WO2018164022A1 - Hydraulic oil control valve and valve timing regulation device - Google Patents

Hydraulic oil control valve and valve timing regulation device Download PDF

Info

Publication number
WO2018164022A1
WO2018164022A1 PCT/JP2018/008200 JP2018008200W WO2018164022A1 WO 2018164022 A1 WO2018164022 A1 WO 2018164022A1 JP 2018008200 W JP2018008200 W JP 2018008200W WO 2018164022 A1 WO2018164022 A1 WO 2018164022A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic oil
flow path
supply
inner sleeve
check valve
Prior art date
Application number
PCT/JP2018/008200
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 満谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880009452.2A priority Critical patent/CN110291275B/en
Priority to DE112018001233.6T priority patent/DE112018001233B4/en
Publication of WO2018164022A1 publication Critical patent/WO2018164022A1/en
Priority to US16/542,460 priority patent/US11248502B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0712Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides comprising particular spool-valve sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1825Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • the present disclosure relates to a hydraulic oil control valve and a valve timing adjusting device using the hydraulic oil control valve.
  • Patent Document 1 an inner sleeve is provided inside a cylindrical outer sleeve, and a check valve that is elastically deformable in a radial direction is provided in an annular space formed between the outer sleeve and the inner sleeve. Yes.
  • the check valve controls the flow of hydraulic oil between the outside and the inside of the outer sleeve and the inner sleeve.
  • An object of the present disclosure is to provide a hydraulic oil control valve and a valve timing adjustment device that have a small flow path pressure loss and can suppress unintended flow path blockage.
  • the present disclosure is a hydraulic oil control valve capable of controlling a flow of hydraulic oil supplied from a hydraulic oil supply source to a hydraulic oil supply target, and includes an outer sleeve, an inner sleeve, a supply flow path section, an axial flow path section, and a supply And a check valve.
  • the outer sleeve is formed in a cylindrical shape.
  • the inner sleeve is formed in a cylindrical shape and is provided inside the outer sleeve.
  • the supply flow path portion is formed so as to penetrate the inner sleeve or the outer sleeve in the radial direction, and the hydraulic oil from the hydraulic oil supply source flows.
  • the axial direction flow path portion is formed so as to extend in the axial direction between the outer sleeve and the inner sleeve, the supply flow path portion opens on one end side, and the other end side can be connected to a hydraulic oil supply target.
  • the supply check valve is provided in the axial direction flow path section on the radially outer side of the inner sleeve or the radial direction inner side of the outer sleeve with respect to the supply flow path section, and hydraulic oil from the supply flow path side to the axial flow path side.
  • the flow of hydraulic oil from the axial flow path portion side to the supply flow path portion side can be restricted.
  • the hydraulic oil that has flowed from the supply flow path section to the axial flow path section flows to the other end side of the axial flow path section without bypassing the supply check valve, and is supplied to the hydraulic oil supply target. . Therefore, the flow path pressure loss in the hydraulic oil control valve can be suppressed.
  • the supply check valve even if a large amount of hydraulic oil flows from the supply flow path portion to the axial flow path portion, the supply check valve only abuts against the wall surface facing the opening of the supply flow path portion. The directional flow path is not blocked. For this reason, unintended flow passage interruption in the hydraulic oil control valve can be suppressed.
  • FIG. 1 is a cross-sectional view showing a hydraulic oil control valve and a valve timing adjusting device according to a first embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing the hydraulic oil control valve according to the first embodiment.
  • FIG. 4 is a development view showing a supply check valve of the hydraulic oil control valve according to the first embodiment.
  • FIG. 5 is a view showing a supply check valve of the hydraulic oil control valve according to the first embodiment,
  • FIG. 6 is a perspective view showing an inner sleeve and a supply check valve of the hydraulic oil control valve according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the first embodiment
  • FIG. 8 is a development view showing a recycle check valve of the hydraulic oil control valve according to the first embodiment
  • FIG. 9 is a cross-sectional view showing a hydraulic oil control valve according to the second embodiment
  • FIG. 10 is a plan view showing an inner sleeve of the hydraulic oil control valve according to the second embodiment
  • FIG. 11 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the second embodiment
  • FIG. 12 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the third embodiment
  • FIG. 13 is a cross-sectional view showing a hydraulic oil control valve according to the fourth embodiment
  • FIG. 14 is a development view showing a supply check valve of the hydraulic oil control valve according to the fifth embodiment
  • FIG. 15 is a cross-sectional view showing a supply check valve of the hydraulic oil control valve according to the fifth embodiment
  • FIG. 16 is a development view showing a supply check valve of the hydraulic oil control valve according to the sixth embodiment
  • FIG. 17 is a view showing a supply check valve of the hydraulic oil control valve according to the sixth embodiment.
  • FIG. 18 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the seventh embodiment
  • 19 is a cross-sectional view taken along line XIX-XIX in FIG.
  • valve timing adjustment devices according to a plurality of embodiments of the present disclosure will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
  • (First embodiment) 1 to 3 show a hydraulic oil control valve and a valve timing adjusting device according to a first embodiment.
  • the valve timing adjusting device 10 changes the rotational phase of the camshaft 3 with respect to the crankshaft 2 of the engine 1 as an internal combustion engine to thereby change the intake valve 4 of the intake valve 4 or the exhaust valve 5 that the camshaft 3 is driven to open and close.
  • the valve timing is adjusted.
  • the valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 2 to the camshaft 3.
  • the crankshaft 2 corresponds to a “drive shaft”.
  • the cam shaft 3 corresponds to a “driven shaft”.
  • the intake valve 4 and the exhaust valve 5 correspond to “valves”.
  • the configuration of the valve timing adjusting device 10 will be described with reference to FIGS.
  • the valve timing adjusting device 10 includes a housing 20, a vane rotor 30, and a hydraulic oil control valve 11.
  • the housing 20 includes a sprocket 21 and a case 22.
  • the sprocket 21 is fitted to the end of the cam shaft 3.
  • the camshaft 3 supports the sprocket 21 in a rotatable manner.
  • the chain 6 is wound around the sprocket 21 and the crankshaft 2.
  • the sprocket 21 rotates in conjunction with the crankshaft 2.
  • the case 22 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 21 by a bolt 12 while being combined with the sprocket 21.
  • the case 22 has a plurality of partition walls 23 protruding radially inward.
  • An opening 24 that opens to a space outside the case 22 is formed at the center of the bottom of the case 22.
  • the opening 24 is located on the side opposite to the camshaft 3 with respect to the vane rotor 30.
  • the vane rotor 30 has a boss 31 and a plurality of vanes 32.
  • the boss 31 has a cylindrical shape and is fixed to the end of the cam shaft 3.
  • the vane 32 protrudes between the partition walls 23 toward the radially outer side from the boss 31.
  • a space 200 inside the housing 20 is partitioned into a retard chamber 201 and an advance chamber 202 by a vane 32.
  • the retard chamber 201 is located on one side in the circumferential direction with respect to the vane 32.
  • the advance chamber 202 is located on the other side in the circumferential direction with respect to the vane 32.
  • the retard chamber 201 and the advance chamber 202 correspond to a “hydraulic chamber”.
  • the vane rotor 30 rotates relative to the housing 20 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 201 and the advance chamber 202.
  • the hydraulic oil control valve 11 includes an outer sleeve 40, an inner sleeve 50, a spool 60, a supply flow path portion 501, an axial flow path portion 502, a circumferential flow path portion 503, a radial flow path portion 504, a supply check valve 71, Movement restriction parts 56, 57 and the like are provided.
  • the hydraulic oil control valve 11 is provided at the center of the vane rotor 30 (see FIGS. 1 and 2).
  • the outer sleeve 40 is formed in a substantially cylindrical shape with a material having relatively high hardness including, for example, iron.
  • the outer sleeve 40 has an inner peripheral wall formed in a substantially cylindrical surface shape.
  • a threaded portion 41 is formed on the outer peripheral wall of one end portion of the outer sleeve 40.
  • a locking portion 49 is formed that extends annularly from the outer peripheral wall outward in the radial direction.
  • a shaft hole 100 and a supply hole 101 are formed at the end of the cam shaft 3 on the valve timing adjusting device 10 side.
  • the shaft hole portion 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 10 side.
  • the supply hole 101 is formed to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole 100.
  • a shaft side screw portion 110 that can be screwed to the screw portion 41 of the outer sleeve 40 is formed on the inner wall of the shaft hole portion 100 of the cam shaft 3.
  • the outer sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the cam shaft 3 so that the screw portion 41 is coupled to the shaft side screw portion 110 of the cam shaft 3.
  • the locking portion 49 locks the end surface of the boss 31 of the vane rotor 30 opposite to the cam shaft 3.
  • the vane rotor 30 is fixed to the camshaft 3 so as to be sandwiched between the camshaft 3 and the locking portion 49.
  • the outer sleeve 40 is provided in the central portion of the vane rotor 30.
  • the oil pump 8 is connected to the supply hole 101.
  • the oil pump 8 pumps up the hydraulic oil stored in the oil pan 7 and supplies it to the supply hole 101.
  • the hydraulic oil flows into the shaft hole 100.
  • the oil pump 8 corresponds to a “operating oil supply source”.
  • the valve timing adjusting device 10 corresponds to “operating oil supply target”.
  • the inner sleeve 50 is formed in a substantially cylindrical shape by a material having a relatively low hardness including, for example, aluminum. That is, the inner sleeve 50 is formed of a material having a lower hardness than the outer sleeve 40.
  • the inner sleeve 50 has an outer peripheral wall formed in a substantially cylindrical surface shape.
  • the inner sleeve 50 is provided inside the outer sleeve 40 so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40.
  • the inner sleeve 50 is not movable relative to the outer sleeve 40.
  • a sleeve plate portion 51 On one end side of the inner sleeve 50, a sleeve plate portion 51 extending in a plate shape from the inner peripheral wall inward in the radial direction is formed.
  • the sleeve plate portion 51 is located on the radially inner side of the screw portion 41 of the outer sleeve 40, and divides the space inside the inner sleeve 50 into one side and the other side.
  • the spool 60 is formed in a substantially cylindrical shape from metal, for example.
  • the spool 60 is provided inside the inner sleeve 50 so that the outer peripheral wall slides with the inner peripheral wall of the inner sleeve 50 and can reciprocate in the axial direction.
  • a spool plate portion 61 extending in a plate shape from the inner peripheral wall to the inside in the radial direction is formed on one end side of the spool 60.
  • the spool plate portion 61 divides the space inside the spool 60 into one side and the other side.
  • a sealing portion 62 is provided at the other end of the spool 60.
  • the sealing portion 62 has an outer peripheral wall fitted into the inner peripheral wall of the spool 60 and closes the other end of the spool 60.
  • a substantially cylindrical internal space 600 is formed between the sealing portion 62 and the spool plate portion 61 inside the spool 60.
  • a variable volume space 500 is formed between the sleeve plate portion 51 and the spool plate portion 61 inside the inner sleeve 50.
  • the volume of the variable volume space 500 changes when the spool 60 moves in the axial direction with respect to the inner sleeve 50.
  • a spring 63 is provided in the variable volume space 500.
  • the spring 63 is a so-called coil spring, and has one end in contact with the sleeve plate portion 51 and the other end in contact with the spool plate portion 61.
  • the spring 63 biases the spool 60 to the side opposite to the sleeve plate portion 51.
  • a locking portion 59 is provided on the radially inner side of the other end portion of the outer sleeve 40.
  • the locking portion 59 is formed in a bottomed cylindrical shape, and is provided so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40.
  • a hole is formed in the center of the bottom of the locking part 59, and the sealing part 62 is located inside the hole.
  • the locking portion 59 can lock the other end of the spool 60 by the bottom.
  • the locking portion 59 can regulate the movement of the spool 60 to the side opposite to the sleeve plate portion 51 of the spool 60. As a result, the spool 60 is prevented from falling off from the inner side of the inner sleeve 50.
  • the supply flow path portion 501 is formed on one end side of the inner sleeve 50.
  • the supply flow path portion 501 is formed on the opposite side of the spool 60 with respect to the sleeve plate portion 51.
  • the supply channel portion 501 is formed so as to penetrate the inner sleeve 50 in the radial direction.
  • four supply flow path portions 501 are formed at equal intervals in the circumferential direction of the inner sleeve 50.
  • a filter 58 is provided on the radially inner side of the supply flow path portion 501 inside the inner sleeve 50.
  • the filter 58 is a mesh formed in a substantially cylindrical shape. The filter 58 can collect foreign substances contained in the hydraulic oil flowing from the inner sleeve 50 to the supply flow path portion 501.
  • the axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
  • the axial flow path portion 502 is formed on the fitting boundary surface T ⁇ b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
  • One of the four supply flow path portions 501 connects one end side of the axial flow path portion 502 and the space inside the inner sleeve 50. That is, the supply flow path portion 501 is open on one end side of the axial flow path portion 502.
  • the circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502 (see FIGS. 3 and 6). That is, four supply flow path portions 501 are opened in the circumferential flow path portion 503.
  • the hydraulic oil that has flowed into the shaft hole 100 via the supply hole 101 can flow into the axial flow path 502 and the circumferential flow path 503 via the supply flow path 501.
  • the hydraulic oil that has flowed into the circumferential flow path portion 503 via the supply flow path portion 501 can flow through the circumferential flow path portion 503 to the axial flow path portion 502.
  • the radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIG. 3).
  • the supply check valve 71 is formed in a substantially cylindrical shape by, for example, bending a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction.
  • FIG. 4 is a developed view of the supply check valve 71.
  • FIG. 5 is a view of the supply check valve 71 viewed from the axial direction.
  • the supply check valve 71 has an overlapping part 700 and a valve part 701.
  • the overlapping portion 700 is formed at one end of the supply check valve 71 in the circumferential direction.
  • the overlapping portion 700 is formed so as to overlap the radially outer side of the other end portion in the circumferential direction of the supply check valve 71 (see FIG. 5).
  • Four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 71.
  • the supply check valve 71 is provided in the circumferential flow path portion 503.
  • the supply check valve 71 is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503.
  • the supply check valve 71 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 71 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
  • the axial flow path portion 502 has a valve seat surface 52, a valve seat step surface 53, a stopper surface 42, and a stopper step surface 43.
  • the valve seat surface 52 is formed in an annular shape around the opening of the supply flow path portion 501 in the inner sleeve 50, and can contact the valve portion 701 of the supply check valve 71.
  • the valve seat level difference surface 53 is formed on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52 on the other end side of the axial flow path portion 502 with respect to the valve seat surface 52 (see FIG. 7).
  • the stopper surface 42 is formed in the outer sleeve 40 at a position facing the opening of the supply flow path portion 501.
  • the stopper step surface 43 is formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42 (see FIG. 7).
  • the supply check valve 71 is provided in the circumferential flow path portion 503, and in a state where hydraulic oil does not flow through the supply flow path portion 501, that is, in a state where no external force is applied, the overlapping portion 700 is in the other circumferential direction. It is in a state where it overlaps the end (see FIG. 6). Further, the outer peripheral wall of the supply check valve 71 is located on substantially the same plane as the valve seat step surface 53 (see FIG. 7). Here, the boundary B1 between the stopper surface 42 and the stopper step surface 43 is located within the range of the axial length of the supply check valve 71 (see FIG. 7).
  • the supply check valve 71 When the hydraulic oil flows to the axial flow path section 502 and the circumferential flow path section 503 via the supply flow path section 501, the supply check valve 71 is pushed radially outward by the inner wall of the valve section 701 being pushed by the hydraulic oil. It is deformed so as to expand, that is, the inner diameter increases. As a result, the valve portion 701 of the supply check valve 71 is separated from the valve seat surface 52, and the hydraulic oil passes between the valve portion 701 and the valve seat surface 52, and the other end portion of the axial flow passage portion 502. It can flow to the side, that is, the radial flow path portion 504 side. At this time, the overlapping portion 700 is in a state where a part of the overlapping portion 700 is maintained while the length of the overlapping range between the overlapping portion 700 and the other end of the supply check valve 71 is reduced.
  • the supply check valve 71 is deformed so as to shrink inward in the radial direction, that is, to reduce the inner diameter. Further, when hydraulic oil flows from the axial flow path portion 502 toward the supply flow path portion 501, the outer peripheral wall of the supply check valve 71 is pushed radially inward by the hydraulic oil, and the valve portion 701 contacts the valve seat surface 52. Touch. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 501 side is regulated. At this time, the supply check valve 71 is deformed so that the outer peripheral wall is located on the radially inner side of the inner sleeve 50 with respect to the valve seat step surface 53.
  • the supply check valve 71 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 501 side to the axial flow path portion 502 side, and is supplied from the axial flow path portion 502 side.
  • the flow of the hydraulic oil to the flow path part 501 side can be regulated.
  • the movement restricting portion 56 is formed on the locking portion 59 side with respect to the supply check valve 71 in the circumferential flow path portion 503.
  • the movement restricting portion 56 can restrict the movement of the supply check valve 71 toward the engaging portion 59 in the axial direction when it contacts the end of the supply check valve 71 in the axial direction.
  • the movement restricting portion 57 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 71 in the circumferential flow path portion 503.
  • the movement restricting portion 57 can restrict the movement of the supply check valve 71 to the side opposite to the axially engaging portion 59 when abutting against the end portion of the supply check valve 71 in the axial direction.
  • the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving away from the supply flow path portion 501 in the axial direction. Further, the movement restricting portion 56 can prevent the supply check valve 71 from moving to the other side of the axial flow passage portion 502 and closing the radial flow passage portion 504.
  • the spool 60 includes a supply oil passage 601, a first control oil passage 611, a second control oil passage 612, a drain oil passage 602, and a recycle oil passage 603.
  • the supply oil passage 601 is formed in a substantially cylindrical shape so as to be recessed radially inward from the outer peripheral wall on one end side of the spool 60 and extending in the circumferential direction.
  • the supply oil passage 601 is connected to the radial flow passage portion 504.
  • the supply oil passage 601 communicates with the supply flow passage portion 501 via the axial flow passage portion 502. Therefore, hydraulic oil is supplied to the supply oil passage 601 from the oil pump 8 via the supply flow passage portion 501, the axial flow passage portion 502, and the radial flow passage portion 504.
  • the first control oil passage 611 is formed so as to penetrate the inner sleeve 50 in the radial direction. That is, the first control oil passage 611 connects the internal space 600 of the spool 60 and the outside.
  • the first control oil passage 611 is formed integrally with the supply oil passage 601. Therefore, the supply oil passage 601 communicates with the internal space 600 of the spool 60 via the first control oil passage 611. Therefore, hydraulic oil can flow into the internal space 600 via the supply oil passage 601 and the first control oil passage 611.
  • the second control oil passage 612 is formed so as to penetrate the inner sleeve 50 in the radial direction. That is, the second control oil passage 612 connects the internal space 600 of the spool 60 and the outside.
  • the second control oil passage 612 is formed on the sealing portion 62 side with respect to the first control oil passage 611.
  • the drain oil passage 602 is formed between the first control oil passage 611 and the second control oil passage 612 in the axial direction of the spool 60 so as to be recessed radially inward from the outer peripheral wall of the spool 60.
  • the recycle oil passage 603 is formed so as to penetrate the spool 60 in the radial direction in the drain oil passage 602. That is, the recycle oil passage 603 connects the internal space 600 of the spool 60 and the drain oil passage 602.
  • a first control port 411 and a second control port 412 are formed in the outer sleeve 40 and the inner sleeve 50.
  • the first control port 411 is formed so as to penetrate the outer sleeve 40 and the inner sleeve 50 in the radial direction on the locking portion 49 side with respect to the axial flow path portion 502.
  • One end of the first control port 411 is connected to the space inside the inner sleeve 50.
  • the other end of the first control port 411 is connected to the retard chamber 201 via the retard oil passage 301.
  • the second control port 412 is formed to penetrate the outer sleeve 40 and the inner sleeve 50 in the radial direction on the locking portion 49 side with respect to the first control port 411.
  • One end of the second control port 412 is connected to the space inside the inner sleeve 50.
  • the other end of the second control port 412 is connected to the advance chamber 202 via the advance oil passage 302.
  • a linear solenoid 9 is provided on the opposite side of the spool 60 from the cam shaft 3.
  • the linear solenoid 9 is provided so as to contact the sealing portion 62.
  • the linear solenoid 9 presses the spool 60 toward the camshaft 3 against the biasing force of the spring 63 through the sealing portion 62 by energization. Thereby, the axial position of the spool 60 with respect to the inner sleeve 50 changes.
  • the movable range of the spool 60 is from a position where the spool 60 abuts on the locking portion 59 to a position where the spool 60 abuts on the sleeve plate portion 51.
  • the supply oil path 601 communicates with the radial flow path portion 504 regardless of the position of the spool 60 in the axial direction with respect to the inner sleeve 50.
  • the first control oil passage 611 and the first control port 411 are connected when the spool 60 is in a position where it abuts against the locking portion 59.
  • the second control port 412 is connected to the drain oil passage 602 and the recycle oil passage 603. Further, the second control oil passage 612 and the second control port 412 are disconnected.
  • the second control oil passage 612 and the second control port 412 are connected.
  • the first control port 411 is connected to the drain oil passage 602 and the recycle oil passage 603. Further, the first control oil passage 611 and the first control port 411 are disconnected.
  • the spool 60 when the spool 60 is at an intermediate position between the locking portion 59 and the sleeve plate portion 51, the first control oil passage 611, the second control oil passage 612, the drain oil passage 602, the recycle oil passage 603, and the first control port. 411 and the second control port 412 are disconnected. At this time, the retard chamber 201 and the advance chamber 202 are closed.
  • the spool 60 connects and disconnects the first control oil passage 611 and the second control oil passage 612 and the first control port 411 and the second control port 412 according to the position in the axial direction with respect to the inner sleeve 50. Switching is possible.
  • the other end of the axial flow passage portion 502 is the radial flow passage portion 504, the supply oil passage 601, the first control oil passage 611, and the first control port. It is connected to the retarding angle chamber 201 via 411.
  • the other end of the axial flow passage portion 502 is connected to the radial flow passage portion 504, the supply oil passage 601, the first control oil passage 611, the internal space 600, and the second.
  • the control oil passage 612 and the second control port 412 are connected to the advance chamber 202.
  • the other end side of the axial flow path portion 502 can be connected to the retard chamber 201 or the advance chamber 202 of the valve timing adjusting device 10 via the radial flow path portion 504.
  • a breathing hole 505 and a drain port 506 are formed in the inner sleeve 50.
  • the breathing hole 505 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50 (see FIGS. 3 and 6). Further, the breathing hole 505 has one end connected to the variable volume space 500 and the other end communicating with the outside, that is, the atmosphere via the engagement portion 59 and the sealing portion 62. Thereby, the pressure of the volume variable space 500 can be made equal to atmospheric pressure. Therefore, the axial movement of the spool 60 can be made smooth.
  • the drain port 506 is formed so as to connect the space inside the inner sleeve 50 and the breathing hole 505.
  • the end of the drain port 506 opposite to the breathing hole 505 is connected to the drain oil passage 602 regardless of the position of the spool 60 in the axial direction with respect to the inner sleeve 50.
  • the hydraulic oil in the drain oil passage 602 can flow out of the hydraulic oil control valve 11 via the drain port 506, the breathing hole 505, and between the locking part 59 and the sealing part 62.
  • the hydraulic oil control valve 11 further includes a recycle check valve 81.
  • the recycle check valve 81 is provided in the internal space 600 of the spool 60.
  • the recycle check valve 81 is formed, for example, by bending a thin metal plate.
  • FIG. 8 is a developed view of the recycle check valve 81.
  • FIG. 3 shows the recycle check valve 81 viewed from the direction perpendicular to the axis.
  • the recycle check valve 81 has a shaft portion 811 and a valve portion 812.
  • the shaft portion 811 is formed in a substantially cylindrical shape.
  • the valve portion 701 is formed so as to extend from one end in the circumferential direction of the shaft portion 811 at the center of the shaft portion 811 so as to make one turn around the shaft portion 811.
  • An end portion of the valve portion 701 opposite to the shaft portion 811 in the circumferential direction overlaps the radially outer side of the valve portion 812.
  • the recycle check valve 81 is provided in the internal space 600 so that the valve portion 812 corresponds to the recycle oil passage 603.
  • the end portion of the shaft portion 811 is in contact with the spool plate portion 61 and the sealing portion 62, and movement in the axial direction is restricted.
  • the valve portion 812 blocks the recycle oil passage 603 in the internal space 600.
  • the valve portion 812 is elastically deformable in the radial direction.
  • the recycle check valve 81 When hydraulic oil flows from the recycle oil path 603 side to the internal space 600 side, the recycle check valve 81 is configured so that the outer wall of the valve portion 812 is pushed by the hydraulic oil and contracts radially inward, that is, the inner diameter decreases. And deform. As a result, the valve portion 812 is separated from the recycle oil passage 603, and the hydraulic oil can flow into the internal space 600 and flow between the valve portion 812 and the inner peripheral wall of the spool 60. At this time, the overlapping area of the end portions in the circumferential direction of the valve portion 812 increases.
  • the recycle check valve 81 is pushed by the hydraulic oil to the inner wall of the valve portion 812 and expands radially outward, that is, the inner diameter increases. It deforms like this. As a result, the valve portion 812 blocks the recycle oil passage 603 and the flow of hydraulic oil from the internal space 600 to the recycle oil passage 603 is blocked.
  • the recycle check valve 81 functions as a check valve, allows the flow of hydraulic oil from the recycle oil path 603 side to the internal space 600 side, and operates from the internal space 600 side to the recycle oil path 603 side. Oil flow can be regulated.
  • the hydraulic oil control valve 11 presses the spool 60 by driving the linear solenoid 9 and connects the advance chamber 202 to the drain oil passage 602 and the recycle oil passage 603 while connecting the oil pump 8 and the retard chamber 201.
  • a first operating state a second operating state in which the retard chamber 201 is connected to the drain oil passage 602 and the recycled oil passage 603 while the oil pump 8 and the advance chamber 202 are connected, and the retard chamber 201 and It operates to a holding state in which the advance chamber 202 is closed together.
  • the hydraulic oil in the retard chamber 201 and the advance chamber 202 is held.
  • the present embodiment further includes a lock pin 33 (see FIGS. 1 and 2).
  • the lock pin 33 is formed in a bottomed cylindrical shape, and is housed in a housing hole 321 formed in the vane 32 so as to be capable of reciprocating in the axial direction.
  • a spring 34 is provided inside the lock pin 33. The spring 34 biases the lock pin 33 toward the bottom side of the case 22.
  • a fitting recess 25 is formed on the bottom of the case 22 on the vane 32 side.
  • the lock pin 33 can be inserted into the insertion recess 25 when the vane rotor 30 is at the most retarded position with respect to the housing 20.
  • the lock pin 33 is fitted in the fitting recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is restricted.
  • the lock pin 33 is not inserted into the insertion recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
  • a pin control oil passage 304 communicating with the advance chamber 202 is formed between the lock pin 33 of the vane 32 and the advance chamber 202 (see FIG. 2).
  • the pressure of the hydraulic oil flowing into the pin control oil passage 304 from the advance chamber 202 acts in a direction in which the lock pin 33 comes out of the fitting recess 25 against the urging force of the spring 34.
  • valve timing adjusting device 10 configured as described above, when hydraulic oil is supplied to the advance chamber 202, the hydraulic oil flows into the pin control oil passage 304, and the lock pin 33 comes out of the fitting recess 25, and the housing The relative rotation of the vane rotor 30 with respect to 20 is permitted.
  • the valve timing adjusting device 10 sets the hydraulic oil control valve 11 to the first operating state.
  • the vane rotor 30 rotates relative to the housing 20 in the retarding direction, and the rotational phase of the camshaft 3 changes toward the retarding side.
  • the valve timing adjusting device 10 places the hydraulic oil control valve 11 in the second operating state when the rotational phase of the camshaft 3 is retarded from the target value.
  • the vane rotor 30 rotates relative to the housing 20 in the advance direction, and the rotational phase of the camshaft 3 changes toward the advance side.
  • valve timing adjusting device 10 places the hydraulic oil control valve 11 in the holding state when the rotational phase of the camshaft 3 matches the target value. Thereby, the rotational phase of the cam shaft 3 is maintained.
  • part of the hydraulic oil from the retard chamber 201 and the advance chamber 202 can be reused by the recycle oil passage 603.
  • the pressure of the variable volume space 500 is equal to the atmospheric pressure by the breathing hole 505, so that when the linear solenoid 9 presses the spool 60, the spool 60 is located inside the inner sleeve 50. Can smoothly reciprocate in the axial direction.
  • the hydraulic oil passes through the breathing hole 505 and is opposite to the hydraulic oil control valve 11 from the camshaft 3, that is, the valve timing adjusting device 10. It is discharged to the outside and returned to the oil pan 7.
  • the hydraulic oil flows into the axial channel portion 502 via the supply channel portion 501.
  • the supply check valve 71 is separated from the valve seat surface 52, that is, is opened to allow the flow of hydraulic oil. If the flow rate of the hydraulic oil at this time is large, the supply check valve 71 is further deformed radially outward and comes into contact with the stopper surface 42. At this time, the hydraulic oil can smoothly flow in the axial direction from the supply flow path portion 501 to the axial flow path portion 502 without being blocked by the supply check valve 71.
  • the supply channel section 501 and the axial channel section 502 Hydraulic fluid may flow backward.
  • the “back flow” means flowing from the axial flow path portion 502 side to the supply flow path portion 501 side. same as below.
  • the valve seat step surface 53 is formed on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52, and the supply check valve 71 has an outer peripheral wall when no external force is applied. Is located on substantially the same plane as the valve seat step surface 53.
  • the supply check valve 71 When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter between the inner wall of the supply check valve 71 and the valve seat surface 52, and the supply check valve 71. Push the outer wall of the inside in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
  • the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Further, the movement restricting section 56 can prevent the supply check valve 71 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
  • the present embodiment is the hydraulic oil control valve 11 that can control the flow of hydraulic oil supplied from the oil pump 8 to the valve timing adjusting device 10, and includes the outer sleeve 40, the inner sleeve 50, and the supply flow.
  • a passage portion 501, an axial flow passage portion 502, and a supply check valve 71 are provided.
  • the outer sleeve 40 is formed in a cylindrical shape.
  • the inner sleeve 50 is formed in a cylindrical shape and is provided inside the outer sleeve 40.
  • the supply flow path portion 501 is formed so as to penetrate the inner sleeve 50 in the radial direction, and the hydraulic oil from the oil pump 8 flows.
  • the axial flow path portion 502 is formed so as to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50, the supply flow path portion 501 opens at one end side, and the other end side can be connected to the valve timing adjusting device 10. It is.
  • the supply check valve 71 is provided radially outside the inner sleeve 50 with respect to the supply flow path section 501 in the axial flow path section 502, and supplies hydraulic oil from the supply flow path section 501 side to the axial flow path section 502 side. The flow is allowed, and the flow of hydraulic oil from the axial flow path portion 502 side to the supply flow path portion 501 side can be regulated.
  • the hydraulic oil that has flowed from the supply flow path portion 501 to the axial flow path portion 502 flows to the other end side of the axial flow path portion 502 without bypassing the supply check valve 71, thereby adjusting the valve timing. Supplied to the apparatus 10. Therefore, the flow path pressure loss in the hydraulic oil control valve 11 can be suppressed. Thereby, the responsiveness of the valve timing adjusting device 10 can be improved.
  • the supply check valve 71 contacts the wall surface facing the opening of the supply flow path portion 501.
  • the axial flow path portion 502 is not blocked. Therefore, the unintended flow path interruption in the hydraulic oil control valve 11 can be suppressed.
  • the present embodiment further includes movement restricting portions 56 and 57 that can restrict the movement of the supply check valve 71 in the axial direction. Therefore, it is possible to prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Thereby, the state in which the supply check valve 71 functions as a check valve can be maintained.
  • the present embodiment further includes a circumferential flow path portion 503.
  • the circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502.
  • the supply check valve 71 is formed in a cylindrical shape, and is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503.
  • the axial flow path portion 502 is formed around the opening of the supply flow path portion 501 and at a position facing the valve seat surface 52 on which the supply check valve 71 can contact and the opening of the supply flow path portion 501.
  • It has a stopper surface 42 that can regulate the deformation of the supply check valve 71 in the radial direction when the supply check valve 71 comes into contact.
  • the circumferential flow path portion 503 and the supply check valve 71 can be formed relatively easily. Further, by forming the stopper surface 42 as described above, the deformation of the supply check valve 71 can be restricted without hindering the flow of hydraulic oil.
  • the axial flow path portion 502 is a valve formed on the other end side of the axial flow path portion 502 with respect to the valve seat surface 52 and on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52.
  • a seat step surface 53 is provided. Therefore, the supply check valve 71 can be positioned with the outer wall substantially flush with the valve seat step surface 53 or on the valve seat surface 52 side.
  • the supply check valve 71 When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter the supply check valve 71 and pushes the outer wall of the supply check valve 71 radially inward. . Thereby, the supply check valve 71 can be closed quickly. That is, the valve seat step surface 53 can suppress the occurrence of a flow that hinders the closing of the supply check valve 71.
  • the axial flow path portion 502 is a stopper step surface formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42. 43.
  • the boundary between the stopper surface 42 and the stopper step surface 43 is located within the range of the axial length of the supply check valve 71. Therefore, when the supply check valve 71 abuts against the stopper surface 42 and deformation is restricted, a gap S ⁇ b> 1 is formed between the outer wall of the supply check valve 71 and the stopper step surface 43. Accordingly, when the hydraulic oil flows backward at this time, the hydraulic oil enters the gap S1, and the outer wall of the supply check valve 71 is pushed inward in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
  • the present embodiment further includes a radial flow path portion 504.
  • the radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connectable to the valve timing adjusting device 10.
  • the hydraulic fluid in the axial flow path portion 502 can be caused to flow inside the inner sleeve 50 by the radial flow path portion 504.
  • this embodiment is provided with the movement control part 56, it can prevent that the supply check valve 71 moves to the other side of the axial direction flow-path part 502, and block
  • the outer sleeve 40 has an inner peripheral wall formed in a cylindrical surface shape.
  • the inner sleeve 50 has an outer peripheral wall formed in a cylindrical surface shape.
  • the axial flow path portion 502 is formed on the fitting boundary surface T ⁇ b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50. Therefore, the fitting boundary surface T1 between the outer sleeve 40 and the inner sleeve 50 and the axial flow path portion 502 can be formed with high accuracy.
  • the outer sleeve 40 has a threaded portion 41 on the outer peripheral wall that can be screwed to the inner wall of the valve timing adjusting device 10.
  • the inner sleeve 50 is formed of a material having a lower hardness than the outer sleeve 40.
  • the axial flow path portion 502 and the movement restriction portions 56 and 57 are formed in the inner sleeve 50. Therefore, it is possible to easily and accurately form the axial flow path portion 502 and the movement restricting portions 56 and 57 on the inner sleeve 50 by cutting or the like while ensuring the strength of the screw portion 41 of the outer sleeve 40.
  • the outer sleeve 40 is made of a material containing iron.
  • the inner sleeve 50 is formed of a material containing aluminum. This specifically shows the configuration of the inner sleeve 50 having a lower hardness than the outer sleeve 40. With this configuration, the axial flow path portion 502 and the like can be easily formed in the inner sleeve 50 while ensuring the strength of the outer sleeve 40.
  • the outer sleeve 40 and the inner sleeve 50 have a first control port 411 and a second control port 412 that are formed so as to be connected to the valve timing adjusting device 10.
  • the present embodiment further includes a spool 60.
  • the spool 60 is formed in a cylindrical shape so as to be reciprocally movable in the axial direction inside the inner sleeve 50, forms an internal space 600 on the inner side, and the internal space 600 and the other end side of the axial flow path portion 502. , And the first control oil path 611 and the second control oil path 612 formed to be connectable to the internal space 600 and the first control port 411 and the second control port 412.
  • the first control oil passage 611, the second control oil passage 612, the first control port 411, and the second control port 412 can be switched between connection and disconnection according to the position with respect to the inner sleeve 50.
  • the valve timing adjusting device 10 can be changed into a plurality of states.
  • the present embodiment is provided in a power transmission path for transmitting power from the crankshaft 2 to the camshaft 3 of the engine 1 and adjusts the valve timings of the intake valve 4 and the exhaust valve 5 that are opened and closed by the camshaft 3.
  • the adjusting device 10 includes a housing 20, a vane rotor 30, and the hydraulic oil control valve 11.
  • the housing 20 rotates in conjunction with the crankshaft 2, is fitted to the end of the camshaft 3, and is rotatably supported by the camshaft 3.
  • the vane rotor 30 is fixed to the end of the camshaft 3 and includes a vane 32 that divides the space 200 inside the housing 20 into a plurality of retarding chambers 201 and advancing chambers 202.
  • the hydraulic oil control valve 11 can control the flow of hydraulic oil supplied from the oil pump 8 to the valve timing adjusting device 10.
  • the first control port 411 and the second control port 412 are connected to the retard chamber 201 and the advance chamber 202, respectively. This shows a specific example when the hydraulic oil control valve 11 is applied to the valve timing adjusting device 10.
  • the hydraulic oil control valve 11 of the present embodiment can suppress flow path pressure loss and suppress unintended flow path blockage, so that the valve timing adjusting device 10 is highly responsive, and is controlled efficiently and with high accuracy. be able to.
  • the hydraulic oil control valve 11 is provided in the central portion of the vane rotor 30. That is, the hydraulic oil control valve 11 and the valve timing adjusting device 10 are provided integrally. Therefore, the hydraulic oil control valve 11 and the valve timing adjusting device 10 can be arranged in a compact manner.
  • (Second Embodiment) 9 to 11 show a hydraulic oil control valve according to the second embodiment and a part thereof.
  • the second embodiment differs from the first embodiment in the configuration of the outer sleeve 40, the inner sleeve 50, the spool 60, and the like.
  • the supply flow path portion 401 is formed in the outer sleeve 40.
  • the supply channel portion 501 is formed so as to penetrate the outer sleeve 40 in the radial direction on the locking portion 49 side with respect to the screw portion 41.
  • four supply flow path portions 401 are formed at equal intervals in the circumferential direction of the outer sleeve 40. The hydraulic oil from the oil pump 8 flows through the supply channel 401.
  • the axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
  • the axial flow path portion 502 is formed on the fitting boundary surface T ⁇ b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
  • four axial flow path portions 502 are formed at equal intervals in the circumferential direction of the inner sleeve 50 (see FIG. 10).
  • Each of the four supply flow channel portions 401 connects one end side of each of the four axial flow channel portions 502 and the outside of the outer sleeve 40. That is, the supply flow path portion 401 is open on one end side of the axial flow path portion 502.
  • the circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502 (see FIGS. 9 to 11). That is, four supply flow path portions 401 are opened in the circumferential flow path portion 503.
  • the circumferential flow path portion 503 is connected to one end of the four axial flow path portions 502.
  • the hydraulic oil from the oil pump 8 can flow into the axial flow path portion 502 and the circumferential flow path portion 503 via the supply flow path portion 401.
  • the radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIGS. 9 to 11).
  • Four radial flow path portions 504 are formed so as to be connected to each of the four axial flow path portions 502 (see FIG. 10).
  • the supply check valve 71 has the same configuration as in the first embodiment.
  • the supply check valve 71 is provided in the circumferential flow path portion 503.
  • the supply check valve 71 is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503.
  • the supply check valve 71 is provided so that the four valve parts 701 correspond to the four supply flow path parts 401, respectively. That is, the supply check valve 71 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path portion 401.
  • the axial flow path portion 502 has a valve seat surface 44, a valve seat step surface 45, a stopper surface 54, and a stopper step surface 55.
  • the valve seat surface 44 is formed in an annular shape around the opening of the supply flow path portion 401 in the outer sleeve 40, and can contact the valve portion 701 of the supply check valve 71.
  • the valve seat step surface 45 is formed on the radially inner side of the outer sleeve 40 with respect to the valve seat surface 44 on the other end side of the axial flow path portion 502 with respect to the valve seat surface 44 (see FIG. 11).
  • the stopper surface 54 is formed in the inner sleeve 50 at a position facing the opening of the supply flow path portion 401.
  • the stopper step surface 55 is formed on the radially inner side of the inner sleeve 50 with respect to the stopper surface 54 on the other end side of the axial flow path portion 502 with respect to the stopper surface 54 (see FIG. 11).
  • the supply check valve 71 is provided in the circumferential flow path portion 503, and in a state where hydraulic fluid does not flow through the supply flow path portion 401, that is, in a state where no external force is applied, the inner peripheral wall is the valve seat step surface 45.
  • the boundary B1 between the stopper surface 54 and the stopper step surface 55 is located within the range of the axial length of the supply check valve 71 (see FIG. 11).
  • the supply check valve 71 When the hydraulic oil flows to the axial flow channel portion 502 and the circumferential flow channel portion 503 via the supply flow channel portion 401, the supply check valve 71 is radially inward because the outer wall of the valve portion 701 is pushed by the hydraulic fluid. It deforms to shrink, that is, to reduce the inner diameter. As a result, the valve portion 701 of the supply check valve 71 is separated from the valve seat surface 44, and the hydraulic oil passes between the valve portion 701 and the valve seat surface 44, and the other end portion of the axial flow passage portion 502. It can flow to the side, that is, the radial flow path portion 504 side.
  • the supply check valve 71 is deformed so as to expand outward in the radial direction, that is, to increase the inner diameter. Further, when hydraulic fluid flows from the axial flow channel portion 502 toward the supply flow channel portion 401, the inner peripheral wall of the supply check valve 71 is pushed radially outward by the hydraulic fluid, and the valve portion 701 contacts the valve seat surface 44. Touch. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 401 side is regulated. At this time, the supply check valve 71 is deformed so that the inner peripheral wall is located on the radially outer side of the outer sleeve 40 with respect to the valve seat step surface 45.
  • the supply check valve 71 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 401 side to the axial flow passage portion 502 side, and is supplied from the axial flow passage portion 502 side. It is possible to regulate the flow of hydraulic oil to the flow path portion 401 side.
  • the movement restricting portion 56 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 71 in the circumferential flow path portion 503.
  • the movement restricting portion 56 can restrict the movement of the supply check valve 71 to the side opposite to the axially engaging portion 59 when contacting the end portion of the supply check valve 71 in the axial direction.
  • the movement restricting portion 57 is formed on the locking portion 59 side with respect to the supply check valve 71 in the circumferential flow path portion 503.
  • the movement restricting portion 57 can restrict the movement of the supply check valve 71 toward the engaging portion 59 in the axial direction when it contacts the end of the supply check valve 71 in the axial direction.
  • the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 401. Further, the movement restricting portion 56 can prevent the supply check valve 71 from moving to the other side of the axial flow passage portion 502 and closing the radial flow passage portion 504.
  • the sleeve plate portion 51 is formed so as to block one end portion of the inner sleeve 50 (see FIG. 9).
  • a breathing hole portion 507 is formed in the sleeve plate portion 51.
  • the breathing hole 507 connects the variable volume space 500 and the outside of the hydraulic oil control valve 11, that is, the atmosphere. Thereby, the pressure of the variable volume space 500 can be made equal to the atmospheric pressure, and the axial movement of the spool 60 can be made smooth.
  • the supply oil passage 601 is formed in a substantially cylindrical shape so as to be recessed radially inward from the outer peripheral wall on one end side of the spool 60 and extending in the circumferential direction.
  • One end of the supply oil passage 601 is connected to the radial flow path portion 504.
  • the supply oil passage 601 communicates with the supply passage portion 401 via the axial passage portion 502. Therefore, hydraulic oil is supplied to the supply oil passage 601 from the oil pump 8 via the supply passage portion 401, the axial passage portion 502, and the radial passage portion 504.
  • the first control oil passage 611 is formed so as to penetrate the inner sleeve 50 in the radial direction.
  • the first control oil passage 611 is formed integrally with the supply oil passage 601. Therefore, the supply oil passage 601 communicates with the internal space 600 of the spool 60 via the first control oil passage 611. Therefore, hydraulic oil can flow into the internal space 600 via the supply oil passage 601 and the first control oil passage 611.
  • the configurations of the second control oil passage 612, the drain oil passage 602, the recycle oil passage 603, the first control port 411, and the second control port 412 are the same as those in the first embodiment, and thus the description thereof is omitted. Further, the connection and disconnection between the control oil passages and the control ports by the spool 60 are the same as in the first embodiment, and thus the description thereof is omitted.
  • a drain hole 508 is formed in the inner sleeve 50 instead of the breathing hole 505.
  • the drain hole 508 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50 (see FIG. 9).
  • the drain hole 508 has a drain port 506 opened on one end side, and the other end communicated with the outside, that is, the atmosphere via a gap between the locking portion 59 and the sealing portion 62. Thereby, the hydraulic oil can be discharged to the outside of the hydraulic oil control valve 11 via the drain port 506 and the drain hole 508.
  • the hydraulic oil when the oil pump 8 is operated when the hydraulic oil control valve 11 is in the first operating state or the second operating state, the hydraulic oil is supplied to the axial channel portion 502 via the supply channel portion 401. Flowing. At this time, the supply check valve 71 is separated from the valve seat surface 44, that is, is opened to allow the flow of hydraulic oil. When the flow rate of the hydraulic oil at this time is large, the supply check valve 71 is further deformed radially inward and comes into contact with the stopper surface 54. At this time, the hydraulic oil can smoothly flow in the axial direction from the supply flow path section 401 to the axial flow path section 502 without being blocked by the supply check valve 71. Here, when the oil pump 8 is stopped, the hydraulic fluid may flow backward in the supply flow path portion 401 and the axial flow path portion 502.
  • the valve seat step surface 45 is formed on the inner side in the radial direction of the outer sleeve 40 with respect to the valve seat surface 44, and the supply check valve 71 has an inner peripheral wall when no external force is applied. Is located on substantially the same plane as the valve seat step surface 45.
  • the supply check valve 71 When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter between the outer wall of the supply check valve 71 and the valve seat surface 44, and the supply check valve 71. Push the inner wall of the outer side in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
  • the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Further, the movement restricting section 56 can prevent the supply check valve 71 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
  • the supply flow path portion 401 is formed so as to penetrate the outer sleeve 40 in the radial direction, and the hydraulic oil from the oil pump 8 flows.
  • the axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50, the supply flow path portion 401 is opened at one end side, and the other end side can be connected to the valve timing adjusting device 10. It is.
  • the supply check valve 71 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path section 401 in the axial flow path section 502, and the hydraulic oil is supplied from the supply flow path section 401 side to the axial flow path section 502 side.
  • the flow is allowed and the flow of hydraulic oil from the axial flow path portion 502 side to the supply flow path portion 401 side can be regulated.
  • the hydraulic oil that has flowed from the supply flow path portion 401 to the axial flow path portion 502 flows to the other end side of the axial flow path portion 502 without bypassing the supply check valve 71, thereby adjusting the valve timing.
  • Supplied to the apparatus 10. Therefore, the flow path pressure loss in the hydraulic oil control valve 11 can be suppressed. Thereby, the responsiveness of the valve timing adjusting device 10 can be improved.
  • the axial flow path portion 502 is formed around the opening of the supply flow path portion 401, the valve seat surface 44 with which the supply check valve 71 can come into contact, and the opening of the supply flow path portion 401.
  • the stopper surface 54 is formed at a position opposite to the supply check valve 71 and is capable of restricting radial deformation of the supply check valve 71 when the supply check valve 71 comes into contact therewith. In the present embodiment, by forming the stopper surface 54 as described above, the deformation of the supply check valve 71 can be regulated without hindering the flow of hydraulic oil.
  • the axial flow passage portion 502 is a valve formed on the other end side of the axial flow passage portion 502 with respect to the valve seat surface 44 and radially inward of the outer sleeve 40 with respect to the valve seat surface 44.
  • a seat step surface 45 is provided. Therefore, the same effect as that of the first embodiment can be obtained.
  • the axial flow path portion 502 is a stopper step surface formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42. 43. Therefore, the same effect as that of the first embodiment can be obtained.
  • FIG. 4 A part of the hydraulic oil control valve according to the third embodiment is shown in FIG.
  • the third embodiment is different from the second embodiment in the configuration of the inner sleeve 50 and the like.
  • the second embodiment further includes a valve closing assist flow path section 509.
  • the valve closing assist flow path portion 509 is formed so as to penetrate the inner sleeve 50 in the radial direction and open at one end to the stopper surface 54.
  • the hydraulic oil in the supply oil passage 601 can flow inside the valve closing assist flow passage portion 509.
  • the inner wall of the supply check valve 71 when a reverse flow occurs when the outer wall of the supply check valve 71 is pushed by the hydraulic oil and the inner wall is in contact with the stopper surface 54, the inner wall of the supply check valve 71 operates in the valve closing assist channel 509. Pushed by the oil, the supply check valve 71 is deformed radially outward and closes. As described above, the valve closing assist flow path section 509 assists in closing the supply check valve 71.
  • the present embodiment further includes the valve closing assist channel portion 509.
  • the valve closing assist flow passage portion 509 is formed so as to penetrate the inner sleeve 50 in the radial direction, one end thereof opens to the stopper surface 54, and hydraulic oil can flow into the inner side.
  • the valve closing assist channel 509 can assist in closing the supply check valve 71.
  • the hydraulic oil control valve according to the fourth embodiment is shown in FIG.
  • the fourth embodiment differs from the second embodiment in the configuration of the inner sleeve 50 and the like.
  • the inner sleeve 50 includes a first inner sleeve 511 and a second inner sleeve 512.
  • the first inner sleeve 511 is formed in a substantially cylindrical shape by a material having a relatively low hardness such as a resin. That is, the first inner sleeve 511 is formed of a material having a lower hardness than the outer sleeve 40.
  • the second inner sleeve 512 is formed in a substantially cylindrical shape with a material having relatively high hardness including, for example, iron. That is, the second inner sleeve 512 is formed of a material having a hardness higher than that of the first inner sleeve 511.
  • the first inner sleeve 511 is provided inside the outer sleeve 40 so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40.
  • the first inner sleeve 511 is not movable relative to the outer sleeve 40.
  • the second inner sleeve 512 is provided inside the first inner sleeve 511 so that the outer peripheral wall is fitted to the inner peripheral wall of the first inner sleeve 511.
  • the second inner sleeve 512 is not movable relative to the first inner sleeve 511.
  • the axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the first inner sleeve 511.
  • the axial flow path portion 502 is formed in the first inner sleeve 511 on the fitting interface T1 between the outer sleeve 40 and the first inner sleeve 511 so as to be recessed radially inward from the outer peripheral wall of the first inner sleeve 511. Yes.
  • the radial flow path portion 504 is formed so as to penetrate the second inner sleeve 512 in the radial direction, and one end is connected to the other end side of the axial flow path portion 502 and the other end side is connected to the space inside the inner sleeve 50. (See FIG. 13).
  • the movement restricting portions 56 and 57 are formed on the first inner sleeve 511.
  • the sleeve plate portion 51 is formed integrally with the first inner sleeve 511 so as to block one end portion of the first inner sleeve 511.
  • the valve seat step surface 45 and the stopper step surface 55 are not formed.
  • the outer sleeve 40 has the screw portion 41 that can be screwed to the inner wall of the valve timing adjusting device 10 on the outer peripheral wall.
  • the inner sleeve 50 is a cylindrical first inner sleeve 511 formed of a material having a lower hardness than the outer sleeve 40, and an inner side of the first inner sleeve 511 formed of a material having a higher hardness than the first inner sleeve 511.
  • a cylindrical second inner sleeve 512 is provided.
  • the axial flow path portion 502 is formed in the first inner sleeve 511.
  • the axial flow path portion 502 and the movement restricting portions 56 and 57 are formed in the first inner sleeve 511 having a lower hardness than the outer sleeve 40. Therefore, the axial flow path portion 502 and the movement restricting portions 56 and 57 can be easily and accurately formed on the first inner sleeve 511 by cutting or the like while ensuring the strength of the screw portion 41 of the outer sleeve 40.
  • the second inner sleeve 512 having a higher hardness than the first inner sleeve 511 is formed in a substantially cylindrical simple shape. Therefore, the second inner sleeve 512 can be easily formed even if the hardness is high. Further, the strength of the second inner sleeve 512 on which the outer wall of the spool 60 slides on the inner wall can be ensured.
  • the outer sleeve 40 is made of a material containing iron.
  • the first inner sleeve 511 is made of resin.
  • the second inner sleeve 512 is formed of a material containing iron. This specifically illustrates the configuration of the outer sleeve 40, the first inner sleeve 511, and the second inner sleeve 512. With this configuration, the axial flow path portion 502 and the like can be easily formed in the first inner sleeve 511 while ensuring the strength of the outer sleeve 40 and the second inner sleeve 512.
  • FIGS. A part of the hydraulic oil control valve according to the fifth embodiment is shown in FIGS.
  • the fifth embodiment differs from the first embodiment in the configuration of the supply check valve.
  • the supply check valve 72 is formed in a substantially cylindrical shape by bending, for example, a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction.
  • FIG. 14 is a developed view of the supply check valve 72.
  • FIG. 15 is a cross-sectional view of the supply check valve 72 at an intermediate position in the axial direction.
  • the supply check valve 72 includes an overlapping portion 700, an opening 720, a support portion 721, and a valve portion 701.
  • the overlapping portion 700 is formed at one end portion of the supply check valve 72 in the circumferential direction.
  • the overlapping portion 700 is formed so as to overlap the radially outer side of the other end portion in the circumferential direction of the supply check valve 72 (see FIG. 15).
  • the support portion 721 is formed to extend from the inner edge portion of each of the four openings 720 in the circumferential direction of the supply check valve 72.
  • the valve portion 701 is formed so as to be connected to the distal end portion of the support portion 721.
  • four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 72.
  • the supply check valve 72 is provided in the circumferential flow path portion 503.
  • the supply check valve 72 includes a support portion 721 and a valve portion 701 that are elastically deformable in the radial direction at one end of the axial flow passage portion 502 and the circumferential flow passage portion 503.
  • the supply check valve 72 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 72 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
  • FIGS. A part of the hydraulic oil control valve according to the sixth embodiment is shown in FIGS.
  • the sixth embodiment differs from the first embodiment in the configuration of the supply check valve.
  • the supply check valve 73 is formed in a substantially cylindrical shape by bending, for example, a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction.
  • FIG. 16 is a developed view of the supply check valve 73.
  • FIG. 17 is a view of the supply check valve 73 viewed from the axial direction.
  • the supply check valve 73 includes an overlapping part 700, a valve part 701, and a notch part 731.
  • the overlapping portion 700 is formed at one end portion of the supply check valve 73 in the circumferential direction.
  • the overlapping portion 700 is formed so as to overlap the radially outer end of the other circumferential end of the supply check valve 73 (see FIG. 17).
  • Four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 71.
  • the notch portion 731 is formed so that both end portions of the supply check valve 73 in the axial direction are notched in the axial direction.
  • a plurality of notches 731 are formed at intervals in the circumferential direction of the supply check valve 73.
  • the supply check valve 73 is provided in the circumferential flow path portion 503.
  • the supply check valve 73 is provided so as to be elastically deformable in the radial direction at one end of the axial channel portion 502 and the circumferential channel portion 503.
  • the supply check valve 73 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 73 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
  • FIGS. A part of the hydraulic oil control valve according to the seventh embodiment is shown in FIGS.
  • the seventh embodiment differs from the second embodiment in the configuration of the outer sleeve 40, the inner sleeve 50, the supply check valve, and the like.
  • two supply flow path portions 401 are formed at equal intervals in the circumferential direction of the outer sleeve 40 (see FIGS. 18 and 19). The hydraulic oil from the oil pump 8 flows through the supply flow path portion 401.
  • the axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
  • the axial flow path portion 502 is formed on the fitting boundary surface T ⁇ b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
  • two axial flow path portions 502 are formed at equal intervals in the circumferential direction of the inner sleeve 50 (see FIGS. 18 and 19).
  • Each of the two supply flow path portions 401 connects one end side of each of the two axial flow path portions 502 and the outside of the outer sleeve 40. That is, the supply flow path portion 401 is open on one end side of the axial flow path portion 502.
  • the circumferential flow path portion 503 shown in the second embodiment is not formed.
  • the radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIG. 18). Two radial flow path portions 504 are formed so as to be connected to each of the two axial flow path portions 502 (see FIG. 18).
  • the supply check valve 74 is formed by, for example, alternately bending a rectangular thin metal plate a plurality of times in the longitudinal direction.
  • the supply check valve 74 is provided on one end side of the axial flow path portion 502.
  • the supply check valve 74 is provided at one end of the axial flow path portion 502 so as to be elastically deformable in the radial direction of the inner sleeve 50.
  • a total of two supply check valves 74 are provided so as to correspond to the two supply flow path portions 401. That is, the supply check valve 74 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path portion 401.
  • the supply check valve 74 has a force that extends radially outward of the inner sleeve 50. Therefore, the supply check valve 74 abuts on the valve seat surface 44 and closes the supply flow path portion 401.
  • the valve seat step surface 45 and the stopper step surface 55 shown in the second embodiment are not formed.
  • the supply check valve 74 is pushed by the hydraulic oil and deforms so as to shrink inward in the radial direction of the inner sleeve 50.
  • the supply check valve 74 is separated from the valve seat surface 44, and the hydraulic oil passes between the supply check valve 74 and the valve seat surface 44, that is, on the other end side of the axial flow path portion 502, that is, , It can flow to the radial flow path portion 504 side.
  • the supply check valve 74 When the flow rate of the hydraulic oil flowing through the supply flow path portion 401 becomes a predetermined value or less, the supply check valve 74 is deformed so as to extend outward in the radial direction of the inner sleeve 50, abuts on the valve seat surface 44 and closes. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 401 side is regulated.
  • the supply check valve 74 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 401 side to the axial flow passage portion 502 side, and is supplied from the axial flow passage portion 502 side. It is possible to regulate the flow of hydraulic oil to the flow path portion 401 side.
  • the movement restricting portion 56 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 74. When the movement restricting portion 56 abuts on the supply check valve 74, the movement restricting portion 56 can restrict the movement of the supply check valve 74 to the side opposite to the axially engaging portion 59 of the inner sleeve 50.
  • the movement restricting portion 57 is formed on the locking portion 59 side with respect to the supply check valve 74. The movement restricting portion 57 can restrict the movement of the inner sleeve 50 of the supply check valve 74 toward the engaging portion 59 in the axial direction when contacting the supply check valve 74.
  • the movement restricting portions 56 and 57 can prevent the supply check valve 74 from moving in the axial direction of the inner sleeve 50 and leaving the supply flow path portion 401. Further, the movement restricting section 56 can prevent the supply check valve 74 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
  • the movement restricting portion 56 that can restrict the movement of the supply check valve toward the locking portion 59 in the axial direction, that is, the other end side of the axial flow passage portion 502, and the shaft of the supply check valve
  • the movement restricting portion 57 capable of restricting the movement to the opposite side to the direction locking portion 59, that is, the opposite side to the other end of the axial direction flow passage portion 502 is shown.
  • one of the movement restriction unit 56 and the movement restriction unit 57 may be formed. Further, neither the movement restriction unit 56 nor the movement restriction unit 57 may be formed.
  • valve seat step surface and the stopper step surface may not be formed.
  • the radial flow path portion 504 may be formed so as to penetrate the inner sleeve 50 in the radial direction.
  • the radial flow path portion 504 may be formed so as to penetrate the outer sleeve 40 in the radial direction.
  • the end of the radial flow path portion 504 opposite to the axial flow path portion 502 may be directly connected to the hydraulic oil supply target without passing through the inner sleeve 50.
  • the axial flow path portion 502 is formed on the fitting boundary surface T ⁇ b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50. Indicated.
  • the axial flow path portion 502 is on the fitting interface T1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially outward from the inner peripheral wall of the outer sleeve 40. It may be formed.
  • the outer sleeve 40 is formed of a material containing iron
  • the inner sleeve 50 is formed of a material containing aluminum
  • the inner sleeve 50 may be formed of any material as long as it has a lower hardness than the outer sleeve 40.
  • the outer sleeve 40 may be formed of any material as long as the material has higher hardness than the inner sleeve 50.
  • the outer sleeve 40 is formed of a material containing iron
  • the first inner sleeve 511 is formed of resin
  • the second inner sleeve 512 is formed of a material containing iron.
  • the first inner sleeve 511 may be formed of any material as long as it has a lower hardness than the outer sleeve 40 and the second inner sleeve 512.
  • the outer sleeve 40 may be formed of any material as long as it has a higher hardness than the first inner sleeve 511.
  • the second inner sleeve 512 may be made of any material as long as it has a higher hardness than the first inner sleeve 511.
  • the hydraulic oil control valve 11 is not limited to the central portion of the vane rotor 30 and may be provided outside the valve timing adjustment device 10.
  • the outer sleeve 40 can omit the screw portion 41.
  • both the outer sleeve 40 and the inner sleeve 50 may be formed of a material containing aluminum. In this case, the material cost can be reduced while ensuring the strength of the outer sleeve 40 and the inner sleeve 50.
  • the outer sleeve 40 and the inner sleeve 50 may not include the first control port 411 and the second control port 412 and may not include the spool 60.
  • the radial flow path portion 504 is formed in the outer sleeve 40 or the axial flow path portion 502 is opened at the axial end surfaces of the outer sleeve 40 and the inner sleeve 50 and connected to the hydraulic oil supply target. That's fine.
  • the hydraulic oil control valve 11 of the present disclosure is not limited to the valve timing adjustment device 10 having two hydraulic chambers, the retard chamber 201 and the advance chamber 202, and is an operation that supplies to other devices driven by hydraulic oil. It may be used to control the oil.
  • the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt instead of the chain 6.
  • crankshaft 2 is the “first axis” and the camshaft 3 is the “second axis” has been described.
  • the crankshaft 2 may be a “second shaft” and the camshaft 3 may be a “first shaft”. That is, the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.
  • the valve timing adjusting device 10 of the present disclosure may adjust the valve timing of the exhaust valve 5 of the engine 1.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Check Valves (AREA)

Abstract

An outer sleeve (40) is formed cylindrically. An inner sleeve (50) is formed cylindrically and is provided inside the outer sleeve (40). A supply flow passage (501) is formed extending radially through the inner sleeve (50) and allows hydraulic oil from a hydraulic oil supply source (8) to flow therethrough. An axial flow passage (502) is formed extending axially between the outer sleeve (40) and the inner sleeve (50), has one end to which the supply flow passage (501) is open, and has the other end capable of being connected to a valve timing regulation device (10). A supply check valve (71) is provided in the axial flow passage (502) on the outer side of the supply flow passage (501) in the radial direction of the inner sleeve (50), is capable of permitting hydraulic oil to flow from the supply flow passage (501) side to the axial flow passage (502) side, and is capable of preventing hydraulic oil from flowing from the axial flow passage (502) side to the supply flow passage (501) side.

Description

作動油制御弁およびバルブタイミング調整装置Hydraulic oil control valve and valve timing adjustment device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月7日に出願された特許出願番号2017-42607号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2017-42607 filed on March 7, 2017, the contents of which are incorporated herein by reference.
 本開示は、作動油制御弁、および、これを用いたバルブタイミング調整装置に関する。 The present disclosure relates to a hydraulic oil control valve and a valve timing adjusting device using the hydraulic oil control valve.
 従来、作動油の流れを制御する作動油制御弁が知られている。例えば特許文献1には、筒状のアウタースリーブの内側にインナースリーブを設け、アウタースリーブとインナースリーブとの間に形成された環状の空間に、径方向に弾性変形可能なチェック弁が設けられている。当該チェック弁により、アウタースリーブおよびインナースリーブの外部と内部との間の作動油の流れを制御している。 Conventionally, hydraulic oil control valves that control the flow of hydraulic oil are known. For example, in Patent Document 1, an inner sleeve is provided inside a cylindrical outer sleeve, and a check valve that is elastically deformable in a radial direction is provided in an annular space formed between the outer sleeve and the inner sleeve. Yes. The check valve controls the flow of hydraulic oil between the outside and the inside of the outer sleeve and the inner sleeve.
米国特許第6899126号明細書US Pat. No. 6,899,126
 特許文献1の作動油制御弁では、作動油がアウタースリーブの外部からチェック弁を経由してインナースリーブの内部へ流れるとき、チェック弁の外縁部を迂回する必要があるため、流路圧損が大きくなるおそれがある。
 また、特許文献1の作動油制御弁では、大量の作動油がアウタースリーブの外部からチェック弁を経由してインナースリーブの内部へ流れるとき、チェック弁がインナースリーブの流路を塞ぎ、インナースリーブ内部への作動油の流れが遮断されるおそれがある。
 また、作動油がインナースリーブの内部からチェック弁を経由してアウタースリーブの外部へ流れるときも上記と同様の問題が生じるおそれがある。
 本開示の目的は、流路圧損が小さく、意図しない流路遮断を抑制可能な作動油制御弁、および、バルブタイミング調整装置を提供することにある。
In the hydraulic oil control valve of Patent Document 1, when hydraulic oil flows from the outside of the outer sleeve to the inside of the inner sleeve via the check valve, it is necessary to bypass the outer edge portion of the check valve, so that the flow path pressure loss is large. There is a risk.
Further, in the hydraulic oil control valve of Patent Document 1, when a large amount of hydraulic oil flows from the outside of the outer sleeve to the inside of the inner sleeve via the check valve, the check valve closes the flow path of the inner sleeve, There is a risk that the flow of hydraulic oil to
Further, when the hydraulic oil flows from the inside of the inner sleeve to the outside of the outer sleeve via the check valve, the same problem as described above may occur.
An object of the present disclosure is to provide a hydraulic oil control valve and a valve timing adjustment device that have a small flow path pressure loss and can suppress unintended flow path blockage.
 本開示は、作動油供給源から作動油供給対象に供給する作動油の流れを制御可能な作動油制御弁であって、アウタースリーブとインナースリーブと供給流路部と軸方向流路部と供給チェック弁とを備えている。 The present disclosure is a hydraulic oil control valve capable of controlling a flow of hydraulic oil supplied from a hydraulic oil supply source to a hydraulic oil supply target, and includes an outer sleeve, an inner sleeve, a supply flow path section, an axial flow path section, and a supply And a check valve.
 アウタースリーブは、筒状に形成されている。
 インナースリーブは、筒状に形成され、アウタースリーブの内側に設けられている。
 供給流路部は、インナースリーブまたはアウタースリーブを径方向に貫くよう形成され、作動油供給源からの作動油が流れる。
 軸方向流路部は、アウタースリーブとインナースリーブとの間において軸方向に延びるよう形成され、一端側に供給流路部が開口し、他端側が作動油供給対象に接続可能である。
 供給チェック弁は、軸方向流路部において供給流路部に対しインナースリーブの径方向外側またはアウタースリーブの径方向内側に設けられ、供給流路部側から軸方向流路部側への作動油の流れを許容し、軸方向流路部側から供給流路部側への作動油の流れを規制可能である。
The outer sleeve is formed in a cylindrical shape.
The inner sleeve is formed in a cylindrical shape and is provided inside the outer sleeve.
The supply flow path portion is formed so as to penetrate the inner sleeve or the outer sleeve in the radial direction, and the hydraulic oil from the hydraulic oil supply source flows.
The axial direction flow path portion is formed so as to extend in the axial direction between the outer sleeve and the inner sleeve, the supply flow path portion opens on one end side, and the other end side can be connected to a hydraulic oil supply target.
The supply check valve is provided in the axial direction flow path section on the radially outer side of the inner sleeve or the radial direction inner side of the outer sleeve with respect to the supply flow path section, and hydraulic oil from the supply flow path side to the axial flow path side. The flow of hydraulic oil from the axial flow path portion side to the supply flow path portion side can be restricted.
 本開示では、供給流路部から軸方向流路部に流れた作動油は、供給チェック弁を迂回することなく、軸方向流路部の他端側へ流れ、作動油供給対象に供給される。そのため、作動油制御弁における流路圧損を抑制することができる。
 また、本開示では、大量の作動油が供給流路部から軸方向流路部に流れたとしても、供給チェック弁は、供給流路部の開口に対向する壁面に当接するのみであり、軸方向流路部を遮断することはない。そのため、作動油制御弁における意図しない流路遮断を抑制することができる。
In the present disclosure, the hydraulic oil that has flowed from the supply flow path section to the axial flow path section flows to the other end side of the axial flow path section without bypassing the supply check valve, and is supplied to the hydraulic oil supply target. . Therefore, the flow path pressure loss in the hydraulic oil control valve can be suppressed.
In the present disclosure, even if a large amount of hydraulic oil flows from the supply flow path portion to the axial flow path portion, the supply check valve only abuts against the wall surface facing the opening of the supply flow path portion. The directional flow path is not blocked. For this reason, unintended flow passage interruption in the hydraulic oil control valve can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による作動油制御弁およびバルブタイミング調整装置を示す断面図であり、 図2は、図1のII-II線断面図であり、 図3は、第1実施形態による作動油制御弁を示す断面図であり、 図4は、第1実施形態による作動油制御弁の供給チェック弁を示す展開図であり、 図5は、第1実施形態による作動油制御弁の供給チェック弁を示す図であり、 図6は、第1実施形態による作動油制御弁のインナースリーブおよび供給チェック弁を示す斜視図であり、 図7は、第1実施形態による作動油制御弁の供給チェック弁の近傍を示す断面図であり、 図8は、第1実施形態による作動油制御弁のリサイクルチェック弁を示す展開図であり、 図9は、第2実施形態による作動油制御弁を示す断面図であり、 図10は、第2実施形態による作動油制御弁のインナースリーブを示す平面図であり、 図11は、第2実施形態による作動油制御弁の供給チェック弁の近傍を示す断面図であり、 図12は、第3実施形態による作動油制御弁の供給チェック弁の近傍を示す断面図であり、 図13は、第4実施形態による作動油制御弁を示す断面図であり、 図14は、第5実施形態による作動油制御弁の供給チェック弁を示す展開図であり、 図15は、第5実施形態による作動油制御弁の供給チェック弁を示す断面図であり、 図16は、第6実施形態による作動油制御弁の供給チェック弁を示す展開図であり、 図17は、第6実施形態による作動油制御弁の供給チェック弁を示す図であり、 図18は、第7実施形態による作動油制御弁の供給チェック弁の近傍を示す断面図であり、 図19は、図18のXIX-XIX線断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a cross-sectional view showing a hydraulic oil control valve and a valve timing adjusting device according to a first embodiment. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a cross-sectional view showing the hydraulic oil control valve according to the first embodiment. FIG. 4 is a development view showing a supply check valve of the hydraulic oil control valve according to the first embodiment. FIG. 5 is a view showing a supply check valve of the hydraulic oil control valve according to the first embodiment, FIG. 6 is a perspective view showing an inner sleeve and a supply check valve of the hydraulic oil control valve according to the first embodiment. FIG. 7 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the first embodiment, FIG. 8 is a development view showing a recycle check valve of the hydraulic oil control valve according to the first embodiment. FIG. 9 is a cross-sectional view showing a hydraulic oil control valve according to the second embodiment, FIG. 10 is a plan view showing an inner sleeve of the hydraulic oil control valve according to the second embodiment, FIG. 11 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the second embodiment, FIG. 12 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the third embodiment, FIG. 13 is a cross-sectional view showing a hydraulic oil control valve according to the fourth embodiment, FIG. 14 is a development view showing a supply check valve of the hydraulic oil control valve according to the fifth embodiment, FIG. 15 is a cross-sectional view showing a supply check valve of the hydraulic oil control valve according to the fifth embodiment. FIG. 16 is a development view showing a supply check valve of the hydraulic oil control valve according to the sixth embodiment, FIG. 17 is a view showing a supply check valve of the hydraulic oil control valve according to the sixth embodiment. FIG. 18 is a cross-sectional view showing the vicinity of the supply check valve of the hydraulic oil control valve according to the seventh embodiment, 19 is a cross-sectional view taken along line XIX-XIX in FIG.
 以下、本開示の複数の実施形態によるバルブタイミング調整装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。 Hereinafter, valve timing adjustment devices according to a plurality of embodiments of the present disclosure will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
  (第1実施形態)
 第1実施形態による作動油制御弁およびバルブタイミング調整装置を図1~3に示す。バルブタイミング調整装置10は、内燃機関としてのエンジン1のクランク軸2に対するカム軸3の回転位相を変化させることによって、カム軸3が開閉駆動する吸気弁4または排気弁5のうち吸気弁4のバルブタイミングを調整するものである。バルブタイミング調整装置10は、クランク軸2からカム軸3までの動力伝達経路に設けられている。クランク軸2は、「駆動軸」に対応する。カム軸3は、「従動軸」に対応する。吸気弁4、排気弁5は、「バルブ」に対応する。
(First embodiment)
1 to 3 show a hydraulic oil control valve and a valve timing adjusting device according to a first embodiment. The valve timing adjusting device 10 changes the rotational phase of the camshaft 3 with respect to the crankshaft 2 of the engine 1 as an internal combustion engine to thereby change the intake valve 4 of the intake valve 4 or the exhaust valve 5 that the camshaft 3 is driven to open and close. The valve timing is adjusted. The valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 2 to the camshaft 3. The crankshaft 2 corresponds to a “drive shaft”. The cam shaft 3 corresponds to a “driven shaft”. The intake valve 4 and the exhaust valve 5 correspond to “valves”.
 バルブタイミング調整装置10の構成について図1、2に基づき説明する。
 バルブタイミング調整装置10は、ハウジング20とベーンロータ30と作動油制御弁11とを備えている。
The configuration of the valve timing adjusting device 10 will be described with reference to FIGS.
The valve timing adjusting device 10 includes a housing 20, a vane rotor 30, and a hydraulic oil control valve 11.
 ハウジング20は、スプロケット21およびケース22から構成されている。スプロケット21は、カム軸3の端部に嵌合している。カム軸3は、スプロケット21を回転可能に支持している。チェーン6は、スプロケット21とクランク軸2とに巻き掛けられている。スプロケット21は、クランク軸2と連動して回転する。ケース22は、有底筒状であり、開口端がスプロケット21に組み合わされつつボルト12によりスプロケット21に固定されている。ケース22は、径方向内側に突き出す複数の隔壁部23を形成している。ケース22の底部の中央には、ケース22外の空間に開口する開口部24が形成されている。開口部24は、ベーンロータ30に対してカム軸3とは反対側に位置する。 The housing 20 includes a sprocket 21 and a case 22. The sprocket 21 is fitted to the end of the cam shaft 3. The camshaft 3 supports the sprocket 21 in a rotatable manner. The chain 6 is wound around the sprocket 21 and the crankshaft 2. The sprocket 21 rotates in conjunction with the crankshaft 2. The case 22 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 21 by a bolt 12 while being combined with the sprocket 21. The case 22 has a plurality of partition walls 23 protruding radially inward. An opening 24 that opens to a space outside the case 22 is formed at the center of the bottom of the case 22. The opening 24 is located on the side opposite to the camshaft 3 with respect to the vane rotor 30.
 ベーンロータ30は、ボス31、および、複数のベーン32を有している。ボス31は、筒状であり、カム軸3の端部に固定されている。ベーン32は、ボス31から径方向外側に向かって各隔壁部23間に突き出している。ハウジング20の内側の空間200は、ベーン32により遅角室201と進角室202とに仕切られている。遅角室201は、ベーン32に対して周方向の一方に位置している。進角室202は、ベーン32に対して周方向の他方に位置している。遅角室201、進角室202は、「油圧室」に対応している。ベーンロータ30は、遅角室201および進角室202の油圧に応じて、ハウジング20に対して遅角方向または進角方向へ相対回転する。 The vane rotor 30 has a boss 31 and a plurality of vanes 32. The boss 31 has a cylindrical shape and is fixed to the end of the cam shaft 3. The vane 32 protrudes between the partition walls 23 toward the radially outer side from the boss 31. A space 200 inside the housing 20 is partitioned into a retard chamber 201 and an advance chamber 202 by a vane 32. The retard chamber 201 is located on one side in the circumferential direction with respect to the vane 32. The advance chamber 202 is located on the other side in the circumferential direction with respect to the vane 32. The retard chamber 201 and the advance chamber 202 correspond to a “hydraulic chamber”. The vane rotor 30 rotates relative to the housing 20 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 201 and the advance chamber 202.
 作動油制御弁11は、アウタースリーブ40、インナースリーブ50、スプール60、供給流路部501、軸方向流路部502、周方向流路部503、径方向流路部504、供給チェック弁71、移動規制部56、57等を備えている。 The hydraulic oil control valve 11 includes an outer sleeve 40, an inner sleeve 50, a spool 60, a supply flow path portion 501, an axial flow path portion 502, a circumferential flow path portion 503, a radial flow path portion 504, a supply check valve 71, Movement restriction parts 56, 57 and the like are provided.
 本実施形態では、作動油制御弁11は、ベーンロータ30の中央部に設けられている(図1、2参照)。
 アウタースリーブ40は、例えば鉄を含む比較的硬度が高い材料により略円筒状に形成されている。アウタースリーブ40は、内周壁が略円筒面状に形成されている。
 アウタースリーブ40の一方の端部の外周壁には、ねじ部41が形成されている。アウタースリーブ40の他方の端部側には、外周壁から径方向外側へ環状に延びる係止部49が形成されている。
In the present embodiment, the hydraulic oil control valve 11 is provided at the center of the vane rotor 30 (see FIGS. 1 and 2).
The outer sleeve 40 is formed in a substantially cylindrical shape with a material having relatively high hardness including, for example, iron. The outer sleeve 40 has an inner peripheral wall formed in a substantially cylindrical surface shape.
A threaded portion 41 is formed on the outer peripheral wall of one end portion of the outer sleeve 40. On the other end side of the outer sleeve 40, a locking portion 49 is formed that extends annularly from the outer peripheral wall outward in the radial direction.
 カム軸3のバルブタイミング調整装置10側の端部には、軸穴部100、供給穴部101が形成されている。軸穴部100は、カム軸3のバルブタイミング調整装置10側の端面の中央からカム軸3の軸方向に延びるようにして形成されている。供給穴部101は、カム軸3の外壁から径方向内側に延びて軸穴部100に連通するよう形成されている。 A shaft hole 100 and a supply hole 101 are formed at the end of the cam shaft 3 on the valve timing adjusting device 10 side. The shaft hole portion 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 10 side. The supply hole 101 is formed to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole 100.
 カム軸3の軸穴部100の内壁には、アウタースリーブ40のねじ部41にねじ結合可能な軸側ねじ部110が形成されている。
 アウタースリーブ40は、ベーンロータ30のボス31の内側を通り、ねじ部41がカム軸3の軸側ねじ部110に結合するようにしてカム軸3に固定される。このとき、係止部49は、ベーンロータ30のボス31のカム軸3とは反対側の端面を係止する。これにより、ベーンロータ30は、カム軸3と係止部49とに挟み込まれるようにしてカム軸3に固定される。このように、アウタースリーブ40は、ベーンロータ30の中央部に設けられる。
On the inner wall of the shaft hole portion 100 of the cam shaft 3, a shaft side screw portion 110 that can be screwed to the screw portion 41 of the outer sleeve 40 is formed.
The outer sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the cam shaft 3 so that the screw portion 41 is coupled to the shaft side screw portion 110 of the cam shaft 3. At this time, the locking portion 49 locks the end surface of the boss 31 of the vane rotor 30 opposite to the cam shaft 3. Thereby, the vane rotor 30 is fixed to the camshaft 3 so as to be sandwiched between the camshaft 3 and the locking portion 49. As described above, the outer sleeve 40 is provided in the central portion of the vane rotor 30.
 供給穴部101には、オイルポンプ8が接続される。オイルポンプ8は、オイルパン7に貯留されている作動油を汲み上げ、供給穴部101に供給する。これにより、軸穴部100には、作動油が流入する。ここで、オイルポンプ8は、「作動油供給源」に対応している。また、バルブタイミング調整装置10は、「作動油供給対象」に対応している。 The oil pump 8 is connected to the supply hole 101. The oil pump 8 pumps up the hydraulic oil stored in the oil pan 7 and supplies it to the supply hole 101. As a result, the hydraulic oil flows into the shaft hole 100. Here, the oil pump 8 corresponds to a “operating oil supply source”. Further, the valve timing adjusting device 10 corresponds to “operating oil supply target”.
 インナースリーブ50は、例えばアルミニウムを含む比較的硬度が低い材料により略円筒状に形成されている。つまり、インナースリーブ50は、アウタースリーブ40よりも硬度が低い材料により形成されている。インナースリーブ50は、外周壁が略円筒面状に形成されている。 The inner sleeve 50 is formed in a substantially cylindrical shape by a material having a relatively low hardness including, for example, aluminum. That is, the inner sleeve 50 is formed of a material having a lower hardness than the outer sleeve 40. The inner sleeve 50 has an outer peripheral wall formed in a substantially cylindrical surface shape.
 インナースリーブ50は、外周壁がアウタースリーブ40の内周壁に嵌合するようアウタースリーブ40の内側に設けられている。インナースリーブ50は、アウタースリーブ40に対し相対移動不能である。 The inner sleeve 50 is provided inside the outer sleeve 40 so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40. The inner sleeve 50 is not movable relative to the outer sleeve 40.
 インナースリーブ50の一方の端部側には、内周壁から径方向内側へ板状に延びるスリーブ板部51が形成されている。ここで、スリーブ板部51は、アウタースリーブ40のねじ部41の径方向内側に位置し、インナースリーブ50の内側の空間を一方側と他方側とに隔てている。 On one end side of the inner sleeve 50, a sleeve plate portion 51 extending in a plate shape from the inner peripheral wall inward in the radial direction is formed. Here, the sleeve plate portion 51 is located on the radially inner side of the screw portion 41 of the outer sleeve 40, and divides the space inside the inner sleeve 50 into one side and the other side.
 スプール60は、例えば金属により略円筒状に形成されている。
 スプール60は、外周壁がインナースリーブ50の内周壁と摺動し、軸方向に往復移動可能なようインナースリーブ50の内側に設けられている。
The spool 60 is formed in a substantially cylindrical shape from metal, for example.
The spool 60 is provided inside the inner sleeve 50 so that the outer peripheral wall slides with the inner peripheral wall of the inner sleeve 50 and can reciprocate in the axial direction.
 スプール60の一方の端部側には、内周壁から径方向内側へ板状に延びるスプール板部61が形成されている。ここで、スプール板部61は、スプール60の内側の空間を一方側と他方側とに隔てている。 A spool plate portion 61 extending in a plate shape from the inner peripheral wall to the inside in the radial direction is formed on one end side of the spool 60. Here, the spool plate portion 61 divides the space inside the spool 60 into one side and the other side.
 スプール60の他方の端部には、封止部62が設けられている。封止部62は、外周壁がスプール60の内周壁に嵌合し、スプール60の他方の端部を塞いでいる。スプール60の内側における封止部62とスプール板部61との間には、略円筒状の内部空間600が形成されている。 A sealing portion 62 is provided at the other end of the spool 60. The sealing portion 62 has an outer peripheral wall fitted into the inner peripheral wall of the spool 60 and closes the other end of the spool 60. A substantially cylindrical internal space 600 is formed between the sealing portion 62 and the spool plate portion 61 inside the spool 60.
 インナースリーブ50の内側におけるスリーブ板部51とスプール板部61との間には、容積可変空間500が形成されている。容積可変空間500は、スプール60がインナースリーブ50に対し軸方向へ移動するとき、容積が変化する。 A variable volume space 500 is formed between the sleeve plate portion 51 and the spool plate portion 61 inside the inner sleeve 50. The volume of the variable volume space 500 changes when the spool 60 moves in the axial direction with respect to the inner sleeve 50.
 容積可変空間500には、スプリング63が設けられている。スプリング63は、所謂コイルスプリングであり、一端がスリーブ板部51に当接し、他端がスプール板部61に当接している。スプリング63は、スプール60をスリーブ板部51とは反対側へ付勢している。 In the variable volume space 500, a spring 63 is provided. The spring 63 is a so-called coil spring, and has one end in contact with the sleeve plate portion 51 and the other end in contact with the spool plate portion 61. The spring 63 biases the spool 60 to the side opposite to the sleeve plate portion 51.
 アウタースリーブ40の他方の端部の径方向内側には、係止部59が設けられている。係止部59は有底筒状に形成され、外周壁がアウタースリーブ40の内周壁に嵌合するよう設けられている。係止部59の底部の中央には、穴部が形成されており、当該穴部の内側に封止部62が位置している。 A locking portion 59 is provided on the radially inner side of the other end portion of the outer sleeve 40. The locking portion 59 is formed in a bottomed cylindrical shape, and is provided so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40. A hole is formed in the center of the bottom of the locking part 59, and the sealing part 62 is located inside the hole.
 係止部59は、底部により、スプール60の他方の端部を係止可能である。係止部59は、スプール60のスリーブ板部51とは反対側へのスプール60の移動を規制可能である。これにより、スプール60は、インナースリーブ50の内側からの脱落が抑制されている。 The locking portion 59 can lock the other end of the spool 60 by the bottom. The locking portion 59 can regulate the movement of the spool 60 to the side opposite to the sleeve plate portion 51 of the spool 60. As a result, the spool 60 is prevented from falling off from the inner side of the inner sleeve 50.
 供給流路部501は、インナースリーブ50の一方の端部側に形成されている。供給流路部501は、スリーブ板部51に対しスプール60とは反対側に形成されている。供給流路部501は、インナースリーブ50を径方向に貫くよう形成されている。供給流路部501は、例えばインナースリーブ50の周方向に等間隔で4つ形成されている。 The supply flow path portion 501 is formed on one end side of the inner sleeve 50. The supply flow path portion 501 is formed on the opposite side of the spool 60 with respect to the sleeve plate portion 51. The supply channel portion 501 is formed so as to penetrate the inner sleeve 50 in the radial direction. For example, four supply flow path portions 501 are formed at equal intervals in the circumferential direction of the inner sleeve 50.
 供給流路部501には、オイルポンプ8から供給穴部101、軸穴部100、インナースリーブ50の内側を経由して流入した作動油が流れる。
 ここで、インナースリーブ50の内側の供給流路部501の径方向内側にフィルタ58が設けられている。フィルタ58は、略円筒状に形成されたメッシュである。フィルタ58は、インナースリーブ50の内側から供給流路部501に流れる作動油に含まれる異物を捕集可能である。
The hydraulic fluid that has flowed in from the oil pump 8 through the supply hole 101, the shaft hole 100, and the inner sleeve 50 flows into the supply flow path 501.
Here, a filter 58 is provided on the radially inner side of the supply flow path portion 501 inside the inner sleeve 50. The filter 58 is a mesh formed in a substantially cylindrical shape. The filter 58 can collect foreign substances contained in the hydraulic oil flowing from the inner sleeve 50 to the supply flow path portion 501.
 軸方向流路部502は、アウタースリーブ40とインナースリーブ50との間において軸方向に延びるよう形成されている。
 軸方向流路部502は、インナースリーブ50の外周壁から径方向内側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成されている。
 4つの供給流路部501のうち1つは、軸方向流路部502の一端側とインナースリーブ50の内側の空間とを接続している。すなわち、軸方向流路部502の一端側には、供給流路部501が開口している。
The axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
The axial flow path portion 502 is formed on the fitting boundary surface T <b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
One of the four supply flow path portions 501 connects one end side of the axial flow path portion 502 and the space inside the inner sleeve 50. That is, the supply flow path portion 501 is open on one end side of the axial flow path portion 502.
 周方向流路部503は、アウタースリーブ40とインナースリーブ50との間において軸方向流路部502の一端から周方向に延びて環状に形成されている(図3、6参照)。すなわち、周方向流路部503には、4つの供給流路部501が開口している。
 供給穴部101を経由して軸穴部100に流入した作動油は、供給流路部501を経由して軸方向流路部502および周方向流路部503に流入することができる。供給流路部501を経由して周方向流路部503に流入した作動油は、周方向流路部503を流れて軸方向流路部502へ流れることができる。
The circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502 (see FIGS. 3 and 6). That is, four supply flow path portions 501 are opened in the circumferential flow path portion 503.
The hydraulic oil that has flowed into the shaft hole 100 via the supply hole 101 can flow into the axial flow path 502 and the circumferential flow path 503 via the supply flow path 501. The hydraulic oil that has flowed into the circumferential flow path portion 503 via the supply flow path portion 501 can flow through the circumferential flow path portion 503 to the axial flow path portion 502.
 径方向流路部504は、インナースリーブ50を径方向に貫くよう形成され、一端が軸方向流路部502の他端側に接続し、他端側がインナースリーブ50の内側の空間に接続している(図3参照)。 The radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIG. 3).
 供給チェック弁71は、例えば長方形の金属薄板を長手方向が周方向に沿うよう曲げることにより略円筒状に形成されている。図4は、供給チェック弁71を展開した図である。図5は、供給チェック弁71を軸方向から見た図である。 The supply check valve 71 is formed in a substantially cylindrical shape by, for example, bending a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction. FIG. 4 is a developed view of the supply check valve 71. FIG. 5 is a view of the supply check valve 71 viewed from the axial direction.
 供給チェック弁71は、重なり部700、弁部701を有している。
 重なり部700は、供給チェック弁71の周方向の一方の端部に形成されている。重なり部700は、供給チェック弁71の周方向の他方の端部の径方向外側に重なるようにして形成されている(図5参照)。弁部701は、供給チェック弁71の周方向に等間隔で4つ形成されている。
The supply check valve 71 has an overlapping part 700 and a valve part 701.
The overlapping portion 700 is formed at one end of the supply check valve 71 in the circumferential direction. The overlapping portion 700 is formed so as to overlap the radially outer side of the other end portion in the circumferential direction of the supply check valve 71 (see FIG. 5). Four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 71.
 供給チェック弁71は、周方向流路部503に設けられている。供給チェック弁71は、軸方向流路部502の一端および周方向流路部503において径方向に弾性変形可能に設けられている。ここで、供給チェック弁71は、4つの弁部701がそれぞれ4つの供給流路部501に対応するよう設けられている。すなわち、供給チェック弁71は、供給流路部501に対しインナースリーブ50の径方向外側に設けられている。 The supply check valve 71 is provided in the circumferential flow path portion 503. The supply check valve 71 is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503. Here, the supply check valve 71 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 71 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
 軸方向流路部502は、弁座面52、弁座段差面53、ストッパ面42、ストッパ段差面43を有している。
 弁座面52は、インナースリーブ50において、供給流路部501の開口の周囲に環状に形成され、供給チェック弁71の弁部701が当接可能である。弁座段差面53は、弁座面52に対し軸方向流路部502の他端側において弁座面52に対しインナースリーブ50の径方向外側に形成されている(図7参照)。
The axial flow path portion 502 has a valve seat surface 52, a valve seat step surface 53, a stopper surface 42, and a stopper step surface 43.
The valve seat surface 52 is formed in an annular shape around the opening of the supply flow path portion 501 in the inner sleeve 50, and can contact the valve portion 701 of the supply check valve 71. The valve seat level difference surface 53 is formed on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52 on the other end side of the axial flow path portion 502 with respect to the valve seat surface 52 (see FIG. 7).
 ストッパ面42は、アウタースリーブ40において、供給流路部501の開口に対向する位置に形成されている。ストッパ段差面43は、ストッパ面42に対し軸方向流路部502の他端側においてストッパ面42に対しアウタースリーブ40の径方向外側に形成されている(図7参照)。 The stopper surface 42 is formed in the outer sleeve 40 at a position facing the opening of the supply flow path portion 501. The stopper step surface 43 is formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42 (see FIG. 7).
 供給チェック弁71は、周方向流路部503に設けられ、供給流路部501に作動油が流れていない状態、すなわち、外力が作用していない状態では、重なり部700が周方向の他方の端部に重なった状態である(図6参照)。また、供給チェック弁71の外周壁は、弁座段差面53と略同一面上に位置している(図7参照)。
 ここで、ストッパ面42とストッパ段差面43との境界B1は、供給チェック弁71の軸方向の長さの範囲内に位置している(図7参照)。
The supply check valve 71 is provided in the circumferential flow path portion 503, and in a state where hydraulic oil does not flow through the supply flow path portion 501, that is, in a state where no external force is applied, the overlapping portion 700 is in the other circumferential direction. It is in a state where it overlaps the end (see FIG. 6). Further, the outer peripheral wall of the supply check valve 71 is located on substantially the same plane as the valve seat step surface 53 (see FIG. 7).
Here, the boundary B1 between the stopper surface 42 and the stopper step surface 43 is located within the range of the axial length of the supply check valve 71 (see FIG. 7).
 作動油が供給流路部501を経由して軸方向流路部502および周方向流路部503へ流れるとき、供給チェック弁71は、弁部701の内壁が作動油により押され径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。これにより、供給チェック弁71の弁部701が弁座面52から離間し、作動油は、弁部701と弁座面52との間を経由して軸方向流路部502の他方の端部側、すなわち、径方向流路部504側へ流れることができる。このとき、重なり部700は、重なり部700と供給チェック弁71の他方の端部との重なり範囲の長さを縮小しながら一部が重なった状態を維持した状態となる。 When the hydraulic oil flows to the axial flow path section 502 and the circumferential flow path section 503 via the supply flow path section 501, the supply check valve 71 is pushed radially outward by the inner wall of the valve section 701 being pushed by the hydraulic oil. It is deformed so as to expand, that is, the inner diameter increases. As a result, the valve portion 701 of the supply check valve 71 is separated from the valve seat surface 52, and the hydraulic oil passes between the valve portion 701 and the valve seat surface 52, and the other end portion of the axial flow passage portion 502. It can flow to the side, that is, the radial flow path portion 504 side. At this time, the overlapping portion 700 is in a state where a part of the overlapping portion 700 is maintained while the length of the overlapping range between the overlapping portion 700 and the other end of the supply check valve 71 is reduced.
 供給流路部501を流れる作動油の流量が所定値以上になると、供給チェック弁71は、外周壁がストッパ面42に当接する。これにより、供給チェック弁71は、径方向外側への変形が規制される。このとき、供給チェック弁71の軸方向の端部の外周壁とストッパ段差面43との間には、隙間S1が形成される(図7参照)。 When the flow rate of the hydraulic oil flowing through the supply flow path section 501 becomes a predetermined value or more, the outer peripheral wall of the supply check valve 71 contacts the stopper surface 42. Thereby, the supply check valve 71 is restricted from being deformed radially outward. At this time, a gap S1 is formed between the outer peripheral wall of the axial end portion of the supply check valve 71 and the stopper step surface 43 (see FIG. 7).
 一方、供給流路部501を流れる作動油の流量が所定値以下になると、供給チェック弁71は、径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。さらに、作動油が軸方向流路部502から供給流路部501側へ流れる場合、供給チェック弁71の外周壁が作動油により径方向内側へ押され、弁部701が弁座面52に当接する。これにより、軸方向流路部502側から供給流路部501側への作動油の流れが規制される。このとき、供給チェック弁71は、外周壁が弁座段差面53に対しインナースリーブ50の径方向内側に位置するよう変形する。 On the other hand, when the flow rate of the hydraulic oil flowing through the supply flow path section 501 becomes equal to or less than a predetermined value, the supply check valve 71 is deformed so as to shrink inward in the radial direction, that is, to reduce the inner diameter. Further, when hydraulic oil flows from the axial flow path portion 502 toward the supply flow path portion 501, the outer peripheral wall of the supply check valve 71 is pushed radially inward by the hydraulic oil, and the valve portion 701 contacts the valve seat surface 52. Touch. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 501 side is regulated. At this time, the supply check valve 71 is deformed so that the outer peripheral wall is located on the radially inner side of the inner sleeve 50 with respect to the valve seat step surface 53.
 このように、供給チェック弁71は、逆止弁として機能し、供給流路部501側から軸方向流路部502側への作動油の流れを許容し、軸方向流路部502側から供給流路部501側への作動油の流れを規制可能である。 In this way, the supply check valve 71 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 501 side to the axial flow path portion 502 side, and is supplied from the axial flow path portion 502 side. The flow of the hydraulic oil to the flow path part 501 side can be regulated.
 移動規制部56は、周方向流路部503において供給チェック弁71に対し係止部59側に形成されている。移動規制部56は、供給チェック弁71の軸方向の端部に当接したとき、供給チェック弁71の軸方向の係止部59側への移動を規制可能である。
 移動規制部57は、周方向流路部503において供給チェック弁71に対し係止部59とは反対側に形成されている。移動規制部57は、供給チェック弁71の軸方向の端部に当接したとき、供給チェック弁71の軸方向の係止部59とは反対側への移動を規制可能である。
The movement restricting portion 56 is formed on the locking portion 59 side with respect to the supply check valve 71 in the circumferential flow path portion 503. The movement restricting portion 56 can restrict the movement of the supply check valve 71 toward the engaging portion 59 in the axial direction when it contacts the end of the supply check valve 71 in the axial direction.
The movement restricting portion 57 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 71 in the circumferential flow path portion 503. The movement restricting portion 57 can restrict the movement of the supply check valve 71 to the side opposite to the axially engaging portion 59 when abutting against the end portion of the supply check valve 71 in the axial direction.
 このように、移動規制部56、57は、供給チェック弁71が軸方向に移動して供給流路部501から離れるのを防止することができる。また、移動規制部56は、供給チェック弁71が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。 Thus, the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving away from the supply flow path portion 501 in the axial direction. Further, the movement restricting portion 56 can prevent the supply check valve 71 from moving to the other side of the axial flow passage portion 502 and closing the radial flow passage portion 504.
 スプール60は、供給油路601、第1制御油路611、第2制御油路612、ドレン油路602、リサイクル油路603を有している。
 供給油路601は、スプール60の一方の端部側の外周壁から径方向内側へ凹み周方向へ延びるよう略円筒状に形成されている。供給油路601は、径方向流路部504に接続している。これにより、供給油路601は、軸方向流路部502を経由して供給流路部501と連通している。そのため、供給油路601には、オイルポンプ8から供給流路部501、軸方向流路部502、径方向流路部504を経由して作動油が供給される。
The spool 60 includes a supply oil passage 601, a first control oil passage 611, a second control oil passage 612, a drain oil passage 602, and a recycle oil passage 603.
The supply oil passage 601 is formed in a substantially cylindrical shape so as to be recessed radially inward from the outer peripheral wall on one end side of the spool 60 and extending in the circumferential direction. The supply oil passage 601 is connected to the radial flow passage portion 504. Thus, the supply oil passage 601 communicates with the supply flow passage portion 501 via the axial flow passage portion 502. Therefore, hydraulic oil is supplied to the supply oil passage 601 from the oil pump 8 via the supply flow passage portion 501, the axial flow passage portion 502, and the radial flow passage portion 504.
 第1制御油路611は、インナースリーブ50を径方向に貫くよう形成されている。すなわち、第1制御油路611は、スプール60の内部空間600と外部とを接続している。第1制御油路611は、供給油路601と一体に形成されている。そのため、供給油路601は、第1制御油路611を経由してスプール60の内部空間600に連通している。よって、内部空間600には、供給油路601、第1制御油路611を経由して作動油が流入可能である。 The first control oil passage 611 is formed so as to penetrate the inner sleeve 50 in the radial direction. That is, the first control oil passage 611 connects the internal space 600 of the spool 60 and the outside. The first control oil passage 611 is formed integrally with the supply oil passage 601. Therefore, the supply oil passage 601 communicates with the internal space 600 of the spool 60 via the first control oil passage 611. Therefore, hydraulic oil can flow into the internal space 600 via the supply oil passage 601 and the first control oil passage 611.
 第2制御油路612は、インナースリーブ50を径方向に貫くよう形成されている。すなわち、第2制御油路612は、スプール60の内部空間600と外部とを接続している。第2制御油路612は、第1制御油路611に対し封止部62側に形成されている。 The second control oil passage 612 is formed so as to penetrate the inner sleeve 50 in the radial direction. That is, the second control oil passage 612 connects the internal space 600 of the spool 60 and the outside. The second control oil passage 612 is formed on the sealing portion 62 side with respect to the first control oil passage 611.
 ドレン油路602は、スプール60の軸方向の第1制御油路611と第2制御油路612との間において、スプール60の外周壁から径方向内側へ凹むよう形成されている。 The drain oil passage 602 is formed between the first control oil passage 611 and the second control oil passage 612 in the axial direction of the spool 60 so as to be recessed radially inward from the outer peripheral wall of the spool 60.
 リサイクル油路603は、ドレン油路602においてスプール60を径方向に貫くよう形成されている。すなわち、リサイクル油路603は、スプール60の内部空間600とドレン油路602とを接続している。 The recycle oil passage 603 is formed so as to penetrate the spool 60 in the radial direction in the drain oil passage 602. That is, the recycle oil passage 603 connects the internal space 600 of the spool 60 and the drain oil passage 602.
 アウタースリーブ40およびインナースリーブ50には、第1制御ポート411、第2制御ポート412が形成されている。
 第1制御ポート411は、軸方向流路部502に対し係止部49側において、アウタースリーブ40およびインナースリーブ50を径方向に貫くよう形成されている。第1制御ポート411の一端は、インナースリーブ50の内側の空間に接続している。第1制御ポート411の他端は、遅角油路301を経由して遅角室201に接続している。
A first control port 411 and a second control port 412 are formed in the outer sleeve 40 and the inner sleeve 50.
The first control port 411 is formed so as to penetrate the outer sleeve 40 and the inner sleeve 50 in the radial direction on the locking portion 49 side with respect to the axial flow path portion 502. One end of the first control port 411 is connected to the space inside the inner sleeve 50. The other end of the first control port 411 is connected to the retard chamber 201 via the retard oil passage 301.
 第2制御ポート412は、第1制御ポート411に対し係止部49側において、アウタースリーブ40およびインナースリーブ50を径方向に貫くよう形成されている。第2制御ポート412の一端は、インナースリーブ50の内側の空間に接続している。第2制御ポート412の他端は、進角油路302を経由して進角室202に接続している。 The second control port 412 is formed to penetrate the outer sleeve 40 and the inner sleeve 50 in the radial direction on the locking portion 49 side with respect to the first control port 411. One end of the second control port 412 is connected to the space inside the inner sleeve 50. The other end of the second control port 412 is connected to the advance chamber 202 via the advance oil passage 302.
 スプール60のカム軸3とは反対側に、リニアソレノイド9が設けられる。リニアソレノイド9は、封止部62に当接するようにして設けられる。リニアソレノイド9は、通電により、封止部62を介してスプール60をスプリング63の付勢力に抗してカム軸3側へ押圧する。これにより、スプール60は、インナースリーブ50に対する軸方向の位置が変化する。なお、スプール60の可動範囲は、スプール60が係止部59に当接する位置からスプール60がスリーブ板部51に当接する位置までである。
 供給油路601は、スプール60がインナースリーブ50に対し軸方向のどの位置にあっても、径方向流路部504に連通している。
A linear solenoid 9 is provided on the opposite side of the spool 60 from the cam shaft 3. The linear solenoid 9 is provided so as to contact the sealing portion 62. The linear solenoid 9 presses the spool 60 toward the camshaft 3 against the biasing force of the spring 63 through the sealing portion 62 by energization. Thereby, the axial position of the spool 60 with respect to the inner sleeve 50 changes. The movable range of the spool 60 is from a position where the spool 60 abuts on the locking portion 59 to a position where the spool 60 abuts on the sleeve plate portion 51.
The supply oil path 601 communicates with the radial flow path portion 504 regardless of the position of the spool 60 in the axial direction with respect to the inner sleeve 50.
 スプール60が係止部59に当接する位置にあるとき、第1制御油路611と第1制御ポート411とは接続している。また、このとき、第2制御ポート412とドレン油路602およびリサイクル油路603とは接続している。また、第2制御油路612と第2制御ポート412とは切断されている。 The first control oil passage 611 and the first control port 411 are connected when the spool 60 is in a position where it abuts against the locking portion 59. At this time, the second control port 412 is connected to the drain oil passage 602 and the recycle oil passage 603. Further, the second control oil passage 612 and the second control port 412 are disconnected.
 一方、スプール60がスリーブ板部51に当接すると、第2制御油路612と第2制御ポート412とは接続する。また、このとき、第1制御ポート411とドレン油路602およびリサイクル油路603とは接続する。また、第1制御油路611と第1制御ポート411とは切断される。 On the other hand, when the spool 60 contacts the sleeve plate portion 51, the second control oil passage 612 and the second control port 412 are connected. At this time, the first control port 411 is connected to the drain oil passage 602 and the recycle oil passage 603. Further, the first control oil passage 611 and the first control port 411 are disconnected.
 また、スプール60が係止部59とスリーブ板部51との中間位置にあるとき、第1制御油路611、第2制御油路612、ドレン油路602およびリサイクル油路603と第1制御ポート411および第2制御ポート412とは切断されている。このとき、遅角室201および進角室202は閉鎖されている。 Further, when the spool 60 is at an intermediate position between the locking portion 59 and the sleeve plate portion 51, the first control oil passage 611, the second control oil passage 612, the drain oil passage 602, the recycle oil passage 603, and the first control port. 411 and the second control port 412 are disconnected. At this time, the retard chamber 201 and the advance chamber 202 are closed.
 このように、スプール60は、インナースリーブ50に対する軸方向の位置に応じて第1制御油路611および第2制御油路612と第1制御ポート411および第2制御ポート412との接続および切断を切換え可能である。 As described above, the spool 60 connects and disconnects the first control oil passage 611 and the second control oil passage 612 and the first control port 411 and the second control port 412 according to the position in the axial direction with respect to the inner sleeve 50. Switching is possible.
 また、スプール60が係止部59に当接しているとき、軸方向流路部502の他端は、径方向流路部504、供給油路601、第1制御油路611、第1制御ポート411を経由して遅角室201に接続している。 Further, when the spool 60 is in contact with the locking portion 59, the other end of the axial flow passage portion 502 is the radial flow passage portion 504, the supply oil passage 601, the first control oil passage 611, and the first control port. It is connected to the retarding angle chamber 201 via 411.
 また、スプール60がスリーブ板部51に当接すると、軸方向流路部502の他端は、径方向流路部504、供給油路601、第1制御油路611、内部空間600、第2制御油路612、第2制御ポート412を経由して進角室202に接続する。 When the spool 60 comes into contact with the sleeve plate portion 51, the other end of the axial flow passage portion 502 is connected to the radial flow passage portion 504, the supply oil passage 601, the first control oil passage 611, the internal space 600, and the second. The control oil passage 612 and the second control port 412 are connected to the advance chamber 202.
 このように、軸方向流路部502は、他端側が径方向流路部504を経由してバルブタイミング調整装置10の遅角室201または進角室202に接続可能である。 Thus, the other end side of the axial flow path portion 502 can be connected to the retard chamber 201 or the advance chamber 202 of the valve timing adjusting device 10 via the radial flow path portion 504.
 本実施形態では、インナースリーブ50に、呼吸穴部505、ドレンポート506が形成されている。
 呼吸穴部505は、インナースリーブ50の外周壁から径方向内側へ凹み、インナースリーブ50の軸方向へ延びるよう形成されている(図3、6参照)。また、呼吸穴部505は、一端が容積可変空間500に接続し、他端が係止部59と封止部62との間を経由して外部、すなわち、大気に連通している。これにより、容積可変空間500の圧力を大気圧と同等にすることができる。そのため、スプール60の軸方向の移動を円滑にすることができる。
In the present embodiment, a breathing hole 505 and a drain port 506 are formed in the inner sleeve 50.
The breathing hole 505 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50 (see FIGS. 3 and 6). Further, the breathing hole 505 has one end connected to the variable volume space 500 and the other end communicating with the outside, that is, the atmosphere via the engagement portion 59 and the sealing portion 62. Thereby, the pressure of the volume variable space 500 can be made equal to atmospheric pressure. Therefore, the axial movement of the spool 60 can be made smooth.
 ドレンポート506は、インナースリーブ50の内側の空間と呼吸穴部505とを接続するよう形成されている。なお、ドレンポート506の呼吸穴部505とは反対側の端部は、スプール60がインナースリーブ50に対し軸方向のどの位置にあってもドレン油路602に接続している。これにより、ドレン油路602の作動油は、ドレンポート506、呼吸穴部505、係止部59と封止部62との間を経由して作動油制御弁11の外部へ流れ出ることができる。 The drain port 506 is formed so as to connect the space inside the inner sleeve 50 and the breathing hole 505. The end of the drain port 506 opposite to the breathing hole 505 is connected to the drain oil passage 602 regardless of the position of the spool 60 in the axial direction with respect to the inner sleeve 50. As a result, the hydraulic oil in the drain oil passage 602 can flow out of the hydraulic oil control valve 11 via the drain port 506, the breathing hole 505, and between the locking part 59 and the sealing part 62.
 本実施形態では、作動油制御弁11は、リサイクルチェック弁81をさらに備えている。
 リサイクルチェック弁81は、スプール60の内部空間600に設けられている。
 リサイクルチェック弁81は、例えば金属薄板を曲げることにより形成されている。図8は、リサイクルチェック弁81を展開した図である。図3には、軸に垂直な方向から見たリサイクルチェック弁81を示している。
In the present embodiment, the hydraulic oil control valve 11 further includes a recycle check valve 81.
The recycle check valve 81 is provided in the internal space 600 of the spool 60.
The recycle check valve 81 is formed, for example, by bending a thin metal plate. FIG. 8 is a developed view of the recycle check valve 81. FIG. 3 shows the recycle check valve 81 viewed from the direction perpendicular to the axis.
 リサイクルチェック弁81は、軸部811、弁部812を有している。
 軸部811は、略円筒状に形成されている。弁部701は、軸部811の中央において軸部811の周方向の一端から延びて軸部811の周囲を1巻するよう形成されている。弁部701の周方向の軸部811とは反対側の端部は、弁部812の径方向外側に重なっている。
The recycle check valve 81 has a shaft portion 811 and a valve portion 812.
The shaft portion 811 is formed in a substantially cylindrical shape. The valve portion 701 is formed so as to extend from one end in the circumferential direction of the shaft portion 811 at the center of the shaft portion 811 so as to make one turn around the shaft portion 811. An end portion of the valve portion 701 opposite to the shaft portion 811 in the circumferential direction overlaps the radially outer side of the valve portion 812.
 リサイクルチェック弁81は、弁部812がリサイクル油路603に対応するよう内部空間600に設けられている。ここで、軸部811は、端部がスプール板部61、封止部62に当接し、軸方向の移動が規制されている。
 リサイクルチェック弁81は、内部空間600において弁部812がリサイクル油路603を塞いでいる。リサイクルチェック弁81は、弁部812が径方向に弾性変形可能である。
The recycle check valve 81 is provided in the internal space 600 so that the valve portion 812 corresponds to the recycle oil passage 603. Here, the end portion of the shaft portion 811 is in contact with the spool plate portion 61 and the sealing portion 62, and movement in the axial direction is restricted.
In the recycle check valve 81, the valve portion 812 blocks the recycle oil passage 603 in the internal space 600. In the recycle check valve 81, the valve portion 812 is elastically deformable in the radial direction.
 リサイクル油路603側から内部空間600側へ作動油が流れるとき、リサイクルチェック弁81は、弁部812の外壁が作動油に押され、径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。これにより、弁部812がリサイクル油路603から離間し、作動油は、内部空間600に流入し、弁部812とスプール60の内周壁との間を流れることができる。このとき、弁部812の周方向の端部の重なり面積は拡大する。 When hydraulic oil flows from the recycle oil path 603 side to the internal space 600 side, the recycle check valve 81 is configured so that the outer wall of the valve portion 812 is pushed by the hydraulic oil and contracts radially inward, that is, the inner diameter decreases. And deform. As a result, the valve portion 812 is separated from the recycle oil passage 603, and the hydraulic oil can flow into the internal space 600 and flow between the valve portion 812 and the inner peripheral wall of the spool 60. At this time, the overlapping area of the end portions in the circumferential direction of the valve portion 812 increases.
 一方、内部空間600側からリサイクル油路603側へ作動油が流れるとき、リサイクルチェック弁81は、弁部812の内壁が作動油に押され、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。これにより、弁部812がリサイクル油路603を塞ぎ、内部空間600からリサイクル油路603側への作動油の流れは遮断される。 On the other hand, when the hydraulic oil flows from the internal space 600 side to the recycle oil passage 603 side, the recycle check valve 81 is pushed by the hydraulic oil to the inner wall of the valve portion 812 and expands radially outward, that is, the inner diameter increases. It deforms like this. As a result, the valve portion 812 blocks the recycle oil passage 603 and the flow of hydraulic oil from the internal space 600 to the recycle oil passage 603 is blocked.
 このように、リサイクルチェック弁81は、逆止弁として機能し、リサイクル油路603側から内部空間600側への作動油の流れを許容し、内部空間600側からリサイクル油路603側への作動油の流れを規制可能である。 Thus, the recycle check valve 81 functions as a check valve, allows the flow of hydraulic oil from the recycle oil path 603 side to the internal space 600 side, and operates from the internal space 600 side to the recycle oil path 603 side. Oil flow can be regulated.
 次に、作動油制御弁11およびバルブタイミング調整装置10の作動について説明する。作動油制御弁11は、リニアソレノイド9の駆動によりスプール60を押圧し、オイルポンプ8と遅角室201とを接続しつつ、進角室202とドレン油路602およびリサイクル油路603とを接続する第1作動状態と、オイルポンプ8と進角室202とを接続しつつ、遅角室201とドレン油路602およびリサイクル油路603とを接続する第2作動状態と、遅角室201および進角室202を共に閉鎖する保持状態と、に作動する。 Next, the operation of the hydraulic oil control valve 11 and the valve timing adjusting device 10 will be described. The hydraulic oil control valve 11 presses the spool 60 by driving the linear solenoid 9 and connects the advance chamber 202 to the drain oil passage 602 and the recycle oil passage 603 while connecting the oil pump 8 and the retard chamber 201. A first operating state, a second operating state in which the retard chamber 201 is connected to the drain oil passage 602 and the recycled oil passage 603 while the oil pump 8 and the advance chamber 202 are connected, and the retard chamber 201 and It operates to a holding state in which the advance chamber 202 is closed together.
 第1作動状態では、遅角室201に作動油が供給されつつ、進角室202から作動油がドレン油路602およびリサイクル油路603を経由して内部空間600に戻され、余剰分がドレンポート506および呼吸穴部505を経由して作動油制御弁11の外部へ排出されてオイルパン7に戻される。第2作動状態では、進角室202に作動油が供給されつつ、遅角室201から作動油がドレン油路602およびリサイクル油路603を経由して内部空間600に戻され、余剰分がドレンポート506および呼吸穴部505を経由して作動油制御弁11の外部へ排出されてオイルパン7に戻される。保持状態では、遅角室201および進角室202の作動油が保持される。 In the first operation state, while the hydraulic oil is supplied to the retard chamber 201, the hydraulic oil is returned from the advance chamber 202 to the internal space 600 via the drain oil passage 602 and the recycle oil passage 603, and the surplus portion is drained. The oil is discharged to the outside of the hydraulic oil control valve 11 through the port 506 and the breathing hole 505 and returned to the oil pan 7. In the second operation state, while the hydraulic oil is supplied to the advance chamber 202, the hydraulic oil is returned from the retard chamber 201 to the internal space 600 via the drain oil passage 602 and the recycle oil passage 603, and the surplus portion is drained. The oil is discharged to the outside of the hydraulic oil control valve 11 through the port 506 and the breathing hole 505 and returned to the oil pan 7. In the hold state, the hydraulic oil in the retard chamber 201 and the advance chamber 202 is held.
 本実施形態は、ロックピン33をさらに備えている(図1、2参照)。ロックピン33は、有底円筒状に形成され、ベーン32に形成された収容穴部321に軸方向に往復移動可能に収容されている。ロックピン33の内側には、スプリング34が設けられている。スプリング34は、ロックピン33をケース22の底部側へ付勢している。ケース22の底部のベーン32側には、嵌入凹部25が形成されている。 The present embodiment further includes a lock pin 33 (see FIGS. 1 and 2). The lock pin 33 is formed in a bottomed cylindrical shape, and is housed in a housing hole 321 formed in the vane 32 so as to be capable of reciprocating in the axial direction. A spring 34 is provided inside the lock pin 33. The spring 34 biases the lock pin 33 toward the bottom side of the case 22. A fitting recess 25 is formed on the bottom of the case 22 on the vane 32 side.
 ロックピン33は、ハウジング20に対しベーンロータ30が最遅角位置にあるとき、嵌入凹部25に嵌入可能である。ロックピン33が嵌入凹部25に嵌入しているとき、ハウジング20に対するベーンロータ30の相対回転が規制される。一方、ロックピン33が嵌入凹部25に嵌入していないとき、ハウジング20に対するベーンロータ30の相対回転が許容される。 The lock pin 33 can be inserted into the insertion recess 25 when the vane rotor 30 is at the most retarded position with respect to the housing 20. When the lock pin 33 is fitted in the fitting recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is restricted. On the other hand, when the lock pin 33 is not inserted into the insertion recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
 ベーン32のロックピン33と進角室202との間には、進角室202に連通するピン制御油路304が形成されている(図2参照)。進角室202からピン制御油路304に流入する作動油の圧力は、ロックピン33がスプリング34の付勢力に抗して嵌入凹部25から抜け出す方向に働く。 A pin control oil passage 304 communicating with the advance chamber 202 is formed between the lock pin 33 of the vane 32 and the advance chamber 202 (see FIG. 2). The pressure of the hydraulic oil flowing into the pin control oil passage 304 from the advance chamber 202 acts in a direction in which the lock pin 33 comes out of the fitting recess 25 against the urging force of the spring 34.
 以上のように構成されたバルブタイミング調整装置10では、進角室202に作動油が供給されると、ピン制御油路304に作動油が流入し、ロックピン33が嵌入凹部25から抜け出し、ハウジング20に対するベーンロータ30の相対回転が許容された状態となる。 In the valve timing adjusting device 10 configured as described above, when hydraulic oil is supplied to the advance chamber 202, the hydraulic oil flows into the pin control oil passage 304, and the lock pin 33 comes out of the fitting recess 25, and the housing The relative rotation of the vane rotor 30 with respect to 20 is permitted.
 バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも進角側である場合、作動油制御弁11を第1作動状態とする。これにより、ベーンロータ30がハウジング20に対して遅角方向へ相対回転し、カム軸3の回転位相が遅角側へ変化する。
 また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも遅角側である場合、作動油制御弁11を第2作動状態とする。これにより、ベーンロータ30がハウジング20に対して進角方向へ相対回転し、カム軸3の回転位相が進角側へ変化する。
 また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値と一致する場合、作動油制御弁11を保持状態とする。これにより、カム軸3の回転位相が保持される。
 本実施形態では、リサイクル油路603により遅角室201、進角室202からの作動油の一部を再利用することができる。
When the rotational phase of the camshaft 3 is on the more advanced side than the target value, the valve timing adjusting device 10 sets the hydraulic oil control valve 11 to the first operating state. As a result, the vane rotor 30 rotates relative to the housing 20 in the retarding direction, and the rotational phase of the camshaft 3 changes toward the retarding side.
Further, the valve timing adjusting device 10 places the hydraulic oil control valve 11 in the second operating state when the rotational phase of the camshaft 3 is retarded from the target value. As a result, the vane rotor 30 rotates relative to the housing 20 in the advance direction, and the rotational phase of the camshaft 3 changes toward the advance side.
Further, the valve timing adjusting device 10 places the hydraulic oil control valve 11 in the holding state when the rotational phase of the camshaft 3 matches the target value. Thereby, the rotational phase of the cam shaft 3 is maintained.
In the present embodiment, part of the hydraulic oil from the retard chamber 201 and the advance chamber 202 can be reused by the recycle oil passage 603.
 また、本実施形態では、呼吸穴部505により、容積可変空間500の圧力が大気圧と同等になっているため、リニアソレノイド9がスプール60を押圧するとき、スプール60は、インナースリーブ50の内側において軸方向に円滑に往復移動することができる。なお、容積可変空間500に作動油が溜まった場合、当該作動油は、呼吸穴部505を経由して作動油制御弁11に対しカム軸3とは反対側、すなわち、バルブタイミング調整装置10の外部へ排出され、オイルパン7に戻される。 Further, in this embodiment, the pressure of the variable volume space 500 is equal to the atmospheric pressure by the breathing hole 505, so that when the linear solenoid 9 presses the spool 60, the spool 60 is located inside the inner sleeve 50. Can smoothly reciprocate in the axial direction. When the hydraulic oil is accumulated in the variable volume space 500, the hydraulic oil passes through the breathing hole 505 and is opposite to the hydraulic oil control valve 11 from the camshaft 3, that is, the valve timing adjusting device 10. It is discharged to the outside and returned to the oil pan 7.
 作動油制御弁11が第1作動状態または第2作動状態のとき、オイルポンプ8を作動させると、供給流路部501を経由して軸方向流路部502に作動油が流れる。このとき、供給チェック弁71は弁座面52から離間、すなわち、開弁し、作動油の流れを許容する。このときの作動油の流量が大きい場合、供給チェック弁71は径方向外側へさらに変形し、ストッパ面42に当接する。このとき、作動油は、供給チェック弁71に流れが阻害されることなく、供給流路部501から軸方向流路部502を軸方向に円滑に流れることができる。ここで、カム軸3から伝達するトルクの作用により遅角室201または進角室202の内部のオイルが圧縮されて圧力が上昇した場合等、供給流路部501および軸方向流路部502において作動油が逆流することがある。ここで、「逆流」とは、軸方向流路部502側から供給流路部501側へ流れることをいう。以下同じ。 When the oil pump 8 is operated when the hydraulic oil control valve 11 is in the first operating state or the second operating state, the hydraulic oil flows into the axial channel portion 502 via the supply channel portion 501. At this time, the supply check valve 71 is separated from the valve seat surface 52, that is, is opened to allow the flow of hydraulic oil. If the flow rate of the hydraulic oil at this time is large, the supply check valve 71 is further deformed radially outward and comes into contact with the stopper surface 42. At this time, the hydraulic oil can smoothly flow in the axial direction from the supply flow path portion 501 to the axial flow path portion 502 without being blocked by the supply check valve 71. Here, in the case where the oil in the retard chamber 201 or the advance chamber 202 is compressed by the action of torque transmitted from the camshaft 3 and the pressure rises, the supply channel section 501 and the axial channel section 502 Hydraulic fluid may flow backward. Here, the “back flow” means flowing from the axial flow path portion 502 side to the supply flow path portion 501 side. same as below.
 供給チェック弁71がストッパ面42に当接した状態で作動油が逆流すると、供給チェック弁71とストッパ段差面43との間の隙間S1に作動油が入り込み、供給チェック弁71の外壁が径方向内側へ押される。これにより、供給チェック弁71を速やかに閉弁させることができる。 When the hydraulic oil flows backward with the supply check valve 71 in contact with the stopper surface 42, the hydraulic oil enters the gap S1 between the supply check valve 71 and the stopper step surface 43, and the outer wall of the supply check valve 71 is in the radial direction. It is pushed inward. Thereby, the supply check valve 71 can be closed quickly.
 また、本実施形態では、弁座面52に対しインナースリーブ50の径方向外側に弁座段差面53が形成されており、供給チェック弁71は、外力が作用していない状態のとき、外周壁が弁座段差面53と略同一面上に位置している。供給チェック弁71がこの状態のとき、作動油が逆流した場合、軸方向流路部502の作動油は供給チェック弁71の内壁と弁座面52との間に入り込むことなく、供給チェック弁71の外壁を径方向内側へ押す。これにより、供給チェック弁71を速やかに閉弁させることができる。 In the present embodiment, the valve seat step surface 53 is formed on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52, and the supply check valve 71 has an outer peripheral wall when no external force is applied. Is located on substantially the same plane as the valve seat step surface 53. When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter between the inner wall of the supply check valve 71 and the valve seat surface 52, and the supply check valve 71. Push the outer wall of the inside in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
 また、本実施形態では、移動規制部56、57により、供給チェック弁71が軸方向に移動して供給流路部501から離れるのを防止することができる。また、移動規制部56により、供給チェック弁71が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。 Further, in this embodiment, the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Further, the movement restricting section 56 can prevent the supply check valve 71 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
 以上説明したように、本実施形態は、オイルポンプ8からバルブタイミング調整装置10に供給する作動油の流れを制御可能な作動油制御弁11であって、アウタースリーブ40とインナースリーブ50と供給流路部501と軸方向流路部502と供給チェック弁71とを備えている。
 アウタースリーブ40は、筒状に形成されている。
 インナースリーブ50は、筒状に形成され、アウタースリーブ40の内側に設けられている。
 供給流路部501は、インナースリーブ50を径方向に貫くよう形成され、オイルポンプ8からの作動油が流れる。
 軸方向流路部502は、アウタースリーブ40とインナースリーブ50との間において軸方向に延びるよう形成され、一端側に供給流路部501が開口し、他端側がバルブタイミング調整装置10に接続可能である。
 供給チェック弁71は、軸方向流路部502において供給流路部501に対しインナースリーブ50の径方向外側に設けられ、供給流路部501側から軸方向流路部502側への作動油の流れを許容し、軸方向流路部502側から供給流路部501側への作動油の流れを規制可能である。
As described above, the present embodiment is the hydraulic oil control valve 11 that can control the flow of hydraulic oil supplied from the oil pump 8 to the valve timing adjusting device 10, and includes the outer sleeve 40, the inner sleeve 50, and the supply flow. A passage portion 501, an axial flow passage portion 502, and a supply check valve 71 are provided.
The outer sleeve 40 is formed in a cylindrical shape.
The inner sleeve 50 is formed in a cylindrical shape and is provided inside the outer sleeve 40.
The supply flow path portion 501 is formed so as to penetrate the inner sleeve 50 in the radial direction, and the hydraulic oil from the oil pump 8 flows.
The axial flow path portion 502 is formed so as to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50, the supply flow path portion 501 opens at one end side, and the other end side can be connected to the valve timing adjusting device 10. It is.
The supply check valve 71 is provided radially outside the inner sleeve 50 with respect to the supply flow path section 501 in the axial flow path section 502, and supplies hydraulic oil from the supply flow path section 501 side to the axial flow path section 502 side. The flow is allowed, and the flow of hydraulic oil from the axial flow path portion 502 side to the supply flow path portion 501 side can be regulated.
 本実施形態では、供給流路部501から軸方向流路部502に流れた作動油は、供給チェック弁71を迂回することなく、軸方向流路部502の他端側へ流れ、バルブタイミング調整装置10に供給される。そのため、作動油制御弁11における流路圧損を抑制することができる。これにより、バルブタイミング調整装置10の応答性を向上することができる。 In the present embodiment, the hydraulic oil that has flowed from the supply flow path portion 501 to the axial flow path portion 502 flows to the other end side of the axial flow path portion 502 without bypassing the supply check valve 71, thereby adjusting the valve timing. Supplied to the apparatus 10. Therefore, the flow path pressure loss in the hydraulic oil control valve 11 can be suppressed. Thereby, the responsiveness of the valve timing adjusting device 10 can be improved.
 また、本実施形態では、大量の作動油が供給流路部501から軸方向流路部502に流れたとしても、供給チェック弁71は、供給流路部501の開口に対向する壁面に当接するのみであり、軸方向流路部502を遮断することはない。そのため、作動油制御弁11における意図しない流路遮断を抑制することができる。 Further, in this embodiment, even if a large amount of hydraulic oil flows from the supply flow path portion 501 to the axial flow path portion 502, the supply check valve 71 contacts the wall surface facing the opening of the supply flow path portion 501. However, the axial flow path portion 502 is not blocked. Therefore, the unintended flow path interruption in the hydraulic oil control valve 11 can be suppressed.
 また、本実施形態は、供給チェック弁71の軸方向の移動を規制可能な移動規制部56、57をさらに備えている。そのため、供給チェック弁71が軸方向に移動して供給流路部501から離れるのを防止することができる。これにより、供給チェック弁71が逆止弁として機能する状態を維持できる。 The present embodiment further includes movement restricting portions 56 and 57 that can restrict the movement of the supply check valve 71 in the axial direction. Therefore, it is possible to prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Thereby, the state in which the supply check valve 71 functions as a check valve can be maintained.
 また、本実施形態は、周方向流路部503をさらに備えている。周方向流路部503は、アウタースリーブ40とインナースリーブ50との間において軸方向流路部502の一端から周方向に延びて環状に形成されている。
 供給チェック弁71は、筒状に形成され、軸方向流路部502の一端および周方向流路部503において径方向に弾性変形可能なよう設けられている。
 軸方向流路部502は、供給流路部501の開口の周囲に形成され供給チェック弁71が当接可能な弁座面52、および、供給流路部501の開口に対向する位置に形成され供給チェック弁71が当接したとき供給チェック弁71の径方向の変形を規制可能なストッパ面42を有している。
 本実施形態では、周方向流路部503および供給チェック弁71を比較的容易に形成することができる。また、上述のようにストッパ面42を形成することにより、作動油の流れを阻害することなく、供給チェック弁71の変形を規制することができる。
In addition, the present embodiment further includes a circumferential flow path portion 503. The circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502.
The supply check valve 71 is formed in a cylindrical shape, and is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503.
The axial flow path portion 502 is formed around the opening of the supply flow path portion 501 and at a position facing the valve seat surface 52 on which the supply check valve 71 can contact and the opening of the supply flow path portion 501. It has a stopper surface 42 that can regulate the deformation of the supply check valve 71 in the radial direction when the supply check valve 71 comes into contact.
In the present embodiment, the circumferential flow path portion 503 and the supply check valve 71 can be formed relatively easily. Further, by forming the stopper surface 42 as described above, the deformation of the supply check valve 71 can be restricted without hindering the flow of hydraulic oil.
 また、本実施形態では、軸方向流路部502は、弁座面52に対し軸方向流路部502の他端側において弁座面52に対しインナースリーブ50の径方向外側に形成される弁座段差面53を有している。そのため、供給チェック弁71を、外壁が弁座段差面53と略同一面上または弁座面52側に位置させることができる。供給チェック弁71がこの状態のとき、作動油が逆流した場合、軸方向流路部502の作動油は供給チェック弁71の内側に入り込むことなく、供給チェック弁71の外壁を径方向内側へ押す。これにより、供給チェック弁71を速やかに閉弁させることができる。つまり、弁座段差面53により、供給チェック弁71の閉弁を阻害する流れが生じるのを抑制することができる。 In the present embodiment, the axial flow path portion 502 is a valve formed on the other end side of the axial flow path portion 502 with respect to the valve seat surface 52 and on the radially outer side of the inner sleeve 50 with respect to the valve seat surface 52. A seat step surface 53 is provided. Therefore, the supply check valve 71 can be positioned with the outer wall substantially flush with the valve seat step surface 53 or on the valve seat surface 52 side. When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter the supply check valve 71 and pushes the outer wall of the supply check valve 71 radially inward. . Thereby, the supply check valve 71 can be closed quickly. That is, the valve seat step surface 53 can suppress the occurrence of a flow that hinders the closing of the supply check valve 71.
 また、本実施形態では、軸方向流路部502は、ストッパ面42に対し軸方向流路部502の他端側においてストッパ面42に対しアウタースリーブ40の径方向外側に形成されるストッパ段差面43を有している。 In the present embodiment, the axial flow path portion 502 is a stopper step surface formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42. 43.
 また、本実施形態では、ストッパ面42とストッパ段差面43との境界は、供給チェック弁71の軸方向の長さの範囲内に位置している。そのため、供給チェック弁71がストッパ面42に当接して変形が規制されているとき、供給チェック弁71の外壁とストッパ段差面43との間には隙間S1が形成される。これにより、このとき作動油が逆流すると、作動油が隙間S1に入り込み、供給チェック弁71の外壁が径方向内側へ押される。これにより、供給チェック弁71を速やかに閉弁させることができる。 In the present embodiment, the boundary between the stopper surface 42 and the stopper step surface 43 is located within the range of the axial length of the supply check valve 71. Therefore, when the supply check valve 71 abuts against the stopper surface 42 and deformation is restricted, a gap S <b> 1 is formed between the outer wall of the supply check valve 71 and the stopper step surface 43. Accordingly, when the hydraulic oil flows backward at this time, the hydraulic oil enters the gap S1, and the outer wall of the supply check valve 71 is pushed inward in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
 また、本実施形態は、径方向流路部504をさらに備えている。径方向流路部504は、インナースリーブ50を径方向に貫くよう形成され、一端が軸方向流路部502の他端側に接続し、他端側がバルブタイミング調整装置10に接続可能である。径方向流路部504により、軸方向流路部502の作動油をインナースリーブ50の内側へ流すことができる。
 なお、本実施形態は、移動規制部56を備えているため、供給チェック弁71が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。これにより、径方向流路部504を備える作動油制御弁11における意図しない流路遮断を抑制することができる。
In addition, the present embodiment further includes a radial flow path portion 504. The radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connectable to the valve timing adjusting device 10. The hydraulic fluid in the axial flow path portion 502 can be caused to flow inside the inner sleeve 50 by the radial flow path portion 504.
In addition, since this embodiment is provided with the movement control part 56, it can prevent that the supply check valve 71 moves to the other side of the axial direction flow-path part 502, and block | closes the radial direction flow-path part 504. As a result, unintended flow passage interruption in the hydraulic oil control valve 11 including the radial flow passage portion 504 can be suppressed.
 また、本実施形態では、アウタースリーブ40は、内周壁が円筒面状に形成されている。インナースリーブ50は、外周壁が円筒面状に形成されている。軸方向流路部502は、インナースリーブ50の外周壁から径方向内側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成されている。そのため、アウタースリーブ40とインナースリーブ50との嵌め合い境界面T1および軸方向流路部502を精度よく形成することができる。 In the present embodiment, the outer sleeve 40 has an inner peripheral wall formed in a cylindrical surface shape. The inner sleeve 50 has an outer peripheral wall formed in a cylindrical surface shape. The axial flow path portion 502 is formed on the fitting boundary surface T <b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50. Therefore, the fitting boundary surface T1 between the outer sleeve 40 and the inner sleeve 50 and the axial flow path portion 502 can be formed with high accuracy.
 また、本実施形態では、アウタースリーブ40は、バルブタイミング調整装置10の内壁にねじ結合可能なねじ部41を外周壁に有している。インナースリーブ50は、アウタースリーブ40よりも硬度が低い材料により形成されている。軸方向流路部502、移動規制部56、57は、インナースリーブ50に形成されている。そのため、アウタースリーブ40のねじ部41における強度を確保しつつ、軸方向流路部502、移動規制部56、57を切削等によりインナースリーブ50に容易に精度よく形成することができる。 In the present embodiment, the outer sleeve 40 has a threaded portion 41 on the outer peripheral wall that can be screwed to the inner wall of the valve timing adjusting device 10. The inner sleeve 50 is formed of a material having a lower hardness than the outer sleeve 40. The axial flow path portion 502 and the movement restriction portions 56 and 57 are formed in the inner sleeve 50. Therefore, it is possible to easily and accurately form the axial flow path portion 502 and the movement restricting portions 56 and 57 on the inner sleeve 50 by cutting or the like while ensuring the strength of the screw portion 41 of the outer sleeve 40.
 また、本実施形態では、アウタースリーブ40は、鉄を含む材料により形成されている。インナースリーブ50は、アルミニウムを含む材料により形成されている。これは、アウタースリーブ40より硬度が低いインナースリーブ50の構成を具体的に示すものである。この構成では、アウタースリーブ40の強度を確保しつつ、インナースリーブ50に軸方向流路部502等を容易に形成することができる。 In the present embodiment, the outer sleeve 40 is made of a material containing iron. The inner sleeve 50 is formed of a material containing aluminum. This specifically shows the configuration of the inner sleeve 50 having a lower hardness than the outer sleeve 40. With this configuration, the axial flow path portion 502 and the like can be easily formed in the inner sleeve 50 while ensuring the strength of the outer sleeve 40.
 また、本実施形態では、アウタースリーブ40およびインナースリーブ50は、バルブタイミング調整装置10に接続するよう形成された第1制御ポート411、第2制御ポート412を有している。また、本実施形態は、スプール60をさらに備えている。スプール60は、筒状に形成され、インナースリーブ50の内側において軸方向に往復移動可能に設けられ、内側に内部空間600を形成し、内部空間600と軸方向流路部502の他端側とを接続可能に形成された供給油路601、および、内部空間600と第1制御ポート411、第2制御ポート412とを接続可能に形成された第1制御油路611、第2制御油路612を有し、インナースリーブ50に対する位置に応じて第1制御油路611、第2制御油路612と第1制御ポート411、第2制御ポート412との接続および切断を切換え可能である。
 これは、作動油制御弁11をバルブタイミング調整装置10の制御に用いる場合の具体例を示すものである。スプール60により各制御油路と各制御ポートとの接続および切断を切換えることにより、バルブタイミング調整装置10を複数の状態に変化させることができる。
In the present embodiment, the outer sleeve 40 and the inner sleeve 50 have a first control port 411 and a second control port 412 that are formed so as to be connected to the valve timing adjusting device 10. The present embodiment further includes a spool 60. The spool 60 is formed in a cylindrical shape so as to be reciprocally movable in the axial direction inside the inner sleeve 50, forms an internal space 600 on the inner side, and the internal space 600 and the other end side of the axial flow path portion 502. , And the first control oil path 611 and the second control oil path 612 formed to be connectable to the internal space 600 and the first control port 411 and the second control port 412. The first control oil passage 611, the second control oil passage 612, the first control port 411, and the second control port 412 can be switched between connection and disconnection according to the position with respect to the inner sleeve 50.
This shows a specific example when the hydraulic oil control valve 11 is used for control of the valve timing adjusting device 10. By switching connection and disconnection between each control oil passage and each control port by the spool 60, the valve timing adjusting device 10 can be changed into a plurality of states.
 本実施形態は、エンジン1のクランク軸2からカム軸3まで動力を伝達する動力伝達経路に設けられ、カム軸3により開閉駆動される吸気弁4、排気弁5のバルブタイミングを調整するバルブタイミング調整装置10であって、ハウジング20とベーンロータ30と上記作動油制御弁11とを備えている。
 ハウジング20は、クランク軸2と連動して回転し、カム軸3の端部に嵌合し、カム軸3により回転可能に支持される。
 ベーンロータ30は、カム軸3の端部に固定され、ハウジング20の内側の空間200を複数の遅角室201、進角室202に仕切るベーン32を有し、オイルポンプ8から遅角室201、進角室202に供給される作動油の圧力に応じてハウジング20に対して相対回転する。
 作動油制御弁11は、オイルポンプ8からバルブタイミング調整装置10に供給する作動油の流れを制御可能である。
 第1制御ポート411、第2制御ポート412は、それぞれ、遅角室201、進角室202に接続している。
 これは、作動油制御弁11をバルブタイミング調整装置10に適用する場合の具体例を示すものである。本実施形態の作動油制御弁11は、流路圧損を抑制できるとともに、意図しない流路遮断を抑制することができるため、バルブタイミング調整装置10を高応答化し、効率よく、高精度に制御することができる。
The present embodiment is provided in a power transmission path for transmitting power from the crankshaft 2 to the camshaft 3 of the engine 1 and adjusts the valve timings of the intake valve 4 and the exhaust valve 5 that are opened and closed by the camshaft 3. The adjusting device 10 includes a housing 20, a vane rotor 30, and the hydraulic oil control valve 11.
The housing 20 rotates in conjunction with the crankshaft 2, is fitted to the end of the camshaft 3, and is rotatably supported by the camshaft 3.
The vane rotor 30 is fixed to the end of the camshaft 3 and includes a vane 32 that divides the space 200 inside the housing 20 into a plurality of retarding chambers 201 and advancing chambers 202. From the oil pump 8 to the retarding chamber 201, It rotates relative to the housing 20 according to the pressure of the hydraulic oil supplied to the advance chamber 202.
The hydraulic oil control valve 11 can control the flow of hydraulic oil supplied from the oil pump 8 to the valve timing adjusting device 10.
The first control port 411 and the second control port 412 are connected to the retard chamber 201 and the advance chamber 202, respectively.
This shows a specific example when the hydraulic oil control valve 11 is applied to the valve timing adjusting device 10. The hydraulic oil control valve 11 of the present embodiment can suppress flow path pressure loss and suppress unintended flow path blockage, so that the valve timing adjusting device 10 is highly responsive, and is controlled efficiently and with high accuracy. be able to.
 また、本実施形態では、作動油制御弁11は、ベーンロータ30の中央部に設けられている。すなわち、作動油制御弁11とバルブタイミング調整装置10は、一体に設けられている。そのため、作動油制御弁11およびバルブタイミング調整装置10をコンパクトに配置することができる。 In the present embodiment, the hydraulic oil control valve 11 is provided in the central portion of the vane rotor 30. That is, the hydraulic oil control valve 11 and the valve timing adjusting device 10 are provided integrally. Therefore, the hydraulic oil control valve 11 and the valve timing adjusting device 10 can be arranged in a compact manner.
  (第2実施形態)
 第2実施形態による作動油制御弁、および、その一部を図9~11に示す。第2実施形態は、アウタースリーブ40、インナースリーブ50、スプール60の構成等が第1実施形態と異なる。
(Second Embodiment)
9 to 11 show a hydraulic oil control valve according to the second embodiment and a part thereof. The second embodiment differs from the first embodiment in the configuration of the outer sleeve 40, the inner sleeve 50, the spool 60, and the like.
 第2実施形態では、アウタースリーブ40に供給流路部401が形成されている。供給流路部501は、ねじ部41に対し係止部49側においてアウタースリーブ40を径方向に貫くよう形成されている。供給流路部401は、例えばアウタースリーブ40の周方向に等間隔で4つ形成されている。給流路部401には、オイルポンプ8からの作動油が流れる。 In the second embodiment, the supply flow path portion 401 is formed in the outer sleeve 40. The supply channel portion 501 is formed so as to penetrate the outer sleeve 40 in the radial direction on the locking portion 49 side with respect to the screw portion 41. For example, four supply flow path portions 401 are formed at equal intervals in the circumferential direction of the outer sleeve 40. The hydraulic oil from the oil pump 8 flows through the supply channel 401.
 軸方向流路部502は、アウタースリーブ40とインナースリーブ50との間において軸方向に延びるよう形成されている。
 軸方向流路部502は、インナースリーブ50の外周壁から径方向内側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成されている。
 本実施形態では、軸方向流路部502は、インナースリーブ50の周方向に等間隔で4つ形成されている(図10参照)。
The axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
The axial flow path portion 502 is formed on the fitting boundary surface T <b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
In the present embodiment, four axial flow path portions 502 are formed at equal intervals in the circumferential direction of the inner sleeve 50 (see FIG. 10).
 4つの供給流路部401のそれぞれは、4つの軸方向流路部502のそれぞれの一端側とアウタースリーブ40の外部とを接続している。すなわち、軸方向流路部502の一端側には、供給流路部401が開口している。 Each of the four supply flow channel portions 401 connects one end side of each of the four axial flow channel portions 502 and the outside of the outer sleeve 40. That is, the supply flow path portion 401 is open on one end side of the axial flow path portion 502.
 周方向流路部503は、アウタースリーブ40とインナースリーブ50との間において軸方向流路部502の一端から周方向に延びて環状に形成されている(図9~11参照)。すなわち、周方向流路部503には、4つの供給流路部401が開口している。また、周方向流路部503は、4つの軸方向流路部502の一端に接続している。
 オイルポンプ8からの作動油は、供給流路部401を経由して軸方向流路部502および周方向流路部503に流入することができる。
The circumferential flow path portion 503 is formed in an annular shape between the outer sleeve 40 and the inner sleeve 50, extending in the circumferential direction from one end of the axial flow path portion 502 (see FIGS. 9 to 11). That is, four supply flow path portions 401 are opened in the circumferential flow path portion 503. The circumferential flow path portion 503 is connected to one end of the four axial flow path portions 502.
The hydraulic oil from the oil pump 8 can flow into the axial flow path portion 502 and the circumferential flow path portion 503 via the supply flow path portion 401.
 径方向流路部504は、インナースリーブ50を径方向に貫くよう形成され、一端が軸方向流路部502の他端側に接続し、他端側がインナースリーブ50の内側の空間に接続している(図9~11参照)。径方向流路部504は、4つの軸方向流路部502のそれぞれに接続するよう4つ形成されている(図10参照)。 The radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIGS. 9 to 11). Four radial flow path portions 504 are formed so as to be connected to each of the four axial flow path portions 502 (see FIG. 10).
 供給チェック弁71は、第1実施形態と同様の構成である。
 供給チェック弁71は、周方向流路部503に設けられている。供給チェック弁71は、軸方向流路部502の一端および周方向流路部503において径方向に弾性変形可能に設けられている。ここで、供給チェック弁71は、4つの弁部701がそれぞれ4つの供給流路部401に対応するよう設けられている。すなわち、供給チェック弁71は、供給流路部401に対しアウタースリーブ40の径方向内側に設けられている。
The supply check valve 71 has the same configuration as in the first embodiment.
The supply check valve 71 is provided in the circumferential flow path portion 503. The supply check valve 71 is provided so as to be elastically deformable in the radial direction at one end of the axial flow path portion 502 and the circumferential flow path portion 503. Here, the supply check valve 71 is provided so that the four valve parts 701 correspond to the four supply flow path parts 401, respectively. That is, the supply check valve 71 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path portion 401.
 軸方向流路部502は、弁座面44、弁座段差面45、ストッパ面54、ストッパ段差面55を有している。
 弁座面44は、アウタースリーブ40において、供給流路部401の開口の周囲に環状に形成され、供給チェック弁71の弁部701が当接可能である。弁座段差面45は、弁座面44に対し軸方向流路部502の他端側において弁座面44に対しアウタースリーブ40の径方向内側に形成されている(図11参照)。
The axial flow path portion 502 has a valve seat surface 44, a valve seat step surface 45, a stopper surface 54, and a stopper step surface 55.
The valve seat surface 44 is formed in an annular shape around the opening of the supply flow path portion 401 in the outer sleeve 40, and can contact the valve portion 701 of the supply check valve 71. The valve seat step surface 45 is formed on the radially inner side of the outer sleeve 40 with respect to the valve seat surface 44 on the other end side of the axial flow path portion 502 with respect to the valve seat surface 44 (see FIG. 11).
 ストッパ面54は、インナースリーブ50において、供給流路部401の開口に対向する位置に形成されている。ストッパ段差面55は、ストッパ面54に対し軸方向流路部502の他端側においてストッパ面54に対しインナースリーブ50の径方向内側に形成されている(図11参照)。 The stopper surface 54 is formed in the inner sleeve 50 at a position facing the opening of the supply flow path portion 401. The stopper step surface 55 is formed on the radially inner side of the inner sleeve 50 with respect to the stopper surface 54 on the other end side of the axial flow path portion 502 with respect to the stopper surface 54 (see FIG. 11).
 供給チェック弁71は、周方向流路部503に設けられ、供給流路部401に作動油が流れていない状態、すなわち、外力が作用していない状態では、内周壁が、弁座段差面45と略同一面上に位置している(図11参照)。
 ここで、ストッパ面54とストッパ段差面55との境界B1は、供給チェック弁71の軸方向の長さの範囲内に位置している(図11参照)。
The supply check valve 71 is provided in the circumferential flow path portion 503, and in a state where hydraulic fluid does not flow through the supply flow path portion 401, that is, in a state where no external force is applied, the inner peripheral wall is the valve seat step surface 45. Are located on substantially the same plane (see FIG. 11).
Here, the boundary B1 between the stopper surface 54 and the stopper step surface 55 is located within the range of the axial length of the supply check valve 71 (see FIG. 11).
 作動油が供給流路部401を経由して軸方向流路部502および周方向流路部503へ流れるとき、供給チェック弁71は、弁部701の外壁が作動油により押され径方向内側へ縮むよう、すなわち、内径が縮小するようにして変形する。これにより、供給チェック弁71の弁部701が弁座面44から離間し、作動油は、弁部701と弁座面44との間を経由して軸方向流路部502の他方の端部側、すなわち、径方向流路部504側へ流れることができる。 When the hydraulic oil flows to the axial flow channel portion 502 and the circumferential flow channel portion 503 via the supply flow channel portion 401, the supply check valve 71 is radially inward because the outer wall of the valve portion 701 is pushed by the hydraulic fluid. It deforms to shrink, that is, to reduce the inner diameter. As a result, the valve portion 701 of the supply check valve 71 is separated from the valve seat surface 44, and the hydraulic oil passes between the valve portion 701 and the valve seat surface 44, and the other end portion of the axial flow passage portion 502. It can flow to the side, that is, the radial flow path portion 504 side.
 供給流路部401を流れる作動油の流量が所定値以上になると、供給チェック弁71は、内周壁がストッパ面54に当接する。これにより、供給チェック弁71は、径方向内側への変形が規制される。このとき、供給チェック弁71の軸方向の端部の内周壁とストッパ段差面55との間には、隙間S1が形成される(図11参照)。 When the flow rate of the hydraulic oil flowing through the supply flow path portion 401 becomes a predetermined value or more, the inner peripheral wall of the supply check valve 71 contacts the stopper surface 54. Thereby, the supply check valve 71 is restricted from being deformed radially inward. At this time, a gap S1 is formed between the inner peripheral wall of the axial end of the supply check valve 71 and the stopper step surface 55 (see FIG. 11).
 一方、供給流路部401を流れる作動油の流量が所定値以下になると、供給チェック弁71は、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。さらに、作動油が軸方向流路部502から供給流路部401側へ流れる場合、供給チェック弁71の内周壁が作動油により径方向外側へ押され、弁部701が弁座面44に当接する。これにより、軸方向流路部502側から供給流路部401側への作動油の流れが規制される。このとき、供給チェック弁71は、内周壁が弁座段差面45に対しアウタースリーブ40の径方向外側に位置するよう変形する。 On the other hand, when the flow rate of the hydraulic oil flowing through the supply flow path unit 401 becomes a predetermined value or less, the supply check valve 71 is deformed so as to expand outward in the radial direction, that is, to increase the inner diameter. Further, when hydraulic fluid flows from the axial flow channel portion 502 toward the supply flow channel portion 401, the inner peripheral wall of the supply check valve 71 is pushed radially outward by the hydraulic fluid, and the valve portion 701 contacts the valve seat surface 44. Touch. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 401 side is regulated. At this time, the supply check valve 71 is deformed so that the inner peripheral wall is located on the radially outer side of the outer sleeve 40 with respect to the valve seat step surface 45.
 このように、供給チェック弁71は、逆止弁として機能し、供給流路部401側から軸方向流路部502側への作動油の流れを許容し、軸方向流路部502側から供給流路部401側への作動油の流れを規制可能である。 In this way, the supply check valve 71 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 401 side to the axial flow passage portion 502 side, and is supplied from the axial flow passage portion 502 side. It is possible to regulate the flow of hydraulic oil to the flow path portion 401 side.
 移動規制部56は、周方向流路部503において供給チェック弁71に対し係止部59とは反対側に形成されている。移動規制部56は、供給チェック弁71の軸方向の端部に当接したとき、供給チェック弁71の軸方向の係止部59とは反対側への移動を規制可能である。
 移動規制部57は、周方向流路部503において供給チェック弁71に対し係止部59側に形成されている。移動規制部57は、供給チェック弁71の軸方向の端部に当接したとき、供給チェック弁71の軸方向の係止部59側への移動を規制可能である。
The movement restricting portion 56 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 71 in the circumferential flow path portion 503. The movement restricting portion 56 can restrict the movement of the supply check valve 71 to the side opposite to the axially engaging portion 59 when contacting the end portion of the supply check valve 71 in the axial direction.
The movement restricting portion 57 is formed on the locking portion 59 side with respect to the supply check valve 71 in the circumferential flow path portion 503. The movement restricting portion 57 can restrict the movement of the supply check valve 71 toward the engaging portion 59 in the axial direction when it contacts the end of the supply check valve 71 in the axial direction.
 このように、移動規制部56、57は、供給チェック弁71が軸方向に移動して供給流路部401から離れるのを防止することができる。また、移動規制部56は、供給チェック弁71が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。 As described above, the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 401. Further, the movement restricting portion 56 can prevent the supply check valve 71 from moving to the other side of the axial flow passage portion 502 and closing the radial flow passage portion 504.
 本実施形態では、スリーブ板部51は、インナースリーブ50の一方の端部を塞ぐようにして形成されている(図9参照)。スリーブ板部51には呼吸穴部507が形成されている。呼吸穴部507は、容積可変空間500と作動油制御弁11の外部、すなわち、大気とを接続している。これにより、容積可変空間500の圧力を大気圧と同等にすることができ、スプール60の軸方向の移動を円滑にすることができる。 In the present embodiment, the sleeve plate portion 51 is formed so as to block one end portion of the inner sleeve 50 (see FIG. 9). A breathing hole portion 507 is formed in the sleeve plate portion 51. The breathing hole 507 connects the variable volume space 500 and the outside of the hydraulic oil control valve 11, that is, the atmosphere. Thereby, the pressure of the variable volume space 500 can be made equal to the atmospheric pressure, and the axial movement of the spool 60 can be made smooth.
 本実施形態では、供給油路601は、スプール60の一方の端部側の外周壁から径方向内側へ凹み周方向へ延びるよう略円筒状に形成されている。供給油路601は、一端側が径方向流路部504に接続している。これにより、供給油路601は、軸方向流路部502を経由して供給流路部401と連通している。そのため、供給油路601には、オイルポンプ8から供給流路部401、軸方向流路部502、径方向流路部504を経由して作動油が供給される。 In the present embodiment, the supply oil passage 601 is formed in a substantially cylindrical shape so as to be recessed radially inward from the outer peripheral wall on one end side of the spool 60 and extending in the circumferential direction. One end of the supply oil passage 601 is connected to the radial flow path portion 504. As a result, the supply oil passage 601 communicates with the supply passage portion 401 via the axial passage portion 502. Therefore, hydraulic oil is supplied to the supply oil passage 601 from the oil pump 8 via the supply passage portion 401, the axial passage portion 502, and the radial passage portion 504.
 第1制御油路611は、インナースリーブ50を径方向に貫くよう形成されている。第1制御油路611は、供給油路601と一体に形成されている。そのため、供給油路601は、第1制御油路611を経由してスプール60の内部空間600に連通している。よって、内部空間600には、供給油路601、第1制御油路611を経由して作動油が流入可能である。 The first control oil passage 611 is formed so as to penetrate the inner sleeve 50 in the radial direction. The first control oil passage 611 is formed integrally with the supply oil passage 601. Therefore, the supply oil passage 601 communicates with the internal space 600 of the spool 60 via the first control oil passage 611. Therefore, hydraulic oil can flow into the internal space 600 via the supply oil passage 601 and the first control oil passage 611.
 第2制御油路612、ドレン油路602、リサイクル油路603、第1制御ポート411、第2制御ポート412の構成は、第1実施形態と同様のため、説明を省略する。
 また、スプール60による各制御油路と各制御ポートとの接続および切断についても、第1実施形態と同様のため、説明を省略する。
The configurations of the second control oil passage 612, the drain oil passage 602, the recycle oil passage 603, the first control port 411, and the second control port 412 are the same as those in the first embodiment, and thus the description thereof is omitted.
Further, the connection and disconnection between the control oil passages and the control ports by the spool 60 are the same as in the first embodiment, and thus the description thereof is omitted.
 リサイクルチェック弁81の構成、配置についても、第1実施形態と同様のため説明を省略する。
 本実施形態では、インナースリーブ50に、呼吸穴部505に代えてドレン穴部508が形成されている。ドレン穴部508は、インナースリーブ50の外周壁から径方向内側へ凹み、インナースリーブ50の軸方向へ延びるよう形成されている(図9参照)。また、ドレン穴部508は、一端側にドレンポート506が開口し、他端が係止部59と封止部62との間を経由して外部、すなわち、大気に連通している。これにより、ドレンポート506、ドレン穴部508を経由して作動油を作動油制御弁11の外部へ排出することができる。
Since the configuration and arrangement of the recycle check valve 81 are the same as those in the first embodiment, description thereof is omitted.
In the present embodiment, a drain hole 508 is formed in the inner sleeve 50 instead of the breathing hole 505. The drain hole 508 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50 (see FIG. 9). Further, the drain hole 508 has a drain port 506 opened on one end side, and the other end communicated with the outside, that is, the atmosphere via a gap between the locking portion 59 and the sealing portion 62. Thereby, the hydraulic oil can be discharged to the outside of the hydraulic oil control valve 11 via the drain port 506 and the drain hole 508.
 本実施形態では、作動油制御弁11が第1作動状態または第2作動状態のとき、オイルポンプ8を作動させると、供給流路部401を経由して軸方向流路部502に作動油が流れる。このとき、供給チェック弁71は弁座面44から離間、すなわち、開弁し、作動油の流れを許容する。このときの作動油の流量が大きい場合、供給チェック弁71は径方向内側へさらに変形し、ストッパ面54に当接する。このとき、作動油は、供給チェック弁71に流れが阻害されることなく、供給流路部401から軸方向流路部502を軸方向に円滑に流れることができる。ここで、オイルポンプ8が停止した場合等、供給流路部401および軸方向流路部502において作動油が逆流することがある。 In the present embodiment, when the oil pump 8 is operated when the hydraulic oil control valve 11 is in the first operating state or the second operating state, the hydraulic oil is supplied to the axial channel portion 502 via the supply channel portion 401. Flowing. At this time, the supply check valve 71 is separated from the valve seat surface 44, that is, is opened to allow the flow of hydraulic oil. When the flow rate of the hydraulic oil at this time is large, the supply check valve 71 is further deformed radially inward and comes into contact with the stopper surface 54. At this time, the hydraulic oil can smoothly flow in the axial direction from the supply flow path section 401 to the axial flow path section 502 without being blocked by the supply check valve 71. Here, when the oil pump 8 is stopped, the hydraulic fluid may flow backward in the supply flow path portion 401 and the axial flow path portion 502.
 供給チェック弁71がストッパ面54に当接した状態で作動油が逆流すると、供給チェック弁71とストッパ段差面55との間の隙間S1に作動油が入り込み、供給チェック弁71の内壁が径方向外側へ押される。これにより、供給チェック弁71を速やかに閉弁させることができる。 When the hydraulic oil flows backward with the supply check valve 71 in contact with the stopper surface 54, the hydraulic oil enters the gap S <b> 1 between the supply check valve 71 and the stopper step surface 55, and the inner wall of the supply check valve 71 is in the radial direction. Pushed outward. Thereby, the supply check valve 71 can be closed quickly.
 また、本実施形態では、弁座面44に対しアウタースリーブ40の径方向内側に弁座段差面45が形成されており、供給チェック弁71は、外力が作用していない状態のとき、内周壁が弁座段差面45と略同一面上に位置している。供給チェック弁71がこの状態のとき、作動油が逆流した場合、軸方向流路部502の作動油は供給チェック弁71の外壁と弁座面44との間に入り込むことなく、供給チェック弁71の内壁を径方向外側へ押す。これにより、供給チェック弁71を速やかに閉弁させることができる。 Further, in the present embodiment, the valve seat step surface 45 is formed on the inner side in the radial direction of the outer sleeve 40 with respect to the valve seat surface 44, and the supply check valve 71 has an inner peripheral wall when no external force is applied. Is located on substantially the same plane as the valve seat step surface 45. When the supply check valve 71 is in this state and hydraulic fluid flows backward, the hydraulic oil in the axial flow path portion 502 does not enter between the outer wall of the supply check valve 71 and the valve seat surface 44, and the supply check valve 71. Push the inner wall of the outer side in the radial direction. Thereby, the supply check valve 71 can be closed quickly.
 また、本実施形態では、移動規制部56、57により、供給チェック弁71が軸方向に移動して供給流路部501から離れるのを防止することができる。また、移動規制部56により、供給チェック弁71が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。 Further, in this embodiment, the movement restricting portions 56 and 57 can prevent the supply check valve 71 from moving in the axial direction and leaving the supply flow path portion 501. Further, the movement restricting section 56 can prevent the supply check valve 71 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
 以上説明したように、本実施形態では、供給流路部401は、アウタースリーブ40を径方向に貫くよう形成され、オイルポンプ8からの作動油が流れる。軸方向流路部502は、アウタースリーブ40とインナースリーブ50との間において軸方向に延びるよう形成され、一端側に供給流路部401が開口し、他端側がバルブタイミング調整装置10に接続可能である。供給チェック弁71は、軸方向流路部502において供給流路部401に対しアウタースリーブ40の径方向内側に設けられ、供給流路部401側から軸方向流路部502側への作動油の流れを許容し、軸方向流路部502側から供給流路部401側への作動油の流れを規制可能である。
 本実施形態では、供給流路部401から軸方向流路部502に流れた作動油は、供給チェック弁71を迂回することなく、軸方向流路部502の他端側へ流れ、バルブタイミング調整装置10に供給される。そのため、作動油制御弁11における流路圧損を抑制することができる。これにより、バルブタイミング調整装置10の応答性を向上することができる。
 また、大量の作動油が供給流路部501から軸方向流路部502に流れたとしても、供給チェック弁71は、供給流路部401の開口に対向する壁面に当接するのみであり、軸方向流路部502を遮断することはない。そのため、作動油制御弁11における意図しない流路遮断を抑制することができる。
As described above, in the present embodiment, the supply flow path portion 401 is formed so as to penetrate the outer sleeve 40 in the radial direction, and the hydraulic oil from the oil pump 8 flows. The axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50, the supply flow path portion 401 is opened at one end side, and the other end side can be connected to the valve timing adjusting device 10. It is. The supply check valve 71 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path section 401 in the axial flow path section 502, and the hydraulic oil is supplied from the supply flow path section 401 side to the axial flow path section 502 side. The flow is allowed and the flow of hydraulic oil from the axial flow path portion 502 side to the supply flow path portion 401 side can be regulated.
In the present embodiment, the hydraulic oil that has flowed from the supply flow path portion 401 to the axial flow path portion 502 flows to the other end side of the axial flow path portion 502 without bypassing the supply check valve 71, thereby adjusting the valve timing. Supplied to the apparatus 10. Therefore, the flow path pressure loss in the hydraulic oil control valve 11 can be suppressed. Thereby, the responsiveness of the valve timing adjusting device 10 can be improved.
Even if a large amount of hydraulic oil flows from the supply flow path portion 501 to the axial flow path portion 502, the supply check valve 71 only abuts against the wall surface facing the opening of the supply flow path portion 401. The direction flow path portion 502 is not blocked. Therefore, the unintended flow path interruption in the hydraulic oil control valve 11 can be suppressed.
 また、本実施形態は、軸方向流路部502は、供給流路部401の開口の周囲に形成され供給チェック弁71が当接可能な弁座面44、および、供給流路部401の開口に対向する位置に形成され供給チェック弁71が当接したとき供給チェック弁71の径方向の変形を規制可能なストッパ面54を有している。
 本実施形態では、上述のようにストッパ面54を形成することにより、作動油の流れを阻害することなく、供給チェック弁71の変形を規制することができる。
Further, in the present embodiment, the axial flow path portion 502 is formed around the opening of the supply flow path portion 401, the valve seat surface 44 with which the supply check valve 71 can come into contact, and the opening of the supply flow path portion 401. The stopper surface 54 is formed at a position opposite to the supply check valve 71 and is capable of restricting radial deformation of the supply check valve 71 when the supply check valve 71 comes into contact therewith.
In the present embodiment, by forming the stopper surface 54 as described above, the deformation of the supply check valve 71 can be regulated without hindering the flow of hydraulic oil.
 また、本実施形態では、軸方向流路部502は、弁座面44に対し軸方向流路部502の他端側において弁座面44に対しアウタースリーブ40の径方向内側に形成される弁座段差面45を有している。そのため、第1実施形態と同様の効果を奏することができる。 In the present embodiment, the axial flow passage portion 502 is a valve formed on the other end side of the axial flow passage portion 502 with respect to the valve seat surface 44 and radially inward of the outer sleeve 40 with respect to the valve seat surface 44. A seat step surface 45 is provided. Therefore, the same effect as that of the first embodiment can be obtained.
 また、本実施形態では、軸方向流路部502は、ストッパ面42に対し軸方向流路部502の他端側においてストッパ面42に対しアウタースリーブ40の径方向外側に形成されるストッパ段差面43を有している。そのため、第1実施形態と同様の効果を奏することができる。 In the present embodiment, the axial flow path portion 502 is a stopper step surface formed on the radially outer side of the outer sleeve 40 with respect to the stopper surface 42 on the other end side of the axial flow path portion 502 with respect to the stopper surface 42. 43. Therefore, the same effect as that of the first embodiment can be obtained.
  (第3実施形態)
 第3実施形態による作動油制御弁の一部を図12に示す。第3実施形態は、インナースリーブ50の構成等が第2実施形態と異なる。
(Third embodiment)
A part of the hydraulic oil control valve according to the third embodiment is shown in FIG. The third embodiment is different from the second embodiment in the configuration of the inner sleeve 50 and the like.
 第2実施形態は、閉弁アシスト流路部509をさらに備えている。閉弁アシスト流路部509は、インナースリーブ50を径方向に貫、一端がストッパ面54に開口するよう形成されている。閉弁アシスト流路部509の内側には、供給油路601の作動油が流入可能である。 The second embodiment further includes a valve closing assist flow path section 509. The valve closing assist flow path portion 509 is formed so as to penetrate the inner sleeve 50 in the radial direction and open at one end to the stopper surface 54. The hydraulic oil in the supply oil passage 601 can flow inside the valve closing assist flow passage portion 509.
 本実施形態では、供給チェック弁71の外壁が作動油に押され内壁がストッパ面54に当接しているとき逆流が生じると、供給チェック弁71の内壁が閉弁アシスト流路部509内の作動油に押され、供給チェック弁71が径方向外側へ変形し閉弁する。このように、閉弁アシスト流路部509は、供給チェック弁71の閉弁をアシストする。 In the present embodiment, when a reverse flow occurs when the outer wall of the supply check valve 71 is pushed by the hydraulic oil and the inner wall is in contact with the stopper surface 54, the inner wall of the supply check valve 71 operates in the valve closing assist channel 509. Pushed by the oil, the supply check valve 71 is deformed radially outward and closes. As described above, the valve closing assist flow path section 509 assists in closing the supply check valve 71.
 以上説明したように、本実施形態は、閉弁アシスト流路部509をさらに備えている。閉弁アシスト流路部509は、インナースリーブ50を径方向に貫くよう形成され、一端がストッパ面54に開口し、内側に作動油が流入可能である。閉弁アシスト流路部509により、供給チェック弁71の閉弁をアシストすることができる。 As described above, the present embodiment further includes the valve closing assist channel portion 509. The valve closing assist flow passage portion 509 is formed so as to penetrate the inner sleeve 50 in the radial direction, one end thereof opens to the stopper surface 54, and hydraulic oil can flow into the inner side. The valve closing assist channel 509 can assist in closing the supply check valve 71.
  (第4実施形態)
 第4実施形態による作動油制御弁を図13に示す。第4実施形態は、インナースリーブ50の構成等が第2実施形態と異なる。
(Fourth embodiment)
The hydraulic oil control valve according to the fourth embodiment is shown in FIG. The fourth embodiment differs from the second embodiment in the configuration of the inner sleeve 50 and the like.
 第4実施形態では、インナースリーブ50は、第1インナースリーブ511、第2インナースリーブ512を有している。 In the fourth embodiment, the inner sleeve 50 includes a first inner sleeve 511 and a second inner sleeve 512.
 第1インナースリーブ511は、例えば樹脂等、比較的硬度が低い材料により略円筒状に形成されている。つまり、第1インナースリーブ511は、アウタースリーブ40よりも硬度が低い材料により形成されている。 The first inner sleeve 511 is formed in a substantially cylindrical shape by a material having a relatively low hardness such as a resin. That is, the first inner sleeve 511 is formed of a material having a lower hardness than the outer sleeve 40.
 第2インナースリーブ512は、例えば鉄を含む比較的硬度が高い材料により略円筒状に形成されている。つまり、第2インナースリーブ512は、第1インナースリーブ511よりも硬度が高い材料により形成されている。 The second inner sleeve 512 is formed in a substantially cylindrical shape with a material having relatively high hardness including, for example, iron. That is, the second inner sleeve 512 is formed of a material having a hardness higher than that of the first inner sleeve 511.
 第1インナースリーブ511は、外周壁がアウタースリーブ40の内周壁に嵌合するようアウタースリーブ40の内側に設けられている。第1インナースリーブ511は、アウタースリーブ40に対し相対移動不能である。 The first inner sleeve 511 is provided inside the outer sleeve 40 so that the outer peripheral wall is fitted to the inner peripheral wall of the outer sleeve 40. The first inner sleeve 511 is not movable relative to the outer sleeve 40.
 第2インナースリーブ512は、外周壁が第1インナースリーブ511の内周壁に嵌合するよう第1インナースリーブ511の内側に設けられている。第2インナースリーブ512は、第1インナースリーブ511に対し相対移動不能である。 The second inner sleeve 512 is provided inside the first inner sleeve 511 so that the outer peripheral wall is fitted to the inner peripheral wall of the first inner sleeve 511. The second inner sleeve 512 is not movable relative to the first inner sleeve 511.
 軸方向流路部502は、アウタースリーブ40と第1インナースリーブ511との間において軸方向に延びるよう形成されている。
 軸方向流路部502は、第1インナースリーブ511の外周壁から径方向内側に凹むようアウタースリーブ40と第1インナースリーブ511との嵌め合い境界面T1上において第1インナースリーブ511に形成されている。
The axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the first inner sleeve 511.
The axial flow path portion 502 is formed in the first inner sleeve 511 on the fitting interface T1 between the outer sleeve 40 and the first inner sleeve 511 so as to be recessed radially inward from the outer peripheral wall of the first inner sleeve 511. Yes.
 径方向流路部504は、第2インナースリーブ512を径方向に貫くよう形成され、一端が軸方向流路部502の他端側に接続し、他端側がインナースリーブ50の内側の空間に接続している(図13参照)。 The radial flow path portion 504 is formed so as to penetrate the second inner sleeve 512 in the radial direction, and one end is connected to the other end side of the axial flow path portion 502 and the other end side is connected to the space inside the inner sleeve 50. (See FIG. 13).
 第4実施形態では、移動規制部56、57は、第1インナースリーブ511に形成されている。また、スリーブ板部51は、第1インナースリーブ511の一方の端部を塞ぐよう第1インナースリーブ511と一体に形成されている。
 なお、第4実施形態では、弁座段差面45、ストッパ段差面55は、形成されていない。
In the fourth embodiment, the movement restricting portions 56 and 57 are formed on the first inner sleeve 511. The sleeve plate portion 51 is formed integrally with the first inner sleeve 511 so as to block one end portion of the first inner sleeve 511.
In the fourth embodiment, the valve seat step surface 45 and the stopper step surface 55 are not formed.
 以上説明したように、本実施形態では、アウタースリーブ40は、バルブタイミング調整装置10の内壁にねじ結合可能なねじ部41を外周壁に有している。
 インナースリーブ50は、アウタースリーブ40よりも硬度が低い材料により形成された筒状の第1インナースリーブ511、および、第1インナースリーブ511よりも硬度が高い材料により形成され第1インナースリーブ511の内側に設けられた筒状の第2インナースリーブ512を有している。軸方向流路部502は、第1インナースリーブ511に形成されている。本実施形態では、アウタースリーブ40よりも硬度の低い第1インナースリーブ511に軸方向流路部502、移動規制部56、57が形成されている。そのため、アウタースリーブ40のねじ部41における強度を確保しつつ、軸方向流路部502、移動規制部56、57を切削等により第1インナースリーブ511に容易に精度よく形成することができる。
 また、第1インナースリーブ511よりも硬度の高い第2インナースリーブ512は、略円筒状の単純な形状に形成されている。そのため、第2インナースリーブ512は、硬度が高くても容易に形成することができる。また、内壁にスプール60の外壁が摺動する第2インナースリーブ512の強度を確保することができる。
As described above, in the present embodiment, the outer sleeve 40 has the screw portion 41 that can be screwed to the inner wall of the valve timing adjusting device 10 on the outer peripheral wall.
The inner sleeve 50 is a cylindrical first inner sleeve 511 formed of a material having a lower hardness than the outer sleeve 40, and an inner side of the first inner sleeve 511 formed of a material having a higher hardness than the first inner sleeve 511. A cylindrical second inner sleeve 512 is provided. The axial flow path portion 502 is formed in the first inner sleeve 511. In the present embodiment, the axial flow path portion 502 and the movement restricting portions 56 and 57 are formed in the first inner sleeve 511 having a lower hardness than the outer sleeve 40. Therefore, the axial flow path portion 502 and the movement restricting portions 56 and 57 can be easily and accurately formed on the first inner sleeve 511 by cutting or the like while ensuring the strength of the screw portion 41 of the outer sleeve 40.
In addition, the second inner sleeve 512 having a higher hardness than the first inner sleeve 511 is formed in a substantially cylindrical simple shape. Therefore, the second inner sleeve 512 can be easily formed even if the hardness is high. Further, the strength of the second inner sleeve 512 on which the outer wall of the spool 60 slides on the inner wall can be ensured.
 また、本実施形態では、アウタースリーブ40は、鉄を含む材料により形成されている。第1インナースリーブ511は、樹脂により形成されている。第2インナースリーブ512は、鉄を含む材料により形成されている。これは、アウタースリーブ40、第1インナースリーブ511、第2インナースリーブ512の構成を具体的に例示するものである。この構成では、アウタースリーブ40および第2インナースリーブ512の強度を確保しつつ、第1インナースリーブ511に軸方向流路部502等を容易に形成することができる。 In the present embodiment, the outer sleeve 40 is made of a material containing iron. The first inner sleeve 511 is made of resin. The second inner sleeve 512 is formed of a material containing iron. This specifically illustrates the configuration of the outer sleeve 40, the first inner sleeve 511, and the second inner sleeve 512. With this configuration, the axial flow path portion 502 and the like can be easily formed in the first inner sleeve 511 while ensuring the strength of the outer sleeve 40 and the second inner sleeve 512.
  (第5実施形態)
 第5実施形態による作動油制御弁の一部を図14、15に示す。第5実施形態は、供給チェック弁の構成が第1実施形態と異なる。
(Fifth embodiment)
A part of the hydraulic oil control valve according to the fifth embodiment is shown in FIGS. The fifth embodiment differs from the first embodiment in the configuration of the supply check valve.
 第5実施形態では、供給チェック弁72は、第1実施形態の供給チェック弁71と同様、例えば長方形の金属薄板を長手方向が周方向に沿うよう曲げることにより略円筒状に形成されている。図14は、供給チェック弁72を展開した図である。図15は、供給チェック弁72を軸方向の中間位置における断面図である。 In the fifth embodiment, similarly to the supply check valve 71 of the first embodiment, the supply check valve 72 is formed in a substantially cylindrical shape by bending, for example, a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction. FIG. 14 is a developed view of the supply check valve 72. FIG. 15 is a cross-sectional view of the supply check valve 72 at an intermediate position in the axial direction.
 第5実施形態では、供給チェック弁72は、重なり部700、開口部720、支持部721、弁部701を有している。
 重なり部700は、供給チェック弁72の周方向の一方の端部に形成されている。重なり部700は、供給チェック弁72の周方向の他方の端部の径方向外側に重なるようにして形成されている(図15参照)。
In the fifth embodiment, the supply check valve 72 includes an overlapping portion 700, an opening 720, a support portion 721, and a valve portion 701.
The overlapping portion 700 is formed at one end portion of the supply check valve 72 in the circumferential direction. The overlapping portion 700 is formed so as to overlap the radially outer side of the other end portion in the circumferential direction of the supply check valve 72 (see FIG. 15).
 開口部720は、供給チェック弁72の周方向に等間隔で4つ形成されている。
 支持部721は、4つの開口部720のそれぞれの内縁部から供給チェック弁72の周方向に延びるよう形成されている。
Four openings 720 are formed at equal intervals in the circumferential direction of the supply check valve 72.
The support portion 721 is formed to extend from the inner edge portion of each of the four openings 720 in the circumferential direction of the supply check valve 72.
 弁部701は、支持部721の先端部に接続するよう形成されている。ここで、弁部701は、供給チェック弁72の周方向に等間隔で4つ形成されている。 The valve portion 701 is formed so as to be connected to the distal end portion of the support portion 721. Here, four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 72.
 供給チェック弁72は、周方向流路部503に設けられている。供給チェック弁72は、軸方向流路部502の一端および周方向流路部503において支持部721および弁部701が径方向に弾性変形可能に設けられている。ここで、供給チェック弁72は、4つの弁部701がそれぞれ4つの供給流路部501に対応するよう設けられている。すなわち、供給チェック弁72は、供給流路部501に対しインナースリーブ50の径方向外側に設けられている。 The supply check valve 72 is provided in the circumferential flow path portion 503. The supply check valve 72 includes a support portion 721 and a valve portion 701 that are elastically deformable in the radial direction at one end of the axial flow passage portion 502 and the circumferential flow passage portion 503. Here, the supply check valve 72 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 72 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
  (第6実施形態)
 第6実施形態による作動油制御弁の一部を図16、17に示す。第6実施形態は、供給チェック弁の構成が第1実施形態と異なる。
(Sixth embodiment)
A part of the hydraulic oil control valve according to the sixth embodiment is shown in FIGS. The sixth embodiment differs from the first embodiment in the configuration of the supply check valve.
 第6実施形態では、供給チェック弁73は、第1実施形態の供給チェック弁71と同様、例えば長方形の金属薄板を長手方向が周方向に沿うよう曲げることにより略円筒状に形成されている。図16は、供給チェック弁73を展開した図である。図17は、供給チェック弁73を軸方向から見た図である。 In the sixth embodiment, similarly to the supply check valve 71 of the first embodiment, the supply check valve 73 is formed in a substantially cylindrical shape by bending, for example, a rectangular metal thin plate so that the longitudinal direction is along the circumferential direction. FIG. 16 is a developed view of the supply check valve 73. FIG. 17 is a view of the supply check valve 73 viewed from the axial direction.
 第6実施形態では、供給チェック弁73は、重なり部700、弁部701、切欠き部731を有している。
 重なり部700は、供給チェック弁73の周方向の一方の端部に形成されている。重なり部700は、供給チェック弁73の周方向の他方の端部の径方向外側に重なるようにして形成されている(図17参照)。弁部701は、供給チェック弁71の周方向に等間隔で4つ形成されている。
In the sixth embodiment, the supply check valve 73 includes an overlapping part 700, a valve part 701, and a notch part 731.
The overlapping portion 700 is formed at one end portion of the supply check valve 73 in the circumferential direction. The overlapping portion 700 is formed so as to overlap the radially outer end of the other circumferential end of the supply check valve 73 (see FIG. 17). Four valve portions 701 are formed at equal intervals in the circumferential direction of the supply check valve 71.
 切欠き部731は、供給チェック弁73の軸方向の両端部を軸方向に切り欠くようにして形成されている。切欠き部731は、供給チェック弁73の周方向に間隔を空けて複数形成されている。 The notch portion 731 is formed so that both end portions of the supply check valve 73 in the axial direction are notched in the axial direction. A plurality of notches 731 are formed at intervals in the circumferential direction of the supply check valve 73.
 供給チェック弁73は、周方向流路部503に設けられている。供給チェック弁73は、軸方向流路部502の一端および周方向流路部503において径方向に弾性変形可能に設けられている。ここで、供給チェック弁73は、4つの弁部701がそれぞれ4つの供給流路部501に対応するよう設けられている。すなわち、供給チェック弁73は、供給流路部501に対しインナースリーブ50の径方向外側に設けられている。 The supply check valve 73 is provided in the circumferential flow path portion 503. The supply check valve 73 is provided so as to be elastically deformable in the radial direction at one end of the axial channel portion 502 and the circumferential channel portion 503. Here, the supply check valve 73 is provided so that the four valve parts 701 correspond to the four supply flow path parts 501 respectively. That is, the supply check valve 73 is provided on the radially outer side of the inner sleeve 50 with respect to the supply flow path portion 501.
 供給チェック弁73が径方向外側へ拡がるよう、すなわち、内径が拡大するよう変形するとき、重なり部700は、供給チェック弁73の他方の端部から離間した状態となる。
 供給チェック弁73が径方向外側または径方向内側に変形するとき、作動油は、切欠き部731を流れることができる。そのため、特に供給チェック弁73の移動規制部57側の端部近傍の作動油が供給チェック弁73の径方向の変形を阻害するのを抑制することができる。これにより、供給チェック弁73の開閉弁の作動を円滑にすることができる。
When the supply check valve 73 is deformed so as to expand outward in the radial direction, that is, the inner diameter is increased, the overlapping portion 700 is separated from the other end of the supply check valve 73.
When the supply check valve 73 is deformed radially outward or radially inward, the hydraulic oil can flow through the notch 731. Therefore, it is possible to suppress the hydraulic oil in the vicinity of the end portion of the supply check valve 73 on the movement restricting portion 57 side from inhibiting the radial deformation of the supply check valve 73. Thereby, the operation | movement of the on-off valve of the supply check valve 73 can be made smooth.
  (第7実施形態)
 第7実施形態による作動油制御弁の一部を図18、19に示す。第7実施形態は、アウタースリーブ40、インナースリーブ50、供給チェック弁の構成等が第2実施形態と異なる。
(Seventh embodiment)
A part of the hydraulic oil control valve according to the seventh embodiment is shown in FIGS. The seventh embodiment differs from the second embodiment in the configuration of the outer sleeve 40, the inner sleeve 50, the supply check valve, and the like.
 第7実施形態では、供給流路部401は、アウタースリーブ40の周方向に等間隔で2つ形成されている(図18、19参照)。供給流路部401には、オイルポンプ8からの作動油が流れる。 In the seventh embodiment, two supply flow path portions 401 are formed at equal intervals in the circumferential direction of the outer sleeve 40 (see FIGS. 18 and 19). The hydraulic oil from the oil pump 8 flows through the supply flow path portion 401.
 軸方向流路部502は、アウタースリーブ40とインナースリーブ50との間において軸方向に延びるよう形成されている。
 軸方向流路部502は、インナースリーブ50の外周壁から径方向内側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成されている。
The axial flow path portion 502 is formed to extend in the axial direction between the outer sleeve 40 and the inner sleeve 50.
The axial flow path portion 502 is formed on the fitting boundary surface T <b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50.
 本実施形態では、軸方向流路部502は、インナースリーブ50の周方向に等間隔で2つ形成されている(図18、19参照)。
 2つの供給流路部401のそれぞれは、2つの軸方向流路部502のそれぞれの一端側とアウタースリーブ40の外部とを接続している。すなわち、軸方向流路部502の一端側には、供給流路部401が開口している。
 第7実施形態では、第2実施形態で示した周方向流路部503は形成されていない。
In the present embodiment, two axial flow path portions 502 are formed at equal intervals in the circumferential direction of the inner sleeve 50 (see FIGS. 18 and 19).
Each of the two supply flow path portions 401 connects one end side of each of the two axial flow path portions 502 and the outside of the outer sleeve 40. That is, the supply flow path portion 401 is open on one end side of the axial flow path portion 502.
In the seventh embodiment, the circumferential flow path portion 503 shown in the second embodiment is not formed.
 径方向流路部504は、インナースリーブ50を径方向に貫くよう形成され、一端が軸方向流路部502の他端側に接続し、他端側がインナースリーブ50の内側の空間に接続している(図18参照)。径方向流路部504は、2つの軸方向流路部502のそれぞれに接続するよう2つ形成されている(図18参照)。 The radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction, and has one end connected to the other end side of the axial flow path portion 502 and the other end side connected to a space inside the inner sleeve 50. (See FIG. 18). Two radial flow path portions 504 are formed so as to be connected to each of the two axial flow path portions 502 (see FIG. 18).
 供給チェック弁74は、例えば長方形の金属薄板を長手方向に向かって複数回交互に折り曲げることにより形成されている。
 供給チェック弁74は、軸方向流路部502の一端側に設けられている。供給チェック弁74は、軸方向流路部502の一端においてインナースリーブ50の径方向に弾性変形可能に設けられている。ここで、供給チェック弁74は、2つの供給流路部401に対応するよう、計2つ設けられている。すなわち、供給チェック弁74は、供給流路部401に対しアウタースリーブ40の径方向内側に設けられている。
The supply check valve 74 is formed by, for example, alternately bending a rectangular thin metal plate a plurality of times in the longitudinal direction.
The supply check valve 74 is provided on one end side of the axial flow path portion 502. The supply check valve 74 is provided at one end of the axial flow path portion 502 so as to be elastically deformable in the radial direction of the inner sleeve 50. Here, a total of two supply check valves 74 are provided so as to correspond to the two supply flow path portions 401. That is, the supply check valve 74 is provided on the radially inner side of the outer sleeve 40 with respect to the supply flow path portion 401.
 供給チェック弁74は、インナースリーブ50の径方向外側に伸びる力を有している。そのため、供給チェック弁74は、弁座面44に当接し、供給流路部401を塞いでいる。 The supply check valve 74 has a force that extends radially outward of the inner sleeve 50. Therefore, the supply check valve 74 abuts on the valve seat surface 44 and closes the supply flow path portion 401.
 第7実施形態では、第2実施形態で示した弁座段差面45、ストッパ段差面55は形成されていない。
 作動油が供給流路部401を経由して軸方向流路部502へ流れるとき、供給チェック弁74は、作動油により押されインナースリーブ50の径方向内側へ縮むようにして変形する。これにより、供給チェック弁74が弁座面44から離間し、作動油は、供給チェック弁74と弁座面44との間を経由して軸方向流路部502の他方の端部側、すなわち、径方向流路部504側へ流れることができる。
In the seventh embodiment, the valve seat step surface 45 and the stopper step surface 55 shown in the second embodiment are not formed.
When the hydraulic oil flows to the axial flow path section 502 via the supply flow path section 401, the supply check valve 74 is pushed by the hydraulic oil and deforms so as to shrink inward in the radial direction of the inner sleeve 50. As a result, the supply check valve 74 is separated from the valve seat surface 44, and the hydraulic oil passes between the supply check valve 74 and the valve seat surface 44, that is, on the other end side of the axial flow path portion 502, that is, , It can flow to the radial flow path portion 504 side.
 供給流路部401を流れる作動油の流量が所定値以下になると、供給チェック弁74は、インナースリーブ50の径方向外側へ伸びるようにして変形し、弁座面44に当接し閉弁する。これにより、軸方向流路部502側から供給流路部401側への作動油の流れが規制される。 When the flow rate of the hydraulic oil flowing through the supply flow path portion 401 becomes a predetermined value or less, the supply check valve 74 is deformed so as to extend outward in the radial direction of the inner sleeve 50, abuts on the valve seat surface 44 and closes. Thereby, the flow of the hydraulic oil from the axial direction flow path part 502 side to the supply flow path part 401 side is regulated.
 このように、供給チェック弁74は、逆止弁として機能し、供給流路部401側から軸方向流路部502側への作動油の流れを許容し、軸方向流路部502側から供給流路部401側への作動油の流れを規制可能である。 In this way, the supply check valve 74 functions as a check valve, allows hydraulic oil to flow from the supply flow path portion 401 side to the axial flow passage portion 502 side, and is supplied from the axial flow passage portion 502 side. It is possible to regulate the flow of hydraulic oil to the flow path portion 401 side.
 移動規制部56は、供給チェック弁74に対し係止部59とは反対側に形成されている。移動規制部56は、供給チェック弁74に当接したとき、供給チェック弁74のインナースリーブ50の軸方向の係止部59とは反対側への移動を規制可能である。
 移動規制部57は、供給チェック弁74に対し係止部59側に形成されている。移動規制部57は、供給チェック弁74に当接したとき、供給チェック弁74のインナースリーブ50の軸方向の係止部59側への移動を規制可能である。
The movement restricting portion 56 is formed on the side opposite to the locking portion 59 with respect to the supply check valve 74. When the movement restricting portion 56 abuts on the supply check valve 74, the movement restricting portion 56 can restrict the movement of the supply check valve 74 to the side opposite to the axially engaging portion 59 of the inner sleeve 50.
The movement restricting portion 57 is formed on the locking portion 59 side with respect to the supply check valve 74. The movement restricting portion 57 can restrict the movement of the inner sleeve 50 of the supply check valve 74 toward the engaging portion 59 in the axial direction when contacting the supply check valve 74.
 このように、移動規制部56、57は、供給チェック弁74がインナースリーブ50の軸方向に移動して供給流路部401から離れるのを防止することができる。また、移動規制部56は、供給チェック弁74が軸方向流路部502の他方側へ移動し径方向流路部504を塞ぐのを防止することができる。 Thus, the movement restricting portions 56 and 57 can prevent the supply check valve 74 from moving in the axial direction of the inner sleeve 50 and leaving the supply flow path portion 401. Further, the movement restricting section 56 can prevent the supply check valve 74 from moving to the other side of the axial flow path section 502 and closing the radial flow path section 504.
  (他の実施形態)
 上述の実施形態では、供給チェック弁の軸方向の係止部59側、すなわち、軸方向流路部502の他端側への移動を規制可能な移動規制部56、および、供給チェック弁の軸方向の係止部59とは反対側、すなわち、軸方向流路部502の他端とは反対側への移動を規制可能な移動規制部57を示した。これに対し、本開示の他の実施形態では、移動規制部56および移動規制部57のいずれか一方が形成されることとしてもよい。また、移動規制部56および移動規制部57のいずれも形成されていなくてもよい。
(Other embodiments)
In the embodiment described above, the movement restricting portion 56 that can restrict the movement of the supply check valve toward the locking portion 59 in the axial direction, that is, the other end side of the axial flow passage portion 502, and the shaft of the supply check valve The movement restricting portion 57 capable of restricting the movement to the opposite side to the direction locking portion 59, that is, the opposite side to the other end of the axial direction flow passage portion 502 is shown. On the other hand, in another embodiment of the present disclosure, one of the movement restriction unit 56 and the movement restriction unit 57 may be formed. Further, neither the movement restriction unit 56 nor the movement restriction unit 57 may be formed.
 また、本開示の他の実施形態では、弁座段差面、ストッパ段差面は形成されていなくてもよい。
 また、上述の実施形態では、径方向流路部504がインナースリーブ50を径方向に貫くよう形成される例を示した。これに対し、本開示の他の実施形態では、径方向流路部504は、アウタースリーブ40を径方向に貫くよう形成されていてもよい。この場合、径方向流路部504の軸方向流路部502とは反対側の端部は、インナースリーブ50の内側を経由することなく、作動油供給対象に直接接続してもよい。
In another embodiment of the present disclosure, the valve seat step surface and the stopper step surface may not be formed.
In the above-described embodiment, the example in which the radial flow path portion 504 is formed so as to penetrate the inner sleeve 50 in the radial direction has been described. On the other hand, in other embodiments of the present disclosure, the radial flow path portion 504 may be formed so as to penetrate the outer sleeve 40 in the radial direction. In this case, the end of the radial flow path portion 504 opposite to the axial flow path portion 502 may be directly connected to the hydraulic oil supply target without passing through the inner sleeve 50.
 また、上述の実施形態では、軸方向流路部502が、インナースリーブ50の外周壁から径方向内側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成される例を示した。これに対し、本開示の他の実施形態では、軸方向流路部502は、アウタースリーブ40の内周壁から径方向外側に凹むようアウタースリーブ40とインナースリーブ50との嵌め合い境界面T1上に形成されることとしてもよい。 Further, in the above-described embodiment, an example in which the axial flow path portion 502 is formed on the fitting boundary surface T <b> 1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50. Indicated. On the other hand, in another embodiment of the present disclosure, the axial flow path portion 502 is on the fitting interface T1 between the outer sleeve 40 and the inner sleeve 50 so as to be recessed radially outward from the inner peripheral wall of the outer sleeve 40. It may be formed.
 また、上述の第1~3、7実施形態では、アウタースリーブ40を鉄を含む材料により形成し、インナースリーブ50をアルミニウムを含む材料により形成する例を示した。これに対し、本開示の他の実施形態では、インナースリーブ50は、アウタースリーブ40よりも硬度が低い材料であれば、どのような材料により形成されていてもよい。また、アウタースリーブ40は、インナースリーブ50よりも硬度が高い材料であれば、どのような材料により形成されていてもよい。 In the above first to third and seventh embodiments, the outer sleeve 40 is formed of a material containing iron, and the inner sleeve 50 is formed of a material containing aluminum. On the other hand, in other embodiments of the present disclosure, the inner sleeve 50 may be formed of any material as long as it has a lower hardness than the outer sleeve 40. Further, the outer sleeve 40 may be formed of any material as long as the material has higher hardness than the inner sleeve 50.
 また、上述の第4実施形態では、アウタースリーブ40を鉄を含む材料により形成し、第1インナースリーブ511を樹脂により形成し、第2インナースリーブ512を鉄を含む材料により形成する例を示した。これに対し、本開示の他の実施形態では、第1インナースリーブ511は、アウタースリーブ40および第2インナースリーブ512よりも硬度が低い材料であれば、どのような材料により形成されていてもよい。また、アウタースリーブ40は、第1インナースリーブ511よりも硬度が高い材料であれば、どのような材料により形成されていてもよい。また、第2インナースリーブ512は、第1インナースリーブ511よりも硬度が高い材料であれば、どのような材料により形成されていてもよい。 In the above-described fourth embodiment, the outer sleeve 40 is formed of a material containing iron, the first inner sleeve 511 is formed of resin, and the second inner sleeve 512 is formed of a material containing iron. . On the other hand, in other embodiments of the present disclosure, the first inner sleeve 511 may be formed of any material as long as it has a lower hardness than the outer sleeve 40 and the second inner sleeve 512. . Further, the outer sleeve 40 may be formed of any material as long as it has a higher hardness than the first inner sleeve 511. The second inner sleeve 512 may be made of any material as long as it has a higher hardness than the first inner sleeve 511.
 また、本開示の他の実施形態では、作動油制御弁11は、ベーンロータ30の中央部に限らず、バルブタイミング調整装置10の外部に設けられていてもよい。この場合、アウタースリーブ40は、ねじ部41を省略することができる。また、この場合、アウタースリーブ40、インナースリーブ50をいずれもアルミニウムを含む材料により形成してもよい。この場合、アウタースリーブ40、インナースリーブ50の強度を確保しつつ、材料コストを低減することができる。 Further, in another embodiment of the present disclosure, the hydraulic oil control valve 11 is not limited to the central portion of the vane rotor 30 and may be provided outside the valve timing adjustment device 10. In this case, the outer sleeve 40 can omit the screw portion 41. In this case, both the outer sleeve 40 and the inner sleeve 50 may be formed of a material containing aluminum. In this case, the material cost can be reduced while ensuring the strength of the outer sleeve 40 and the inner sleeve 50.
 また、本開示の他の実施形態では、アウタースリーブ40およびインナースリーブ50が第1制御ポート411、第2制御ポート412を有さず、スプール60を備えないこととしてもよい。この場合、アウタースリーブ40に径方向流路部504を形成するか、軸方向流路部502がアウタースリーブ40およびインナースリーブ50の軸方向の端面に開口し作動油供給対象に接続するようにすればよい。 In another embodiment of the present disclosure, the outer sleeve 40 and the inner sleeve 50 may not include the first control port 411 and the second control port 412 and may not include the spool 60. In this case, the radial flow path portion 504 is formed in the outer sleeve 40 or the axial flow path portion 502 is opened at the axial end surfaces of the outer sleeve 40 and the inner sleeve 50 and connected to the hydraulic oil supply target. That's fine.
 また、本開示の作動油制御弁11は、遅角室201、進角室202の2つの油圧室を有するバルブタイミング調整装置10に限らず、その他の作動油により駆動する装置等に供給する作動油を制御するために用いてもよい。
 また、本開示の他の実施形態では、チェーン6に代えて、例えばベルト等の伝達部材によりハウジング20とクランク軸2とが連結されていてもよい。
Further, the hydraulic oil control valve 11 of the present disclosure is not limited to the valve timing adjustment device 10 having two hydraulic chambers, the retard chamber 201 and the advance chamber 202, and is an operation that supplies to other devices driven by hydraulic oil. It may be used to control the oil.
In another embodiment of the present disclosure, the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt instead of the chain 6.
 また、上述の実施形態では、クランク軸2を「第1軸」とし、カム軸3を「第2軸」とする例を示した。これに対し、本開示の他の実施形態では、クランク軸2を「第2軸」とし、カム軸3を「第1軸」としてもよい。すなわち、ベーンロータ30がクランク軸2の端部に固定され、ハウジング20がカム軸3に連動して回転してもよい。 In the above-described embodiment, an example in which the crankshaft 2 is the “first axis” and the camshaft 3 is the “second axis” has been described. On the other hand, in another embodiment of the present disclosure, the crankshaft 2 may be a “second shaft” and the camshaft 3 may be a “first shaft”. That is, the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.
 本開示のバルブタイミング調整装置10は、エンジン1の排気弁5のバルブタイミングを調整することとしてもよい。
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
The valve timing adjusting device 10 of the present disclosure may adjust the valve timing of the exhaust valve 5 of the engine 1.
Thus, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described based on embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (17)

  1.  作動油供給源(8)から作動油供給対象(10)に供給する作動油の流れを制御可能な作動油制御弁(11)であって、
     筒状のアウタースリーブ(40)と、
     前記アウタースリーブの内側に設けられた筒状のインナースリーブ(50)と、
     前記インナースリーブまたは前記アウタースリーブを径方向に貫くよう形成され、前記作動油供給源からの作動油が流れる供給流路部(501)と、
     前記アウタースリーブと前記インナースリーブとの間において軸方向に延びるよう形成され、一端側に前記供給流路部が開口し、他端側が前記作動油供給対象に接続可能な軸方向流路部(502)と、
     前記軸方向流路部において前記供給流路部に対し前記インナースリーブの径方向外側または前記アウタースリーブの径方向内側に設けられ、前記供給流路部側から前記軸方向流路部側への作動油の流れを許容し、前記軸方向流路部側から前記供給流路部側への作動油の流れを規制可能な供給チェック弁(71、72、73、74)と、
     を備える作動油制御弁。
    A hydraulic oil control valve (11) capable of controlling the flow of hydraulic oil supplied from the hydraulic oil supply source (8) to the hydraulic oil supply target (10),
    A cylindrical outer sleeve (40);
    A cylindrical inner sleeve (50) provided inside the outer sleeve;
    A supply flow path portion (501) formed so as to penetrate the inner sleeve or the outer sleeve in the radial direction, and through which hydraulic oil from the hydraulic oil supply source flows;
    An axial flow path portion (502) formed so as to extend in the axial direction between the outer sleeve and the inner sleeve, the supply flow path portion opening on one end side, and the other end side being connectable to the hydraulic oil supply target. )When,
    In the axial flow channel portion, provided radially outside the inner sleeve or radially inner side of the outer sleeve with respect to the supply flow channel portion, the operation from the supply flow channel side to the axial flow channel side A supply check valve (71, 72, 73, 74) capable of allowing the flow of oil and regulating the flow of hydraulic oil from the axial flow path side to the supply flow path side;
    Hydraulic oil control valve comprising.
  2.  前記供給チェック弁の軸方向の移動を規制可能な移動規制部(56、57)をさらに備える請求項1に記載の作動油制御弁。 The hydraulic oil control valve according to claim 1, further comprising a movement restricting portion (56, 57) capable of restricting movement of the supply check valve in the axial direction.
  3.  前記アウタースリーブと前記インナースリーブとの間において前記軸方向流路部の一端から周方向に延びて環状に形成された周方向流路部(503)をさらに備え、
     前記供給チェック弁(71、72、73)は、筒状に形成され、前記軸方向流路部の一端および前記周方向流路部において径方向に弾性変形可能なよう設けられており、
     前記軸方向流路部は、前記供給流路部の開口の周囲に形成され前記供給チェック弁が当接可能な弁座面(52、44)、および、前記供給流路部の開口に対向する位置に形成され前記供給チェック弁が当接したとき前記供給チェック弁の径方向の変形を規制可能なストッパ面(42、54)を有する請求項1または2に記載の作動油制御弁。
    A circumferential channel portion (503) formed in an annular shape extending in the circumferential direction from one end of the axial channel portion between the outer sleeve and the inner sleeve;
    The supply check valve (71, 72, 73) is formed in a cylindrical shape, and is provided so as to be elastically deformable in a radial direction at one end of the axial flow path portion and the circumferential flow path portion,
    The axial direction flow path portion is formed around the opening of the supply flow path portion and faces the valve seat surface (52, 44) with which the supply check valve can contact, and the opening of the supply flow path portion. The hydraulic oil control valve according to claim 1 or 2, further comprising a stopper surface (42, 54) formed at a position and capable of restricting radial deformation of the supply check valve when the supply check valve contacts.
  4.  前記軸方向流路部は、前記弁座面に対し前記軸方向流路部の他端側において前記弁座面に対し前記インナースリーブの径方向外側または前記アウタースリーブの径方向内側に形成される弁座段差面(53、45)を有する請求項3に記載の作動油制御弁。 The axial flow path portion is formed on the other end side of the axial flow path portion with respect to the valve seat surface, on the radially outer side of the inner sleeve or on the radially inner side of the outer sleeve with respect to the valve seat surface. The hydraulic oil control valve according to claim 3, which has a valve seat step surface (53, 45).
  5.  前記軸方向流路部は、前記ストッパ面に対し前記軸方向流路部の他端側において前記ストッパ面に対し前記アウタースリーブの径方向外側または前記インナースリーブの径方向内側に形成されるストッパ段差面(43、55)を有する請求項3または4に記載の作動油制御弁。 The axial flow path portion is a stopper step formed on the other end side of the axial flow path portion with respect to the stopper surface, on the radially outer side of the outer sleeve or on the radially inner side of the inner sleeve with respect to the stopper surface. The hydraulic oil control valve according to claim 3 or 4, having a surface (43, 55).
  6.  前記ストッパ面と前記ストッパ段差面との境界(B1)は、前記供給チェック弁の軸方向の長さの範囲内に位置している請求項5に記載の作動油制御弁。 The hydraulic oil control valve according to claim 5, wherein a boundary (B1) between the stopper surface and the stopper step surface is located within a range of an axial length of the supply check valve.
  7.  前記インナースリーブまたは前記アウタースリーブを径方向に貫くよう形成され、一端が前記ストッパ面に開口し、内側に作動油が流入可能な閉弁アシスト流路部(509)をさらに備える請求項3~6のいずれか一項に記載の作動油制御弁。 A valve closing assist passage portion (509) formed so as to penetrate the inner sleeve or the outer sleeve in the radial direction, having one end opened to the stopper surface, and into which hydraulic oil can flow inside is further provided. The hydraulic-oil control valve as described in any one of these.
  8.  前記インナースリーブまたは前記アウタースリーブを径方向に貫くよう形成され、一端が前記軸方向流路部の他端側に接続し、他端側が前記作動油供給対象に接続可能な径方向流路部(504)をさらに備える請求項1~7のいずれか一項に記載の作動油制御弁。 A radial flow path portion (formed so as to penetrate the inner sleeve or the outer sleeve in the radial direction, one end connected to the other end side of the axial flow path portion and the other end side connected to the hydraulic oil supply target ( The hydraulic oil control valve according to any one of claims 1 to 7, further comprising: 504).
  9.  前記アウタースリーブは、内周壁が円筒面状に形成されており、
     前記インナースリーブは、外周壁が円筒面状に形成されており、
     前記軸方向流路部は、前記インナースリーブの外周壁から径方向内側または前記アウタースリーブの内周壁から径方向外側に凹むよう前記アウタースリーブと前記インナースリーブとの嵌め合い境界面(T1)上に形成されている請求項1~8のいずれか一項に記載の作動油制御弁。
    The outer sleeve has an inner peripheral wall formed in a cylindrical surface shape,
    The inner sleeve has an outer peripheral wall formed in a cylindrical shape,
    The axial flow path portion is on a fitting boundary surface (T1) between the outer sleeve and the inner sleeve so as to be recessed radially inward from the outer peripheral wall of the inner sleeve or radially outward from the inner peripheral wall of the outer sleeve. The hydraulic oil control valve according to any one of claims 1 to 8, wherein the hydraulic oil control valve is formed.
  10.  前記アウタースリーブは、前記作動油供給対象の内壁にねじ結合可能なねじ部(41)を外周壁に有し、
     前記インナースリーブは、前記アウタースリーブよりも硬度が低い材料により形成され、
     前記軸方向流路部は、前記インナースリーブに形成されている請求項9に記載の作動油制御弁。
    The outer sleeve has, on the outer peripheral wall, a thread portion (41) that can be screw-coupled to the inner wall of the hydraulic oil supply target,
    The inner sleeve is formed of a material having a lower hardness than the outer sleeve,
    The hydraulic oil control valve according to claim 9, wherein the axial flow path portion is formed in the inner sleeve.
  11.  前記アウタースリーブは、鉄を含む材料により形成されており、
     前記インナースリーブは、アルミニウムを含む材料により形成されている請求項10に記載の作動油制御弁。
    The outer sleeve is formed of a material containing iron,
    The hydraulic oil control valve according to claim 10, wherein the inner sleeve is made of a material containing aluminum.
  12.  前記アウタースリーブは、前記作動油供給対象の内壁にねじ結合可能なねじ部(41)を外周壁に有し、
     前記インナースリーブは、前記アウタースリーブよりも硬度が低い材料により形成された筒状の第1インナースリーブ(511)、および、前記第1インナースリーブよりも硬度が高い材料により形成され前記第1インナースリーブの内側に設けられた筒状の第2インナースリーブ(512)を有し、
     前記軸方向流路部は、前記第1インナースリーブに形成されている請求項9に記載の作動油制御弁。
    The outer sleeve has, on the outer peripheral wall, a thread portion (41) that can be screw-coupled to the inner wall of the hydraulic oil supply target,
    The inner sleeve includes a cylindrical first inner sleeve (511) formed of a material having a lower hardness than the outer sleeve, and the first inner sleeve formed of a material having a higher hardness than the first inner sleeve. A cylindrical second inner sleeve (512) provided on the inner side of
    The hydraulic oil control valve according to claim 9, wherein the axial flow path portion is formed in the first inner sleeve.
  13.  前記アウタースリーブは、鉄を含む材料により形成されており、
     前記第1インナースリーブは、樹脂により形成されており、
     前記第2インナースリーブは、鉄を含む材料により形成されている請求項12に記載の作動油制御弁。
    The outer sleeve is formed of a material containing iron,
    The first inner sleeve is made of resin,
    The hydraulic oil control valve according to claim 12, wherein the second inner sleeve is formed of a material containing iron.
  14.  前記アウタースリーブおよび前記インナースリーブは、アルミニウムを含む材料により形成されている請求項1~9のいずれか一項に記載の作動油制御弁。 The hydraulic oil control valve according to any one of claims 1 to 9, wherein the outer sleeve and the inner sleeve are formed of a material containing aluminum.
  15.  前記アウタースリーブおよび前記インナースリーブは、前記作動油供給対象に接続するよう形成された制御ポート(411、412)を有し、
     前記インナースリーブの内側において軸方向に往復移動可能に設けられ、内側に内部空間(600)を形成し、前記内部空間と前記軸方向流路部の他端側とを接続可能に形成された供給油路(601)、および、前記内部空間と前記制御ポートとを接続可能に形成された制御油路(611、612)を有し、前記インナースリーブに対する位置に応じて前記制御油路と前記制御ポートとの接続および切断を切換え可能な筒状のスプール(60)をさらに備える請求項1~14のいずれか一項に記載の作動油制御弁。
    The outer sleeve and the inner sleeve have control ports (411, 412) formed to connect to the hydraulic oil supply target,
    A supply which is provided inside the inner sleeve so as to be capable of reciprocating in the axial direction, forms an internal space (600) on the inner side, and is formed so as to be able to connect the internal space and the other end side of the axial flow path portion. An oil passage (601), and a control oil passage (611, 612) formed so as to be connectable between the internal space and the control port, and the control oil passage and the control according to the position with respect to the inner sleeve The hydraulic oil control valve according to any one of claims 1 to 14, further comprising a cylindrical spool (60) that can be switched between connection and disconnection with a port.
  16.  内燃機関(1)の駆動軸(2)から従動軸(3)まで動力を伝達する動力伝達経路に設けられ、前記従動軸により開閉駆動されるバルブ(4、5)のバルブタイミングを調整するバルブタイミング調整装置(10)であって、
     前記駆動軸および前記従動軸の一方を第1軸とし、前記駆動軸および前記従動軸の他方を第2軸とすると、
     前記第1軸と連動して回転し、前記第2軸の端部に嵌合し、前記第2軸により回転可能に支持されるハウジング(20)と、
     前記第2軸の端部に固定され、前記ハウジングの内側の空間(200)を複数の油圧室(201、202)に仕切るベーン(32)を有し、前記作動油供給源から前記油圧室に供給される作動油の圧力に応じて前記ハウジングに対して相対回転するベーンロータ(30)と、
     請求項15に記載の作動油制御弁(11)と、を備え、
     前記作動油供給対象は、前記バルブタイミング調整装置であり、
     前記制御ポートは、前記油圧室に接続しているバルブタイミング調整装置。
    A valve that is provided in a power transmission path for transmitting power from the drive shaft (2) to the driven shaft (3) of the internal combustion engine (1) and adjusts the valve timing of the valves (4, 5) that are driven to open and close by the driven shaft. A timing adjustment device (10) comprising:
    When one of the drive shaft and the driven shaft is a first axis and the other of the drive shaft and the driven shaft is a second axis,
    A housing (20) that rotates in conjunction with the first shaft, engages with an end of the second shaft, and is rotatably supported by the second shaft;
    The vane (32) is fixed to the end of the second shaft and partitions the space (200) inside the housing into a plurality of hydraulic chambers (201, 202), from the hydraulic oil supply source to the hydraulic chamber. A vane rotor (30) that rotates relative to the housing in response to the pressure of the supplied hydraulic oil;
    A hydraulic oil control valve (11) according to claim 15,
    The hydraulic oil supply target is the valve timing adjusting device,
    The control port is a valve timing adjusting device connected to the hydraulic chamber.
  17.  前記作動油制御弁は、前記ベーンロータの中央部に設けられている請求項16に記載のバルブタイミング調整装置。 The valve timing adjusting device according to claim 16, wherein the hydraulic oil control valve is provided in a central portion of the vane rotor.
PCT/JP2018/008200 2017-03-07 2018-03-05 Hydraulic oil control valve and valve timing regulation device WO2018164022A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880009452.2A CN110291275B (en) 2017-03-07 2018-03-05 Working oil control valve and valve timing adjusting device
DE112018001233.6T DE112018001233B4 (en) 2017-03-07 2018-03-05 Hydraulic oil control valve and valve timing adjuster
US16/542,460 US11248502B2 (en) 2017-03-07 2019-08-16 Hydraulic oil control valve and valve timing adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042607A JP6790925B2 (en) 2017-03-07 2017-03-07 Hydraulic oil control valve and valve timing adjustment device using this
JP2017-042607 2017-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/542,460 Continuation US11248502B2 (en) 2017-03-07 2019-08-16 Hydraulic oil control valve and valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2018164022A1 true WO2018164022A1 (en) 2018-09-13

Family

ID=63447498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008200 WO2018164022A1 (en) 2017-03-07 2018-03-05 Hydraulic oil control valve and valve timing regulation device

Country Status (5)

Country Link
US (1) US11248502B2 (en)
JP (1) JP6790925B2 (en)
CN (1) CN110291275B (en)
DE (1) DE112018001233B4 (en)
WO (1) WO2018164022A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858967B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device and check valve
US10858965B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device
US10876440B2 (en) 2017-01-19 2020-12-29 Denso Corporation Valve timing adjustment device
US10914204B2 (en) 2017-01-19 2021-02-09 Denso Corporation Valve timing adjustment device
US11008903B2 (en) 2017-04-21 2021-05-18 Denso Corporation Valve timing adjustment device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115343A1 (en) * 2018-06-26 2020-01-02 Schaeffler Technologies AG & Co. KG Control valve with sealing contour on a sleeve-shaped hydraulic guide element; as well as kit with control valve and camshaft adjuster
JP7040769B2 (en) 2018-08-08 2022-03-23 株式会社Soken Fluid control valve and valve timing adjustment device using this
US20200269379A1 (en) * 2019-02-22 2020-08-27 Borgwarner Inc. Centerless grinding through the application of a helical twist to axial grooves
JP7225910B2 (en) * 2019-02-28 2023-02-21 株式会社デンソー valve timing adjuster
JP7115382B2 (en) 2019-03-25 2022-08-09 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
JP2020159196A (en) 2019-03-25 2020-10-01 株式会社デンソー Operation oil control valve and valve timing adjustment device
JP7196712B2 (en) 2019-03-25 2022-12-27 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
JP7074102B2 (en) 2019-03-25 2022-05-24 株式会社デンソー Hydraulic oil control valve and valve timing adjuster
JP7124775B2 (en) 2019-03-25 2022-08-24 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device
JP7207062B2 (en) * 2019-03-25 2023-01-18 株式会社デンソー Hydraulic oil control valve and method for manufacturing hydraulic oil control valve
JP7021658B2 (en) 2019-03-25 2022-02-17 株式会社デンソー Valve timing adjuster
US11181015B2 (en) * 2019-05-23 2021-11-23 GM Global Technology Operations LLC Oil control valve for cam phaser
CN112302753A (en) * 2019-07-31 2021-02-02 舍弗勒技术股份两合公司 Central oil control valve for camshaft phaser and camshaft phaser
JP7234909B2 (en) * 2019-11-29 2023-03-08 株式会社デンソー valve timing adjuster
JP7234973B2 (en) * 2020-02-26 2023-03-08 株式会社デンソー valve timing adjuster
JP2022139454A (en) * 2021-03-12 2022-09-26 トヨタ自動車株式会社 Crank sprocket and attaching structure of crank sprocket
CN114076008A (en) * 2021-12-02 2022-02-22 杰锋汽车动力系统股份有限公司 Engine VVT system engine oil control valve and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106723U (en) * 1974-01-25 1975-09-02
JPS5793670U (en) * 1980-11-27 1982-06-09
JP2001099341A (en) * 1999-09-27 2001-04-10 Ckd Corp Check valve, and selector valve therewith
JP2015129564A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Manufacturing method of oil control valve
JP2015135058A (en) * 2014-01-16 2015-07-27 トヨタ自動車株式会社 Oil control valve
JP2015145672A (en) * 2014-01-31 2015-08-13 ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Hydraulic valve for camshaft oscillating actuator
WO2015141245A1 (en) * 2014-03-19 2015-09-24 日立オートモティブシステムズ株式会社 Control valve for valve timing control device and valve timing control device for internal combustion engine
JP2016056851A (en) * 2014-09-08 2016-04-21 株式会社デンソー Hydraulic control valve

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106723A (en) 1974-01-25 1975-08-22
JPS5793670A (en) 1980-12-02 1982-06-10 Hoshino Hiroyuki Protecting method for engine and its accessories
WO1985003992A1 (en) * 1984-03-01 1985-09-12 Mannesmann Rexroth Gmbh Distributor valve
DE10143433B4 (en) 2001-09-05 2013-09-26 Hilite Germany Gmbh proportional valve
US7000580B1 (en) * 2004-09-28 2006-02-21 Borgwarner Inc. Control valves with integrated check valves
DE102005013085B3 (en) * 2005-03-18 2006-06-01 Hydraulik-Ring Gmbh Hydraulic valve for automobile, has check valve with band formed of closed ring, which serves as opening-free band and is made of spring steel, where steel forms ring by overlap of section of bands at about one hundred and eighty degree
DE102005052481A1 (en) * 2005-11-03 2007-05-24 Schaeffler Kg Control valve for a device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
WO2008067935A2 (en) * 2006-12-04 2008-06-12 Daimler Ag Regulating device
US20080240928A1 (en) * 2007-03-28 2008-10-02 Kabushiki Kaisha Toyota Jidoshokki Refrigerant suction structure in fixed displacement type piston compressor, and operation control method in fixed displacement type piston compressor
JP2009138611A (en) * 2007-12-05 2009-06-25 Denso Corp Valve timing adjustment device
DE102010019005B4 (en) * 2010-05-03 2017-03-23 Hilite Germany Gmbh Schwenkmotorversteller
DE102012201548B4 (en) * 2012-02-02 2019-05-16 Schaeffler Technologies AG & Co. KG Control valve for hydraulic media
DE102012208809B4 (en) * 2012-05-25 2020-11-26 Schaeffler Technologies AG & Co. KG Control valve of a camshaft adjuster
US9797276B2 (en) * 2013-03-11 2017-10-24 Husco Automotive Holdings Llc System for varying cylinder valve timing in an internal combustion engine
US9752471B2 (en) * 2013-11-25 2017-09-05 Pacbrake Company Compression-release engine brake system for lost motion rocker arm assembly and method of operation thereof
US9422840B2 (en) * 2014-06-24 2016-08-23 Hilite Germany Gmbh Hydraulic valve for an internal combustion engine
DE102014220727A1 (en) 2014-10-14 2016-04-14 Schaeffler Technologies AG & Co. KG Camshaft adjuster with central valve and check valves
JP6308163B2 (en) * 2015-04-08 2018-04-11 株式会社デンソー Valve timing adjustment device
TR201802629T1 (en) 2015-08-24 2018-03-21 Kao Corp Nonwoven fabric and the absorbent article obtained therefrom.
JP6410742B2 (en) * 2016-01-08 2018-10-24 アイシン精機株式会社 Valve timing control device
DE102016211741A1 (en) 2016-06-29 2018-01-04 Schaeffler Technologies AG & Co. KG Rolling and housing for a transmission
CN108049930B (en) * 2016-10-06 2021-01-08 博格华纳公司 Dual flap valve for variable cam timing system
JP2018080594A (en) * 2016-11-14 2018-05-24 アイシン精機株式会社 Valve opening/closing timing control device
JP2018091225A (en) * 2016-12-02 2018-06-14 アイシン精機株式会社 Valve opening/closing timing controller
JP6809176B2 (en) * 2016-12-02 2021-01-06 アイシン精機株式会社 Valve opening / closing timing control device
JP6683142B2 (en) 2017-01-19 2020-04-15 株式会社デンソー Valve timing adjustment device
WO2018135586A1 (en) 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device
JP6645448B2 (en) 2017-01-19 2020-02-14 株式会社デンソー Valve timing adjustment device
JP6690633B2 (en) * 2017-01-19 2020-04-28 株式会社デンソー Valve timing adjustment device and check valve
JP2018138779A (en) * 2017-02-24 2018-09-06 アイシン精機株式会社 Valve opening/closing timing control device
JP6780573B2 (en) 2017-04-21 2020-11-04 株式会社デンソー Valve timing adjuster
JP2019199870A (en) * 2018-05-18 2019-11-21 アイシン精機株式会社 Valve opening/closing timing control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106723U (en) * 1974-01-25 1975-09-02
JPS5793670U (en) * 1980-11-27 1982-06-09
JP2001099341A (en) * 1999-09-27 2001-04-10 Ckd Corp Check valve, and selector valve therewith
JP2015129564A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Manufacturing method of oil control valve
JP2015135058A (en) * 2014-01-16 2015-07-27 トヨタ自動車株式会社 Oil control valve
JP2015145672A (en) * 2014-01-31 2015-08-13 ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Hydraulic valve for camshaft oscillating actuator
WO2015141245A1 (en) * 2014-03-19 2015-09-24 日立オートモティブシステムズ株式会社 Control valve for valve timing control device and valve timing control device for internal combustion engine
JP2016056851A (en) * 2014-09-08 2016-04-21 株式会社デンソー Hydraulic control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858967B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device and check valve
US10858965B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device
US10876440B2 (en) 2017-01-19 2020-12-29 Denso Corporation Valve timing adjustment device
US10914204B2 (en) 2017-01-19 2021-02-09 Denso Corporation Valve timing adjustment device
US11008903B2 (en) 2017-04-21 2021-05-18 Denso Corporation Valve timing adjustment device

Also Published As

Publication number Publication date
DE112018001233B4 (en) 2024-04-25
US20190368387A1 (en) 2019-12-05
CN110291275A (en) 2019-09-27
JP6790925B2 (en) 2020-11-25
US11248502B2 (en) 2022-02-15
JP2018145906A (en) 2018-09-20
CN110291275B (en) 2021-06-08
DE112018001233T5 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018164022A1 (en) Hydraulic oil control valve and valve timing regulation device
WO2018135586A1 (en) Valve timing adjustment device
CN110192008B (en) Valve timing adjusting device
JP4544294B2 (en) Valve timing adjustment device
CN110192010B (en) Valve timing adjusting device
CN110192011B (en) Valve timing adjusting device and check valve
JP6015605B2 (en) Valve timing adjustment device
JP6645448B2 (en) Valve timing adjustment device
JP6733594B2 (en) Valve timing adjustment device
US10539049B2 (en) Valve opening/closing timing control device
JP7124775B2 (en) Hydraulic oil control valve and valve timing adjustment device
WO2021106890A1 (en) Valve timing adjustment device
CN113396273B (en) Valve timing adjusting device
US10260384B2 (en) Valve timing regulation device
JP7136455B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
WO2021106892A1 (en) Valve timing adjustment device
JP4288220B2 (en) Valve timing control device for internal combustion engine
JP2019167998A (en) Valve device
JP7251878B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
US20200141290A1 (en) Check valve and valve timing controller
WO2019181863A1 (en) Valve device
US20210172347A1 (en) Valve opening and closing timing control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764048

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18764048

Country of ref document: EP

Kind code of ref document: A1