WO2018163944A1 - Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display - Google Patents

Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display Download PDF

Info

Publication number
WO2018163944A1
WO2018163944A1 PCT/JP2018/007668 JP2018007668W WO2018163944A1 WO 2018163944 A1 WO2018163944 A1 WO 2018163944A1 JP 2018007668 W JP2018007668 W JP 2018007668W WO 2018163944 A1 WO2018163944 A1 WO 2018163944A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
source
substrate
semiconductor device
contact region
Prior art date
Application number
PCT/JP2018/007668
Other languages
French (fr)
Japanese (ja)
Inventor
博章 古川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018163944A1 publication Critical patent/WO2018163944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a semiconductor device including a thin film transistor (TFT), a method for manufacturing the semiconductor device, and a liquid crystal display device including the semiconductor device.
  • TFT thin film transistor
  • a display device including an active matrix substrate provided with a switching element for each pixel is widely used.
  • An active matrix substrate including a thin film transistor (hereinafter, “TFT”) as a switching element is also referred to as a TFT substrate.
  • a TFT substrate generally includes a TFT supported on the substrate and a pixel electrode electrically connected to a drain electrode of the TFT for each pixel.
  • the TFT is usually covered with an interlayer insulating layer.
  • the pixel electrode is provided on the interlayer insulating layer, and is connected to the drain electrode of the TFT in a contact hole formed in the interlayer insulating layer.
  • Patent Document 1 Such a configuration of the TFT substrate is disclosed in Patent Document 1, for example.
  • an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for an active layer of a TFT (see, for example, Patent Documents 1, 2, and 3).
  • An oxide semiconductor has higher electron mobility than amorphous silicon. Therefore, a TFT using a layer containing an oxide semiconductor as an active layer of the TFT (hereinafter also referred to as an “oxide semiconductor TFT”) can operate at a higher speed than a TFT using amorphous silicon.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area.
  • JP 2013-105136 A Japanese Patent No. 5330603 JP 2014-007399 A JP 2012-134475 A JP 2014-209727 A
  • Patent Document 2 in a cross-sectional view of the thin film transistor T R, the pixel contact hole 27a is provided in the protective film 26, the pixel electrode 28, the oxide in the drain section DR It is in contact with the semiconductor film 24a.
  • the pixel contact hole 27a and the gate electrode 22a are half-overlapped, and when a TFT substrate having such a configuration is used for a display device, Light from a light source such as a backlight may pass through the contact hole and light leakage may occur.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a semiconductor device capable of ensuring high reliability while achieving high definition and a manufacturing method thereof. It is another object of the present invention to provide a liquid crystal display device including the semiconductor device, which achieves high definition and has good contrast.
  • the present inventor examined a method for reducing light leakage from a contact hole in a semiconductor device having a structure in which a semiconductor layer constituting a TFT and a pixel electrode are in contact with each other in a drain contact region of the semiconductor layer in a contact hole. . And it discovered that generation
  • one embodiment of the present invention is a semiconductor device including a substrate and a thin film transistor supported by the substrate, and the thin film transistor includes a first conductive portion formed over the substrate and the first conductive portion.
  • the outer edge is
  • Another aspect of the present invention is a method for manufacturing a semiconductor device including a thin film transistor, the step of forming a first conductive portion on a substrate, and the step of forming a first insulating layer covering the first conductive portion.
  • Forming an oxide semiconductor film on the first insulating layer, and patterning the oxide semiconductor film so that the oxide semiconductor layer at least partially overlaps the first conductive portion with the first insulating layer interposed therebetween Forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer, forming a second insulating layer covering the oxide semiconductor layer, and forming the oxidation on the second insulating layer
  • Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there.
  • the semiconductor device of the present invention high reliability can be ensured while realizing high definition.
  • the method for manufacturing a semiconductor device of the present invention it is possible to manufacture a semiconductor device capable of ensuring high reliability while realizing high definition. Since the liquid crystal display device of the present invention includes the semiconductor device of the present invention, light leakage hardly occurs. Therefore, according to the liquid crystal display device of the present invention, it is possible to improve the contrast while achieving high definition.
  • FIG. 1 is a schematic plan view of a semiconductor device according to Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view taken along the line A-A ′ of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view taken along line B-B ′ of FIG. 1.
  • 6 is a schematic plan view of a semiconductor device according to Embodiment 2.
  • FIG. FIG. 5 is a schematic sectional view taken along line C-C ′ of FIG. 4.
  • FIG. 5 is a schematic cross-sectional view taken along line D-D ′ in FIG. 4.
  • FIG. 10 is a schematic plan view of a semiconductor device according to Modification 1.
  • FIG. 8 is a schematic cross-sectional view taken along line E-E ′ of FIG. 7.
  • FIG. 6 is a schematic plan view of a semiconductor device according to a third embodiment.
  • FIG. FIG. 10 is a schematic cross-sectional view taken along the line F-F ′ of FIG. 9.
  • FIG. 6 is a schematic plan view of a semiconductor device according to a fourth embodiment.
  • FIG. 12 is a schematic cross-sectional view taken along the line H-H ′ of FIG. 11.
  • 1 is a schematic cross-sectional view illustrating a semiconductor device including an etch stop type TFT.
  • 6 is a schematic plan view of a semiconductor device according to a comparative embodiment 1.
  • FIG. FIG. 15 is a schematic sectional view taken along line I-I ′ of FIG. 14.
  • the semiconductor device 1001 according to the first embodiment will be described below with reference to FIGS.
  • the semiconductor device of Embodiment 1 may be any device provided with a thin film transistor on a substrate, and widely includes various circuit boards, TFT substrates, and display devices provided with TFT substrates.
  • a TFT substrate will be described as an example.
  • FIG. 1 is a schematic plan view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic sectional view taken along the line A-A ′ of FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line B-B ′ of FIG.
  • the semiconductor device 1001 according to the first embodiment includes a plurality of gate lines G and a plurality of source lines S formed on a substrate (not shown).
  • the gate line G extends along the first direction X
  • the source line S extends along a second direction Y different from the first direction X.
  • the first direction X and the second direction Y may be orthogonal to each other.
  • each of the plurality of gate wirings G has a gate protruding portion G ⁇ b> 1 extending in the second direction Y from the gate wiring G.
  • each of the plurality of source lines S when viewed from the normal direction of the substrate 11, has a source protruding portion S 1 extending from the source line S in the first direction X.
  • the semiconductor device 1001 includes a plurality of pixels Pix arranged in a matrix in the first direction X and the second direction Y on the substrate 11.
  • the TFT 101 and the transparent electrode 20 are disposed in each of the plurality of pixels Pix.
  • an area including a plurality of pixels Pix is referred to as a “display area”, and an area other than the display area is referred to as a “non-display area” or a “frame area”.
  • a terminal portion, a drive circuit, and the like may be provided in the non-display area.
  • the TFT 101 is, for example, a bottom gate type TFT.
  • the TFT 101 may be a bottom gate type TFT having a top contact structure.
  • the TFT 101 includes a substrate 11, a first conductive portion 12 disposed on the substrate 11, a first insulating layer 13 covering the first conductive portion 12, and a first insulating layer 13.
  • the oxide semiconductor layer 14, the second conductive portion 15, and the second insulating layer 16 are provided.
  • the first insulating layer 13 is a gate insulating layer.
  • the oxide semiconductor layer 14 is disposed so as to at least partially overlap the first conductive portion 12 with the first insulating layer 13 interposed therebetween.
  • the second insulating layer 16 is disposed so as to cover the oxide semiconductor layer 14, and the second insulating layer 16 is provided with a contact hole CH exposing the drain contact region 14d.
  • the oxide semiconductor layer 14 includes a channel region 14c and a source contact region 14s and a drain contact region 14d disposed on both sides of the channel region 14c.
  • the second conductive portion 15 is in contact with the source contact region 14 s of the oxide semiconductor layer 14.
  • a portion 14 s of the oxide semiconductor layer 14 that is in contact with the second conductive portion 15 is referred to as a “source contact region”.
  • a portion 14 d of the oxide semiconductor layer 14 exposed through the contact hole CH and in contact with the transparent electrode 20 is referred to as a “drain contact region”.
  • a portion 14 c located between the source contact region 14 s and the drain contact region 14 d and overlapping the first conductive portion 12 with the first insulating layer 13 interposed therebetween becomes a “channel region”.
  • the source contact region 14s, the channel region 14c, and the drain contact region 14d may be arranged side by side in the second direction Y.
  • each pixel when a gate signal is sent from the gate wiring G through the first conductive portion 12 and the TFT 101 is turned on, the transparent electrode 20 is transferred from the source wiring S through the second conductive portion 15 and the drain contact region 14d. A predetermined charge is written in
  • the gate protruding part G1 is the first conductive part 12, and at least a part of the source protruding part S1 is the second conductive part 15.
  • at least a part of the gate protruding part G1 overlaps with the drain contact region 14d, and at least a part of the source protruding part S1 is in contact with the source contact region 14s.
  • part or the whole of the source protrusion S ⁇ b> 1 may be disposed so as to be in contact with the oxide semiconductor layer 14 (source contact region 14 s).
  • the width of the source protrusion S1 in the first direction X is not particularly limited, and may be a length that does not reach the source line S adjacent to the first direction X.
  • the outer edge of the drain contact region 14 d is disposed inside the outer edge of the first conductive portion 12. Further, as shown in FIG. 2, the first conductive portion 12 is formed so as to overlap the entire contact hole CH.
  • the oxide semiconductor layer 14 is arranged so that the outer edge of the drain contact region 14d is inside the outer edge of the first conductive part 12 when viewed from the normal direction of the substrate 11, the first conductive part However, the oxide semiconductor layer 14 may be disposed so as to cover the first conductive portion 12 with the first insulating layer 13 interposed therebetween.
  • the width W 14 of the oxide semiconductor layer 14 is wider than the width W 12 of the first conductive portion 12 in an arbitrary cross section crossing the drain contact region 14 d in the first direction X, and the first conductive The portion 12 is covered with the oxide semiconductor layer 14 with the first insulating layer 13 interposed therebetween. For this reason, even when the alignment deviation of the contact hole CH occurs, the first conductive portion 12 is not exposed by the contact hole CH. Therefore, since the defect by the short circuit between the 1st electroconductive part 12 and the transparent electrode 20 can be suppressed, high reliability is securable.
  • Width W 14 of the oxide semiconductor layer 14 in the first direction X is not particularly limited, and may be for example 3 ⁇ m or more.
  • Width W 12 of the first conductive portion 12 in the first direction X is not particularly limited, and may be for example 2 ⁇ m or more.
  • the width W 14 may be set to be narrower than the distance between the source line S of two adjacent.
  • the width of the bottom surface of the contact hole CH is not particularly limited, but is set to 2 ⁇ m or more, for example, due to process restrictions (process rules).
  • the oxide semiconductor layer 14 may be disposed so as to cover the gate protruding portion G1 and exceed the gate wiring G along the second direction Y. Specifically, as shown in FIG. 1, when viewed from the normal direction of the substrate 11, a part of the gate wiring G and the whole gate protruding part G ⁇ b> 1 are arranged so as to overlap with the oxide semiconductor layer 14. May be.
  • the transparent electrode 20 is formed so as to cover the second insulating layer 16 and the contact hole CH, and is in contact with the drain contact region 14d in the contact hole CH.
  • the contact hole CH is a pixel contact hole that connects the transparent electrode 20 and the oxide semiconductor layer 14.
  • the shape of the contact hole CH shown in the plan view of FIG. 1 or the like refers to the shape of the bottom surface of the contact hole CH (that is, the underlying surface exposed by the contact hole CH) regardless of the inclination angle of the side wall of the contact hole CH. Shall. That is, the shape of the contact hole CH is the same as the shape of the drain contact region 14d.
  • the width of the source wiring S and the width of the contact hole CH in the first direction X are each the minimum processing dimension 1F.
  • the distance from the end of the source line S to the outer edge of the contact hole CH may be a minimum distance that does not overlap the source line S and the contact hole CH, and can be reduced to, for example, 0.75F.
  • the pixel pitch P of Embodiment 1 is 3.5F. If the distance from the end of the source line S to the outer edge of the contact hole CH is made smaller than 0.75F, the pixel pitch can be further reduced. *
  • the minimum processing dimension F is 2.5 ⁇ m
  • the minimum pixel pitch is 8.75 ⁇ m
  • the pixel density can be 968 ppi.
  • the minimum processing dimension F is 2.0 ⁇ m, which is close to the processing limit
  • the minimum pixel pitch is 7.0 ⁇ m
  • the pixel density can be 1210 ppi.
  • the dielectric layer 21 disposed on the transparent electrode 20 and the common electrode 22 disposed on the dielectric layer 21 are further provided.
  • the common electrode 22 is disposed so as to at least partially overlap the transparent electrode 20 via the dielectric layer 21.
  • the common electrode 22 may be disposed separately for each pixel, or may be disposed so as to cover the entire display area in which the plurality of pixels Pix are provided. When the common electrode 22 is disposed so as to cover the entire display region, an opening may be provided at a position overlapping the TFT 101 or the drain contact region 14d. When applied to an FFS mode liquid crystal display device, the common electrode 22 is provided with at least one opening 22a or notch for each pixel. A part of the common electrode 22 may overlap with the transparent electrode 20 via the dielectric layer 21 to constitute an auxiliary capacitor.
  • an “oxide semiconductor layer” is a layer including a semiconductor region that functions as an active layer of an oxide semiconductor TFT.
  • the oxide semiconductor layer may include a region whose resistance is partially reduced (a low-resistance region or a conductor region).
  • a conductive layer such as a metal layer or a reducing insulating layer
  • the portion of the surface of the oxide semiconductor layer that is in contact with the conductive layer is a low resistance whose electrical resistance is lower than that of the semiconductor region. It becomes an area.
  • the resistance is reduced along the thickness direction of the oxide semiconductor layer.
  • the oxide semiconductor included in the semiconductor region of the oxide semiconductor layer 14 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor layer 14 may have a stacked structure of two or more layers.
  • the oxide semiconductor layer 14 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • the oxide semiconductor layer 14 may include a plurality of crystalline oxide semiconductor layers having different crystal structures, or may include a plurality of amorphous oxide semiconductor layers.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor layer 14 preferably contains at least one of indium, gallium, zinc, or cadmium.
  • the oxide semiconductor layer 14 includes an In—Ga—Zn—O-based semiconductor, an In—Sn—Zn—O-based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO), In—Al—Zn—.
  • the oxide semiconductor layer 14 contains an oxide of indium, gallium, and zinc.
  • the semiconductor containing an oxide of indium, gallium, and zinc (hereinafter also referred to as an In—Ga—Zn—O-based semiconductor) is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc).
  • a channel-etch TFT having an active layer containing an oxide semiconductor such as an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-OS-TFT”.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high electron mobility and a small amount of leakage current.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has an electron mobility exceeding 20 times that of a TFT using amorphous silicon (a-Si TFT), and the amount of leakage current is 1/100. Is less than. Therefore, it is suitably used not only as a pixel TFT but also as a driving TFT.
  • the pixel TFT is a TFT provided in a pixel, and the TFT 101 is a pixel TFT.
  • the driving TFT is, for example, a TFT included in a driving circuit provided on the same substrate as the display area around the display area including a plurality of pixels.
  • a TFT included in a driving circuit provided on the same substrate as the display area around the display area including a plurality of pixels.
  • the crystal structure of a crystalline In—Ga—Zn—O-based semiconductor is disclosed in, for example, the above Patent Documents 3 to 5, and can be applied to the present invention.
  • Another embodiment of the present invention is a method of manufacturing a semiconductor device including a thin film transistor, in which a step (a) of forming a first conductive portion on a substrate and a first insulating layer covering the first conductive portion are formed. And (b) forming an oxide semiconductor film on the first insulating layer and patterning the oxide semiconductor film, so that at least a part of the first conductive portion is interposed through the first insulating layer.
  • hole (F) forming a transparent electrode in contact with the drain contact region of the oxide semiconductor layer, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region is This is a method of manufacturing a semiconductor device that overlaps with a part of the outer edge of the part or is arranged inside the outer edge of the first conductive part.
  • the first conductive portion 12 is formed on the substrate 11.
  • at least a part of the gate protruding portion G1 is the first conductive portion 12.
  • the gate wiring G extending in the first direction and the gate protrusion G1 extending in the second direction from the gate wiring G are formed on the substrate 11.
  • the gate wiring G and the gate protruding portion G1 may be integrally formed.
  • the gate protrusion G1 and the gate wiring G are formed by forming a metal film for gate wiring on the substrate 11 by sputtering or the like, and then processing the metal film for gate wiring into a desired shape by photolithography or the like. By doing so, it can be formed.
  • the thickness of the gate wiring metal film is, for example, not less than 50 nm and not more than 500 nm.
  • the substrate 11 is preferably a transparent substrate. Moreover, it is preferable that it is a board
  • a glass substrate for example, a glass substrate; a silicon substrate; a resin substrate such as plastic or polycarbonate can be used.
  • the gate wiring metal film examples include metals such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), and the like. Or a film containing these metal nitrides can be used. Alternatively, a stacked film in which a plurality of films containing the above metals, alloys thereof, or metal nitrides are stacked may be used.
  • a specific example of the metal film for gate wiring is, for example, a molybdenum tungsten alloy (MoW) film having a thickness of 300 nm.
  • the first insulating layer 13 that covers the first conductive portion 12 is formed.
  • the first insulating layer 13 is formed so as to cover the gate wiring G and the gate protruding portion G1.
  • a silicon oxide (SiO 2 ) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy: x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is used. Can do.
  • the first insulating layer 13 may have a stacked structure in which a lower layer and an upper layer are stacked from the substrate 11 side.
  • a silicon nitride layer, a silicon nitride oxide layer, or the like may be used for the first insulating layer 13.
  • the first insulating layer 13 is oxidized.
  • a silicon layer, a silicon oxynitride layer, or the like may be used.
  • oxygen deficiency can be recovered by oxygen contained in oxygen, oxygen deficiency in the oxide semiconductor layer 14 can be effectively reduced.
  • the first insulating layer 13 for example, a first insulating layer having a laminated structure in which a silicon nitride (SiNx) layer having a thickness of 325 nm is a lower layer and a silicon oxide (SiO 2 ) layer having a thickness of 50 nm is an upper layer. 13 is mentioned.
  • the first insulating layer 13 can be formed by using a chemical vapor deposition (CVD) method.
  • an oxide semiconductor film is formed on the first insulating layer 13, and the oxide semiconductor film is patterned, so that at least a part of the first conductive portion 12 is interposed through the first insulating layer 13. Is obtained.
  • the oxide semiconductor film can be formed by a sputtering method, for example.
  • the thickness of the oxide semiconductor film is, for example, 20 nm or more and 200 nm or less.
  • the oxide semiconductor layer 14 is preferably an island-shaped oxide semiconductor layer. When viewed from the normal direction of the substrate 11, at least a part of the oxide semiconductor layer 14 is disposed so as to overlap the first conductive portion 12 with the first insulating layer 13 interposed therebetween.
  • the oxide semiconductor layer 14 is formed, for example, by patterning an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor containing In, Ga, and Zn at a ratio of 1: 1: 1.
  • the oxide semiconductor layer 14 has a thickness of, for example, 50 nm.
  • the oxide semiconductor layer 14 is made of an oxide semiconductor, the resistance may be partially reduced by contacting the conductor in a subsequent process.
  • the second conductive portion 15 in contact with the source contact region 14s of the oxide semiconductor layer 14 is formed.
  • at least a part of the source protruding portion S1 is the second conductive portion 15.
  • a metal film for source wiring is formed on the oxide semiconductor layer 14 and the first insulating layer 13 by sputtering or the like, and then the metal film for source wiring is processed into a desired shape by photolithography or the like.
  • the source line S extending in the second direction and the source protruding part S1 extending from the source line S in the first direction are formed.
  • the source wiring S and the source protruding portion S1 may be integrally formed.
  • the thickness of the metal film for source wiring is, for example, not less than 50 nm and not more than 500 nm.
  • the source protruding portion S1 is disposed so as to be in contact with the upper surface of the oxide semiconductor layer 14. A portion of the oxide semiconductor layer 14 that is in contact with the source protruding portion S1 becomes a source contact region 14s.
  • Examples of the source wiring metal film include metals such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), copper (Cu), chromium (Cr), titanium (Ti), and the like.
  • An alloy or a film containing these metal nitrides can be used.
  • a stacked film in which a plurality of films containing the above metals, alloys thereof, or metal nitrides are stacked may be used.
  • a titanium (Ti) film having a thickness of 30 nm is used as a lower layer, and an aluminum (Al) film having a thickness of 200 nm and a titanium (Ti) film having a thickness of 100 nm are formed on the substrate 11 side.
  • the second insulating layer 16 that covers the oxide semiconductor layer 14 is formed, and the contact hole CH that exposes the drain contact region 14 d of the oxide semiconductor layer 14 is formed in the second insulating layer 16.
  • the second insulating layer 16 is formed so as to cover the source wiring S and the source protruding portion S1.
  • an opening that exposes part of the oxide semiconductor layer 14 is formed in the second insulating layer 16. It becomes an opening provided in the second insulating layer 16 and a contact hole CH.
  • the second insulating layer 16 As the material of the second insulating layer 16, the same material as that of the first insulating layer 13 can be used.
  • the second insulating layer 16 may be a single layer or may have a laminated structure.
  • the second insulating layer 16 may be an inorganic insulating layer, an organic insulating layer film, or a laminated film of an organic insulating film and an inorganic insulating film.
  • Specific examples of the second insulating layer 16 include a SiO 2 film having a thickness of 300 nm, a positive photosensitive resin film having a thickness of 2000 nm, and the like.
  • the SiO 2 film can be formed by the CVD method.
  • the etching method and conditions for the contact hole CH are selected so that the etching rate of the oxide semiconductor layer 14 is lower than the etching rate of the second insulating layer 16.
  • the oxide semiconductor layer 14 can be exposed to the bottom surface of the contact hole CH with almost no etching.
  • the entire bottom surface of the contact hole CH is preferably located on the oxide semiconductor layer 14.
  • the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14.
  • the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14.
  • the transparent electrode 20 in contact with the drain contact region 14d of the oxide semiconductor layer 14 is formed in the contact hole CH so as to cover the second insulating layer 16 and the contact hole CH.
  • a first transparent electrode film is formed so as to cover the second insulating layer 16 and the contact hole CH, and then the transparent electrode 20 is formed by patterning the first transparent electrode film.
  • the transparent electrode 20 may be a pixel electrode.
  • an oxide semiconductor such as indium tin oxide (Indium Tin Oxide: ITO), indium zinc oxide (Indium Zinc Oxide: IZO), zinc oxide (ZnO), or the like can be used. .
  • the thickness of the first transparent electrode film is, for example, 20 to 300 nm.
  • an IZO film having a thickness of 100 nm is formed as the first transparent electrode film by sputtering.
  • the transparent electrode 20 is formed by patterning the first transparent electrode film by photolithography.
  • the transparent electrode 20 is disposed in contact with the upper surface of the oxide semiconductor layer 14 in the contact hole CH.
  • a portion of the oxide semiconductor layer 14 that is in contact with the transparent electrode 20 becomes a drain contact region 14d.
  • the entire contact hole CH is located on the oxide semiconductor layer 14. Therefore, when viewed from the normal direction of the substrate 11, the outer edge of the drain contact region 14 d is disposed inside the outer edge of the first conductive portion 12.
  • a step of forming a dielectric layer 21 and a common electrode 22 on the transparent electrode 20 may be further included.
  • a silicon oxide (SiO 2 ) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy: x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is used. be able to.
  • a specific example of the dielectric layer 21 is, for example, a SiNx film having a thickness of 100 nm.
  • the dielectric layer 21 can be formed using a CVD method.
  • the common electrode 22 is obtained by forming a second transparent electrode film on the dielectric layer 21 and patterning the second transparent electrode film.
  • the material of the second transparent electrode film the same material as the first transparent electrode film can be used. Specifically, for example, an ITO film having a thickness of 100 nm is formed on the dielectric layer 21 as the second transparent electrode by a sputtering method. Thereafter, the common electrode 22 is formed by patterning the second transparent electrode film by photolithography.
  • the common electrode 22 may be provided with at least one opening 22a or notch for each pixel. In this way, the semiconductor device 1001 is manufactured.
  • FIG. 4 is a schematic plan view of the semiconductor device according to the second embodiment.
  • FIG. 5 is a schematic sectional view taken along the line CC ′ of FIG. 6 is a schematic cross-sectional view taken along the line DD ′ of FIG.
  • the semiconductor device 2001 includes a TFT 201.
  • each of the plurality of gate wirings G has a gate protrusion G ⁇ b> 1 extending in the second direction Y from the gate wiring G.
  • the gate protruding portion G1 is the first conductive portion 12.
  • the source protruding portion S ⁇ b> 1 is not provided and a part of the source wiring S becomes the second conductive portion 15.
  • the entire source contact region 14 s may be formed to fit in the width direction of the source wiring.
  • the source contact region 14s and the channel region 14c may be arranged in the first direction X, and the channel region 14c and the drain contact region 14d may be arranged in the second direction Y.
  • the oxide semiconductor layer 14 may be formed in an L shape.
  • the TFT 201 can form a fine pixel because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment.
  • the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 4, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and contact from the end of the source wiring S
  • the pixel pitch P is minimum.
  • the minimum value of the pixel pitch P in the second embodiment is 3.5F.
  • the minimum processing dimension F is 2.5 ⁇ m
  • the minimum pixel pitch is 8.75 ⁇ m
  • the pixel density can be 968 ppi.
  • the minimum processing dimension F is 2.0 ⁇ m, which is close to the processing limit
  • the minimum pixel pitch is 7.0 ⁇ m
  • the pixel density can be 1210 ppi.
  • the TFT 201 is arranged such that the outer edge of the drain contact region 14 d is located inside the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11. Further, as shown in FIG. 5, the first conductive portion 12 is formed so as to overlap the entire contact hole CH. Accordingly, when the semiconductor device 2001 is applied to a display device such as a liquid crystal display device, light leakage is suppressed, so that a display device with favorable contrast can be obtained.
  • FIG. 7 is a schematic plan view of the semiconductor device according to the first modification.
  • FIG. 8 is a schematic sectional view taken along line EE ′ of FIG.
  • the semiconductor device 2002 includes a TFT 301.
  • the outer edge of the drain contact region 14 d overlaps a part of the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11.
  • the width of the gate protrusion G1 in the first direction X is the same as the width of the drain contact region 14d in the first direction X.
  • the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 7, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and the contact from the end of the source wiring S
  • the pixel pitch P is minimum.
  • the minimum value of the pixel pitch P in Modification 1 is 3.5F.
  • the width of the gate protrusion G1 in the first direction X and the width of the drain contact region 14d in the first direction X the same, the distance from the end of the source line S to the outer edge of the contact hole CH is set to 0. It becomes easy to make it narrower than 75F, and the minimum value of the pixel pitch P can be made smaller than 3.5F.
  • the minimum processing dimension F is 2.5 ⁇ m
  • the minimum pixel pitch is 8.75 ⁇ m and the pixel density can be 968 ppi, as in the first embodiment.
  • the minimum processing dimension F is 2.0 ⁇ m close to the processing limit
  • the minimum pixel pitch is 7.0 ⁇ m, and the pixel density can be 1210 ppi.
  • the entire bottom surface of the contact hole CH is preferably located on the oxide semiconductor layer 14.
  • the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14.
  • the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14 also in the first direction X.
  • FIG. 9 is a schematic plan view of the semiconductor device according to the third embodiment.
  • FIG. 10 is a schematic cross-sectional view taken along the line FF ′ of FIG.
  • the semiconductor device 3001 includes a TFT 401.
  • the gate conductive part G does not have the gate protruding part G 1 and a part of the gate wiring G becomes the first conductive part 12.
  • each of the plurality of source lines S extends from the source line S in the first direction X when viewed from the normal direction of the substrate 11.
  • S1 is included.
  • at least a part of the source protruding portion S1 is the second conductive portion 15.
  • at least a part of the gate wiring G overlaps with the drain contact region 14d, and at least a part of the source protrusion S1 is in contact with the source contact region 14s.
  • the source contact region 14s may be formed so as to overlap the source line S and the source protrusion S1. Since the third embodiment does not have the gate protruding portion G1, the contact hole CH is formed on the gate wiring G. Therefore, the pixel aperture ratio can be improved.
  • the source contact region 14s, the channel region 14c, and the drain contact region 14d may be arranged side by side in the first direction X.
  • the width of the source protrusion S1 in the first direction X may be narrower than the width of the source wiring S in the first direction X, or may be 1/2 or less of the width of the source wiring.
  • the width of the source protrusion S1 in the second direction Y may be wider than the width of the gate line G in the second direction Y, and may be formed so as to cover the gate line G.
  • the channel length can be increased while suppressing variations in the width of the channel region 14c of the TFT 401.
  • the TFT 401 can form a fine pixel because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment.
  • the minimum processing dimension of the source wiring S is defined as F
  • the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F
  • the width of the source protrusion S1 is
  • the pixel pitch P is minimum.
  • the minimum value of the pixel pitch P in the third embodiment is 4F.
  • the minimum processing dimension F is 2.5 ⁇ m
  • the minimum pixel pitch is 10 ⁇ m
  • the pixel density can be 847 ppi.
  • the minimum processing dimension F is 2.0 ⁇ m which is close to the processing limit
  • the minimum pixel pitch is 8.0 ⁇ m and the pixel density can be 1059 ppi.
  • the TFT 401 is arranged such that the outer edge of the drain contact region 14 d is located inside the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11. Further, as shown in FIG. 10, the first conductive portion 12 is formed so as to overlap the entire contact hole CH. Accordingly, when the semiconductor device 3001 is applied to a display device such as a liquid crystal display device, light leakage is suppressed, so that a display device with favorable contrast can be obtained.
  • FIG. 11 is a schematic plan view of a semiconductor device according to the fourth embodiment.
  • 12 is a schematic cross-sectional view taken along the line HH ′ of FIG.
  • the semiconductor device 4001 includes a TFT 501.
  • the gate conductive portion 12 does not have the gate protruding portion G 1 and a part of the gate wiring G becomes the first conductive portion 12.
  • at least a part of the source wiring S is the second conductive portion 15.
  • the gate wiring G When viewed from the normal direction of the substrate 11, at least a part of the gate wiring G overlaps with the drain contact region 14d, and at least a part of the source wiring S is in contact with the source contact region 14s.
  • the contact hole CH is formed on the gate wiring G. Accordingly, in the fourth embodiment, the pixel aperture ratio can be further improved.
  • the TFT 501 can form fine pixels because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment.
  • the fourth embodiment does not have the source protrusion S1, and as shown in FIGS. 11 and 12, the entire source contact region 14s is formed to fit in the width direction of the source wiring. Can be further refined. If the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 11, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and contact is made from the end of the source wiring S. The distance to the outer edge of the hole CH can be 0.75F. The minimum value of the pixel pitch P in the fourth embodiment is 3.5F.
  • the minimum processing dimension F is 2.5 ⁇ m
  • the minimum pixel pitch is 8.75 ⁇ m
  • the pixel density can be 968 ppi.
  • the minimum processing dimension F is 2.0 ⁇ m, which is close to the processing limit
  • the minimum pixel pitch is 7.0 ⁇ m
  • the pixel density can be 1210 ppi.
  • the TFT having the channel etch structure is illustrated, but the TFT in each embodiment may have the channel etch structure or have an etch stop that covers the channel region. It may have an etch stop structure.
  • the “channel etch type TFT” has no etch stop layer formed on the channel region 14c, and the lower surface of the end of the second conductive portion 15 on the channel side is an oxide semiconductor.
  • the upper surface of the layer 14 is disposed so as to be in contact therewith.
  • the second conductive portion 15 of the channel etch type TFT is formed, for example, by forming a conductive film for a source on the oxide semiconductor layer 14 and patterning the conductive film.
  • FIG. 13 is a schematic cross-sectional view illustrating a semiconductor device including an etch stop type TFT.
  • the semiconductor device 1002 provided with the etch stop type TFT is the same as the semiconductor device 1001 according to the first embodiment except that the etch stop layer 23 is provided.
  • FIG. 13 corresponds to a schematic cross-sectional view taken along the line A-A ′ of FIG. 1.
  • the etch stop type TFT has an etch stop layer 23 covering the channel region 14c of the oxide semiconductor layer 14 as shown in FIG.
  • the etch stop layer 23 is provided with an opening that exposes a portion to be the source contact region 14 s of the oxide semiconductor layer 14.
  • a metal film for source wiring is formed so as to cover the etch stop layer 23 and the opening, and patterning is performed to form the source wiring S and / or the source protrusion S1.
  • the contact hole CH may be formed by simultaneously etching the second insulating layer 16 and the etch stop layer 23. In this case, as shown in FIG.
  • the contact hole CH is composed of an opening of the second insulating layer 16 and an opening of the etch stop layer 23. Thereafter, the transparent electrode 20, the dielectric layer 21, and the common electrode 22 are formed by a method similar to that of the semiconductor device 1001 to obtain the semiconductor device 1002.
  • FIG. 14 is a schematic plan view of the semiconductor device according to the first comparative embodiment.
  • FIG. 15 is a schematic cross-sectional view taken along the line II ′ of FIG.
  • the semiconductor device 5001 includes a TFT 601.
  • the TFT 601 has at least one first conductive portion 612 (gate lead portion G1) formed on the substrate 11 and the first conductive portion 612 via the first insulating layer 13.
  • An oxide semiconductor layer 614 is provided so that the portions overlap each other.
  • the oxide semiconductor layer 614 includes a channel region 614c and a source contact region 614s and a drain contact region 614d disposed on both sides of the channel region 614c.
  • a part of the outer edge of the drain contact region 614 d is disposed outside the outer edge of the first conductive portion 614.
  • the contact holes CH are aligned so that only a part of the contact holes CH overlaps the first conductive portion 612.
  • the semiconductor device 5001 according to the comparative example 1 when applied to a display device such as a liquid crystal display device, light from a light source such as a backlight leaks from the contact hole CH and light leakage occurs. Therefore, the contrast of the liquid crystal display device is lowered.
  • the FFS mode liquid crystal display device has been described as an example.
  • the semiconductor device of the present invention can also be applied to an IPS mode liquid crystal display device.
  • the semiconductor device of the present invention may not have the dielectric layer 21 and the common electrode 22 on the transparent electrode 20.
  • an alignment film (not shown) may be formed on the transparent electrode 20, and for example, a TN (Twisted Nematic) mode is obtained by bonding the counter substrate with a common electrode through a liquid crystal layer.
  • the liquid crystal display device can be used in a vertical electric field mode liquid crystal display device such as a VA (Vertical Alignment) mode.
  • VA Vertical Alignment
  • the semiconductor device of the present invention can be applied to various circuit boards having oxide semiconductor TFTs.
  • the circuit board can be applied to various electronic devices such as an imaging device such as an image sensor device; an image input device; a fingerprint reading device; a semiconductor memory.
  • the semiconductor device of the present invention can be applied to, for example, an active matrix substrate (TFT substrate).
  • TFT substrate can be used in display devices such as liquid crystal display devices, electrophoretic display devices, MEMS (Micro Electro Mechanical System) display devices, and organic EL (Electroluminescence) display devices.
  • the semiconductor device 1001 is preferably applied to a liquid crystal display device.
  • Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there.
  • the semiconductor device 1001 is a thin layer transistor substrate (TFT substrate). Since the alignment of liquid crystal molecules is likely to be disturbed around the contact hole, if a light leak occurs in the contact hole, it is easily recognized as a display defect. Therefore, when the semiconductor device 1001 is applied particularly to a liquid crystal display device, the occurrence of light leakage can be effectively suppressed and a liquid crystal display device excellent in contrast can be obtained.
  • TFT substrate thin layer transistor substrate
  • a light shielding film is formed on the substrate and patterned into a desired shape to form a black matrix.
  • the substrate used for the counter substrate include the same substrates as those described above.
  • Specific examples of the light shielding film include a titanium (Ti) film having a thickness of 200 nm.
  • color filters including red (R), green (G), and blue (B) are respectively formed at desired positions to form a counter substrate.
  • TFT substrate the semiconductor device
  • the TFT substrate 1001 and the counter substrate are bonded together.
  • liquid crystal is injected between these substrates to obtain a liquid crystal layer.
  • the substrate is divided into a desired size to obtain a liquid crystal panel.
  • a liquid crystal display device is obtained by arranging a backlight on the back surface of the liquid crystal panel.
  • the back surface of the liquid crystal panel may be on the TFT substrate side or on the counter substrate side.
  • One embodiment of the present invention is a semiconductor device including a substrate and a thin film transistor supported by the substrate, and the thin film transistor covers a first conductive portion formed on the substrate and the first conductive portion.
  • a second insulating layer disposed so as to cover, the second insulating layer provided with a contact hole exposing the drain contact region of the oxide semiconductor layer;
  • a transparent electrode that is formed on the insulating layer and covers the contact hole and is in contact with the drain contact region in the contact hole, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region is It is a semiconductor device which overlaps with a part of the outer edge of the first conductive part or is arranged inside the outer edge of the first conductive part.
  • a plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate, a plurality of gate wirings extending in the first direction, and a plurality of source wirings extending in the second direction are provided.
  • the thin film transistor and the transparent electrode are disposed in each of the plurality of pixels, and when viewed from the normal direction of the substrate, each of the plurality of gate wirings extends from the gate wiring in the second direction.
  • at least a portion of the gate protrusion is the first conductive portion, and when viewed from the normal direction of the substrate, at least a portion of the gate protrusion is the drain contact. It may overlap with the area.
  • the width of the gate protrusion in the first direction may be the same as the width of the drain contact region in the first direction.
  • the source contact region, the channel region, and the drain contact region may be arranged side by side in the second direction.
  • the source contact region and the channel region may be arranged in the first direction, and the channel region and the drain contact region may be arranged in the second direction.
  • a plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate, a plurality of gate wirings extending in the first direction, and a plurality of source wirings extending in the second direction are provided.
  • the thin film transistor and the transparent electrode are disposed in each of the plurality of pixels, and a part of the gate wiring is the first conductive portion, and when viewed from the normal direction of the substrate, the gate wiring A portion may overlap the drain contact region.
  • the source contact region, the channel region, and the drain contact region may be arranged side by side in the first direction.
  • each of the plurality of source wirings has a source protrusion extending from the source wiring in the first direction, and at least a part of the source protrusion is When the second conductive portion is viewed from the normal direction of the substrate, at least a part of the source protruding portion may be in contact with the source contact region.
  • the width of the source protrusion in the first direction may be narrower than the width of the source wiring in the first direction.
  • the width of the source protrusion in the first direction may be less than or equal to 1 ⁇ 2 of the width of the source wiring in the first direction.
  • a part of the source wiring is the second conductive portion, and when viewed from the normal direction of the substrate, a part of the source wiring may be in contact with the source contact region.
  • the oxide semiconductor layer may include at least one of indium, gallium, zinc, or cadmium. More preferably, the oxide semiconductor layer includes an oxide of indium, gallium, and zinc.
  • Another aspect of the present invention is a method for manufacturing a semiconductor device including a thin film transistor, the step of forming a first conductive portion on a substrate, and the step of forming a first insulating layer covering the first conductive portion.
  • Forming an oxide semiconductor film on the first insulating layer, and patterning the oxide semiconductor film so that the oxide semiconductor layer at least partially overlaps the first conductive portion with the first insulating layer interposed therebetween Forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer, forming a second insulating layer covering the oxide semiconductor layer, and forming the oxidation on the second insulating layer
  • Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there.
  • Second insulating layer 20 Transparent electrode (pixel electrode) 21: Dielectric layer 22: Common electrode 22a: Opening 23: Etch stop layer 101, 201, 301, 401, 501, 601: Thin film transistor (TFT) 1001, 1002, 2001, 2002, 3001, 4001, 5001: Semiconductor device CH: Contact hole G: Gate wiring G1: Gate protruding portion S: Source wiring S1: Source protruding portion P: Pixel pitch Pix: Pixel

Abstract

The present invention provides a semiconductor device capable of ensuring a high level of reliability while realizing higher definition. This semiconductor device comprises a substrate and a thin-film transistor supported by the substrate, wherein the thin-film transistor is provided with: a first conductive section formed on the substrate; a first insulating layer; an oxide semiconductor layer; a second conductive section which contacts a source contact region of the oxide semiconductor layer; a second insulating layer provided with a contact hole for exposing a drain contact region of the oxide semiconductor layer; and a transparent electrode contacting the drain contact region at the contact hole; and when viewed from the normal direction of the substrate, an outer edge of the drain contact region overlaps a portion of an outer edge of the first conductive section, or is arranged further to the inside than the outer edge of the first conductive section.

Description

半導体装置、半導体装置の製造方法、及び、液晶表示装置Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display device
本発明は、薄膜トランジスタ(TFT)を備える半導体装置、上記半導体装置の製造方法、及び、上記半導体装置を備えた液晶表示装置に関する。 The present invention relates to a semiconductor device including a thin film transistor (TFT), a method for manufacturing the semiconductor device, and a liquid crystal display device including the semiconductor device.
表示装置としては、画素毎にスイッチング素子が設けられたアクティブマトリクス基板を備える表示装置が広く用いられている。スイッチング素子として薄膜トランジスタ(Thin Film Transistor:以下、「TFT」)を備えるアクティブマトリクス基板は、TFT基板とも呼ばれる。TFT基板は、一般に、基板に支持されたTFTと、TFTのドレイン電極に電気的に接続された画素電極とを画素ごとに備えている。TFTは、通常、層間絶縁層で覆われている。画素電極は、層間絶縁層上に設けられ、層間絶縁層に形成されたコンタクトホールにおいて、TFTのドレイン電極と接続されている。このようなTFT基板の構成は、例えば特許文献1に開示されている。 As a display device, a display device including an active matrix substrate provided with a switching element for each pixel is widely used. An active matrix substrate including a thin film transistor (hereinafter, “TFT”) as a switching element is also referred to as a TFT substrate. A TFT substrate generally includes a TFT supported on the substrate and a pixel electrode electrically connected to a drain electrode of the TFT for each pixel. The TFT is usually covered with an interlayer insulating layer. The pixel electrode is provided on the interlayer insulating layer, and is connected to the drain electrode of the TFT in a contact hole formed in the interlayer insulating layer. Such a configuration of the TFT substrate is disclosed in Patent Document 1, for example.
特許文献1に開示された構成では、画素内に、画素コンタクトホールの底面よりも一回り大きいパターンを有するドレイン電極が配置されている。このため、画素に占める光透過領域の割合(以下、「画素開口率」)を低下させる要因となる。また、一般に、ソースバスラインとドレイン電極とは同じ金属膜をパターニングすることによって形成されるため、表示装置の高精細化が進み、一画素の面積が小さくなると、ソースバスラインとドレイン電極との間隔が小さくなり、加工が困難となるといった加工上の制約があった。これに対して、TFTの導体層と接するように画素電極を配置する構成が、検討されている(例えば、特許文献2等参照)。 In the configuration disclosed in Patent Document 1, a drain electrode having a pattern that is slightly larger than the bottom surface of the pixel contact hole is disposed in the pixel. For this reason, it becomes a factor which reduces the ratio (henceforth "pixel aperture ratio") of the light transmissive area | region which occupies for a pixel. In general, since the source bus line and the drain electrode are formed by patterning the same metal film, when the display device is highly refined and the area of one pixel is reduced, the source bus line and the drain electrode There was a processing restriction such that the interval became small and the processing became difficult. On the other hand, a configuration in which a pixel electrode is disposed so as to be in contact with a TFT conductor layer has been studied (see, for example, Patent Document 2).
また、近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている(例えば、特許文献1、2及び3等参照)。酸化物半導体は、アモルファスシリコンよりも高い電子移動度を有している。そのため、TFTの活性層として、酸化物半導体を含有する層を用いたTFT(以下、「酸化物半導体TFT」ともいう)は、アモルファスシリコンを用いたTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。 In recent years, it has been proposed to use an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for an active layer of a TFT (see, for example, Patent Documents 1, 2, and 3). An oxide semiconductor has higher electron mobility than amorphous silicon. Therefore, a TFT using a layer containing an oxide semiconductor as an active layer of the TFT (hereinafter also referred to as an “oxide semiconductor TFT”) can operate at a higher speed than a TFT using amorphous silicon. . In addition, since the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area.
特開2013-105136号公報JP 2013-105136 A 特許第5330603号公報Japanese Patent No. 5330603 特開2014-007399号公報JP 2014-007399 A 特開2012-134475号公報JP 2012-134475 A 特開2014-209727号公報JP 2014-209727 A
上記特許文献2では、上記特許文献2の図4に示したように、薄膜トランジスタTの断面視において、保護膜26に画素コンタクトホール27aが設けられ、画素電極28は、ドレイン部DRにおいて酸化物半導体膜24aと接している。本発明者の検討によると、上記特許文献2の図4では、画素コンタクトホール27aと、ゲート電極22aが半重なりになっており、このような構成を有するTFT基板を表示装置に用いた場合、バックライト等の光源からの光がコンタクトホールを通過し、光漏れが発生することがあった。 In Patent Document 2, as shown in FIG. 4 of Patent Document 2, in a cross-sectional view of the thin film transistor T R, the pixel contact hole 27a is provided in the protective film 26, the pixel electrode 28, the oxide in the drain section DR It is in contact with the semiconductor film 24a. According to the study of the present inventor, in FIG. 4 of Patent Document 2 described above, the pixel contact hole 27a and the gate electrode 22a are half-overlapped, and when a TFT substrate having such a configuration is used for a display device, Light from a light source such as a backlight may pass through the contact hole and light leakage may occur.
本発明は、上記に鑑みてなされたものであり、高精細化を実現しつつ、高い信頼性を確保できる半導体装置、及び、その製造方法を提供することを目的とする。また、上記半導体装置を備える液晶表示装置であって、高精細化を実現しつつ、コントラストが良好な液晶表示装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a semiconductor device capable of ensuring high reliability while achieving high definition and a manufacturing method thereof. It is another object of the present invention to provide a liquid crystal display device including the semiconductor device, which achieves high definition and has good contrast.
本発明者は、TFTを構成する半導体層と、画素電極とが、コンタクトホールにおいて、半導体層のドレインコンタクト領域で接する構成を有する半導体装置について、コンタクトホールからの光漏れを低減する方法を検討した。そして、コンタクトホールの下部に位置するゲート電極を、コンタクトホールから光が漏れないように延伸することで、光漏れの発生を低減できることを見出した。言い換えると、半導体装置を基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁を、ゲートの外縁の一部と重なるか、又は、ゲートの外縁よりも内側に配置することで、光漏れの発生を低減できることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The present inventor examined a method for reducing light leakage from a contact hole in a semiconductor device having a structure in which a semiconductor layer constituting a TFT and a pixel electrode are in contact with each other in a drain contact region of the semiconductor layer in a contact hole. . And it discovered that generation | occurrence | production of light leakage could be reduced by extending | stretching the gate electrode located in the lower part of a contact hole so that light may not leak from a contact hole. In other words, when the semiconductor device is viewed from the normal direction of the substrate, the outer edge of the drain contact region overlaps with a part of the outer edge of the gate or is arranged inside the outer edge of the gate, thereby leaking light. It has been found that the occurrence of the occurrence can be reduced. Thus, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
すなわち、本発明の一態様は、基板と、上記基板に支持された薄膜トランジスタとを備える半導体装置であって、上記薄膜トランジスタは、上記基板上に形成された第一導電部と、上記第一導電部を覆う第一絶縁層と、上記第一絶縁層上に、上記第一絶縁層を介して上記第一導電部と少なくとも一部が重なるように配置された酸化物半導体層であって、チャネル領域と、上記チャネル領域の両側にそれぞれ配置されたソースコンタクト領域及びドレインコンタクト領域とを含む酸化物半導体層と、上記酸化物半導体層の上記ソースコンタクト領域と接する第二導電部と、上記酸化物半導体層を覆うように配置された第二絶縁層であって、上記酸化物半導体層の上記ドレインコンタクト領域を露出するコンタクトホールが設けられた第二絶縁層と、上記第二絶縁層上及び上記コンタクトホールを覆うように形成され、上記コンタクトホールにおいて上記ドレインコンタクト領域と接する透明電極とを備え、上記基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁は、上記第一導電部の外縁の一部と重なるか、又は、上記第一導電部の外縁よりも内側に配置される半導体装置である。 That is, one embodiment of the present invention is a semiconductor device including a substrate and a thin film transistor supported by the substrate, and the thin film transistor includes a first conductive portion formed over the substrate and the first conductive portion. A first insulating layer covering the first insulating layer, and an oxide semiconductor layer disposed on the first insulating layer so as to at least partially overlap the first conductive portion with the first insulating layer interposed therebetween, wherein the channel region An oxide semiconductor layer including a source contact region and a drain contact region respectively disposed on both sides of the channel region, a second conductive portion in contact with the source contact region of the oxide semiconductor layer, and the oxide semiconductor A second insulating layer disposed to cover the layer, wherein the second insulating layer is provided with a contact hole exposing the drain contact region of the oxide semiconductor layer A transparent electrode that is formed on the second insulating layer and covers the contact hole and is in contact with the drain contact region in the contact hole, and when viewed from the normal direction of the substrate, the drain contact region The outer edge is a semiconductor device that overlaps with a part of the outer edge of the first conductive part or is arranged inside the outer edge of the first conductive part.
本発明の他の一態様は、薄膜トランジスタを備える半導体装置の製造方法であって、基板上に第一導電部を形成する工程と、上記第一導電部を覆う第一絶縁層を形成する工程と、上記第一絶縁層上に酸化物半導体膜を形成し、上記酸化物半導体膜をパターニングすることにより、上記第一絶縁層を介して上記第一導電部と少なくとも一部が重なる酸化物半導体層を得る工程と、上記酸化物半導体層のソースコンタクト領域と接する第二導電部を形成する工程と、上記酸化物半導体層を覆う第二絶縁層を形成し、上記第二絶縁層に、上記酸化物半導体層のドレインコンタクト領域を露出するコンタクトホールを形成する工程と、上記第二絶縁層上及び上記コンタクトホールを覆うように、上記コンタクトホールにおいて上記酸化物半導体層の上記ドレインコンタクト領域と接する透明電極を形成する工程とを含み、上記基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁は、上記第一導電部の外縁の一部と重なるか、又は、上記第一導電部の外縁よりも内側に配置される半導体装置の製造方法である。 Another aspect of the present invention is a method for manufacturing a semiconductor device including a thin film transistor, the step of forming a first conductive portion on a substrate, and the step of forming a first insulating layer covering the first conductive portion. Forming an oxide semiconductor film on the first insulating layer, and patterning the oxide semiconductor film so that the oxide semiconductor layer at least partially overlaps the first conductive portion with the first insulating layer interposed therebetween Forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer, forming a second insulating layer covering the oxide semiconductor layer, and forming the oxidation on the second insulating layer Forming a contact hole exposing the drain contact region of the physical semiconductor layer; and over the oxide semiconductor layer in the contact hole so as to cover the second insulating layer and the contact hole. Forming a transparent electrode in contact with the drain contact region, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region overlaps a part of the outer edge of the first conductive portion, or It is a manufacturing method of the semiconductor device arrange | positioned inside the outer edge of said 1st electroconductive part.
本発明の更に他の一態様は、本発明の半導体装置と、液晶層と、対向基板とをこの順に有する液晶パネルと、上記液晶パネルの背面に配置されたバックライトとを備える液晶表示装置である。 Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there.
本発明の半導体装置によると、高精細化を実現しつつ、高い信頼性を確保できる。本発明の半導体装置の製造方法によると、高精細化を実現しつつ、高い信頼性を確保できる半導体装置を製造することができる。本発明の液晶表示装置は、本発明の半導体装置を備えることから、光漏れが発生し難い。そのため、本発明の液晶表示装置によれば、高精細化を実現しつつ、コントラストを良好なものとすることができる。 According to the semiconductor device of the present invention, high reliability can be ensured while realizing high definition. According to the method for manufacturing a semiconductor device of the present invention, it is possible to manufacture a semiconductor device capable of ensuring high reliability while realizing high definition. Since the liquid crystal display device of the present invention includes the semiconductor device of the present invention, light leakage hardly occurs. Therefore, according to the liquid crystal display device of the present invention, it is possible to improve the contrast while achieving high definition.
実施形態1に係る半導体装置の平面模式図である。1 is a schematic plan view of a semiconductor device according to Embodiment 1. FIG. 図1のA-A’線に沿った断面模式図である。FIG. 2 is a schematic cross-sectional view taken along the line A-A ′ of FIG. 1. 図1のB-B’線に沿った断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line B-B ′ of FIG. 1. 実施形態2に係る半導体装置の平面模式図である。6 is a schematic plan view of a semiconductor device according to Embodiment 2. FIG. 図4のC-C’線に沿った断面模式図である。FIG. 5 is a schematic sectional view taken along line C-C ′ of FIG. 4. 図4のD-D’線に沿った断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line D-D ′ in FIG. 4. 変形形態1に係る半導体装置の平面模式図である。FIG. 10 is a schematic plan view of a semiconductor device according to Modification 1. 図7のE-E’線に沿った断面模式図である。FIG. 8 is a schematic cross-sectional view taken along line E-E ′ of FIG. 7. 実施形態3に係る半導体装置の平面模式図である。6 is a schematic plan view of a semiconductor device according to a third embodiment. FIG. 図9のF-F’線に沿った断面模式図である。FIG. 10 is a schematic cross-sectional view taken along the line F-F ′ of FIG. 9. 実施形態4に係る半導体装置の平面模式図である。FIG. 6 is a schematic plan view of a semiconductor device according to a fourth embodiment. 図11のH-H’線に沿った断面模式図である。FIG. 12 is a schematic cross-sectional view taken along the line H-H ′ of FIG. 11. エッチストップ型のTFTを備えた半導体装置を例示する断面模式図である。1 is a schematic cross-sectional view illustrating a semiconductor device including an etch stop type TFT. 比較形態1に係る半導体装置の平面模式図である。6 is a schematic plan view of a semiconductor device according to a comparative embodiment 1. FIG. 図14のI-I’線に沿った断面模式図である。FIG. 15 is a schematic sectional view taken along line I-I ′ of FIG. 14.
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこの実施形態のみに限定されるものではない。なお、以下の説明において、同一部分又は同様な機能を有する部分には、同様な符号を異なる図面間で共通して用い、その繰り返しの説明は適宜省略する。また、実施形態の各構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。 Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these embodiments. Note that in the following description, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated as appropriate. Moreover, each structure of embodiment may be suitably combined in the range which does not deviate from the summary of this invention, and may be changed.
(実施形態1) 
以下、図1~図3を参照して、実施形態1に係る半導体装置1001を説明する。実施形態1の半導体装置は、基板上に薄膜トランジスタを備えた装置であればよく、種々の回路基板、TFT基板、TFT基板を備えた表示装置を広く含む。ここでは、TFT基板を例に説明する。
(Embodiment 1)
The semiconductor device 1001 according to the first embodiment will be described below with reference to FIGS. The semiconductor device of Embodiment 1 may be any device provided with a thin film transistor on a substrate, and widely includes various circuit boards, TFT substrates, and display devices provided with TFT substrates. Here, a TFT substrate will be described as an example.
図1は、実施形態1に係る半導体装置の平面模式図である。図2は、図1のA-A’線に沿った断面模式図である。図3は、図1のB-B’線に沿った断面模式図である。図1に示したように、実施形態1に係る半導体装置1001は、基板(図示せず)上に形成された複数のゲート配線Gと、複数のソース配線Sとを備える。ゲート配線Gは第一方向Xに沿って延び、ソース配線Sは第一方向Xとは異なる第二方向Yに沿って延びる。第一方向X及び第二方向Yは、互いに直交してもよい。実施形態1では、基板11の法線方向から見たとき、複数のゲート配線Gのそれぞれは、ゲート配線Gから第二方向Yに延出したゲート突き出し部G1を有する。また、実施形態1では、基板11の法線方向から見たとき、複数のソース配線Sのそれぞれは、ソース配線Sから第一方向Xに延出したソース突き出し部S1を有する。 FIG. 1 is a schematic plan view of the semiconductor device according to the first embodiment. FIG. 2 is a schematic sectional view taken along the line A-A ′ of FIG. FIG. 3 is a schematic cross-sectional view taken along line B-B ′ of FIG. As shown in FIG. 1, the semiconductor device 1001 according to the first embodiment includes a plurality of gate lines G and a plurality of source lines S formed on a substrate (not shown). The gate line G extends along the first direction X, and the source line S extends along a second direction Y different from the first direction X. The first direction X and the second direction Y may be orthogonal to each other. In the first embodiment, when viewed from the normal direction of the substrate 11, each of the plurality of gate wirings G has a gate protruding portion G <b> 1 extending in the second direction Y from the gate wiring G. In the first embodiment, when viewed from the normal direction of the substrate 11, each of the plurality of source lines S has a source protruding portion S 1 extending from the source line S in the first direction X.
また、半導体装置1001は、基板11上に第一方向X及び第二方向Yにマトリクス状に配列された複数の画素Pixを有する。TFT101及び透明電極20は、複数の画素Pixのそれぞれに配置される。なお、半導体装置1001において、複数の画素Pixを含む領域を「表示領域」、表示領域以外の領域を「非表示領域」又は「額縁領域」と呼ぶ。非表示領域には、端子部、駆動回路等が設けられてもよい。 The semiconductor device 1001 includes a plurality of pixels Pix arranged in a matrix in the first direction X and the second direction Y on the substrate 11. The TFT 101 and the transparent electrode 20 are disposed in each of the plurality of pixels Pix. In the semiconductor device 1001, an area including a plurality of pixels Pix is referred to as a “display area”, and an area other than the display area is referred to as a “non-display area” or a “frame area”. A terminal portion, a drive circuit, and the like may be provided in the non-display area.
TFT101は、例えば、ボトムゲート型のTFTである。TFT101は、トップコンタクト構造を有するボトムゲート型のTFTであってもよい。図2に示したように、TFT101は、基板11と、基板11上に配置された第一導電部12と、第一導電部12を覆う第一絶縁層13と、第一絶縁層13上に配置された酸化物半導体層14と、第二導電部15と、第二絶縁層16とを備える。第一絶縁層13は、ゲート絶縁層である。酸化物半導体層14は、第一絶縁層13を介して第一導電部12と少なくとも一部が重なるように配置される。第二絶縁層16は、酸化物半導体層14を覆うように配置され、第二絶縁層16には、ドレインコンタクト領域14dを露出するコンタクトホールCHが設けられる。 The TFT 101 is, for example, a bottom gate type TFT. The TFT 101 may be a bottom gate type TFT having a top contact structure. As shown in FIG. 2, the TFT 101 includes a substrate 11, a first conductive portion 12 disposed on the substrate 11, a first insulating layer 13 covering the first conductive portion 12, and a first insulating layer 13. The oxide semiconductor layer 14, the second conductive portion 15, and the second insulating layer 16 are provided. The first insulating layer 13 is a gate insulating layer. The oxide semiconductor layer 14 is disposed so as to at least partially overlap the first conductive portion 12 with the first insulating layer 13 interposed therebetween. The second insulating layer 16 is disposed so as to cover the oxide semiconductor layer 14, and the second insulating layer 16 is provided with a contact hole CH exposing the drain contact region 14d.
酸化物半導体層14は、チャネル領域14cと、チャネル領域14cの両側にそれぞれ配置されたソースコンタクト領域14s及びドレインコンタクト領域14dとを含む。第二導電部15は、酸化物半導体層14のソースコンタクト領域14sと接する。本明細書では、酸化物半導体層14のうち第二導電部15と接する部分14sを「ソースコンタクト領域」と呼ぶ。また、酸化物半導体層14のうちコンタクトホールCHによって露出し、透明電極20と接する部分14dを「ドレインコンタクト領域」と呼ぶ。酸化物半導体層14のうち、ソースコンタクト領域14s及びドレインコンタクト領域14dの間に位置し、かつ、第一絶縁層13を介して第一導電部12と重なる部分14cが「チャネル領域」となる。実施形態1では、基板11の法線方向から見たとき、ソースコンタクト領域14s、チャネル領域14c、及び、ドレインコンタクト領域14dは、第二方向Yに並べて配置されてもよい。 The oxide semiconductor layer 14 includes a channel region 14c and a source contact region 14s and a drain contact region 14d disposed on both sides of the channel region 14c. The second conductive portion 15 is in contact with the source contact region 14 s of the oxide semiconductor layer 14. In this specification, a portion 14 s of the oxide semiconductor layer 14 that is in contact with the second conductive portion 15 is referred to as a “source contact region”. In addition, a portion 14 d of the oxide semiconductor layer 14 exposed through the contact hole CH and in contact with the transparent electrode 20 is referred to as a “drain contact region”. Of the oxide semiconductor layer 14, a portion 14 c located between the source contact region 14 s and the drain contact region 14 d and overlapping the first conductive portion 12 with the first insulating layer 13 interposed therebetween becomes a “channel region”. In the first embodiment, when viewed from the normal direction of the substrate 11, the source contact region 14s, the channel region 14c, and the drain contact region 14d may be arranged side by side in the second direction Y.
各画素において、ゲート配線Gから第一導電部12を介してゲート信号が送られ、TFT101がオン状態になると、ソース配線Sから第二導電部15及びドレインコンタクト領域14dを介して、透明電極20に所定の電荷が書き込まれる。 In each pixel, when a gate signal is sent from the gate wiring G through the first conductive portion 12 and the TFT 101 is turned on, the transparent electrode 20 is transferred from the source wiring S through the second conductive portion 15 and the drain contact region 14d. A predetermined charge is written in
実施形態1では、ゲート突き出し部G1の少なくとも一部が第一導電部12であり、ソース突き出し部S1の少なくとも一部が第二導電部15である。基板11の法線方向から見たとき、ゲート突き出し部G1の少なくとも一部は、ドレインコンタクト領域14dと重なり、ソース突き出し部S1の少なくとも一部は、ソースコンタクト領域14sと接する。基板11の法線方向から見たとき、ソース突き出し部S1の一部又は全体が酸化物半導体層14(ソースコンタクト領域14s)と接するように配置されていてもよい。なお、実施形態1では、第一方向Xにおけるソース突き出し部S1の幅は、特に限定されず、第一方向Xに隣接するソース配線Sまでは達しない長さであればよい。 In the first embodiment, at least a part of the gate protruding part G1 is the first conductive part 12, and at least a part of the source protruding part S1 is the second conductive part 15. When viewed from the normal direction of the substrate 11, at least a part of the gate protruding part G1 overlaps with the drain contact region 14d, and at least a part of the source protruding part S1 is in contact with the source contact region 14s. When viewed from the normal direction of the substrate 11, part or the whole of the source protrusion S <b> 1 may be disposed so as to be in contact with the oxide semiconductor layer 14 (source contact region 14 s). In the first embodiment, the width of the source protrusion S1 in the first direction X is not particularly limited, and may be a length that does not reach the source line S adjacent to the first direction X.
実施形態1では、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁は、第一導電部12の外縁よりも内側に配置される。また、図2に示したように、第一導電部12は、コンタクトホールCH全体と重なるように形成される。これにより、半導体装置1001を、液晶表示装置等の表示装置に適用した場合に、バックライト等の光源からの光が、コンタクトホールCHから漏れないため、光漏れの発生が抑制され、コントラストの良好な表示装置を得ることができる。 In the first embodiment, when viewed from the normal direction of the substrate 11, the outer edge of the drain contact region 14 d is disposed inside the outer edge of the first conductive portion 12. Further, as shown in FIG. 2, the first conductive portion 12 is formed so as to overlap the entire contact hole CH. Thereby, when the semiconductor device 1001 is applied to a display device such as a liquid crystal display device, light from a light source such as a backlight does not leak from the contact hole CH, so that the occurrence of light leakage is suppressed and the contrast is good. Display device can be obtained.
酸化物半導体層14は、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁が、第一導電部12の外縁よりも内側となるように配置されている限り、第一導電部12と少なくとも一部が重なっていればよいが、酸化物半導体層14が第一絶縁層13を介して第一導電部12を覆うように配置されてもよい。 As long as the oxide semiconductor layer 14 is arranged so that the outer edge of the drain contact region 14d is inside the outer edge of the first conductive part 12 when viewed from the normal direction of the substrate 11, the first conductive part However, the oxide semiconductor layer 14 may be disposed so as to cover the first conductive portion 12 with the first insulating layer 13 interposed therebetween.
図3に示すように、ドレインコンタクト領域14dを第一方向Xに横切る任意の断面において、酸化物半導体層14の幅W14は、第一導電部12の幅W12よりも広く、第一導電部12は第一絶縁層13を介して酸化物半導体層14で覆われている。このため、コンタクトホールCHのアライメントずれが生じた場合でも、コンタクトホールCHによって第一導電部12が露出しない。従って、第一導電部12と透明電極20とが短絡することによる不良を抑制できるので、高い信頼性を確保できる。 As shown in FIG. 3, the width W 14 of the oxide semiconductor layer 14 is wider than the width W 12 of the first conductive portion 12 in an arbitrary cross section crossing the drain contact region 14 d in the first direction X, and the first conductive The portion 12 is covered with the oxide semiconductor layer 14 with the first insulating layer 13 interposed therebetween. For this reason, even when the alignment deviation of the contact hole CH occurs, the first conductive portion 12 is not exposed by the contact hole CH. Therefore, since the defect by the short circuit between the 1st electroconductive part 12 and the transparent electrode 20 can be suppressed, high reliability is securable.
上記第一方向Xにおける酸化物半導体層14の幅W14は、特に限定されないが、例えば3μm以上であってもよい。上記第一方向Xにおける第一導電部12の幅W12は、特に限定されないが、例えば2μm以上であってもよい。上記幅W14は、隣接する2本のソース配線Sの間隔よりも狭くなるように設定されてもよい。コンタクトホールCHの底面の幅は、特に限定しないが、プロセス上の制約(プロセスルール)により、例えば、2μm以上に設定される。 Width W 14 of the oxide semiconductor layer 14 in the first direction X is not particularly limited, and may be for example 3μm or more. Width W 12 of the first conductive portion 12 in the first direction X is not particularly limited, and may be for example 2μm or more. The width W 14 may be set to be narrower than the distance between the source line S of two adjacent. The width of the bottom surface of the contact hole CH is not particularly limited, but is set to 2 μm or more, for example, due to process restrictions (process rules).
酸化物半導体層14は、ゲート突き出し部G1を覆い、かつ、第二方向Yに沿って、ゲート配線Gを超えるように配置されていてもよい。具体的には、図1に示したように、基板11の法線方向から見たとき、ゲート配線Gの一部及びゲート突き出し部G1全体は、酸化物半導体層14と重なるように配置されていてもよい。 The oxide semiconductor layer 14 may be disposed so as to cover the gate protruding portion G1 and exceed the gate wiring G along the second direction Y. Specifically, as shown in FIG. 1, when viewed from the normal direction of the substrate 11, a part of the gate wiring G and the whole gate protruding part G <b> 1 are arranged so as to overlap with the oxide semiconductor layer 14. May be.
透明電極20は、第二絶縁層16上及びコンタクトホールCHを覆うように形成され、コンタクトホールCHにおいてドレインコンタクト領域14dと接する。コンタクトホールCHは、透明電極20と酸化物半導体層14とを接続する画素コンタクトホールである。従来のドレイン電極を形成せずに、透明電極20と、TFTを構成する酸化物半導体層14とを直接、接続することで、画素開口率の低下を抑制できる。また、上述した加工上の制約がなくなり、より微細な画素を形成することが可能になる。透明電極20は、例えば、画素電極である。 The transparent electrode 20 is formed so as to cover the second insulating layer 16 and the contact hole CH, and is in contact with the drain contact region 14d in the contact hole CH. The contact hole CH is a pixel contact hole that connects the transparent electrode 20 and the oxide semiconductor layer 14. By directly connecting the transparent electrode 20 and the oxide semiconductor layer 14 constituting the TFT without forming a conventional drain electrode, it is possible to suppress a decrease in the pixel aperture ratio. Further, the above-described processing restrictions are eliminated, and finer pixels can be formed. The transparent electrode 20 is a pixel electrode, for example.
なお、図1等の平面図に示すコンタクトホールCHの形状は、コンタクトホールCHの側壁の傾斜角度にかかわらず、コンタクトホールCHの底面(すなわち、コンタクトホールCHによって露出した下地表面)の形状を指すものとする。すなわち、コンタクトホールCHの形状は、ドレインコンタクト領域14dの形状と同じになる。 The shape of the contact hole CH shown in the plan view of FIG. 1 or the like refers to the shape of the bottom surface of the contact hole CH (that is, the underlying surface exposed by the contact hole CH) regardless of the inclination angle of the side wall of the contact hole CH. Shall. That is, the shape of the contact hole CH is the same as the shape of the drain contact region 14d.
ソース配線Sの最小加工寸法をFと定義すると、図1に示したように、第一方向Xにおける、ソース配線Sの幅、コンタクトホールCHの幅は、それぞれ最小加工寸法の1Fとなる。また、ソース配線Sの端からコンタクトホールCHの外縁までの距離は、ソース配線SとコンタクトホールCHが重ならない程度の最小距離を確保すればよく、例えば0.75Fまで狭くすることが可能である。この場合、実施形態1の画素ピッチPは3.5Fである。ソース配線Sの端からコンタクトホールCHの外縁までの距離を0.75Fよりも、狭くすれば更に画素ピッチを小さくすることもできる。  When the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 1, the width of the source wiring S and the width of the contact hole CH in the first direction X are each the minimum processing dimension 1F. In addition, the distance from the end of the source line S to the outer edge of the contact hole CH may be a minimum distance that does not overlap the source line S and the contact hole CH, and can be reduced to, for example, 0.75F. . In this case, the pixel pitch P of Embodiment 1 is 3.5F. If the distance from the end of the source line S to the outer edge of the contact hole CH is made smaller than 0.75F, the pixel pitch can be further reduced. *
一例として、最小加工寸法Fを2.5μmとすると、実施形態1では、最小画素ピッチは8.75μmとなり、画素密度を968ppiとすることができる。更に、最小加工寸法Fを、加工限界に近い2.0μmとすると、実施形態1では、最小画素ピッチは7.0μmとなり、画素密度を1210ppiとすることができる。 As an example, if the minimum processing dimension F is 2.5 μm, in the first embodiment, the minimum pixel pitch is 8.75 μm, and the pixel density can be 968 ppi. Furthermore, if the minimum processing dimension F is 2.0 μm, which is close to the processing limit, in the first embodiment, the minimum pixel pitch is 7.0 μm, and the pixel density can be 1210 ppi.
半導体装置1001をFFS(Fringe Field Switching)モードの液晶表示装置に適用する場合は、更に、透明電極20上に配置された誘電体層21、及び、誘電体層21上に配置された共通電極22を有する。この場合、共通電極22は、誘電体層21を介して透明電極20と少なくとも一部が重なるように配置される。 When the semiconductor device 1001 is applied to a liquid crystal display device in FFS (Fringe Field Switching) mode, the dielectric layer 21 disposed on the transparent electrode 20 and the common electrode 22 disposed on the dielectric layer 21 are further provided. Have In this case, the common electrode 22 is disposed so as to at least partially overlap the transparent electrode 20 via the dielectric layer 21.
共通電極22は、画素毎に分離されて配置されてもよいし、複数の画素Pixが設けられた表示領域全体を覆うように配置されてもよい。共通電極22が表示領域全体を覆うように配置される場合、TFT101又はドレインコンタクト領域14dと重なる位置に開口部が設けられてもよい。また、FFSモードの液晶表示装置に適用する場合、共通電極22には、画素ごとに少なくとも1つの開口部22a又は切り欠き部が設けられる。共通電極22の一部は、透明電極20と誘電体層21を介して重なり、補助容量を構成してもよい。 The common electrode 22 may be disposed separately for each pixel, or may be disposed so as to cover the entire display area in which the plurality of pixels Pix are provided. When the common electrode 22 is disposed so as to cover the entire display region, an opening may be provided at a position overlapping the TFT 101 or the drain contact region 14d. When applied to an FFS mode liquid crystal display device, the common electrode 22 is provided with at least one opening 22a or notch for each pixel. A part of the common electrode 22 may overlap with the transparent electrode 20 via the dielectric layer 21 to constitute an auxiliary capacitor.
以下に、本実施形態で用いられる酸化物半導体層14について説明する。本明細書中、「酸化物半導体層」とは、酸化物半導体TFTの活性層として機能する半導体領域を含む層である。酸化物半導体層は、部分的に低抵抗化された領域(低抵抗領域又は導電体領域)を含むことがある。例えば、酸化物半導体層が金属層等の導電体層又は還元性の絶縁層と接する場合、酸化物半導体層の表面のうち導電体層と接する部分が、半導体領域よりも電気抵抗の低い低抵抗領域となる。酸化物半導体層の表面のみが低抵抗化される場合もあるし、酸化物半導体層の厚さ方向に亘って低抵抗化される場合もある。 Hereinafter, the oxide semiconductor layer 14 used in this embodiment will be described. In this specification, an “oxide semiconductor layer” is a layer including a semiconductor region that functions as an active layer of an oxide semiconductor TFT. The oxide semiconductor layer may include a region whose resistance is partially reduced (a low-resistance region or a conductor region). For example, when the oxide semiconductor layer is in contact with a conductive layer such as a metal layer or a reducing insulating layer, the portion of the surface of the oxide semiconductor layer that is in contact with the conductive layer is a low resistance whose electrical resistance is lower than that of the semiconductor region. It becomes an area. There may be a case where only the surface of the oxide semiconductor layer is reduced in resistance, and there is a case where the resistance is reduced along the thickness direction of the oxide semiconductor layer.
酸化物半導体層14の半導体領域に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体等が挙げられる。 The oxide semiconductor included in the semiconductor region of the oxide semiconductor layer 14 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion. Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
酸化物半導体層14は、二層以上の積層構造を有してもよい。酸化物半導体層14が積層構造を有する場合、酸化物半導体層14は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。また、酸化物半導体層14は、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよし、複数の非晶質酸化物半導体層を含んでいてもよい。 The oxide semiconductor layer 14 may have a stacked structure of two or more layers. In the case where the oxide semiconductor layer 14 has a stacked structure, the oxide semiconductor layer 14 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. Further, the oxide semiconductor layer 14 may include a plurality of crystalline oxide semiconductor layers having different crystal structures, or may include a plurality of amorphous oxide semiconductor layers.
酸化物半導体層14が上層と下層とを含む二層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。非晶質酸化物半導体及び上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成等は、例えば、上記特許文献3等に記載されている。 In the case where the oxide semiconductor layer 14 has a two-layer structure including an upper layer and a lower layer, the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer. However, when the difference in energy gap between these layers is relatively small, the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor. The material, structure, film forming method, structure of the oxide semiconductor layer having a stacked structure, and the like of the amorphous oxide semiconductor and each of the crystalline oxide semiconductors described in, for example, Patent Document 3 described above.
酸化物半導体層14は、インジウム、ガリウム、亜鉛、又は、カドミウムの少なくとも一つを含むことが好ましい。例えば、酸化物半導体層14は、In-Ga-Zn-O系半導体、In-Sn-Zn-O系半導体(例えば、In-SnO-ZnO;InSnZnO)、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体等を含んでいてもよい。 The oxide semiconductor layer 14 preferably contains at least one of indium, gallium, zinc, or cadmium. For example, the oxide semiconductor layer 14 includes an In—Ga—Zn—O-based semiconductor, an In—Sn—Zn—O-based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO), In—Al—Zn—. O-based semiconductor, In-Al-Sn-Zn-O-based semiconductor, Zn-O-based semiconductor, In-Zn-O-based semiconductor, Zn-Ti-O-based semiconductor, Cd-Ge-O-based semiconductor, Cd-Pb- O-based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga—O based semiconductor, Zr—In—Zn—O based semiconductor, Hf—In— A Zn—O based semiconductor, an Al—Ga—Zn—O based semiconductor, a Ga—Zn—O based semiconductor, or the like may be included.
なかでも、酸化物半導体層14は、インジウム、ガリウム及び亜鉛の酸化物を含むことがより好ましい。上記インジウム、ガリウム及び亜鉛の酸化物を含む半導体(以下、In-Ga-Zn-O系半導体ともいう)は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。なお、In-Ga-Zn-O系等の酸化物半導体を含む活性層を有するチャネルエッチ型のTFTを、「CE-OS-TFT」と呼ぶことがある。In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。 Especially, it is more preferable that the oxide semiconductor layer 14 contains an oxide of indium, gallium, and zinc. The semiconductor containing an oxide of indium, gallium, and zinc (hereinafter also referred to as an In—Ga—Zn—O-based semiconductor) is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc). The ratio (composition ratio) of In, Ga and Zn is not particularly limited. For example, In: Ga: Zn = 2: 2: 1, In: Ga: Zn = 1: 1: 1, In: Ga: Zn = 1: 1: 2 etc. Note that a channel-etch TFT having an active layer containing an oxide semiconductor such as an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-OS-TFT”. The In—Ga—Zn—O-based semiconductor may be amorphous or crystalline. As the crystalline In—Ga—Zn—O-based semiconductor, a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
In-Ga-Zn-O系半導体層を有するTFTは、電子の移動度が高く、かつ、リーク電流量が少ない。例えば、In-Ga-Zn-O系半導体層を有するTFTは、アモルファスシリコンを用いたTFT(a-SiTFT)に比べて、電子の移動度は20倍を超え、リーク電流量は100分の1未満である。そのため、画素TFTだけではなく、駆動TFTとしても好適に用いられる。上記画素TFTとは、画素に設けられるTFTであり、上記TFT101は、画素TFTである。上記駆動TFTとは、例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFTである。なお、結晶質In-Ga-Zn-O系半導体の結晶構造は、例えば、上記特許文献3~5等に開示されており、本発明に適用することができる。 A TFT having an In—Ga—Zn—O-based semiconductor layer has high electron mobility and a small amount of leakage current. For example, a TFT having an In—Ga—Zn—O-based semiconductor layer has an electron mobility exceeding 20 times that of a TFT using amorphous silicon (a-Si TFT), and the amount of leakage current is 1/100. Is less than. Therefore, it is suitably used not only as a pixel TFT but also as a driving TFT. The pixel TFT is a TFT provided in a pixel, and the TFT 101 is a pixel TFT. The driving TFT is, for example, a TFT included in a driving circuit provided on the same substrate as the display area around the display area including a plurality of pixels. Note that the crystal structure of a crystalline In—Ga—Zn—O-based semiconductor is disclosed in, for example, the above Patent Documents 3 to 5, and can be applied to the present invention.
<半導体装置の製造方法> 
以下に、図2を参照して、半導体装置1001の製造方法の一例を説明する。本発明の他の一態様は、薄膜トランジスタを備える半導体装置の製造方法であって、基板上に第一導電部を形成する工程(a)と、上記第一導電部を覆う第一絶縁層を形成する工程(b)と、上記第一絶縁層上に酸化物半導体膜を形成し、上記酸化物半導体膜をパターニングすることにより、上記第一絶縁層を介して上記第一導電部と少なくとも一部が重なる酸化物半導体層を得る工程(c)と、上記酸化物半導体層のソースコンタクト領域と接する第二導電部を形成する工程(d)と、上記酸化物半導体層を覆う第二絶縁層を形成し、上記第二絶縁層に、上記酸化物半導体層のドレインコンタクト領域を露出するコンタクトホールを形成する工程(e)と、上記第二絶縁層上及び上記コンタクトホールを覆うように、上記コンタクトホールにおいて上記酸化物半導体層の上記ドレインコンタクト領域と接する透明電極を形成する工程(f)とを含み、上記基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁は、上記第一導電部の外縁の一部と重なるか、又は、上記第一導電部の外縁よりも内側に配置される半導体装置の製造方法である。
<Method for Manufacturing Semiconductor Device>
Hereinafter, an example of a method for manufacturing the semiconductor device 1001 will be described with reference to FIG. Another embodiment of the present invention is a method of manufacturing a semiconductor device including a thin film transistor, in which a step (a) of forming a first conductive portion on a substrate and a first insulating layer covering the first conductive portion are formed. And (b) forming an oxide semiconductor film on the first insulating layer and patterning the oxide semiconductor film, so that at least a part of the first conductive portion is interposed through the first insulating layer. A step (c) of obtaining an oxide semiconductor layer overlapping with each other, a step (d) of forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer, and a second insulating layer covering the oxide semiconductor layer. Forming (e) a contact hole exposing the drain contact region of the oxide semiconductor layer in the second insulating layer; and the contact so as to cover the second insulating layer and the contact hole. hole (F) forming a transparent electrode in contact with the drain contact region of the oxide semiconductor layer, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region is This is a method of manufacturing a semiconductor device that overlaps with a part of the outer edge of the part or is arranged inside the outer edge of the first conductive part.
上記工程(a)では、基板11上に、第一導電部12を形成する。実施形態1では、ゲート突き出し部G1の少なくとも一部が第一導電部12である。まず、基板11上に、第一方向に延びるゲート配線Gと、ゲート配線Gから第二方向に延出したゲート突き出し部G1を形成する。ゲート配線G及びゲート突き出し部G1は、一体的に形成されてもよい。ゲート突き出し部G1及びゲート配線Gは、例えば、基板11上に、スパッタリング法等によって、ゲート配線用の金属膜を形成し、次いで、フォトリソグラフィー等により、ゲート配線用金属膜を所望の形状に加工することで形成することができる。上記ゲート配線用金属膜の厚さは、例えば、50nm以上、500nm以下である。 In the step (a), the first conductive portion 12 is formed on the substrate 11. In the first embodiment, at least a part of the gate protruding portion G1 is the first conductive portion 12. First, the gate wiring G extending in the first direction and the gate protrusion G1 extending in the second direction from the gate wiring G are formed on the substrate 11. The gate wiring G and the gate protruding portion G1 may be integrally formed. For example, the gate protrusion G1 and the gate wiring G are formed by forming a metal film for gate wiring on the substrate 11 by sputtering or the like, and then processing the metal film for gate wiring into a desired shape by photolithography or the like. By doing so, it can be formed. The thickness of the gate wiring metal film is, for example, not less than 50 nm and not more than 500 nm.
基板11は、透明基板であることが好ましい。また、耐熱性を有する基板であることが好ましい。基板11としては、例えば、ガラス基板;シリコン基板;プラスチック、ポリカーボネート等の樹脂基板等を用いることができる。 The substrate 11 is preferably a transparent substrate. Moreover, it is preferable that it is a board | substrate which has heat resistance. As the substrate 11, for example, a glass substrate; a silicon substrate; a resin substrate such as plastic or polycarbonate can be used.
上記ゲート配線用金属膜としては、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はこれらの合金、若しくは、これらの金属窒化物を含む膜を用いることができる。また、上記金属又はこれらの合金、若しくは、これらの金属窒化物を含む膜を複数積層した積層膜を用いてもよい。上記ゲート配線用金属膜の具体例としては、例えば、厚さ300nmのモリブデンタングステン合金(MoW)膜が挙げられる。 Examples of the gate wiring metal film include metals such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), and the like. Or a film containing these metal nitrides can be used. Alternatively, a stacked film in which a plurality of films containing the above metals, alloys thereof, or metal nitrides are stacked may be used. A specific example of the metal film for gate wiring is, for example, a molybdenum tungsten alloy (MoW) film having a thickness of 300 nm.
上記工程(b)では、第一導電部12を覆う第一絶縁層13を形成する。第一絶縁層13は、上記ゲート配線G及びゲート突き出し部G1を覆うように形成される。第一絶縁層13としては、酸化珪素(SiO)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy:x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を用いることができる。第一絶縁層13は、基板11側から下層及び上層を積み重ねた積層構造を有してもよい。 In the step (b), the first insulating layer 13 that covers the first conductive portion 12 is formed. The first insulating layer 13 is formed so as to cover the gate wiring G and the gate protruding portion G1. As the first insulating layer 13, a silicon oxide (SiO 2 ) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy: x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is used. Can do. The first insulating layer 13 may have a stacked structure in which a lower layer and an upper layer are stacked from the substrate 11 side.
基板11からの不純物等の拡散を防止する観点から、第一絶縁層13に窒化珪素層、窒化酸化珪素層等を用いてもよく、絶縁性を確保する観点から、第一絶縁層13に酸化珪素層、酸化窒化珪素層等を用いてもよい。第一絶縁層13の酸化物半導体層14と接する最上層として、例えば、SiO等の酸素を含む層を用いると、酸化物半導体層14に酸素欠損が生じた場合に、第一絶縁層13に含まれる酸素によって酸素欠損を回復することが可能となるので、酸化物半導体層14の酸素欠損を効果的に低減できる。 From the viewpoint of preventing diffusion of impurities and the like from the substrate 11, a silicon nitride layer, a silicon nitride oxide layer, or the like may be used for the first insulating layer 13. From the viewpoint of ensuring insulation, the first insulating layer 13 is oxidized. A silicon layer, a silicon oxynitride layer, or the like may be used. For example, when a layer containing oxygen such as SiO 2 is used as the uppermost layer in contact with the oxide semiconductor layer 14 of the first insulating layer 13, when oxygen vacancies occur in the oxide semiconductor layer 14, the first insulating layer 13 Since oxygen deficiency can be recovered by oxygen contained in oxygen, oxygen deficiency in the oxide semiconductor layer 14 can be effectively reduced.
第一絶縁層13の具体例としては、例えば、厚さ325nmの窒化珪素(SiNx)層を下層とし、厚さ50nmの酸化珪素(SiO)層を上層とする積層構造を有する第一絶縁層13が挙げられる。上記第一絶縁層13は、化学気相成長(Chemical Vapor Deposition:CVD)法を用いて形成することができる。 As a specific example of the first insulating layer 13, for example, a first insulating layer having a laminated structure in which a silicon nitride (SiNx) layer having a thickness of 325 nm is a lower layer and a silicon oxide (SiO 2 ) layer having a thickness of 50 nm is an upper layer. 13 is mentioned. The first insulating layer 13 can be formed by using a chemical vapor deposition (CVD) method.
上記工程(c)では、第一絶縁層13上に酸化物半導体膜を形成し、上記酸化物半導体膜をパターニングすることにより、第一絶縁層13を介して第一導電部12と少なくとも一部が重なる酸化物半導体層14を得る。酸化物半導体膜は、例えば、スパッタリング法を用いて形成することができる。上記酸化物半導体膜の厚さは、例えば、20nm以上、200nm以下である。酸化物半導体層14は、島状の酸化物半導体層であることが好ましい。基板11の法線方向から見たとき、酸化物半導体層14の少なくとも一部は、第一絶縁層13を介して第一導電部12と重なるように配置される。 In the step (c), an oxide semiconductor film is formed on the first insulating layer 13, and the oxide semiconductor film is patterned, so that at least a part of the first conductive portion 12 is interposed through the first insulating layer 13. Is obtained. The oxide semiconductor film can be formed by a sputtering method, for example. The thickness of the oxide semiconductor film is, for example, 20 nm or more and 200 nm or less. The oxide semiconductor layer 14 is preferably an island-shaped oxide semiconductor layer. When viewed from the normal direction of the substrate 11, at least a part of the oxide semiconductor layer 14 is disposed so as to overlap the first conductive portion 12 with the first insulating layer 13 interposed therebetween.
酸化物半導体層14は、例えば、In、Ga及びZnを1:1:1の割合で含むIn-Ga-Zn-O系半導体を含む酸化物半導体膜をパターニングすることによって形成する。上記酸化物半導体層14の厚さは、例えば、50nmである。酸化物半導体層14は、酸化物半導体から構成されているが、この後のプロセスで導電体と接触することにより、部分的に低抵抗化してもよい。 The oxide semiconductor layer 14 is formed, for example, by patterning an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor containing In, Ga, and Zn at a ratio of 1: 1: 1. The oxide semiconductor layer 14 has a thickness of, for example, 50 nm. Although the oxide semiconductor layer 14 is made of an oxide semiconductor, the resistance may be partially reduced by contacting the conductor in a subsequent process.
上記工程(d)では、酸化物半導体層14のソースコンタクト領域14sと接する第二導電部15を形成する。実施形態1では、ソース突き出し部S1の少なくとも一部が第二導電部15である。まず、酸化物半導体層14及び第一絶縁層13上に、スパッタリング法等によって、ソース配線用金属膜を形成し、次いで、フォトリソグラフィー等により、ソース配線用金属膜を所望の形状に加工することによって、第二方向に延びるソース配線Sと、ソース配線Sから第一方向に延出したソース突き出し部S1を形成する。ソース配線S及びソース突き出し部S1は、一体的に形成されてもよい。上記ソース配線用金属膜の厚さは、例えば、50nm以上、500nm以下である。ソース突き出し部S1は、酸化物半導体層14の上面と接するように配置される。酸化物半導体層14のうちソース突き出し部S1と接する部分はソースコンタクト領域14sとなる。 In the step (d), the second conductive portion 15 in contact with the source contact region 14s of the oxide semiconductor layer 14 is formed. In the first embodiment, at least a part of the source protruding portion S1 is the second conductive portion 15. First, a metal film for source wiring is formed on the oxide semiconductor layer 14 and the first insulating layer 13 by sputtering or the like, and then the metal film for source wiring is processed into a desired shape by photolithography or the like. Thus, the source line S extending in the second direction and the source protruding part S1 extending from the source line S in the first direction are formed. The source wiring S and the source protruding portion S1 may be integrally formed. The thickness of the metal film for source wiring is, for example, not less than 50 nm and not more than 500 nm. The source protruding portion S1 is disposed so as to be in contact with the upper surface of the oxide semiconductor layer 14. A portion of the oxide semiconductor layer 14 that is in contact with the source protruding portion S1 becomes a source contact region 14s.
上記ソース配線用金属膜として、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、銅(Cu)、クロム(Cr)、チタン(Ti)等の金属又はこれらの合金、若しくは、これらの金属窒化物を含む膜を用いることができる。また、上記金属又はこれらの合金、若しくは、これらの金属窒化物を含む膜を複数積層した積層膜を用いてもよい。上記ソース配線用金属膜の具体例としては、例えば、厚さ30nmのチタン(Ti)膜を下層とし、厚さ200nmのアルミニウム(Al)膜及び厚さ100nmのチタン(Ti)膜を基板11側から順に積層した膜を上層とした積層膜(Ti/Al/Ti)が挙げられる。 Examples of the source wiring metal film include metals such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), copper (Cu), chromium (Cr), titanium (Ti), and the like. An alloy or a film containing these metal nitrides can be used. Alternatively, a stacked film in which a plurality of films containing the above metals, alloys thereof, or metal nitrides are stacked may be used. As a specific example of the metal film for source wiring, for example, a titanium (Ti) film having a thickness of 30 nm is used as a lower layer, and an aluminum (Al) film having a thickness of 200 nm and a titanium (Ti) film having a thickness of 100 nm are formed on the substrate 11 side. And a laminated film (Ti / Al / Ti) with the film laminated in order from the top as the upper layer.
上記工程(e)では、酸化物半導体層14を覆う第二絶縁層16を形成し、第二絶縁層16に、酸化物半導体層14のドレインコンタクト領域14dを露出するコンタクトホールCHを形成する。まず、ソース配線S及びソース突き出し部S1を覆うように第二絶縁層16を形成する。次に、第二絶縁層16に、酸化物半導体層14の一部を露出する開口部を形成する。上記第二絶縁層16に設けられた開口部、コンタクトホールCHとなる。 In the step (e), the second insulating layer 16 that covers the oxide semiconductor layer 14 is formed, and the contact hole CH that exposes the drain contact region 14 d of the oxide semiconductor layer 14 is formed in the second insulating layer 16. First, the second insulating layer 16 is formed so as to cover the source wiring S and the source protruding portion S1. Next, an opening that exposes part of the oxide semiconductor layer 14 is formed in the second insulating layer 16. It becomes an opening provided in the second insulating layer 16 and a contact hole CH.
第二絶縁層16の材料としては、第一絶縁層13と同様の材料を用いることができる。第二絶縁層16は単層であってもよいし、積層構造を有してもよい。第二絶縁層16は、無機絶縁層であってもよいし、有機絶縁層膜であってもよし、有機絶縁膜と無機絶縁膜との積層膜であってもよい。上記第二絶縁層16の具体例としては、例えば、膜厚300nmのSiO膜、厚さ2000nmのポジ型の感光性樹脂膜等が挙げられる。上記をSiO膜は、CVD法により形成することができる。 As the material of the second insulating layer 16, the same material as that of the first insulating layer 13 can be used. The second insulating layer 16 may be a single layer or may have a laminated structure. The second insulating layer 16 may be an inorganic insulating layer, an organic insulating layer film, or a laminated film of an organic insulating film and an inorganic insulating film. Specific examples of the second insulating layer 16 include a SiO 2 film having a thickness of 300 nm, a positive photosensitive resin film having a thickness of 2000 nm, and the like. The SiO 2 film can be formed by the CVD method.
コンタクトホールCHのエッチング方法及び条件は、第二絶縁層16のエッチングレートよりも酸化物半導体層14のエッチングレートが低くなるように選択される。これによって、酸化物半導体層14をほとんどエッチングせずに、コンタクトホールCHの底面に露出させることができる。コンタクトホールCHの底面全体は、酸化物半導体層14上に位置することが好ましい。第二方向Yにおいて、コンタクトホールCHの底面の幅は、酸化物半導体層14の幅よりも狭くなるように設定される。また、実施形態1では、第一方向Xにおいても、コンタクトホールCHの底面の幅は、酸化物半導体層14の幅よりも狭くなるように設定される。 The etching method and conditions for the contact hole CH are selected so that the etching rate of the oxide semiconductor layer 14 is lower than the etching rate of the second insulating layer 16. Thus, the oxide semiconductor layer 14 can be exposed to the bottom surface of the contact hole CH with almost no etching. The entire bottom surface of the contact hole CH is preferably located on the oxide semiconductor layer 14. In the second direction Y, the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14. In Embodiment 1, also in the first direction X, the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14.
上記工程(f)では、第二絶縁層16上及びコンタクトホールCHを覆うように、コンタクトホールCHにおいて酸化物半導体層14のドレインコンタクト領域14dと接する透明電極20を形成する。まず、第二絶縁層16上及びコンタクトホールCHを覆うように第一透明電極膜を形成し、次に、上記第一透明電極膜をパターニングすることによって、透明電極20を形成する。透明電極20は、画素電極であってもよい。上記第一透明電極膜の材料としては、例えば、酸化インジウムスズ(Indium Tin Oxide:ITO)、酸化インジウム亜鉛(Indium Zinc Oxide:IZO)、酸化亜鉛(ZnO)等の酸化物半導体を用いることができる。上記第一透明電極膜の厚さは、例えば、20~300nmである。 In the step (f), the transparent electrode 20 in contact with the drain contact region 14d of the oxide semiconductor layer 14 is formed in the contact hole CH so as to cover the second insulating layer 16 and the contact hole CH. First, a first transparent electrode film is formed so as to cover the second insulating layer 16 and the contact hole CH, and then the transparent electrode 20 is formed by patterning the first transparent electrode film. The transparent electrode 20 may be a pixel electrode. As a material of the first transparent electrode film, for example, an oxide semiconductor such as indium tin oxide (Indium Tin Oxide: ITO), indium zinc oxide (Indium Zinc Oxide: IZO), zinc oxide (ZnO), or the like can be used. . The thickness of the first transparent electrode film is, for example, 20 to 300 nm.
具体的には、例えば、スパッタリング法により、第一透明電極膜として厚さ100nmのIZO膜を形成する。その後、フォトリソグラフィーにより上記第一透明電極膜をパターニングすることによって、透明電極20を形成する。透明電極20は、コンタクトホールCHにおいて、酸化物半導体層14の上面に接するように配置される。酸化物半導体層14のうち透明電極20と接する部分は、ドレインコンタクト領域14dとなる。実施形態1では、コンタクトホールCH全体が酸化物半導体層14上に位置している。そのため、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁は、第一導電部12の外縁よりも内側に配置される。 Specifically, for example, an IZO film having a thickness of 100 nm is formed as the first transparent electrode film by sputtering. Then, the transparent electrode 20 is formed by patterning the first transparent electrode film by photolithography. The transparent electrode 20 is disposed in contact with the upper surface of the oxide semiconductor layer 14 in the contact hole CH. A portion of the oxide semiconductor layer 14 that is in contact with the transparent electrode 20 becomes a drain contact region 14d. In the first embodiment, the entire contact hole CH is located on the oxide semiconductor layer 14. Therefore, when viewed from the normal direction of the substrate 11, the outer edge of the drain contact region 14 d is disposed inside the outer edge of the first conductive portion 12.
半導体装置1001をFFSモードの液晶表示装置に適用する場合は、更に、透明電極20上に、誘電体層21及び共通電極22を形成する工程を含んでもよい。誘電体層21の材料としては、酸化珪素(SiO)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy:x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を用いることができる。誘電体層21の具体例としては、例えば、膜厚100nmのSiNx膜が挙げられる。上記誘電体層21は、CVD法を用いて形成することができる。 In the case where the semiconductor device 1001 is applied to an FFS mode liquid crystal display device, a step of forming a dielectric layer 21 and a common electrode 22 on the transparent electrode 20 may be further included. As the material of the dielectric layer 21, a silicon oxide (SiO 2 ) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy: x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is used. be able to. A specific example of the dielectric layer 21 is, for example, a SiNx film having a thickness of 100 nm. The dielectric layer 21 can be formed using a CVD method.
共通電極22は、誘電体層21上に第二透明電極膜を形成し、第二透明電極膜をパターニングすることによって得られる。第二透明電極膜の材料としては、上記第一透明電極膜と同様の材料を用いることができる。具体的には、例えば、スパッタリング法により、第二透明電極として誘電体層21上に厚さ100nmのITO膜を形成する。その後、フォトリソグラフィーにより上記第二透明電極膜をパターニングすることによって、共通電極22を形成する。共通電極22には、画素ごとに少なくとも1つの開口部22a又は切り欠き部を設けてもよい。このようにして、半導体装置1001が製造される。 The common electrode 22 is obtained by forming a second transparent electrode film on the dielectric layer 21 and patterning the second transparent electrode film. As the material of the second transparent electrode film, the same material as the first transparent electrode film can be used. Specifically, for example, an ITO film having a thickness of 100 nm is formed on the dielectric layer 21 as the second transparent electrode by a sputtering method. Thereafter, the common electrode 22 is formed by patterning the second transparent electrode film by photolithography. The common electrode 22 may be provided with at least one opening 22a or notch for each pixel. In this way, the semiconductor device 1001 is manufactured.
(実施形態2)
図4~図6を参照して、実施形態2に係る半導体装置2001を説明する。図4は、実施形態2に係る半導体装置の平面模式図である。図5は、図4のC-C’線に沿った断面模式図である。図6は、図4のD-D’線に沿った断面模式図である。半導体装置2001は、TFT201を備える。
(Embodiment 2)
A semiconductor device 2001 according to the second embodiment will be described with reference to FIGS. FIG. 4 is a schematic plan view of the semiconductor device according to the second embodiment. FIG. 5 is a schematic sectional view taken along the line CC ′ of FIG. 6 is a schematic cross-sectional view taken along the line DD ′ of FIG. The semiconductor device 2001 includes a TFT 201.
図4に示したように、実施形態2では、基板11の法線方向から見たとき、複数のゲート配線Gのそれぞれは、ゲート配線Gから第二方向Yに延出したゲート突き出し部G1を有する。実施形態2では、ゲート突き出し部G1の少なくとも一部が第一導電部12である。また、実施形態2では、ソース突き出し部S1を有さず、ソース配線Sの一部が第二導電部15となる。 As shown in FIG. 4, in the second embodiment, when viewed from the normal direction of the substrate 11, each of the plurality of gate wirings G has a gate protrusion G <b> 1 extending in the second direction Y from the gate wiring G. Have. In the second embodiment, at least a part of the gate protruding portion G1 is the first conductive portion 12. In the second embodiment, the source protruding portion S <b> 1 is not provided and a part of the source wiring S becomes the second conductive portion 15.
基板11の法線方向から見たとき、ゲート突き出し部G1の少なくとも一部は、ドレインコンタクト領域14dと重なり、上記ソース配線Sの少なくとも一部は、ソースコンタクト領域14sと接する。図4及び図6に示したように、ソースコンタクト領域14sの全体が、ソース配線の幅方向に収まるように形成されてもよい。実施形態2では、ソースコンタクト領域14s及びチャネル領域14cは、第一方向Xに並べて配置され、チャネル領域14c及びドレインコンタクト領域14dは、第二方向Yに並べて配置されてもよい。言い換えると、酸化物半導体層14はL字型に形成されてもよい。 When viewed from the normal direction of the substrate 11, at least a part of the gate protruding portion G1 overlaps the drain contact region 14d, and at least a part of the source line S is in contact with the source contact region 14s. As shown in FIGS. 4 and 6, the entire source contact region 14 s may be formed to fit in the width direction of the source wiring. In the second embodiment, the source contact region 14s and the channel region 14c may be arranged in the first direction X, and the channel region 14c and the drain contact region 14d may be arranged in the second direction Y. In other words, the oxide semiconductor layer 14 may be formed in an L shape.
図5に示したように、TFT201は、実施形態1と同様に、透明電極20が酸化物半導体層14のドレインコンタクト領域14dと接するため、微細な画素を形成することが可能になる。ソース配線Sの最小加工寸法をFと定義すると、図4に示したように、第一方向Xにおける、ソース配線Sの幅、及び、コンタクトホールCHの幅が1F、ソース配線Sの端からコンタクトホールCHの外縁までの距離が0.75Fであるときに、画素ピッチPは最小となる。実施形態2の画素ピッチPの最小値は3.5Fである。 As shown in FIG. 5, the TFT 201 can form a fine pixel because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment. If the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 4, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and contact from the end of the source wiring S When the distance to the outer edge of the hole CH is 0.75F, the pixel pitch P is minimum. The minimum value of the pixel pitch P in the second embodiment is 3.5F.
一例として、最小加工寸法Fを2.5μmとすると、実施形態2は、実施形態1と同様に、最小画素ピッチは8.75μmとなり、画素密度を968ppiとすることができる。更に、最小加工寸法Fを、加工限界に近い2.0μmとすると、実施形態1では、最小画素ピッチは7.0μmとなり、画素密度を1210ppiとすることができる。 As an example, assuming that the minimum processing dimension F is 2.5 μm, in the second embodiment, as in the first embodiment, the minimum pixel pitch is 8.75 μm, and the pixel density can be 968 ppi. Furthermore, if the minimum processing dimension F is 2.0 μm, which is close to the processing limit, in the first embodiment, the minimum pixel pitch is 7.0 μm, and the pixel density can be 1210 ppi.
また、TFT201は、実施形態1と同様に、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁が、第一導電部12の外縁よりも内側に配置される。また、図5に示したように、第一導電部12は、コンタクトホールCH全体と重なるように形成される。これにより、半導体装置2001を、液晶表示装置等の表示装置に適用した場合に、光漏れの発生が抑制されるため、コントラストの良好な表示装置を得ることができる。 Similarly to the first embodiment, the TFT 201 is arranged such that the outer edge of the drain contact region 14 d is located inside the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11. Further, as shown in FIG. 5, the first conductive portion 12 is formed so as to overlap the entire contact hole CH. Accordingly, when the semiconductor device 2001 is applied to a display device such as a liquid crystal display device, light leakage is suppressed, so that a display device with favorable contrast can be obtained.
(変形形態1)
図7及び図8を参照して、実施形態2に係る半導体装置2001の他の形態(変形形態1)を説明する。図7は、変形形態1に係る半導体装置の平面模式図である。図8は、図7のE-E’線に沿った断面模式図である。半導体装置2002は、TFT301を備える。図8に示したように、変形形態1では、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁は、第一導電部12の外縁の一部と重なる。
(Modification 1)
With reference to FIG.7 and FIG.8, the other form (modification 1) of the semiconductor device 2001 which concerns on Embodiment 2 is demonstrated. FIG. 7 is a schematic plan view of the semiconductor device according to the first modification. FIG. 8 is a schematic sectional view taken along line EE ′ of FIG. The semiconductor device 2002 includes a TFT 301. As shown in FIG. 8, in the first modification, the outer edge of the drain contact region 14 d overlaps a part of the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11.
変形形態1では、第一方向Xにおけるゲート突き出し部G1の幅は、第一方向Xにおけるドレインコンタクト領域14dの幅と同じである。ソース配線Sの最小加工寸法をFと定義すると、図7に示したように、第一方向Xにおける、ソース配線Sの幅、及び、コンタクトホールCHの幅が1F、ソース配線Sの端からコンタクトホールCHの外縁までの距離が0.75Fであるときに、画素ピッチPは最小となる。変形形態1の画素ピッチPの最小値は、3.5Fである。なお、第一方向Xにおけるゲート突き出し部G1の幅と、第一方向Xにおけるドレインコンタクト領域14dの幅を同じにすることで、ソース配線Sの端からコンタクトホールCHの外縁までの距離を0.75Fよりも狭くすることが容易になり、画素ピッチPの最小値は3.5Fより更に小さくすることができる。 In the first modification, the width of the gate protrusion G1 in the first direction X is the same as the width of the drain contact region 14d in the first direction X. When the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 7, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and the contact from the end of the source wiring S When the distance to the outer edge of the hole CH is 0.75F, the pixel pitch P is minimum. The minimum value of the pixel pitch P in Modification 1 is 3.5F. By making the width of the gate protrusion G1 in the first direction X and the width of the drain contact region 14d in the first direction X the same, the distance from the end of the source line S to the outer edge of the contact hole CH is set to 0. It becomes easy to make it narrower than 75F, and the minimum value of the pixel pitch P can be made smaller than 3.5F.
一例として、最小加工寸法Fを2.5μmとすると、変形形態1は、実施形態1と同様に、最小画素ピッチは8.75μmとなり、画素密度を968ppiとすることができる。更に、最小加工寸法Fを、加工限界に近い2.0μmとすると、変形形態1では、最小画素ピッチは7.0μmとなり、画素密度を1210ppiとすることができる。 As an example, when the minimum processing dimension F is 2.5 μm, in the first modification, the minimum pixel pitch is 8.75 μm and the pixel density can be 968 ppi, as in the first embodiment. Furthermore, if the minimum processing dimension F is 2.0 μm close to the processing limit, in the first modification, the minimum pixel pitch is 7.0 μm, and the pixel density can be 1210 ppi.
コンタクトホールCHの底面全体は、酸化物半導体層14上に位置することが好ましい。第二方向Yにおいて、コンタクトホールCHの底面の幅は、酸化物半導体層14の幅よりも狭くなるように設定される。また、変形形態1では、第一方向Xにおいても、コンタクトホールCHの底面の幅は、酸化物半導体層14の幅よりも狭くなるように設定される。 The entire bottom surface of the contact hole CH is preferably located on the oxide semiconductor layer 14. In the second direction Y, the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14. In the first modification, the width of the bottom surface of the contact hole CH is set to be narrower than the width of the oxide semiconductor layer 14 also in the first direction X.
(実施形態3)
図9及び図10を参照して、実施形態3に係る半導体装置3001を説明する。図9は、実施形態3に係る半導体装置の平面模式図である。図10は、図9のF-F’線に沿った断面模式図である。半導体装置3001は、TFT401を備える。
(Embodiment 3)
A semiconductor device 3001 according to the third embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a schematic plan view of the semiconductor device according to the third embodiment. FIG. 10 is a schematic cross-sectional view taken along the line FF ′ of FIG. The semiconductor device 3001 includes a TFT 401.
実施形態3では、ゲート突き出し部G1を有さず、ゲート配線Gの一部が第一導電部12となる。また、実施形態3では、図9に示したように、基板11の法線方向から見たとき、複数のソース配線Sのそれぞれは、ソース配線Sから第一方向Xに延出したソース突き出し部S1を有する。実施形態3では、ソース突き出し部S1の少なくとも一部が第二導電部15である。基板11の法線方向から見たとき、ゲート配線Gの少なくとも一部は、ドレインコンタクト領域14dと重なり、ソース突き出し部S1の少なくとも一部は、ソースコンタクト領域14sと接する。 In the third embodiment, the gate conductive part G does not have the gate protruding part G 1 and a part of the gate wiring G becomes the first conductive part 12. In the third embodiment, as shown in FIG. 9, each of the plurality of source lines S extends from the source line S in the first direction X when viewed from the normal direction of the substrate 11. S1 is included. In the third embodiment, at least a part of the source protruding portion S1 is the second conductive portion 15. When viewed from the normal direction of the substrate 11, at least a part of the gate wiring G overlaps with the drain contact region 14d, and at least a part of the source protrusion S1 is in contact with the source contact region 14s.
図9及び図10に示したように、ソースコンタクト領域14sは、ソース配線S及びソース突き出し部S1と重なるように形成されてもよい。実施形態3は、ゲート突き出し部G1を有さないため、コンタクトホールCHは、ゲート配線G上に形成される。そのため、画素開口率を向上させることができる。ソースコンタクト領域14s、チャネル領域14c、及び、ドレインコンタクト領域14dは、第一方向Xに並べて配置されてもよい。 As shown in FIGS. 9 and 10, the source contact region 14s may be formed so as to overlap the source line S and the source protrusion S1. Since the third embodiment does not have the gate protruding portion G1, the contact hole CH is formed on the gate wiring G. Therefore, the pixel aperture ratio can be improved. The source contact region 14s, the channel region 14c, and the drain contact region 14d may be arranged side by side in the first direction X.
第一方向Xにおけるソース突き出し部S1の幅は、第一方向Xにおけるソース配線Sの幅よりも狭くてもよく、上記ソース配線の幅の1/2以下であってもよい。この場合、第二方向Yにおけるソース突き出し部S1の幅は、第二方向Yにおけるゲート配線Gの幅よりも広く、ゲート配線Gを覆うように形成されてもよい。これにより、TFT401のチャネル領域14c幅のバラツキを抑えつつ、チャネル長を広げることができる。 The width of the source protrusion S1 in the first direction X may be narrower than the width of the source wiring S in the first direction X, or may be 1/2 or less of the width of the source wiring. In this case, the width of the source protrusion S1 in the second direction Y may be wider than the width of the gate line G in the second direction Y, and may be formed so as to cover the gate line G. Thus, the channel length can be increased while suppressing variations in the width of the channel region 14c of the TFT 401.
図10に示したように、TFT401は、実施形態1と同様に、透明電極20が酸化物半導体層14のドレインコンタクト領域14dと接するため、微細な画素を形成することが可能になる。ソース配線Sの最小加工寸法をFと定義すると、図9に示したように、第一方向Xにおける、ソース配線Sの幅、及び、コンタクトホールCHの幅が1F、ソース突き出し部S1の幅が0.5F、ソース突き出し部S1の端からコンタクトホールCHの外縁までの距離(チャネル領域14cの幅)が0.75Fであるときに、画素ピッチPは最小となる。実施形態3の画素ピッチPの最小値は4Fである。 As shown in FIG. 10, the TFT 401 can form a fine pixel because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment. When the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 9, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and the width of the source protrusion S1 is When the distance from the end of the source protrusion S1 to the outer edge of the contact hole CH (the width of the channel region 14c) is 0.75F, the pixel pitch P is minimum. The minimum value of the pixel pitch P in the third embodiment is 4F.
一例として、最小加工寸法Fを2.5μmとすると、実施形態3では、最小画素ピッチは10μmとなり、画素密度を847ppiとすることができる。更に、最小加工寸法Fを、加工限界に近い2.0μmとすると、実施形態3では、最小画素ピッチは8.0μmとなり、画素密度を1059ppiとすることができる。 As an example, if the minimum processing dimension F is 2.5 μm, in the third embodiment, the minimum pixel pitch is 10 μm, and the pixel density can be 847 ppi. Furthermore, if the minimum processing dimension F is 2.0 μm which is close to the processing limit, in the third embodiment, the minimum pixel pitch is 8.0 μm and the pixel density can be 1059 ppi.
また、TFT401は、実施形態1と同様に、基板11の法線方向から見たとき、ドレインコンタクト領域14dの外縁が、第一導電部12の外縁よりも内側に配置される。また、図10に示したように、第一導電部12は、コンタクトホールCH全体と重なるように形成される。これにより、半導体装置3001を、液晶表示装置等の表示装置に適用した場合に、光漏れの発生が抑制されるため、コントラストの良好な表示装置を得ることができる。 Similarly to the first embodiment, the TFT 401 is arranged such that the outer edge of the drain contact region 14 d is located inside the outer edge of the first conductive portion 12 when viewed from the normal direction of the substrate 11. Further, as shown in FIG. 10, the first conductive portion 12 is formed so as to overlap the entire contact hole CH. Accordingly, when the semiconductor device 3001 is applied to a display device such as a liquid crystal display device, light leakage is suppressed, so that a display device with favorable contrast can be obtained.
(実施形態4)
図11及び図12を参照して、実施形態4に係る半導体装置4001を説明する。図11は、実施形態4に係る半導体装置の平面模式図である。図12は、図11のH-H’線に沿った断面模式図である。半導体装置4001は、TFT501を備える。実施形態4では、ゲート突き出し部G1を有さず、ゲート配線Gの一部が第一導電部12となる。また、実施形態4では、ソース配線Sの少なくとも一部が第二導電部15である。
(Embodiment 4)
A semiconductor device 4001 according to the fourth embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is a schematic plan view of a semiconductor device according to the fourth embodiment. 12 is a schematic cross-sectional view taken along the line HH ′ of FIG. The semiconductor device 4001 includes a TFT 501. In the fourth embodiment, the gate conductive portion 12 does not have the gate protruding portion G 1 and a part of the gate wiring G becomes the first conductive portion 12. In the fourth embodiment, at least a part of the source wiring S is the second conductive portion 15.
基板11の法線方向から見たとき、ゲート配線Gの少なくとも一部は、ドレインコンタクト領域14dと重なり、ソース配線Sの少なくとも一部は、ソースコンタクト領域14sと接する。実施形態4では、ゲート突き出し部G1を有さないため、コンタクトホールCHは、ゲート配線G上に形成される。これらにより、実施形態4では、画素開口率を更に向上させることができる。 When viewed from the normal direction of the substrate 11, at least a part of the gate wiring G overlaps with the drain contact region 14d, and at least a part of the source wiring S is in contact with the source contact region 14s. In the fourth embodiment, since the gate protruding portion G1 is not provided, the contact hole CH is formed on the gate wiring G. Accordingly, in the fourth embodiment, the pixel aperture ratio can be further improved.
図12に示したように、TFT501は、実施形態1と同様に、透明電極20が酸化物半導体層14のドレインコンタクト領域14dと接するため、微細な画素を形成することが可能になる。更に、実施形態4は、ソース突き出し部S1を有さず、図11及び図12に示したように、ソースコンタクト領域14sの全体が、ソース配線の幅方向に収まるように形成されるため、画素をより高精細化することができる。ソース配線Sの最小加工寸法をFと定義すると、図11に示したように、第一方向Xにおける、ソース配線Sの幅、及び、コンタクトホールCHの幅を1F、ソース配線Sの端からコンタクトホールCHの外縁までの距離を0.75Fとすることができる。実施形態4の画素ピッチPの最小値は、3.5Fである。 As shown in FIG. 12, the TFT 501 can form fine pixels because the transparent electrode 20 is in contact with the drain contact region 14d of the oxide semiconductor layer 14 as in the first embodiment. Furthermore, the fourth embodiment does not have the source protrusion S1, and as shown in FIGS. 11 and 12, the entire source contact region 14s is formed to fit in the width direction of the source wiring. Can be further refined. If the minimum processing dimension of the source wiring S is defined as F, as shown in FIG. 11, the width of the source wiring S and the width of the contact hole CH in the first direction X is 1F, and contact is made from the end of the source wiring S. The distance to the outer edge of the hole CH can be 0.75F. The minimum value of the pixel pitch P in the fourth embodiment is 3.5F.
一例として、最小加工寸法Fを2.5μmとすると、実施形態4は、実施形態1と同様に、最小画素ピッチは8.75μmとなり、画素密度を968ppiとすることができる。更に、最小加工寸法Fを、加工限界に近い2.0μmとすると、実施形態4では、最小画素ピッチは7.0μmとなり、画素密度を1210ppiとすることができる。 As an example, when the minimum processing dimension F is 2.5 μm, in the fourth embodiment, as in the first embodiment, the minimum pixel pitch is 8.75 μm, and the pixel density can be 968 ppi. Furthermore, when the minimum processing dimension F is 2.0 μm, which is close to the processing limit, in the fourth embodiment, the minimum pixel pitch is 7.0 μm, and the pixel density can be 1210 ppi.
<その他の形態> 
上記実施形態1~4及び変形形態1では、チャネルエッチ構造を有するTFTを例示したが、それぞれの実施形態におけるTFTは、チャネルエッチ構造を有してもよいし、チャネル領域を覆うエッチストップを有するエッチストップ構造を有してもよい。「チャネルエッチ型のTFT」は、例えば、図2に示すように、チャネル領域14c上にエッチストップ層が形成されておらず、第二導電部15のチャネル側の端部下面は、酸化物半導体層14の上面と接するように配置されている。チャネルエッチ型のTFTの第二導電部15は、例えば酸化物半導体層14上にソース用の導電膜を形成し、この導電膜のパターニングを行うことによって形成される。
<Other forms>
In the first to fourth embodiments and the first modification, the TFT having the channel etch structure is illustrated, but the TFT in each embodiment may have the channel etch structure or have an etch stop that covers the channel region. It may have an etch stop structure. For example, as shown in FIG. 2, the “channel etch type TFT” has no etch stop layer formed on the channel region 14c, and the lower surface of the end of the second conductive portion 15 on the channel side is an oxide semiconductor. The upper surface of the layer 14 is disposed so as to be in contact therewith. The second conductive portion 15 of the channel etch type TFT is formed, for example, by forming a conductive film for a source on the oxide semiconductor layer 14 and patterning the conductive film.
図13は、エッチストップ型のTFTを備えた半導体装置を例示する断面模式図である。エッチストップ型のTFTを備えた半導体装置1002は、エッチストップ層23を有する点以外は、実施形態1に係る半導体装置1001と同様である。図13は、図1のA-A’線に沿った断面模式図に相当する。エッチストップ型のTFTは、図13に示すように、酸化物半導体層14のチャネル領域14cを覆うエッチストップ層23を有する。 FIG. 13 is a schematic cross-sectional view illustrating a semiconductor device including an etch stop type TFT. The semiconductor device 1002 provided with the etch stop type TFT is the same as the semiconductor device 1001 according to the first embodiment except that the etch stop layer 23 is provided. FIG. 13 corresponds to a schematic cross-sectional view taken along the line A-A ′ of FIG. 1. The etch stop type TFT has an etch stop layer 23 covering the channel region 14c of the oxide semiconductor layer 14 as shown in FIG.
半導体装置1002の製造方法としては、例えば、上記工程(c)と上記工程(d)との間に、酸化物半導体層14を覆うようにエッチストップ層(絶縁保護層)23を形成する工程を含む。エッチストップ層23には、酸化物半導体層14のソースコンタクト領域14sとなる部分を露出する開口部を設ける。次いで、エッチストップ層23上及び上記開口部を覆うようにソース配線用金属膜を形成し、パターニングを行うことによって、ソース配線S及び/又はソース突き出し部S1を形成する。上記工程(e)では、第二絶縁層16及びエッチストップ層23を同時にエッチングすることによって、コンタクトホールCHを形成してもよい。この場合、図13に示すように、コンタクトホールCHは、第二絶縁層16の開口部とエッチストップ層23の開口部とから構成される。その後、半導体装置1001と同様の方法で、透明電極20、誘電体層21及び共通電極22を形成し、半導体装置1002を得る。 As a manufacturing method of the semiconductor device 1002, for example, a step of forming an etch stop layer (insulating protective layer) 23 so as to cover the oxide semiconductor layer 14 between the step (c) and the step (d). Including. The etch stop layer 23 is provided with an opening that exposes a portion to be the source contact region 14 s of the oxide semiconductor layer 14. Next, a metal film for source wiring is formed so as to cover the etch stop layer 23 and the opening, and patterning is performed to form the source wiring S and / or the source protrusion S1. In the step (e), the contact hole CH may be formed by simultaneously etching the second insulating layer 16 and the etch stop layer 23. In this case, as shown in FIG. 13, the contact hole CH is composed of an opening of the second insulating layer 16 and an opening of the etch stop layer 23. Thereafter, the transparent electrode 20, the dielectric layer 21, and the common electrode 22 are formed by a method similar to that of the semiconductor device 1001 to obtain the semiconductor device 1002.
(比較形態1)
図14及び図15を参照して、比較形態1に係る半導体装置5001を説明する。図14は、比較形態1に係る半導体装置の平面模式図である。図15は、図14のI-I’線に沿った断面模式図である。半導体装置5001は、TFT601を備える。
(Comparative form 1)
With reference to FIGS. 14 and 15, a semiconductor device 5001 according to Comparative Embodiment 1 will be described. FIG. 14 is a schematic plan view of the semiconductor device according to the first comparative embodiment. FIG. 15 is a schematic cross-sectional view taken along the line II ′ of FIG. The semiconductor device 5001 includes a TFT 601.
図14及び図15に示したように、TFT601は、基板11上に形成された第一導電部612(ゲート引き出し部G1)と、第一絶縁層13を介して第一導電部612と少なくとも一部が重なるように配置された酸化物半導体層614を有する。酸化物半導体層614は、チャネル領域614cと、チャネル領域614cの両側にそれぞれ配置されたソースコンタクト領域614s及びドレインコンタクト領域614dとを含む。比較形態1は、図14に示したように、基板11の法線方向から見たとき、ドレインコンタクト領域614dの外縁の一部は、第一導電部614の外縁よりも外側に配置されている。また、図15に示したように、コンタクトホールCHの一部のみが第一導電部612と重なるように配位されている。 As shown in FIGS. 14 and 15, the TFT 601 has at least one first conductive portion 612 (gate lead portion G1) formed on the substrate 11 and the first conductive portion 612 via the first insulating layer 13. An oxide semiconductor layer 614 is provided so that the portions overlap each other. The oxide semiconductor layer 614 includes a channel region 614c and a source contact region 614s and a drain contact region 614d disposed on both sides of the channel region 614c. In the first comparative example, as shown in FIG. 14, when viewed from the normal direction of the substrate 11, a part of the outer edge of the drain contact region 614 d is disposed outside the outer edge of the first conductive portion 614. . Further, as shown in FIG. 15, the contact holes CH are aligned so that only a part of the contact holes CH overlaps the first conductive portion 612.
そのため、比較形態1に係る半導体装置5001を、液晶表示装置等の表示装置に適用すると、バックライト等の光源からの光が、コンタクトホールCHから漏れる、光漏れの発生が発生する。そのため、液晶表示装置のコントラストが低下する。 Therefore, when the semiconductor device 5001 according to the comparative example 1 is applied to a display device such as a liquid crystal display device, light from a light source such as a backlight leaks from the contact hole CH and light leakage occurs. Therefore, the contrast of the liquid crystal display device is lowered.
上記実施形態1~4では、FFSモードの液晶表示装置を例に挙げて説明したが、本発明の半導体装置は、IPSモードの液晶表示装置にも適用することができる。更に、本発明の半導体装置は、透明電極20上に、誘電体層21及び共通電極22を有さなくてもよい。この場合、透明電極20上には、配向膜(不図示)が形成されていてもよく、例えば、共通電極を備えた対向基板と液晶層を介して張り合わせることで、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード等の縦電界モードの液晶表示装置に用いることができる。 In the first to fourth embodiments, the FFS mode liquid crystal display device has been described as an example. However, the semiconductor device of the present invention can also be applied to an IPS mode liquid crystal display device. Furthermore, the semiconductor device of the present invention may not have the dielectric layer 21 and the common electrode 22 on the transparent electrode 20. In this case, an alignment film (not shown) may be formed on the transparent electrode 20, and for example, a TN (Twisted Nematic) mode is obtained by bonding the counter substrate with a common electrode through a liquid crystal layer. The liquid crystal display device can be used in a vertical electric field mode liquid crystal display device such as a VA (Vertical Alignment) mode.
本発明の半導体装置は、酸化物半導体TFTを有する種々の回路基板に適用することができる。上記回路基板は、イメージセンサー装置等の撮像装置;画像入力装置;指紋読み取り装置;半導体メモリ等の種々の電子装置に適用することができる。また、本発明の半導体装置は、例えばアクティブマトリクス基板(TFT基板)に適用することができる。上記TFT基板は、液晶表示装置、電気泳動表示装置、MEMS(Micro Electro Mechanical System)表示装置、有機EL(Electroluminescence)表示装置等の表示装置に用いることができる。 The semiconductor device of the present invention can be applied to various circuit boards having oxide semiconductor TFTs. The circuit board can be applied to various electronic devices such as an imaging device such as an image sensor device; an image input device; a fingerprint reading device; a semiconductor memory. The semiconductor device of the present invention can be applied to, for example, an active matrix substrate (TFT substrate). The TFT substrate can be used in display devices such as liquid crystal display devices, electrophoretic display devices, MEMS (Micro Electro Mechanical System) display devices, and organic EL (Electroluminescence) display devices.
<液晶表示装置>
半導体装置1001は、液晶表示装置に好適に適用される。本発明の更に他の一態様は、本発明の半導体装置と、液晶層と、対向基板とをこの順に有する液晶パネルと、上記液晶パネルの背面に配置されたバックライトとを備える液晶表示装置である。半導体装置1001を液晶表示装置に適用する場合、半導体装置1001は、薄層トランジスタ基板(TFT基板)である。コンタクトホール周辺は、液晶分子の配向が乱れやすいため、コンタクトホールで光漏れが発生すると、表示不良として認識されやすい。そのため、半導体装置1001は、特に液晶表示装置に適用することで、効果的に光漏れの発生を抑制、コントラストに優れた液晶表示装置を得ることができる。
<Liquid crystal display device>
The semiconductor device 1001 is preferably applied to a liquid crystal display device. Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there. When the semiconductor device 1001 is applied to a liquid crystal display device, the semiconductor device 1001 is a thin layer transistor substrate (TFT substrate). Since the alignment of liquid crystal molecules is likely to be disturbed around the contact hole, if a light leak occurs in the contact hole, it is easily recognized as a display defect. Therefore, when the semiconductor device 1001 is applied particularly to a liquid crystal display device, the occurrence of light leakage can be effectively suppressed and a liquid crystal display device excellent in contrast can be obtained.
対向基板は、例えば、基板上に遮光膜を形成し、所望の形状にパターニングを行い、ブラックマトリクスを形成する。上記対向基板に用いる基板としては、上述の基板11と同様のものが挙げられる。上記遮光膜の具体例としては、例えば、厚さ200nmのチタン(Ti)膜が挙げられる。次いで、赤色(R)、緑色(G)、及び、青色(B)を含むカラーフィルタを、それぞれ所望の位置に作成し、対向基板を形成する。 For the counter substrate, for example, a light shielding film is formed on the substrate and patterned into a desired shape to form a black matrix. Examples of the substrate used for the counter substrate include the same substrates as those described above. Specific examples of the light shielding film include a titanium (Ti) film having a thickness of 200 nm. Next, color filters including red (R), green (G), and blue (B) are respectively formed at desired positions to form a counter substrate.
次いで、半導体装置(TFT基板)1001上にフォトスペーサを配置した後、TFT基板1001と対向基板とを貼り合わせる。続いて、これらの基板の間に液晶を注入し、液晶層を得る。この後、必要に応じて、所望のサイズに基板を分断し、液晶パネルを得る。上記液晶パネルの背面に、バックライト配置することで液晶表示装置を得る。上記液晶パネルの背面は、上記TFT基板側であっても、対向基板側であってもよい。 Next, after a photo spacer is arranged on the semiconductor device (TFT substrate) 1001, the TFT substrate 1001 and the counter substrate are bonded together. Subsequently, liquid crystal is injected between these substrates to obtain a liquid crystal layer. Thereafter, if necessary, the substrate is divided into a desired size to obtain a liquid crystal panel. A liquid crystal display device is obtained by arranging a backlight on the back surface of the liquid crystal panel. The back surface of the liquid crystal panel may be on the TFT substrate side or on the counter substrate side.
[付記]
本発明の一態様は、基板と、上記基板に支持された薄膜トランジスタとを備える半導体装置であって、上記薄膜トランジスタは、上記基板上に形成された第一導電部と、上記第一導電部を覆う第一絶縁層と、上記第一絶縁層上に、上記第一絶縁層を介して上記第一導電部と少なくとも一部が重なるように配置された酸化物半導体層であって、チャネル領域と、上記チャネル領域の両側にそれぞれ配置されたソースコンタクト領域及びドレインコンタクト領域とを含む酸化物半導体層と、上記酸化物半導体層の上記ソースコンタクト領域と接する第二導電部と、上記酸化物半導体層を覆うように配置された第二絶縁層であって、上記酸化物半導体層の上記ドレインコンタクト領域を露出するコンタクトホールが設けられた第二絶縁層と、上記第二絶縁層上及び上記コンタクトホールを覆うように形成され、上記コンタクトホールにおいて上記ドレインコンタクト領域と接する透明電極とを備え、上記基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁は、上記第一導電部の外縁の一部と重なるか、又は、上記第一導電部の外縁よりも内側に配置される半導体装置である。
[Appendix]
One embodiment of the present invention is a semiconductor device including a substrate and a thin film transistor supported by the substrate, and the thin film transistor covers a first conductive portion formed on the substrate and the first conductive portion. A first insulating layer; and an oxide semiconductor layer disposed on the first insulating layer so as to at least partially overlap the first conductive portion via the first insulating layer, and a channel region; An oxide semiconductor layer including a source contact region and a drain contact region respectively disposed on both sides of the channel region; a second conductive portion in contact with the source contact region of the oxide semiconductor layer; and the oxide semiconductor layer. A second insulating layer disposed so as to cover, the second insulating layer provided with a contact hole exposing the drain contact region of the oxide semiconductor layer; A transparent electrode that is formed on the insulating layer and covers the contact hole and is in contact with the drain contact region in the contact hole, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region is It is a semiconductor device which overlaps with a part of the outer edge of the first conductive part or is arranged inside the outer edge of the first conductive part.
更に、上記基板上に第一方向及び第二方向にマトリクス状に配列された複数の画素と、上記第一方向に延びる複数のゲート配線と、上記第二方向に延びる複数のソース配線とを備え、上記薄膜トランジスタ及び上記透明電極は、上記複数の画素のそれぞれに配置され、上記基板の法線方向から見たとき、上記複数のゲート配線のそれぞれは、上記ゲート配線から上記第二方向に延出したゲート突き出し部を有し、上記ゲート突き出し部の少なくとも一部は、上記第一導電部であり、上記基板の法線方向から見たとき、上記ゲート突き出し部の少なくとも一部は、上記ドレインコンタクト領域と重なってもよい。 Furthermore, a plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate, a plurality of gate wirings extending in the first direction, and a plurality of source wirings extending in the second direction are provided. The thin film transistor and the transparent electrode are disposed in each of the plurality of pixels, and when viewed from the normal direction of the substrate, each of the plurality of gate wirings extends from the gate wiring in the second direction. And at least a portion of the gate protrusion is the first conductive portion, and when viewed from the normal direction of the substrate, at least a portion of the gate protrusion is the drain contact. It may overlap with the area.
上記第一方向における上記ゲート突き出し部の幅は、上記第一方向における上記ドレインコンタクト領域の幅と同じであってもよい。 The width of the gate protrusion in the first direction may be the same as the width of the drain contact region in the first direction.
上記ソースコンタクト領域、上記チャネル領域、及び、上記ドレインコンタクト領域は、上記第二方向に並べて配置されてもよい。 The source contact region, the channel region, and the drain contact region may be arranged side by side in the second direction.
上記ソースコンタクト領域及び上記チャネル領域は、上記第一方向に並べて配置され、上記チャネル領域及び上記ドレインコンタクト領域は、上記第二方向に並べて配置されてもよい。 The source contact region and the channel region may be arranged in the first direction, and the channel region and the drain contact region may be arranged in the second direction.
更に、上記基板上に第一方向及び第二方向にマトリクス状に配列された複数の画素と、上記第一方向に延びる複数のゲート配線と、上記第二方向に延びる複数のソース配線とを備え、上記薄膜トランジスタ及び上記透明電極は、上記複数の画素のそれぞれに配置され、上記ゲート配線の一部は、上記第一導電部であり、上記基板の法線方向から見たとき、上記ゲート配線の一部は、上記ドレインコンタクト領域と重なってもよい。 Furthermore, a plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate, a plurality of gate wirings extending in the first direction, and a plurality of source wirings extending in the second direction are provided. The thin film transistor and the transparent electrode are disposed in each of the plurality of pixels, and a part of the gate wiring is the first conductive portion, and when viewed from the normal direction of the substrate, the gate wiring A portion may overlap the drain contact region.
上記ソースコンタクト領域、上記チャネル領域、及び、上記ドレインコンタクト領域は、上記第一方向に並べて配置されてもよい。 The source contact region, the channel region, and the drain contact region may be arranged side by side in the first direction.
上記基板の法線方向から見たとき、上記複数のソース配線のそれぞれは、上記ソース配線から上記第一方向に延出したソース突き出し部を有し、上記ソース突き出し部の少なくとも一部は、上記第二導電部であり、上記基板の法線方向から見たとき、上記ソース突き出し部の少なくとも一部は、上記ソースコンタクト領域と接してもよい。 When viewed from the normal direction of the substrate, each of the plurality of source wirings has a source protrusion extending from the source wiring in the first direction, and at least a part of the source protrusion is When the second conductive portion is viewed from the normal direction of the substrate, at least a part of the source protruding portion may be in contact with the source contact region.
上記第一方向における上記ソース突き出し部の幅は、上記第一方向におけるソース配線の幅よりも狭くてもよい。また、上記第一方向における上記ソース突き出し部の幅は、上記第一方向におけるソース配線の幅の1/2以下であってもよい。 The width of the source protrusion in the first direction may be narrower than the width of the source wiring in the first direction. The width of the source protrusion in the first direction may be less than or equal to ½ of the width of the source wiring in the first direction.
上記ソース配線の一部は、上記第二導電部であり、上記基板の法線方向から見たとき、上記ソース配線の一部は、上記ソースコンタクト領域と接してもよい。 A part of the source wiring is the second conductive portion, and when viewed from the normal direction of the substrate, a part of the source wiring may be in contact with the source contact region.
上記酸化物半導体層は、インジウム、ガリウム、亜鉛、又は、カドミウムの少なくとも一つを含んでもよい。上記酸化物半導体層は、インジウム、ガリウム及び亜鉛の酸化物を含むことがより好ましい。 The oxide semiconductor layer may include at least one of indium, gallium, zinc, or cadmium. More preferably, the oxide semiconductor layer includes an oxide of indium, gallium, and zinc.
本発明の他の一態様は、薄膜トランジスタを備える半導体装置の製造方法であって、基板上に第一導電部を形成する工程と、上記第一導電部を覆う第一絶縁層を形成する工程と、上記第一絶縁層上に酸化物半導体膜を形成し、上記酸化物半導体膜をパターニングすることにより、上記第一絶縁層を介して上記第一導電部と少なくとも一部が重なる酸化物半導体層を得る工程と、上記酸化物半導体層のソースコンタクト領域と接する第二導電部を形成する工程と、上記酸化物半導体層を覆う第二絶縁層を形成し、上記第二絶縁層に、上記酸化物半導体層のドレインコンタクト領域を露出するコンタクトホールを形成する工程と、上記第二絶縁層上及び上記コンタクトホールを覆うように、上記コンタクトホールにおいて上記酸化物半導体層の上記ドレインコンタクト領域と接する透明電極を形成する工程とを含み、上記基板の法線方向から見たとき、上記ドレインコンタクト領域の外縁は、上記第一導電部の外縁の一部と重なるか、又は、上記第一導電部の外縁よりも内側に配置される半導体装置の製造方法である。 Another aspect of the present invention is a method for manufacturing a semiconductor device including a thin film transistor, the step of forming a first conductive portion on a substrate, and the step of forming a first insulating layer covering the first conductive portion. Forming an oxide semiconductor film on the first insulating layer, and patterning the oxide semiconductor film so that the oxide semiconductor layer at least partially overlaps the first conductive portion with the first insulating layer interposed therebetween Forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer, forming a second insulating layer covering the oxide semiconductor layer, and forming the oxidation on the second insulating layer Forming a contact hole exposing the drain contact region of the physical semiconductor layer; and over the oxide semiconductor layer in the contact hole so as to cover the second insulating layer and the contact hole. Forming a transparent electrode in contact with the drain contact region, and when viewed from the normal direction of the substrate, the outer edge of the drain contact region overlaps a part of the outer edge of the first conductive portion, or It is a manufacturing method of the semiconductor device arrange | positioned inside the outer edge of said 1st electroconductive part.
本発明の更に他の一態様は、本発明の半導体装置と、液晶層と、対向基板とをこの順に有する液晶パネルと、上記液晶パネルの背面に配置されたバックライトとを備える液晶表示装置である。 Still another embodiment of the present invention is a liquid crystal display device including the semiconductor device of the present invention, a liquid crystal panel having a liquid crystal layer and a counter substrate in this order, and a backlight disposed on the back surface of the liquid crystal panel. is there.
11:基板
12、612:第一導電部
13:第一絶縁層
14、614:酸化物半導体層
14c、614c:チャネル領域
14s、614s:ソースコンタクト領域
14d、614d:ドレインコンタクト領域
15:第二導電部
16:第二絶縁層
20:透明電極(画素電極)
21:誘電体層
22:共通電極
22a:開口部
23:エッチストップ層
101、201、301、401、501、601:薄膜トランジスタ(TFT)
1001、1002、2001、2002、3001、4001、5001:半導体装置
CH:コンタクトホール
G:ゲート配線
G1:ゲート突き出し部
S:ソース配線
S1:ソース突き出し部
P:画素ピッチ
Pix:画素
11: Substrate 12, 612: First conductive portion 13: First insulating layer 14, 614: Oxide semiconductor layer 14c, 614c: Channel region 14s, 614s: Source contact region 14d, 614d: Drain contact region 15: Second conductive Part 16: Second insulating layer 20: Transparent electrode (pixel electrode)
21: Dielectric layer 22: Common electrode 22a: Opening 23: Etch stop layer 101, 201, 301, 401, 501, 601: Thin film transistor (TFT)
1001, 1002, 2001, 2002, 3001, 4001, 5001: Semiconductor device CH: Contact hole G: Gate wiring G1: Gate protruding portion S: Source wiring S1: Source protruding portion P: Pixel pitch Pix: Pixel

Claims (15)

  1. 基板と、前記基板に支持された薄膜トランジスタとを備える半導体装置であって、
    前記薄膜トランジスタは、
    前記基板上に形成された第一導電部と、
    前記第一導電部を覆う第一絶縁層と、
    前記第一絶縁層上に、前記第一絶縁層を介して前記第一導電部と少なくとも一部が重なるように配置された酸化物半導体層であって、チャネル領域と、前記チャネル領域の両側にそれぞれ配置されたソースコンタクト領域及びドレインコンタクト領域とを含む酸化物半導体層と、
    前記酸化物半導体層の前記ソースコンタクト領域と接する第二導電部と、
    前記酸化物半導体層を覆うように配置された第二絶縁層であって、前記酸化物半導体層の前記ドレインコンタクト領域を露出するコンタクトホールが設けられた第二絶縁層と、
    前記第二絶縁層上及び前記コンタクトホールを覆うように形成され、前記コンタクトホールにおいて前記ドレインコンタクト領域と接する透明電極とを備え、
    前記基板の法線方向から見たとき、前記ドレインコンタクト領域の外縁は、前記第一導電部の外縁の一部と重なるか、又は、前記第一導電部の外縁よりも内側に配置されることを特徴とする半導体装置。
    A semiconductor device comprising a substrate and a thin film transistor supported by the substrate,
    The thin film transistor
    A first conductive portion formed on the substrate;
    A first insulating layer covering the first conductive part;
    An oxide semiconductor layer disposed on the first insulating layer so as to at least partly overlap the first conductive portion via the first insulating layer, the channel region, on both sides of the channel region An oxide semiconductor layer including a source contact region and a drain contact region, respectively, disposed;
    A second conductive portion in contact with the source contact region of the oxide semiconductor layer;
    A second insulating layer disposed so as to cover the oxide semiconductor layer, wherein the second insulating layer is provided with a contact hole exposing the drain contact region of the oxide semiconductor layer;
    A transparent electrode formed on the second insulating layer and covering the contact hole, and in contact with the drain contact region in the contact hole;
    When viewed from the normal direction of the substrate, the outer edge of the drain contact region overlaps with a part of the outer edge of the first conductive part or is disposed inside the outer edge of the first conductive part. A semiconductor device characterized by the above.
  2. 更に、前記基板上に第一方向及び第二方向にマトリクス状に配列された複数の画素と、
    前記第一方向に延びる複数のゲート配線と、
    前記第二方向に延びる複数のソース配線とを備え、
    前記薄膜トランジスタ及び前記透明電極は、前記複数の画素のそれぞれに配置され、
    前記基板の法線方向から見たとき、前記複数のゲート配線のそれぞれは、前記ゲート配線から前記第二方向に延出したゲート突き出し部を有し、
    前記ゲート突き出し部の少なくとも一部は、前記第一導電部であり、
    前記基板の法線方向から見たとき、前記ゲート突き出し部の少なくとも一部は、前記ドレインコンタクト領域と重なることを特徴とする請求項1に記載の半導体装置。
    A plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate;
    A plurality of gate lines extending in the first direction;
    A plurality of source lines extending in the second direction,
    The thin film transistor and the transparent electrode are disposed in each of the plurality of pixels,
    When viewed from the normal direction of the substrate, each of the plurality of gate wirings has a gate protrusion extending in the second direction from the gate wiring,
    At least a part of the gate protruding portion is the first conductive portion,
    2. The semiconductor device according to claim 1, wherein at least a part of the gate protrusion overlaps the drain contact region when viewed from a normal direction of the substrate.
  3. 前記第一方向における前記ゲート突き出し部の幅は、前記第一方向における前記ドレインコンタクト領域の幅と同じであることを特徴とする請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the width of the gate protrusion in the first direction is the same as the width of the drain contact region in the first direction.
  4. 前記ソースコンタクト領域、前記チャネル領域、及び、前記ドレインコンタクト領域は、前記第二方向に並べて配置されることを特徴とする請求項2又は3に記載の半導体装置。 4. The semiconductor device according to claim 2, wherein the source contact region, the channel region, and the drain contact region are arranged side by side in the second direction. 5.
  5. 前記ソースコンタクト領域及び前記チャネル領域は、前記第一方向に並べて配置され、
    前記チャネル領域及び前記ドレインコンタクト領域は、前記第二方向に並べて配置されることを特徴とする請求項2又は3に記載の半導体装置。
    The source contact region and the channel region are arranged side by side in the first direction,
    4. The semiconductor device according to claim 2, wherein the channel region and the drain contact region are arranged side by side in the second direction.
  6. 更に、前記基板上に第一方向及び第二方向にマトリクス状に配列された複数の画素と、
    前記第一方向に延びる複数のゲート配線と、
    前記第二方向に延びる複数のソース配線とを備え、
    前記薄膜トランジスタ及び前記透明電極は、前記複数の画素のそれぞれに配置され、
    前記ゲート配線の一部は、前記第一導電部であり、
    前記基板の法線方向から見たとき、前記ゲート配線の一部は、前記ドレインコンタクト領域と重なることを特徴とする請求項1に記載の半導体装置。
    A plurality of pixels arranged in a matrix in the first direction and the second direction on the substrate;
    A plurality of gate lines extending in the first direction;
    A plurality of source lines extending in the second direction,
    The thin film transistor and the transparent electrode are disposed in each of the plurality of pixels,
    A part of the gate wiring is the first conductive portion,
    2. The semiconductor device according to claim 1, wherein when viewed from a normal direction of the substrate, a part of the gate wiring overlaps with the drain contact region.
  7. 前記ソースコンタクト領域、前記チャネル領域、及び、前記ドレインコンタクト領域は、前記第一方向に並べて配置されることを特徴とする請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the source contact region, the channel region, and the drain contact region are arranged side by side in the first direction.
  8. 前記基板の法線方向から見たとき、前記複数のソース配線のそれぞれは、前記ソース配線から前記第一方向に延出したソース突き出し部を有し、
    前記ソース突き出し部の少なくとも一部は、上記第二導電部であり、
    前記基板の法線方向から見たとき、前記ソース突き出し部の少なくとも一部は、前記ソースコンタクト領域と接することを特徴とする請求項2~7のいずれかに記載の半導体装置。
    When viewed from the normal direction of the substrate, each of the plurality of source lines has a source protrusion extending from the source line in the first direction,
    At least a part of the source protruding portion is the second conductive portion,
    8. The semiconductor device according to claim 2, wherein when viewed from the normal direction of the substrate, at least a part of the source protruding portion is in contact with the source contact region.
  9. 前記第一方向における前記ソース突き出し部の幅は、前記第一方向におけるソース配線の幅よりも狭いことを特徴とする請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, wherein a width of the source protruding portion in the first direction is narrower than a width of the source wiring in the first direction.
  10. 前記第一方向における前記ソース突き出し部の幅は、前記第一方向におけるソース配線の幅の1/2以下であることを特徴とする請求項7又は8に記載の半導体装置。 9. The semiconductor device according to claim 7, wherein a width of the source protruding portion in the first direction is equal to or less than ½ of a width of a source wiring in the first direction.
  11. 前記ソース配線の一部は、前記第二導電部であり、
    前記基板の法線方向から見たとき、前記ソース配線の一部は、前記ソースコンタクト領域と接することを特徴とする請求項2~7のいずれかに記載の半導体装置。
    A part of the source wiring is the second conductive part,
    The semiconductor device according to claim 2, wherein a part of the source wiring is in contact with the source contact region when viewed from a normal direction of the substrate.
  12. 前記酸化物半導体層は、インジウム、ガリウム、亜鉛、又は、カドミウムの少なくとも一つを含むことを特徴とする請求項1~11のいずれかに記載の半導体装置。 12. The semiconductor device according to claim 1, wherein the oxide semiconductor layer contains at least one of indium, gallium, zinc, or cadmium.
  13. 前記酸化物半導体層は、インジウム、ガリウム及び亜鉛の酸化物を含むことを特徴とする請求項1~12のいずれかに記載の半導体装置。 13. The semiconductor device according to claim 1, wherein the oxide semiconductor layer contains an oxide of indium, gallium, and zinc.
  14. 薄膜トランジスタを備える半導体装置の製造方法であって、
    基板上に第一導電部を形成する工程と、
    前記第一導電部を覆う第一絶縁層を形成する工程と、
    前記第一絶縁層上に酸化物半導体膜を形成し、前記酸化物半導体膜をパターニングすることにより、前記第一絶縁層を介して前記第一導電部と少なくとも一部が重なる酸化物半導体層を得る工程と、
    前記酸化物半導体層のソースコンタクト領域と接する第二導電部を形成する工程と、
    前記酸化物半導体層を覆う第二絶縁層を形成し、前記第二絶縁層に、前記酸化物半導体層のドレインコンタクト領域を露出するコンタクトホールを形成する工程と、
    前記第二絶縁層上及び前記コンタクトホールを覆うように、前記コンタクトホールにおいて前記酸化物半導体層の前記ドレインコンタクト領域と接する透明電極を形成する工程とを含み、
    前記基板の法線方向から見たとき、前記ドレインコンタクト領域の外縁は、前記第一導電部の外縁の一部と重なるか、又は、前記第一導電部の外縁よりも内側に配置されることを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device comprising a thin film transistor,
    Forming a first conductive portion on the substrate;
    Forming a first insulating layer covering the first conductive portion;
    Forming an oxide semiconductor film on the first insulating layer, and patterning the oxide semiconductor film to form an oxide semiconductor layer at least partially overlapping the first conductive portion with the first insulating layer interposed therebetween; Obtaining a step;
    Forming a second conductive portion in contact with the source contact region of the oxide semiconductor layer;
    Forming a second insulating layer covering the oxide semiconductor layer, and forming a contact hole in the second insulating layer to expose a drain contact region of the oxide semiconductor layer;
    Forming a transparent electrode in contact with the drain contact region of the oxide semiconductor layer in the contact hole so as to cover the second insulating layer and the contact hole;
    When viewed from the normal direction of the substrate, the outer edge of the drain contact region overlaps with a part of the outer edge of the first conductive part or is disposed inside the outer edge of the first conductive part. A method of manufacturing a semiconductor device.
  15. 請求項1~13に記載の半導体装置と、液晶層と、対向基板とをこの順に有する液晶パネルと、
    前記液晶パネルの背面に配置されたバックライトとを備えることを特徴とする液晶表示装置。
    A liquid crystal panel having the semiconductor device according to any one of claims 1 to 13, a liquid crystal layer, and a counter substrate in this order;
    A liquid crystal display device comprising: a backlight disposed on a back surface of the liquid crystal panel.
PCT/JP2018/007668 2017-03-08 2018-03-01 Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display WO2018163944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044063 2017-03-08
JP2017-044063 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018163944A1 true WO2018163944A1 (en) 2018-09-13

Family

ID=63447567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007668 WO2018163944A1 (en) 2017-03-08 2018-03-01 Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display

Country Status (1)

Country Link
WO (1) WO2018163944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931507A (en) * 2018-09-19 2020-03-27 夏普株式会社 Active matrix substrate, method for manufacturing same, and method for manufacturing liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232824A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Thin-film transistor, substrate for display panel, display panel, display device, and method for manufacturing thin-film transistor
US20160118504A1 (en) * 2014-10-01 2016-04-28 Chunghwa Picture Tubes, Ltd. Thin film transistor
JP2016122683A (en) * 2014-12-24 2016-07-07 三菱電機株式会社 Thin film transistor substrate and method of manufacturing the same
WO2016128860A1 (en) * 2015-02-12 2016-08-18 株式会社半導体エネルギー研究所 Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232824A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Thin-film transistor, substrate for display panel, display panel, display device, and method for manufacturing thin-film transistor
US20160118504A1 (en) * 2014-10-01 2016-04-28 Chunghwa Picture Tubes, Ltd. Thin film transistor
JP2016122683A (en) * 2014-12-24 2016-07-07 三菱電機株式会社 Thin film transistor substrate and method of manufacturing the same
WO2016128860A1 (en) * 2015-02-12 2016-08-18 株式会社半導体エネルギー研究所 Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931507A (en) * 2018-09-19 2020-03-27 夏普株式会社 Active matrix substrate, method for manufacturing same, and method for manufacturing liquid crystal display device
CN110931507B (en) * 2018-09-19 2023-06-06 夏普株式会社 Active matrix substrate, method for manufacturing active matrix substrate, and method for manufacturing liquid crystal display device

Similar Documents

Publication Publication Date Title
US10276593B2 (en) Active matrix substrate and method for manufacturing same, display device using active matrix substrate
JP5106762B2 (en) Thin film transistor array panel and manufacturing method thereof
TWI536578B (en) Semiconductor device, display device and method for manufacturing semiconductor device
US9613990B2 (en) Semiconductor device and method for manufacturing same
US8692756B2 (en) Liquid crystal display device and method for manufacturing same
US9368523B2 (en) Semiconductor device, method for manufacturing semiconductor device, and display device
US10978529B2 (en) Active matrix substrate and method for manufacturing the same
JP5907697B2 (en) Wiring structure, thin film transistor array substrate including the same, and display device
US8743334B2 (en) Display substrate, and method of manufacturing the same
EP2991121B1 (en) Array substrate, method for manufacturing array substrate and display device
US10386684B2 (en) Semiconductor device, display apparatus, and method of manufacturing semiconductor device
US11302718B2 (en) Active matrix substrate and production method therefor
WO2015125685A1 (en) Active matrix substrate and method for producing same
US9360695B2 (en) Liquid crystal display
JP2013097349A (en) Wiring structure, thin film transistor array substrate having the structure, and display device
WO2018061954A1 (en) Thin film transistor substrate, manufacturing method for thin film transistor substrate, and display device
US11695020B2 (en) Active matrix substrate and method for manufacturing same
CN108292685B (en) Semiconductor device and method for manufacturing semiconductor device
JP2019078862A (en) Active matrix substrate and method for manufacturing the same
WO2018163944A1 (en) Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display
JP2020167327A (en) Active matrix substrate and manufacturing method of the same
KR20170012621A (en) Display device and manufacturing method thereof
WO2018061851A1 (en) Active matrix substrate and method for manufacturing same
US11079644B2 (en) Liquid crystal display device and manufacturing method of the same
JP7471075B2 (en) Active matrix substrate and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP