)2、transforming growth factor (TGF)β2、BMP4、FGF-7、platelet-derived growth factor (PDGF)β3、epidermal growth factor (EGF)、exendin-4、human neuregulin (hHRG)β3、retionic acid (RA)、L-Ascorbic acid 2-phosphate (AA2P)、ascorbic acid、insulin-transferrin-selenium ethanolamine solution (ITS-X)、及びinsulin
(4) 薬剤群:rifampicin、prostaglandin E2 (PGE2)及びpeniciline/streptomycine solution
(5) アミノ酸・界面活性剤群:2-mercaptoethanol、3-mercaptopropane-1,2-diol (thioglycerol)、L-proline、L-glutamine、non-essential amino acid mixture(NEAA)、sodium pyruvate、trypsin-EDTA及びphosphatidylinositol (PI)
その他、細胞接着阻害剤(Rho activator, FAK inhibitor)なども例示される。
(1) ポリフェノール群:resveratrol、epigallocatechin gallate (EGCG)、curcumin及びgenistein
(2) 分化誘導因子群:activin-A、wint-3a、sodium butylate、basic fibroblast growth factor (bFGF)、oncostatin M (OSM)、dexamethasone (DEX)、hepatocyte growth factor (HGF)、CHIR-99021及びforskolin
(3) インヒビター群:Y-27632 (rock inhibitor)、(s)-(-)-blebbistatin、IWP2、A83-01、LY294002、SB-431542、NVP-BHG、Cyclopamine-KAAD、及びPD-0325901
(4) 増殖因子群:FGF4、LDN-193189、insulin like growth factor (IGF)、bone morphogenetic protein (BMP)2、transforming growth factor (TGF)β2、BMP4、FGF-7、platelet-derived growth factor (PDGF)β3、epidermal growth factor (EGF)、exendin-4、human neuregulin (hHRG)β3、retionic acid (RA)、L-Ascorbic acid 2-phosphate (AA2P)、ascorbic acid、insulin-transferrin-selenium ethanolamine solution (ITS-X)、及びinsulin
(4) 薬剤群:rifampicin、prostaglandin E2 (PGE2)及びpeniciline/streptomycine solution
(5) アミノ酸・界面活性剤群:2-mercaptoethanol、3-mercaptopropane-1,2-diol (thioglycerol)、L-proline、L-glutamine、non-essential amino acid mixture(NEAA)、sodium pyruvate、trypsin-EDTA及びphosphatidylinositol (PI)
その他、細胞接着阻害剤(Rho activator, FAK inhibitor)なども例示される。
培地中に添加する物質濃度は,適宜調整するとよく,例えば,1 μM以上であるとよく,好ましくは,1~100 μMであり,より好ましくは,10~100 μMである.
細胞膜流動性の差を拡大することにより、基質に対する細胞の接着性の差を拡大させ、この差を利用して、標的細胞を選別することができる。標的細胞の接着力が非標的細胞よりも小さい場合には、細胞培養液の上澄みから標的細胞を回収するとよい。逆に、標的細胞の接着力が非標的細胞よりも大きい場合には、培養容器の基板(基質)に接着している標的細胞を回収すればよい。
細胞膜流動性の差を拡大することにより、基質に対する細胞の接着性の差を拡大させ、この差を利用して、標的細胞を選別することができる。標的細胞の接着力が非標的細胞よりも小さい場合には、細胞培養液の上澄みから標的細胞を回収するとよい。逆に、標的細胞の接着力が非標的細胞よりも大きい場合には、培養容器の基板(基質)に接着している標的細胞を回収すればよい。
基質とは,細胞を培養する際に,細胞が接着する足場となる分子をいう.接着性細胞が増殖するためには足場となる基質が必要である.細胞培養には、マトリゲル,ラミニン,コラーゲン,ゼラチン,フィブロネクチン,細胞外マトリックスなどの基質をコーティングした培養容器(基板)が使われるが,このとき,細胞は,基質を介して培養容器に接着して,足場を確保している.特定の分子をコーティングしていない培養容器に細胞が接着する場合には、培養容器の培養面を構成する分子を基質ととらえることができる。
基質に対する細胞の接着性は,基質に接着した細胞の割合(接着率)を培養時間毎に測定することにより,定量化することができる.本発明は,基質に接着した細胞の割合(接着率)を培養時間毎に測定することを含む,基質に対する細胞の接着性を定量する方法も提供する.
基質に対する細胞の接着性は,細胞を提供するドナーによっても,また,細胞種間でも異なりうる.よって,細胞を提供するドナー間の差を調べるために,基質に対する細胞の接着性を測定するとよい.また,細胞種間の差を調べるために,基質に対する細胞の接着性を測定するとよい.
本発明の細胞選別法においては、基質の「物理特性(硬さなど)」を変更(あるいは調整)してもよい.また、基質の「生化学特性(種類)」を変更(あるいは最適化)してもよい.
基質の「物理特性(硬さなど)」を変更する(あるいは調整する)手法として,基質の濃度を調整すること,基質の種類を変更すること,基質の硬さを変えることができる物質を添加すること,基質を構成する成分の組成(混合比率)を変えることなどを例示することができるが,これらに限定されるわけではない.
基質の「生化学特性(種類)」を変更する(あるいは最適化する)手法としては,例えば,生体内における細胞外マトリックスの成分等の中から,細胞の接着と生育に関わるタンパク質群を選択する乃至は,複数の基質に対する細胞の接着性を定量し,細胞が所望の接着性を示す基質を選択するという方法を挙げることができるが,それに限定されるわけではない.
基質の「生化学特性(種類)」を変更する(あるいは最適化する)手法としては,例えば,生体内における細胞外マトリックスの成分等の中から,細胞の接着と生育に関わるタンパク質群を選択する乃至は,複数の基質に対する細胞の接着性を定量し,細胞が所望の接着性を示す基質を選択するという方法を挙げることができるが,それに限定されるわけではない.
細胞は,基質でコーティングされた細胞培養容器において接着培養するとよい.
細胞の培養のための培地は,細胞の種類,目的とする細胞の分化誘導の種類などによって,適宜選択するとよい.培地には,細胞膜流動性を細胞種特異的に変化させることができる物質(ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤又はアミノ酸・界面活性剤など),フェノールレッド,ピルビン酸塩,HEPES,微量金属,リン酸塩,酢酸塩,ビタミン類,アスコルビン酸,ニコチンアミド,2-メルカプトエタノール,デキサメタゾン,インスリン,上皮成長因子(EGF),肝細胞増殖因子(HGF),アクチビンA,塩基性繊維芽細胞増殖因子(bFGF),骨形成タンパク質(BMP)4,オンコスタチンM,ヒドロコルチゾン,ヘパリン,血管内皮細胞成長因子(VEGF),インシュリン様成長因子(R3-IGF)-1,ウシ脳抽出物(BBE),ウシ胎児血清(FBS),トランスフェリン,ウシ血清アルブミン(BSA),血清代替物(N2,B27サプリメントなど),緩衝剤,抗生物質(ゲンタマイシン,ペニシリン,ストレプトマイシン,アンホテリシン-B等)等の他の成分を添加してもよい.
細胞の培養のための培地は,細胞の種類,目的とする細胞の分化誘導の種類などによって,適宜選択するとよい.培地には,細胞膜流動性を細胞種特異的に変化させることができる物質(ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤又はアミノ酸・界面活性剤など),フェノールレッド,ピルビン酸塩,HEPES,微量金属,リン酸塩,酢酸塩,ビタミン類,アスコルビン酸,ニコチンアミド,2-メルカプトエタノール,デキサメタゾン,インスリン,上皮成長因子(EGF),肝細胞増殖因子(HGF),アクチビンA,塩基性繊維芽細胞増殖因子(bFGF),骨形成タンパク質(BMP)4,オンコスタチンM,ヒドロコルチゾン,ヘパリン,血管内皮細胞成長因子(VEGF),インシュリン様成長因子(R3-IGF)-1,ウシ脳抽出物(BBE),ウシ胎児血清(FBS),トランスフェリン,ウシ血清アルブミン(BSA),血清代替物(N2,B27サプリメントなど),緩衝剤,抗生物質(ゲンタマイシン,ペニシリン,ストレプトマイシン,アンホテリシン-B等)等の他の成分を添加してもよい.
培地の溶媒としては,水,血清,または,pH緩衝溶液などを用いることができる.あるいはまた,市販の培地(例えば,ダルベッコ改変イーグル培地(DMEM),E-MEM,IMDM,乳糖含有glucose-free DMEM,ハム(Ham)F12,RPMI-1640,ウイリアムズE,など,及びそれらの混和物)に分岐鎖アミノ酸を添加して,細胞膜流動性を細胞種特異的に変化させることができる物質を含むように調整してもよい.
細胞の培養は34℃~38℃,好ましくは37℃の温度で行い,CO2濃度は2%~10%が好ましく,5%が最も好ましい.
細胞膜流動性の差を利用して,標的細胞を選別するには、例えば、細胞膜流動性を細胞種特異的に変化させることができる物質を培地に添加することで、標的細胞と非標的細胞との基質に対する接着性の差を拡大させ、標的細胞の接着率を非標的細胞の接着率で割った値(分離度)が最大になる時間あるいはそれに近い時間まで培養する。標的細胞の基質に対する接着力が非標的細胞のそれよりも小さい場合には、浮遊する細胞を洗い流すことで、標的細胞を単離することができる。逆に、標的細胞の基質に対する接着力が非標的細胞のそれよりも大きい場合には、基質にに接着している標的細胞を回収すればよい。
本発明の方法は,未分化細胞を除去するために用いることができる.例えば,同じ系譜の細胞集団の中から、特定の分化段階の細胞を分別すること、その一例として、iPS細胞から誘導した分化細胞の中から未分化細胞を除去することができる.
未分化細胞の「未分化」とは,分化が完全に終わっていない状態をいい,未分化細胞とは,分化可能なあらゆる細胞(例えば、特定の細胞への分化運命が決定しているが、まだその細胞へ分化していない細胞)を含む概念である.未分化細胞としては,iPS細胞やES細胞などの多能性幹細胞や生体組織(臓器も含む)に由来する未分化な組織・臓器(例えば,肝臓)細胞などを例示することができる.未分化な組織・臓器細胞としては,生体組織に由来する幹細胞,前駆細胞などを例示することができる.
未分化細胞の「未分化」とは,分化が完全に終わっていない状態をいい,未分化細胞とは,分化可能なあらゆる細胞(例えば、特定の細胞への分化運命が決定しているが、まだその細胞へ分化していない細胞)を含む概念である.未分化細胞としては,iPS細胞やES細胞などの多能性幹細胞や生体組織(臓器も含む)に由来する未分化な組織・臓器(例えば,肝臓)細胞などを例示することができる.未分化な組織・臓器細胞としては,生体組織に由来する幹細胞,前駆細胞などを例示することができる.
本発明の方法により,未分化細胞を除去することは,安全で均質な細胞原料に利用することができる.よって,本発明は,a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,細胞の分化誘導方法を提供する.また,本発明は,a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,分化細胞の調製方法も提供する.
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,細胞の分化誘導方法を提供する.また,本発明は,a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,分化細胞の調製方法も提供する.
また,本発明の方法は,分化細胞を濃縮するために用いることができる.例えば,iPS細胞から誘導した分化細胞を濃縮することができる.
本発明の方法は,細胞集団を構成する細胞を均質化するために用いることもできる.例えば,iPS細胞から誘導した成熟細胞並びにヒトドナー献体から提供された細胞材料の安全性だけでなく,立体組織の機能を向上する細胞原料の均質性を担保する細胞分離法としても有効である.
本発明は,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用キットも提供する.
標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬は,細胞膜流動性を細胞種特異的に変化させることができる物質を含むとよく,このような物質については上述した。本発明は,細胞膜流動性を細胞種特異的に変化させることができる物質を含む,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬も提供する.
標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬は,希釈液,基質,基質の硬さを変えることができる物質,さらに基質の足場として用いる基板を硬さの調整できる高分子ゲルなどを含むとよい.これらの物質により、標的細胞と非標的細胞との基質に対する接着性の差をさらに拡大することができる。
標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬は,複数の基質を含むんでもよい.そうすれば、複数の基質に対する細胞の接着性を定量し,細胞が所望の接着性を示す基質を選択することができる。
標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬は,培地に添加されてもよい.よって,本発明は,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用培地も提供する.
本発明は,安価で身近で安全な物質(緑茶カテキンやクルクミン)を添加するという安価かつ単純な方法を用いることにより,ヒト臓器細胞の工業的製造に向けて劇的なコストダウンが可能な基盤的培養技術となる.本発明者らが過去に開発した技術(「組織・臓器の作製方法」WO2013/047639)と連動することにより,再生医療や産業応用上極めて有益な細胞操作技術となる.例えば,本発明によりヒトiPS細胞から分化誘導した肝臓細胞の中から混入しているiPS細胞を選択的に除去可能であり,臨床応用・創薬開発において必要な安全なヒト成熟肝細胞を大量に安価に製造することが可能となる.また,個人毎に樹立された複数のiPS細胞株を用いることで,人種・性別・個体差などスペックの明らかなヒト成熟肝細胞を,安定的かつ安価に大量供給することが可能となる.これにより,創薬開発における課題であった個人における反応性の相違を検出する革新的なスクリーニング技術となることが期待される.さらに器官原基だけに限らず未分化・分化細胞を原料として用いる様々な組織工学の手法において,未分化細胞の除去が可能な基礎的な細胞選別法として利用可能性が高い.
以下,実施例により本発明を更に詳細に説明する.本実施例において,特に断りがない限り,未成熟細胞はヒトiPS細胞であり,成熟細胞はiPS細胞から分化誘導された分化細胞である.
〔実施例1〕
1.細胞原料の安全化(未分化細胞の除去)
1.1細胞種特有の分離ダイナミクスに着目したによる細胞原料の安全化(未分化細胞の除去)
幹細胞ベースの様々な細胞治療法が提案される一方で,がん化の恐れのある未分化細胞を除去する抜本的な方法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).そこで発明者は細胞種特異的な接着ダイナミクスの違いを利用して,未分化細胞の除去を行った(図1).実験としては図1Aにあるように,培養後τ分に置いて弱接着性細胞(図中球状の細胞)を含む上澄みを洗い流し,強接着細胞(図中,進展した細胞)を温和に剥離培養することで細胞原料の安全化と均質化を達成できる.実際に未分化細胞と分化細胞の各分離時間における接着細胞の顕微像を取得すると,どちらの細胞種も分離時間が長くなるにつれて接着している細胞数は大きくなったが,より多くの成熟細胞が基板に接着していることが明らかになった.なお未分化細胞としてはヒトiPS,分化細胞としてはiPSから誘導した間葉系細胞septum transversum mesenchyme,STMを用いた.本結果は細胞種毎の接着性の違いを利用すればiPS細胞の分離効率を最大化できる可能性を示唆している.
後述にはなるが,STM分離時間における肝臓原基の機能への影響を定量評価するために,各分離時間で得たSTM細胞を原料として肝臓原基の機能評価を行った.実際には10,13,16日目における培養液上澄中に存在するアルブミン量をELISA(Enzyme-Linked ImmunoSorbent Assay)試験によって定量している.各分離時間,培養時間においてもどちらもアルブミン産生能に違いは見られない(図7).しかしながらτ=22.5分において未分化細胞の混入率は減量していることが推測され,本細胞分離法により細胞自身へダメージを与えることなく未分化細胞の除去を促進していることが期待される.
〔実施例1〕
1.細胞原料の安全化(未分化細胞の除去)
1.1細胞種特有の分離ダイナミクスに着目したによる細胞原料の安全化(未分化細胞の除去)
幹細胞ベースの様々な細胞治療法が提案される一方で,がん化の恐れのある未分化細胞を除去する抜本的な方法が確立されていない(非特許文献2:Cunningham et al., Nat. Biothechnol. 2012).そこで発明者は細胞種特異的な接着ダイナミクスの違いを利用して,未分化細胞の除去を行った(図1).実験としては図1Aにあるように,培養後τ分に置いて弱接着性細胞(図中球状の細胞)を含む上澄みを洗い流し,強接着細胞(図中,進展した細胞)を温和に剥離培養することで細胞原料の安全化と均質化を達成できる.実際に未分化細胞と分化細胞の各分離時間における接着細胞の顕微像を取得すると,どちらの細胞種も分離時間が長くなるにつれて接着している細胞数は大きくなったが,より多くの成熟細胞が基板に接着していることが明らかになった.なお未分化細胞としてはヒトiPS,分化細胞としてはiPSから誘導した間葉系細胞septum transversum mesenchyme,STMを用いた.本結果は細胞種毎の接着性の違いを利用すればiPS細胞の分離効率を最大化できる可能性を示唆している.
後述にはなるが,STM分離時間における肝臓原基の機能への影響を定量評価するために,各分離時間で得たSTM細胞を原料として肝臓原基の機能評価を行った.実際には10,13,16日目における培養液上澄中に存在するアルブミン量をELISA(Enzyme-Linked ImmunoSorbent Assay)試験によって定量している.各分離時間,培養時間においてもどちらもアルブミン産生能に違いは見られない(図7).しかしながらτ=22.5分において未分化細胞の混入率は減量していることが推測され,本細胞分離法により細胞自身へダメージを与えることなく未分化細胞の除去を促進していることが期待される.
1.2緑茶カテキンのがん細胞接着阻害効果を利用した細胞原料の安全化(未分化細胞の除去)
未分化細胞の分離効率を向上させるために緑茶カテキン(Epigallocatechin gallate, EGCG)を組み込んだ.EGCGはがん細胞の接着や生育を阻害でき,副作用がなく安全な天然低分子化合物である(非特許文献7:Matsuzaki et al., J. Phys. Chem B 2015, 非特許文献8:In Vitro Cell.Dev.Biol.-Animal 2016 非特許文献9:Molecules 2016).ここでは図2AにあるようにEGCGを培養液に添加し,各分離時間における接着している細胞数を接着率で評価した.すると100 μM カテキンの添加で分離時間とともにiPS細胞の接着数が減少することを見出した.一方で,成熟細胞の代表としてiPS細胞から誘導した間葉系細胞であるseptum transversum mesenchyme (STM) の接着に対しては影響がないことがわかる(図2B).よって緑茶カテキンを組み合わせることで,分化細胞の接着を維持したまま,未分化細胞の混入を約2.6倍減少させることに成功した.
未分化細胞の分離効率を向上させるために緑茶カテキン(Epigallocatechin gallate, EGCG)を組み込んだ.EGCGはがん細胞の接着や生育を阻害でき,副作用がなく安全な天然低分子化合物である(非特許文献7:Matsuzaki et al., J. Phys. Chem B 2015, 非特許文献8:In Vitro Cell.Dev.Biol.-Animal 2016 非特許文献9:Molecules 2016).ここでは図2AにあるようにEGCGを培養液に添加し,各分離時間における接着している細胞数を接着率で評価した.すると100 μM カテキンの添加で分離時間とともにiPS細胞の接着数が減少することを見出した.一方で,成熟細胞の代表としてiPS細胞から誘導した間葉系細胞であるseptum transversum mesenchyme (STM) の接着に対しては影響がないことがわかる(図2B).よって緑茶カテキンを組み合わせることで,分化細胞の接着を維持したまま,未分化細胞の混入を約2.6倍減少させることに成功した.
1.3培養液因子と基質因子の網羅的解析による細胞原料の安全性の最大化(未分化細胞の除去)
1.1と1.2においては分離時間と緑茶カテキンのみを考慮した細胞選別法であった.しかしながら2つのパラメータだけでは,分化細胞から未分化細胞の分離を最大化できているかどうかの最終判断はできない.そこで培養液の因子を緑茶カテキンだけでなく,がん細胞接着を阻害すると考えられる「溶液因子」,及び細胞種毎に接着の“好み”がある「基質因子」の接着率に与える網羅的な解析を各時間(時間因子)毎に行った(図3).着目する溶液因子としては,抗がん効果を有するクルクミン(非特許文献10:Sun et al., Biophysical J. 2009)に着目した.さらに基質因子(生化学的特性(種類))についてはSTMの培養に用いるゼラチン,ECの増殖を増大させるフィブロネクチン,さらにDE,HEの接着・増殖を促進するラミニンの計4種類を用いている.これらの溶液因子・基質因子が独立に制御されたウェルに対してiPS細胞とiPS細胞から誘導されたDE,HE,EC,PreSTM(STMの前駆細胞)の計6種類の細胞接着率の時間変化を測定した.すると各細胞特異的に接着率の分離時間変化が各々の因子条件で測定された(図4A).この中から成熟細胞の中からiPS細胞を除去率を最大化するセルを見つけ出すために,各接着率をiPS細胞の接着率で規格化した(図4B).すなわちiPS細胞のセルについては分母分子が同じであるため,すべて同じ1の値を取るのに対して,成熟細胞のセルについてはiPS細胞よりも接着率が大きい場合は分離度の値が高く(赤),一方でiPS細胞よりも接着率が小さい場合は分離度が小さく(青)なる.iPSと成熟細胞の接着率が同じ場合,分離度が1となり白いセルつまり分離効率が非常に悪いことを示す.緑茶カテキンによってiPS細胞分離は促進されるものの,その分離度を最大化する基質・溶液因子・分離度の組み合わせは必ずしもすべての細胞において最大化するわけでなく,DEについてはフィブロネクチンx1,HEについてはカテキン100 μM,ECについてはクルクミン10μM,STMについてはゲラチンということがわかり,各細胞に応じて最大化する因子は固有のものである.よってこれまで未分化細胞の表面糖鎖マーカーを識別研究(非特許文献6:Tateno, H et al., Stem Cell Reports. 2015)だけに着目する研究では見えてこなかった,細胞固有の接着性の“好み”に着目することで未分化細胞の分離を最大化することが可能となった.
このように基質・培養液因子を網羅的に解析する必要があることが明らかになった.
1.1と1.2においては分離時間と緑茶カテキンのみを考慮した細胞選別法であった.しかしながら2つのパラメータだけでは,分化細胞から未分化細胞の分離を最大化できているかどうかの最終判断はできない.そこで培養液の因子を緑茶カテキンだけでなく,がん細胞接着を阻害すると考えられる「溶液因子」,及び細胞種毎に接着の“好み”がある「基質因子」の接着率に与える網羅的な解析を各時間(時間因子)毎に行った(図3).着目する溶液因子としては,抗がん効果を有するクルクミン(非特許文献10:Sun et al., Biophysical J. 2009)に着目した.さらに基質因子(生化学的特性(種類))についてはSTMの培養に用いるゼラチン,ECの増殖を増大させるフィブロネクチン,さらにDE,HEの接着・増殖を促進するラミニンの計4種類を用いている.これらの溶液因子・基質因子が独立に制御されたウェルに対してiPS細胞とiPS細胞から誘導されたDE,HE,EC,PreSTM(STMの前駆細胞)の計6種類の細胞接着率の時間変化を測定した.すると各細胞特異的に接着率の分離時間変化が各々の因子条件で測定された(図4A).この中から成熟細胞の中からiPS細胞を除去率を最大化するセルを見つけ出すために,各接着率をiPS細胞の接着率で規格化した(図4B).すなわちiPS細胞のセルについては分母分子が同じであるため,すべて同じ1の値を取るのに対して,成熟細胞のセルについてはiPS細胞よりも接着率が大きい場合は分離度の値が高く(赤),一方でiPS細胞よりも接着率が小さい場合は分離度が小さく(青)なる.iPSと成熟細胞の接着率が同じ場合,分離度が1となり白いセルつまり分離効率が非常に悪いことを示す.緑茶カテキンによってiPS細胞分離は促進されるものの,その分離度を最大化する基質・溶液因子・分離度の組み合わせは必ずしもすべての細胞において最大化するわけでなく,DEについてはフィブロネクチンx1,HEについてはカテキン100 μM,ECについてはクルクミン10μM,STMについてはゲラチンということがわかり,各細胞に応じて最大化する因子は固有のものである.よってこれまで未分化細胞の表面糖鎖マーカーを識別研究(非特許文献6:Tateno, H et al., Stem Cell Reports. 2015)だけに着目する研究では見えてこなかった,細胞固有の接着性の“好み”に着目することで未分化細胞の分離を最大化することが可能となった.
このように基質・培養液因子を網羅的に解析する必要があることが明らかになった.
1.4.未分化―分化細胞の混合溶液下における細胞選別
1.3項では未分化細胞と分化細胞とが「独立した」溶液中での細胞接着の個性差から未分化細胞の効率的な除去の可能性を示唆した(図3および4).しかしながら実際の細胞原料としては分化細胞中に未分化細胞が混入しているケースを考えなくてはならない.そこで分化細胞の原料に50%の蛍光ラベルされた未分化細胞が混入する極端な条件(実際には未分化残存は数%以下)において,未分化細胞の除去率のバルーンで表示した.除去率としては式1および式2によって定義されており,強接着細胞中(基板側)の除去率が多い場合は色塗りされたバルーンで,一方で弱接着細胞中(上澄み)の除去率が多い場合は色抜きのバルーンで示される(図5A)
バルーンプロットとして,細胞条件(内・中・外胚葉×培養時間条件(τ =4, 8, 15, 23, 30 分 )×基質条件(coatなし,gelatin, Fibronectin laminin, matrigel, collagen,濃度条件は2条件ずつ)×溶質条件(resveratrol, EGCG, curcumin, Genistein,濃度条件は3つずつ)でトータル575条件の超網羅条件化での除去率を測定した.すると内胚葉と外胚葉においては色が塗られていないバルーンが多いのに対して,中胚葉は色塗りのパターンが多いというコントラストのついた実験結果が得られた(図5B).さらに未分化細胞の除去率の最大値を矢印で示すと,中胚葉はポリフェノールによって未分化細胞の除去率が向上しているが,内・外胚葉においてはその変化が顕著ではない.なぜこういった除去率の違いが生じるのであろうか?内胚葉と中胚葉における接着率の時間依存性をまず見てみると,その接着率のパワーバランスは中胚葉(Fmesorderm)>未分化細胞(Fpluripotent)>内胚葉(Fendoderm)となっていることがわかる(図5C左).これにポリフェノールを添加すると未分化細胞特異的にその細胞接着性を抑制するために,そのパワーバランスが中胚葉(Fmesorderm)>>未分化細胞(Fpluripotent)~内胚葉(Fendoderm)となるため,中胚葉特異的にポリフェノールが分離率を向上させていることが考えられる.ポリフェノールはこれまでにコレステロールとよく相互作用することが知られており,未分化細胞中に多く含まれるコレステロールを特異的に脱離し(図10,後述),その接着性を抑制していることが考えられる(図5Dにそのサマリーを示す).
1.3項では未分化細胞と分化細胞とが「独立した」溶液中での細胞接着の個性差から未分化細胞の効率的な除去の可能性を示唆した(図3および4).しかしながら実際の細胞原料としては分化細胞中に未分化細胞が混入しているケースを考えなくてはならない.そこで分化細胞の原料に50%の蛍光ラベルされた未分化細胞が混入する極端な条件(実際には未分化残存は数%以下)において,未分化細胞の除去率のバルーンで表示した.除去率としては式1および式2によって定義されており,強接着細胞中(基板側)の除去率が多い場合は色塗りされたバルーンで,一方で弱接着細胞中(上澄み)の除去率が多い場合は色抜きのバルーンで示される(図5A)
バルーンプロットとして,細胞条件(内・中・外胚葉×培養時間条件(τ =4, 8, 15, 23, 30 分 )×基質条件(coatなし,gelatin, Fibronectin laminin, matrigel, collagen,濃度条件は2条件ずつ)×溶質条件(resveratrol, EGCG, curcumin, Genistein,濃度条件は3つずつ)でトータル575条件の超網羅条件化での除去率を測定した.すると内胚葉と外胚葉においては色が塗られていないバルーンが多いのに対して,中胚葉は色塗りのパターンが多いというコントラストのついた実験結果が得られた(図5B).さらに未分化細胞の除去率の最大値を矢印で示すと,中胚葉はポリフェノールによって未分化細胞の除去率が向上しているが,内・外胚葉においてはその変化が顕著ではない.なぜこういった除去率の違いが生じるのであろうか?内胚葉と中胚葉における接着率の時間依存性をまず見てみると,その接着率のパワーバランスは中胚葉(Fmesorderm)>未分化細胞(Fpluripotent)>内胚葉(Fendoderm)となっていることがわかる(図5C左).これにポリフェノールを添加すると未分化細胞特異的にその細胞接着性を抑制するために,そのパワーバランスが中胚葉(Fmesorderm)>>未分化細胞(Fpluripotent)~内胚葉(Fendoderm)となるため,中胚葉特異的にポリフェノールが分離率を向上させていることが考えられる.ポリフェノールはこれまでにコレステロールとよく相互作用することが知られており,未分化細胞中に多く含まれるコレステロールを特異的に脱離し(図10,後述),その接着性を抑制していることが考えられる(図5Dにそのサマリーを示す).
2.細胞原料からの高機能細胞濃縮
2.1.iPSC-HE混合溶液からの高機能で安全な細胞集団の選別
ポリフェノールは内胚葉など未分化細胞よりも接着力が弱い系に対しては有効性がないのであろうか?それを検証するために,HEと未分化細胞の混合溶液を播種し,上澄み中に残る接着しない(weakly adhered cells)と基板に強く接着する(strongly adhered cells)を回収し,それをMatured hepatocyte(MH)まで分化誘導し,その機能性と未分化細胞の残存率を定量評価した.すると全ての弱接着性の細胞条件でアルブミン産生能が非常に高く,さらに無選別条件(control, 黒)に比べてアルブミン産生能が向上していることが明らかになった.これは未分化細胞だけでなく,分化細胞中に元から含まれる低機能性細胞が除去され,高機能細胞が濃縮されているものと考えられる.さらに未分化細胞の残存のレベルを未分化細胞のtra2-49/6E (代表的な未分化マーカー)の高発現領域(ピークの蛍光強度から最大値まで)でプロットしたものを図6右に示す.すると機能が保持される弱接着性細胞(Day1)において,コントロールに比べて(黒丸),未分化細胞の混入レベルが低い条件(矢印,弱接着細胞curcumin, laminin)を見出した.さらに長期培養するとcurcuminはFCM分解能以下になってしまうのに対して,lamininはその6倍の混入率になっていることがわかる.よってポリフェノール自身が未分化細胞の接着性を落とすだけでなく,その後の生育阻害に寄与している可能性がある.以上によって本手法により高機能で安全な細胞原料化に本選別法が有効であることを示している.
2.1.iPSC-HE混合溶液からの高機能で安全な細胞集団の選別
ポリフェノールは内胚葉など未分化細胞よりも接着力が弱い系に対しては有効性がないのであろうか?それを検証するために,HEと未分化細胞の混合溶液を播種し,上澄み中に残る接着しない(weakly adhered cells)と基板に強く接着する(strongly adhered cells)を回収し,それをMatured hepatocyte(MH)まで分化誘導し,その機能性と未分化細胞の残存率を定量評価した.すると全ての弱接着性の細胞条件でアルブミン産生能が非常に高く,さらに無選別条件(control, 黒)に比べてアルブミン産生能が向上していることが明らかになった.これは未分化細胞だけでなく,分化細胞中に元から含まれる低機能性細胞が除去され,高機能細胞が濃縮されているものと考えられる.さらに未分化細胞の残存のレベルを未分化細胞のtra2-49/6E (代表的な未分化マーカー)の高発現領域(ピークの蛍光強度から最大値まで)でプロットしたものを図6右に示す.すると機能が保持される弱接着性細胞(Day1)において,コントロールに比べて(黒丸),未分化細胞の混入レベルが低い条件(矢印,弱接着細胞curcumin, laminin)を見出した.さらに長期培養するとcurcuminはFCM分解能以下になってしまうのに対して,lamininはその6倍の混入率になっていることがわかる.よってポリフェノール自身が未分化細胞の接着性を落とすだけでなく,その後の生育阻害に寄与している可能性がある.以上によって本手法により高機能で安全な細胞原料化に本選別法が有効であることを示している.
2.2細胞原料の均質化と肝臓原基の高機能化
肝臓原基の集合運動に大きく寄与する間葉系幹細胞(Mesenchymal stem cells, MSC)のドナー細胞を2種,さらにヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)及び内皮細胞(endothelial cell, EC)の計4種を用いて接着率の分離時間依存性を測定した.するとMSCドナー間で接着ダイナミクスが異なるカーブを描くことを見出した(図4).さらに興味深いことにiPS細胞から誘導したSTM・ECはドナー由来のMSCよりも強い基板接着率のカーブを描いている.これらの結果は本評価システムがMSCドナー間差,及び細胞種間の接着性の違いを定量区別可能であることを示している.
さらに発明者は各分離時間において回収した細胞を用いて誘導した肝臓原基のアルブミン産生能を測定した(図5A). MSC Donor1ではτ=7.5分において極大値を取るアルブミン産生能を示し,ECにおいてはτが増大するにつれアルブミン産生能が向上することを見出した.よって本細胞選別法により均質な細胞が選別され,より高機能な肝臓原基が誘導されたことを示している.図5Bにおいては対応する肝臓原基の構造評価を行った.ドナー1においては7.5分において肝臓原基の数が最大化しており,ドナー2の肝臓原基数に近づいている.ECについては肝臓原基数が減っているものの,丸く大きな肝臓原基が形成されており,肝臓原基一つあたりの機能が向上していることが示唆される.
以上の結果から1・2の方法と組み合わせることで,iPS細胞から誘導された成熟細胞中に残存するiPS細胞の除去が行えるだけでなく,不均一な細胞集団を均一化し肝臓原基などの立体組織の機能最大化が行える手法として期待される.
肝臓原基の集合運動に大きく寄与する間葉系幹細胞(Mesenchymal stem cells, MSC)のドナー細胞を2種,さらにヒトiPS細胞から分化誘導された間葉系細胞(septum transversum mesenchyme,STM)及び内皮細胞(endothelial cell, EC)の計4種を用いて接着率の分離時間依存性を測定した.するとMSCドナー間で接着ダイナミクスが異なるカーブを描くことを見出した(図4).さらに興味深いことにiPS細胞から誘導したSTM・ECはドナー由来のMSCよりも強い基板接着率のカーブを描いている.これらの結果は本評価システムがMSCドナー間差,及び細胞種間の接着性の違いを定量区別可能であることを示している.
さらに発明者は各分離時間において回収した細胞を用いて誘導した肝臓原基のアルブミン産生能を測定した(図5A). MSC Donor1ではτ=7.5分において極大値を取るアルブミン産生能を示し,ECにおいてはτが増大するにつれアルブミン産生能が向上することを見出した.よって本細胞選別法により均質な細胞が選別され,より高機能な肝臓原基が誘導されたことを示している.図5Bにおいては対応する肝臓原基の構造評価を行った.ドナー1においては7.5分において肝臓原基の数が最大化しており,ドナー2の肝臓原基数に近づいている.ECについては肝臓原基数が減っているものの,丸く大きな肝臓原基が形成されており,肝臓原基一つあたりの機能が向上していることが示唆される.
以上の結果から1・2の方法と組み合わせることで,iPS細胞から誘導された成熟細胞中に残存するiPS細胞の除去が行えるだけでなく,不均一な細胞集団を均一化し肝臓原基などの立体組織の機能最大化が行える手法として期待される.
3.未分化細胞のどんな物性に着目すれば効率的に選別が可能か?
3.1―未分化細胞の膜流動性の評価
本発明における肝は未分化細胞特異的に反応するポリフェノールを用いた,超高速・簡便・安価な細胞選別法である.そこでなぜポリフェノールが未分化細胞特異的に反応するのかを知ることで,より反応特異性の高い新規物質の探索や合成が可能となる.着目したのはMatsuzaki らが緑茶の抗がんメカニズムの一つとして着目している膜物性の変化である.がん細胞膜のように柔軟に揺らぐモデル膜に対して緑茶カテキンを作用させると,その膜の曲げ弾性を60倍近く増大させることが明らかになった(非特許文献4:Matsuzaki et al., Phys. Chem. Chem. Phys. 2017). そのため,発生の初期において柔軟に変化する未分化細胞の膜流動性ががん細胞の柔軟な膜に酷似している可能性がある.実際に膜流動性に応じてその蛍光波長が変化するラダン(非特許文献5:Owen et al., Nature protocols 2011)を用いて,膜流動性(Generalized polarization factor, GP値)の評価を行った.実際には未分化細胞と,内胚葉誘導中における前期分化細胞と後期分化細胞の膜流動性を評価した.すると膜流動性の指標であるGP値に大きな変化は見られなかった(図10A左).しかしながら膜流動性を決めるパラメーターの一つであるコレステロールを強力に排除するMethyl-βCD(10 mM 30 min)を反応させると,未分化細胞のほうが低GP(赤)で,分化が進むにしたがって硬化していることを見出した.定量評価のために,GP値を分化誘導の日数に対して取ってみると,若干のGP値の低下が見られるものの未処理の(native membrane)はその膜流動性に変化が見られなかった(図10B左).しかしながらMβCDを処理した膜は分化が進むにつれて膜流動性が低く,硬い膜になっていくことが見出された(図10B真ん中).このとき膜流動性を決めるもう一つのパラメーターは脂質分子の流動性であるが,MβCD添加した膜の流動性をnativeのものから引けばコレステロールのレベルの指標になりえる(図10B右).実際にコレステロールのレベルは分化とともに低下していくことが見出された.よって分化と膜組成の変化を模式図に書くと図10B下のようになる.未分化状態ではコレステロールのレベルが高く,かつその脂質分子は非常に流動的である.分化が進むにしたがってコレステロールのレベルは減少し,脂質膜分子も配向性の高いのになっていくことが推測される.
図10においては未分化細胞と“内胚葉”誘導中の細胞の膜流動性との比較であった.これは他の胚葉誘導においても同じことが言えるのだろうか?未分化細胞と内胚葉(図10はDEで,ここでは後期のHE),中胚葉(EC/MC),外胚葉(NC)の細胞集団を先ほどと同様の方法で膜流動性を評価した.すると初期の内胚葉と未分化細胞の流動性はほぼ同程度であったが,後期の誘導になるにつれて内・外胚葉は硬く,中胚葉は柔らかい膜になっていることを見出した(図11A左).このときMβCDを用いてコレステロールを抜くと未分化細胞特異的にその膜流動性が向上することを見出した(図11A右).この変化を表現上見やすくするためにradar-plotにしたものを図11Bに示す.コレステロール脱離のピーク値を矢印(グレー,実践)で,未処理(native)のものを青色領域とそのピーク値を矢印(グレー点線)で示すと,コレステロールレベルは図10Bの場合と同じようにその差し引いたベクトル強度(実線矢印,黒)で表される.先ほどのデータと同じように(図10B),未分化細胞は流動的な脂質膜(+MβCD,左回り)で,そのコレステロールレベルが非常に高い(実線矢印,黒).一方で内胚葉はコレステロールのレベルが低く,脂質膜としても硬い.中胚葉・外胚葉はコレステロールレベルが内胚葉に比べると多く,その脂質膜流動性も比較的高い.以上の結果を総合すると,脂質膜の配向レベルはiPSC<<MC<NC<EC<HEであり,コレステロールのレベルもiPSC>>EC,MC,NC>HEとなっていることが明らかになった.よって未分化細胞の特異的な脂質膜の物性だけでなく(cholesterol rich, lowly ordered lipid),胚葉特異的な流動性の個性差を有することを見出した.
3.1―未分化細胞の膜流動性の評価
本発明における肝は未分化細胞特異的に反応するポリフェノールを用いた,超高速・簡便・安価な細胞選別法である.そこでなぜポリフェノールが未分化細胞特異的に反応するのかを知ることで,より反応特異性の高い新規物質の探索や合成が可能となる.着目したのはMatsuzaki らが緑茶の抗がんメカニズムの一つとして着目している膜物性の変化である.がん細胞膜のように柔軟に揺らぐモデル膜に対して緑茶カテキンを作用させると,その膜の曲げ弾性を60倍近く増大させることが明らかになった(非特許文献4:Matsuzaki et al., Phys. Chem. Chem. Phys. 2017). そのため,発生の初期において柔軟に変化する未分化細胞の膜流動性ががん細胞の柔軟な膜に酷似している可能性がある.実際に膜流動性に応じてその蛍光波長が変化するラダン(非特許文献5:Owen et al., Nature protocols 2011)を用いて,膜流動性(Generalized polarization factor, GP値)の評価を行った.実際には未分化細胞と,内胚葉誘導中における前期分化細胞と後期分化細胞の膜流動性を評価した.すると膜流動性の指標であるGP値に大きな変化は見られなかった(図10A左).しかしながら膜流動性を決めるパラメーターの一つであるコレステロールを強力に排除するMethyl-βCD(10 mM 30 min)を反応させると,未分化細胞のほうが低GP(赤)で,分化が進むにしたがって硬化していることを見出した.定量評価のために,GP値を分化誘導の日数に対して取ってみると,若干のGP値の低下が見られるものの未処理の(native membrane)はその膜流動性に変化が見られなかった(図10B左).しかしながらMβCDを処理した膜は分化が進むにつれて膜流動性が低く,硬い膜になっていくことが見出された(図10B真ん中).このとき膜流動性を決めるもう一つのパラメーターは脂質分子の流動性であるが,MβCD添加した膜の流動性をnativeのものから引けばコレステロールのレベルの指標になりえる(図10B右).実際にコレステロールのレベルは分化とともに低下していくことが見出された.よって分化と膜組成の変化を模式図に書くと図10B下のようになる.未分化状態ではコレステロールのレベルが高く,かつその脂質分子は非常に流動的である.分化が進むにしたがってコレステロールのレベルは減少し,脂質膜分子も配向性の高いのになっていくことが推測される.
図10においては未分化細胞と“内胚葉”誘導中の細胞の膜流動性との比較であった.これは他の胚葉誘導においても同じことが言えるのだろうか?未分化細胞と内胚葉(図10はDEで,ここでは後期のHE),中胚葉(EC/MC),外胚葉(NC)の細胞集団を先ほどと同様の方法で膜流動性を評価した.すると初期の内胚葉と未分化細胞の流動性はほぼ同程度であったが,後期の誘導になるにつれて内・外胚葉は硬く,中胚葉は柔らかい膜になっていることを見出した(図11A左).このときMβCDを用いてコレステロールを抜くと未分化細胞特異的にその膜流動性が向上することを見出した(図11A右).この変化を表現上見やすくするためにradar-plotにしたものを図11Bに示す.コレステロール脱離のピーク値を矢印(グレー,実践)で,未処理(native)のものを青色領域とそのピーク値を矢印(グレー点線)で示すと,コレステロールレベルは図10Bの場合と同じようにその差し引いたベクトル強度(実線矢印,黒)で表される.先ほどのデータと同じように(図10B),未分化細胞は流動的な脂質膜(+MβCD,左回り)で,そのコレステロールレベルが非常に高い(実線矢印,黒).一方で内胚葉はコレステロールのレベルが低く,脂質膜としても硬い.中胚葉・外胚葉はコレステロールレベルが内胚葉に比べると多く,その脂質膜流動性も比較的高い.以上の結果を総合すると,脂質膜の配向レベルはiPSC<<MC<NC<EC<HEであり,コレステロールのレベルもiPSC>>EC,MC,NC>HEとなっていることが明らかになった.よって未分化細胞の特異的な脂質膜の物性だけでなく(cholesterol rich, lowly ordered lipid),胚葉特異的な流動性の個性差を有することを見出した.
3.2未分化細胞の膜流動性を変える低分子化合物の網羅的アッセイ
細胞の膜流動性は本申請の細胞接着だけでなく(非特許文献11:Schaeffer and Curtis, J. Cell. Sci. 1977),細胞内シグナルなど(非特許文献12:Salaita et al., Science 2010)さまざまな細胞機能を制御することが知られている.よってポリフェノールによって流動性が変化するのかという点と他の低分子化合物によっても同程度に引き起こされるのだろうかという点は,より効果的な未分化細胞の選別剤の発見につながる.そこでポリフェノール以外に,分化誘導因子,阻害剤,成長因子,薬剤,アミンと界面活性剤を含んだ独自のライブラリーを構築し,未分化細胞に反応させたときの流動性変化を測定した.未分化細胞において試薬を反応後のものから反応前のヒストグラムを差し引いた強度をZ軸に,GP値を縦軸に,各種低分子化合物を横軸にプロットしたものを示す(図12).色が明るく強度が強いものほど低分子化合物が良く反応しており,さらにGP値の高い領域でその反応性が強いものはポリフェノール郡のみである.本実験においては未分化細胞の流動性をよく変化させるものとして本アッセイを用いたが,原理的にはターゲットの細胞種はどんなものでもよく,目的細胞の流動性を変化させる低分子化合物の超網羅的スクリーニングに本系が利用させることが可能である.
細胞の膜流動性は本申請の細胞接着だけでなく(非特許文献11:Schaeffer and Curtis, J. Cell. Sci. 1977),細胞内シグナルなど(非特許文献12:Salaita et al., Science 2010)さまざまな細胞機能を制御することが知られている.よってポリフェノールによって流動性が変化するのかという点と他の低分子化合物によっても同程度に引き起こされるのだろうかという点は,より効果的な未分化細胞の選別剤の発見につながる.そこでポリフェノール以外に,分化誘導因子,阻害剤,成長因子,薬剤,アミンと界面活性剤を含んだ独自のライブラリーを構築し,未分化細胞に反応させたときの流動性変化を測定した.未分化細胞において試薬を反応後のものから反応前のヒストグラムを差し引いた強度をZ軸に,GP値を縦軸に,各種低分子化合物を横軸にプロットしたものを示す(図12).色が明るく強度が強いものほど低分子化合物が良く反応しており,さらにGP値の高い領域でその反応性が強いものはポリフェノール郡のみである.本実験においては未分化細胞の流動性をよく変化させるものとして本アッセイを用いたが,原理的にはターゲットの細胞種はどんなものでもよく,目的細胞の流動性を変化させる低分子化合物の超網羅的スクリーニングに本系が利用させることが可能である.
3.3ポリフェノールは未分化細胞と分化細胞との差を大きく広げるのだろうか?
分化細胞のGP値のヒストグラムから未分化細胞のそれを引くと,もし流動性に違いがない場合はその差は0%となり 直線が引かれることになる.しかしながら内胚葉(HE),中胚葉(EC/STM),さらに外胚葉それぞれで異なる関数の形を示すことを見出した(図13A,太枠コントロール).実際に各種ポリフェノールを作用させるとその関数の強度(縦軸)が増大し,その正の領域の総和は数倍増大することを見出した(図13B).つまり未分化細胞と分化細胞との流動性の差がポリフェノール(特にcurcumin, genistein)によって増大したことがわかる.
分化細胞のGP値のヒストグラムから未分化細胞のそれを引くと,もし流動性に違いがない場合はその差は0%となり 直線が引かれることになる.しかしながら内胚葉(HE),中胚葉(EC/STM),さらに外胚葉それぞれで異なる関数の形を示すことを見出した(図13A,太枠コントロール).実際に各種ポリフェノールを作用させるとその関数の強度(縦軸)が増大し,その正の領域の総和は数倍増大することを見出した(図13B).つまり未分化細胞と分化細胞との流動性の差がポリフェノール(特にcurcumin, genistein)によって増大したことがわかる.
4.新規選別法の優位性~既存手法との比較~
本手法は細胞の機能を維持したまま(図6,図7),未分化細胞の除去を超高速(<30分以内)・超膨大量に行得る手法である.これまでの手法と比べて本手法はどのように優れているのであろうか?細胞を一つ一つ超純度で選別できる手法の代表としてFACSがある(図8A).HEとiPSCを9:1で混合した条件で,FCMデータをCXCR4(DEの代表的なマーカー)とtra2-49/6Eで取得すると,HEとiPSCの集団を分離できる条件(青ゲートと赤ゲート)が見出される.実際にHEのみを選別し,その翌日に回収細胞のFCMをもう一度行うと,tra2-49/6Eを高発現する点線以上の領域が見出され,実際にはFACSも混ざりこんでしまう問題点が生じる(図8A左).実際にはソートするスピードをさらに遅くすれば,原理的には純度が増大していくことが考えられるが,非生理条件化におかれた細胞は死んでしまい回収率が激減する.実際に縦軸(左)にはソーティング速度,縦軸(右)には回収率を,横軸には未分化細胞の混入率をプロットしたものを示す(図8A右).すると標的となる分化細胞数の割合が多くなれば当然ソーティングスピードも向上するものの,臨床応用に耐えられる107個の細胞を選別する間には丸一日かかる上にその回収率は10 %以下とかなり少なくなってしまう.
一方でTatenoらが開発したiPSC糖鎖タンパク質を特異的に認識するrBC2LCN-PE23は比較的短時間(添加後24-48h)で大量のiPSCを末端に結合した緑膿菌由来毒素の触媒ドメイン(PE23)が殺傷することで,再生医療の安全性の向上が期待されている(非特許文献6:Stem Cell Reports 2015).しかし,実際にレクチンをiPSCと内胚葉誘導における初期細胞(DE)と後期細胞(HE)に作用させ,そのときの生細胞を緑色蛍光(ライブデッドステイニング試薬を使用)で染色すると,未分化細胞に対して比較的減弱に反応するのに対し,その分化誘導がかかった細胞の剥離を促進することが観察された(図8B左).このときの生細胞領域を定量すると濃度依存的にDE,HEの領域が激減していることが見出された.
以上をまとめると,FACSはそのソーティングスピードの遅さから,臨床応用に耐えられる超大量の細胞選別には向かず,さらにrBC2LCN-PE23については,中途分化細胞のような未分化細胞の性質をまだ共有しているものたちに対しては毒となってしまう.本手法は未分化細胞の膜流動性の特性に着目し,その流動性を身近な天然化合物(ポリフェノール)を用いて細胞へのダメージを最小限に選別可能な手法であることが見出された.器官の芽(オルガノイド)の創出に必要不可欠な分化途中の細胞原料の選別には本手法が強力なツールとして利用可能であることが考えられる.
本手法は細胞の機能を維持したまま(図6,図7),未分化細胞の除去を超高速(<30分以内)・超膨大量に行得る手法である.これまでの手法と比べて本手法はどのように優れているのであろうか?細胞を一つ一つ超純度で選別できる手法の代表としてFACSがある(図8A).HEとiPSCを9:1で混合した条件で,FCMデータをCXCR4(DEの代表的なマーカー)とtra2-49/6Eで取得すると,HEとiPSCの集団を分離できる条件(青ゲートと赤ゲート)が見出される.実際にHEのみを選別し,その翌日に回収細胞のFCMをもう一度行うと,tra2-49/6Eを高発現する点線以上の領域が見出され,実際にはFACSも混ざりこんでしまう問題点が生じる(図8A左).実際にはソートするスピードをさらに遅くすれば,原理的には純度が増大していくことが考えられるが,非生理条件化におかれた細胞は死んでしまい回収率が激減する.実際に縦軸(左)にはソーティング速度,縦軸(右)には回収率を,横軸には未分化細胞の混入率をプロットしたものを示す(図8A右).すると標的となる分化細胞数の割合が多くなれば当然ソーティングスピードも向上するものの,臨床応用に耐えられる107個の細胞を選別する間には丸一日かかる上にその回収率は10 %以下とかなり少なくなってしまう.
一方でTatenoらが開発したiPSC糖鎖タンパク質を特異的に認識するrBC2LCN-PE23は比較的短時間(添加後24-48h)で大量のiPSCを末端に結合した緑膿菌由来毒素の触媒ドメイン(PE23)が殺傷することで,再生医療の安全性の向上が期待されている(非特許文献6:Stem Cell Reports 2015).しかし,実際にレクチンをiPSCと内胚葉誘導における初期細胞(DE)と後期細胞(HE)に作用させ,そのときの生細胞を緑色蛍光(ライブデッドステイニング試薬を使用)で染色すると,未分化細胞に対して比較的減弱に反応するのに対し,その分化誘導がかかった細胞の剥離を促進することが観察された(図8B左).このときの生細胞領域を定量すると濃度依存的にDE,HEの領域が激減していることが見出された.
以上をまとめると,FACSはそのソーティングスピードの遅さから,臨床応用に耐えられる超大量の細胞選別には向かず,さらにrBC2LCN-PE23については,中途分化細胞のような未分化細胞の性質をまだ共有しているものたちに対しては毒となってしまう.本手法は未分化細胞の膜流動性の特性に着目し,その流動性を身近な天然化合物(ポリフェノール)を用いて細胞へのダメージを最小限に選別可能な手法であることが見出された.器官の芽(オルガノイド)の創出に必要不可欠な分化途中の細胞原料の選別には本手法が強力なツールとして利用可能であることが考えられる.
実験材料及び方法
細胞培養法と分化誘導法
iPS細胞は緑色蛍光タンパク質が遺伝子導入されたGFP-TKDA株(東京大学より供与)であり,分化誘導に用いたiPS細胞はFF-I01株(京都大学iPS細胞研究所(CiRA)より供与)の2種である. 10 cm dish(BD)に対してLaminin 511原液(ニッピ)が50 μL / PBS 8 mLになるように添加し, 37 ℃ の5 % CO2インキュベータ内で1時間コートする.上澄みをアスピレート後,トータルで8×104 細胞を10 cm dish(BD)に播種し培養を行った.細胞培養にはStemFit AK02N(Reprocell)を用いた.以下の分化誘導に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLのアキテース(Funakoshi)で8分反応させて細胞剥離する.そして2倍量のRPMI-1640で限界希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのRPMI-1640で懸濁させたものを使用する.
次にiPS細胞(FF-I01株)から分化誘導をかけているHEはDEの後期の分化細胞であるため,以下途中までのプロトコールは一緒である. DE及びHEの誘導では既報(非特許文献13:Si‐Tayeb, Karim, et al. Hepatology 2010, 非特許文献1:Takebe, T et al., Nature, 2013および特許文献1: WO2013/047639 A1:組織及び臓器の作製方法)をベースにしている.Laminin 511をiPSの未分化維持に用いていた濃度よりも低い Laminin511 原液10 μL / 8 mL PBSの濃度で 6 cm dishのプラスチックディッシュ(BD)にコーティングする.上澄みをアスピレートした後次に2x106個のiPS細胞が懸濁した培養液を4 mL添加する.この時に用いる培養液はRPMI-1640 (Wako)をベースに1 % Peniciline/streptomycine (Wako)さらに分化誘導因子として 0.1 % Activin (Wako), 0.1 % Wint3a (Wako)が添加され,iPS細胞死を阻害する目的で0.001 % のrock inhibitorが添加された培地である.培養1日後に上述の培養液からRock inhibitor(Y-27632)を抜き,さらに0.1 %のSodium butylateを添加したものを4 mL添加する. この培養液で3日間培養後(毎日培養液は交換),この培養液からsodium butylateのみを抜いたものに変えさらに2日間培養する(毎日培養液は交換).iPS細胞を播種した日を0dayにして6日目にDEとして細胞を利用する.HEの場合は6日目にRPMI-1640 (Wako)をベースに1 % Peniciline/streptomycine (Wako), 1 % 無血清サプリメントB27(Thermo), 0.2 % bFGF (basic fibroblast growth factor, Wako)を添加した培養液4 mLに置き換え,4日間培養し,iPS細胞を播種した日から10 day目にHEとして使用する.MHの場合は,Day10の段階でHCM-hepatocyte culture media bullet kit培養液に交換し,Day18まで培養したものをMHとする.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLのアキテース(Funakoshi)で8分反応させて細胞剥離する.そして2倍量のHE分化誘導培地で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのHE分化誘導培地で懸濁させたものを使用する.
ECの誘導法については既報(非特許文献14:Patsch, et al. Nature cell biology 2015)をベースに誘導を行っている.まずECについてはiPSをDE,HEの時と同様にLaminin511がコートされたディッシュに播種する.この時に細胞を懸濁する培養液はStemPro-34 SFM (Thermo)に1 % Peniciline/streptmycine ,2 μM Forskolin, 200 ng/mL VEGF (Vascular epidermal growth factor), 10 μM rock inhibitor が添加された分化誘導培地である.播種日を0 dayとして1 day目にはrock inhibitorを抜いた分化誘導培地 4 mLに置き換え, 3 dayから8 dayまで毎日培養液を 4 mLずつ交換する. 9 day目にはStemPro-34 SFM (Thermo)に1 % Peniciline/streptmycine,50 ng/mL VEGF にした分化維持培地に置き換え,10 dayにECとして使用する.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLの0.1 % Trypsin EDTA(Life technology)で3分反応させて細胞剥離する.そして2倍量のHUVEC培養用培地EGM(Lonza)で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのEGMで懸濁させたものを使用する.
STMの誘導法については既報(Patsch, et al. Nature cell biology 2015)をベースに誘導を行っている. iPSをDE,HEの時と同様にLaminin511がコートされたディッシュに播種する.この時に細胞を懸濁する培養液はDMEM/F12 (Thermo)に1 % Peniciline/streptmycine ,1 % Glutamax (Life technology), 1 % B27 (Thermo), 25 ng/ mL BMP4 (Wako), 8 μM CHIR 99021 (Wako), 10 μM rock inhibitor が添加されたMesoderm分化誘導培地である.播種日を0 dayとして1 day目にはrock inhibitorを抜いたMesoderm分化誘導培地 4 mLに置き換え, Day 2から3まで(ただしDay2は培養液交換なし)で培養する.Day 4において誘導用A培地に置き換える.誘導用A培地はDMEM/F12に1 % Peniciline/streptmycine , 1 % Glutamax, 1 % B27, 10 ng/mL PDGF BB (Wako),2 ng/nL Activinの培養液である.これでDay 4からDay 5まで培養を行う.Day6目からは誘導用B培地に置き換える.誘導用B培地はDMEM/F12に1 % Peniciline/streptmycine , 1 % Glutamax, 1 % B27, 10 ng/mL bFGF,12 ng/mL BMP4の培養液である.これでDay 6からDay 7まで培養を行う.Day8においてトリプシンEDTA(Wako)を用いて細胞剥離を行い,0.1 % w/vのゼラチン溶液 4 mLを 10 cm dish に1時間コートした10 cm dishに5x106播種した.この時に細胞を懸濁する培養液はMSCの分化維持用の培養液であるMSCGM(Lonza)を8 mL添加する.この状態で Day 8,Day9と培養を行いDay10においてSTMとして使用する.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLの0.1 % Trypsin EDTA(Life technology)で3分反応させて細胞剥離する.そして2倍量のMSC培養用培地MGM(Lonza)で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのMGMで懸濁させたものを使用する.
MSCについては骨髄ドナー1(Lot.307219)及び骨髄ドナー2(Lot.458207)はどちらも同じプロトコールで継代培養を行っている.10 cm dish に10 mLのMSCGM(Lonza)を添加し,そこに3×105の細胞を播種して,3日おきに培養液を交換する.基板表面の約80 %が細胞で絞めてきたらTrypsin-EDTA(Wako)を 2 mL添加して3分間37 ℃ の5 % CO2インキュベータ内で反応させる.当量のMSCGMで反応を止め.1000 rpmで3分遠心分離後,上澄みを除去して1 mLのMSCGMで懸濁させたものをMSCとして使用する.
HUVECについては,10 cm dish に10 mLのEGM(Lonza)を添加し,そこに3×105の細胞を播種して,3日おきに培養液を交換する.基板表面の約80 %が細胞で絞めてきたらTrypsin-EDTA(Wako)を 2 mL添加して3分間37 ℃ の5 % CO2インキュベータ内で反応させる.当量のMSCGMで反応を止め.1000 rpmで3分遠心分離後,上澄みを除去して1 mLのEGMで懸濁させたものをMSCとして使用する.
細胞培養法と分化誘導法
iPS細胞は緑色蛍光タンパク質が遺伝子導入されたGFP-TKDA株(東京大学より供与)であり,分化誘導に用いたiPS細胞はFF-I01株(京都大学iPS細胞研究所(CiRA)より供与)の2種である. 10 cm dish(BD)に対してLaminin 511原液(ニッピ)が50 μL / PBS 8 mLになるように添加し, 37 ℃ の5 % CO2インキュベータ内で1時間コートする.上澄みをアスピレート後,トータルで8×104 細胞を10 cm dish(BD)に播種し培養を行った.細胞培養にはStemFit AK02N(Reprocell)を用いた.以下の分化誘導に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLのアキテース(Funakoshi)で8分反応させて細胞剥離する.そして2倍量のRPMI-1640で限界希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのRPMI-1640で懸濁させたものを使用する.
次にiPS細胞(FF-I01株)から分化誘導をかけているHEはDEの後期の分化細胞であるため,以下途中までのプロトコールは一緒である. DE及びHEの誘導では既報(非特許文献13:Si‐Tayeb, Karim, et al. Hepatology 2010, 非特許文献1:Takebe, T et al., Nature, 2013および特許文献1: WO2013/047639 A1:組織及び臓器の作製方法)をベースにしている.Laminin 511をiPSの未分化維持に用いていた濃度よりも低い Laminin511 原液10 μL / 8 mL PBSの濃度で 6 cm dishのプラスチックディッシュ(BD)にコーティングする.上澄みをアスピレートした後次に2x106個のiPS細胞が懸濁した培養液を4 mL添加する.この時に用いる培養液はRPMI-1640 (Wako)をベースに1 % Peniciline/streptomycine (Wako)さらに分化誘導因子として 0.1 % Activin (Wako), 0.1 % Wint3a (Wako)が添加され,iPS細胞死を阻害する目的で0.001 % のrock inhibitorが添加された培地である.培養1日後に上述の培養液からRock inhibitor(Y-27632)を抜き,さらに0.1 %のSodium butylateを添加したものを4 mL添加する. この培養液で3日間培養後(毎日培養液は交換),この培養液からsodium butylateのみを抜いたものに変えさらに2日間培養する(毎日培養液は交換).iPS細胞を播種した日を0dayにして6日目にDEとして細胞を利用する.HEの場合は6日目にRPMI-1640 (Wako)をベースに1 % Peniciline/streptomycine (Wako), 1 % 無血清サプリメントB27(Thermo), 0.2 % bFGF (basic fibroblast growth factor, Wako)を添加した培養液4 mLに置き換え,4日間培養し,iPS細胞を播種した日から10 day目にHEとして使用する.MHの場合は,Day10の段階でHCM-hepatocyte culture media bullet kit培養液に交換し,Day18まで培養したものをMHとする.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLのアキテース(Funakoshi)で8分反応させて細胞剥離する.そして2倍量のHE分化誘導培地で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのHE分化誘導培地で懸濁させたものを使用する.
ECの誘導法については既報(非特許文献14:Patsch, et al. Nature cell biology 2015)をベースに誘導を行っている.まずECについてはiPSをDE,HEの時と同様にLaminin511がコートされたディッシュに播種する.この時に細胞を懸濁する培養液はStemPro-34 SFM (Thermo)に1 % Peniciline/streptmycine ,2 μM Forskolin, 200 ng/mL VEGF (Vascular epidermal growth factor), 10 μM rock inhibitor が添加された分化誘導培地である.播種日を0 dayとして1 day目にはrock inhibitorを抜いた分化誘導培地 4 mLに置き換え, 3 dayから8 dayまで毎日培養液を 4 mLずつ交換する. 9 day目にはStemPro-34 SFM (Thermo)に1 % Peniciline/streptmycine,50 ng/mL VEGF にした分化維持培地に置き換え,10 dayにECとして使用する.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLの0.1 % Trypsin EDTA(Life technology)で3分反応させて細胞剥離する.そして2倍量のHUVEC培養用培地EGM(Lonza)で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのEGMで懸濁させたものを使用する.
STMの誘導法については既報(Patsch, et al. Nature cell biology 2015)をベースに誘導を行っている. iPSをDE,HEの時と同様にLaminin511がコートされたディッシュに播種する.この時に細胞を懸濁する培養液はDMEM/F12 (Thermo)に1 % Peniciline/streptmycine ,1 % Glutamax (Life technology), 1 % B27 (Thermo), 25 ng/ mL BMP4 (Wako), 8 μM CHIR 99021 (Wako), 10 μM rock inhibitor が添加されたMesoderm分化誘導培地である.播種日を0 dayとして1 day目にはrock inhibitorを抜いたMesoderm分化誘導培地 4 mLに置き換え, Day 2から3まで(ただしDay2は培養液交換なし)で培養する.Day 4において誘導用A培地に置き換える.誘導用A培地はDMEM/F12に1 % Peniciline/streptmycine , 1 % Glutamax, 1 % B27, 10 ng/mL PDGF BB (Wako),2 ng/nL Activinの培養液である.これでDay 4からDay 5まで培養を行う.Day6目からは誘導用B培地に置き換える.誘導用B培地はDMEM/F12に1 % Peniciline/streptmycine , 1 % Glutamax, 1 % B27, 10 ng/mL bFGF,12 ng/mL BMP4の培養液である.これでDay 6からDay 7まで培養を行う.Day8においてトリプシンEDTA(Wako)を用いて細胞剥離を行い,0.1 % w/vのゼラチン溶液 4 mLを 10 cm dish に1時間コートした10 cm dishに5x106播種した.この時に細胞を懸濁する培養液はMSCの分化維持用の培養液であるMSCGM(Lonza)を8 mL添加する.この状態で Day 8,Day9と培養を行いDay10においてSTMとして使用する.以下の細胞接着実験に利用する際には培養液をアスピレート後,PBS 8mLで2回洗浄し,2 mLの0.1 % Trypsin EDTA(Life technology)で3分反応させて細胞剥離する.そして2倍量のMSC培養用培地MGM(Lonza)で希釈して,1000 rpmで3分遠心分離後,上澄みを除去して1 mLのMGMで懸濁させたものを使用する.
MSCについては骨髄ドナー1(Lot.307219)及び骨髄ドナー2(Lot.458207)はどちらも同じプロトコールで継代培養を行っている.10 cm dish に10 mLのMSCGM(Lonza)を添加し,そこに3×105の細胞を播種して,3日おきに培養液を交換する.基板表面の約80 %が細胞で絞めてきたらTrypsin-EDTA(Wako)を 2 mL添加して3分間37 ℃ の5 % CO2インキュベータ内で反応させる.当量のMSCGMで反応を止め.1000 rpmで3分遠心分離後,上澄みを除去して1 mLのMSCGMで懸濁させたものをMSCとして使用する.
HUVECについては,10 cm dish に10 mLのEGM(Lonza)を添加し,そこに3×105の細胞を播種して,3日おきに培養液を交換する.基板表面の約80 %が細胞で絞めてきたらTrypsin-EDTA(Wako)を 2 mL添加して3分間37 ℃ の5 % CO2インキュベータ内で反応させる.当量のMSCGMで反応を止め.1000 rpmで3分遠心分離後,上澄みを除去して1 mLのEGMで懸濁させたものをMSCとして使用する.
基質・培養液因子を独立かつ厳密に制御されたウェルプレートの作成
まず本実施例で用いる代表的な基質因子としてはゲラチン・フィブロネクチン・ラミニン511が挙げられる.ゼラチンについては,MilliQ水に対して0.1 w/vになるようにゼラチン粉末(Thermo)を添加しオートクレーブにより120℃10分間加熱・溶解処理を行う.室温まで戻したゼラチン溶液を用いて,0.09 mg/cm2(x1gelatin)と0.27 μg/well (x3 gelatin)になるように300 μL ずつ添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.x1ゼラチンはSTMのDay 8における10cm dishのコート密度(μg/cm2)と同等にしてある.フィブロネクチンについてはヒトfibronectin 粉末(Wako)を滅菌水に溶解して1 mg/mLになるように調整したものを用いて,Day 10における細胞播種後の生育を評価するのにこれまで用いられてきた濃度と同等になるようにフィブロネクチン溶液を0.91 μg/cm2 (x1 fibronectin)と2.73 μg/cm2 (x3 fibronectin)になるように添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.ラミニンについてはラミニン511(ニッピ)を用いて,iPS細胞の分化誘導時に用いてきたラミニン濃度と同等になるようにラミニン溶液を0.24μg/cm2 (x1 ラミニン)と0.48 μg/well (x2 ラミニン,iPSの未分化維持用の濃い濃度)になるように添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.
本実施例で用いる代表的な溶液因子としては緑茶カテキン(Epigallocatechin gallate, EGCG)とウコンの成分であるクルクミンである.緑茶カテキン(Sigma)・クルクミン(Sigma)粉末を最終濃度が6 mMになるようにPBS中に溶かす.なお粉末の溶解度を向上させるために,10 %最終濃度になるようにエタノール(Wako)を添加している.これらの溶液を母液として,細胞添加前の培養液に対してそれぞれ10 μMおよび100 μMになるように溶液因子をとかし,続いて目的細胞を添加して48 well plateに播種する.
以上のように溶液因子と基質因子を独立かつ厳密に制御した48 well plateを用いて,細胞懸濁液を播種し,分離時間が3.75, 7.47, 15, 22.5, 30分に置いて素早く上澄みをアスピレートし,細胞接着率の評価の際にはPBS-EDTA (0.8 mM)を200 μL添加して細胞観察を行う.この時PBS-EDTA溶液を添加するのは細胞を剥離することで細胞のカウントのしやすさを向上させるだけでなく,基板に不均一に接着した細胞集団を撹拌し均一化する目的がある.その後の生育を評価する際には細胞種を懸濁した細胞種固有の培養液を添加し培養を続ける.
まず本実施例で用いる代表的な基質因子としてはゲラチン・フィブロネクチン・ラミニン511が挙げられる.ゼラチンについては,MilliQ水に対して0.1 w/vになるようにゼラチン粉末(Thermo)を添加しオートクレーブにより120℃10分間加熱・溶解処理を行う.室温まで戻したゼラチン溶液を用いて,0.09 mg/cm2(x1gelatin)と0.27 μg/well (x3 gelatin)になるように300 μL ずつ添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.x1ゼラチンはSTMのDay 8における10cm dishのコート密度(μg/cm2)と同等にしてある.フィブロネクチンについてはヒトfibronectin 粉末(Wako)を滅菌水に溶解して1 mg/mLになるように調整したものを用いて,Day 10における細胞播種後の生育を評価するのにこれまで用いられてきた濃度と同等になるようにフィブロネクチン溶液を0.91 μg/cm2 (x1 fibronectin)と2.73 μg/cm2 (x3 fibronectin)になるように添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.ラミニンについてはラミニン511(ニッピ)を用いて,iPS細胞の分化誘導時に用いてきたラミニン濃度と同等になるようにラミニン溶液を0.24μg/cm2 (x1 ラミニン)と0.48 μg/well (x2 ラミニン,iPSの未分化維持用の濃い濃度)になるように添加し,37 ℃ の5 % CO2インキュベータ内で1時間コートする.
本実施例で用いる代表的な溶液因子としては緑茶カテキン(Epigallocatechin gallate, EGCG)とウコンの成分であるクルクミンである.緑茶カテキン(Sigma)・クルクミン(Sigma)粉末を最終濃度が6 mMになるようにPBS中に溶かす.なお粉末の溶解度を向上させるために,10 %最終濃度になるようにエタノール(Wako)を添加している.これらの溶液を母液として,細胞添加前の培養液に対してそれぞれ10 μMおよび100 μMになるように溶液因子をとかし,続いて目的細胞を添加して48 well plateに播種する.
以上のように溶液因子と基質因子を独立かつ厳密に制御した48 well plateを用いて,細胞懸濁液を播種し,分離時間が3.75, 7.47, 15, 22.5, 30分に置いて素早く上澄みをアスピレートし,細胞接着率の評価の際にはPBS-EDTA (0.8 mM)を200 μL添加して細胞観察を行う.この時PBS-EDTA溶液を添加するのは細胞を剥離することで細胞のカウントのしやすさを向上させるだけでなく,基板に不均一に接着した細胞集団を撹拌し均一化する目的がある.その後の生育を評価する際には細胞種を懸濁した細胞種固有の培養液を添加し培養を続ける.
細胞接着率の定量評価
本発明においては細胞接着率の定量評価法として以下2種類の方法を別々に用いている.(A)については膨大な基質・溶液因子の条件の48 well plateに対して貴重な数少ない細胞を添加した際の少ない細胞数を網羅的に容易に画像解析的にカウントするものである.(B)については実際の細胞原料の均一化に向けて貴重な細胞を大量に準備し,その接着数を容易にカウントするだけでなく,接着した細胞を温和な条件で回収できる方法である.
(A)基質・培養液因子を独立かつ厳密に制御されたウェルプレートの場合
膨大な基質・溶液因子の条件のウェル内で接着した細胞数をカウントするには後述するBの方法は向かない.さらにiPSから誘導するにはコストがかかるだけでなく,その細胞数に限りがある.そこでプレート撮影に最適化された自動撮影システム(KeyenceBZ-X700)及びその膨大な数の画像を網羅的に解析可能なソフト(keyence, BZ analyzer)を用いて,x4倍の対物レンズの視野内に存在する細胞数の網羅的なカントを行った. 本システムを用いることで一つ一つの条件における細胞接着数をセルカウンターなどで手動でカウントする必要がなく大幅な実験時間の短縮に成功している.
(B)肝臓原基の誘導に向けた均一細胞集団の選別の場合
細胞原料の均一化に向けて貴重な細胞を大量に準備し,その接着数を容易にカウントするだけでなく,接着した細胞を温和な条件で回収できる方法である.細胞を汎用の10 cm dishに対して8 mLの培養液を添加し(MSCとSTMについてはMSCGM,ECはEGM),2×105以上の細胞数で播種してすぐさま37℃ の5 % CO2インキュベータ内で培養を開始する.これを培養分離時間の数だけ独立に10 cm dishを準備するが,本実験においては分離時間=7.5,15,22.5,30分の5枚の独立したディッシュを準備する.それぞれの時間において上澄みを除去し,すぐさまPBS-EDTA溶液を8 mL加え 37℃ の5 % CO2インキュベータ内で30分間培養する.すると細胞接着が次第に弱くなり最後は顕微鏡で観察するためにインキュベータから出して運搬している間に剥離する.細胞は接着する際にカルシウム依存性の接着タンパク質(インテグリン)を介して基質に対して接着する.酵素処理に頼らないEDTAを用いることで細胞周囲のカルシウム濃度を低下させることで脱接着を温和に促していることが考えられる.肝臓原基に誘導する際には溶液に対して剥離後すぐに当量の培養液(8mL)を添加して溶液中にカルシウムを提供し,細胞に対して最小限のダメージで済むように調整してある.その後1000 rpm で3分間遠心分離を行い選別細胞を得る.この時に用いる遠沈管としては表面に細胞非接着処理を行ったステムフル(住友ベークライト) を用いるとより細胞回収率が向上する.培養液1mLで細胞を懸濁し,トリパンブルー(Wako)で2倍希釈し,細胞数をワケンカウンター(Wako)でカウントした.本手法は膨大な基質・溶液因子の検討には向かないものの,膨大な因子の中から見出した溶液・基質因子を用いて膨大な細胞数を回収することが可能である.本手法を用いて選別した細胞原料を用いて後述の肝臓原基の材料として用いた.
本発明においては細胞接着率の定量評価法として以下2種類の方法を別々に用いている.(A)については膨大な基質・溶液因子の条件の48 well plateに対して貴重な数少ない細胞を添加した際の少ない細胞数を網羅的に容易に画像解析的にカウントするものである.(B)については実際の細胞原料の均一化に向けて貴重な細胞を大量に準備し,その接着数を容易にカウントするだけでなく,接着した細胞を温和な条件で回収できる方法である.
(A)基質・培養液因子を独立かつ厳密に制御されたウェルプレートの場合
膨大な基質・溶液因子の条件のウェル内で接着した細胞数をカウントするには後述するBの方法は向かない.さらにiPSから誘導するにはコストがかかるだけでなく,その細胞数に限りがある.そこでプレート撮影に最適化された自動撮影システム(KeyenceBZ-X700)及びその膨大な数の画像を網羅的に解析可能なソフト(keyence, BZ analyzer)を用いて,x4倍の対物レンズの視野内に存在する細胞数の網羅的なカントを行った. 本システムを用いることで一つ一つの条件における細胞接着数をセルカウンターなどで手動でカウントする必要がなく大幅な実験時間の短縮に成功している.
(B)肝臓原基の誘導に向けた均一細胞集団の選別の場合
細胞原料の均一化に向けて貴重な細胞を大量に準備し,その接着数を容易にカウントするだけでなく,接着した細胞を温和な条件で回収できる方法である.細胞を汎用の10 cm dishに対して8 mLの培養液を添加し(MSCとSTMについてはMSCGM,ECはEGM),2×105以上の細胞数で播種してすぐさま37℃ の5 % CO2インキュベータ内で培養を開始する.これを培養分離時間の数だけ独立に10 cm dishを準備するが,本実験においては分離時間=7.5,15,22.5,30分の5枚の独立したディッシュを準備する.それぞれの時間において上澄みを除去し,すぐさまPBS-EDTA溶液を8 mL加え 37℃ の5 % CO2インキュベータ内で30分間培養する.すると細胞接着が次第に弱くなり最後は顕微鏡で観察するためにインキュベータから出して運搬している間に剥離する.細胞は接着する際にカルシウム依存性の接着タンパク質(インテグリン)を介して基質に対して接着する.酵素処理に頼らないEDTAを用いることで細胞周囲のカルシウム濃度を低下させることで脱接着を温和に促していることが考えられる.肝臓原基に誘導する際には溶液に対して剥離後すぐに当量の培養液(8mL)を添加して溶液中にカルシウムを提供し,細胞に対して最小限のダメージで済むように調整してある.その後1000 rpm で3分間遠心分離を行い選別細胞を得る.この時に用いる遠沈管としては表面に細胞非接着処理を行ったステムフル(住友ベークライト) を用いるとより細胞回収率が向上する.培養液1mLで細胞を懸濁し,トリパンブルー(Wako)で2倍希釈し,細胞数をワケンカウンター(Wako)でカウントした.本手法は膨大な基質・溶液因子の検討には向かないものの,膨大な因子の中から見出した溶液・基質因子を用いて膨大な細胞数を回収することが可能である.本手法を用いて選別した細胞原料を用いて後述の肝臓原基の材料として用いた.
ヒトiPS細胞を用いた肝臓原基の創出
肝臓原基の誘導法としては既報(特許文献1:「組織・臓器の作製方法」WO2013/047639,非特許文献1:Takebe, T et al., Nature, 2013)をベースに用いる.肝臓原基の創出には3つの細胞種が重要である.まずは肝前駆細胞に相当する分化段階のヒトiPS細胞由来肝臓細胞(iPS-hepatic endoderm, HE).次に移植後血管誘導を促すヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells, HUVEC)である.さらに間葉系幹細胞(Mesenchymal stem cells, MSC)の三種類を共培養することで肝臓原基が誘導できる.本細胞選別法で誘導に用いた肝臓原基の組み合わせは以下のとおりである.骨髄ドナーの異なるドナー1MSCとドナー2MSCを用いて,iPS-HE:HUVEC:MSCを10:7:2の比率で混合したドナー1MSC-LB(liver bud)およびドナー2MSC-LBを誘導した.さらにHUVECの代わりにiPS細胞から誘導したECを用い,ここから間葉系幹細胞を抜いたEC-LBの場合はHE:EC=5:1である.さらに通常LBにおいてMSCの代わりにSTMを用いたSTM-LBが挙げられる.これらの細胞混合液を1 well あたりに2x106になるようにkuraray plate (12 well, kuraray,ディンプル状のパターンをμパターンで修飾されたもの)に添加し,10,13,16 day目の培養液を添加している.肝臓原基の誘導の培養液にはHCM(Lonza)40 mLとEGM (Lonza) 40 mL混合し,肝臓誘導に必要な 20 ng/mL OSM(Oncostatin M, Wako)及び20 ng/mLの HGF (Hepatic growth factor, Wako)を含む培養液であり,播種後Day0においてはrock inhibitorを10 μM添加したものを用いている.Day1から半量(500 μL)交換を毎日行い,ELISA用の培養液を取得するDay 10, 13, 16においてはその前日に全量 (1 mL)交換し,翌日24時間後に全量をELISA用に取得した.ELISAはBethyl社のヒトアルブミン定量キットに書かれている方法で定量している.
肝臓原基の誘導法としては既報(特許文献1:「組織・臓器の作製方法」WO2013/047639,非特許文献1:Takebe, T et al., Nature, 2013)をベースに用いる.肝臓原基の創出には3つの細胞種が重要である.まずは肝前駆細胞に相当する分化段階のヒトiPS細胞由来肝臓細胞(iPS-hepatic endoderm, HE).次に移植後血管誘導を促すヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells, HUVEC)である.さらに間葉系幹細胞(Mesenchymal stem cells, MSC)の三種類を共培養することで肝臓原基が誘導できる.本細胞選別法で誘導に用いた肝臓原基の組み合わせは以下のとおりである.骨髄ドナーの異なるドナー1MSCとドナー2MSCを用いて,iPS-HE:HUVEC:MSCを10:7:2の比率で混合したドナー1MSC-LB(liver bud)およびドナー2MSC-LBを誘導した.さらにHUVECの代わりにiPS細胞から誘導したECを用い,ここから間葉系幹細胞を抜いたEC-LBの場合はHE:EC=5:1である.さらに通常LBにおいてMSCの代わりにSTMを用いたSTM-LBが挙げられる.これらの細胞混合液を1 well あたりに2x106になるようにkuraray plate (12 well, kuraray,ディンプル状のパターンをμパターンで修飾されたもの)に添加し,10,13,16 day目の培養液を添加している.肝臓原基の誘導の培養液にはHCM(Lonza)40 mLとEGM (Lonza) 40 mL混合し,肝臓誘導に必要な 20 ng/mL OSM(Oncostatin M, Wako)及び20 ng/mLの HGF (Hepatic growth factor, Wako)を含む培養液であり,播種後Day0においてはrock inhibitorを10 μM添加したものを用いている.Day1から半量(500 μL)交換を毎日行い,ELISA用の培養液を取得するDay 10, 13, 16においてはその前日に全量 (1 mL)交換し,翌日24時間後に全量をELISA用に取得した.ELISAはBethyl社のヒトアルブミン定量キットに書かれている方法で定量している.
膜流動性の評価手法
膜流動性の評価には既報のプロトコールをベースに行った(Owen et al., Nature protocols 2011).具体的には dimethyl-6-dodecanoyl-2-naphthylamine (ラダン, AdipoGen life science Inc., CA, USA) を膜流動性プローブとしてDMSO溶液を作成した(最終濃度9 mM).最終濃度が33 μMで一定になるようにRPMI 1640 medium (+ 10 mM MβCD) 及び StemFit AK02N (iPSC培養液)に添加した.添加後の細胞を30 分間,37℃でインキュベーションし,インキュベーション機能(Tokken Inc. Tokyo, Japan@37℃)が付与された共焦点顕微鏡で観察した(TCS-SP8, Leica microsystems, Tokyo, Japan).光源としては405 nm ダイオードレーザーを用いて, λ = 406-460 nm(I406-460)及び λ = 470-530 nm(I470-530)の2波長の蛍光強度をスペクトルアナライザーを用いて測定した.膜流動性の指標であるGP値(Generalized polarization factor)の計算には式1および2を用いた.
ここでGPref = 0.207は文献値としてOwen et al., が定義しており,GP=0付近で脂質膜の秩序/無秩序領域(order/disordered domain)が分かれるように便宜的に定義したものである. GPmeas はDMSOに融解したラダン (33 μM)を同一光学セットアップを用いて測定した補正値(式3)である:
このとき注意したいのは膜流動性評価実験に使用した細胞は全てアキュテースで剥離した直後の浮遊状態の細胞である.播種する基板はラダンからの蛍光を効率よく回収しやすいように底面がガラス基板となっている96 well ガラスプレートであり,表面が未処理のため細胞接着が阻害され浮遊状態での細胞観察が可能である.
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
膜流動性の評価には既報のプロトコールをベースに行った(Owen et al., Nature protocols 2011).具体的には dimethyl-6-dodecanoyl-2-naphthylamine (ラダン, AdipoGen life science Inc., CA, USA) を膜流動性プローブとしてDMSO溶液を作成した(最終濃度9 mM).最終濃度が33 μMで一定になるようにRPMI 1640 medium (+ 10 mM MβCD) 及び StemFit AK02N (iPSC培養液)に添加した.添加後の細胞を30 分間,37℃でインキュベーションし,インキュベーション機能(Tokken Inc. Tokyo, Japan@37℃)が付与された共焦点顕微鏡で観察した(TCS-SP8, Leica microsystems, Tokyo, Japan).光源としては405 nm ダイオードレーザーを用いて, λ = 406-460 nm(I406-460)及び λ = 470-530 nm(I470-530)の2波長の蛍光強度をスペクトルアナライザーを用いて測定した.膜流動性の指標であるGP値(Generalized polarization factor)の計算には式1および2を用いた.
ここでGPref = 0.207は文献値としてOwen et al., が定義しており,GP=0付近で脂質膜の秩序/無秩序領域(order/disordered domain)が分かれるように便宜的に定義したものである. GPmeas はDMSOに融解したラダン (33 μM)を同一光学セットアップを用いて測定した補正値(式3)である:
このとき注意したいのは膜流動性評価実験に使用した細胞は全てアキュテースで剥離した直後の浮遊状態の細胞である.播種する基板はラダンからの蛍光を効率よく回収しやすいように底面がガラス基板となっている96 well ガラスプレートであり,表面が未処理のため細胞接着が阻害され浮遊状態での細胞観察が可能である.
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
Takebe, et al. Nature, 499: 481-484, 2013
Cunningham et al. Nat. Biothechnol.VOL.30 NO.9:849-857, 2012
Maecker, et al. Nature Immunology,11:975-978, 2010(巻数とページ番号を入れてください.)
Matsuzaki et al., Phys. Chem. Chem. Phys.,19:19937-19947 2017.
Owen et al., Nature protocls 7:24-35,2011.
Tateno et al., Stem Cell Reports 4:811-820,2015.
Matsuzaki et al. J. Phys. Chem. B,120: 1221-1227, 2016.
Sakamoto, Matsuzaki, Yoshikawa, Tanii et al. In vitro Cell Dev. Biol. Animal,52: 799-805, 2016.
Suganuma, Matsuzaki, Yoshikawa,Fujiki et al. Molecules,21: 1566, 2016.
Sun et al. Biophys. J.,96: 1026-1035, 2009.
Schaeffer and Curtis et al., J. Cell. Sci. 26:47-55(1997).
Salaita et al., Science 327:1380-1385,2010.
Si-Tayeb et al. Hepatology,51: 297-305, 51,2010.
Patsch et al. Nature Cell Biology,17: 994-1003,2015.
本発明は,安価で身近で安全な物質(緑茶カテキンやクルクミン)を添加するという安価かつ単純な方法を用いることにより,ヒト臓器細胞の工業的製造に向けて劇的なコストダウンが可能な基盤的培養技術となる.本発明者らが過去に開発した技術(「組織・臓器の作製方法」WO2013/047639)と連動することにより,再生医療や産業応用上極めて有益な細胞操作技術となる.例えば,本発明によりヒトiPS細胞から分化誘導した肝臓細胞の中から混入しているiPS細胞を選択的に除去可能であり,臨床応用・創薬開発において必要な安全なヒト成熟肝細胞を大量に安価に製造することが可能となる.また,個人毎に樹立された複数のiPS細胞株を用いることで,人種・性別・個体差などスペックの明らかなヒト成熟肝細胞を,安定的かつ安価に大量供給することが可能となる.これにより,創薬開発における課題であった個人における反応性の相違を検出する革新的なスクリーニング技術となることが期待される.さらに器官原基だけに限らず未分化・分化細胞を原料として用いる様々な組織工学の手法において,未分化細胞の除去が可能な基礎的な細胞選別法として利用可能性が高い.
Claims (16)
- a)標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うこと,及び
b) 細胞膜流動性の差を利用して,標的細胞を選別すること
を含む,細胞選別法. - 未分化細胞を除去するために用いられる請求項1記載の方法.
- 分化細胞を濃縮するために用いられる請求項1記載の方法.
- 細胞集団を構成する細胞を均質化するために用いられる請求項1記載の方法.
- 標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理が,細胞膜流動性を細胞種特異的に変化させることができる物質を培地に添加することである請求項1~4のいずれかに記載の方法.
- 細胞膜流動性の差を拡大することにより、基質に対する細胞の接着性の差を拡大させ、この差を利用して、標的細胞を選別する請求項1~5のいずれかに記載の方法。
- 細胞膜流動性を細胞種特異的に変化させることができる物質が、ポリフェノール、分化誘導因子、インヒビター、増殖因子、薬剤又はアミノ酸・界面活性剤のいずれかである請求項5又は6に記載の方法。
- 細胞膜流動性を細胞種特異的に変化させることができる物質が、下記の群から選択される少なくとも1つの化合物である請求項7記載の方法。
(1) ポリフェノール群:resveratrol、epigallocatechin gallate (EGCG)、curcumin及びgenistein
(2) 分化誘導因子群:activin-A、wint-3a、sodium butylate、basic fibroblast growth factor (bFGF)、oncostatin M (OSM)、dexamethasone (DEX)、hepatocyte growth factor (HGF)、CHIR-99021及びforskolin
(3) インヒビター群:Y-27632 (rock inhibitor)、(s)-(-)-blebbistatin、IWP2、A83-01、LY294002、SB-431542、NVP-BHG、Cyclopamine-KAAD、及びPD-0325901
(4) 増殖因子群:FGF4、LDN-193189、insulin like growth factor (IGF)、bone morphogenetic protein (BMP)2、transforming growth factor (TGF)β2、BMP4、FGF-7、platelet-derived growth factor (PDGF)β3、epidermal growth factor (EGF)、exendin-4、human neuregulin (hHRG)β3、retionic acid (RA)、L-Ascorbic acid 2-phosphate (AA2P)、ascorbic acid、insulin-transferrin-selenium ethanolamine solution (ITS-X)、及びinsulin
(4) 薬剤群:rifampicin、prostaglandin E2 (PGE2)及びpeniciline/streptomycine solution
(5) アミノ酸・界面活性剤群:2-mercaptoethanol、3-mercaptopropane-1,2-diol (thioglycerol)、L-proline、L-glutamine、non-essential amino acid mixture(NEAA)、sodium pyruvate、trypsin-EDTA及びphosphatidylinositol (PI) - 標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用キット.
- 標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬を含む,細胞選別用培地.
- 細胞膜流動性を細胞種特異的に変化させることができる物質を含む,標的細胞と非標的細胞との細胞膜流動性の差を拡大させる処理を行うための試薬.
- 基質に接着した細胞の割合(接着率)を培養時間毎に測定することを含む,基質に対する細胞の接着性を定量する方法.
- 細胞を提供するドナー間の差を調べるために測定を行う請求項12記載の方法.
- 細胞種間の差を調べるために測定を行う請求項12記載の方法.
- a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,細胞の分化誘導方法. - a1) 未分化細胞を分化誘導するにあたり,未分化細胞の分化前と分化後との細胞膜流動性の差を拡大させる処理を行なうこと,及び
b1)細胞膜流動性の差を利用して,分化細胞を選別すること
を含む,分化細胞の調製方法.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019504611A JPWO2018164133A1 (ja) | 2017-03-08 | 2018-03-06 | 細胞選別法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-043744 | 2017-03-08 | ||
JP2017043744 | 2017-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018164133A1 true WO2018164133A1 (ja) | 2018-09-13 |
Family
ID=63448620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008615 WO2018164133A1 (ja) | 2017-03-08 | 2018-03-06 | 細胞選別法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018164133A1 (ja) |
WO (1) | WO2018164133A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113774018A (zh) * | 2021-08-30 | 2021-12-10 | 吉林大学 | 一种大鼠心肌细胞和心肌成纤维细胞分离和培养的方法 |
CN116751738A (zh) * | 2023-06-27 | 2023-09-15 | 昆明理工大学 | 一种信号巢细胞以及类胚胎的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005532079A (ja) * | 2002-07-11 | 2005-10-27 | ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | 再ミエリン化および脊髄損傷の治療のためのヒト胚性幹細胞に由来するオリゴデンドロサイト |
JP2011015662A (ja) * | 2009-07-10 | 2011-01-27 | Kinki Univ | 間葉系細胞または軟骨細胞の製法ならびに発癌性の抑制方法 |
JP2014516590A (ja) * | 2011-06-21 | 2014-07-17 | ジョージア・テック・リサーチ・コーポレイション | 幹細胞および幹細胞に由来する細胞を単離するための、接着シグネチャーベースの方法 |
-
2018
- 2018-03-06 JP JP2019504611A patent/JPWO2018164133A1/ja active Pending
- 2018-03-06 WO PCT/JP2018/008615 patent/WO2018164133A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005532079A (ja) * | 2002-07-11 | 2005-10-27 | ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | 再ミエリン化および脊髄損傷の治療のためのヒト胚性幹細胞に由来するオリゴデンドロサイト |
JP2011015662A (ja) * | 2009-07-10 | 2011-01-27 | Kinki Univ | 間葉系細胞または軟骨細胞の製法ならびに発癌性の抑制方法 |
JP2014516590A (ja) * | 2011-06-21 | 2014-07-17 | ジョージア・テック・リサーチ・コーポレイション | 幹細胞および幹細胞に由来する細胞を単離するための、接着シグネチャーベースの方法 |
Non-Patent Citations (1)
Title |
---|
SAKAMOTO, RUMI ET AL.: "Analysis of time-lapse during cell adhesion process onto micropattern - Comparison between cancer cell and normal cell in culture medium containing green tea catechin", THE 61TH JASAP SPRING MEETING, vol. 61, 2014 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113774018A (zh) * | 2021-08-30 | 2021-12-10 | 吉林大学 | 一种大鼠心肌细胞和心肌成纤维细胞分离和培养的方法 |
CN113774018B (zh) * | 2021-08-30 | 2023-09-05 | 吉林大学 | 一种大鼠心肌细胞和心肌成纤维细胞分离和培养的方法 |
CN116751738A (zh) * | 2023-06-27 | 2023-09-15 | 昆明理工大学 | 一种信号巢细胞以及类胚胎的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018164133A1 (ja) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Musah et al. | Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip | |
US20220033773A1 (en) | Derivation of human microglia from pluripotent stem cells | |
Lancaster et al. | Generation of cerebral organoids from human pluripotent stem cells | |
Heathman et al. | Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development | |
Cheung et al. | Directed differentiation of embryonic origin–specific vascular smooth muscle subtypes from human pluripotent stem cells | |
JP5603300B2 (ja) | 細胞培養 | |
Gracz et al. | Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine | |
EP3239294A1 (en) | Primitive gut endoderm cells and method for producing same | |
JP6400575B2 (ja) | 組織構造体及びその作製方法 | |
CA2921948C (en) | Method for preparing pluripotent stem cells | |
Lu et al. | Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening | |
IL203404A (en) | A method for building and using myocardial mass, their surfaces, and a medical device containing them | |
KR101590603B1 (ko) | 미분화 인간 유도만능줄기세포의 선택적 세포사멸 유도를 통한 테라토마 형성 억제 방법 | |
Darabi et al. | Derivation of skeletal myogenic precursors from human pluripotent stem cells using conditional expression of PAX7 | |
Sasano et al. | Construction of 3D cardiac tissue with synchronous powerful beating using human cardiomyocytes from human iPS cells prepared by a convenient differentiation method | |
Boutin et al. | 3D engineering of ocular tissues for disease modeling and drug testing | |
WO2018164133A1 (ja) | 細胞選別法 | |
Sarrafha et al. | High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells | |
de Peppo et al. | Cultivation of human bone-like tissue from pluripotent stem cell-derived osteogenic progenitors in perfusion bioreactors | |
Acharya et al. | Uniform cerebral organoid culture on a pillar plate by simple and reproducible spheroid transfer from an ultralow attachment well plate | |
JP2013512671A (ja) | 規定された分化能を有する幹細胞クローンの選択 | |
AU2010275678B2 (en) | Method for obtaining myofibroblasts | |
Park et al. | Protocol to generate endothelial cells, pericytes, and fibroblasts in one differentiation round from human-induced pluripotent stem cells | |
Park et al. | Differentiation of monocytes and polarized M1/M2 macrophages from human induced pluripotent stem cells | |
Lauranzano et al. | Integrating Primary Astrocytes in a Microfluidic Model of the Blood–Brain Barrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764897 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2019504611 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764897 Country of ref document: EP Kind code of ref document: A1 |