WO2018164010A1 - Device for producing polyarylene sulfide - Google Patents

Device for producing polyarylene sulfide Download PDF

Info

Publication number
WO2018164010A1
WO2018164010A1 PCT/JP2018/008128 JP2018008128W WO2018164010A1 WO 2018164010 A1 WO2018164010 A1 WO 2018164010A1 JP 2018008128 W JP2018008128 W JP 2018008128W WO 2018164010 A1 WO2018164010 A1 WO 2018164010A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tank
zirconium
valve
supply path
pas
Prior art date
Application number
PCT/JP2018/008128
Other languages
French (fr)
Japanese (ja)
Inventor
崇之 木村
義宏 一ノ瀬
精孝 ▲但▼野
小林 正則
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2018164010A1 publication Critical patent/WO2018164010A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers

Definitions

  • the present invention relates to an apparatus for producing polyarylene sulfide.
  • Polyarylene sulfide represented by polyphenylene sulfide (hereinafter also referred to as “PPS”) has heat resistance, chemical resistance, flame resistance, mechanical strength, electrical properties, and dimensions.
  • Engineering plastic with excellent stability. PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so electrical equipment, electronic equipment, automotive equipment, packaging materials, etc. Widely used in a wide range of technical fields.
  • Examples of the method for producing PAS include a method for producing PAS by polymerizing a sulfur source and a dihaloaromatic compound in an organic amide solvent (for example, Patent Documents 1 and 2).
  • the valve provided in the supply path for supplying the raw material sulfur source to the reaction tank is one in which the reaction solution does not directly pass through. in use.
  • This invention is made in view of said subject, Comprising: The frequency which replace
  • An object of the present invention is to provide an apparatus for manufacturing a PAS that can be used.
  • the present inventors have found that the above object can be achieved by using a valve formed of a zirconium-containing material, and have completed the present invention.
  • the PAS manufacturing apparatus comprises: A reaction vessel for polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent to produce PAS; A supply path communicating with the reaction tank and supplying the sulfur source to the reaction tank; At least one valve provided in the supply path for opening and closing the supply path; With At least one of the valves is formed from a zirconium-containing material.
  • a valve closest to the reaction vessel among the at least one valve is formed of the zirconium-containing material.
  • the zirconium content in the zirconium-containing material is preferably 95 to 100% by mass.
  • the manufacturing apparatus of PAS which can reduce the frequency which replace
  • the manufacturing apparatus according to the present invention can be applied to a PAS manufacturing apparatus in which a corrosive material such as strong alkali is introduced into a reaction tank to perform a polymerization reaction.
  • PAS production method The method for producing PAS is not particularly limited as long as the gist of the present invention is not impaired, and generally, a charging step, a polymerization step (a two-stage polymerization step comprising a pre-stage polymerization step and a post-stage polymerization step) And a method of further comprising a dehydration step.
  • the dehydration step is a step of discharging a distillate containing water from the reaction system during the polymerization reaction, which contains a mixture containing an organic polar solvent and a sulfur source, before the preparation step.
  • the polymerization reaction between the sulfur source and the dihaloaromatic compound is affected by being accelerated or inhibited by the amount of water present in the polymerization reaction system. Therefore, the dehydration step is not indispensable as long as the water content does not inhibit the polymerization reaction, but it is preferable to reduce the water content in the polymerization reaction system by performing a dehydration treatment before the polymerization.
  • the dehydration step it is preferable to perform dehydration by heating in an inert gas atmosphere.
  • a dehydration process is performed within a reaction tank, and the distillate containing water is discharged
  • the water to be dehydrated in the dehydration step is hydrated water contained in each raw material charged in the dehydration step, an aqueous medium of an aqueous mixture, water by-produced by a reaction between the raw materials, and the like.
  • the heating temperature in the dehydration step is not particularly limited as long as it is 300 ° C. or less, and is preferably 100 to 250 ° C.
  • the heating time is preferably 15 minutes to 24 hours, and more preferably 30 minutes to 10 hours.
  • dehydration is performed until the water content falls within a predetermined range. That is, in the dehydration step, it is desirable to dehydrate until the amount of water is preferably 0 to 2 mol, more preferably 0.5 to 1.8 mol with respect to 1 mol of the effective sulfur source described later. When the amount of water becomes too small in the dehydration step, water may be added to adjust the desired amount of water in the preparation step prior to the polymerization step.
  • the preparation step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, a dihaloaromatic compound, and water.
  • a mixture charged in the charging step is also referred to as a “charged mixture”.
  • the amount of sulfur source in the charged mixture (hereinafter also referred to as “the amount of charged sulfur source” (effective sulfur source)) was volatilized in the dehydration step from the molar amount of the sulfur source charged in the dehydration step. It can be calculated by subtracting the molar amount of hydrogen sulfide.
  • an alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step, if necessary.
  • the alkali metal hydroxide is added in consideration of the amount of hydrogen sulfide generated during dehydration and the amount of alkali metal hydroxide generated during dehydration.
  • the amount of each of the organic polar solvent and the dihaloaromatic compound used is set, for example, within the range shown in the following description regarding the polymerization step with respect to 1 mol of the charged sulfur source.
  • PAS is produced by polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent.
  • the polymerization reaction in the main polymerization step is performed by heating a mixture containing the sulfur source and the dihaloaromatic compound.
  • the polymerization reaction may be carried out in two or more stages.
  • the polymerization reaction is preferably, for example, a pre-polymerization reaction between the sulfur source and the dihaloaromatic compound.
  • the pre-stage polymerization reaction is a polymerization reaction in which a mixture containing the sulfur source and the dihaloaromatic compound is heated to start the polymerization reaction, and a prepolymer having a dihaloaromatic compound conversion rate of 50% or more is generated.
  • the polymerization reaction it is preferable to carry out the polymerization reaction under heating at a temperature of 170 to 300 ° C. from the viewpoint of the efficiency of the polymerization reaction.
  • the polymerization temperature in the polymerization reaction is more preferably in the range of 180 to 280 ° C. in order to suppress side reactions and decomposition reactions.
  • the polymerization reaction is started under heating at a temperature of 170 to 270 ° C., and a prepolymer having a dihaloaromatic compound conversion rate of 50% or more can be generated.
  • the polymerization temperature in the pre-stage polymerization reaction is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
  • the conversion rate of the dihaloaromatic compound in the pre-stage polymerization reaction is preferably 50 to 98%, more preferably 60 to 97%, still more preferably 65 to 96%, and particularly preferably 70 to 95%.
  • the conversion rate of the dihaloaromatic compound is calculated based on the amount of the dihaloaromatic compound remaining in the reaction mixture by gas chromatography and based on the remaining amount, the charged amount of the dihaloaromatic compound, and the charged amount of the sulfur source. Can do.
  • the polymerization reaction in the main polymerization step may be performed batchwise or continuously. For example, supply of at least an organic polar solvent, a sulfur source, and a dihaloaromatic compound, production of PAS by polymerization of the sulfur source and the dihaloaromatic compound in the organic polar solvent, and recovery of a reaction mixture containing PAS; ,
  • the polymerization reaction can be carried out continuously by carrying out in parallel.
  • organic polar solvent a sulfur source, and a dihalo aromatic compound
  • a sulfur source and a dihalo aromatic compound
  • the organic polar solvent, the sulfur source, and the dihaloaromatic compound may be used singly or in combination of two or more as long as the PAS can be produced.
  • Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
  • Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone (hereinafter, “ NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone Compounds; tetraalkylurea compounds such as tetramethylurea; hexaalkylphosphate triamide compounds such as hexamethylphosphate triamide,
  • Examples of the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
  • Examples of the aprotic organic polar solvent comprising a cyclic organophosphorus compound include 1-methyl-1-oxophosphorane.
  • organic amide solvents are preferable in terms of availability, handling, and the like, and N-alkylpyrrolidone compounds, N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are more preferable.
  • NMP, N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, and NMP is particularly preferred.
  • the amount of the organic polar solvent used is preferably from 1 to 30 mol, more preferably from 3 to 15 mol, based on 1 mol of the sulfur source from the viewpoint of the efficiency of the polymerization reaction.
  • Examples of the sulfur source include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide, and alkali metal sulfides and alkali metal hydrosulfides are preferable.
  • the sulfur source can be handled in the form of, for example, an aqueous slurry or an aqueous solution, and is preferably in the state of an aqueous solution from the viewpoint of handling properties such as meterability and transportability.
  • Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide.
  • Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
  • Dihaloaromatic compounds include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone, dihalodiphenyl sulfoxide Dihalodiphenyl ketone, and the like.
  • Halogen atoms refer to fluorine, chlorine, bromine and iodine atoms, and the two halogen atoms in the dihaloaromatic compound may be the same or different.
  • p-dihalobenzene p-dihalobenzene
  • m-dihalobenzene p-dihalobenzene
  • pDCB p-dichlorobenzene
  • the amount of the dihaloaromatic compound to be used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, still more preferably with respect to 1 mol of the charged sulfur source. 0.95 to 1.05 mol.
  • the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily performed, and a high molecular weight polymer is easily generated.
  • Post-treatment process (separation process, washing process, recovery process, etc.):
  • the post-treatment step after the polymerization reaction can be performed by a conventional method. For example, after the polymerization reaction is completed, the slurry containing the produced PAS polymer is kept in a high temperature state or cooled, and then diluted with water or the like as desired, and then the PAS polymer is filtered by sieving or the like, Next, the separated PAS polymer is washed with an organic solvent such as the same polar solvent as the polymerization solvent, an organic solvent such as ketones (for example, acetone), alcohols (for example, methanol), hot water, and filtration.
  • an organic solvent such as the same polar solvent as the polymerization solvent, an organic solvent such as ketones (for example, acetone), alcohols (for example, methanol), hot water, and filtration.
  • a recovery step for recovering PAS can be performed.
  • the produced PAS can be treated with a salt such as acid or ammonium chloride.
  • a salt such as acid or ammonium chloride.
  • PAS manufacturing apparatus communicates with a reaction tank for polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent to produce polyarylene sulfide, and the reaction tank.
  • a PAS manufacturing apparatus 100 includes a reaction tank 1. As a PAS manufacturing method performed by applying the PAS manufacturing apparatus 100, the reaction tank 1 is used, and at least the charging process and the polymerization process are performed in the reaction tank 1 (therefore, the reaction tank 1 is a “polymerization tank” or Sometimes referred to as “polymerization can”), and if desired, a dehydration step is performed.
  • the reaction tank 1 is a “polymerization tank” or Sometimes referred to as “polymerization can”
  • a dehydration step is performed.
  • the reaction tank 1 provided in the PAS manufacturing apparatus 100 the same shape, structure, size, etc. as in the reaction tank conventionally provided and used in the PAS manufacturing apparatus can be applied, and the same material is used.
  • the reaction vessel 1 usually has a structure including a cylindrical body portion 11, a lid portion 12 and a bottom portion 13.
  • a stirring blade 21 and a stirring shaft 22 are usually inserted, and one or a plurality of baffles (baffle plates) 3 are provided on the inner peripheral wall.
  • the agitation shaft 22 is connected to an electric motor (not shown) disposed above the reaction tank 1 and is driven to rotate.
  • the lid 12 of the reaction tank 1 is usually a bowl-shaped member that is connected to and attached to the upper part of the cylindrical body 11, and is provided with a hole through which the stirring shaft 22 described above is inserted.
  • the reaction vessel 1 includes raw material monomers and other materials (alkali metal hydroxides and the like.
  • the raw material monomers and other materials are collectively referred to as “various”.
  • a plurality of supply passages 4 (sometimes referred to as “supply nozzles”) for charging the reaction tank 1 into the interior of the reaction tank 1 ( In FIG. 1, one supply path 4 is shown as a supply path for supplying the sulfur source to the reaction tank 1).
  • the lid 12 may be provided with an openable / closable opening or the like so that the inside of the reaction tank 1 can be inspected, cleaned, and the like.
  • the opening that can be opened and closed is usually larger in diameter than the supply path 4.
  • the lid portion 12 may be provided with a required number of baffle fixing portions for suspending and fixing the baffles 3 arranged in the reaction tank 1.
  • the bottom 13 of the reaction tank 1 is a generally bowl-shaped member that is connected to and attached to the lower part of the cylindrical body 11.
  • the bottom 13 is usually provided with a discharge pipe 131 (also referred to as a “discharge nozzle”) for discharging the PAS polymer produced by the polymerization reaction, and various raw materials are charged into the reaction tank 1 as desired. There is a case where a supply path is provided.
  • the cylindrical body 11 of the reaction tank 1 constitutes a main part of the reaction tank 1, and a charging process, a polymerization process, and a dehydration process are performed therein if desired.
  • a stirring blade 21 and a stirring shaft 22 and a baffle (baffle plate) 3 are usually arranged inside the cylindrical body 11.
  • the baffle 3 is directly attached to the inner wall of the cylindrical body 11.
  • the baffle 3 may be supported by a baffle support protruding from the inner wall of the reaction tank 1, specifically, the inner wall of the cylindrical body 11, or as mentioned above, You may make it hang and fix from the cover part 12.
  • FIG. 1 The baffle 3 is directly attached to the inner wall of the cylindrical body 11.
  • the baffle 3 may be supported by a baffle support protruding from the inner wall of the reaction tank 1, specifically, the inner wall of the cylindrical body 11, or as mentioned above, You may make it hang and fix from the cover part 12.
  • reaction tank 1 including the cylindrical body portion 11, the lid portion 12, and the bottom portion 13.
  • the electric motor that rotates the agitation shaft 22 described above is an example.
  • a heat exchange jacket for adjusting the temperature of the reaction vessel 1, particularly the cylindrical body 11, is an outer peripheral surface of the reaction vessel 1. May be provided so as to surround.
  • various pipes may be provided for the purpose of transferring various raw materials and the like, PAS polymer to be produced, circulation of a heat medium and / or refrigerant, and the like.
  • a material excellent in strength and chemical resistance in a high temperature environment is required.
  • Specific examples include corrosion resistant metals such as titanium materials (may be titanium alloys), zirconium materials (may be zirconium alloys), special austenitic steels [Carpenter (registered trademark), etc.], and these plate-like materials, A laminate in which a corrosion-resistant metal such as titanium or zirconium is provided on the inner surface of the reaction vessel 1, such as a titanium-coated steel material or a clad material, is used. The thickness and size of the corrosion-resistant metal plate material (including clad material) are appropriately determined as necessary. The same applies to materials forming members such as the baffle 3 disposed in the reaction tank 1.
  • the PAS manufacturing apparatus 100 includes a supply path 4.
  • the supply path 4 communicates with the reaction tank 1 and supplies a sulfur source to the reaction tank 1.
  • the supply path 4 is connected to the lid portion 12 of the reaction tank 1 as shown in FIG. 1, for example.
  • the PAS manufacturing apparatus 100 includes one or a plurality of supply paths for introducing various raw materials such as raw material monomers and alkali metal hydroxide into the reaction tank 1 (not shown). )
  • the diameter, length, and thickness of the supply path 4 can be appropriately set in consideration of the type of the sulfur source supplied from the supply path 4, the input amount to the reaction tank 1, the strength required for the supply path 4, and the like.
  • the supply path 4 is preferably formed from a corrosion-resistant material such as a titanium material or a zirconium material.
  • valve 5 As shown in FIG. 1, the PAS manufacturing apparatus 100 includes a valve 5.
  • the valve 5 is provided in the supply path 4 and opens and closes the supply path 4.
  • FIG. 1 shows the case where one valve is provided in the supply path 4, a plurality of valves may be provided in the supply path 4. By opening the valve 5, the sulfur source is supplied to the reaction tank 1 through the supply path 4, and by closing the valve 5, the supply of the sulfur source to the reaction tank 1 through the supply path 4 is completed.
  • the shape of the valve 5 is not particularly limited as long as the sulfur source can be supplied to the reaction tank 1.
  • a butterfly valve, a ball valve, a diaphragm valve, a globe valve, a plug valve, a ball valve, or the like can be used as the valve 5, for example, a butterfly valve, a ball valve, a diaphragm valve, a globe valve, a plug valve, a ball valve, or the like can be used.
  • a ball valve is preferable from the viewpoint of operability, flow rate adjustability, and the like.
  • the valve 5 is made of a zirconium-containing material. Thereby, even if a sulfur-containing atmosphere such as hydrogen sulfide generated in the reaction tank 1 comes into contact with the valve 5, the valve 5 is hardly corroded.
  • a plurality of valves are provided in the supply path 4, at least one of these valves is made of a zirconium-containing material, and preferably the valve closest to the reaction vessel 1 among these valves. Is formed from the zirconium-containing material.
  • the valve closest to the reaction vessel is likely to corrode due to the sulfur-containing atmosphere, and therefore needs to be replaced periodically. If the valve is formed from the zirconium-containing material, The frequency of exchange can be effectively reduced.
  • valve 5 in the present embodiment is provided in the supply path 4, it also comes into contact with a corrosive PAS raw material such as an alkali metal hydroxide.
  • a corrosive PAS raw material such as an alkali metal hydroxide.
  • the polymerization reaction of PAS is generally performed under a high temperature condition of 200 ° C. or higher. Since the valve 5 of the present embodiment is formed from a zirconium-containing material, corrosion of the valve 5 can be effectively suppressed even under high temperature conditions.
  • the zirconium-containing material is not particularly limited as long as zirconium is contained, and examples thereof include a metal material containing zirconium.
  • the zirconium content in the zirconium-containing material is not particularly limited, and is preferably 95 to 100% by mass, more preferably 97.5 to 99.5% by mass from the viewpoint of improving corrosion resistance. Even more preferably, it is 98 to 99% by mass.
  • the zirconium-containing material showed excellent corrosion resistance to any of the sodium hydrosulfide aqueous solution, the hydrogen sulfide atmosphere, and the sodium hydroxide aqueous solution. Therefore, in the PAS manufacturing apparatus, the corrosion resistance of the valve can be improved by forming the valve provided in the supply path for supplying the sulfur source as the raw material to the reaction tank with the zirconium-containing material.

Abstract

Provided is a device for producing polyarylene sulfide (hereinafter, PAS), wherein the corrosion resistance of a valve provided in a supply path for supplying a reaction tank with a sulfur source which is a raw material can be improved to reduce the replacement frequency of the valve. The device for producing PAS according to the present invention is provided with: a reaction tank for producing PAS by polymerizing a sulfur source and a dihalo aromatic compound in an organic polar solvent; a supply path communicating with the reaction tank, and supplying the sulfur source to the reaction tank; and one or more valves provided in the supply path, and opening and closing the supply path. At least one of the valves is made of a zirconium-containing material. Preferably, only the valve closest to the reaction tank among the one or more valves is made of the zirconium-containing material. In addition, preferably, the content of zirconium in the zirconium-containing material is 95-100 mass%.

Description

ポリアリーレンスルフィドの製造装置Polyarylene sulfide production equipment
 本発明は、ポリアリーレンスルフィドの製造装置に関する。 The present invention relates to an apparatus for producing polyarylene sulfide.
 ポリフェニレンスルフィド(以下、「PPS」とも称する。)に代表されるポリアリーレンスルフィド(以下、「PAS」とも称する。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。 Polyarylene sulfide (hereinafter also referred to as “PAS”) represented by polyphenylene sulfide (hereinafter also referred to as “PPS”) has heat resistance, chemical resistance, flame resistance, mechanical strength, electrical properties, and dimensions. Engineering plastic with excellent stability. PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so electrical equipment, electronic equipment, automotive equipment, packaging materials, etc. Widely used in a wide range of technical fields.
 PASの製造方法としては、例えば、有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合させてPASを製造する方法が挙げられる(例えば、特許文献1及び2)。 Examples of the method for producing PAS include a method for producing PAS by polymerizing a sulfur source and a dihaloaromatic compound in an organic amide solvent (for example, Patent Documents 1 and 2).
特開2014-47218号公報JP 2014-47218 A 国際公開第2006/046748号International Publication No. 2006/046748
 PASの製造には、金属に対する腐食性や摩耗性の高い原料が用いられることがあるため、PASの製造装置における反応槽を構成する金属部材には、高い耐食性が求められる。一方、原料である硫黄源を反応槽に供給する供給路に設けられるバルブは、反応液が直接通過しないものであるため、従来、硫黄による腐食に対する耐性は特に考慮されず、ニッケル含有部材等が使用されている。 In the manufacture of PAS, raw materials that are highly corrosive to metal and wearable may be used, so that high corrosion resistance is required for the metal members constituting the reaction tank in the PAS manufacturing apparatus. On the other hand, the valve provided in the supply path for supplying the raw material sulfur source to the reaction tank is one in which the reaction solution does not directly pass through. in use.
 しかし、発明者らの検討によれば、反応液が直接通過しないバルブであっても、反応槽で発生した硫化水素等の硫黄含有雰囲気により腐食される場合があり、特に、反応槽に最も近いバルブは、上記硫黄含有雰囲気により腐食しやすいため、定期的に交換する必要がある。 However, according to the study by the inventors, even a valve that does not allow the reaction solution to pass directly may be corroded by a sulfur-containing atmosphere such as hydrogen sulfide generated in the reaction vessel, and particularly close to the reaction vessel. Since the valve is easily corroded by the sulfur-containing atmosphere, the valve needs to be replaced periodically.
 本発明は、上記の課題に鑑みなされたものであって、原料である硫黄源を反応槽に供給する供給路に設けられるバルブの耐食性を向上させることで、上記バルブを交換する頻度を低減させることができるPASの製造装置を提供することを目的とする。 This invention is made in view of said subject, Comprising: The frequency which replace | exchanges the said valve is reduced by improving the corrosion resistance of the valve provided in the supply path which supplies the sulfur source which is a raw material to a reaction tank. An object of the present invention is to provide an apparatus for manufacturing a PAS that can be used.
 本発明者らは、ジルコニウム含有材料から形成されたバルブを用いることにより、上記目的が達成されることを見出し、本発明を完成するに至った。 The present inventors have found that the above object can be achieved by using a valve formed of a zirconium-containing material, and have completed the present invention.
 本発明に係るPASの製造装置は、
 有機極性溶媒中で硫黄源とジハロ芳香族化合物とを重合させてPASを生成させる反応槽と、
 前記反応槽と連通し、前記反応槽に前記硫黄源を供給する供給路と、
 前記供給路に設けられ、前記供給路の開閉を行う少なくとも1個のバルブと、
を備え、
 前記バルブのうち、少なくとも1個は、ジルコニウム含有材料から形成されている。
The PAS manufacturing apparatus according to the present invention comprises:
A reaction vessel for polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent to produce PAS;
A supply path communicating with the reaction tank and supplying the sulfur source to the reaction tank;
At least one valve provided in the supply path for opening and closing the supply path;
With
At least one of the valves is formed from a zirconium-containing material.
 本発明に係るPASの製造装置において、前記少なくとも1個のバルブのうち、前記反応槽に最も近いバルブが、前記ジルコニウム含有材料から形成されていることが好ましい。 In the PAS manufacturing apparatus according to the present invention, it is preferable that a valve closest to the reaction vessel among the at least one valve is formed of the zirconium-containing material.
 本発明に係るPASの製造装置において、前記ジルコニウム含有材料におけるジルコニウムの含有量は、95~100質量%であることが好ましい。 In the PAS manufacturing apparatus according to the present invention, the zirconium content in the zirconium-containing material is preferably 95 to 100% by mass.
 本発明によれば、原料である硫黄源を反応槽に供給する供給路に設けられるバルブの耐食性を向上させることで、上記バルブを交換する頻度を低減させることができるPASの製造装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus of PAS which can reduce the frequency which replace | exchanges the said valve | bulb by improving the corrosion resistance of the valve | bulb provided in the supply path which supplies the sulfur source which is a raw material to a reaction tank is provided. be able to.
本発明に係るPASの製造装置の一実施形態を示す模式的な断面図である。It is typical sectional drawing which shows one Embodiment of the manufacturing apparatus of PAS which concerns on this invention.
 本発明に係る製造装置は、反応槽内に強アルカリ等の腐食性を有する材料を投入して重合反応を実施するPASの製造装置に適用することができる。以下に、PASを製造する方法とともに、本発明に係るPASの製造装置の一実施形態について、説明する。 The manufacturing apparatus according to the present invention can be applied to a PAS manufacturing apparatus in which a corrosive material such as strong alkali is introduced into a reaction tank to perform a polymerization reaction. Below, one Embodiment of the manufacturing apparatus of PAS which concerns on this invention with the method to manufacture PAS is described.
I.PASの製造方法
 PASを製造する方法としては、本発明の趣旨を損なわない限り、特に限定されず、一般には、仕込み工程、重合工程(前段重合工程及び後段重合工程からなる2段階重合工程としてもよい。)を含むPASの製造方法であり、好ましくは更に脱水工程を備える方法である。
I. PAS production method The method for producing PAS is not particularly limited as long as the gist of the present invention is not impaired, and generally, a charging step, a polymerization step (a two-stage polymerization step comprising a pre-stage polymerization step and a post-stage polymerization step) And a method of further comprising a dehydration step.
1.脱水工程
 脱水工程は、仕込み工程の前に、有機極性溶媒及び硫黄源を含む混合物を含有する、重合反応時の反応系内から水を含む留出物を反応系外に排出する工程である。
1. Dehydration step The dehydration step is a step of discharging a distillate containing water from the reaction system during the polymerization reaction, which contains a mixture containing an organic polar solvent and a sulfur source, before the preparation step.
 硫黄源とジハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって促進又は阻害される等の影響を受ける。したがって、上記水分量が重合反応を阻害しない水分量である限りにおいて脱水工程は必須ではないが、重合の前に脱水処理を行うことにより、重合反応系内の水分量を減らすことが好ましい。 The polymerization reaction between the sulfur source and the dihaloaromatic compound is affected by being accelerated or inhibited by the amount of water present in the polymerization reaction system. Therefore, the dehydration step is not indispensable as long as the water content does not inhibit the polymerization reaction, but it is preferable to reduce the water content in the polymerization reaction system by performing a dehydration treatment before the polymerization.
 脱水工程では、不活性ガス雰囲気下での加熱により脱水を行うことが好ましい。脱水工程は、反応槽内で行われ、水を含む留出物は、反応槽外へ排出される。脱水工程で脱水されるべき水分とは、脱水工程で仕込んだ各原料が含有する水和水、水性混合物の水媒体、各原料間の反応により副生する水等である。 In the dehydration step, it is preferable to perform dehydration by heating in an inert gas atmosphere. A dehydration process is performed within a reaction tank, and the distillate containing water is discharged | emitted out of a reaction tank. The water to be dehydrated in the dehydration step is hydrated water contained in each raw material charged in the dehydration step, an aqueous medium of an aqueous mixture, water by-produced by a reaction between the raw materials, and the like.
 脱水工程における加熱温度は、300℃以下であれば特に限定されず、好ましくは100~250℃である。加熱時間は、15分~24時間であることが好ましく、30分~10時間であることがより好ましい。 The heating temperature in the dehydration step is not particularly limited as long as it is 300 ° C. or less, and is preferably 100 to 250 ° C. The heating time is preferably 15 minutes to 24 hours, and more preferably 30 minutes to 10 hours.
 脱水工程では、水分量が所定の範囲内になるまで脱水する。即ち、脱水工程では、水分量が、後述の有効硫黄源1モルに対して、好ましくは0~2モル、より好ましくは0.5~1.8モルになるまで脱水することが望ましい。脱水工程で水分量が少なくなり過ぎた場合は、重合工程に先立つ仕込み工程において水を添加して所望の水分量に調節すればよい。 In the dehydration process, dehydration is performed until the water content falls within a predetermined range. That is, in the dehydration step, it is desirable to dehydrate until the amount of water is preferably 0 to 2 mol, more preferably 0.5 to 1.8 mol with respect to 1 mol of the effective sulfur source described later. When the amount of water becomes too small in the dehydration step, water may be added to adjust the desired amount of water in the preparation step prior to the polymerization step.
2.仕込み工程
 仕込み工程は、有機極性溶媒、硫黄源、ジハロ芳香族化合物、及び水を含む混合物を仕込む工程である。仕込み工程において仕込まれる混合物を、「仕込み混合物」とも称する。
2. Preparation Step The preparation step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, a dihaloaromatic compound, and water. A mixture charged in the charging step is also referred to as a “charged mixture”.
 脱水工程を行う場合、仕込み混合物における硫黄源の量(以下、「仕込み硫黄源」(有効硫黄源)の量とも称する)は、脱水工程で投入した硫黄源のモル量から、脱水工程で揮散した硫化水素のモル量を引くことによって算出することができる。 When the dehydration step is performed, the amount of sulfur source in the charged mixture (hereinafter also referred to as “the amount of charged sulfur source” (effective sulfur source)) was volatilized in the dehydration step from the molar amount of the sulfur source charged in the dehydration step. It can be calculated by subtracting the molar amount of hydrogen sulfide.
 脱水工程を行う場合、仕込み工程では脱水工程後に系内に残存する混合物に、必要に応じてアルカリ金属水酸化物及び水を添加することが出来る。特に、脱水時に生成した硫化水素の量と脱水時に生成したアルカリ金属水酸化物の量とを考慮したうえで、アルカリ金属水酸化物を添加する。 When performing the dehydration step, an alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step, if necessary. In particular, the alkali metal hydroxide is added in consideration of the amount of hydrogen sulfide generated during dehydration and the amount of alkali metal hydroxide generated during dehydration.
 仕込み混合物において、有機極性溶媒及びジハロ芳香族化合物の各々の使用量は、例えば、硫黄源の仕込み量1モルに対し、重合工程に関する下記の説明中で示す範囲に設定される。 In the charged mixture, the amount of each of the organic polar solvent and the dihaloaromatic compound used is set, for example, within the range shown in the following description regarding the polymerization step with respect to 1 mol of the charged sulfur source.
3.重合工程
 重合工程では、有機極性溶媒中で硫黄源とジハロ芳香族化合物とを重合させてPASを生成させる。本重合工程における重合反応は、前記硫黄源と前記ジハロ芳香族化合物とを含む混合物を加熱して行う。より高粘度のPASを得るために、重合反応を2段階以上に分けて行ってもよい。前記重合反応は、例えば、前記硫黄源と前記ジハロ芳香族化合物との前段重合反応であることが好ましい。前段重合反応は、前記硫黄源と前記ジハロ芳香族化合物とを含む混合物を加熱して重合反応を開始させ、ジハロ芳香族化合物の転化率が50%以上のプレポリマーを生成させる重合反応である。
3. Polymerization step In the polymerization step, PAS is produced by polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent. The polymerization reaction in the main polymerization step is performed by heating a mixture containing the sulfur source and the dihaloaromatic compound. In order to obtain a higher viscosity PAS, the polymerization reaction may be carried out in two or more stages. The polymerization reaction is preferably, for example, a pre-polymerization reaction between the sulfur source and the dihaloaromatic compound. The pre-stage polymerization reaction is a polymerization reaction in which a mixture containing the sulfur source and the dihaloaromatic compound is heated to start the polymerization reaction, and a prepolymer having a dihaloaromatic compound conversion rate of 50% or more is generated.
 前記重合反応では、重合反応の効率等の観点から、温度170~300℃の加熱下で重合反応を行うことが好ましい。前記重合反応での重合温度は、180~280℃の範囲であることが、副反応及び分解反応を抑制する上でより好ましい。特に、前段重合反応では、重合反応の効率等の観点から、温度170~270℃の加熱下で重合反応を開始させ、ジハロ芳香族化合物の転化率が50%以上のプレポリマーを生成させることが好ましい。前段重合反応での重合温度は、180~265℃の範囲から選択することが、副反応及び分解反応を抑制する上で好ましい。 In the polymerization reaction, it is preferable to carry out the polymerization reaction under heating at a temperature of 170 to 300 ° C. from the viewpoint of the efficiency of the polymerization reaction. The polymerization temperature in the polymerization reaction is more preferably in the range of 180 to 280 ° C. in order to suppress side reactions and decomposition reactions. In particular, in the pre-stage polymerization reaction, from the viewpoint of the efficiency of the polymerization reaction, the polymerization reaction is started under heating at a temperature of 170 to 270 ° C., and a prepolymer having a dihaloaromatic compound conversion rate of 50% or more can be generated. preferable. The polymerization temperature in the pre-stage polymerization reaction is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
 本重合工程において、前段重合反応におけるジハロ芳香族化合物の転化率は、好ましくは50~98%、より好ましくは60~97%、更に好ましくは65~96%、特に好ましくは70~95%である。ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込み量に基づいて算出することができる。 In the main polymerization step, the conversion rate of the dihaloaromatic compound in the pre-stage polymerization reaction is preferably 50 to 98%, more preferably 60 to 97%, still more preferably 65 to 96%, and particularly preferably 70 to 95%. . The conversion rate of the dihaloaromatic compound is calculated based on the amount of the dihaloaromatic compound remaining in the reaction mixture by gas chromatography and based on the remaining amount, the charged amount of the dihaloaromatic compound, and the charged amount of the sulfur source. Can do.
 本重合工程における重合反応は、バッチ式で行ってもよいし、連続的に行ってもよい。例えば、少なくとも、有機極性溶媒、硫黄源、及びジハロ芳香族化合物の供給と、有機極性溶媒中での硫黄源とジハロ芳香族化合物との重合によるPASの生成と、PASを含む反応混合物の回収と、を同時並行で行うことにより、重合反応を連続的に行うことができる。 The polymerization reaction in the main polymerization step may be performed batchwise or continuously. For example, supply of at least an organic polar solvent, a sulfur source, and a dihaloaromatic compound, production of PAS by polymerization of the sulfur source and the dihaloaromatic compound in the organic polar solvent, and recovery of a reaction mixture containing PAS; , The polymerization reaction can be carried out continuously by carrying out in parallel.
 なお、有機極性溶媒、硫黄源、及びジハロ芳香族化合物としては、PASの製造において通常用いられるものを用いることができる。有機極性溶媒、硫黄源、及びジハロ芳香族化合物の各々は、単独で用いてもよいし、PASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。 In addition, as an organic polar solvent, a sulfur source, and a dihalo aromatic compound, what is normally used in manufacture of PAS can be used. Each of the organic polar solvent, the sulfur source, and the dihaloaromatic compound may be used singly or in combination of two or more as long as the PAS can be produced.
 有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが更により好ましく、NMPが特に好ましい。有機極性溶媒の使用量は、重合反応の効率等の観点から、上記硫黄源1モルに対し、1~30モルが好ましく、3~15モルがより好ましい。 Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound. Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl-ε-caprolactam; N-methyl-2-pyrrolidone (hereinafter, “ NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone Compounds; tetraalkylurea compounds such as tetramethylurea; hexaalkylphosphate triamide compounds such as hexamethylphosphate triamide, and the like. Examples of the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone. Examples of the aprotic organic polar solvent comprising a cyclic organophosphorus compound include 1-methyl-1-oxophosphorane. Among these, organic amide solvents are preferable in terms of availability, handling, and the like, and N-alkylpyrrolidone compounds, N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are more preferable. NMP, N-methyl-ε-caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, and NMP is particularly preferred. The amount of the organic polar solvent used is preferably from 1 to 30 mol, more preferably from 3 to 15 mol, based on 1 mol of the sulfur source from the viewpoint of the efficiency of the polymerization reaction.
 硫黄源としては、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素を挙げることができ、アルカリ金属硫化物及びアルカリ金属水硫化物であることが好ましい。硫黄源は、例えば、水性スラリーや水溶液の状態で扱うことができ、計量性、搬送性等のハンドリング性の観点から、水溶液の状態であることが好ましい。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムが挙げられる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウムが挙げられる。 Examples of the sulfur source include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide, and alkali metal sulfides and alkali metal hydrosulfides are preferable. The sulfur source can be handled in the form of, for example, an aqueous slurry or an aqueous solution, and is preferably in the state of an aqueous solution from the viewpoint of handling properties such as meterability and transportability. Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
 ジハロ芳香族化合物としては、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられ、ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、ジハロ芳香族化合物における2個のハロゲン原子は、同じでも異なっていてもよい。中でも、入手性、反応性等の点で、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(以下、「pDCB」とも称する。)が特に好ましい。ジハロ芳香族化合物の使用量は、硫黄源の仕込み量1モルに対し、好ましくは0.90~1.50モルであり、より好ましくは0.92~1.10モルであり、更により好ましくは0.95~1.05モルである。上記使用量が上記範囲内であると、分解反応が生じにくく、安定的な重合反応の実施が容易であり、高分子量ポリマーを生成させやすい。 Dihaloaromatic compounds include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone, dihalodiphenyl sulfoxide Dihalodiphenyl ketone, and the like. Halogen atoms refer to fluorine, chlorine, bromine and iodine atoms, and the two halogen atoms in the dihaloaromatic compound may be the same or different. Among these, p-dihalobenzene, m-dihalobenzene, and a mixture of both are preferable in terms of availability, reactivity, and the like, p-dihalobenzene is more preferable, and p-dichlorobenzene (hereinafter also referred to as “pDCB”). Particularly preferred. The amount of the dihaloaromatic compound to be used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, still more preferably with respect to 1 mol of the charged sulfur source. 0.95 to 1.05 mol. When the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily performed, and a high molecular weight polymer is easily generated.
4.後処理工程(分離工程、洗浄工程、回収工程等):
 PASの製造方法としては、重合反応後の後処理工程を、常法によって行うことができる。例えば、重合反応の終了後、生成したPASポリマーを含有するスラリーを高温状態のまま、又は冷却した後、所望により水等で希釈してから、篩分等によりPASポリマーをろ別する分離工程、次いで、分離したPASポリマーについて、重合溶媒と同じ極性有機溶媒やケトン類(例えば、アセトン)、アルコール類(例えば、メタノール)等の有機溶媒や高温水による洗浄と濾過を繰り返す洗浄工程、その後乾燥することにより、PASを回収する回収工程等を行うことができる。生成したPASを、酸や塩化アンモニウムのような塩で処理することもできる。この方法によれば、粒状ポリマーを生成させることもできるため、スクリーンを用いて篩分する方法により粒状ポリマーを反応液から分離することが、副生物やオリゴマー等から容易に分離することができるので好ましい。
4). Post-treatment process (separation process, washing process, recovery process, etc.):
As a method for producing PAS, the post-treatment step after the polymerization reaction can be performed by a conventional method. For example, after the polymerization reaction is completed, the slurry containing the produced PAS polymer is kept in a high temperature state or cooled, and then diluted with water or the like as desired, and then the PAS polymer is filtered by sieving or the like, Next, the separated PAS polymer is washed with an organic solvent such as the same polar solvent as the polymerization solvent, an organic solvent such as ketones (for example, acetone), alcohols (for example, methanol), hot water, and filtration. Thus, a recovery step for recovering PAS can be performed. The produced PAS can be treated with a salt such as acid or ammonium chloride. According to this method, since a granular polymer can also be generated, it is possible to separate the granular polymer from the reaction liquid by a method of sieving using a screen, so that it can be easily separated from by-products and oligomers. preferable.
II.PASの製造装置
 本発明に係るPASの製造装置は、有機極性溶媒中で硫黄源とジハロ芳香族化合物とを重合させてポリアリーレンスルフィドを生成させる反応槽と、前記反応槽と連通し、前記反応槽に前記硫黄源を供給する供給路と、前記供給路に設けられ、前記供給路の開閉を行う少なくとも1個のバルブと、を備え、前記バルブのうち、少なくとも1個は、ジルコニウム含有材料から形成されている。以下、図面を参照しながら説明する。
II. PAS manufacturing apparatus The PAS manufacturing apparatus according to the present invention communicates with a reaction tank for polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent to produce polyarylene sulfide, and the reaction tank. A supply path for supplying the sulfur source to the tank, and at least one valve provided in the supply path for opening and closing the supply path, wherein at least one of the valves is made of a zirconium-containing material. Is formed. Hereinafter, description will be given with reference to the drawings.
1.反応槽
 図1に示すに示す通り、本発明の一実施形態に係るPAS製造装置100は、反応槽1を備える。PAS製造装置100を適用して行うPASの製造方法としては、反応槽1を使用し、反応槽1内において、少なくとも仕込み工程及び重合工程を行い(したがって、反応槽1は、「重合槽」又は「重合缶」ということがある。)、所望により脱水工程を行う。
1. Reaction Tank As shown in FIG. 1, a PAS manufacturing apparatus 100 according to an embodiment of the present invention includes a reaction tank 1. As a PAS manufacturing method performed by applying the PAS manufacturing apparatus 100, the reaction tank 1 is used, and at least the charging process and the polymerization process are performed in the reaction tank 1 (therefore, the reaction tank 1 is a “polymerization tank” or Sometimes referred to as “polymerization can”), and if desired, a dehydration step is performed.
 PAS製造装置100に備えられる反応槽1としては、従来PASの製造装置に備えられ使用されている反応槽におけると同様の形状、構造及び大きさ等を適用することができ、また、同様の材料から形成することができる。即ち、反応槽1は、通常、円筒状の胴部11、蓋部12及び底部13を備える構造を有する。反応槽1には、通常、撹拌翼21及び撹拌軸22が挿通され、また、内周壁に1又は複数のバッフル(邪魔板)3が備えられる。前記撹拌軸22は、反応槽1の上方に配される電動機(図示せず)に接続され、回転駆動される。 As the reaction tank 1 provided in the PAS manufacturing apparatus 100, the same shape, structure, size, etc. as in the reaction tank conventionally provided and used in the PAS manufacturing apparatus can be applied, and the same material is used. Can be formed from That is, the reaction vessel 1 usually has a structure including a cylindrical body portion 11, a lid portion 12 and a bottom portion 13. In the reaction tank 1, a stirring blade 21 and a stirring shaft 22 are usually inserted, and one or a plurality of baffles (baffle plates) 3 are provided on the inner peripheral wall. The agitation shaft 22 is connected to an electric motor (not shown) disposed above the reaction tank 1 and is driven to rotate.
〔蓋部〕
 反応槽1の蓋部12は、円筒状の胴部11の上部に接続して取り付けられる、通常、椀状の部材であり、先に説明した撹拌軸22を挿通する孔部が設けられている。反応槽1は、蓋部12に、後に詳述するように、原料モノマーやその他の材料(アルカリ金属水酸化物等を包含する。また、以下、原料モノマーやその他の材料を総称して「種々の原料等」ということがある。)を反応槽1の内部に投入するための供給路4(「供給ノズル」ということもある。)が、1又は複数備えられていることを特徴に有する(図1では、硫黄源を反応槽1に供給する供給路として、1本の供給路4が図示されている)。また、蓋部12には、反応槽1の内部の点検、清掃等を行うことができるようにするため、開閉可能な開口部等を設けてもよい。開閉可能な開口部は、通常、供給路4より大径である。所望によっては、蓋部12には、反応槽1内に配されるバッフル3を吊り下げ固定するバッフル固定部を所要数設けてもよい。
[Cover]
The lid 12 of the reaction tank 1 is usually a bowl-shaped member that is connected to and attached to the upper part of the cylindrical body 11, and is provided with a hole through which the stirring shaft 22 described above is inserted. . As will be described in detail later, the reaction vessel 1 includes raw material monomers and other materials (alkali metal hydroxides and the like. In addition, the raw material monomers and other materials are collectively referred to as “various”. Or a plurality of supply passages 4 (sometimes referred to as “supply nozzles”) for charging the reaction tank 1 into the interior of the reaction tank 1 ( In FIG. 1, one supply path 4 is shown as a supply path for supplying the sulfur source to the reaction tank 1). The lid 12 may be provided with an openable / closable opening or the like so that the inside of the reaction tank 1 can be inspected, cleaned, and the like. The opening that can be opened and closed is usually larger in diameter than the supply path 4. If desired, the lid portion 12 may be provided with a required number of baffle fixing portions for suspending and fixing the baffles 3 arranged in the reaction tank 1.
〔底部〕
 反応槽1の底部13は、円筒状の胴部11の下部に接続して取り付けられる、通常、椀状の部材である。底部13には、通常、重合反応により生成するPASポリマーを排出する排出管131(「排出ノズル」ということもある。)が設けられ、更に所望により種々の原料等を反応槽1の内部に投入するための供給路が設けられることがある。
〔bottom〕
The bottom 13 of the reaction tank 1 is a generally bowl-shaped member that is connected to and attached to the lower part of the cylindrical body 11. The bottom 13 is usually provided with a discharge pipe 131 (also referred to as a “discharge nozzle”) for discharging the PAS polymer produced by the polymerization reaction, and various raw materials are charged into the reaction tank 1 as desired. There is a case where a supply path is provided.
〔円筒状の胴部〕
 反応槽1の円筒状の胴部11は、反応槽1の主要部をなし、その内部において仕込み工程、重合工程及び所望により脱水工程が行われる。円筒状の胴部11の内部には、通常、撹拌翼21及び撹拌軸22と、バッフル(邪魔板)3が配置されている。図1においては、バッフル3は、円筒状の胴部11の内壁に直接取り付けられるものとしている。ただし、バッフル3は、反応槽1の内壁、具体的には円筒状の胴部11の内壁に突設されるバッフルサポートによって支持されるようにしてもよいし、また先に言及したように、蓋部12から吊り下げ固定されるようにしてもよい。
(Cylindrical body)
The cylindrical body 11 of the reaction tank 1 constitutes a main part of the reaction tank 1, and a charging process, a polymerization process, and a dehydration process are performed therein if desired. A stirring blade 21 and a stirring shaft 22 and a baffle (baffle plate) 3 are usually arranged inside the cylindrical body 11. In FIG. 1, the baffle 3 is directly attached to the inner wall of the cylindrical body 11. However, the baffle 3 may be supported by a baffle support protruding from the inner wall of the reaction tank 1, specifically, the inner wall of the cylindrical body 11, or as mentioned above, You may make it hang and fix from the cover part 12. FIG.
〔その他の部材〕
 通常、円筒状の胴部11、蓋部12及び底部13を備える反応槽1には、所要のその他の部材が接続される。先に説明した撹拌軸22を回転させる電動機はその一例であり、更に、例えば、反応槽1、特に円筒状の胴部11の温度を調整するための熱交換ジャケットが、反応槽1の外周面を取り囲むように備えられることがある。また、例えば、種々の原料等や生成するPASポリマーの移送や、熱媒及び/又は冷媒の循環等を目的として、種々の配管が備えられてもよい。
[Other parts]
Usually, other required members are connected to the reaction tank 1 including the cylindrical body portion 11, the lid portion 12, and the bottom portion 13. The electric motor that rotates the agitation shaft 22 described above is an example. Further, for example, a heat exchange jacket for adjusting the temperature of the reaction vessel 1, particularly the cylindrical body 11, is an outer peripheral surface of the reaction vessel 1. May be provided so as to surround. Further, for example, various pipes may be provided for the purpose of transferring various raw materials and the like, PAS polymer to be produced, circulation of a heat medium and / or refrigerant, and the like.
 反応槽1を形成する材料としては、PASの重合反応が、高温、高圧及び高アルカリ環境において実施されることから、高温環境における強度や耐薬品性に優れる材料が求められる。具体的にはチタン材(チタン合金でもよい。)、ジルコニウム材(ジルコニウム合金でもよい。)、特殊オーステナイト鋼〔カーペンター(登録商標)等〕等の耐食性金属が挙げられ、これらの板状材や、チタン、ジルコニウム等の耐腐食性金属を反応槽1の内面に備えるものとした積層体、例えば、チタン被覆鋼材やクラッド材等が使用される。耐腐食性金属の板状材(クラッド材も包含する。)の厚みや大きさは、必要に応じて適宜定められる。反応槽1に配されるバッフル3等の部材等を形成する材料についても同様である。 As a material for forming the reaction tank 1, since the polymerization reaction of PAS is carried out in a high temperature, high pressure and high alkali environment, a material excellent in strength and chemical resistance in a high temperature environment is required. Specific examples include corrosion resistant metals such as titanium materials (may be titanium alloys), zirconium materials (may be zirconium alloys), special austenitic steels [Carpenter (registered trademark), etc.], and these plate-like materials, A laminate in which a corrosion-resistant metal such as titanium or zirconium is provided on the inner surface of the reaction vessel 1, such as a titanium-coated steel material or a clad material, is used. The thickness and size of the corrosion-resistant metal plate material (including clad material) are appropriately determined as necessary. The same applies to materials forming members such as the baffle 3 disposed in the reaction tank 1.
2.供給路
 図1に示すに示す通り、PAS製造装置100は、供給路4を備え、供給路4は、反応槽1と連通し、反応槽1に硫黄源を供給する。供給路4は、例えば、図1に示す通り、反応槽1の蓋部12に接続される。なお、PAS製造装置100は、供給路4以外に、原料モノマーやアルカリ金属水酸化物等の種々の原料等を反応槽1の内部に投入するための1又は複数の供給路を備える(図示せず)。
2. Supply Path As shown in FIG. 1, the PAS manufacturing apparatus 100 includes a supply path 4. The supply path 4 communicates with the reaction tank 1 and supplies a sulfur source to the reaction tank 1. The supply path 4 is connected to the lid portion 12 of the reaction tank 1 as shown in FIG. 1, for example. In addition to the supply path 4, the PAS manufacturing apparatus 100 includes one or a plurality of supply paths for introducing various raw materials such as raw material monomers and alkali metal hydroxide into the reaction tank 1 (not shown). )
 供給路4の径、長さ及び厚みは、供給路4から供給される硫黄源の種類、反応槽1への投入量及び供給路4に求められる強度等を参酌して適宜設定することができる。供給路4は、チタン材やジルコニウム材等の耐腐食性材料から形成されていることが好ましい。 The diameter, length, and thickness of the supply path 4 can be appropriately set in consideration of the type of the sulfur source supplied from the supply path 4, the input amount to the reaction tank 1, the strength required for the supply path 4, and the like. . The supply path 4 is preferably formed from a corrosion-resistant material such as a titanium material or a zirconium material.
3.バルブ
 図1に示すに示す通り、PAS製造装置100は、バルブ5を備え、バルブ5は、供給路4に設けられ、供給路4の開閉を行う。図1は、1個のバルブが供給路4に設けられている場合を示すが、供給路4には、複数個のバルブが設けられていてもよい。バルブ5を開けることにより、供給路4を通じて、反応槽1に硫黄源が供給され、バルブ5を閉めることにより、供給路4を通じた反応槽1への硫黄源の供給が終了する。
3. Valve As shown in FIG. 1, the PAS manufacturing apparatus 100 includes a valve 5. The valve 5 is provided in the supply path 4 and opens and closes the supply path 4. Although FIG. 1 shows the case where one valve is provided in the supply path 4, a plurality of valves may be provided in the supply path 4. By opening the valve 5, the sulfur source is supplied to the reaction tank 1 through the supply path 4, and by closing the valve 5, the supply of the sulfur source to the reaction tank 1 through the supply path 4 is completed.
 バルブ5の形状は、反応槽1への硫黄源の供給が可能であれば特に限定されない。バルブ5としては、例えば、バタフライバルブ、玉形バルブ、ダイヤフラムバルブ、グローブバルブ、プラグバルブ、ボールバルブ等を採用することができる。本実施形態では、操作性や流量調整性等の観点から、ボールバルブであることが好ましい。 The shape of the valve 5 is not particularly limited as long as the sulfur source can be supplied to the reaction tank 1. As the valve 5, for example, a butterfly valve, a ball valve, a diaphragm valve, a globe valve, a plug valve, a ball valve, or the like can be used. In the present embodiment, a ball valve is preferable from the viewpoint of operability, flow rate adjustability, and the like.
 バルブ5は、ジルコニウム含有材料から形成されている。これにより、反応槽1で発生した硫化水素等の硫黄含有雰囲気がバルブ5と接触しても、バルブ5は腐食しにくくなる。供給路4に複数個のバルブが設けられている場合、これらのバルブのうち、少なくとも1個がジルコニウム含有材料から形成されており、好ましくは、これらのバルブのうち、反応槽1に最も近いバルブが、前記ジルコニウム含有材料から形成されている。これらのバルブの中でも、特に、反応槽に最も近いバルブは、上記硫黄含有雰囲気により腐食しやすいため、定期的に交換する必要があるが、当該バルブが前記ジルコニウム含有材料から形成されていると、交換の頻度を効果的に低減させることができる。 The valve 5 is made of a zirconium-containing material. Thereby, even if a sulfur-containing atmosphere such as hydrogen sulfide generated in the reaction tank 1 comes into contact with the valve 5, the valve 5 is hardly corroded. When a plurality of valves are provided in the supply path 4, at least one of these valves is made of a zirconium-containing material, and preferably the valve closest to the reaction vessel 1 among these valves. Is formed from the zirconium-containing material. Among these valves, in particular, the valve closest to the reaction vessel is likely to corrode due to the sulfur-containing atmosphere, and therefore needs to be replaced periodically.If the valve is formed from the zirconium-containing material, The frequency of exchange can be effectively reduced.
 本実施形態におけるバルブ5は、供給路4に設けられているため、腐食性を有するPAS原料、例えば、アルカリ金属水酸化物等にも接触する。バルブ5は、ジルコニウム含有材料から形成されていることにより、硫化水素による腐食だけでなくアルカリ金属水酸化物による腐食も効果的に防ぐことができる。 Since the valve 5 in the present embodiment is provided in the supply path 4, it also comes into contact with a corrosive PAS raw material such as an alkali metal hydroxide. By forming the valve 5 from a zirconium-containing material, not only corrosion due to hydrogen sulfide but also corrosion due to an alkali metal hydroxide can be effectively prevented.
 更に、PASの重合反応は、一般的に200℃以上の高温条件下で行われる。本実施形態のバルブ5はジルコニウム含有材料から形成されていることから、高温条件下においてもバルブ5の腐食を効果的に抑制することができる。 Furthermore, the polymerization reaction of PAS is generally performed under a high temperature condition of 200 ° C. or higher. Since the valve 5 of the present embodiment is formed from a zirconium-containing material, corrosion of the valve 5 can be effectively suppressed even under high temperature conditions.
 ジルコニウム含有材料としては、ジルコニウムが含有している限り、特に限定されず、例えば、ジルコニウムを含有する金属材料等が挙げられる。前記ジルコニウム含有材料におけるジルコニウムの含有量としては、特に限定されず、耐食性向上の観点から、95~100質量%であることが好ましく、97.5~99.5質量%であることがより好ましく、98~99質量%であることが更により好ましい。 The zirconium-containing material is not particularly limited as long as zirconium is contained, and examples thereof include a metal material containing zirconium. The zirconium content in the zirconium-containing material is not particularly limited, and is preferably 95 to 100% by mass, more preferably 97.5 to 99.5% by mass from the viewpoint of improving corrosion resistance. Even more preferably, it is 98 to 99% by mass.
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to the examples.
[金属サンプル]
 以下の金属サンプルを用いた。
表1に示す塑性を有するジルコニウム含有材料
インコネル600
SUS304
SUS316L
ニッケル
[Metal sample]
The following metal samples were used.
Zirconium-containing material Inconel 600 having plasticity shown in Table 1
SUS304
SUS316L
nickel
Figure JPOXMLDOC01-appb-T000001
ただし、Hfの含有量は、全体で1%
Figure JPOXMLDOC01-appb-T000001
However, the total content of Hf is 1%
[腐食試験1]
 寸法30mm×50mm×2mmの金属サンプルを64質量%水硫化ナトリウム水溶液に浸漬し、温度80℃で16日間静置した後、金属サンプルの腐食の度合いを目視で観察した。当該度合いの大きい順に上記金属サンプルを並べた結果を以下に示す。
 SUS316L>SUS304>インコネル600>ジルコニウム含有材料
[Corrosion test 1]
A metal sample having dimensions of 30 mm × 50 mm × 2 mm was immersed in a 64% by mass aqueous sodium hydrosulfide solution and allowed to stand at a temperature of 80 ° C. for 16 days, and then the degree of corrosion of the metal sample was visually observed. The result of arranging the metal samples in descending order is shown below.
SUS316L>SUS304> Inconel 600> Zirconium-containing material
[腐食試験2]
 寸法25mm×50mm×2mmの金属サンプルを2質量%硫化水素雰囲気(水蒸気なし、残部:二酸化炭素)中に入れ、圧力3MPa、温度250℃で10日間静置した後、金属サンプルの腐食の度合いを目視で観察した。当該度合いの大きい順に上記金属サンプルを並べた結果を以下に示す。
 ニッケル>>インコネル600>SUS316L>チタン>ジルコニウム含有材料
[Corrosion test 2]
A metal sample having dimensions of 25 mm × 50 mm × 2 mm was placed in a 2% by mass hydrogen sulfide atmosphere (no water vapor, the balance: carbon dioxide) and allowed to stand at a pressure of 3 MPa and a temperature of 250 ° C. for 10 days. It was observed visually. The result of arranging the metal samples in descending order is shown below.
Nickel >> Inconel 600>SUS316L>Titanium> Zirconium-containing material
[腐食試験3]
 寸法25mm×50mm×2mmの金属サンプルを2質量%硫化水素雰囲気(水蒸気あり:RH_%、残部:二酸化炭素)中に入れ、圧力3.7MPa、温度250℃で10日間静置した後、金属サンプルの腐食の度合いを目視で観察した。当該度合いの大きい順に上記金属サンプルを並べた結果を以下に示す。
 ニッケル>>インコネル600>>SUS316L>チタン>ジルコニウム含有材料
[Corrosion test 3]
A metal sample having a size of 25 mm × 50 mm × 2 mm was placed in a 2% by mass hydrogen sulfide atmosphere (with water vapor: RH_%, the balance: carbon dioxide), and allowed to stand at a pressure of 3.7 MPa and a temperature of 250 ° C. for 10 days. The degree of corrosion was visually observed. The result of arranging the metal samples in descending order is shown below.
Nickel >> Inconel 600 >>SUS316L>Titanium> Zirconium-containing material
[腐食試験4]
 直径75mmの球体である金属サンプルを75質量%水酸化ナトリウム水溶液に浸漬し、温度130℃で半年間静置した後、金属サンプルの真円度を真円度測定機により測定した。真円度の低下の大きい順に上記金属サンプルを並べた結果を以下に示す。
 インコネル600>ジルコニウム含有材料
[Corrosion test 4]
A metal sample, which is a sphere having a diameter of 75 mm, was immersed in a 75% by mass aqueous sodium hydroxide solution and allowed to stand at a temperature of 130 ° C. for half a year. The results of arranging the metal samples in descending order of decrease in roundness are shown below.
Inconel 600> Zirconium-containing material
 以上から、ジルコニウム含有材料は、水硫化ナトリウム水溶液、硫化水素雰囲気、及び水酸化ナトリウム水溶液のいずれに対しても、優れた耐食性を示した。よって、PASの製造装置において、原料である硫黄源を反応槽に供給する供給路に設けられるバルブをジルコニウム含有材料で形成することにより、上記バルブの耐食性を向上させることができる。 From the above, the zirconium-containing material showed excellent corrosion resistance to any of the sodium hydrosulfide aqueous solution, the hydrogen sulfide atmosphere, and the sodium hydroxide aqueous solution. Therefore, in the PAS manufacturing apparatus, the corrosion resistance of the valve can be improved by forming the valve provided in the supply path for supplying the sulfur source as the raw material to the reaction tank with the zirconium-containing material.
1   反応槽
11  円筒状の胴部
12  蓋部
13  底部
131 排出管
21  撹拌翼
22  撹拌軸
3   バッフル
4   供給路
5   バルブ
100 PAS製造装置
DESCRIPTION OF SYMBOLS 1 Reaction tank 11 Cylindrical trunk | drum 12 Cover part 13 Bottom part 131 Discharge pipe 21 Stirring blade 22 Stirring shaft 3 Baffle 4 Supply path 5 Valve 100 PAS manufacturing apparatus

Claims (3)

  1.  有機極性溶媒中で硫黄源とジハロ芳香族化合物とを重合させてポリアリーレンスルフィドを生成させる反応槽と、
     前記反応槽と連通し、前記反応槽に前記硫黄源を供給する供給路と、
     前記供給路に設けられ、前記供給路の開閉を行う少なくとも1個のバルブと、
    を備える、ポリアリーレンスルフィドの製造装置であって、
     前記バルブのうち、少なくとも1個は、ジルコニウム含有材料から形成されている製造装置。
    A reaction vessel for producing a polyarylene sulfide by polymerizing a sulfur source and a dihaloaromatic compound in an organic polar solvent;
    A supply path communicating with the reaction tank and supplying the sulfur source to the reaction tank;
    At least one valve provided in the supply path for opening and closing the supply path;
    An apparatus for producing polyarylene sulfide comprising:
    A manufacturing apparatus in which at least one of the valves is formed of a zirconium-containing material.
  2.  前記少なくとも1個のバルブのうち、前記反応槽に最も近いバルブが、前記ジルコニウム含有材料から形成されている請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein, among the at least one valve, a valve closest to the reaction vessel is formed from the zirconium-containing material.
  3.  前記ジルコニウム含有材料におけるジルコニウムの含有量は、95~100質量%である請求項1又は2に記載の製造装置。 The production apparatus according to claim 1 or 2, wherein the zirconium content in the zirconium-containing material is 95 to 100% by mass.
PCT/JP2018/008128 2017-03-06 2018-03-02 Device for producing polyarylene sulfide WO2018164010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-041951 2017-03-06
JP2017041951 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018164010A1 true WO2018164010A1 (en) 2018-09-13

Family

ID=63447537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008128 WO2018164010A1 (en) 2017-03-06 2018-03-02 Device for producing polyarylene sulfide

Country Status (1)

Country Link
WO (1) WO2018164010A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121133A (en) * 1989-08-24 1991-05-23 Bayer Ag Manufacture of polyarylene sulfide
JP2004352923A (en) * 2003-05-30 2004-12-16 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2005041922A (en) * 2003-07-23 2005-02-17 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2006016567A (en) * 2004-07-05 2006-01-19 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
WO2008020553A1 (en) * 2006-08-17 2008-02-21 Dic Corporation Method for producing polyarylene sulfide resin
JP2008081542A (en) * 2006-09-26 2008-04-10 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2008248153A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
WO2011148929A1 (en) * 2010-05-26 2011-12-01 Dic株式会社 Resin composition for blow-molded hollow article, blow-molded hollow article, and production processes
WO2016047631A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Polyarylene sulfide production device provided with baffle and baffle support
WO2016047632A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Polyarylene sulfide production device equipped with feed pipe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121133A (en) * 1989-08-24 1991-05-23 Bayer Ag Manufacture of polyarylene sulfide
JP2004352923A (en) * 2003-05-30 2004-12-16 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2005041922A (en) * 2003-07-23 2005-02-17 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2006016567A (en) * 2004-07-05 2006-01-19 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
WO2008020553A1 (en) * 2006-08-17 2008-02-21 Dic Corporation Method for producing polyarylene sulfide resin
JP2008081542A (en) * 2006-09-26 2008-04-10 Dainippon Ink & Chem Inc Method for producing polyarylene sulfide resin
JP2008248153A (en) * 2007-03-30 2008-10-16 Dic Corp Method for producing polyarylene sulfide resin
WO2011148929A1 (en) * 2010-05-26 2011-12-01 Dic株式会社 Resin composition for blow-molded hollow article, blow-molded hollow article, and production processes
WO2016047631A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Polyarylene sulfide production device provided with baffle and baffle support
WO2016047632A1 (en) * 2014-09-22 2016-03-31 株式会社クレハ Polyarylene sulfide production device equipped with feed pipe

Similar Documents

Publication Publication Date Title
CN108779253B (en) Apparatus for continuously producing polyarylene sulfide and method for continuously producing polyarylene sulfide
JP6473277B2 (en) Method for producing polyarylene sulfide and continuous production apparatus for polyarylene sulfide
JPH07228699A (en) Production of polyarylene sulfide polymer
JP6479283B2 (en) Process for producing polyarylene sulfide
JP6473279B2 (en) Process for producing polyarylene sulfide
JPH08100064A (en) Production of polyarylene sulfide polymer
JP2004107567A (en) Method for manufacturing polyarylene sulfide
JP4929527B2 (en) Method for purifying polyarylene sulfide
KR20180038042A (en) Process for producing polyarylene sulfide
WO2003085034A1 (en) Method and apparatus for purifying polyarylene sulfide
EP3647340B1 (en) Method for producing polyarylene sulphide resin
WO2018164010A1 (en) Device for producing polyarylene sulfide
JP6153671B2 (en) Polyarylene sulfide production apparatus equipped with a supply pipe
JP6473278B2 (en) Process for producing polyarylene sulfide
JP2020519739A (en) Method for producing polyarylene sulfide
JP7172020B2 (en) Method for producing polyarylene sulfide resin
JP6691660B2 (en) Method for producing polyarylene sulfide resin
JP6801232B2 (en) Manufacturing method of polyarylene sulfide resin
WO2020026590A1 (en) Method for producing poly(arylene sulfide)
JP6972591B2 (en) Method for manufacturing polyarylene sulfide resin
JP2018154691A (en) Method for producing polyarylene sulfide resin
WO2018164009A1 (en) Apparatus for recovering polyarylene sulfide
JPH06248079A (en) Production of polyarylene sulfide and resin composition
JP7108140B2 (en) Method for producing polyarylene sulfide, method for dehydration treatment, and apparatus for producing polyarylene sulfide
JPWO2019004170A1 (en) Method for producing polyarylene sulfide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP