WO2018163703A1 - Vacuum valve and production method therefor - Google Patents

Vacuum valve and production method therefor Download PDF

Info

Publication number
WO2018163703A1
WO2018163703A1 PCT/JP2018/004371 JP2018004371W WO2018163703A1 WO 2018163703 A1 WO2018163703 A1 WO 2018163703A1 JP 2018004371 W JP2018004371 W JP 2018004371W WO 2018163703 A1 WO2018163703 A1 WO 2018163703A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
fixed
vacuum valve
thermal stress
stress relaxation
Prior art date
Application number
PCT/JP2018/004371
Other languages
French (fr)
Japanese (ja)
Inventor
亮 茂木
小林 金也
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2018163703A1 publication Critical patent/WO2018163703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens

Definitions

  • the present invention relates to a vacuum valve and a manufacturing method thereof.
  • a circuit breaker protects equipment when an accident current flows through the power system due to an accident.
  • the current interrupter is a resin molded vacuum valve (hereinafter simply referred to as a “vacuum valve”) that is part of the circuit breaker. ").
  • the vacuum valve has a configuration in which an electrode, a bellows, and a shield are arranged in a ceramic vacuum vessel, and the vacuum vessel is molded with an insulating resin.
  • the ceramic vacuum vessel constituting the vacuum valve is molded with an insulating resin.
  • the difference in linear expansion coefficient between the ceramic vacuum vessel and the mold resin is large, and the thermal stress generated thereby is also large. Therefore, a structure for relaxing the thermal stress of the vacuum valve has been studied conventionally.
  • the thermal stress relaxation structure a structure in which an elastic body is arranged over the entire vacuum valve has been developed.
  • Patent Document 1 includes a vacuum container whose inside is hermetically sealed, a fixed shaft provided with a fixed electrode at an end portion, and a movable shaft provided with a movable electrode at an end portion.
  • a vacuum valve in which a fixed electrode is fixed and attached to one end of the vacuum vessel with the fixed electrode and the movable electrode facing each other, and a movable electrode is movably attached to the other end of the vacuum vessel to form a contact;
  • a conductor connected to the fixed shaft of the vacuum valve and drawn out from the outlet, an electric field concentration relaxation shield disposed on the fixed shaft side of the vacuum valve, and an electric field concentration relaxation shield disposed on the movable shaft side of the vacuum valve
  • the electric field concentration relaxation shield arranged in the vicinity of the lead-out port of the conductor, the vacuum valve, the buffer layer covering the outer periphery of the conductor, and the movable shaft of the vacuum valve are movable, and the vacuum valve is fixed.
  • an object of the present invention is to provide a vacuum valve that achieves both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level and a method for manufacturing the same.
  • the vacuum valve according to the present invention includes a vacuum vessel, a fixed electrode fixed to the end of the vacuum vessel, a movable electrode, and an insulating resin layer covering the outer surface of the vacuum vessel. And inside the vacuum vessel, a fixed contact provided at the end of the fixed electrode, a shield provided so as to surround the movable contact provided at the end of the movable electrode, and one end is fixed to the shield, The other end has a shield fixing plate fixed to the vacuum vessel, and on the outer surface of the vacuum vessel, thermal stress relaxation between the location corresponding to the location where the shield fixing plate is fixed and the insulating resin layer A layer is provided.
  • the vacuum valve manufacturing method includes a step of assembling a vacuum vessel between the upper and lower sides of a shield fixing plate having a shield fixed to an end, and a shield inside the vacuum vessel on the outer surface of the vacuum vessel.
  • the present invention it is possible to provide a vacuum valve in which the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve are compatible at a high level.
  • a buffer layer silicone rubber particle-filled plastic resin layer
  • a thermal stress relaxation layer is provided by vacuum casting over a wide range of the outer periphery of the vacuum valve, the conductor, and the metal insert.
  • the buffer layer is manufactured by vacuum casting, bubbles are generated in the buffer layer in production.
  • the electrical characteristics are deteriorated as a starting point of partial discharge. The wider the range in which the thermal stress relaxation layer of the vacuum valve is provided, the more bubbles are generated in the buffer layer.
  • the vacuum valve and the rubber are still used during vacuum deaeration in the process of molding the vacuum valve with resin. Air bubbles may remain between the sheets.
  • the range in which the thermal stress relaxation layer is provided is wide, the amount of the material constituting the thermal stress relaxation layer increases, resulting in a problem that the manufacturing process of the vacuum valve increases and the cost increases.
  • the thermal stress relaxation layer is provided only in a portion where the electric field is concentrated in the vacuum valve.
  • bubbles that can be the starting point of partial discharge can be minimized.
  • FIG. 1 is a schematic view showing a cross section of a vacuum valve according to a first embodiment of the present invention.
  • the vacuum valve 100 a includes a vacuum container 6 whose inside is kept in vacuum, a fixed electrode 2 fixed to an end of the vacuum container 6, and a fixed electrode 2 of the vacuum container 6.
  • the movable electrode 3 is fixed to the end opposite to the end and provided to face the fixed electrode 2, and the insulating resin layer 1 covers the outer surface of the vacuum vessel 6.
  • the vacuum valve 100 a according to the present invention is a so-called resin mold vacuum valve in which the vacuum container 6 is molded with the insulating resin layer 1.
  • a fixed contact 20 is provided at the end of the fixed electrode 2 facing the movable electrode 3, and a movable contact 30 is provided at the end of the movable electrode 3 facing the fixed electrode 2. It has been.
  • a shield (electric field relaxation shield) 8 is provided so as to surround the fixed contact 20 and the movable contact 30.
  • the shield 8 is fixed to the vacuum vessel 6 by a shield fixing plate 9. That is, the shield fixing plate 9 has one end fixed to the shield 8 and the other end fixed to the vacuum vessel 6.
  • the thermal stress relaxation layer 10 is provided on the outer surface of the vacuum vessel 6 between the portion corresponding to the portion where the shield fixing plate 9 is fixed and the insulating resin layer 1.
  • it decided to provide only in the location which can obtain the effect of thermal stress relaxation most, and to suppress the range which provides a thermal stress relaxation layer conventionally.
  • it is possible to reduce bubbles that are the starting point of partial discharge, and to achieve both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum bulb at a high level.
  • the thermal stress relaxation layer 10 is obtained by applying a liquid resin (for example, silicone resin) at room temperature to the surface of the vacuum vessel 6 and drying (coating film-like thermal stress relaxation layer).
  • a liquid resin for example, silicone resin
  • FIG. 2 is a schematic view showing a cross section of a vacuum valve according to a second embodiment of the present invention.
  • the vacuum valve 100b shown in FIG. 2 is different from the vacuum valve 100a in that the thermal stress relaxation layer 11 is a sheet-like member.
  • the sheet-shaped member is not particularly limited, but for example, a silicone rubber sheet is preferable.
  • FIG. 3 is a schematic view showing a cross section of a vacuum valve according to a third embodiment of the present invention.
  • the vacuum valve 100c shown in FIG. 3 is different from the vacuum valve 100a in that the thermal stress relaxation layer 12 is a mesh (mesh) member.
  • the mesh member a mesh sheet and a mesh tube can be used.
  • polyethylene, polypropylene, polyester, polyamide, Teflon (registered trademark), polyethylene terephthalate, polyethylene sulfide, glass, or the like can be used as the material for the mesh sheet.
  • polyethylene, polypropylene, polyester, polyamide, Teflon, polyethylene terephthalate, polyethylene sulfide, glass, or the like can be used as a material of the mesh tube.
  • Commercially available products can be used for the mesh sheet and the mesh tube made of such materials.
  • the installation range of the thermal stress relaxation layer 12 is further reduced as compared with the first embodiment and the second embodiment described above. Air at the interface can be easily removed by vacuum deaeration, reducing the generation of bubbles and suppressing the deterioration of electrical characteristics.
  • FIG. 4 is a schematic view showing a cross section of a vacuum valve according to a fourth embodiment of the present invention.
  • the vacuum valve 100d shown in FIG. 4 is different from the vacuum valve 100a in that the thermal stress relaxation layers 13a and 13b are ring-shaped members.
  • the thermal stress relaxation layers 13a and 13b are ring-shaped members.
  • an O-ring is suitable as the ring-shaped member.
  • silicone rubber butyl rubber, styrene rubber, butadiene rubber, chloroprene rubber, ethylene propylene rubber, nitrile rubber, acrylic rubber, fluorine rubber, urethane rubber, epichlorohydrin rubber, and the like are suitable.
  • the installation range of the thermal stress relaxation layers 13a and 13b is further reduced as compared with the first to third embodiments described above.
  • the air at the interface can be easily removed by vacuum deaeration, the generation of bubbles can be reduced, and the deterioration of electrical characteristics can be suppressed.
  • the ring-shaped members 13a and 13b are provided at the upper and lower portions of the shield fixing plate 9.
  • the number of the members is not limited to two but can be determined in consideration of the effect of thermal stress relaxation. it can.
  • the vacuum vessel 6 according to the present invention is provided with a fixed side end plate 4 provided on the fixed electrode 2 side and a movable side end plate 5 provided on the movable electrode 3 side in addition to the configuration described above.
  • a bellows 7 is provided inside 6.
  • the vacuum valve according to the present invention can employ the same configuration as the conventional one except for the thermal stress relaxation layer.
  • the mold resin constituting the insulating resin layer 1 is assumed to be a base epoxy resin and an acid anhydride in a liquid state at room temperature in order to lower the viscosity during molding. Further, the mold resin requires a filler for lowering the linear expansion coefficient, and examples of the filler include fused silica, crystalline silica, and alumina.
  • the method for manufacturing a vacuum valve according to the present invention includes the step of assembling the vacuum vessel 6 with the upper and lower portions of the shield fixing plate 9 having the shield 8 fixed to the end portion.
  • the vacuum vessel 6 is composed of two separate members, an upper part and a lower part, with the shield fixing plate 9 interposed therebetween.
  • the thermal stress relaxation layer constituting the vacuum valve according to the present invention described above is applied.
  • Comparative Example 1 a vacuum valve having a thermal stress relaxation layer formed by applying a silicone resin to the entire vacuum vessel was produced.
  • the usage-amount of a thermal stress relaxation layer can be reduced by arrange
  • the remaining of bubbles that can be a starting point of partial discharge is suppressed.
  • the shape of the thermal stress relaxation layer into a mesh or ring shape, air at the interface between the thermal stress relaxation layer and the vacuum valve can be easily removed by vacuum degassing, and deterioration of electrical characteristics due to remaining bubbles is suppressed. .
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 Insulating resin layer (mold resin layer), 2 ... Fixed electrode, 3 ... Movable electrode, 4 ... Fixed side end plate, 5 ... Movable side end plate, 6 ... Vacuum container, 7 ... Bellows, 8 ... Shield, 9 ... Shield fixing plate, 10 ... coating film-like thermal stress relaxation layer, 11 ... sheet-like thermal stress relaxation layer, 12 ... mesh-like thermal stress relaxation layer, 13a, 13b ... ring-shaped thermal stress relaxation layer, 20 ... fixed contact, 30 ... Movable contacts, 100a, 100b, 100c, 100d ... vacuum valve (resin mold vacuum valve).

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

Provided is a vacuum valve achieving a high level of compatibility between the effectiveness of a thermal stress relaxation layer and the electrical properties of the vacuum valve. Also provided is a production method for this vacuum valve. This vacuum valve (100a) comprises a vacuum container (6), a fixed electrode (2) fixed at an end section of the vacuum container (6), a mobile electrode (3), and an insulation resin layer (1) covering the outer surface of the vacuum container (6). Furthermore, this vacuum valve (100a) comprises: a shield (8) provided in such a manner as to surround a fixed contact point (20) provided at an end of the fixed electrode (2) and a mobile contact point (30) provided at an end of the mobile electrode (3); and a shield fixing plate (9) whereof one end is fixed onto the shield (8), and the other end is fixed onto the vacuum container (6). A thermal stress relaxation layer (10) is provided on the outer surface of the vacuum container (6), between the insulation resin layer (1) and a location corresponding to the location where the shield fixing plate (9) is fixed.

Description

真空バルブ及びその製造方法Vacuum valve and manufacturing method thereof
 本発明は、真空バルブ及びその製造方法に関する。 The present invention relates to a vacuum valve and a manufacturing method thereof.
 遮断器、静止器及び回転機といった電力機器においては小型化及び軽量化が進んでいる。これに伴い、機器の配線や部品が高密度化し、絶縁層の厚さは薄くなっている。遮断器は、事故により電力系統に事故電流が流れた際、電流を遮断して設備を保護するものであり、電流遮断は遮断器の一部である樹脂モールド真空バルブ(以下、単に「真空バルブ」と称する。)が行う。真空バルブは、セラミックス製真空容器内に電極、ベローズ及びシールドが配置されており、真空容器は絶縁樹脂でモールドされている構成を有する。 In power equipment such as circuit breakers, stationary units, and rotating machines, miniaturization and weight reduction are progressing. Along with this, the wiring and parts of the equipment have been increased in density, and the thickness of the insulating layer has been reduced. A circuit breaker protects equipment when an accident current flows through the power system due to an accident. The current interrupter is a resin molded vacuum valve (hereinafter simply referred to as a “vacuum valve”) that is part of the circuit breaker. "). The vacuum valve has a configuration in which an electrode, a bellows, and a shield are arranged in a ceramic vacuum vessel, and the vacuum vessel is molded with an insulating resin.
 上述したように、真空バルブを構成するセラミックス製真空容器は絶縁樹脂でモールドされているが、セラミックス製真空容器とモールド樹脂の線膨脹係数の差が大きく、これにより発生する熱応力も大きい。そのため、従来から真空バルブの熱応力を緩和するための構造が検討されている。熱応力緩和構造の一例として、真空バルブ全体に弾性体を配置するもの等が開発されている。 As described above, the ceramic vacuum vessel constituting the vacuum valve is molded with an insulating resin. However, the difference in linear expansion coefficient between the ceramic vacuum vessel and the mold resin is large, and the thermal stress generated thereby is also large. Therefore, a structure for relaxing the thermal stress of the vacuum valve has been studied conventionally. As an example of the thermal stress relaxation structure, a structure in which an elastic body is arranged over the entire vacuum valve has been developed.
 例えば、特許文献1には、内部が気密に封止される真空容器と、端部に固定電極が設けられる固定軸と、端部に可動電極が設けられる可動軸と、を有し、真空容器内部で固定電極及び可動電極が対向する状態で真空容器の一端に固定電極が固定されて取り付けられ、かつ真空容器の他端に可動電極が移動可能に取り付けられて接点が形成される真空バルブと、真空バルブの固定軸に接続され、引き出し口から外部へ引き出される導体と、真空バルブの固定軸側に配置される電界集中緩和シールドと、真空バルブの可動軸側に配置される電界集中緩和シールドと、導体の引き出し口付近に配置される電界集中緩和シールドと、真空バルブ、及び、導体の外周を覆う緩衝層と、真空バルブの可動軸を移動自在にするとともに、真空バルブの固定軸、真空バルブの真空容器、導体、緩衝層、及び、各電界集中緩和シールドを埋設して固定する樹脂絶縁体と、を備えることを特徴とする樹脂モールド真空バルブが開示されている。 For example, Patent Document 1 includes a vacuum container whose inside is hermetically sealed, a fixed shaft provided with a fixed electrode at an end portion, and a movable shaft provided with a movable electrode at an end portion. A vacuum valve in which a fixed electrode is fixed and attached to one end of the vacuum vessel with the fixed electrode and the movable electrode facing each other, and a movable electrode is movably attached to the other end of the vacuum vessel to form a contact; , A conductor connected to the fixed shaft of the vacuum valve and drawn out from the outlet, an electric field concentration relaxation shield disposed on the fixed shaft side of the vacuum valve, and an electric field concentration relaxation shield disposed on the movable shaft side of the vacuum valve And the electric field concentration relaxation shield arranged in the vicinity of the lead-out port of the conductor, the vacuum valve, the buffer layer covering the outer periphery of the conductor, and the movable shaft of the vacuum valve are movable, and the vacuum valve is fixed. , The vacuum chamber of the vacuum valve, the conductor, the buffer layer, and a resin insulator for fixing by embedding each electric field concentration relaxation shield, a resin mold vacuum valve, characterized in that it comprises a disclosed.
特開2008-258021号公報JP 2008-258021 A
 上述した従来技術では、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立させる観点において、更なる改善の余地があった。 In the above-described conventional technology, there is room for further improvement in terms of achieving both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level.
 したがって、本発明は、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立した真空バルブ及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a vacuum valve that achieves both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level and a method for manufacturing the same.
 本発明に係る真空バルブは、真空容器と、真空容器の端部に固定された固定電極と、可動電極と、真空容器の外側の表面を覆う絶縁樹脂層とを有する。そして、真空容器の内部において、固定電極の端部に設けられた固定接点と、可動電極の端部に設けられた可動接点とを囲むように設けられたシールドと、一端がシールドに固定され、他端が真空容器に固定されたシールド固定板とを有し、真空容器の外側の表面において、シールド固定板が固定されている箇所に対応する箇所と絶縁樹脂層との間に、熱応力緩和層が設けられている。 The vacuum valve according to the present invention includes a vacuum vessel, a fixed electrode fixed to the end of the vacuum vessel, a movable electrode, and an insulating resin layer covering the outer surface of the vacuum vessel. And inside the vacuum vessel, a fixed contact provided at the end of the fixed electrode, a shield provided so as to surround the movable contact provided at the end of the movable electrode, and one end is fixed to the shield, The other end has a shield fixing plate fixed to the vacuum vessel, and on the outer surface of the vacuum vessel, thermal stress relaxation between the location corresponding to the location where the shield fixing plate is fixed and the insulating resin layer A layer is provided.
 また、本発明に係る真空バルブの製造方法は、端部にシールドが固定されたシールド固定板の上下を挟んで真空容器を組み立てる工程と、真空容器の外側の表面において、真空容器の内部のシールド固定板が固定されている箇所に対応する箇所に熱応力緩和層を設ける工程と、真空容器の外側の表面に絶縁樹脂層を設ける絶縁樹脂層形成工程と、を有する。 The vacuum valve manufacturing method according to the present invention includes a step of assembling a vacuum vessel between the upper and lower sides of a shield fixing plate having a shield fixed to an end, and a shield inside the vacuum vessel on the outer surface of the vacuum vessel. A step of providing a thermal stress relaxation layer at a location corresponding to a location where the fixing plate is fixed, and an insulating resin layer forming step of providing an insulating resin layer on the outer surface of the vacuum vessel.
 本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.
 本発明によれば、真空バルブにおいて、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立した真空バルブを提供することができる。 According to the present invention, it is possible to provide a vacuum valve in which the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve are compatible at a high level.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施形態に係る真空バルブの断面を示す模式図である。It is a schematic diagram which shows the cross section of the vacuum valve which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る真空バルブの断面を示す模式図である。It is a schematic diagram which shows the cross section of the vacuum valve which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る真空バルブの断面を示す模式図である。It is a schematic diagram which shows the cross section of the vacuum valve which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る真空バルブの断面を示す模式図である。It is a schematic diagram which shows the cross section of the vacuum valve which concerns on the 4th Embodiment of this invention.
 以下、本発明に係る実施形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [本発明の基本思想]
 本発明者は、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立した真空バルブの構成について、鋭意検討を行った。上述した特許文献1では、熱応力緩和層たる緩衝層(シリコーンゴム粒子充填可塑性樹脂層)を、真空バルブ、導体及び金属インサートの外周の広い範囲に、真空注型によって設けている。真空注型によって緩衝層を作製する場合、製造上、緩衝層内に気泡が生じるが、緩衝層中に気泡が存在すると、部分放電の起点となって電気特性が低下する可能性がある。真空バルブの熱応力緩和層を設ける範囲が広ければ、それだけ緩衝層に生じる気泡も多くなってしまう。
[Basic idea of the present invention]
The present inventor has intensively studied a configuration of a vacuum valve that achieves both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level. In Patent Document 1 described above, a buffer layer (silicone rubber particle-filled plastic resin layer) as a thermal stress relaxation layer is provided by vacuum casting over a wide range of the outer periphery of the vacuum valve, the conductor, and the metal insert. When the buffer layer is manufactured by vacuum casting, bubbles are generated in the buffer layer in production. However, if bubbles exist in the buffer layer, there is a possibility that the electrical characteristics are deteriorated as a starting point of partial discharge. The wider the range in which the thermal stress relaxation layer of the vacuum valve is provided, the more bubbles are generated in the buffer layer.
 また、熱応力緩和層の作製方法として、真空注型ではなく、ゴムシート等を配置する方法であっても、真空バルブを樹脂でモールドする工程における真空脱気の際に、やはり真空バルブとゴムシートの間に気泡が残存する可能性がある。 In addition, as a method for producing the thermal stress relaxation layer, even when a rubber sheet or the like is used instead of vacuum casting, the vacuum valve and the rubber are still used during vacuum deaeration in the process of molding the vacuum valve with resin. Air bubbles may remain between the sheets.
 さらに、熱応力緩和層を設ける範囲が広いと、熱応力緩和層を構成する材料の使用量が多くなり、真空バルブの作製工程が増え、コストが増加してしまうという課題が生じる。 Furthermore, if the range in which the thermal stress relaxation layer is provided is wide, the amount of the material constituting the thermal stress relaxation layer increases, resulting in a problem that the manufacturing process of the vacuum valve increases and the cost increases.
 そこで、本発明では、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立すべく、熱応力緩和層を、真空バルブにおいて特に電界が集中する箇所にのみ設ける構成とした。熱応力緩和層を設ける範囲を必要最小限に留めることで部分放電の起点となり得る気泡を最小限に抑制することができる。以下、本発明に係る真空バルブの構成について詳述する。なお、以下の実施形態は本発明の具体的な説明のためのものであって、本発明の範囲がこれに限定されるものではなく、特許請求の範囲の発明思想の範囲内において自由に変更可能である。 Therefore, in the present invention, in order to achieve both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level, the thermal stress relaxation layer is provided only in a portion where the electric field is concentrated in the vacuum valve. By limiting the range in which the thermal stress relaxation layer is provided to the minimum necessary, bubbles that can be the starting point of partial discharge can be minimized. Hereinafter, the configuration of the vacuum valve according to the present invention will be described in detail. The following embodiments are for specific description of the present invention, and the scope of the present invention is not limited thereto, and can be freely changed within the scope of the inventive concept of the claims. Is possible.
 [真空バルブ]
 図1は本発明の第1の実施形態に係る真空バルブの断面を示す模式図である。図1に示すように、真空バルブ100aは、内部が真空に保たれた真空容器6と、真空容器6の端部に固定された固定電極2と、真空容器6の固定電極2が固定された端部と反対側の端部に固定され、固定電極2と対向して設けられた可動電極3と、真空容器6の外側の表面を覆う絶縁樹脂層1とを有する。本発明に係る真空バルブ100aは、真空容器6が絶縁樹脂層1でモールドされた、いわゆる樹脂モールド真空バルブである。
[Vacuum valve]
FIG. 1 is a schematic view showing a cross section of a vacuum valve according to a first embodiment of the present invention. As shown in FIG. 1, the vacuum valve 100 a includes a vacuum container 6 whose inside is kept in vacuum, a fixed electrode 2 fixed to an end of the vacuum container 6, and a fixed electrode 2 of the vacuum container 6. The movable electrode 3 is fixed to the end opposite to the end and provided to face the fixed electrode 2, and the insulating resin layer 1 covers the outer surface of the vacuum vessel 6. The vacuum valve 100 a according to the present invention is a so-called resin mold vacuum valve in which the vacuum container 6 is molded with the insulating resin layer 1.
 真空容器6の内部において、固定電極2の可動電極3に対向する端部には固定接点20が設けられており、可動電極3の固定電極2に対向する端部には、可動接点30が設けられている。そして、固定接点20及び可動接点30を囲むようにして、シールド(電界緩和シールド)8が設けられている。シールド8は、シールド固定板9によって真空容器6に固定されている。すなわち、シールド固定板9は、一端がシールド8に固定され、他端が真空容器6に固定されている。 Inside the vacuum vessel 6, a fixed contact 20 is provided at the end of the fixed electrode 2 facing the movable electrode 3, and a movable contact 30 is provided at the end of the movable electrode 3 facing the fixed electrode 2. It has been. A shield (electric field relaxation shield) 8 is provided so as to surround the fixed contact 20 and the movable contact 30. The shield 8 is fixed to the vacuum vessel 6 by a shield fixing plate 9. That is, the shield fixing plate 9 has one end fixed to the shield 8 and the other end fixed to the vacuum vessel 6.
 本発明では、真空容器6の外側の表面において、シールド固定板9が固定されている箇所に対応する箇所と絶縁樹脂層1との間に、熱応力緩和層10が設けられている。このように、本発明では、熱応力緩和の効果を最も高く得られる箇所にのみ設け、熱応力緩和層を設ける範囲を従来よりも抑制することとした。このような構成とすることで、部分放電の起点となる気泡を低減し、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立させることができる。 In the present invention, the thermal stress relaxation layer 10 is provided on the outer surface of the vacuum vessel 6 between the portion corresponding to the portion where the shield fixing plate 9 is fixed and the insulating resin layer 1. Thus, in this invention, it decided to provide only in the location which can obtain the effect of thermal stress relaxation most, and to suppress the range which provides a thermal stress relaxation layer conventionally. By adopting such a configuration, it is possible to reduce bubbles that are the starting point of partial discharge, and to achieve both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum bulb at a high level.
 本実施形態に係る熱応力緩和層10は、室温で液状の樹脂(例えば、シリコーン樹脂)を、真空容器6の表面に塗布し、乾燥したものである(塗布膜状熱応力緩和層)。 The thermal stress relaxation layer 10 according to the present embodiment is obtained by applying a liquid resin (for example, silicone resin) at room temperature to the surface of the vacuum vessel 6 and drying (coating film-like thermal stress relaxation layer).
 図2は本発明の第2の実施形態に係る真空バルブの断面を示す模式図である。図2に示す真空バルブ100bは、熱応力緩和層11をシート状の部材とした点が真空バルブ100aと異なる。シート状の部材としては、特に限定は無いが、例えばシリコーンゴムシートが好ましい。 FIG. 2 is a schematic view showing a cross section of a vacuum valve according to a second embodiment of the present invention. The vacuum valve 100b shown in FIG. 2 is different from the vacuum valve 100a in that the thermal stress relaxation layer 11 is a sheet-like member. The sheet-shaped member is not particularly limited, but for example, a silicone rubber sheet is preferable.
 図3は本発明の第3の実施形態に係る真空バルブの断面を示す模式図である。図3に示す真空バルブ100cは、熱応力緩和層12をメッシュ状(網目状)の部材とした点が真空バルブ100aと異なる。メッシュ状の部材としては、メッシュシート及びメッシュチューブを用いることができる。 FIG. 3 is a schematic view showing a cross section of a vacuum valve according to a third embodiment of the present invention. The vacuum valve 100c shown in FIG. 3 is different from the vacuum valve 100a in that the thermal stress relaxation layer 12 is a mesh (mesh) member. As the mesh member, a mesh sheet and a mesh tube can be used.
 メッシュシートの材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、テフロン(登録商標)、ポリエチレンテレフタレート、ポリエチレンサルファイド及びガラス等を用いることができる。また、メッシュチューブの材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、テフロン、ポリエチレンテレフタレート、ポリエチレンサルファイド及びガラス等を用いることができる。このような材料で構成されたメッシュシート及びメッシュチューブは、市販されている製品を用いることができる。 As the material for the mesh sheet, polyethylene, polypropylene, polyester, polyamide, Teflon (registered trademark), polyethylene terephthalate, polyethylene sulfide, glass, or the like can be used. Moreover, as a material of the mesh tube, polyethylene, polypropylene, polyester, polyamide, Teflon, polyethylene terephthalate, polyethylene sulfide, glass, or the like can be used. Commercially available products can be used for the mesh sheet and the mesh tube made of such materials.
 熱応力緩和層12としてメッシュ状の部材を採用することで、上述した第1の実施形態及び第2の実施形態よりも、さらに熱応力緩和層12の設置範囲が小さくなり、真空容器6との界面にある空気が真空脱気で抜けやすくなり、気泡の発生を低減し、電気特性の低下を抑制することができる。 By adopting a mesh-like member as the thermal stress relaxation layer 12, the installation range of the thermal stress relaxation layer 12 is further reduced as compared with the first embodiment and the second embodiment described above. Air at the interface can be easily removed by vacuum deaeration, reducing the generation of bubbles and suppressing the deterioration of electrical characteristics.
 図4は本発明の第4の実施形態に係る真空バルブの断面を示す模式図である。図4に示す真空バルブ100dは、熱応力緩和層13a,13bをリング状の部材とした点が真空バルブ100aと異なる。リング状の部材としては、例えばOリングが好適である。 FIG. 4 is a schematic view showing a cross section of a vacuum valve according to a fourth embodiment of the present invention. The vacuum valve 100d shown in FIG. 4 is different from the vacuum valve 100a in that the thermal stress relaxation layers 13a and 13b are ring-shaped members. For example, an O-ring is suitable as the ring-shaped member.
 リング状の部材の材料としては、シリコーンゴム、ブチルゴム、スチレンゴム、ブタジエンゴム、クロロプレンゴム、エチレンプロピレンゴム、ニトリルゴム、アクリルゴム、フッ素ゴム、ウレタンゴム及びエピクロルヒドリンゴム等が好適である。 As the material for the ring-shaped member, silicone rubber, butyl rubber, styrene rubber, butadiene rubber, chloroprene rubber, ethylene propylene rubber, nitrile rubber, acrylic rubber, fluorine rubber, urethane rubber, epichlorohydrin rubber, and the like are suitable.
 熱応力緩和層13a,13bとしてリング状の部材を採用することで、上述した第1~第3の実施形態よりも、さらに熱応力緩和層13a,13bの設置範囲が小さくなり、真空容器6との界面にある空気が真空脱気で抜けやすくなり、気泡の発生を低減し、電気特性の低下を抑制することができる。 By adopting ring-shaped members as the thermal stress relaxation layers 13a and 13b, the installation range of the thermal stress relaxation layers 13a and 13b is further reduced as compared with the first to third embodiments described above. The air at the interface can be easily removed by vacuum deaeration, the generation of bubbles can be reduced, and the deterioration of electrical characteristics can be suppressed.
 図4では、リング状部材13a,13bをシールド固定板9の上部及び下部に設けているが、2か所に限られることなく、熱応力緩和の効果を考慮して、設ける個数を決めることができる。 In FIG. 4, the ring-shaped members 13a and 13b are provided at the upper and lower portions of the shield fixing plate 9. However, the number of the members is not limited to two but can be determined in consideration of the effect of thermal stress relaxation. it can.
 本発明に係る真空容器6には、上述した構成の他、固定電極2側に設けられた固定側エンドプレート4と、可動電極3側に設けられた可動側エンドプレート5が設けられ、真空容器6の内部にはベローズ7が設けられている。本発明に係る真空バルブは、熱応力緩和層以外は従来と同様の構成を採用することができる。例えば、絶縁樹脂層1を構成するモールド樹脂は、モールド時の粘度を下げるためにベースとなるエポキシ樹脂、酸無水物は室温で液状であるものとする。また、モールド樹脂には線膨脹係数を下げるための充填材が必要であり、充填材としては溶融シリカ、結晶性シリカ及びアルミナ等が挙げられる。 The vacuum vessel 6 according to the present invention is provided with a fixed side end plate 4 provided on the fixed electrode 2 side and a movable side end plate 5 provided on the movable electrode 3 side in addition to the configuration described above. A bellows 7 is provided inside 6. The vacuum valve according to the present invention can employ the same configuration as the conventional one except for the thermal stress relaxation layer. For example, the mold resin constituting the insulating resin layer 1 is assumed to be a base epoxy resin and an acid anhydride in a liquid state at room temperature in order to lower the viscosity during molding. Further, the mold resin requires a filler for lowering the linear expansion coefficient, and examples of the filler include fused silica, crystalline silica, and alumina.
 [真空バルブの製造方法]
 次に、本発明に係る真空バルブの製造方法について説明する。本発明に係る真空バルブの製造方法は、まず端部にシールド8が固定されたシールド固定板9の上部及び下部を挟んで真空容器6を組立てる工程を有する。図面には示されていないが、真空容器6は、シールド固定板9を挟むよう、上部と下部の2つの別の部材で構成されている。真空容器6を組立てた後、真空容器6の外側の表面において、シールド固定板9が固定されている箇所に対応する箇所に熱応力緩和層10を設ける工程と、真空容器6の外側の表面に絶縁樹脂層1を設ける絶縁樹脂層形成工程とを有する。熱応力緩和層は、上述した本発明に係る真空バルブを構成する熱応力緩和層を適用する。
[Vacuum valve manufacturing method]
Next, a method for manufacturing a vacuum valve according to the present invention will be described. The method for manufacturing a vacuum valve according to the present invention includes the step of assembling the vacuum vessel 6 with the upper and lower portions of the shield fixing plate 9 having the shield 8 fixed to the end portion. Although not shown in the drawing, the vacuum vessel 6 is composed of two separate members, an upper part and a lower part, with the shield fixing plate 9 interposed therebetween. After assembling the vacuum vessel 6, a step of providing the thermal stress relaxation layer 10 at a location corresponding to the location where the shield fixing plate 9 is fixed on the outer surface of the vacuum vessel 6, and the outer surface of the vacuum vessel 6 An insulating resin layer forming step of providing the insulating resin layer 1. As the thermal stress relaxation layer, the thermal stress relaxation layer constituting the vacuum valve according to the present invention described above is applied.
 [実施例1~16及び比較例1の真空バルブの作製]
 熱応力緩和層として、シリコーンゴムを塗布したもの(実施例1)、ポリエステル製のメッシュシート(実施例2)、ポリアミド製のメッシュシート(実施例3)、テフロン製のメッシュシート(実施例4)、ポリエチレンテレフタレート製のメッシュシート(実施例5)、ガラス製のメッシュシート(実施例6)、ポリエステル製のメッシュチューブ(実施例7)、ポリアミド製のメッシュチューブ(実施例8)、テフロン製のメッシュチューブ(実施例9)、ポロエチレンテレフタレート製のメッシュチューブ(実施例10)、ガラス製のメッシュチューブ(実施例11)、シリコーンゴム製のOリング(実施例12)、エチレンプロピレンゴム製のOリング(実施例13)、フッ素ゴム製のOリング(実施例14)、アクリルゴム製のOリング(実施例15)及びブタジエンゴム製のOリング(実施例16)を用いた真空バルブを作製した。
[Production of vacuum valves of Examples 1 to 16 and Comparative Example 1]
As a thermal stress relaxation layer, silicone rubber coated (Example 1), polyester mesh sheet (Example 2), polyamide mesh sheet (Example 3), Teflon mesh sheet (Example 4) , Polyethylene terephthalate mesh sheet (Example 5), glass mesh sheet (Example 6), polyester mesh tube (Example 7), polyamide mesh tube (Example 8), Teflon mesh Tube (Example 9), mesh tube made of polyethylene terephthalate (Example 10), glass mesh tube (Example 11), silicone rubber O-ring (Example 12), ethylene propylene rubber O-ring (Example 13), O-ring made of fluoro rubber (Example 14), made of acrylic rubber Ring vacuum valve (Example 15) and butadiene rubber O-ring (Example 16) was prepared.
 また、比較例1として、真空容器全体にシリコーン樹脂を塗布したものを熱応力緩和層とした真空バルブを作製した。 Further, as Comparative Example 1, a vacuum valve having a thermal stress relaxation layer formed by applying a silicone resin to the entire vacuum vessel was produced.
 [実施例1~16及び比較例1の真空バルブの評価]
 (1)耐クラック性の評価
 熱応力緩和層の効果を確認するために、上述した実施例1~16及び比較例1の真空バルブの冷熱試験を行い、真空バルブの耐クラック性を評価した。-30℃~90℃×10サイクルの熱ストレス加えクラックの有無は目視で確認した。実施例1~6おび比較例1の結果を後述する表1に、実施例7~16の結果を後述する表2に示す。
[Evaluation of Vacuum Valves of Examples 1 to 16 and Comparative Example 1]
(1) Evaluation of crack resistance In order to confirm the effect of the thermal stress relaxation layer, the heat resistance test of the vacuum valves of Examples 1 to 16 and Comparative Example 1 described above was performed to evaluate the crack resistance of the vacuum valves. The presence or absence of cracks was confirmed visually by applying a thermal stress of −30 ° C. to 90 ° C. × 10 cycles. The results of Examples 1 to 6 and Comparative Example 1 are shown in Table 1 described later, and the results of Examples 7 to 16 are shown in Table 2 described later.
 (2)電気特性の評価
 真空バルブの電気特性を確認するために、上述した実施例1~16及び比較例1の真空バルブの部分放電特性を測定した。実施例1~6おび比較例1の結果を後述する表1に、実施例7~16の結果を後述する表2に示す。
(2) Evaluation of electrical characteristics In order to confirm the electrical characteristics of the vacuum bulb, the partial discharge characteristics of the vacuum bulbs of Examples 1 to 16 and Comparative Example 1 described above were measured. The results of Examples 1 to 6 and Comparative Example 1 are shown in Table 1 described later, and the results of Examples 7 to 16 are shown in Table 2 described later.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、従来の構成を有する比較例1の真空バルブは、クラックの発生は無かったが、部分放電の発生が見られた。これは、熱応力緩和層の設置範囲が広いため、気泡の残存量が多いためであると考えられる。一方、本発明に係る真空バルブ(実施例1~16)では、クラックの発生及び部分放電の発生がともに見られなかった。これは、熱応力緩和層を設ける範囲を極小にしても、熱応力緩和層の効果を得ることができ、また、熱応力緩和層を設ける範囲を極小にしたことで、部分放電の起点となり得る気泡を低減し、部分放電の発生を抑制することができたためである。 As shown in Tables 1 and 2, in the vacuum valve of Comparative Example 1 having the conventional configuration, cracks were not generated, but partial discharge was observed. This is presumably because the remaining amount of bubbles is large because the installation range of the thermal stress relaxation layer is wide. On the other hand, in the vacuum bulb according to the present invention (Examples 1 to 16), neither generation of cracks nor generation of partial discharge was observed. This is because the effect of the thermal stress relaxation layer can be obtained even if the range in which the thermal stress relaxation layer is provided is minimized, and it can be the starting point of partial discharge by minimizing the range in which the thermal stress relaxation layer is provided. This is because bubbles can be reduced and partial discharge can be suppressed.
 以上説明したように、本発明に係る真空バルブ及びその製造方法によれば、熱応力緩和層の効果と真空バルブの電気特性とを高いレベルで両立した真空バルブを提供することができることが実証された。本発明では、熱応力緩和層を応力集中部に配置することで熱応力緩和層の使用量を減らすことができる。熱応力緩和層の設置範囲が減ることで、部分放電の起点となり得る気泡の残存が抑制される。熱応力緩和層の形状をメッシュ状またはリング状にすることで、さらに熱応力緩和層と真空バルブとの界面にある空気が真空脱気で抜けやすくなり、気泡残存による電気特性低下が抑制される。 As described above, according to the vacuum valve and the manufacturing method thereof according to the present invention, it has been demonstrated that a vacuum valve that can achieve both the effect of the thermal stress relaxation layer and the electrical characteristics of the vacuum valve at a high level can be provided. It was. In this invention, the usage-amount of a thermal stress relaxation layer can be reduced by arrange | positioning a thermal stress relaxation layer in a stress concentration part. By reducing the installation range of the thermal stress relaxation layer, the remaining of bubbles that can be a starting point of partial discharge is suppressed. By making the shape of the thermal stress relaxation layer into a mesh or ring shape, air at the interface between the thermal stress relaxation layer and the vacuum valve can be easily removed by vacuum degassing, and deterioration of electrical characteristics due to remaining bubbles is suppressed. .
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…絶縁樹脂層(モールド樹脂層)、2…固定電極、3…可動電極、4…固定側エンドプレート、5…可動側エンドプレート、6…真空容器、7…ベローズ、8…シールド、9…シールド固定板、10…塗布膜状熱応力緩和層、11…シート状熱応力緩和層、12…メッシュ状熱応力緩和層、13a,13b…リング状熱応力緩和層、20…固定接点、30…可動接点、100a,100b,100c,100d…真空バルブ(樹脂モールド真空バルブ)。 DESCRIPTION OF SYMBOLS 1 ... Insulating resin layer (mold resin layer), 2 ... Fixed electrode, 3 ... Movable electrode, 4 ... Fixed side end plate, 5 ... Movable side end plate, 6 ... Vacuum container, 7 ... Bellows, 8 ... Shield, 9 ... Shield fixing plate, 10 ... coating film-like thermal stress relaxation layer, 11 ... sheet-like thermal stress relaxation layer, 12 ... mesh-like thermal stress relaxation layer, 13a, 13b ... ring-shaped thermal stress relaxation layer, 20 ... fixed contact, 30 ... Movable contacts, 100a, 100b, 100c, 100d ... vacuum valve (resin mold vacuum valve).

Claims (11)

  1.  内部が真空に保たれた真空容器と、
     前記真空容器の端部に固定された固定電極と、
     前記真空容器の前記固定電極が固定された端部と反対側の端部に固定され、前記固定電極と対向して設けられた可動電極と、
     前記真空容器の外側の表面を覆う絶縁樹脂層と、を有し、
     前記真空容器の内部において、前記固定電極の前記可動電極に対向する端部に設けられた固定接点と、前記可動電極の前記固定電極に対向する端部に設けられた可動接点と、を囲むように設けられたシールドと、
     一端が前記シールドに固定され、他端が前記真空容器に固定されたシールド固定板と、を有し、
     前記真空容器の外側の表面において、前記シールド固定板が固定されている箇所に対応する箇所と前記絶縁樹脂層との間に、熱応力緩和層が設けられていることを特徴とする真空バルブ。
    A vacuum vessel whose interior is kept in vacuum,
    A fixed electrode fixed to an end of the vacuum vessel;
    A movable electrode fixed to the end opposite to the end to which the fixed electrode of the vacuum vessel is fixed, and provided to face the fixed electrode;
    An insulating resin layer covering the outer surface of the vacuum vessel,
    Inside the vacuum vessel, surrounding the fixed contact provided at the end of the fixed electrode facing the movable electrode and the movable contact provided at the end of the movable electrode facing the fixed electrode A shield provided on the
    A shield fixing plate having one end fixed to the shield and the other end fixed to the vacuum vessel;
    A vacuum valve, wherein a thermal stress relaxation layer is provided between a portion corresponding to a portion where the shield fixing plate is fixed on the outer surface of the vacuum vessel and the insulating resin layer.
  2.  前記熱応力緩和層が、シート状の部材であることを特徴とする請求項1記載の真空バルブ。 The vacuum valve according to claim 1, wherein the thermal stress relaxation layer is a sheet-like member.
  3.  前記シート状の部材が、シリコーンゴムシートであることを請求項2記載の真空バルブ。 The vacuum valve according to claim 2, wherein the sheet-like member is a silicone rubber sheet.
  4.  前記熱応力緩和層が、メッシュ状の部材であることを特徴とする請求項1記載の真空バルブ。 The vacuum valve according to claim 1, wherein the thermal stress relaxation layer is a mesh member.
  5.  前記メッシュ状の部材が、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、テフロン、ポリエチレンテレフタレート、ポリエチレンサルファイド又はガラスからなるメッシュシートであることを特徴とする請求項4記載の真空バルブ。 The vacuum valve according to claim 4, wherein the mesh member is a mesh sheet made of polyethylene, polypropylene, polyester, polyamide, Teflon, polyethylene terephthalate, polyethylene sulfide or glass.
  6.  前記メッシュ状の部材が、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、テフロン、ポリエチレンテレフタレート、ポリエチレンサルファイド又はガラスからなるメッシュチューブであることを特徴とする請求項4記載の真空バルブ。 The vacuum valve according to claim 4, wherein the mesh member is a mesh tube made of polyethylene, polypropylene, polyester, polyamide, Teflon, polyethylene terephthalate, polyethylene sulfide or glass.
  7.  前記熱応力緩和層が、リング状の部材であることを特徴とする請求項1記載の真空バルブ。 The vacuum valve according to claim 1, wherein the thermal stress relaxation layer is a ring-shaped member.
  8.  前記リング状の部材が、シリコーンゴム、ブチルゴム、スチレンゴム、ブタジエンゴム、クロロプレンゴム、エチレンプロピレンゴム、ニトリルゴム、アクリルゴム、フッ素ゴム、ウレタンゴム又はエピクロルヒドリンゴムからなることを特徴とする請求項7記載の真空バルブ。 8. The ring-shaped member is made of silicone rubber, butyl rubber, styrene rubber, butadiene rubber, chloroprene rubber, ethylene propylene rubber, nitrile rubber, acrylic rubber, fluorine rubber, urethane rubber, or epichlorohydrin rubber. Vacuum valve.
  9.  前記リング状の部材を、前記シールド固定板の上部及び下部の2か所に配置したことを特徴とする請求項7記載の真空バルブ。 8. The vacuum valve according to claim 7, wherein the ring-shaped member is disposed at two locations, an upper portion and a lower portion of the shield fixing plate.
  10.  端部にシールドが固定されたシールド固定板の上下を挟んで真空容器を組み立てる工程と、
     前記真空容器の外側の表面において、前記真空容器の内部の前記シールド固定板が固定されている箇所に対応する箇所に熱応力緩和層を設ける工程と、
     前記真空容器の外側の表面に絶縁樹脂層を設ける絶縁樹脂層形成工程と、を有することを特徴とする真空バルブの製造方法。
    Assembling a vacuum vessel across the top and bottom of a shield fixing plate with a shield fixed to the end; and
    On the outer surface of the vacuum vessel, providing a thermal stress relaxation layer at a location corresponding to the location where the shield fixing plate inside the vacuum vessel is fixed;
    And an insulating resin layer forming step of providing an insulating resin layer on the outer surface of the vacuum vessel.
  11.  前記熱応力緩和層が、シート状の部材、メッシュ状の部材又はリング状の部材であることを特徴とする請求項10記載の真空バルブの製造方法。 The method for manufacturing a vacuum valve according to claim 10, wherein the thermal stress relaxation layer is a sheet-like member, a mesh-like member, or a ring-like member.
PCT/JP2018/004371 2017-03-07 2018-02-08 Vacuum valve and production method therefor WO2018163703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042653 2017-03-07
JP2017042653A JP2018147775A (en) 2017-03-07 2017-03-07 Vacuum valve and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2018163703A1 true WO2018163703A1 (en) 2018-09-13

Family

ID=63447658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004371 WO2018163703A1 (en) 2017-03-07 2018-02-08 Vacuum valve and production method therefor

Country Status (2)

Country Link
JP (1) JP2018147775A (en)
WO (1) WO2018163703A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205801A (en) * 2008-02-26 2009-09-10 Hitachi Ltd Vacuum switch
JP2016110984A (en) * 2014-12-04 2016-06-20 株式会社村田製作所 Fuel battery unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205801A (en) * 2008-02-26 2009-09-10 Hitachi Ltd Vacuum switch
JP2016110984A (en) * 2014-12-04 2016-06-20 株式会社村田製作所 Fuel battery unit

Also Published As

Publication number Publication date
JP2018147775A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5718471B2 (en) Compact vacuum circuit breaker with selective encapsulation
JP5859142B2 (en) Gas insulated electrical equipment
JP2010178526A (en) Tank type vacuum breaker
US10074496B2 (en) Circuit interrupting device
EP1571684A1 (en) Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof
WO2018163703A1 (en) Vacuum valve and production method therefor
EP3379667B1 (en) Insulator for installation in a high-voltage switching system
KR101034878B1 (en) High voltage bushings with improved insulating performance electric field relaxation
JP4891816B2 (en) Electrical equipment connection device
JP6259708B2 (en) Tank type vacuum circuit breaker
JP2011048997A (en) Mold vacuum valve
JP2019110012A (en) Resin-molded vacuum valve
JP2009193734A (en) Resin mold vacuum bulb
JP6663154B2 (en) Airtight terminal with enamel coating
WO2015136932A1 (en) Electrical insulation material and mold electric apparatus
JP2013093276A (en) Vacuum circuit breaker
JP2006080036A (en) Vacuum circuit breaker
JP7143195B2 (en) vacuum valve
JP5537303B2 (en) Vacuum valve
CN109478479B (en) Pole part for a low-, medium-or high-voltage circuit breaker and method for the production thereof
JP2005285430A (en) Resin molded vacuum valve and manufacturing method therefor
JP2014156041A (en) Resin cast article
US2189621A (en) Bushing
JP2014182876A (en) Resin mold vacuum valve
JP2023090344A (en) vacuum valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763531

Country of ref document: EP

Kind code of ref document: A1