WO2018163514A1 - All-solid state battery and manufacturing method therefor, and electronic device and electronic card - Google Patents

All-solid state battery and manufacturing method therefor, and electronic device and electronic card Download PDF

Info

Publication number
WO2018163514A1
WO2018163514A1 PCT/JP2017/041199 JP2017041199W WO2018163514A1 WO 2018163514 A1 WO2018163514 A1 WO 2018163514A1 JP 2017041199 W JP2017041199 W JP 2017041199W WO 2018163514 A1 WO2018163514 A1 WO 2018163514A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid
exterior material
negative electrode
state battery
Prior art date
Application number
PCT/JP2017/041199
Other languages
French (fr)
Japanese (ja)
Inventor
友裕 加藤
鈴木 正光
圭輔 清水
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018163514A1 publication Critical patent/WO2018163514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to an all-solid-state battery, a manufacturing method thereof, an electronic device, and an electronic card.
  • the purpose of the present technology is to provide an all-solid-state battery capable of suppressing an increase in irreversible capacity, a manufacturing method thereof, an electronic device, and an electronic card.
  • the first technique includes a battery element including Li, an exterior material that covers the battery element, and a protective layer that is provided between the battery element and the exterior material and includes Li. It is an all-solid-state battery.
  • the second technology is an electronic device that receives power from the all-solid-state battery of the first technology.
  • the third technology is an electronic card that receives power from the all-solid-state battery of the first technology.
  • a battery element containing Li conductivity is covered with a protective layer containing Li, an exterior material is formed on the protective layer, a layer containing crystal particles is formed on the exterior material, and the exterior material is sintered. Then, it is a manufacturing method of an all-solid-state battery including removing the layer containing crystal particles.
  • an exterior material is formed on the protective layer, so that diffusion of Li from the battery element to the exterior material is suppressed. be able to.
  • the layer containing crystal particles is formed on the exterior material and the exterior material is sintered and then the layer containing the crystal particles is removed, the shrinkage of the exterior material during the sintering of the exterior material is suppressed. Can do. Therefore, it can suppress that a crack generate
  • FIG. 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG.
  • FIG. 3A is a perspective view showing an example of the appearance of the battery with the positive electrode terminal removed.
  • FIG. 3B is a perspective view showing an example of the appearance of the battery with the negative electrode terminal removed.
  • 4A and 4B are process diagrams for explaining an example of the method for manufacturing the battery according to the first embodiment of the present technology.
  • FIG. 5A and FIG. 5B are process diagrams for explaining an example of the battery manufacturing method according to the first embodiment of the present technology.
  • FIG. 6A and 6B are process diagrams for explaining an example of the method for manufacturing the battery according to the first embodiment of the present technology.
  • FIG. 7A and FIG. 7B are process diagrams for explaining an example of the battery manufacturing method according to the first embodiment of the present technology. It is sectional drawing which shows an example of a structure of the battery which concerns on the modification of 1st Embodiment of this technique. It is sectional drawing which shows an example of a structure of the battery which concerns on the modification of 1st Embodiment of this technique. It is a perspective view showing an example of appearance of a battery concerning a 2nd embodiment of this art.
  • FIG. 11A is a cross-sectional view taken along line XIA-XIA in FIG.
  • FIG. 11B is a cross-sectional view taken along line XIB-XIB in FIG.
  • FIG. 12A and FIG. 12B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology.
  • FIG. 13A and FIG. 13B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology.
  • FIG. 14A and FIG. 14B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology.
  • FIG. 15A and FIG. 15B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology. It is a perspective view which shows an example of a structure of the printed circuit board as an application example.
  • the battery according to the first embodiment of the present technology is a so-called bulk type all-solid-state battery, and as illustrated in FIGS. 1, 2A, and 2B, the first end surface 11SA and the second end opposite to the first end surface 11SA are provided.
  • a thin plate-shaped external battery element 11 having an end face 11SB, a positive terminal 12 provided on the first end face 11SA, and a negative terminal 13 provided on the second end face 11SB are provided.
  • 1st Embodiment demonstrates the case where the main surface of the exterior battery element 11 has a rectangle, the shape of the main surface of the exterior battery element 11 is not limited to this.
  • the two end faces located between the first and second end faces 11SA and 11SB are referred to as third and fourth end faces 11SC and 11SD, respectively.
  • This battery is a secondary battery obtained by repeatedly receiving and transferring Li, which is an electrode reactant, and may be a lithium ion secondary battery in which the capacity of the negative electrode is obtained by occlusion and release of lithium ions, It may be a lithium metal secondary battery in which the capacity of the negative electrode is obtained by precipitation dissolution of lithium metal.
  • the positive electrode and the negative electrode terminals 12 and 13 include, for example, conductive particle powder.
  • the conductive particles may be sintered.
  • the positive electrode and the negative electrode terminals 12 and 13 may further contain glass or glass ceramics as necessary. Glass or glass ceramics may be sintered.
  • the glass transition temperature of the glass contained in the positive and negative electrode terminals 12 and 13 is preferably equal to or lower than the sintering temperature of the exterior material 15.
  • the positive electrode and the negative electrode terminals 12 and 13 can be simultaneously sintered when the exterior material 15 is sintered.
  • Examples of the shape of the conductive particles include a spherical shape, an ellipsoidal shape, a needle shape, a plate shape, a scale shape, a tube shape, a wire shape, a rod shape (rod shape), and an indefinite shape, but are not particularly limited thereto. It is not something. Two or more kinds of particles having the above shapes may be used in combination.
  • the conductive particles are metal particles, metal oxide particles, or carbon particles.
  • the metal is defined to include a semi-metal.
  • the metal particles include Ag (silver), Pt (platinum), Au (gold), Ni (nickel), Cu (copper), Pd (palladium), Al (aluminum), and Fe (iron). Although what contains 1 type is mentioned, it is not limited to this.
  • the metal oxide particles include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide.
  • ITO indium tin oxide
  • zinc oxide zinc oxide
  • indium oxide antimony-added tin oxide
  • fluorine-added tin oxide aluminum-added zinc oxide
  • gallium-added zinc oxide gallium-added zinc oxide
  • silicon-added zinc oxide and zinc oxide.
  • zinc oxide include, but are not limited to, a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system.
  • Examples of the carbon particles include, but are not limited to, carbon black, porous carbon, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn.
  • the glass is, for example, oxide glass. Glass ceramics are oxide glass ceramics, for example.
  • the exterior battery element 11 is provided between the battery element 20 including the laminated battery element 20 including Li, the exterior material 15 that covers the surface of the battery element 20, and the battery element 20 and the exterior material 15. And a protective layer 14 containing Li.
  • the battery element 20 is a laminate including two positive electrode layers 21, one negative electrode layer 22, and two solid electrolyte layers 23.
  • a negative electrode layer 22 is provided between the two positive electrode layers 21, and a solid electrolyte layer 23 is provided between the positive electrode layer 21 and the negative electrode layer 22.
  • the positive electrode layer 21 includes a positive electrode current collecting layer 21A and a positive electrode active material layer 21B provided on a main surface on the side facing the negative electrode layer 22 among both main surfaces of the positive electrode current collecting layer 21A.
  • the negative electrode layer 22 includes a negative electrode current collecting layer 22A and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collecting layer 22A.
  • the protective layer 14 has one end of the positive electrode current collecting layer 21A exposed from the first end face 11SA, one end of the negative electrode current collecting layer 22A exposed from the second end face 11SB, and the solid electrolyte layer 23.
  • the surface of the battery element 20 is covered so that the peripheral edge of the battery element is exposed from the first to fourth end faces 11SA to 11SD.
  • the protective layer 14 may cover the surface of the battery element 20 so that the peripheral edge of the solid electrolyte layer 23 is not exposed from the first to fourth end faces 11SA to 11SD.
  • the protective layer 14 includes a Li-containing solid electrolyte having Li ion conductivity.
  • the protective layer 14 may contain at least one of Li-free glass, glass ceramics, and crystals having non-Li ion conductivity.
  • the solid electrolyte is the same as that contained in the solid electrolyte layer 23 described later. However, the composition (type of material) or composition ratio of the solid electrolytes contained in the solid electrolyte layer 23 and the protective layer 14 may be the same or different.
  • the volume occupancy of the solid electrolyte in the protective layer 14 is preferably 10 vol% or more, more preferably 20 vol% or more, and even more preferably 30 vol% or more.
  • the upper limit value of the volume occupation rate is not particularly limited, and may be 100 vol%.
  • the volume occupancy of the above solid electrolyte is obtained as follows. First, a cross section of the battery is prepared by ion milling or the like, and a procedure for photographing a cross-sectional SEM (Scanning / Electron / Microscope) image of the exterior material 15 is repeated to obtain a three-dimensional SEM image. Thereafter, from the acquired three-dimensional SEM image, the volume occupancy rate of the solid electrolyte in the cube having a height about the thickness of the protective layer 14 is obtained.
  • SEM Sccanning / Electron / Microscope
  • the Li ion conductivity of the protective layer 14 is preferably 1.0 ⁇ 10 ⁇ 10 S / cm or more.
  • the Li ion conductivity of the protective layer 14 is determined by the AC impedance method as follows. First, a part of the protective layer 14 is taken out as a rectangular plate-shaped piece from the all-solid battery by ion milling or polishing. Next, an electrode made of gold (Au) is formed on both ends of the taken out small piece to prepare a sample.
  • AC impedance measurement (frequency: 10 +6 Hz to 10 ⁇ 1 Hz, voltage: 100 mV, 1000 mV) is performed on the sample at room temperature (25 ° C.) using an impedance measuring device (manufactured by Toyo Technica). -Create a call plot. Subsequently, the ionic conductivity is obtained from the Cole-Cole plot.
  • the exterior material 15 has a protective layer such that one end of the positive electrode current collecting layer 21A is exposed from the first end surface 11SA and one end of the negative electrode current collecting layer 22A is exposed from the second end surface 11SB.
  • the surface of the battery element 20 covered with 14 is covered.
  • One end of the positive electrode current collecting layer 21 ⁇ / b> A exposed from the first end face 11 ⁇ / b> SA is electrically connected to the positive electrode terminal 12.
  • One end of the negative electrode current collecting layer 22 ⁇ / b> A exposed from the second end surface 11 ⁇ / b> SB is electrically connected to the negative electrode terminal 13. All the surfaces of the exterior battery element 11 other than the first and second end surfaces 11SA and 11SB are covered with the exterior material 15.
  • the exterior material 15 includes Li-containing glass having non-Li ion conductivity and powder of crystal particles 16.
  • the crystal particles 16 are included in at least one of the surface and the inside of the exterior material 15.
  • the exterior material 15 is, for example, a green sheet sintered body as an exterior material precursor.
  • the exterior material 15 is, for example, at least one of B (boron), Bi (bismuth), Te (tellurium), P (phosphorus), V (vanadium), Sn (tin), Pb (lead), and Si (silicon). Contains one species. More specifically, an oxide containing at least one of B, Bi, Te, P, V, Sn, Pb, and Si is included.
  • the moisture permeability of the outer package 15 is preferably 1.0 g / m 2 / day or less, more preferably 0.75 g / m 2 / day or less, and even more preferably, from the viewpoint of improving the atmospheric stability of the all-solid battery. Is 0.5 g / m 2 / day or less.
  • the moisture permeability of the exterior material 15 is obtained as follows. First, a part of the outer packaging material 15 is taken out from the all-solid battery element as a rectangular plate-shaped piece by ion milling or polishing. Next, the water vapor transmission rate (23 ° C., 90% RH) of the exterior material 15 is measured according to JIS K7129-C (ISO 15106-4).
  • the Li ion conductivity of the outer package 15 is preferably 1 ⁇ 10 ⁇ 8 S / cm or less from the viewpoint of suppressing self-discharge of the all-solid battery.
  • the Li ion conductivity of the packaging material 15 is obtained by taking a part of the packaging material 15 as a rectangular plate-shaped piece from an all-solid battery by ion milling or polishing, and using this to produce a measurement sample. It is obtained in the same manner as the method for measuring the Li ion conductivity of the protective layer 14 described above.
  • the electrical conductivity (electronic conductivity) of the packaging material 15 is 1 ⁇ 10 ⁇ 8 S / cm or less.
  • the electrical conductivity of the exterior material 15 is obtained as follows. First, a sample is prepared in the same manner as the method for measuring the Li ion conductivity of the exterior material 15 described above. Next, electrical conductivity is calculated
  • the average thickness of the outer package 15 is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, and even more preferably 50 ⁇ m or less, from the viewpoint of improving the energy density of the all solid state battery.
  • the average thickness of the exterior material 15 is obtained as follows. First, a cross section of the exterior material 15 is produced by ion milling or the like, and a cross-sectional SEM image is taken. Next, 10 points are randomly selected from the cross-sectional SEM image, the thickness of the exterior material 15 is measured at each point, and the measured values are simply averaged (arithmetic average) to obtain the exterior material 15. The average thickness of is determined.
  • the crystal particles 16 preferably contain crystals that do not melt at the glass transition temperature of the glass contained in the exterior material 15.
  • the exterior material 15 is thermally contracted in the in-plane direction, and cracking of the exterior material 15 is suppressed. it can.
  • the “in-plane direction” means the in-plane direction of the main surface of the external battery element 11.
  • Crystal grain 16 contains at least one of metal oxide, metal nitride, and metal carbide.
  • the metal is defined to include a semi-metal. More specifically, the crystal particles 16 are made of Al 2 O 3 (aluminum oxide: alumina), SiO 2 (silicon oxide: quartz), SiN (silicon nitride), AlN (aluminum nitride), and SiC (silicon carbide). Of at least one of the following.
  • the average particle diameter (average diameter) of the crystal particles 16 is preferably 10 ⁇ m or less. If the average particle size of the crystal particles 16 exceeds 10 ⁇ m, the effect of suppressing the thermal shrinkage of the exterior material 15 in the in-plane direction may be reduced in the step of sintering the glass contained in the exterior material 15. That is, there is a possibility that the exterior material 15 may be cracked.
  • the average particle size of the crystal particles 16 is determined as follows. First, a surface SEM image of the exterior material 15 is taken. Next, 100 crystal particles 16 are selected at random from the surface SEM image, the particle diameters (diameters) of these crystal particles 16 are measured, and simply averaged (arithmetic average). Obtain the average particle size.
  • the maximum distance is selected from the crystal particle 16 when the crystal particle 16 is not spherical. The particle size (diameter) is 16.
  • the average of the crystal particles 16 from the cross-sectional SEM image of the exterior material 15 The particle size shall be determined.
  • the solid electrolyte layer 23 includes a solid electrolyte containing Li.
  • the solid electrolyte is at least one of an oxide glass and an oxide glass ceramic that are lithium ion conductors, and is preferably an oxide glass ceramic from the viewpoint of improving Li ion conductivity.
  • the stability of the solid electrolyte layer 23 against the atmosphere (moisture) can be improved.
  • the solid electrolyte layer 23 is a sintered body of a green sheet as a solid electrolyte layer precursor, for example.
  • the glass means a crystallographically amorphous material such as halo observed in X-ray diffraction or electron beam diffraction.
  • Glass ceramics refers to a crystallographic mixture of amorphous and crystalline materials, such as peaks and halos observed in X-ray diffraction, electron beam diffraction, and the like.
  • the Li ion conductivity of the solid electrolyte is preferably 10 ⁇ 7 S / cm or more from the viewpoint of improving battery performance.
  • the Li ion conductivity of the solid electrolyte is the same as that of the protective layer 14 described above except that the solid electrolyte layer 23 is taken out from the all-solid battery element by ion milling or polishing, and a measurement sample is produced using this. It is obtained in the same manner as the rate measurement method.
  • the solid electrolyte contained in the solid electrolyte layer 23 is sintered.
  • the sintering temperature of the oxide glass and the oxide glass ceramic that is a solid electrolyte is preferably 550 ° C. or lower, more preferably 300 ° C. or higher and 550 ° C. or lower, and even more preferably 300 ° C. or higher and 500 ° C. or lower.
  • the carbon material can be prevented from being burned out in the sintering process, so that the carbon material can be used as the negative electrode active material. Therefore, the energy density of the battery can be further improved.
  • the positive electrode active material layer 21B includes a conductive agent
  • a carbon material can be used as the conductive agent. Therefore, a favorable electron conduction path can be formed in the positive electrode active material layer 21B, and the conductivity of the positive electrode active material layer 21B can be improved.
  • the negative electrode layer 22 contains a conductive agent, a carbon material can be used as the conductive agent, so that the conductivity of the negative electrode layer 22 can be improved.
  • the sintering temperature is 550 ° C. or lower, it is possible to suppress the formation of by-products such as a passive state due to the reaction between the solid electrolyte and the electrode active material in the sintering process. Accordingly, it is possible to suppress a decrease in battery characteristics. Further, when the sintering temperature is as low as 550 ° C. or less, the range of selection of the type of electrode active material is widened, so that the degree of freedom in battery design can be improved.
  • a general organic binder such as an acrylic resin contained in the electrode precursor and / or the solid electrolyte layer precursor can be burned out in the sintering step.
  • Oxide glass and oxide glass ceramics preferably have a sintering temperature of 550 ° C. or lower, a high heat shrinkage rate, and high fluidity. This is because the following effects can be obtained. That is, the reaction between the solid electrolyte layer 23 and the positive electrode active material layer 21B and the reaction between the solid electrolyte layer 23 and the negative electrode layer 22 can be suppressed. Further, good interfaces are formed between the positive electrode active material layer 21B and the solid electrolyte layer 23, and between the negative electrode layer 22 and the solid electrolyte layer 23, and between the positive electrode active material layer 21B and the solid electrolyte layer 23, and the negative electrode layer. The interface resistance between 22 and the solid electrolyte layer 23 can be reduced.
  • oxide glass and oxide glass ceramic at least one of Ge (germanium), Si (silicon), B (boron), and P (phosphorus), Li (lithium), and O (oxygen) Those containing Si, B, Li and O are more preferable. Specifically, at least one of germanium oxide (GeO 2 ), silicon oxide (SiO 2 ), boron oxide (B 2 O 3 ) and phosphorus oxide (P 2 O 5 ), and lithium oxide (Li 2 O). ) Are preferred, and those containing SiO 2 , B 2 O 3 and Li 2 O are more preferred. As described above, the oxide glass and oxide glass ceramic containing at least one of Ge, Si, B, and P, Li, and O have a sintering temperature of 300 ° C. or higher and 550 ° C. or lower, Since it has a high heat shrinkage ratio and is rich in fluidity, it is advantageous from the viewpoint of reducing interfacial resistance and improving the energy density of the battery.
  • the content of Li 2 O is preferably 20 mol% or more and 75 mol% or less, more preferably 30 mol% or more and 75 mol% or less, still more preferably 40 mol% or more and 75 mol% or less, from the viewpoint of lowering the sintering temperature of the solid electrolyte. Especially preferably, they are 50 mol% or more and 75 mol% or less.
  • the content of the GeO 2 is preferably less greater 80 mol% than 0 mol%.
  • the content of the SiO 2 is preferably from greater than 0 mol% 70 mol%.
  • the content of the B 2 O 3 is preferably not more than greater than 0 mol% 60 mol%.
  • the content of the P 2 O 5 is preferably from greater than 0 mol% 50 mol%.
  • the content of each oxide is the content of each oxide in the solid electrolyte, and specifically, one or more of GeO 2 , SiO 2 , B 2 O 3 and P 2 O 5 ,
  • the ratio of the content (mol) of each oxide to the total amount (mol) with Li 2 O is shown as a percentage (mol%).
  • the content of each oxide can be measured using inductively coupled plasma emission spectroscopy (ICP-AES) or the like.
  • the solid electrolyte may further contain an additive element as necessary.
  • an additive element for example, Na (sodium), Mg (magnesium), Al (aluminum), K (potassium), Ca (calcium), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese) ), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Ga (gallium), Se (selenium), Rb (rubidium), S (sulfur), Y (yttrium) ), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ag (silver), In (indium), Sn (tin), Sb (antimony), Cs (cesium), Ba (vanadium), Hf (hafnium) ), Ta (tantalum), W (tungsten), Pb (lead), Bi (bismuth), Au (gold), La (lanthanum), Nd (ne
  • the positive electrode current collecting layer 21A includes conductive particles and a solid electrolyte.
  • the conductive particles are the same as those contained in the positive electrode and negative electrode terminals 12 and 13 described above.
  • the solid electrolyte is the same as that included in the solid electrolyte layer 23 described above.
  • the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the positive electrode current collecting layer 21A may be the same or different.
  • the positive electrode current collecting layer 21A may be a metal layer containing, for example, Al, Ni, stainless steel, or the like.
  • the shape of the metal layer is, for example, a foil shape, a plate shape, or a mesh shape.
  • the positive electrode active material layer 21B includes a positive electrode active material and a solid electrolyte.
  • the solid electrolyte may have a function as a binder.
  • the positive electrode active material layer 21B may further contain a conductive agent as necessary.
  • the positive electrode active material includes, for example, a positive electrode material capable of occluding and releasing lithium ions that are electrode reactants.
  • the positive electrode material is preferably a lithium-containing compound or the like from the viewpoint of obtaining a high energy density, but is not limited thereto.
  • This lithium-containing compound is, for example, a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements, or a phosphate compound (lithium transition metal) containing lithium and a transition metal element as constituent elements. Phosphate compounds).
  • the transition metal element is preferably one or more of Co, Ni, Mn, and Fe.
  • the lithium transition metal composite oxide is represented by, for example, Li x M1O 2 or Li y M2O 4 . More specifically, for example, the lithium transition metal composite oxide is LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2, or LiMn 2 O 4 . Further, the lithium transition metal phosphate compound is represented by, for example, Li z M3PO 4 . More specifically, for example, the lithium transition metal phosphate compound is LiFePO 4 or LiCoPO 4 . However, M1 to M3 are one or more transition metal elements, and the values of x to z are arbitrary.
  • the positive electrode active material may be, for example, an oxide, disulfide, chalcogenide, or conductive polymer.
  • the oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • the disulfide include titanium disulfide and molybdenum sulfide.
  • An example of the chalcogenide is niobium selenide.
  • the conductive polymer include disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, and polyacene.
  • the solid electrolyte is the same as that included in the solid electrolyte layer 23 described above.
  • the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the positive electrode active material layer 21B may be the same or different.
  • the conductive agent is, for example, at least one of a carbon material, a metal, a metal oxide, a conductive polymer, and the like.
  • a carbon material for example, at least one of graphite, carbon fiber, carbon black, carbon nanotube, and the like can be used.
  • the carbon fiber for example, vapor growth carbon fiber (VGCF) can be used.
  • VGCF vapor growth carbon fiber
  • the carbon black for example, at least one of acetylene black and ketjen black can be used.
  • the carbon nanotube for example, a multi-wall carbon nanotube (MWCNT) such as a single wall carbon nanotube (SWCNT) or a double wall carbon nanotube (DWCNT) can be used.
  • MWCNT multi-wall carbon nanotube
  • SWCNT single wall carbon nanotube
  • DWCNT double wall carbon nanotube
  • Ni powder can be used.
  • SnO 2 can be used as the metal oxide.
  • the conductive polymer for example, at least one of substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymers selected from these can be used.
  • the conductive agent may be any material having conductivity, and is not limited to the above example.
  • the anode current collecting layer 22A includes conductive particles and a solid electrolyte.
  • the conductive particles are the same as those contained in the positive electrode and negative electrode terminals 12 and 13 described above.
  • the solid electrolyte is the same as that included in the solid electrolyte layer 23 described above.
  • the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the anode current collecting layer 22A may be the same or different.
  • the negative electrode current collecting layer 22A may be a metal layer containing, for example, Cu or stainless steel.
  • the shape of the metal layer is, for example, a foil shape, a plate shape, or a mesh shape.
  • the negative electrode active material layer 22B includes a negative electrode active material and a solid electrolyte.
  • the solid electrolyte may have a function as a binder.
  • the negative electrode layer 22 may further contain a conductive agent as necessary.
  • the negative electrode layer 22 is, for example, a green sheet sintered body as a negative electrode layer precursor.
  • the negative electrode active material includes, for example, a negative electrode material capable of occluding and releasing lithium ions that are electrode reactants.
  • the negative electrode material is preferably a carbon material or a metal-based material from the viewpoint of obtaining a high energy density, but is not limited thereto.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, graphite, mesocarbon microbeads (MCMB), and highly oriented graphite (HOPG).
  • the metal-based material is a material containing, for example, a metal element or a metalloid element capable of forming an alloy with lithium as a constituent element.
  • the metal materials are Si (silicon), Sn (tin), Al (aluminum), In (indium), Mg (magnesium), B (boron), Ga (gallium), Ge (germanium). ), Pb (lead), Bi (bismuth), Cd (cadmium), Ag (silver), Zn (zinc), Hf (hafnium), Zr (zirconium), Y (yttrium), Pd (palladium) or Pt (platinum) ) And the like, any one kind or two or more kinds of alloys or compounds.
  • the simple substance is not limited to 100% purity, and may contain a small amount of impurities.
  • the alloy or compound include SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 ⁇ v ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, Mg 2. Sn etc. are mentioned.
  • the metal-based material may be a lithium-containing compound or lithium metal (lithium simple substance).
  • the lithium-containing compound is a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements. Examples of this composite oxide include Li 4 Ti 5 O 12 .
  • the solid electrolyte is the same as that included in the solid electrolyte layer 23 described above.
  • the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the negative electrode active material layer 22B may be the same or different.
  • the conductive agent is the same as the conductive agent in the positive electrode active material layer 21B described above.
  • lithium ions released from the positive electrode active material layer 21B are taken into the negative electrode active material layer 22B via the solid electrolyte layer 23, and discharged from the negative electrode active material layer 22B during discharge.
  • the lithium ions thus taken are taken into the positive electrode active material layer 21 ⁇ / b> B through the solid electrolyte layer 23.
  • FIGS. 4A to 7B are perspective views when the battery element 20 is viewed from the first end face 11SA side, and FIGS. 4B, 5B, 6B, and 7B show the battery element 20 from the second end face 11SB side. It is a perspective view when seen.
  • a solid electrolyte and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to obtain a solid electrolyte layer forming paste.
  • the organic binder for example, an acrylic resin can be used.
  • the solvent is not particularly limited as long as it can disperse the mixture powder, but is preferably one that burns away in a temperature range lower than the sintering temperature of the solid electrolyte layer forming paste.
  • the solvent examples include lower alcohols having 4 or less carbon atoms such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, t-butanol, ethylene glycol, propylene glycol (1,3-propanediol), 1, Aliphatic glycols such as 3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, ketones such as methyl ethyl ketone, dimethylethylamine Amines such as alicyclic alcohols such as terpineol can be used alone or in admixture of two or more, but the invention is not particularly limited thereto.
  • lower alcohols having 4 or less carbon atoms such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, t-butan
  • Examples of the dispersion method include stirring treatment, ultrasonic dispersion treatment, bead dispersion treatment, kneading treatment, and homogenizer treatment.
  • examples of the organic binder and the solvent include the same materials as the solid electrolyte layer forming paste.
  • a powder of conductive particles, a Li-containing solid electrolyte having Li conductivity, and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to form a positive electrode.
  • a paste for forming a current collecting layer is obtained.
  • a mixture powder is prepared by mixing a positive electrode active material, a Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, a conductive agent. To obtain a paste for forming a positive electrode active material layer.
  • a powder of conductive particles, a Li-containing solid electrolyte having Li conductivity, and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to form a positive electrode.
  • a paste for forming a current collecting layer is obtained.
  • a mixture powder is prepared by mixing a negative electrode active material, a Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, a conductive agent. To obtain a paste for forming a negative electrode active material.
  • a Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, at least one of glass, glass ceramics, and powder of crystal particles having non-Li ion conductivity are mixed together. After preparing the agent powder, the mixture powder is dispersed in a solvent to obtain a protective layer forming paste.
  • a non-Li-containing glass having non-Li ion conductivity and a glass transition temperature of 500 ° C. or lower is mixed with an organic binder to prepare a mixture powder, which is then used as a solvent. To obtain a paste as a composition for forming an exterior material.
  • the powder of conductive particles, glass having a glass transition temperature of 500 ° C. or lower, and an organic binder are mixed to prepare a mixture powder.
  • a conductive paste (a paste for forming a positive electrode terminal and a negative electrode terminal) is obtained.
  • a paste layer is shape
  • a support substrate for example, a polymer resin film such as a polyethylene terephthalate (PET) film can be used.
  • PET polyethylene terephthalate
  • a method for coating and printing it is preferable to use a simple and suitable method for mass production. Examples of coating methods include die coating, micro gravure coating, wire bar coating, direct gravure coating, reverse roll coating, comma coating, knife coating, spray coating, curtain coating, dipping, and spin. A coating method or the like can be used, but is not particularly limited thereto.
  • a printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method, and the like can be used, but the invention is not particularly limited thereto.
  • the composition imparting releasability include a paint containing a binder as a main component and added with wax or fluorine, or a silicone resin.
  • the paste layer is dried to form a green sheet on the surface of the support substrate.
  • the drying method include natural drying, blow drying with hot air, heating drying with infrared rays or far infrared rays, vacuum drying, and the like. These drying methods may be used alone or in combination of two or more.
  • the green sheet is peeled off from the support substrate and cut into a predetermined size and shape. Thereby, the unsintered solid electrolyte layer 23 as a green sheet is obtained.
  • the green protective layer 14 as a green sheet is obtained in the same manner as in the above-described “solid electrolyte preparation step”.
  • an unsintered packaging material 15 as a green sheet is obtained in the same manner as in the above-described “solid electrolyte production step”.
  • the first laminate is produced as follows. First, the positive electrode layer forming paste is applied to one surface of the solid electrolyte layer 23 as a green sheet so that a loop-shaped uncoated portion is formed on the peripheral portion of the surface, and is dried. The active material layer 21B is formed. Subsequently, the protective layer forming paste is applied to the uncoated portion of the loop shape and dried to form the protective layer 14 having substantially the same thickness as the positive electrode active material layer 21B. Thereafter, the paste for forming the positive electrode current collecting layer is applied to the surface formed by the positive electrode active material layer 21B and the protective layer 14 so that a U-shaped uncoated portion is formed at the peripheral portion of the surface and dried. Thus, the positive electrode current collecting layer 21A is formed. Finally, the protective layer forming paste is applied to the U-shaped unapplied portion and dried to form the protective layer 14 having substantially the same thickness as the positive electrode current collecting layer 21A. Thus, the first laminate is obtained.
  • the second laminate is produced as follows. First, a solid electrolyte layer 23 as a green sheet is prepared separately from the first laminate. Then, the negative electrode layer forming paste is applied to one surface of the solid electrolyte layer 23 so that a loop-shaped uncoated portion is formed on the peripheral portion of the surface, and is dried, whereby the negative electrode active material layer 22B. Form. Subsequently, the protective layer forming paste is applied to the loop-shaped uncoated portion and dried, thereby forming the protective layer 14 having substantially the same thickness as the negative electrode active material layer 22B.
  • the paste for forming the negative electrode current collecting layer is applied to the surface formed by the negative electrode active material layer 22B and the protective layer 14 so that a U-shaped uncoated portion is formed at the peripheral portion of the surface and dried.
  • the negative electrode current collecting layer 22A is formed.
  • the protective layer forming paste is applied to the U-shaped uncoated portion and dried to form the protective layer 14 having substantially the same thickness as the negative electrode current collecting layer 22A.
  • the negative electrode active material layer forming paste is applied to the surface formed by the negative electrode current collecting layer 22A and the protective layer 14 so that a loop-shaped uncoated portion is formed at the peripheral portion of the surface, and is dried.
  • the negative electrode active material layer 22B is formed.
  • a protective layer forming paste having the same thickness as that of the negative electrode active material layer 22 ⁇ / b> B is formed by applying the protective layer forming paste to the loop-shaped uncoated portion and drying the paste.
  • the positive electrode active material layer 21 ⁇ / b> B, the positive electrode current collecting layer 21 ⁇ / b> A, and the protective layer 14 are formed on the other surface of the solid electrolyte layer 23 in the same manner as in the first laminate manufacturing process.
  • the second laminate is obtained.
  • the surface of the battery element 20 excluding the first and second end faces 11SA and 11SB is made of glass having a glass transition temperature of 500 ° C. or lower (that is, glass that melts at 500 ° C. or lower).
  • a crystalline powder layer having a thickness of 50 ⁇ m including crystal particles that do not melt at the glass transition temperature of the glass contained in the packaging material 15 is formed on the surface of the packaging material 15.
  • the glass contained in the exterior material 15 is sintered at 500 ° C. or lower.
  • the crystal particles contained in the crystalline powder layer are held in a particle state.
  • the powder of crystal particles existing at the interface between the exterior material 15 and the crystalline powder layer 16 ⁇ / b> A is bound to the surface of the exterior material 15.
  • the powder of crystal particles may be embedded in the interior of the exterior material 15, It may be bound to the surface of the exterior material 15 and embedded in the exterior material 15.
  • the crystalline powder layer is removed as shown in FIGS. 7A and 7B.
  • the first and second end faces 11SA and 11SB are dip-coated with a conductive paste and dried to form the positive and negative terminals 12 and 13, respectively. Thereafter, after burning (degreasing) the organic binder contained in the positive electrode and the negative electrode terminals 12 and 13, the glass contained in them is sintered at a sintering temperature or lower (that is, 500 ° C. or lower) of the exterior material 15. Let Thereby, the all-solid-state battery shown in FIG. 1 is obtained.
  • the protective layer 14 containing a solid electrolyte is provided between the battery element 20 having a laminated structure and the exterior material 15 that suppresses moisture permeation, the battery element 20 and the exterior material 15 are electrically and chemically insulated. can do. Therefore, a stable charge / discharge cycle is possible.
  • the battery element 20 is covered with the dense exterior material 15, moisture permeation to the battery element 20 can be suppressed even if the average thickness of the exterior material 15 is 100 ⁇ m or less. Therefore, a stable charge / discharge operation can be realized.
  • the exterior material 15 after forming the crystalline powder layer 16A including the powder of the crystal particles 16 that does not melt at the sintering temperature of the exterior material 15 on the exterior material 15 including glass, the exterior Since the material 15 is sintered, the exterior material 15 can be prevented from shrinking in the in-plane direction of the main surface of the battery element 20 during sintering. Therefore, generation
  • the exterior material 15 Since the crystalline powder layer 16A containing the powder of the crystal particles 16 that does not melt at the sintering temperature of the exterior material 15 is provided on the surface of the exterior battery element 11, the exterior material 15 is used as a support base (susceptor) for the exterior battery element 11.
  • the exterior material 15 can be sintered without being in close contact. Therefore, since it can suppress that the exterior battery element 11 adheres to a support stand, workability
  • the negative electrode layer 24 is a negative electrode active material layer containing a negative electrode active material and a solid electrolyte.
  • the solid electrolyte may have a function as a binder.
  • the negative electrode layer 24 may further contain a conductive agent as necessary.
  • the negative electrode active material is the same as that included in the negative electrode active material layer 22B in the first embodiment. In addition, it may replace with the positive electrode layer 21 of a two-layer structure, and the structure provided with the positive electrode layer of a single layer structure may be employ
  • (Modification 2) In the first embodiment, the configuration in which the battery element 20 includes the two positive electrode layers 21, the one negative electrode layer 22, and the two solid electrolyte layers 23 has been described.
  • the number of layers of the positive electrode layer 21, the negative electrode layer 22, and the solid electrolyte layer 23 is not particularly limited as long as the positive electrode layer 21 and the negative electrode layer 22 are stacked via the solid electrolyte layer 23.
  • FIG. 9 shows an example of a configuration in which the battery element 20 includes four positive electrode layers 21, four negative electrode layers 22, and seven solid electrolyte layers 23.
  • the positive electrode layers 21 and the negative electrode layers 22 are alternately stacked with the solid electrolyte layers 23 interposed therebetween.
  • a positive electrode layer 21 is provided at one end of the battery element 20, and a negative electrode layer 22 is provided at the other end.
  • the positive electrode layer 21 located at one end of the battery element 20 is the main electrode on the side facing the negative electrode layer 22 of both main surfaces of the positive electrode current collector layer 21 ⁇ / b> A and the positive electrode current collector layer 21 ⁇ / b> A.
  • a positive electrode active material layer 21B provided on the surface.
  • the positive electrode layer 21 located at a position other than one end of the battery element 20 includes a positive electrode current collecting layer 21 ⁇ / b> A and a positive electrode active material layer 21 ⁇ / b> B provided on both main surfaces of the positive electrode current collecting layer 21 ⁇ / b> A. Is provided.
  • the negative electrode layer 22 located at the other end of the battery element 20 is on the side facing the positive electrode layer 21 of both main surfaces of the negative electrode current collector layer 22 ⁇ / b> A and the negative electrode current collector layer 22 ⁇ / b> A.
  • the negative electrode layer 22 positioned other than the other end of the battery element 20 includes a negative electrode current collecting layer 22 ⁇ / b> A and a negative electrode active material layer 22 ⁇ / b> B provided on both main surfaces of the negative electrode current collecting layer 22 ⁇ / b> A.
  • One end of the four positive electrode current collecting layers 21A is exposed from the first end face 11SA.
  • the positive electrode terminal 12 is electrically connected to one end of the exposed four positive electrode current collecting layers 21A.
  • one end of the four negative electrode current collecting layers 22A is exposed from the second end face 11SB.
  • a negative electrode terminal 13 is electrically connected to one end of the exposed negative electrode current collecting layer 22A.
  • the shape of the main surface of the external battery element 11 is a square has been described, but the shape of the main surface of the external battery element 11 is not particularly limited. For example, a circle, an ellipse, a polygon other than a quadrangle, an indefinite shape, or the like can be given.
  • the shape of the external battery element 11 is not limited to a plate shape, and may be a sheet shape or a block shape. Moreover, the exterior battery element 11 may be curved or bent.
  • the layer not including the solid electrolyte may be a thin film formed by a vapor deposition method such as a vapor deposition method or a sputtering method.
  • the solid electrolyte contained in 21 A of positive electrode current collection layers, 21 B of positive electrode active material layers, the negative electrode layer 22, and the solid electrolyte layer 23 is not specifically limited.
  • Examples of the solid electrolyte other than the solid electrolyte of the first embodiment include a perovskite oxide crystal composed of La—Li—Ti—O and the like, and a garnet oxidation composed of Li—La—Zr—O and the like.
  • a phosphoric acid compound (LATP) containing constituent crystals, lithium, aluminum and titanium as constituent elements, a phosphoric acid compound (LAGP) containing lithium, aluminum and germanium as constituent elements can be used.
  • sulfides such as Li 2 S—P 2 S 5 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S, or Li 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al x Ti 2-x (PO 4 ) 3 or La 2/3
  • An oxide such as -x Li 3x TiO 3 can also be used.
  • the structure of the battery element 20 is not particularly limited, and may have a bipolar stacked structure. Further, at least one of the positive electrode current collecting layer 21A, the positive electrode active material layer 21B, the negative electrode current collecting layer 22A, and the negative electrode active material layer 22B may be a green sheet sintered body. Further, at least one of positive electrode current collecting layer 21A, positive electrode active material layer 21B, negative electrode current collecting layer 22A, negative electrode active material layer 22B, and solid electrolyte layer 23 may be a green compact. The green compact does not need to contain an organic binder.
  • the exterior material 15 includes powder of crystal particles 16 in portions corresponding to the third and fourth end surfaces 11 ⁇ / b> SC and 11 ⁇ / b> SD. This is different from the battery according to the first embodiment.
  • FIGS. 4 and 12A to 15B are perspective views when the battery element 20 is viewed from the first end surface 11SA side, and FIGS. 4B, 12B, 13B, 14B, and 15B are from the second end surface 11SB side. It is a perspective view when the battery element 20 and the exterior battery element 31 are seen.
  • a Li-containing battery element 20 covered with a Li-containing protective layer 14 having Li ion conductivity is manufactured.
  • both main surfaces of the battery element 20 covered with the protective layer 14 include glass having a glass transition temperature of 500 ° C. or lower (that is, glass that melts at 500 ° C. or lower). Cover with exterior material 15.
  • a crystalline powder layer 16 ⁇ / b> A having a thickness of 50 ⁇ m including crystals that do not melt at the glass transition temperature of the glass included in the exterior material 15 is formed on the exterior material 15.
  • the solid electrolyte contained in the battery element 20 and the protective layer 14. (For example, oxide glass) and the glass contained in the exterior material 15 are simultaneously sintered at 500 ° C. or lower. At this time, the powder of crystal particles existing at the interface between the exterior material 15 and the crystalline powder layer 16 ⁇ / b> A is bound to the surface of the exterior material 15.
  • the crystalline powder layer 16A is removed from the protective layer 14 as shown in FIGS. 14A and 14B.
  • the packaging material forming paste is dip coated on the third and fourth end surfaces 11SC and 11SD and dried, so that the packaging material 15 is applied to the third and fourth end surfaces 11SC and 11SD.
  • the first and second end faces 11SA and 11SB of the exterior battery element 31 are dip-coated with a conductive paste and dried to form the positive and negative terminals 12 and 13.
  • the exterior binder 15 formed on the third and fourth end faces 11SC and 11SD and the organic binder contained in the positive electrode and the negative electrode terminals 12 and 13 are simultaneously burned (degreased) and then included.
  • the glass is simultaneously sintered at a temperature equal to or lower than the sintering temperature of the outer package 15 (that is, 500 ° C. or lower). Thereby, the battery shown in FIG. 10 is obtained.
  • the battery described above can be mounted on a printed circuit board together with a charging circuit or the like.
  • an electronic circuit such as an all-solid battery and a charging circuit can be mounted on a printed circuit board by a reflow process.
  • the printed circuit board is an example of a battery module, and may be a portable card type mobile battery.
  • FIG. 16 shows an example of the configuration of the printed circuit board 1201.
  • the printed circuit board 1201 includes a board 1202, an all solid state battery 1203 provided on one side of the board 1202, a charge / discharge control IC (Integrated Circuit) 1204, a battery protection IC 1205, a battery remaining amount monitoring IC 1206, and a USB (Universal Serial Bus). And an interface 1207.
  • Integrated Circuit Integrated Circuit
  • a battery protection IC 1205, a battery remaining amount monitoring IC 1206, and a USB (Universal Serial Bus).
  • USB Universal Serial Bus
  • the substrate 1202 is, for example, a rigid substrate.
  • the all-solid-state battery 1203 is a battery according to any one of the first and second embodiments and modifications thereof.
  • the charge / discharge control IC 1204 is a control unit that controls the charge / discharge operation for the all-solid battery 1203.
  • the battery protection IC 1205 is a control unit that controls the charging / discharging operation so that the charging voltage does not become excessive at the time of charging / discharging, the overcurrent flows due to the load short circuit, and the overdischarging does not occur.
  • the battery remaining amount monitoring IC 1206 is a monitoring unit that monitors the remaining battery amount of the all-solid-state battery 1203 and notifies the load (for example, host device) 1209 to the remaining battery amount.
  • the all-solid-state battery 1203 is charged by the power supplied from the external power source or the like via the USB interface 1207.
  • Predetermined power for example, a voltage of 4.2 V
  • the USB interface 1207 may be used for connection with a load.
  • the load 1209 include wearable devices (sports watches, watches, hearing aids, etc.), IoT terminals (sensor network terminals, etc.), amusement devices (portable game terminals, game controllers), IC board embedded batteries (real-time clock ICs), Examples include energy harvesting devices (storage elements for power generation elements such as solar power generation, thermoelectric power generation, and vibration power generation).
  • the universal credit card is a card in which functions such as a plurality of credit cards and point cards are integrated into one card. For example, information such as the number and expiration date of various credit cards and point cards can be taken into this card, so if you put one card in your wallet, you can use it whenever you want. You can select and use the correct card.
  • FIG. 17 shows an example of the configuration of the universal credit card 1301.
  • the universal credit card 1301 has a card shape and includes an IC chip (not shown) and an all-solid battery inside.
  • the universal credit card 1301 includes a display 1302 with low power consumption on one side, direction keys 1303a and 1303b as operation units, and a charging terminal 1304.
  • the all-solid-state battery is a battery according to any one of the first and second embodiments and modifications thereof.
  • the user can designate a desired one from a plurality of credit cards loaded in advance on the universal credit card 1301 by operating the direction keys 1303a and 1303b while looking at the display 1302. After designation, it can be used like a conventional credit card.
  • the battery according to any of the first and second embodiments and the modifications thereof can be applied to any electronic card other than the universal credit card 1301.
  • a wireless terminal in a wireless sensor network is called a sensor node, and includes one or more wireless chips, a microprocessor, a power source (battery), and the like.
  • Specific examples of sensor networks are used to monitor energy saving management, health management, industrial measurement, traffic conditions, agriculture, and the like.
  • As the type of sensor voltage, temperature, gas, illuminance and the like are used.
  • a power monitor node In the case of energy saving management, a power monitor node, a temperature / humidity node, an illuminance node, a CO 2 node, a human sensor node, a remote control node, a router (relay machine), and the like are used as sensor nodes. These sensor nodes are provided so as to constitute a wireless network in homes, office buildings, factories, stores, amusement facilities, and the like.
  • Data such as temperature, humidity, illuminance, CO 2 concentration, and electric energy is displayed so that the energy saving status of the environment can be seen. Furthermore, on / off control of lighting, air-conditioning facilities, ventilation facilities, etc. is performed according to commands from the control station.
  • ZigBee (registered trademark) can be used as one of the wireless interfaces of the sensor network.
  • This wireless interface is one of the short-range wireless communication standards, and has a feature that it is inexpensive and consumes less power, instead of having a short transferable distance and a low transfer speed. Therefore, it is suitable for mounting on a battery-driven device.
  • the basic part of this communication standard is standardized as IEEE 802.15.4.
  • the ZigBee (Registered Trademark) Alliance has formulated specifications for communication protocols between devices above the logical layer.
  • FIG. 18 shows an example of the configuration of the wireless sensor node 1401.
  • a detection signal of the sensor 1402 is supplied to an AD conversion circuit 1404 of a microprocessor (MPU) 1403.
  • MPU microprocessor
  • the various sensors described above can be used as the sensor 1402.
  • a memory 1406 is provided in association with the microprocessor 1403.
  • the output of the battery 1407 is supplied to the power supply control unit 1408, and the power supply of the sensor node 1401 is managed.
  • the battery 1407 is a battery according to any one of the first and second embodiments and the modifications thereof.
  • the program is installed in the microprocessor 1403.
  • the microprocessor 1403 processes the detection result data of the sensor 1402 output from the AD conversion circuit 1404 according to the program.
  • a wireless communication unit 1409 is connected to the communication control unit 1405 of the microprocessor 1403, and detection result data is transmitted from the wireless communication unit 1409 to a network terminal (not shown) using, for example, ZigBee (registered trademark). And connected to the network via a network terminal.
  • a predetermined number of wireless sensor nodes can be connected to one network terminal.
  • the network type may be a tree type, a mesh type, a linear type, or the like.
  • Wristband electronic devices as application examples
  • Wristband electronic devices can acquire data related to human activities such as the number of steps, distance traveled, calories burned, amount of sleep, heart rate, etc. just by wrapping around the wrist.
  • the acquired data can also be managed with a smartphone.
  • a mail transmission / reception function can be provided. For example, an incoming mail can be notified to the user by an LED (Light Emitting Diode) lamp and / or vibration.
  • LED Light Emitting Diode
  • FIG. 19 shows an example of the appearance of the wristband type electronic device 1601.
  • the electronic device 1601 is a so-called wearable device that is detachable from the human body.
  • the electronic device 1601 includes a band portion 1611 attached to the arm, a display device 1612 that displays numbers, characters, symbols, and the like, and operation buttons 1613.
  • the band portion 1611 is formed with a plurality of hole portions 1611a and protrusions 1611b provided on the inner peripheral surface (the surface that comes into contact with the arm when the electronic device 1601 is attached).
  • the electronic device 1601 In the state of use, the electronic device 1601 is bent so that the band portion 1611 is substantially circular as shown in FIG. 19, and the protrusion 1611b is inserted into the hole portion 1611a and attached to the arm. By adjusting the position of the hole 1611a into which the protrusion 1611b is inserted, the diameter can be adjusted corresponding to the thickness of the arm.
  • the protrusion 1611b is removed from the hole 1611a, and the band 1611 is stored in a substantially flat state. Inside the band part 1611, a sensor (not shown) is provided over almost the entire band part 1611.
  • FIG. 20 shows an example of the configuration of the electronic device 1601.
  • the electronic device 1601 includes a controller IC 1615 as a drive control unit, a sensor 1620, a host device 1616, a battery 1617 as a power source, and a charge / discharge control unit 1618.
  • Sensor 1620 may include a controller IC 1615.
  • the sensor 1620 can detect both pressing and bending.
  • the sensor 1620 detects a change in capacitance according to the pressing, and outputs an output signal corresponding to the change to the controller IC 1615. Further, the sensor 1620 detects a change in resistance value (resistance change) according to bending, and outputs an output signal corresponding to the change to the controller IC 1615.
  • the controller IC 1615 detects pressing and bending of the sensor 1620 based on the output signal from the sensor 1620 and outputs information corresponding to the detection result to the host device 1616.
  • the host device 1616 executes various processes based on information supplied from the controller IC 1615. For example, processing such as displaying character information and image information on the display device 1612, moving the cursor displayed on the display device 1612, scrolling the screen, and the like is executed.
  • the display device 1612 is, for example, a flexible display device, and displays a video (screen) based on a video signal, a control signal, or the like supplied from the host device 1616.
  • Examples of the display device 1612 include, but are not limited to, a liquid crystal display, an electroluminescence (EL) display, and electronic paper.
  • the battery 1617 is a battery according to any one of the first and second embodiments and the modifications thereof.
  • the charge / discharge control unit 1618 controls the charge / discharge operation of the battery 1617. Specifically, charging of the battery 1617 from an external power source or the like is controlled. Further, power supply from the battery 1617 to the host device 1616 is controlled.
  • Smart watch as an application Hereinafter, an application example in which the present disclosure is applied to a smart watch will be described.
  • This smart watch has the same or similar appearance as the design of an existing wristwatch, and is worn on the user's wrist in the same way as a wristwatch.
  • the information displayed on the display is used for telephone and e-mail. It has a function of notifying the user of various messages such as incoming calls. Further, it may have a function such as an electronic money function and an activity meter, or may have a function of performing short-range wireless communication such as Bluetooth (registered trademark) with a communication terminal (smartphone or the like).
  • FIG. 21 shows an example of the overall configuration of the smart watch 2000.
  • the smart watch 2000 includes a watch body 3000 and a band type electronic device 2100.
  • the watch body 3000 includes a dial 3100 for displaying time.
  • the watch body 3000 may display the time electronically on a liquid crystal display or the like instead of the dial 3100.
  • the band-type electronic device 2100 is a metal band attached to the watch body 3000, and is attached to the user's arm.
  • the band-type electronic device 2100 has a configuration in which a plurality of segments 2110 to 2230 are connected.
  • the segment 2110 is attached to one band attachment hole of the watch body 3000, and the segment 2230 is attached to the other band attachment hole of the watch body 3000.
  • Each of the segments 2110 to 2230 is made of metal.
  • FIG. 21 shows a state in which the watch main body 3000 and the segment 2230 are separated in order to describe an example of the configuration of the band-type electronic device 2100, but the segment 2230 is attached to the watch main body 3000 in actual use. .
  • the smart watch 2000 can be mounted on the user's arm in the same manner as a normal wristwatch.
  • the connection location of each segment 2110 to 2230 can be moved. Since the connection part of the segment is movable, the band-type electronic device 2100 can be fitted to the user's arm.
  • a buckle portion 2300 is disposed between the segment 2170 and the segment 2160.
  • the buckle portion 2300 extends long when unlocked and shortens when locked.
  • Each segment 2110 to 2230 has a plurality of sizes.
  • FIG. 22 illustrates an example of a circuit configuration of the band-type electronic device 2100.
  • the circuit inside the band-type electronic device 2100 has a configuration independent of the watch main body 3000.
  • the watch main body 3000 includes a movement unit 3200 that rotates hands arranged on the dial 3100.
  • a battery 3300 is connected to the movement unit 3200.
  • the movement unit 3200 and the battery 3300 are built in the casing of the watch main body 3000.
  • the battery 3300 is a battery according to any of the first and second embodiments and the modifications thereof.
  • the three segments 2170, 2190, and 2210 are arranged with electronic components and the like.
  • a data processing unit 4101, a wireless communication unit 4102, an NFC communication unit 4104, and a GPS unit 4106 are arranged.
  • Antennas 4103, 4105, and 4107 are connected to the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106, respectively.
  • Each antenna 4103, 4105, and 4107 is arrange
  • the wireless communication unit 4102 performs short-range wireless communication with other terminals based on, for example, Bluetooth (registered trademark) standards.
  • the NFC communication unit 4104 performs wireless communication with an adjacent reader / writer according to the NFC standard.
  • the GPS unit 4106 is a positioning unit that receives radio waves from a satellite of a system called GPS (Global Positioning System) and measures the current position. Data obtained by the wireless communication unit 4102, NFC communication unit 4104, and GPS unit 4106 is supplied to the data processing unit 4101.
  • GPS Global Positioning System
  • a display 4108 In the segment 2170, a display 4108, a vibrator 4109, a motion sensor 4110, and an audio processing unit 4111 are arranged.
  • the display 4108 and the vibrator 4109 function as a notification unit that notifies the wearer of the band-type electronic device 2100.
  • the display 4108 includes a plurality of light emitting diodes, and notifies the user by lighting or blinking of the light emitting diodes.
  • the plurality of light-emitting diodes are disposed, for example, in a slit (not shown) included in the segment 2170, and notification of incoming calls, reception of e-mails, and the like is made by lighting or blinking.
  • a display that displays characters, numbers, and the like may be used.
  • Vibrator 4109 is a member that vibrates segment 2170.
  • the band-type electronic device 2100 notifies an incoming call, an e-mail, or the like by the vibration of the segment 2170 by the vibrator 41
  • Motion sensor 4110 detects the movement of the user wearing smart watch 2000.
  • an acceleration sensor As the motion sensor 4110, an acceleration sensor, a gyro sensor, an electronic compass, an atmospheric pressure sensor, or the like is used.
  • the segment 2170 may incorporate a sensor other than the motion sensor 4110.
  • a biosensor that detects the pulse of the user wearing the smart watch 2000 may be incorporated.
  • a microphone 4112 and a speaker 4113 are connected to the audio processing unit 4111, and the audio processing unit 4111 performs a call process with the other party connected by wireless communication in the wireless communication unit 4102.
  • the voice processing unit 4111 can also perform processing for voice input operation.
  • a battery 2411 is incorporated, and in the segment 2210, a battery 2421 is incorporated.
  • the batteries 2411 and 2421 supply driving power to the circuits in the segment 2170.
  • the circuit in the segment 2170 and the batteries 2411 and 2421 are connected by a flexible circuit board (not shown).
  • the segment 2170 includes terminals for charging the batteries 2411 and 2421.
  • electronic components other than the batteries 2411 and 2421 may be disposed in the segments 2190 and 2210.
  • the segments 2190 and 2210 may include a circuit that controls charging and discharging of the batteries 2411 and 2421.
  • the batteries 2411 and 2421 are batteries according to any one of the first and second embodiments and modifications thereof.
  • Glasses type terminal as an application example
  • a glasses-type terminal represented by a kind of head-mounted display head-mounted display (HMD)
  • the glasses-type terminal described below can display information such as text, symbols, and images superimposed on the scenery in front of you. That is, a light-weight and thin image display device display module dedicated to a transmissive glasses-type terminal is mounted.
  • This image display device comprises an optical engine and a hologram light guide plate.
  • the optical engine emits image light such as an image and text using a micro display lens. This image light is incident on the hologram light guide plate.
  • a hologram light guide plate has hologram optical elements incorporated at both ends of a transparent plate, and propagates image light from an optical engine through a very thin transparent plate having a thickness of 1 mm to the eyes of an observer. deliver. With such a configuration, a lens having a transmittance of, for example, 85% and a thickness of 3 mm (including protective plates before and after the light guide plate) is realized. With such a glasses-type terminal, it is possible to see the results of players and teams in real time while watching sports, and to display a tourist guide at a destination.
  • the image display unit has a glasses-type configuration. That is, as with normal glasses, the frame 5003 for holding the right image display unit 5001 and the left image display unit 5002 is provided in front of the eyes.
  • the frame 5003 includes a front portion 5004 disposed in front of the observer, and two temple portions 5005 and 5006 that are rotatably attached to both ends of the front portion 5004 via hinges.
  • the frame 5003 is made of the same material as that of normal glasses, such as metal, alloy, plastic, or a combination thereof.
  • a headphone unit may be provided.
  • the right image display unit 5001 and the left image display unit 5002 are arranged so as to be positioned in front of the user's right eye and in front of the left eye, respectively.
  • Temple units 5005 and 5006 hold a right image display unit 5001 and a left image display unit 5002 on the user's head.
  • a right display driving unit 5007 is disposed inside the temple unit 5005 at a connection portion between the front unit 5004 and the temple unit 5005.
  • a left display driving unit 5008 is arranged inside the temple unit 5006 at a connection portion between the front unit 5004 and the temple unit 5006.
  • the frame 5003 is provided with batteries 5009 and 5010. Batteries 5009 and 5010 are batteries according to any one of the first and second embodiments and modifications thereof. Although omitted in FIG. 23, the frame 5003 is provided with an acceleration sensor, a gyro, an electronic compass, a microphone / speaker, and the like. Further, the frame 5003 is provided with an imaging device so that still images / moving images can be taken. Further, the frame 5003 is provided with a controller connected to the glasses unit by, for example, a wireless or wired interface. The controller is provided with a touch sensor, various buttons, a speaker, a microphone, and the like. Further, the frame 5003 has a cooperation function with a smartphone. For example, it is possible to provide information according to the user's situation by utilizing the GPS function of a smartphone.
  • the image display device the right image display unit 5001 or the left image display unit 5002 will be mainly described.
  • FIG. 24 shows an example of the configuration of an image display device (right image display unit 5001 or left image display unit 5002) of a glasses-type terminal.
  • the image display device 5100 includes an image generation device 5110 and an optical device (light guide unit) 5120 that receives the light emitted from the image generation device 5110 and is guided toward the observer's pupil 5041. Has been.
  • the optical device 5120 is attached to the image generation device 5110.
  • the optical device 5120 includes the optical device having the first configuration, and the light incident from the image generation device 5110 propagates through the interior by total reflection, and then is emitted toward the observer's pupil 5041.
  • the first light deflecting unit 5130 that deflects the light incident on the light guide plate 5121 and the light guide plate 5121 are propagated by total reflection so that the light incident on the light guide plate 5121 is totally reflected inside the light guide plate 5121.
  • second deflection means 5140 is provided that deflects the light propagated through the light guide plate 5121 by total reflection over a plurality of times.
  • the first deflecting unit 5130 and the second deflecting unit 5140 are disposed inside the light guide plate 5121.
  • the first deflecting unit 5130 reflects the light incident on the light guide plate 5121
  • the second deflecting unit 5140 transmits the light propagating through the light guide plate 5121 by total reflection, and transmits and reflects the light.
  • the first deflecting unit 5130 functions as a reflecting mirror
  • the second deflecting unit 5140 functions as a semi-transmissive mirror.
  • the first deflecting means 5130 provided inside the light guide plate 5121 is made of aluminum, and is composed of a light reflecting film (a kind of mirror) that reflects light incident on the light guide plate 5121. .
  • the second deflecting means 5140 provided inside the light guide plate 5121 is composed of a multilayer laminated structure in which a large number of dielectric laminated films are laminated.
  • the dielectric laminated film is composed of, for example, a TiO 2 film as a high dielectric constant material and an SiO 2 film as a low dielectric constant material.
  • a thin piece made of the same material as that constituting the light guide plate 5121 is sandwiched between the dielectric laminated film and the dielectric laminated film.
  • the parallel light incident on the light guide plate 5121 is reflected (or diffracted) so that the parallel light incident on the light guide plate 5121 is totally reflected inside the light guide plate 5121.
  • the parallel light propagated through the light guide plate 5121 by total reflection is reflected (or diffracted) a plurality of times and is emitted from the light guide plate 5121 in the state of parallel light.
  • the first deflecting unit 5130 cuts out a portion 5124 of the light guide plate 5121 where the first deflecting unit 5130 is provided, thereby providing the light guide plate 5121 with an inclined surface on which the first deflecting unit 5130 is to be formed, and vacuuming the light reflecting film on the inclined surface. After vapor deposition, the cut-out portion 5124 of the light guide plate 5121 may be bonded to the first deflecting means 5130.
  • the second deflecting unit 5140 is formed by laminating a large number of the same material (for example, glass) as the material constituting the light guide plate 5121 and a dielectric laminated film (for example, it can be formed by a vacuum deposition method).
  • a multilayer laminated structure is manufactured, and a portion 5125 provided with the second deflecting means 5140 of the light guide plate 5121 is cut out to form a slope, and the multilayer laminated structure is bonded to the slope and polished to adjust the outer shape. That's fine. In this way, an optical device 5120 in which the first deflection unit 5130 and the second deflection unit 5140 are provided inside the light guide plate 5121 can be obtained.
  • the light guide plate 5121 made of optical glass or plastic material has two parallel surfaces (a first surface 5122 and a second surface 5123) extending in parallel with the axis of the light guide plate 5121.
  • the first surface 5122 and the second surface 5123 are opposed to each other. Then, parallel light enters from the first surface 5122 corresponding to the light incident surface, propagates through the interior by total reflection, and then exits from the first surface 5122 corresponding to the light exit surface.
  • the image generation device 5110 includes the first configuration image generation device, the image formation device 5111 having a plurality of pixels arranged in a two-dimensional matrix, and the pixels of the image formation device 5111.
  • a collimating optical system 5112 for emitting light as parallel light is provided.
  • the image forming apparatus 5111 includes a reflective spatial light modulator 5150 and a light source 5153 including a light emitting diode that emits white light. More specifically, the reflective spatial light modulator 5150 reflects a part of light from a liquid crystal display (LCD) 5151 composed of LCOS (Liquid Crystal On On Silicon) as a light valve and a light source 5153.
  • the polarizing beam splitter 5152 is guided to the liquid crystal display device 5151, and part of the light reflected by the liquid crystal display device 5151 is transmitted to the collimating optical system 5112.
  • the LCD is not limited to the LCOS type.
  • the liquid crystal display device 5151 includes a plurality of (for example, 320 ⁇ 240) pixels arranged in a two-dimensional matrix.
  • the polarization beam splitter 5152 has a known configuration and structure. Non-polarized light emitted from the light source 5153 collides with the polarization beam splitter 5152. In the polarization beam splitter 5152, the P-polarized component passes and is emitted out of the system. On the other hand, the S-polarized component is reflected by the polarization beam splitter 5152, enters the liquid crystal display device 5151, is reflected inside the liquid crystal display device 5151, and is emitted from the liquid crystal display device 5151.
  • the light emitted from the liquid crystal display device 5151 contains a lot of P-polarized light components, and the light emitted from the pixel displaying “black” is S-polarized light. Contains many ingredients. Therefore, among the light emitted from the liquid crystal display device 5151 and colliding with the polarization beam splitter 5152, the P-polarized component passes through the polarization beam splitter 5152 and is guided to the collimating optical system 5112.
  • the liquid crystal display device 5151 includes, for example, a plurality of (for example, 320 ⁇ 240) pixels (the number of liquid crystal cells is three times the number of pixels) arranged in a two-dimensional matrix.
  • the collimating optical system 112 is composed of, for example, a convex lens, and in order to generate parallel light, the image forming apparatus 5111 (more specifically, the liquid crystal display device 5151) is located at the focal position (position) in the collimating optical system 5112. Is arranged.
  • One pixel is composed of a red light emitting subpixel that emits red, a green light emitting subpixel that emits green, and a blue light emitting subpixel that emits blue.
  • FIG. 25 schematically illustrates an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed.
  • the above-described power storage device of the present disclosure is applied to the battery 7208.
  • Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source.
  • An example of the power driving force conversion device 7203 is a motor.
  • the electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b.
  • the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary.
  • Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown).
  • Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
  • the battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
  • a series hybrid vehicle that runs on a motor using electric power generated by a generator driven by an engine or electric power stored once in a battery has been described as an example.
  • the present disclosure is also effective for a parallel hybrid vehicle that uses both the engine and motor outputs as the drive source, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable.
  • the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • Storage system in a house as an application example An example in which the present disclosure is applied to a residential power storage system will be described with reference to FIG.
  • a power storage system 9100 for a house 9001 power is stored from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c through a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like. Supplied to the device 9003.
  • power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004.
  • the electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003.
  • the same power storage system can be used not only for the house 9001 but also for buildings.
  • the house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information.
  • Each device is connected by a power network 9009 and an information network 9012.
  • a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003.
  • the power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like.
  • the electric power consumption device 9005 includes an electric vehicle 9006.
  • the electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
  • the battery unit of the present disclosure described above is applied to the power storage device 9003.
  • the power storage device 9003 is composed of a secondary battery or a capacitor.
  • a lithium ion battery is used.
  • the lithium ion battery may be a stationary type or used in the electric vehicle 9006.
  • the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information on the house 9001 to an external power company or the like via the Internet.
  • the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
  • a communication method of the information network 9012 connected to the control device 9010 a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark), or the like.
  • a sensor network based on a wireless communication standard such as Wi-Fi.
  • the Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4).
  • IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 9010 is connected to an external server 9013.
  • the server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider.
  • Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • a control device 9010 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example.
  • the control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, various sensors 9011, the server 9013 and the information network 9012, for example, a function of adjusting the amount of commercial power used and the amount of power generation have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
  • control device 9010 is stored in the power storage device 9003.
  • control device 9010 may be stored in the smart meter 9007, or may be configured independently.
  • the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the present technology can be applied to various electronic devices including a battery, and is not limited to the electronic devices described in the above application examples.
  • electronic devices other than the application examples described above include notebook personal computers, tablet computers, mobile phones (for example, smartphones), personal digital assistants (PDAs), display devices (LCD, EL displays, electronic devices).
  • Imaging devices eg digital still cameras, digital video cameras, etc.
  • audio equipment eg portable audio players
  • game machines cordless phones, electronic books, electronic dictionaries, radios, headphones, navigation systems, memory cards , Pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot, road conditioner, communication Although aircraft and the like, without such limited thereto.
  • the present technology can also employ the following configurations.
  • a battery element containing Li An exterior material covering the battery element;
  • An all-solid-state battery comprising: a protective layer provided between the battery element and the exterior material and including Li.
  • the average particle size of the crystal particles is the all solid state battery according to (2) or (3), which is 10 ⁇ m or less.
  • the exterior material includes glass, The all-solid-state battery according to any one of (2) to (4), wherein the crystal particles include crystals that do not melt at the glass transition temperature of the glass.
  • the protective layer includes a solid electrolyte containing Li, The all-solid-state battery according to any one of (1) to (5), wherein a volume occupation ratio of the solid electrolyte in the protective layer is 10 vol% or more.
  • the average thickness of the said exterior material is an all-solid-state battery in any one of (1) to (8) which is 100 micrometers or less.
  • Li ion conductivity of the exterior material is 1 ⁇ 10 ⁇ 8 S / cm or less
  • the all-solid-state battery in any one of (1) to (9) whose electrical conductivity of the said exterior material is 1 * 10 ⁇ -8 > S / cm or less.
  • the exterior material includes glass, The all-solid-state battery according to any one of (1) to (11), wherein the glass includes at least one of B, Bi, Te, P, V, Sn, Pb, and Si.
  • the battery element includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, The all-solid-state battery in any one of (1) to (12) in which the said positive electrode layer, the said negative electrode layer, and the said solid electrolyte layer contain the solid electrolyte containing Li.
  • the positive electrode layer includes a positive electrode current collecting layer and a positive electrode active material layer,
  • the negative electrode layer includes a negative electrode current collecting layer and a negative electrode active material layer, A positive electrode terminal provided on a portion where the positive electrode current collecting layer is exposed from the exterior material and the protective layer;
  • the positive terminal and the negative terminal include glass and metal,
  • the glass transition temperature of the glass is the all solid state battery according to (14) or (15), which is equal to or lower than a sintering temperature of the exterior material.
  • a method for producing an all-solid-state battery comprising: forming a layer containing crystal particles on the exterior material; sintering the exterior material; and removing the layer containing the crystal particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This all-solid state battery is provided with: a battery element containing Li; an outer packaging material for covering the battery element; and a protective layer which is provided between the battery element and the outer packaging material, and contains Li.

Description

全固体電池およびその製造方法、電子機器ならびに電子カードAll-solid battery and method for manufacturing the same, electronic device and electronic card
 本技術は、全固体電池およびその製造方法、電子機器ならびに電子カードに関する。 This technology relates to an all-solid-state battery, a manufacturing method thereof, an electronic device, and an electronic card.
 全固体電池は水分により大きく劣化するため、ガラスを含む外装材により全固体電池を覆うことで、全固体電池への水分浸入を抑制する技術が提案されている(例えば特許文献1~3参照)。 Since all-solid-state batteries are greatly deteriorated by moisture, a technique has been proposed in which all-solid-state batteries are covered with an exterior material containing glass to suppress moisture intrusion into all-solid-state batteries (see, for example, Patent Documents 1 to 3). .
特開2016-1601号公報Japanese Patent Laid-Open No. 2016-1601 特開2015-220106号公報JP2015-220106A 特開2015-220099号公報Japanese Patent Laid-Open No. 2015-220099
 しかしながら、Liイオンが全固体電池から外装材に拡散し、全固体電池の不可逆容量が増加してしまう虞がある。 However, there is a possibility that Li ions diffuse from the all solid state battery to the exterior material, and the irreversible capacity of the all solid state battery increases.
 本技術の目的は、不可逆容量の増加を抑制できる全固体電池およびその製造方法、電子機器ならびに電子カードを提供することにある。 The purpose of the present technology is to provide an all-solid-state battery capable of suppressing an increase in irreversible capacity, a manufacturing method thereof, an electronic device, and an electronic card.
 上述の課題を解決するために、第1の技術は、Liを含む電池素子と、電池素子を覆う外装材と、電池素子と外装材との間に設けられ、Liを含む保護層とを備える全固体電池である。 In order to solve the above-described problem, the first technique includes a battery element including Li, an exterior material that covers the battery element, and a protective layer that is provided between the battery element and the exterior material and includes Li. It is an all-solid-state battery.
 第2の技術は、第1の技術の全固体電池から電力の供給を受ける電子機器である。 The second technology is an electronic device that receives power from the all-solid-state battery of the first technology.
 第3の技術は、第1の技術の全固体電池から電力の供給を受ける電子カードである。 The third technology is an electronic card that receives power from the all-solid-state battery of the first technology.
 第4の技術は、Li伝導性を含む電池素子をLiを含む保護層で覆い、保護層上に外装材を形成し、外装材上に結晶粒子を含む層を形成し、外装材を焼結したのち、結晶粒子を含む層を除去することを含む全固体電池の製造方法である。 In the fourth technique, a battery element containing Li conductivity is covered with a protective layer containing Li, an exterior material is formed on the protective layer, a layer containing crystal particles is formed on the exterior material, and the exterior material is sintered. Then, it is a manufacturing method of an all-solid-state battery including removing the layer containing crystal particles.
 第1の技術では、Liを含む電池素子とこの電池素子を覆う外装材との間に、Liを含む保護層が備えられているので、電池素子から外装材へのLiの拡散を抑制することができる。 In the first technique, since a protective layer containing Li is provided between a battery element containing Li and an exterior material covering the battery element, the diffusion of Li from the battery element to the exterior material is suppressed. Can do.
 第2の技術では、Li伝導性を含む電池素子をLiを含む保護層で覆ったのち、保護層上に外装材を形成しているので、電池素子から外装材へのLiの拡散を抑制することができる。また、外装材上に結晶粒子を含む層を形成し、外装材を焼結したのち、結晶粒子を含む層を除去しているので、外装材の焼結時における外装材の収縮を抑制することができる。したがって、外装材の焼結時に外装材に割れが発生することを抑制できる。 In the second technique, after covering a battery element including Li conductivity with a protective layer containing Li, an exterior material is formed on the protective layer, so that diffusion of Li from the battery element to the exterior material is suppressed. be able to. In addition, since the layer containing crystal particles is formed on the exterior material and the exterior material is sintered and then the layer containing the crystal particles is removed, the shrinkage of the exterior material during the sintering of the exterior material is suppressed. Can do. Therefore, it can suppress that a crack generate | occur | produces in an exterior material at the time of sintering of an exterior material.
 本技術によれば、全固体電池の不可逆容量の増加を抑制できる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらと異質な効果であってもよい。 According to this technology, an increase in the irreversible capacity of the all solid state battery can be suppressed. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure or effects different from those.
本技術の第1の実施形態に係る電池の外観の一例を示す斜視図である。It is a perspective view showing an example of appearance of a battery concerning a 1st embodiment of this art. 図2Aは、図1のIIA-IIA線に沿った断面図である。図2Bは、図1のIIB-IIB線に沿った断面図である。2A is a cross-sectional view taken along the line IIA-IIA in FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 図3Aは、正極端子を取り外した状態の電池の外観の一例を示す斜視図である。図3Bは、負極端子を取り外した状態の電池の外観の一例を示す斜視図である。FIG. 3A is a perspective view showing an example of the appearance of the battery with the positive electrode terminal removed. FIG. 3B is a perspective view showing an example of the appearance of the battery with the negative electrode terminal removed. 図4A、図4Bはそれぞれ、本技術の第1の実施形態に係る電池の製造方法の一例について説明せるための工程図である。4A and 4B are process diagrams for explaining an example of the method for manufacturing the battery according to the first embodiment of the present technology. 図5A、図5Bはそれぞれ、本技術の第1の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 5A and FIG. 5B are process diagrams for explaining an example of the battery manufacturing method according to the first embodiment of the present technology. 図6A、図6Bはそれぞれ、本技術の第1の実施形態に係る電池の製造方法の一例について説明せるための工程図である。6A and 6B are process diagrams for explaining an example of the method for manufacturing the battery according to the first embodiment of the present technology. 図7A、図7Bはそれぞれ、本技術の第1の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 7A and FIG. 7B are process diagrams for explaining an example of the battery manufacturing method according to the first embodiment of the present technology. 本技術の第1の実施形態の変形例に係る電池の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the battery which concerns on the modification of 1st Embodiment of this technique. 本技術の第1の実施形態の変形例に係る電池の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the battery which concerns on the modification of 1st Embodiment of this technique. 本技術の第2の実施形態に係る電池の外観の一例を示す斜視図である。It is a perspective view showing an example of appearance of a battery concerning a 2nd embodiment of this art. 図11Aは、図10のXIA-XIA線に沿った断面図である。図11Bは、図10のXIB-XIB線に沿った断面図である。FIG. 11A is a cross-sectional view taken along line XIA-XIA in FIG. 11B is a cross-sectional view taken along line XIB-XIB in FIG. 図12A、図12Bはそれぞれ、本技術の第2の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 12A and FIG. 12B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology. 図13A、図13Bはそれぞれ、本技術の第2の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 13A and FIG. 13B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology. 図14A、図14Bはそれぞれ、本技術の第2の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 14A and FIG. 14B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology. 図15A、図15Bはそれぞれ、本技術の第2の実施形態に係る電池の製造方法の一例について説明せるための工程図である。FIG. 15A and FIG. 15B are process diagrams for explaining an example of a battery manufacturing method according to the second embodiment of the present technology. 応用例としてのプリント回路基板の構成の一例を示す斜視図である。It is a perspective view which shows an example of a structure of the printed circuit board as an application example. 応用例としてのユニバーサルクレジットカードの外観の一例を示す平面図である。It is a top view which shows an example of the external appearance of the universal credit card as an application example. 応用例としての無線センサノードの構成の一例のブロック図である。It is a block diagram of an example of a structure of the wireless sensor node as an application example. 応用例としてのリストバンド型電子機器の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the wristband type electronic device as an application example. 応用例としてのリストバンド型電子機器の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the wristband type electronic device as an application example. 応用例としてのスマートウオッチの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the smart watch as an application example. 応用例としてのスマートウオッチの回路構成の一例を示すブロック図である。It is a block diagram which shows an example of the circuit structure of the smart watch as an application example. 応用例としてのメガネ型端末の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the glasses-type terminal as an application example. 応用例としてのメガネ型端末の画像表示装置の構成の一例の概念図である。It is a conceptual diagram of an example of a structure of the image display apparatus of the glasses-type terminal as an application example. 応用例としての車両における蓄電システムの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the electrical storage system in the vehicle as an application example. 応用例としての住宅における蓄電システムの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the electrical storage system in the house as an application example.
 本技術の実施形態について以下の順序で説明する。
1 第1の実施形態(全固体電池の例)
2 第2の実施形態(全固体電池の例)
3 応用例
Embodiments of the present technology will be described in the following order.
1 1st Embodiment (example of all-solid-state battery)
2 Second Embodiment (Example of all-solid battery)
3 Application examples
<1 第1の実施形態>
[電池の構成]
 本技術の第1の実施形態に係る電池は、いわゆるバルク型全固体電池であり、図1、2A、2Bに示すように、第1端面11SAと、第1端面11SAとは反対側の第2端面11SBとを有する薄板状の外装電池素子11と、第1端面11SAに設けられた正極端子12と、第2端面11SBに設けられた負極端子13とを備える。第1の実施形態では、外装電池素子11の主面が四角形を有する場合について説明するが、外装電池素子11の主面の形状はこれに限定されるものではない。以下では、第1、第2端面11SA、11SBの間に位置する2つの端面をそれぞれ第3、第4端面11SC、11SDという。
<1 First Embodiment>
[Battery configuration]
The battery according to the first embodiment of the present technology is a so-called bulk type all-solid-state battery, and as illustrated in FIGS. 1, 2A, and 2B, the first end surface 11SA and the second end opposite to the first end surface 11SA are provided. A thin plate-shaped external battery element 11 having an end face 11SB, a positive terminal 12 provided on the first end face 11SA, and a negative terminal 13 provided on the second end face 11SB are provided. Although 1st Embodiment demonstrates the case where the main surface of the exterior battery element 11 has a rectangle, the shape of the main surface of the exterior battery element 11 is not limited to this. Hereinafter, the two end faces located between the first and second end faces 11SA and 11SB are referred to as third and fourth end faces 11SC and 11SD, respectively.
 この電池は、電極反応物質であるLiの授受により電池容量が繰り返して得られる二次電池であり、リチウムイオンの吸蔵放出により負極の容量が得られるリチウムイオン二次電池であってもよいし、リチウム金属の析出溶解により負極の容量が得られるリチウム金属二次電池であってもよい。 This battery is a secondary battery obtained by repeatedly receiving and transferring Li, which is an electrode reactant, and may be a lithium ion secondary battery in which the capacity of the negative electrode is obtained by occlusion and release of lithium ions, It may be a lithium metal secondary battery in which the capacity of the negative electrode is obtained by precipitation dissolution of lithium metal.
(正極、負極端子)
 正極、負極端子12、13は、例えば、導電性粒子の粉末を含んでいる。導電性粒子は焼結されていてもよい。正極、負極端子12、13は、必要に応じて、ガラスまたはガラスセラミックスをさらに含んでいてもよい。ガラスまたはガラスセラミックスは焼結されていてもよい。
(Positive electrode, negative electrode terminal)
The positive electrode and the negative electrode terminals 12 and 13 include, for example, conductive particle powder. The conductive particles may be sintered. The positive electrode and the negative electrode terminals 12 and 13 may further contain glass or glass ceramics as necessary. Glass or glass ceramics may be sintered.
 正極、負極端子12、13に含まれるガラスのガラス転移温度は、外装材15の焼結温度以下であることが好ましい。上記ガラス転移温度が外装材15の焼結温度以下であると、外装材15を焼結する際に、正極、負極端子12、13も同時に焼結することができる。 The glass transition temperature of the glass contained in the positive and negative electrode terminals 12 and 13 is preferably equal to or lower than the sintering temperature of the exterior material 15. When the glass transition temperature is equal to or lower than the sintering temperature of the exterior material 15, the positive electrode and the negative electrode terminals 12 and 13 can be simultaneously sintered when the exterior material 15 is sintered.
 導電性粒子の形状としては、例えば、球状、楕円体状、針状、板状、鱗片状、チューブ状、ワイヤー状、棒状(ロッド状)または不定形状などが挙げられるが、特にこれらに限定されるものではない。なお、上記形状の粒子を2種以上組み合わせて用いてもよい。 Examples of the shape of the conductive particles include a spherical shape, an ellipsoidal shape, a needle shape, a plate shape, a scale shape, a tube shape, a wire shape, a rod shape (rod shape), and an indefinite shape, but are not particularly limited thereto. It is not something. Two or more kinds of particles having the above shapes may be used in combination.
 導電性粒子は、金属粒子、金属酸化物粒子または炭素粒子である。ここで、金属には、半金属が含まれるものと定義する。金属粒子としては、例えば、Ag(銀)、Pt(白金)、Au(金)、Ni(ニッケル)、Cu(銅)、Pd(パラジウム)、Al(アルミニウム)およびFe(鉄)のうちの少なくとも1種を含むものが挙げられるが、これに限定されるものではない。 The conductive particles are metal particles, metal oxide particles, or carbon particles. Here, the metal is defined to include a semi-metal. Examples of the metal particles include Ag (silver), Pt (platinum), Au (gold), Ni (nickel), Cu (copper), Pd (palladium), Al (aluminum), and Fe (iron). Although what contains 1 type is mentioned, it is not limited to this.
 金属酸化物粒子としては、例えば、インジウム錫酸化物(ITO)、酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛-酸化錫系、酸化インジウム-酸化錫系または酸化亜鉛-酸化インジウム-酸化マグネシウム系などを含むものが挙げられるが、これに限定されるものではない。 Examples of the metal oxide particles include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide. Examples thereof include, but are not limited to, a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system.
 炭素粒子としては、例えば、カーボンブラック、ポーラスカーボン、炭素繊維、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイルまたはナノホーンなどが挙げられるが、これに限定されるものではない。ガラスは、例えば酸化物ガラスである。ガラスセラミックスは、例えば酸化物ガラスセラミックスである。 Examples of the carbon particles include, but are not limited to, carbon black, porous carbon, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn. The glass is, for example, oxide glass. Glass ceramics are oxide glass ceramics, for example.
(外装電池素子)
 外装電池素子11は、図2A、2Bに示すように、Liを含む積層型の電池素子20と、電池素子20の表面を覆う外装材15と、電池素子20と外装材15との間に設けられ、Liを含む保護層14とを備える。
(External battery element)
As shown in FIGS. 2A and 2B, the exterior battery element 11 is provided between the battery element 20 including the laminated battery element 20 including Li, the exterior material 15 that covers the surface of the battery element 20, and the battery element 20 and the exterior material 15. And a protective layer 14 containing Li.
 電池素子20は、2層の正極層21と、1層の負極層22と、2層の固体電解質層23とを備える積層体である。2層の正極層21の間に負極層22が設けられ、正極層21と負極層22との間に固体電解質層23が設けられている。正極層21は、正極集電層21Aと、正極集電層21Aの両主面のうち、負極層22と対向する側の主面に設けられた正極活物質層21Bとを備える。負極層22は、負極集電層22Aと、負極集電層22Aの両面に設けられた負極活物質層22Bとを備える。 The battery element 20 is a laminate including two positive electrode layers 21, one negative electrode layer 22, and two solid electrolyte layers 23. A negative electrode layer 22 is provided between the two positive electrode layers 21, and a solid electrolyte layer 23 is provided between the positive electrode layer 21 and the negative electrode layer 22. The positive electrode layer 21 includes a positive electrode current collecting layer 21A and a positive electrode active material layer 21B provided on a main surface on the side facing the negative electrode layer 22 among both main surfaces of the positive electrode current collecting layer 21A. The negative electrode layer 22 includes a negative electrode current collecting layer 22A and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collecting layer 22A.
(保護層)
 保護層14は、図4A、4Bに示すように、正極集電層21Aの一端が第1端面11SAから露出し、負極集電層22Aの一端が第2端面11SBから露出し、固体電解質層23の周縁部が第1~第4端面11SA~11SDから露出するように、電池素子20の表面を覆っている。なお、保護層14が、固体電解質層23の周縁部が第1~第4端面11SA~11SDから露出しないように、電池素子20の表面を覆っていてもよい。
(Protective layer)
4A and 4B, the protective layer 14 has one end of the positive electrode current collecting layer 21A exposed from the first end face 11SA, one end of the negative electrode current collecting layer 22A exposed from the second end face 11SB, and the solid electrolyte layer 23. The surface of the battery element 20 is covered so that the peripheral edge of the battery element is exposed from the first to fourth end faces 11SA to 11SD. The protective layer 14 may cover the surface of the battery element 20 so that the peripheral edge of the solid electrolyte layer 23 is not exposed from the first to fourth end faces 11SA to 11SD.
 保護層14は、Liイオン伝導性を有するLi含有の固体電解質を含んでいる。保護層14は、非Liイオン伝導性を有するLi非含有のガラス、ガラスセラミックスおよび結晶の少なくとも1種を含んでいてもよい。固体電解質は、後述の固体電解質層23に含まれるものと同様である。但し、固体電解質層23と保護層14に含まれる固体電解質の組成(材料の種類)または組成比は、同一であってもよいし、異なっていてもよい。 The protective layer 14 includes a Li-containing solid electrolyte having Li ion conductivity. The protective layer 14 may contain at least one of Li-free glass, glass ceramics, and crystals having non-Li ion conductivity. The solid electrolyte is the same as that contained in the solid electrolyte layer 23 described later. However, the composition (type of material) or composition ratio of the solid electrolytes contained in the solid electrolyte layer 23 and the protective layer 14 may be the same or different.
 保護層14中における固体電解質の体積占有率は、好ましくは10vol%以上、より好ましくは20vol%以上、さらにより好ましくは30vol%以上である。体積占有率が10vol%以上であると、電池素子20から保護層14へのLiイオンの拡散を更に低減できるため、電池の不可逆容量の増加を更に抑制できる。体積占有率の上限値は特に限定されるものではなく、100vol%であってもよい。 The volume occupancy of the solid electrolyte in the protective layer 14 is preferably 10 vol% or more, more preferably 20 vol% or more, and even more preferably 30 vol% or more. When the volume occupancy is 10 vol% or more, the diffusion of Li ions from the battery element 20 to the protective layer 14 can be further reduced, so that an increase in irreversible capacity of the battery can be further suppressed. The upper limit value of the volume occupation rate is not particularly limited, and may be 100 vol%.
 上記の固体電解質の体積占有率は以下のようにして求められる。まず、イオンミリングなどにより電池の断面を作製し、外装材15の断面SEM(Scanning Electron Microscope)像を撮影する手順を繰り返して、三次元のSEM像を取得する。その後、取得した三次元のSEM像から、保護層14の厚さ程度の高さの立方体中における固体電解質の体積占有率を求める。 The volume occupancy of the above solid electrolyte is obtained as follows. First, a cross section of the battery is prepared by ion milling or the like, and a procedure for photographing a cross-sectional SEM (Scanning / Electron / Microscope) image of the exterior material 15 is repeated to obtain a three-dimensional SEM image. Thereafter, from the acquired three-dimensional SEM image, the volume occupancy rate of the solid electrolyte in the cube having a height about the thickness of the protective layer 14 is obtained.
 保護層14のLiイオン伝導率は、1.0×10-10S/cm以上であることが好ましい。Liイオン伝導率は、1.0×10-10S/cm以上であると、電池素子20から保護層14へのLiイオンの拡散を更に低減できるため、電池の不可逆容量の増加を更に抑制できる。保護層14のLiイオン伝導率は、交流インピーダンス法により、以下のようにして求められる。まず、イオンミリングや研磨などにより、全固体電池から保護層14の一部を矩形の板状の小片として取り出す。次に、取り出した小片の両端部に金(Au)からなる電極を形成してサンプルを作製する。次に、インピーダンス測定装置(東洋テクニカ製)を用いて、室温(25℃)にてサンプルに交流インピーダンス測定(周波数:10+6Hz~10-1Hz、電圧:100mV、1000mV)を行い、コール-コールプロットを作成する。続いて、このコール-コールプロットからイオン伝導率を求める。 The Li ion conductivity of the protective layer 14 is preferably 1.0 × 10 −10 S / cm or more. When the Li ion conductivity is 1.0 × 10 −10 S / cm or more, the diffusion of Li ions from the battery element 20 to the protective layer 14 can be further reduced, so that an increase in the irreversible capacity of the battery can be further suppressed. . The Li ion conductivity of the protective layer 14 is determined by the AC impedance method as follows. First, a part of the protective layer 14 is taken out as a rectangular plate-shaped piece from the all-solid battery by ion milling or polishing. Next, an electrode made of gold (Au) is formed on both ends of the taken out small piece to prepare a sample. Next, AC impedance measurement (frequency: 10 +6 Hz to 10 −1 Hz, voltage: 100 mV, 1000 mV) is performed on the sample at room temperature (25 ° C.) using an impedance measuring device (manufactured by Toyo Technica). -Create a call plot. Subsequently, the ionic conductivity is obtained from the Cole-Cole plot.
(外装材)
 外装材15は、図3A、3Bに示すように、正極集電層21Aの一端が第1端面11SAから露出し、負極集電層22Aの一端が第2端面11SBから露出するように、保護層14で覆われた電池素子20の表面を覆っている。第1端面11SAから露出した正極集電層21Aの一端が、正極端子12に電気的に接続されている。また、第2端面11SBから露出した負極集電層22Aの一端が、負極端子13に電気的に接続されている。外装電池素子11の第1、第2端面11SA、11SB以外の面はすべて外装材15により覆われている。
(Exterior material)
As shown in FIGS. 3A and 3B, the exterior material 15 has a protective layer such that one end of the positive electrode current collecting layer 21A is exposed from the first end surface 11SA and one end of the negative electrode current collecting layer 22A is exposed from the second end surface 11SB. The surface of the battery element 20 covered with 14 is covered. One end of the positive electrode current collecting layer 21 </ b> A exposed from the first end face 11 </ b> SA is electrically connected to the positive electrode terminal 12. One end of the negative electrode current collecting layer 22 </ b> A exposed from the second end surface 11 </ b> SB is electrically connected to the negative electrode terminal 13. All the surfaces of the exterior battery element 11 other than the first and second end surfaces 11SA and 11SB are covered with the exterior material 15.
 外装材15は、非Liイオン伝導性を有するLi含有のガラスと、結晶粒子16の粉末とを含んでいる。結晶粒子16は、外装材15の表面および内部の少なくとも一方に含まれている。外装材15は、例えば、外装材前駆体としてのグリーンシートの焼結体である。 The exterior material 15 includes Li-containing glass having non-Li ion conductivity and powder of crystal particles 16. The crystal particles 16 are included in at least one of the surface and the inside of the exterior material 15. The exterior material 15 is, for example, a green sheet sintered body as an exterior material precursor.
 外装材15は、例えば、B(ホウ素)、Bi(ビスマス)、Te(テルル)、P(リン)、V(バナジウム)、Sn(スズ)、Pb(鉛)およびSi(ケイ素)のうちの少なくとも1種を含んでいる。より具体的には、B、Bi、Te、P、V、Sn、PbおよびSiのうちの少なくとも1種を含む酸化物を含んでいる。 The exterior material 15 is, for example, at least one of B (boron), Bi (bismuth), Te (tellurium), P (phosphorus), V (vanadium), Sn (tin), Pb (lead), and Si (silicon). Contains one species. More specifically, an oxide containing at least one of B, Bi, Te, P, V, Sn, Pb, and Si is included.
 外装材15の水分透過率は、全固体電池の大気安定性を向上する観点から、好ましくは1.0g/m2/day以下、より好ましくは0.75g/m2/day以下、さらにより好ましくは0.5g/m2/day以下である。上記の外装材15の水分透過率は以下のようにして求められる。まず、イオンミリングや研磨などにより、全固体電池素子から外装材15の一部を矩形の板状の小片として取り出す。次に、外装材15の水蒸気透過率(23℃、90%RH)をJIS K7129-C(ISO 15106-4)に準拠して測定する。 The moisture permeability of the outer package 15 is preferably 1.0 g / m 2 / day or less, more preferably 0.75 g / m 2 / day or less, and even more preferably, from the viewpoint of improving the atmospheric stability of the all-solid battery. Is 0.5 g / m 2 / day or less. The moisture permeability of the exterior material 15 is obtained as follows. First, a part of the outer packaging material 15 is taken out from the all-solid battery element as a rectangular plate-shaped piece by ion milling or polishing. Next, the water vapor transmission rate (23 ° C., 90% RH) of the exterior material 15 is measured according to JIS K7129-C (ISO 15106-4).
 外装材15のLiイオン伝導率は、全固体電池の自己放電を抑制する観点から、1×10-8S/cm以下であることが好ましい。外装材15のLiイオン伝導率は、イオンミリングや研磨などにより、全固体電池から外装材15の一部を矩形の板状の小片として取り出し、これを用いて測定サンプルを作製すること以外は、上述の保護層14のLiイオン伝導率の測定方法と同様にして求められる。 The Li ion conductivity of the outer package 15 is preferably 1 × 10 −8 S / cm or less from the viewpoint of suppressing self-discharge of the all-solid battery. The Li ion conductivity of the packaging material 15 is obtained by taking a part of the packaging material 15 as a rectangular plate-shaped piece from an all-solid battery by ion milling or polishing, and using this to produce a measurement sample. It is obtained in the same manner as the method for measuring the Li ion conductivity of the protective layer 14 described above.
 外装材15の電気伝導率(電子伝導率)は、全固体電池の自己放電を抑制する観点から、1×10-8S/cm以下であることが好ましい。上記の外装材15の電気伝導率は以下のようにして求められる。まず、上述の外装材15のLiイオン伝導率の測定方法と同様にして、サンプルを作製する。次に、作製したサンプルを用いて、2端子法により室温(25℃)で電気伝導率を求める。 From the viewpoint of suppressing self-discharge of the all-solid-state battery, it is preferable that the electrical conductivity (electronic conductivity) of the packaging material 15 is 1 × 10 −8 S / cm or less. The electrical conductivity of the exterior material 15 is obtained as follows. First, a sample is prepared in the same manner as the method for measuring the Li ion conductivity of the exterior material 15 described above. Next, electrical conductivity is calculated | required at room temperature (25 degreeC) by the 2 terminal method using the produced sample.
 外装材15の平均厚さは、全固体電池のエネルギー密度を向上する観点から、好ましくは100μm以下、より好ましくは75μm以下、さらにより好ましくは50μm以下である。上記の外装材15の平均厚さは以下のようにして求められる。まず、イオンミリングなどにより外装材15の断面を作製し、断面SEM像を撮影する。次に、この断面SEM像から、10点のポイントを無作為に選び出して、それぞれのポイントで外装材15の厚みを測定し、これらの測定値を単純に平均(算術平均)して外装材15の平均厚みを求める。 The average thickness of the outer package 15 is preferably 100 μm or less, more preferably 75 μm or less, and even more preferably 50 μm or less, from the viewpoint of improving the energy density of the all solid state battery. The average thickness of the exterior material 15 is obtained as follows. First, a cross section of the exterior material 15 is produced by ion milling or the like, and a cross-sectional SEM image is taken. Next, 10 points are randomly selected from the cross-sectional SEM image, the thickness of the exterior material 15 is measured at each point, and the measured values are simply averaged (arithmetic average) to obtain the exterior material 15. The average thickness of is determined.
 結晶粒子16は、外装材15に含まれるガラスのガラス転移温度では溶融しない結晶を含んでいることが好ましい。結晶粒子16がこのような結晶を含むことで、外装材15に含まれるガラスを焼結する工程において、外装材15が面内方向に熱収縮し、外装材15に割れが発生することを抑制できる。ここで、“面内方向”とは、外装電池素子11の主面の面内方向を意味する。 The crystal particles 16 preferably contain crystals that do not melt at the glass transition temperature of the glass contained in the exterior material 15. By including such crystals in the crystal particles 16, in the process of sintering the glass contained in the exterior material 15, the exterior material 15 is thermally contracted in the in-plane direction, and cracking of the exterior material 15 is suppressed. it can. Here, the “in-plane direction” means the in-plane direction of the main surface of the external battery element 11.
 結晶粒子16は、金属酸化物、金属窒化物、および金属炭化物の少なくとも1種を含んでいる。ここで、金属には、半金属が含まれるものと定義する。より具体的には、結晶粒子16は、Al23(酸化アルミニウム:アルミナ)、SiO2(酸化ケイ素:石英)、SiN(窒化ケイ素)、AlN(窒化アルミニウム)およびSiC(炭化ケイ素)のうちの少なくとも1種を含んでいる。 Crystal grain 16 contains at least one of metal oxide, metal nitride, and metal carbide. Here, the metal is defined to include a semi-metal. More specifically, the crystal particles 16 are made of Al 2 O 3 (aluminum oxide: alumina), SiO 2 (silicon oxide: quartz), SiN (silicon nitride), AlN (aluminum nitride), and SiC (silicon carbide). Of at least one of the following.
 結晶粒子16の平均粒径(平均直径)は、10μm以下であることが好ましい。結晶粒子16の平均粒径が10μmを超えると、外装材15に含まれるガラスを焼結する工程において、外装材15が面内方向に熱収縮することを抑制する効果が低下する虞がある。すなわち、外装材15に割れが発生する虞がある。 The average particle diameter (average diameter) of the crystal particles 16 is preferably 10 μm or less. If the average particle size of the crystal particles 16 exceeds 10 μm, the effect of suppressing the thermal shrinkage of the exterior material 15 in the in-plane direction may be reduced in the step of sintering the glass contained in the exterior material 15. That is, there is a possibility that the exterior material 15 may be cracked.
 上記の結晶粒子16の平均粒径は以下のようにして求められる。まず、外装材15の表面SEM像を撮影する。次に、この表面SEM像から、無作為に100個の結晶粒子16を選び出して、これらの結晶粒子16の粒径(直径)を測定し、単純に平均(算術平均)して結晶粒子16の平均粒径を求める。ここで、結晶粒子16が球形でない場合には、結晶粒子16の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を結晶粒子16の粒径(直径)とする。但し、結晶粒子16が外装材15内に埋め込まれており、外装材15の表面SEM像から結晶粒子16の粒径を測定できない場合には、外装材15の断面SEM像から結晶粒子16の平均粒径を求めるものとする。 The average particle size of the crystal particles 16 is determined as follows. First, a surface SEM image of the exterior material 15 is taken. Next, 100 crystal particles 16 are selected at random from the surface SEM image, the particle diameters (diameters) of these crystal particles 16 are measured, and simply averaged (arithmetic average). Obtain the average particle size. Here, when the crystal particle 16 is not spherical, the maximum distance (so-called maximum ferret diameter) among the distances between two parallel lines drawn from all angles so as to contact the contour of the crystal particle 16 is selected. The particle size (diameter) is 16. However, when the crystal particles 16 are embedded in the exterior material 15 and the particle size of the crystal particles 16 cannot be measured from the surface SEM image of the exterior material 15, the average of the crystal particles 16 from the cross-sectional SEM image of the exterior material 15 The particle size shall be determined.
(固体電解質層)
 固体電解質層23は、Liを含む固体電解質を含んでいる。固体電解質は、リチウムイオン伝導体である酸化物ガラスおよび酸化物ガラスセラミックスのうちの少なくとも1種であり、Liイオン伝導率の向上の観点からすると、酸化物ガラスセラミックスであることが好ましい。固体電解質が酸化物ガラスおよび酸化物ガラスセラミックスのうちの少なくとも1種であると、大気(水分)に対する固体電解質層23の安定性を向上できる。固体電解質層23は、例えば、固体電解質層前駆体としてのグリーンシートの焼結体である。
(Solid electrolyte layer)
The solid electrolyte layer 23 includes a solid electrolyte containing Li. The solid electrolyte is at least one of an oxide glass and an oxide glass ceramic that are lithium ion conductors, and is preferably an oxide glass ceramic from the viewpoint of improving Li ion conductivity. When the solid electrolyte is at least one of oxide glass and oxide glass ceramics, the stability of the solid electrolyte layer 23 against the atmosphere (moisture) can be improved. The solid electrolyte layer 23 is a sintered body of a green sheet as a solid electrolyte layer precursor, for example.
 ここで、ガラスとは、X線回折や電子線回折等においてハローが観測されるなど、結晶学的に非晶質であるものをいう。ガラスセラミックス(結晶化ガラス)とは、X線回折や電子線回折等においてピークおよびハローが観測されるなど、結晶学的に非晶質と結晶質とが混在しているものをいう。 Here, the glass means a crystallographically amorphous material such as halo observed in X-ray diffraction or electron beam diffraction. Glass ceramics (crystallized glass) refers to a crystallographic mixture of amorphous and crystalline materials, such as peaks and halos observed in X-ray diffraction, electron beam diffraction, and the like.
 固体電解質のLiイオン伝導率は、電池性能の向上の観点から、10-7S/cm以上であることが好ましい。固体電解質のLiイオン伝導率は、イオンミリングや研磨などにより、全固体電池素子から固体電解質層23を取り出し、これを用いて測定サンプルを作製すること以外は、上述の保護層14のLiイオン伝導率の測定方法と同様にして求められる。 The Li ion conductivity of the solid electrolyte is preferably 10 −7 S / cm or more from the viewpoint of improving battery performance. The Li ion conductivity of the solid electrolyte is the same as that of the protective layer 14 described above except that the solid electrolyte layer 23 is taken out from the all-solid battery element by ion milling or polishing, and a measurement sample is produced using this. It is obtained in the same manner as the rate measurement method.
 固体電解質層23に含まれる固体電解質は、焼結している。固体電解質である酸化物ガラスおよび酸化物ガラスセラミックスの焼結温度は、好ましくは550℃以下、より好ましくは300℃以上550℃以下、更により好ましくは300℃以上500℃以下である。 The solid electrolyte contained in the solid electrolyte layer 23 is sintered. The sintering temperature of the oxide glass and the oxide glass ceramic that is a solid electrolyte is preferably 550 ° C. or lower, more preferably 300 ° C. or higher and 550 ° C. or lower, and even more preferably 300 ° C. or higher and 500 ° C. or lower.
 焼結温度が550℃以下であると、焼結工程において炭素材料の焼失が抑制されるので、負極活物質として炭素材料を用いることが可能となる。したがって、電池のエネルギー密度を更に向上できる。また、正極活物質層21Bが導電剤を含む場合、その導電剤として炭素材料を用いることができる。よって、正極活物質層21Bに良好な電子伝導パスを形成し、正極活物質層21Bの伝導性を向上できる。負極層22が導電剤を含む場合にも、その導電剤として炭素材料を用いることができるので、負極層22の伝導性を向上できる。 When the sintering temperature is 550 ° C. or lower, the carbon material can be prevented from being burned out in the sintering process, so that the carbon material can be used as the negative electrode active material. Therefore, the energy density of the battery can be further improved. Further, when the positive electrode active material layer 21B includes a conductive agent, a carbon material can be used as the conductive agent. Therefore, a favorable electron conduction path can be formed in the positive electrode active material layer 21B, and the conductivity of the positive electrode active material layer 21B can be improved. Even when the negative electrode layer 22 contains a conductive agent, a carbon material can be used as the conductive agent, so that the conductivity of the negative electrode layer 22 can be improved.
 また、焼結温度が550℃以下であると、焼結工程において固体電解質と電極活物質とが反応して、不働態などの副生成物が形成されることを抑制できる。したがって、電池特性の低下を抑制できる。また、焼結温度が550℃以下という低温であると、電極活物質の種類の選択幅が広がるので、電池設計の自由度を向上できる。 Also, when the sintering temperature is 550 ° C. or lower, it is possible to suppress the formation of by-products such as a passive state due to the reaction between the solid electrolyte and the electrode active material in the sintering process. Accordingly, it is possible to suppress a decrease in battery characteristics. Further, when the sintering temperature is as low as 550 ° C. or less, the range of selection of the type of electrode active material is widened, so that the degree of freedom in battery design can be improved.
 一方、焼結温度が300℃以上であると、焼結工程において、電極前駆体および/または固体電解質層前駆体に含まれる、アクリル樹脂などの一般的な有機結着剤を焼失させることができる。 On the other hand, when the sintering temperature is 300 ° C. or higher, a general organic binder such as an acrylic resin contained in the electrode precursor and / or the solid electrolyte layer precursor can be burned out in the sintering step. .
 酸化物ガラスおよび酸化物ガラスセラミックスは、焼結温度が550℃以下であり、高い熱収縮率を有し、流動性にも富むものが好ましい。これは以下のような効果が得られるからである。すなわち、固体電解質層23と正極活物質層21Bとの反応および固体電解質層23と負極層22との反応を抑制することができる。また、正極活物質層21Bと固体電解質層23の間、および負極層22と固体電解質層23の間に良好な界面を形成し、正極活物質層21Bと固体電解質層23の間、および負極層22と固体電解質層23の間の界面抵抗を低減できる。 Oxide glass and oxide glass ceramics preferably have a sintering temperature of 550 ° C. or lower, a high heat shrinkage rate, and high fluidity. This is because the following effects can be obtained. That is, the reaction between the solid electrolyte layer 23 and the positive electrode active material layer 21B and the reaction between the solid electrolyte layer 23 and the negative electrode layer 22 can be suppressed. Further, good interfaces are formed between the positive electrode active material layer 21B and the solid electrolyte layer 23, and between the negative electrode layer 22 and the solid electrolyte layer 23, and between the positive electrode active material layer 21B and the solid electrolyte layer 23, and the negative electrode layer. The interface resistance between 22 and the solid electrolyte layer 23 can be reduced.
 酸化物ガラスおよび酸化物ガラスセラミックスとしては、Ge(ゲルマニウム)、Si(ケイ素)、B(ホウ素)およびP(リン)のうちの少なくとも1種と、Li(リチウム)と、O(酸素)とを含むものが好ましく、Si、B、LiおよびOを含むものがより好ましい。具体的には、酸化ゲルマニウム(GeO2)、酸化ケイ素(SiO2)、酸化ホウ素(B23)および酸化リン(P25)のうちの少なくとも1種と、酸化リチウム(Li2O)とを含むものが好ましく、SiO2、B23およびLi2Oを含むものがより好ましい。上記のようにGe、Si、BおよびPのうちの少なくとも1種と、Liと、Oとを含む酸化物ガラスおよび酸化物ガラスセラミックスは、300℃以上550℃以下の焼結温度を有し、高い熱収縮率を有し、流動性にも富んでいるため、界面抵抗の低減や電池のエネルギー密度の向上などの観点から、有利である。 As oxide glass and oxide glass ceramic, at least one of Ge (germanium), Si (silicon), B (boron), and P (phosphorus), Li (lithium), and O (oxygen) Those containing Si, B, Li and O are more preferable. Specifically, at least one of germanium oxide (GeO 2 ), silicon oxide (SiO 2 ), boron oxide (B 2 O 3 ) and phosphorus oxide (P 2 O 5 ), and lithium oxide (Li 2 O). ) Are preferred, and those containing SiO 2 , B 2 O 3 and Li 2 O are more preferred. As described above, the oxide glass and oxide glass ceramic containing at least one of Ge, Si, B, and P, Li, and O have a sintering temperature of 300 ° C. or higher and 550 ° C. or lower, Since it has a high heat shrinkage ratio and is rich in fluidity, it is advantageous from the viewpoint of reducing interfacial resistance and improving the energy density of the battery.
 Li2Oの含有量は、固体電解質の焼結温度を低下させる観点から、好ましくは20mol%以上75mol%以下、より好ましくは30mol%以上75mol%以下、更により好ましくは40mol%以上75mol%以下、特に好ましくは50mol%以上75mol%以下である。 The content of Li 2 O is preferably 20 mol% or more and 75 mol% or less, more preferably 30 mol% or more and 75 mol% or less, still more preferably 40 mol% or more and 75 mol% or less, from the viewpoint of lowering the sintering temperature of the solid electrolyte. Especially preferably, they are 50 mol% or more and 75 mol% or less.
 固体電解質がGeO2を含む場合、このGeO2の含有量は、0mol%より大きく80mol%以下であることが好ましい。固体電解質がSiO2を含む場合、このSiO2の含有量は、0mol%より大きく70mol%以下であることが好ましい。固体電解質がB23を含む場合、このB23の含有量は、0mol%より大きく60mol%以下であることが好ましい。固体電解質がP25を含む場合、このP25の含有量は、0mol%より大きく50mol%以下であることが好ましい。 When a solid electrolyte containing GeO 2, the content of the GeO 2 is preferably less greater 80 mol% than 0 mol%. When a solid electrolyte containing SiO 2, the content of the SiO 2 is preferably from greater than 0 mol% 70 mol%. When a solid electrolyte comprising a B 2 O 3, the content of the B 2 O 3 is preferably not more than greater than 0 mol% 60 mol%. When a solid electrolyte comprising a P 2 O 5, the content of the P 2 O 5 is preferably from greater than 0 mol% 50 mol%.
 なお、上記各酸化物の含有量は、固体電解質中における各酸化物の含有量であり、具体的には、GeO2、SiO2、B23およびP25のうち1種以上と、Li2Oとの合計量(mol)に対する各酸化物の含有量(mol)の割合を百分率(mol%)で示している。各酸化物の含有量は、誘導結合プラズマ発光分光分析法(ICP-AES)などを用いて測定することが可能である。 The content of each oxide is the content of each oxide in the solid electrolyte, and specifically, one or more of GeO 2 , SiO 2 , B 2 O 3 and P 2 O 5 , The ratio of the content (mol) of each oxide to the total amount (mol) with Li 2 O is shown as a percentage (mol%). The content of each oxide can be measured using inductively coupled plasma emission spectroscopy (ICP-AES) or the like.
 固体電解質は、必要に応じて添加元素を更に含んでいてもよい。添加元素としては、例えば、Na(ナトリウム)、Mg(マグネシウム)、Al(アルミニウム)、K(カリウム)、Ca(カルシウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Ga(ガリウム)、Se(セレン)、Rb(ルビジウム)、S(硫黄)、Y(イットリウム)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Cs(セシウム)、Ba(バナジウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Pb(鉛)、Bi(ビスマス)、Au(金)、La(ランタン)、Nd(ネオジム)およびEu(ユーロピウム)からなる群より選ばれる少なくとも1種が挙げられる。固体電解質が、これらの添加元素からなる群より選ばれる少なくとも1種を酸化物として含んでいてもよい。 The solid electrolyte may further contain an additive element as necessary. As an additive element, for example, Na (sodium), Mg (magnesium), Al (aluminum), K (potassium), Ca (calcium), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese) ), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Ga (gallium), Se (selenium), Rb (rubidium), S (sulfur), Y (yttrium) ), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ag (silver), In (indium), Sn (tin), Sb (antimony), Cs (cesium), Ba (vanadium), Hf (hafnium) ), Ta (tantalum), W (tungsten), Pb (lead), Bi (bismuth), Au (gold), La (lanthanum), Nd (neodymium) and Eu (you) At least one type selected from the group consisting of Piumu). The solid electrolyte may contain at least one selected from the group consisting of these additive elements as an oxide.
(正極集電層)
 正極集電層21Aは、導電性粒子と固体電解質とを含んでいる。導電性粒子は、上述の正極、負極端子12、13に含まれるものと同様である。固体電解質は、上述の固体電解質層23に含まれるものと同様である。但し、固体電解質層23と正極集電層21Aに含まれる固体電解質の組成(材料の種類)または組成比は、同一であってもよいし、異なっていてもよい。
(Positive electrode current collector layer)
The positive electrode current collecting layer 21A includes conductive particles and a solid electrolyte. The conductive particles are the same as those contained in the positive electrode and negative electrode terminals 12 and 13 described above. The solid electrolyte is the same as that included in the solid electrolyte layer 23 described above. However, the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the positive electrode current collecting layer 21A may be the same or different.
 正極集電層21Aは、例えば、Al、Niまたはステンレス鋼などを含む金属層であってもよい。上記金属層の形状は、例えば、箔状、板状またはメッシュ状などである。 The positive electrode current collecting layer 21A may be a metal layer containing, for example, Al, Ni, stainless steel, or the like. The shape of the metal layer is, for example, a foil shape, a plate shape, or a mesh shape.
(正極活物質層)
 正極活物質層21Bは、正極活物質と、固体電解質とを含んでいる。固体電解質が、結着剤としての機能を有していてもよい。正極活物質層21Bは、必要に応じて導電剤を更に含んでいてもよい。
(Positive electrode active material layer)
The positive electrode active material layer 21B includes a positive electrode active material and a solid electrolyte. The solid electrolyte may have a function as a binder. The positive electrode active material layer 21B may further contain a conductive agent as necessary.
 正極活物質は、例えば、電極反応物質であるリチウムイオンを吸蔵放出可能な正極材料を含んでいる。この正極材料は、高いエネルギー密度が得られる観点から、リチウム含有化合物などであることが好ましいが、これに限定されるものではない。このリチウム含有化合物は、例えば、リチウムと遷移金属元素とを構成元素として含む複合酸化物(リチウム遷移金属複合酸化物)や、リチウムと遷移金属元素とを構成元素として含むリン酸化合物(リチウム遷移金属リン酸化合物)などである。中でも、遷移金属元素は、Co、Ni、MnおよびFeのいずれか1種または2類以上であることが好ましい。これにより、より高い電圧が得られ、電池の電圧を高くすることができると、同じ容量(mAh)の電池の持つエネルギー(Wh)を大きくすることができる。 The positive electrode active material includes, for example, a positive electrode material capable of occluding and releasing lithium ions that are electrode reactants. The positive electrode material is preferably a lithium-containing compound or the like from the viewpoint of obtaining a high energy density, but is not limited thereto. This lithium-containing compound is, for example, a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements, or a phosphate compound (lithium transition metal) containing lithium and a transition metal element as constituent elements. Phosphate compounds). Among these, the transition metal element is preferably one or more of Co, Ni, Mn, and Fe. Thereby, when a higher voltage is obtained and the voltage of the battery can be increased, the energy (Wh) of the battery having the same capacity (mAh) can be increased.
 リチウム遷移金属複合酸化物は、例えば、LixM1O2またはLiyM2O4などで表されるものである。より具体的には例えば、リチウム遷移金属複合酸化物は、LiCoO2、LiNiO2、LiVO2、LiCrO2またはLiMn24などである。また、リチウム遷移金属リン酸化合物は、例えば、LizM3PO4などで表されるものである。より具体的には例えば、リチウム遷移金属リン酸化合物は、LiFePO4またはLiCoPO4などである。但し、M1~M3は1種または2類以上の遷移金属元素であり、x~zの値は任意である。 The lithium transition metal composite oxide is represented by, for example, Li x M1O 2 or Li y M2O 4 . More specifically, for example, the lithium transition metal composite oxide is LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2, or LiMn 2 O 4 . Further, the lithium transition metal phosphate compound is represented by, for example, Li z M3PO 4 . More specifically, for example, the lithium transition metal phosphate compound is LiFePO 4 or LiCoPO 4 . However, M1 to M3 are one or more transition metal elements, and the values of x to z are arbitrary.
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンまたは硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレン、ポリアセンなどである。 In addition, the positive electrode active material may be, for example, an oxide, disulfide, chalcogenide, or conductive polymer. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, and polyacene.
 固体電解質は、上述の固体電解質層23に含まれるものと同様である。但し、固体電解質層23と正極活物質層21Bに含まれる固体電解質の組成(材料の種類)または組成比は、同一であってもよいし、異なっていてもよい。 The solid electrolyte is the same as that included in the solid electrolyte layer 23 described above. However, the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the positive electrode active material layer 21B may be the same or different.
 導電剤は、例えば、炭素材料、金属、金属酸化物および導電性高分子などのうちの少なくとも1種である。炭素材料としては、例えば、黒鉛、炭素繊維、カーボンブラックおよびカーボンナノチューブなどのうちの少なくとも1種を用いることができる。炭素繊維としては、例えば、気相成長炭素繊維(Vapor Growth Carbon Fiber:VGCF)などを用いることができる。カーボンブラックとしては、例えば、アセチレンブラックおよびケッチェンブラックなどのうちの少なくとも1種を用いることができる。カーボンナノチューブとしては、例えば、シングルウォールカーボンナノチューブ(SWCNT)、ダブルウォールカーボンナノチューブ(DWCNT)などのマルチウォールカーボンナノチューブ(MWCNT)などを用いることができる。金属としては、例えば、Ni粉末などを用いることができる。金属酸化物としては、例えば、SnO2などを用いることができる。導電性高分子としては、例えば、置換または無置換のポリアニリン、ポリピロール、ポリチオフェン、およびこれらから選ばれる1種または2種からなる(共)重合体などのうちの少なくとも1種を用いることができる。なお、導電剤は、導電性を有する材料であればよく、上述の例に限定されるものではない。 The conductive agent is, for example, at least one of a carbon material, a metal, a metal oxide, a conductive polymer, and the like. As the carbon material, for example, at least one of graphite, carbon fiber, carbon black, carbon nanotube, and the like can be used. As the carbon fiber, for example, vapor growth carbon fiber (VGCF) can be used. As the carbon black, for example, at least one of acetylene black and ketjen black can be used. As the carbon nanotube, for example, a multi-wall carbon nanotube (MWCNT) such as a single wall carbon nanotube (SWCNT) or a double wall carbon nanotube (DWCNT) can be used. As the metal, for example, Ni powder can be used. For example, SnO 2 can be used as the metal oxide. As the conductive polymer, for example, at least one of substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymers selected from these can be used. Note that the conductive agent may be any material having conductivity, and is not limited to the above example.
(負極集電層)
 負極集電層22Aは、導電性粒子と固体電解質とを含んでいる。導電性粒子は、上述の正極、負極端子12、13に含まれるものと同様である。固体電解質は、上述の固体電解質層23に含まれるものと同様である。但し、固体電解質層23と負極集電層22Aに含まれる固体電解質の組成(材料の種類)または組成比は、同一であってもよいし、異なっていてもよい。
(Negative electrode current collector layer)
The anode current collecting layer 22A includes conductive particles and a solid electrolyte. The conductive particles are the same as those contained in the positive electrode and negative electrode terminals 12 and 13 described above. The solid electrolyte is the same as that included in the solid electrolyte layer 23 described above. However, the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the anode current collecting layer 22A may be the same or different.
 負極集電層22Aは、例えば、Cuまたはステンレス鋼などを含む金属層であってもよい。上記金属層の形状は、例えば、箔状、板状またはメッシュ状などである。 The negative electrode current collecting layer 22A may be a metal layer containing, for example, Cu or stainless steel. The shape of the metal layer is, for example, a foil shape, a plate shape, or a mesh shape.
(負極活物質層)
 負極活物質層22Bは、負極活物質と、固体電解質とを含んでいる。固体電解質が、結着剤としての機能を有していてもよい。負極層22は、必要に応じて導電剤を更に含んでいてもよい。負極層22は、例えば、負極層前駆体としてのグリーンシートの焼結体である。
(Negative electrode active material layer)
The negative electrode active material layer 22B includes a negative electrode active material and a solid electrolyte. The solid electrolyte may have a function as a binder. The negative electrode layer 22 may further contain a conductive agent as necessary. The negative electrode layer 22 is, for example, a green sheet sintered body as a negative electrode layer precursor.
 負極活物質は、例えば、電極反応物質であるリチウムイオンを吸蔵放出可能な負極材料を含んでいる。この負極材料は、高いエネルギー密度が得られる観点から、炭素材料または金属系材料などであることが好ましいが、これに限定されるものではない。 The negative electrode active material includes, for example, a negative electrode material capable of occluding and releasing lithium ions that are electrode reactants. The negative electrode material is preferably a carbon material or a metal-based material from the viewpoint of obtaining a high energy density, but is not limited thereto.
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛、メソカーボンマイクロビーズ(MCMB)または高配向性グラファイト(HOPG)などである。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, graphite, mesocarbon microbeads (MCMB), and highly oriented graphite (HOPG).
 金属系材料は、例えば、リチウムと合金を形成可能な金属元素または半金属元素を構成元素として含む材料である。より具体的には例えば、金属系材料は、Si(ケイ素)、Sn(スズ)、Al(アルミニウム)、In(インジウム)、Mg(マグネシウム)、B(ホウ素)、Ga(ガリウム)、Ge(ゲルマニウム)、Pb(鉛)、Bi(ビスマス)、Cd(カドミウム)、Ag(銀)、Zn(亜鉛)、Hf(ハフニウム)、Zr(ジルコニウム)、Y(イットリウム)、Pd(パラジウム)またはPt(白金)などの単体、合金または化合物のいずれか1種または2類以上である。但し、単体は、純度100%に限らず、微量の不純物を含んでいてもよい。合金または化合物としては、例えば、SiB4、TiSi2、SiC、Si34、SiOv(0<v≦2)、LiSiO、SnOw(0<w≦2)、SnSiO3、LiSnO、Mg2Snなどが挙げられる。 The metal-based material is a material containing, for example, a metal element or a metalloid element capable of forming an alloy with lithium as a constituent element. More specifically, for example, the metal materials are Si (silicon), Sn (tin), Al (aluminum), In (indium), Mg (magnesium), B (boron), Ga (gallium), Ge (germanium). ), Pb (lead), Bi (bismuth), Cd (cadmium), Ag (silver), Zn (zinc), Hf (hafnium), Zr (zirconium), Y (yttrium), Pd (palladium) or Pt (platinum) ) And the like, any one kind or two or more kinds of alloys or compounds. However, the simple substance is not limited to 100% purity, and may contain a small amount of impurities. Examples of the alloy or compound include SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 <v ≦ 2), LiSiO, SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, Mg 2. Sn etc. are mentioned.
 金属系材料は、リチウム含有化合物またはリチウム金属(リチウムの単体)でもよい。リチウム含有化合物は、リチウムと遷移金属元素とを構成元素として含む複合酸化物(リチウム遷移金属複合酸化物)である。この複合酸化物としては、例えば、Li4Ti512などが挙げられる。 The metal-based material may be a lithium-containing compound or lithium metal (lithium simple substance). The lithium-containing compound is a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements. Examples of this composite oxide include Li 4 Ti 5 O 12 .
 固体電解質は、上述の固体電解質層23に含まれるものと同様である。但し、固体電解質層23と負極活物質層22Bに含まれる固体電解質の組成(材料の種類)または組成比は、同一であってもよいし、異なっていてもよい。 The solid electrolyte is the same as that included in the solid electrolyte layer 23 described above. However, the composition (kind of materials) or composition ratio of the solid electrolyte contained in the solid electrolyte layer 23 and the negative electrode active material layer 22B may be the same or different.
 導電剤は、上述の正極活物質層21Bにおける導電剤と同様である。 The conductive agent is the same as the conductive agent in the positive electrode active material layer 21B described above.
[電池の動作]
 この電池では、例えば、充電時において、正極活物質層21Bから放出されたリチウムイオンが固体電解質層23を介して負極活物質層22Bに取り込まれると共に、放電時において、負極活物質層22Bから放出されたリチウムイオンが固体電解質層23を介して正極活物質層21Bに取り込まれる。
[Battery operation]
In this battery, for example, at the time of charging, lithium ions released from the positive electrode active material layer 21B are taken into the negative electrode active material layer 22B via the solid electrolyte layer 23, and discharged from the negative electrode active material layer 22B during discharge. The lithium ions thus taken are taken into the positive electrode active material layer 21 </ b> B through the solid electrolyte layer 23.
[電池の製造方法]
 以下、図4A~7Bを参照して、本技術の第1の実施形態に係る電池の製造方法の一例について説明する。なお、図4A、5A、6A、7Aは、第1端面11SA側から電池素子20を見たとき斜視図であり、図4B、5B、6B、7Bは、第2端面11SB側から電池素子20を見たとき斜視図である。
[Battery manufacturing method]
Hereinafter, an example of a battery manufacturing method according to the first embodiment of the present technology will be described with reference to FIGS. 4A to 7B. 4A, 5A, 6A, and 7A are perspective views when the battery element 20 is viewed from the first end face 11SA side, and FIGS. 4B, 5B, 6B, and 7B show the battery element 20 from the second end face 11SB side. It is a perspective view when seen.
(固体電解質層形成用ペーストの作製工程)
 固体電解質と、有機系結着剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、固体電解質層形成用ペーストを得る。
(Production process of solid electrolyte layer forming paste)
A solid electrolyte and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to obtain a solid electrolyte layer forming paste.
 有機系結着剤としては、例えば、アクリル樹脂などを用いることができる。溶媒としては、合剤粉末を分散できるものであれば特に限定されないが、固体電解質層形成用ペーストの焼結温度よりも低い温度領域で焼失するものが好ましい。溶媒としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、t-ブタノールなどの炭素数が4以下の低級アルコール、エチレングリコール、プロピレングリコール(1,3-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオールなどの脂肪族グリコール、メチルエチルケトンなどのケトン類、ジメチルエチルアミンなどのアミン類、テルピネオールなどの脂環族アルコールなどを単独または2種以上混合して用いることができるが、特にこれに限定されるものではない。分散方法としては、例えば、攪拌処理、超音波分散処理、ビーズ分散処理、混錬処理、ホモジナイザー処理などが挙げられる。以下に説明する正極集電層形成用ペースト、正極活物質層形成用ペースト、負極集電層形成用ペースト、負極活物質層形成用ペースト、保護層形成用ペースト、外装材形成用ペーストおよび導電性ペーストの作製工程においても、有機系結着剤および溶媒としては、固体電解質層形成用ペーストと同様の材料を例示することができる。 As the organic binder, for example, an acrylic resin can be used. The solvent is not particularly limited as long as it can disperse the mixture powder, but is preferably one that burns away in a temperature range lower than the sintering temperature of the solid electrolyte layer forming paste. Examples of the solvent include lower alcohols having 4 or less carbon atoms such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, t-butanol, ethylene glycol, propylene glycol (1,3-propanediol), 1, Aliphatic glycols such as 3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, ketones such as methyl ethyl ketone, dimethylethylamine Amines such as alicyclic alcohols such as terpineol can be used alone or in admixture of two or more, but the invention is not particularly limited thereto. Examples of the dispersion method include stirring treatment, ultrasonic dispersion treatment, bead dispersion treatment, kneading treatment, and homogenizer treatment. Positive electrode current collecting layer forming paste, positive electrode active material layer forming paste, negative electrode current collecting layer forming paste, negative electrode active material layer forming paste, protective layer forming paste, exterior material forming paste and conductivity described below Also in the paste production process, examples of the organic binder and the solvent include the same materials as the solid electrolyte layer forming paste.
(正極集電層形成用ペーストの作製工程)
 導電性粒子の粉末と、Li伝導性を有するLi含有の固体電解質と、有機系結着剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、正極集電層形成用ペーストを得る。
(Preparation process of positive electrode current collector layer forming paste)
A powder of conductive particles, a Li-containing solid electrolyte having Li conductivity, and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to form a positive electrode. A paste for forming a current collecting layer is obtained.
(正極活物質層形成用ペーストの作製工程)
 正極活物質と、Li伝導性を有するLi含有の固体電解質と、有機系結着剤と、必要に応じて導電剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、正極活物質層形成用ペーストを得る。
(Preparation process of positive electrode active material layer forming paste)
A mixture powder is prepared by mixing a positive electrode active material, a Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, a conductive agent. To obtain a paste for forming a positive electrode active material layer.
(負極集電層形成用ペーストの作製工程)
 導電性粒子の粉末と、Li伝導性を有するLi含有の固体電解質と、有機系結着剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、正極集電層形成用ペーストを得る。
(Preparation process of paste for forming negative electrode current collector layer)
A powder of conductive particles, a Li-containing solid electrolyte having Li conductivity, and an organic binder are mixed to prepare a mixture powder, and then the mixture powder is dispersed in a solvent to form a positive electrode. A paste for forming a current collecting layer is obtained.
(負極活物質層形成用ペーストの作製工程)
 負極活物質と、Li伝導性を有するLi含有の固体電解質と、有機系結着剤と、必要に応じて導電剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、負極活物質形成用ペーストを得る。
(Process for producing negative electrode active material layer forming paste)
A mixture powder is prepared by mixing a negative electrode active material, a Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, a conductive agent. To obtain a paste for forming a negative electrode active material.
(保護層形成用ペーストの作製工程)
 Li伝導性を有するLi含有の固体電解質と、有機系結着剤と、必要に応じて非Liイオン伝導性を有するガラス、ガラスセラミックスおよび結晶粒子の粉末の少なくとも1種とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、保護層形成用ペーストを得る。
(Process for producing protective layer forming paste)
A Li-containing solid electrolyte having Li conductivity, an organic binder, and, if necessary, at least one of glass, glass ceramics, and powder of crystal particles having non-Li ion conductivity are mixed together. After preparing the agent powder, the mixture powder is dispersed in a solvent to obtain a protective layer forming paste.
(外装材形成用ペーストの作製工程)
 非Liイオン伝導性を有し、ガラス転移温度が500℃以下である非Li含有のガラスと、有機系結着剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、外装材形成用組成物としてのペーストを得る。
(Process for producing exterior material forming paste)
A non-Li-containing glass having non-Li ion conductivity and a glass transition temperature of 500 ° C. or lower is mixed with an organic binder to prepare a mixture powder, which is then used as a solvent. To obtain a paste as a composition for forming an exterior material.
(導電性ペーストの作製工程)
 導電性粒子の粉末と、ガラス転移温度が500℃以下であるガラスと、有機系結着剤とを混合して、合剤粉末を調製したのち、この合剤粉末を溶媒に分散させて、導電性ペースト(正極端子および負極端子形成用のペースト)を得る。
(Process for producing conductive paste)
The powder of conductive particles, glass having a glass transition temperature of 500 ° C. or lower, and an organic binder are mixed to prepare a mixture powder. A conductive paste (a paste for forming a positive electrode terminal and a negative electrode terminal) is obtained.
(固体電解質層の作製工程)
 まず、支持基材の表面にペーストを均一に塗布または印刷することにより、ペースト層を成形する。支持基材としては、例えば、ポリエチレンテレフタレート(PET)フィルムなどの高分子樹脂フィルムを用いることができる。塗布および印刷の方法としては、簡便で量産性に適した方法を用いることが好ましい。塗布方法としては、例えば、ダイコート法、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、リバースロールコート法、コンマコート法、ナイフコート法、スプレーコート法、カーテンコート法、ディップ法、スピンコート法などを用いることができるが、特にこれに限定されるものではない。印刷方法としては、例えば、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、スクリーン印刷法などを用いることができるが、特にこれに限定されるものではない。
(Production process of solid electrolyte layer)
First, a paste layer is shape | molded by apply | coating or printing a paste uniformly on the surface of a support base material. As the support substrate, for example, a polymer resin film such as a polyethylene terephthalate (PET) film can be used. As a method for coating and printing, it is preferable to use a simple and suitable method for mass production. Examples of coating methods include die coating, micro gravure coating, wire bar coating, direct gravure coating, reverse roll coating, comma coating, knife coating, spray coating, curtain coating, dipping, and spin. A coating method or the like can be used, but is not particularly limited thereto. As a printing method, for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method, and the like can be used, but the invention is not particularly limited thereto.
 後工程にてグリーンシートを支持基材の表面から剥がしやすくするために、支持基材の表面に剥離処理を予め施しておくことが好ましい。剥離処理としては、例えば、剥離性を付与する組成物を支持基材の表面に予め塗布または印刷する方法が挙げられる。剥離性を付与する組成物としては、例えば、バインダを主成分とし、ワックスまたはフッ素などが添加された塗料、またはシリコーン樹脂などが挙げられる。 In order to make it easier to peel off the green sheet from the surface of the supporting base material in a later step, it is preferable to perform a peeling treatment on the surface of the supporting base material in advance. As a peeling process, the method of apply | coating or printing in advance on the surface of a support base material is mentioned, for example. Examples of the composition imparting releasability include a paint containing a binder as a main component and added with wax or fluorine, or a silicone resin.
 次に、ペースト層を乾燥させることにより、支持基材の表面にグリーンシートを形成する。乾燥方法としては、例えば、自然乾燥、熱風などによる送風乾燥、赤外線または遠赤外線などによる加熱乾燥、真空乾燥などが挙げられる。これらの乾燥方法を単独で用いてもよいし、2以上組み合わせて用いてもよい。次に、グリーンシートを支持基材から剥離し、所定の大きさおよび形状に切断する。これにより、グリーンシートとしての未焼結の固体電解質層23が得られる。 Next, the paste layer is dried to form a green sheet on the surface of the support substrate. Examples of the drying method include natural drying, blow drying with hot air, heating drying with infrared rays or far infrared rays, vacuum drying, and the like. These drying methods may be used alone or in combination of two or more. Next, the green sheet is peeled off from the support substrate and cut into a predetermined size and shape. Thereby, the unsintered solid electrolyte layer 23 as a green sheet is obtained.
(保護層の作製工程)
 保護層形成用ペーストを用いる以外のことは上述の“固体電解質の作製工程”と同様にして、グリーンシートとしての未焼結の保護層14が得られる。
(Protective layer manufacturing process)
Except for using the protective layer forming paste, the green protective layer 14 as a green sheet is obtained in the same manner as in the above-described “solid electrolyte preparation step”.
(外装材の作製工程)
 外装材形成用ペーストを用いる以外のことは上述の“固体電解質の作製工程”と同様にして、グリーンシートとしての未焼結の外装材15が得られる。
(Exterior material manufacturing process)
Except for using the packaging material forming paste, an unsintered packaging material 15 as a green sheet is obtained in the same manner as in the above-described “solid electrolyte production step”.
(電池素子の作製工程)
 第1の積層体を次のようにして作製する。まず、正極層形成用ペーストをグリーンシートとしての固体電解質層23の一方の表面に、当該表面の周縁部にループ状の未塗布部が形成されるように塗布し、乾燥させすることにより、正極活物質層21Bを形成する。続いて、保護層形成用ペーストを上記ループ状の未塗布部に塗布し、乾燥させすることにより、正極活物質層21Bとほぼ同一厚さの保護層14を形成する。その後、正極集電層形成用ペーストを正極活物質層21Bおよび保護層14により形成される表面に、当該表面の周縁部にU字状の未塗布部が形成されるように塗布し、乾燥させすることにより、正極集電層21Aを形成する。最後に、保護層形成用ペーストを上記U字状の未塗布部に塗布し、乾燥させすることにより、正極集電層21Aとほぼ同一厚さの保護層14を形成する。以上により、第1の積層体が得られる。
(Battery element manufacturing process)
The first laminate is produced as follows. First, the positive electrode layer forming paste is applied to one surface of the solid electrolyte layer 23 as a green sheet so that a loop-shaped uncoated portion is formed on the peripheral portion of the surface, and is dried. The active material layer 21B is formed. Subsequently, the protective layer forming paste is applied to the uncoated portion of the loop shape and dried to form the protective layer 14 having substantially the same thickness as the positive electrode active material layer 21B. Thereafter, the paste for forming the positive electrode current collecting layer is applied to the surface formed by the positive electrode active material layer 21B and the protective layer 14 so that a U-shaped uncoated portion is formed at the peripheral portion of the surface and dried. Thus, the positive electrode current collecting layer 21A is formed. Finally, the protective layer forming paste is applied to the U-shaped unapplied portion and dried to form the protective layer 14 having substantially the same thickness as the positive electrode current collecting layer 21A. Thus, the first laminate is obtained.
 第2の積層体を次のようにして作製する。まず、グリーンシートとしての固体電解質層23を第1の積層体とは別に準備する。そして、負極層形成用ペーストを固体電解質層23の一方の表面に、当該表面の周縁部にループ状の未塗布部が形成されるように塗布し、乾燥させすることにより、負極活物質層22Bを形成する。続いて、保護層形成用ペーストを上記ループ状の未塗布部に塗布し、乾燥させすることにより、負極活物質層22Bとほぼ同一厚さの保護層14を形成する。その後、負極集電層形成用ペーストを負極活物質層22Bおよび保護層14により形成される表面に、当該表面の周縁部にU字状の未塗布部が形成されるように塗布し、乾燥させすることにより、負極集電層22Aを形成する。 The second laminate is produced as follows. First, a solid electrolyte layer 23 as a green sheet is prepared separately from the first laminate. Then, the negative electrode layer forming paste is applied to one surface of the solid electrolyte layer 23 so that a loop-shaped uncoated portion is formed on the peripheral portion of the surface, and is dried, whereby the negative electrode active material layer 22B. Form. Subsequently, the protective layer forming paste is applied to the loop-shaped uncoated portion and dried, thereby forming the protective layer 14 having substantially the same thickness as the negative electrode active material layer 22B. Thereafter, the paste for forming the negative electrode current collecting layer is applied to the surface formed by the negative electrode active material layer 22B and the protective layer 14 so that a U-shaped uncoated portion is formed at the peripheral portion of the surface and dried. Thus, the negative electrode current collecting layer 22A is formed.
 次に、保護層形成用ペーストを上記U字状の未塗布部に塗布し、乾燥させすることにより、負極集電層22Aとほぼ同一厚さの保護層14を形成する。その後、負極活物質層形成用ペーストを負極集電層22Aおよび保護層14により形成される表面に、当該表面の周縁部にループ状の未塗布部が形成されるように塗布し、乾燥させすることにより、負極活物質層22Bを形成する。続いて、保護層形成用ペーストを上記ループ状の未塗布部に塗布し、乾燥させすることにより、負極活物質層22Bと同一厚さの保護層14を形成する。また、第1の積層体の作製工程と同様にして、固体電解質層23の他方の表面に、正極活物質層21B、正極集電層21Aおよび保護層14を形成する。
以上により、第2の積層体が得られる。
Next, the protective layer forming paste is applied to the U-shaped uncoated portion and dried to form the protective layer 14 having substantially the same thickness as the negative electrode current collecting layer 22A. Thereafter, the negative electrode active material layer forming paste is applied to the surface formed by the negative electrode current collecting layer 22A and the protective layer 14 so that a loop-shaped uncoated portion is formed at the peripheral portion of the surface, and is dried. Thus, the negative electrode active material layer 22B is formed. Subsequently, a protective layer forming paste having the same thickness as that of the negative electrode active material layer 22 </ b> B is formed by applying the protective layer forming paste to the loop-shaped uncoated portion and drying the paste. Further, the positive electrode active material layer 21 </ b> B, the positive electrode current collecting layer 21 </ b> A, and the protective layer 14 are formed on the other surface of the solid electrolyte layer 23 in the same manner as in the first laminate manufacturing process.
Thus, the second laminate is obtained.
 上述のようにして得られた第1の積層体、第2の積層体およびグリーンシートとしての2つの保護層14を、正極活物質層21Bと負極活物質層22Bとが固体電解質層23を介して対向するように、保護層14、第2の積層体、第1積層体、保護層14の順に積層する。これにより、図4A、4Bに示す、未焼結の保護層14で覆われた未焼結の積層型の電池素子20が得られる。続いて、保護層14と電池素子20とを同時に焼結する。 The first laminated body, the second laminated body, and the two protective layers 14 as green sheets obtained as described above, the positive electrode active material layer 21B and the negative electrode active material layer 22B are interposed via the solid electrolyte layer 23. Then, the protective layer 14, the second stacked body, the first stacked body, and the protective layer 14 are stacked in this order so as to face each other. As a result, an unsintered laminated battery element 20 covered with the unsintered protective layer 14 shown in FIGS. 4A and 4B is obtained. Subsequently, the protective layer 14 and the battery element 20 are simultaneously sintered.
(外装材の作製工程)
 次に、図5A、5Bに示すように、第1、第2端面11SA、11SBとを除く電池素子20の表面を、ガラス転移温度が500℃以下であるガラス(すなわち500℃以下で溶融するガラス)を含む外装材(グリーンシート)15で被覆する。被覆後、図6A、6Bに示すように、外装材15に含まれるガラスのガラス転移温度では溶融しない結晶粒子を含む、厚さ50μmの結晶性粉末層を外装材15の表面に形成する。
(Exterior material manufacturing process)
Next, as shown in FIGS. 5A and 5B, the surface of the battery element 20 excluding the first and second end faces 11SA and 11SB is made of glass having a glass transition temperature of 500 ° C. or lower (that is, glass that melts at 500 ° C. or lower). ) Including an exterior material (green sheet) 15. After coating, as shown in FIGS. 6A and 6B, a crystalline powder layer having a thickness of 50 μm including crystal particles that do not melt at the glass transition temperature of the glass contained in the packaging material 15 is formed on the surface of the packaging material 15.
(外装材の焼結工程)
 次に、500℃以下で外装材15に含まれるガラスを焼結させる。この際、結晶性粉末層に含まれる結晶粒子は、粒子の状態で保持される。また、外装材15と結晶性粉末層16Aとの界面に存在する結晶粒子の粉末が、外装材15の表面に結着される。なお、外装材15の焼結温度の調整する、または外装材15の焼結時に外装材15をプレスすることにより、結晶粒子の粉末が外装材15の内部に埋め込まれるようにしてもよいし、外装材15の表面に結着されると共に外装材15の内部に埋め込まれるようにしてもよい。冷却後、図7A、7Bに示すように、結晶性粉末層を除去する。この際、結晶性粉末層16Aに含まれる結晶粒子の粉末のうち、外装材15の表面に結着したものは、保護層14上に残存する。このため、第1の実施形態に係る電池の製造方法を用いて電池を作製しているか否かは、例えばSEMとX線回折とにより、保護層14上に結晶粒子16が存在しているか否かを分析することで確認可能である。
(Sintering process for exterior materials)
Next, the glass contained in the exterior material 15 is sintered at 500 ° C. or lower. At this time, the crystal particles contained in the crystalline powder layer are held in a particle state. Further, the powder of crystal particles existing at the interface between the exterior material 15 and the crystalline powder layer 16 </ b> A is bound to the surface of the exterior material 15. In addition, by adjusting the sintering temperature of the exterior material 15 or pressing the exterior material 15 when the exterior material 15 is sintered, the powder of crystal particles may be embedded in the interior of the exterior material 15, It may be bound to the surface of the exterior material 15 and embedded in the exterior material 15. After cooling, the crystalline powder layer is removed as shown in FIGS. 7A and 7B. At this time, among the powders of crystal particles included in the crystalline powder layer 16 </ b> A, those bound to the surface of the exterior material 15 remain on the protective layer 14. For this reason, whether or not the battery is manufactured using the battery manufacturing method according to the first embodiment depends on whether or not the crystal particles 16 are present on the protective layer 14 by, for example, SEM and X-ray diffraction. This can be confirmed by analyzing the above.
(正極端子、負極端子の作製工程)
 除去後、第1、第2端面11SA、11SBにそれぞれ、導電性ペーストをディップコートし、乾燥させることにより正極、負極端子12、13を形成する。その後、正極、負極端子12、13に含まれる有機系結着剤を燃焼(脱脂)させたのち、それらに含まれるガラスを、外装材15の焼結温度以下(すなわち500℃以下)で焼結させる。これにより、図1に示す全固体電池が得られる。
(Preparation process of positive terminal and negative terminal)
After the removal, the first and second end faces 11SA and 11SB are dip-coated with a conductive paste and dried to form the positive and negative terminals 12 and 13, respectively. Thereafter, after burning (degreasing) the organic binder contained in the positive electrode and the negative electrode terminals 12 and 13, the glass contained in them is sintered at a sintering temperature or lower (that is, 500 ° C. or lower) of the exterior material 15. Let Thereby, the all-solid-state battery shown in FIG. 1 is obtained.
[効果]
 第1の実施形態に係る電池では、保護層14がLiを最初から含んでいるため、電池素子20から保護層14へのLiイオン拡散を抑制することができる。したがって、不可逆容量の増加を抑制することができる。
[effect]
In the battery according to the first embodiment, since the protective layer 14 contains Li from the beginning, Li ion diffusion from the battery element 20 to the protective layer 14 can be suppressed. Therefore, an increase in irreversible capacity can be suppressed.
 積層構成を有する電池素子20と水分透過を抑制する外装材15との間に、固体電解質を含む保護層14を設けているので、電池素子20と外装材15とを電気的かつ化学的に絶縁することができる。したがって、安定した充放電サイクルが可能となる。 Since the protective layer 14 containing a solid electrolyte is provided between the battery element 20 having a laminated structure and the exterior material 15 that suppresses moisture permeation, the battery element 20 and the exterior material 15 are electrically and chemically insulated. can do. Therefore, a stable charge / discharge cycle is possible.
 緻密な外装材15で電池素子20を覆っているため、外装材15の平均厚みが100μm以下であっても、電池素子20への水分透過を抑制できる。したがって、安定した充放電動作を実現できる。 Since the battery element 20 is covered with the dense exterior material 15, moisture permeation to the battery element 20 can be suppressed even if the average thickness of the exterior material 15 is 100 μm or less. Therefore, a stable charge / discharge operation can be realized.
 第1の実施形態に係る電池の製造方法では、外装材15の焼結温度で溶融しない結晶粒子16の粉末を含む結晶性粉末層16Aを、ガラスを含む外装材15上に形成したのち、外装材15を焼結させているので、焼結時に電池素子20の主面の面内方向に外装材15が収縮することを抑制することができる。したがって、外装材15の割れの発生を抑制することができる。すなわち、緻密な外装材15を電池素子20の表面に形成できる。また、外装材15の焼結後には、結晶性粉末層16Aを除去するので、電池体積を増やすことなく、外装材15の割れを抑制できる。これに対して、結晶性粉末層16Aを外装材15上に形成せずに、外装材15を焼結させた場合には、焼結時の収縮により、外装材15が割れてしまう虞がある。 In the battery manufacturing method according to the first embodiment, after forming the crystalline powder layer 16A including the powder of the crystal particles 16 that does not melt at the sintering temperature of the exterior material 15 on the exterior material 15 including glass, the exterior Since the material 15 is sintered, the exterior material 15 can be prevented from shrinking in the in-plane direction of the main surface of the battery element 20 during sintering. Therefore, generation | occurrence | production of the crack of the exterior material 15 can be suppressed. That is, the dense exterior material 15 can be formed on the surface of the battery element 20. Moreover, since the crystalline powder layer 16A is removed after the exterior material 15 is sintered, cracking of the exterior material 15 can be suppressed without increasing the battery volume. On the other hand, when the exterior material 15 is sintered without forming the crystalline powder layer 16A on the exterior material 15, the exterior material 15 may be cracked due to shrinkage during sintering. .
 外装材15の焼結温度で溶融しない結晶粒子16の粉末を含む結晶性粉末層16Aを外装電池素子11の表面に設けているので、外装材15を外装電池素子11の支持台(サセプタ)に密着させることなく、外装材15を焼結できる。したがって、外装電池素子11が支持台に貼り付くことを抑制できるので、作業性や歩留まりを向上できる。 Since the crystalline powder layer 16A containing the powder of the crystal particles 16 that does not melt at the sintering temperature of the exterior material 15 is provided on the surface of the exterior battery element 11, the exterior material 15 is used as a support base (susceptor) for the exterior battery element 11. The exterior material 15 can be sintered without being in close contact. Therefore, since it can suppress that the exterior battery element 11 adheres to a support stand, workability | operativity and a yield can be improved.
[変形例]
(変形例1)
 第1の実施形態では、電池が、負極集電層22Aと負極活物質層22Bとを有する2層構造の負極層22を備える構成について説明したが、この負極層22に代えて、図8に示すように単層構造の負極層24を備える構成を採用してもよい。
[Modification]
(Modification 1)
In the first embodiment, the configuration in which the battery includes the negative electrode layer 22 having the two-layer structure including the negative electrode current collecting layer 22A and the negative electrode active material layer 22B has been described. Instead of the negative electrode layer 22, FIG. As shown, a configuration including a single-layered negative electrode layer 24 may be employed.
 負極層24は、負極活物質と固体電解質とを含む負極活物質層である。固体電解質が、結着剤としての機能を有していてもよい。負極層24は、必要に応じて導電剤を更に含んでいてもよい。負極活物質は、上述の第1の実施形態において負極活物質層22Bに含まれるものと同様である。なお、2層構造の正極層21に代えて、単層構造の正極層を備える構成を採用してもよい。 The negative electrode layer 24 is a negative electrode active material layer containing a negative electrode active material and a solid electrolyte. The solid electrolyte may have a function as a binder. The negative electrode layer 24 may further contain a conductive agent as necessary. The negative electrode active material is the same as that included in the negative electrode active material layer 22B in the first embodiment. In addition, it may replace with the positive electrode layer 21 of a two-layer structure, and the structure provided with the positive electrode layer of a single layer structure may be employ | adopted.
(変形例2)
 第1の実施形態では、電池素子20が、2層の正極層21と、1層の負極層22と、2層の固体電解質層23とを備える構成について説明したが、電池素子20の構成は正極層21と負極層22とが固体電解質層23を介して積層された構成であればよく、正極層21、負極層22および固体電解質層23の層数は特に限定されるものではない。
(Modification 2)
In the first embodiment, the configuration in which the battery element 20 includes the two positive electrode layers 21, the one negative electrode layer 22, and the two solid electrolyte layers 23 has been described. The number of layers of the positive electrode layer 21, the negative electrode layer 22, and the solid electrolyte layer 23 is not particularly limited as long as the positive electrode layer 21 and the negative electrode layer 22 are stacked via the solid electrolyte layer 23.
 図9は、電池素子20が、4層の正極層21と、4層の負極層22と、7層の固体電解質層23とを備える構成の一例を示している。正極層21と負極層22とは、固体電解質層23を間に挟むようにして交互に積層されている。電池素子20の一端には正極層21が設けられ、他端には負極層22が設けられている。4層の正極層21のうち、電池素子20の一端に位置する正極層21は、正極集電層21Aと、正極集電層21Aの両主面のうち、負極層22と対向する側の主面に設けられた正極活物質層21Bとを備える。4層の正極層21のうち、電池素子20の一端以外に位置する正極層21は、正極集電層21Aと、正極集電層21Aの両主面にそれぞれ設けられた正極活物質層21Bとを備える。 FIG. 9 shows an example of a configuration in which the battery element 20 includes four positive electrode layers 21, four negative electrode layers 22, and seven solid electrolyte layers 23. The positive electrode layers 21 and the negative electrode layers 22 are alternately stacked with the solid electrolyte layers 23 interposed therebetween. A positive electrode layer 21 is provided at one end of the battery element 20, and a negative electrode layer 22 is provided at the other end. Of the four positive electrode layers 21, the positive electrode layer 21 located at one end of the battery element 20 is the main electrode on the side facing the negative electrode layer 22 of both main surfaces of the positive electrode current collector layer 21 </ b> A and the positive electrode current collector layer 21 </ b> A. And a positive electrode active material layer 21B provided on the surface. Among the four positive electrode layers 21, the positive electrode layer 21 located at a position other than one end of the battery element 20 includes a positive electrode current collecting layer 21 </ b> A and a positive electrode active material layer 21 </ b> B provided on both main surfaces of the positive electrode current collecting layer 21 </ b> A. Is provided.
 4層の負極層22のうち、電池素子20の他端に位置する負極層22は、負極集電層22Aと、負極集電層22Aの両主面のうち、正極層21と対向する側の主面に設けられた負極活物質層22Bとを備える。4層の負極層22のうち、電池素子20の他端以外に位置する負極層22は、負極集電層22Aと、負極集電層22Aの両主面にそれぞれ設けられた負極活物質層22Bとを備える。 Of the four negative electrode layers 22, the negative electrode layer 22 located at the other end of the battery element 20 is on the side facing the positive electrode layer 21 of both main surfaces of the negative electrode current collector layer 22 </ b> A and the negative electrode current collector layer 22 </ b> A. A negative electrode active material layer 22B provided on the main surface. Of the four negative electrode layers 22, the negative electrode layer 22 positioned other than the other end of the battery element 20 includes a negative electrode current collecting layer 22 </ b> A and a negative electrode active material layer 22 </ b> B provided on both main surfaces of the negative electrode current collecting layer 22 </ b> A. With.
 第1端面11SAから4層の正極集電層21Aの一端が露出している。この露出した4層の正極集電層21Aの一端に正極端子12が電気的に接続されている。一方、第2端面11SBから4層の負極集電層22Aの一端が露出している。この露出した4層の負極集電層22Aの一端に負極端子13が電気的に接続されている。 One end of the four positive electrode current collecting layers 21A is exposed from the first end face 11SA. The positive electrode terminal 12 is electrically connected to one end of the exposed four positive electrode current collecting layers 21A. On the other hand, one end of the four negative electrode current collecting layers 22A is exposed from the second end face 11SB. A negative electrode terminal 13 is electrically connected to one end of the exposed negative electrode current collecting layer 22A.
(変形例3)
 第1の実施形態の電池では、外装材15が結晶粒子16の粉末を含んでいる構成について説明したが、外装材15が結晶粒子16を含んでいなくてもよい。また、第1の実施形態に係る電池素子の製造方法では、結晶性粉末層16Aを外装材15上に形成する工程が備えられている場合について説明したが、上記工程は省略されてもよい。但し、外装材15の割れの発生を抑制するためには、上記工程が備えられていることが好ましい。
(Modification 3)
In the battery of the first embodiment, the configuration in which the exterior material 15 includes the powder of the crystal particles 16 has been described, but the exterior material 15 may not include the crystal particles 16. In the battery element manufacturing method according to the first embodiment, the case where the step of forming the crystalline powder layer 16 </ b> A on the exterior material 15 has been described, but the above step may be omitted. However, in order to suppress the occurrence of cracks in the exterior material 15, it is preferable that the above process is provided.
(変形例4)
 第1の実施形態では、外装電池素子11の主面の形状が四角形である場合について説明したが、外装電池素子11の主面の形状は特に限定されるものではない。例示するならば、円形、楕円形、四角形状以外の多角形または不定形などが挙げられる。また、外装電池素子11の形状は板状に限定されるものではなく、シート状またはブロック状などであってもよい。また、外装電池素子11が湾曲または屈曲していてもよい。
(Modification 4)
In the first embodiment, the case where the shape of the main surface of the external battery element 11 is a square has been described, but the shape of the main surface of the external battery element 11 is not particularly limited. For example, a circle, an ellipse, a polygon other than a quadrangle, an indefinite shape, or the like can be given. The shape of the external battery element 11 is not limited to a plate shape, and may be a sheet shape or a block shape. Moreover, the exterior battery element 11 may be curved or bent.
(変形例5)
 上述の第1の実施形態では、電極反応物質としてリチウムを用いる電池に対して本技術を適用した例について説明したが、本技術はこの例に限定されるものではない。電極反応物質として、例えば、NaもしくはKなどの他のアルカリ金属、MgもしくはCaなどのアルカリ土類金属、またはAlもしくはAgなどのその他の金属を用いる電池に本技術を適用してもよい。
(Modification 5)
In the first embodiment described above, an example in which the present technology is applied to a battery using lithium as an electrode reactant has been described, but the present technology is not limited to this example. For example, the present technology may be applied to a battery using another alkali metal such as Na or K, an alkaline earth metal such as Mg or Ca, or another metal such as Al or Ag as an electrode reactant.
(変形例6)
 上述の第1の実施形態では、正極集電層21A、正極活物質層21B、負極集電層22Aおよび負極活物質層22Bの全ての層が固体電解質を含む場合について説明したが、正極集電層21A、正極活物質層21B、負極集電層22Aおよび負極活物質層22Bのうちの少なくとも一層が固体電解質を含まなくてもよい。この場合、固体電解質を含まない層は、例えば蒸着法またはスパッタ法などの気相成長法で作製される薄膜であってもよい。
(Modification 6)
In the first embodiment described above, the case where all the layers of the positive electrode current collecting layer 21A, the positive electrode active material layer 21B, the negative electrode current collecting layer 22A, and the negative electrode active material layer 22B contain a solid electrolyte has been described. At least one of the layer 21A, the positive electrode active material layer 21B, the negative electrode current collecting layer 22A, and the negative electrode active material layer 22B may not contain a solid electrolyte. In this case, the layer not including the solid electrolyte may be a thin film formed by a vapor deposition method such as a vapor deposition method or a sputtering method.
(変形例7)
 正極集電層21A、正極活物質層21B、負極層22および固体電解質層23に含まれる固体電解質は、特に限定されるものではない。第1の実施形態の固体電解質以外の固体電解質としては、例えば、La-Li-Ti-Oなどから構成されるペロブスカイト型酸化物結晶、Li-La-Zr-Oなどから構成されるガーネット型酸化物結晶、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)などを用いることができる。
(Modification 7)
The solid electrolyte contained in 21 A of positive electrode current collection layers, 21 B of positive electrode active material layers, the negative electrode layer 22, and the solid electrolyte layer 23 is not specifically limited. Examples of the solid electrolyte other than the solid electrolyte of the first embodiment include a perovskite oxide crystal composed of La—Li—Ti—O and the like, and a garnet oxidation composed of Li—La—Zr—O and the like. A phosphoric acid compound (LATP) containing constituent crystals, lithium, aluminum and titanium as constituent elements, a phosphoric acid compound (LAGP) containing lithium, aluminum and germanium as constituent elements can be used.
 また、Li2S-P25、Li2S-SiS2-Li3PO4、Li7311、Li3.25Ge0.250.75S、またはLi10GeP212などの硫化物や、Li7La3Zr212、Li6.75La3Zr1.75Nb0.2512、Li6BaLa2Ta212、Li1+xAlxTi2-x(PO43またはLa2/3-xLi3xTiO3などの酸化物を用いることもできる。 Further, sulfides such as Li 2 S—P 2 S 5 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S, or Li 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al x Ti 2-x (PO 4 ) 3 or La 2/3 An oxide such as -x Li 3x TiO 3 can also be used.
(変形例8)
 第1の実施形態では、固体電解質層23の周縁部が、保護層14により覆われずに電池素子20の周縁部(第1~第4端面11SA~11SD)から露出している構成について説明したが、固体電解質層23の周縁部が、保護層14により覆われている構成を採用してもよい。
(Modification 8)
In the first embodiment, the configuration in which the peripheral edge portion of the solid electrolyte layer 23 is exposed from the peripheral edge portion (first to fourth end faces 11SA to 11SD) of the battery element 20 without being covered with the protective layer 14 has been described. However, a configuration in which the peripheral portion of the solid electrolyte layer 23 is covered with the protective layer 14 may be adopted.
(その他の変形例)
 電池素子20の構造は、特に限定されるものではなく、バイポーラ型の積層構造を有していてもよい。また、正極集電層21A、正極活物質層21B、負極集電層22Aおよび負極活物質層22Bのうちの少なくとも1層がグリーンシートの焼結体であってもよい。また、正極集電層21A、正極活物質層21B、負極集電層22A、負極活物質層22Bおよび固体電解質層23のうちの少なくとも1層が圧粉体であってもよい。圧粉体は、有機系結着剤を含んでいなくてもよい。
(Other variations)
The structure of the battery element 20 is not particularly limited, and may have a bipolar stacked structure. Further, at least one of the positive electrode current collecting layer 21A, the positive electrode active material layer 21B, the negative electrode current collecting layer 22A, and the negative electrode active material layer 22B may be a green sheet sintered body. Further, at least one of positive electrode current collecting layer 21A, positive electrode active material layer 21B, negative electrode current collecting layer 22A, negative electrode active material layer 22B, and solid electrolyte layer 23 may be a green compact. The green compact does not need to contain an organic binder.
<2 第2の実施形態>
[電池の構成]
 本技術の第2の実施形態に係る電池は、図10、11A、11Bに示すように、外装材15が第3、第4端面11SC、11SDに対応する部分に結晶粒子16の粉末を含んでいない点において、第1の実施形態に係る電池とは異なっている。
<2 Second Embodiment>
[Battery configuration]
In the battery according to the second embodiment of the present technology, as shown in FIGS. 10, 11 </ b> A, and 11 </ b> B, the exterior material 15 includes powder of crystal particles 16 in portions corresponding to the third and fourth end surfaces 11 </ b> SC and 11 </ b> SD. This is different from the battery according to the first embodiment.
[電池の製造方法]
 以下、図4、12A~15Bを参照して、本技術の第2の実施形態に係る電池の製造方法の一例について説明する。なお、図4A、12A、13A、14A、15Aは、第1端面11SA側から電池素子20を見たとき斜視図であり、図4B、12B、13B、14B、15Bは、第2端面11SB側から電池素子20および外装電池素子31を見たとき斜視図である。
[Battery manufacturing method]
Hereinafter, an example of a method for manufacturing a battery according to the second embodiment of the present technology will be described with reference to FIGS. 4 and 12A to 15B. 4A, 12A, 13A, 14A, and 15A are perspective views when the battery element 20 is viewed from the first end surface 11SA side, and FIGS. 4B, 12B, 13B, 14B, and 15B are from the second end surface 11SB side. It is a perspective view when the battery element 20 and the exterior battery element 31 are seen.
 まず、第1の実施形態の製造方法と同様にして、図4A、4Bに示すように、Liイオン導電性を有するLi含有の保護層14で覆われたLi含有の電池素子20を作製する。次に、図12A、12Bに示すように、保護層14で覆われた電池素子20の両主面を、ガラス転移温度が500℃以下であるガラス(すなわち500℃以下で溶融するガラス)を含む外装材15で覆う。続いて、図13A、13Bに示すように、外装材15に含まれるガラスのガラス転移温度では溶融しない結晶を含む、厚さ50μmの結晶性粉末層16Aを外装材15上に形成する。そして、未焼結の電池素子20、保護層14および外装材15に含まれる有機系結着剤(バインダ)を同時に燃焼(脱脂)させたのち、電池素子20および保護層14に含まれる固体電解質(例えば酸化物ガラス)と、外装材15に含まれるガラスを500℃以下で同時に焼結する。この際、外装材15と結晶性粉末層16Aとの界面に存在する結晶粒子の粉末が、外装材15の表面に結着される。 First, similarly to the manufacturing method of the first embodiment, as shown in FIGS. 4A and 4B, a Li-containing battery element 20 covered with a Li-containing protective layer 14 having Li ion conductivity is manufactured. Next, as shown in FIGS. 12A and 12B, both main surfaces of the battery element 20 covered with the protective layer 14 include glass having a glass transition temperature of 500 ° C. or lower (that is, glass that melts at 500 ° C. or lower). Cover with exterior material 15. Subsequently, as illustrated in FIGS. 13A and 13B, a crystalline powder layer 16 </ b> A having a thickness of 50 μm including crystals that do not melt at the glass transition temperature of the glass included in the exterior material 15 is formed on the exterior material 15. Then, after burning (degreasing) the organic binder (binder) contained in the unsintered battery element 20, the protective layer 14, and the exterior material 15 at the same time, the solid electrolyte contained in the battery element 20 and the protective layer 14. (For example, oxide glass) and the glass contained in the exterior material 15 are simultaneously sintered at 500 ° C. or lower. At this time, the powder of crystal particles existing at the interface between the exterior material 15 and the crystalline powder layer 16 </ b> A is bound to the surface of the exterior material 15.
 焼結後、図14A、14Bに示すように、結晶性粉末層16Aを保護層14上から除去する。この際、結晶性粉末層16Aに含まれる結晶粒子の粉末のうち、外装材15の表面に結着したものは、保護層14上に残存する。次に、図15A、15Bに示すように、第3、第4端面11SC、11SDに外装材形成用ペーストをディップコートし、乾燥させることにより、第3、第4端面11SC、11SDに外装材15を形成する。 After sintering, the crystalline powder layer 16A is removed from the protective layer 14 as shown in FIGS. 14A and 14B. At this time, among the powders of crystal particles included in the crystalline powder layer 16 </ b> A, those bound to the surface of the exterior material 15 remain on the protective layer 14. Next, as shown in FIGS. 15A and 15B, the packaging material forming paste is dip coated on the third and fourth end surfaces 11SC and 11SD and dried, so that the packaging material 15 is applied to the third and fourth end surfaces 11SC and 11SD. Form.
 続いて、外装電池素子31の第1、第2端面11SA、11SBにそれぞれ導電性ペーストをディップコートし、乾燥させることにより、正極、負極端子12、13を形成する。その後、第3、第4端面11SC、11SDに形成された外装材15と、正極、負極端子12、13とに含まれる有機系結着剤を同時に燃焼(脱脂)させたのち、それらの含まれるガラスを同時に、外装材15の焼結温度以下(すなわち500℃以下)で焼結させる。これにより、図10に示す電池が得られる。 Subsequently, the first and second end faces 11SA and 11SB of the exterior battery element 31 are dip-coated with a conductive paste and dried to form the positive and negative terminals 12 and 13. Thereafter, the exterior binder 15 formed on the third and fourth end faces 11SC and 11SD and the organic binder contained in the positive electrode and the negative electrode terminals 12 and 13 are simultaneously burned (degreased) and then included. The glass is simultaneously sintered at a temperature equal to or lower than the sintering temperature of the outer package 15 (that is, 500 ° C. or lower). Thereby, the battery shown in FIG. 10 is obtained.
[効果]
 第2の実施形態に係る電池では、第1の実施形態に係る電池と同様の効果を得ることができる。また、第2の実施形態に係る電池の製造方法では、第1の実施形態に係る電池の製造方法と同様の効果を得ることができる。
[effect]
In the battery according to the second embodiment, the same effect as that of the battery according to the first embodiment can be obtained. The battery manufacturing method according to the second embodiment can achieve the same effects as the battery manufacturing method according to the first embodiment.
<3 応用例>
「応用例としてのプリント回路基板」
 以下、本開示をプリント回路基板に対して適用した応用例について説明する。
 上述した電池は、プリント回路基板上に充電回路等と共に実装することができる。例えばプリント回路基板上に全固体電池及び充電回路等の電子回路をリフロー工程でもって実装することができる。プリント回路基板は、電池モジュールの一例であり、携帯可能なカード型モバイル電池であってもよい。
<3 Application example>
"Printed circuit boards as application examples"
Hereinafter, application examples in which the present disclosure is applied to a printed circuit board will be described.
The battery described above can be mounted on a printed circuit board together with a charging circuit or the like. For example, an electronic circuit such as an all-solid battery and a charging circuit can be mounted on a printed circuit board by a reflow process. The printed circuit board is an example of a battery module, and may be a portable card type mobile battery.
 図16は、プリント回路基板1201の構成の一例を示す。プリント回路基板1201は、基板1202と、この基板1202の片面に設けられた全固体電池1203、充放電制御IC(Integrated Circuit)1204、電池保護IC1205、電池残量監視IC1206およびUSB(Universal Serial Bus)インターフェース1207とを備える。ここでは、プリント回路基板1201が片面基板である例について説明するが、両面基板であってもよい。また、多層基板であってもよいし、ビルドアップ基板であってもよい。 FIG. 16 shows an example of the configuration of the printed circuit board 1201. The printed circuit board 1201 includes a board 1202, an all solid state battery 1203 provided on one side of the board 1202, a charge / discharge control IC (Integrated Circuit) 1204, a battery protection IC 1205, a battery remaining amount monitoring IC 1206, and a USB (Universal Serial Bus). And an interface 1207. Although an example in which the printed circuit board 1201 is a single-sided board is described here, a double-sided board may be used. Moreover, a multilayer board | substrate may be sufficient and a buildup board | substrate may be sufficient.
 基板1202は、例えばリジッド基板である。全固体電池1203は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。充放電制御IC1204は、全固体電池1203に対する充放電動作を制御する制御部である。電池保護IC1205は、充放電時に充電電圧が過大となったり、負荷短絡によって過電流が流れたり、過放電が生じることがないように充放電動作を制御する制御部である。電池残量監視IC1206は、全固体電池1203の電池残量を監視し、電池残量を負荷(例えばホスト機器)1209等に通知する監視部である。 The substrate 1202 is, for example, a rigid substrate. The all-solid-state battery 1203 is a battery according to any one of the first and second embodiments and modifications thereof. The charge / discharge control IC 1204 is a control unit that controls the charge / discharge operation for the all-solid battery 1203. The battery protection IC 1205 is a control unit that controls the charging / discharging operation so that the charging voltage does not become excessive at the time of charging / discharging, the overcurrent flows due to the load short circuit, and the overdischarging does not occur. The battery remaining amount monitoring IC 1206 is a monitoring unit that monitors the remaining battery amount of the all-solid-state battery 1203 and notifies the load (for example, host device) 1209 to the remaining battery amount.
 外部電源等からUSBインターフェース1207を介して供給される電力によって全固体電池1203が充電される。全固体電池1203から負荷接続端子1208a、1208bを介して負荷1209に対して所定の電力(例えば電圧が4.2V)が供給される。なお、負荷との接続にUSBインターフェース1207が使用されてもよい。 The all-solid-state battery 1203 is charged by the power supplied from the external power source or the like via the USB interface 1207. Predetermined power (for example, a voltage of 4.2 V) is supplied from the all solid state battery 1203 to the load 1209 via the load connection terminals 1208a and 1208b. Note that the USB interface 1207 may be used for connection with a load.
 負荷1209の具体例としては、ウェアラブル機器(スポーツウオッチ、時計、補聴器等)、IoT端末(センサネットワーク端末等)、アミューズメント機器(ポータブルゲーム端末、ゲームコントローラ)、IC基板埋め込み電池(リアルタイムクロックIC)、環境発電機器(太陽光発電、熱電発電、振動発電等の発電素子用の蓄電素子)等が挙げられる。 Specific examples of the load 1209 include wearable devices (sports watches, watches, hearing aids, etc.), IoT terminals (sensor network terminals, etc.), amusement devices (portable game terminals, game controllers), IC board embedded batteries (real-time clock ICs), Examples include energy harvesting devices (storage elements for power generation elements such as solar power generation, thermoelectric power generation, and vibration power generation).
「応用例としてのユニバーサルクレジットカード」
 以下、本開示をユニバーサルクレジットカードに対して適用した応用例について説明する。
 ユニバーサルクレジットカードは、複数枚のクレジットカードやポイントカード等の機能を、1枚のカードに集約したカードである。このカードの中には、例えば、様々なクレジットカードやポイントカードの番号や有効期限等の情報を取り込むことができるので、そのカード1枚を財布等の中の入れておけば、好きな時に好きなカードを選択して利用することができる。
"Universal credit card as an application"
Hereinafter, application examples in which the present disclosure is applied to a universal credit card will be described.
The universal credit card is a card in which functions such as a plurality of credit cards and point cards are integrated into one card. For example, information such as the number and expiration date of various credit cards and point cards can be taken into this card, so if you put one card in your wallet, you can use it whenever you want. You can select and use the correct card.
 図17は、ユニバーサルクレジットカード1301の構成の一例を示す。ユニバーサルクレジットカード1301は、カード型形状を有し、その内部に図示しないICチップと全固体電池とを備える。また、ユニバーサルクレジットカード1301は、一方の面に小電力消費のディスプレイ1302と、操作部としての方向キー1303a、1303bと、充電用端子1304とを備える。全固体電池は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。 FIG. 17 shows an example of the configuration of the universal credit card 1301. The universal credit card 1301 has a card shape and includes an IC chip (not shown) and an all-solid battery inside. The universal credit card 1301 includes a display 1302 with low power consumption on one side, direction keys 1303a and 1303b as operation units, and a charging terminal 1304. The all-solid-state battery is a battery according to any one of the first and second embodiments and modifications thereof.
 例えば、ユーザはディスプレイ1302を見ながら方向キー1303a及び1303bを操作して、予めユニバーサルクレジットカード1301にロードされている複数のクレジットカードから所望のものを指定することができる。指定後は、従来のクレジットカードと同様に使用することができる。なお、上記は一例であって、第1、第2の実施形態およびその変形例のいずれかに係る電池は、ユニバーサルクレジットカード1301以外のあらゆる電子カードに適用可能であることは言うまでもない。 For example, the user can designate a desired one from a plurality of credit cards loaded in advance on the universal credit card 1301 by operating the direction keys 1303a and 1303b while looking at the display 1302. After designation, it can be used like a conventional credit card. Note that the above is an example, and it goes without saying that the battery according to any of the first and second embodiments and the modifications thereof can be applied to any electronic card other than the universal credit card 1301.
「応用例としてのセンサネットワーク端末」
 以下、本開示をセンサネットワーク端末に対して適用した応用例について説明する。
 無線センサネットワークにおける無線端末は、センサノードと呼ばれ、1個以上の無線チップ、マイクロプロセッサ、電源(電池)等により構成される。センサネットワークの具体例としては、省エネルギー管理、健康管理、工業計測、交通状況、農業等をモニタするのに使用される。センサの種類としては、電圧、温度、ガス、照度等が使用される。
"Sensor network terminal as an application example"
Hereinafter, an application example in which the present disclosure is applied to a sensor network terminal will be described.
A wireless terminal in a wireless sensor network is called a sensor node, and includes one or more wireless chips, a microprocessor, a power source (battery), and the like. Specific examples of sensor networks are used to monitor energy saving management, health management, industrial measurement, traffic conditions, agriculture, and the like. As the type of sensor, voltage, temperature, gas, illuminance and the like are used.
 省エネルギー管理の場合、センサノードとして、電力モニタノード、温度・湿度ノード、照度ノード、CO2ノード、人感ノード、リモートコントロールノード、ルータ(中継機)等が使用される。これらのセンサノードが家庭、オフィスビル、工場、店舗、アミューズメント施設等において無線ネットワークを構成するように設けられる。 In the case of energy saving management, a power monitor node, a temperature / humidity node, an illuminance node, a CO 2 node, a human sensor node, a remote control node, a router (relay machine), and the like are used as sensor nodes. These sensor nodes are provided so as to constitute a wireless network in homes, office buildings, factories, stores, amusement facilities, and the like.
 そして、温度、湿度、照度、CO2濃度、電力量等のデータが表示され、環境の省エネの状況が見えるようになっている。さらに、制御局からのコマンドによって、照明、空調施設、換気施設等のオン/オフ制御がなされる。 Data such as temperature, humidity, illuminance, CO 2 concentration, and electric energy is displayed so that the energy saving status of the environment can be seen. Furthermore, on / off control of lighting, air-conditioning facilities, ventilation facilities, etc. is performed according to commands from the control station.
 センサネットワークの無線インターフェースの一つとしてZigBee(登録商標)を使用することができる。この無線インターフェースは、近距離無線通信規格の一つであり、転送可能距離が短く転送速度も低速である代わりに、安価で消費電力が少ない特徴を有する。したがって、電池駆動可能な機器への実装に向いている。この通信規格の基礎部分は、IEEE802.15.4として規格化されている。論理層以上の機器間の通信プロトコルはZigBee(登録商標)アライアンスが仕様の策定を行っている。 ZigBee (registered trademark) can be used as one of the wireless interfaces of the sensor network. This wireless interface is one of the short-range wireless communication standards, and has a feature that it is inexpensive and consumes less power, instead of having a short transferable distance and a low transfer speed. Therefore, it is suitable for mounting on a battery-driven device. The basic part of this communication standard is standardized as IEEE 802.15.4. The ZigBee (Registered Trademark) Alliance has formulated specifications for communication protocols between devices above the logical layer.
 図18は、無線センサノード1401の構成の一例を示す。センサ1402の検出信号がマイクロプロセッサ(MPU)1403のAD変換回路1404に供給される。センサ1402として上述した種々のセンサが使用できる。マイクロプロセッサ1403と関連してメモリ1406が設けられている。さらに、電池1407の出力が電源制御部1408に供給され、センサノード1401の電源が管理される。電池1407は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。 FIG. 18 shows an example of the configuration of the wireless sensor node 1401. A detection signal of the sensor 1402 is supplied to an AD conversion circuit 1404 of a microprocessor (MPU) 1403. The various sensors described above can be used as the sensor 1402. A memory 1406 is provided in association with the microprocessor 1403. Further, the output of the battery 1407 is supplied to the power supply control unit 1408, and the power supply of the sensor node 1401 is managed. The battery 1407 is a battery according to any one of the first and second embodiments and the modifications thereof.
 マイクロプロセッサ1403に対してプログラムがインストールされる。マイクロプロセッサ1403がプログラムにしたがってAD変換回路1404から出力されるセンサ1402の検出結果のデータを処理する。マイクロプロセッサ1403の通信制御部1405に対して無線通信部1409が接続され、無線通信部1409から検出結果のデータがネットワーク端末(図示せず)に対して例えばZigBee(登録商標)を使用して送信され、ネットワーク端末を介してネットワークに接続される。一つのネットワーク端末に対して所定数の無線センサノードが接続可能である。なお、ネットワークの形態としては、スター型以外に、ツリー型、メッシュ型及びリニア型等の形態を使用することができる。 The program is installed in the microprocessor 1403. The microprocessor 1403 processes the detection result data of the sensor 1402 output from the AD conversion circuit 1404 according to the program. A wireless communication unit 1409 is connected to the communication control unit 1405 of the microprocessor 1403, and detection result data is transmitted from the wireless communication unit 1409 to a network terminal (not shown) using, for example, ZigBee (registered trademark). And connected to the network via a network terminal. A predetermined number of wireless sensor nodes can be connected to one network terminal. In addition to the star type, the network type may be a tree type, a mesh type, a linear type, or the like.
「応用例としてのリストバンド型電子機器」
 以下、本開示をリストバンド型電子機器に対して適用した応用例について説明する。
 リストバンド型電子機器は、スマートバンドとも呼ばれ、腕に巻き付けておくのみで、歩数、移動距離、消費カロリー、睡眠量、心拍数等の人の活動に関するデータを取得することができるものである。さらに、取得されたデータをスマートフォンで管理することもできる。さらに、メールの送受信機能を備えることもでき、例えば、メールの着信をLED(Light Emitting Diode)ランプ及び/又はバイブレーションでユーザに知らせることができる。
"Wristband electronic devices as application examples"
Hereinafter, application examples in which the present disclosure is applied to a wristband type electronic device will be described.
Wristband electronic devices, also called smartbands, can acquire data related to human activities such as the number of steps, distance traveled, calories burned, amount of sleep, heart rate, etc. just by wrapping around the wrist. . Furthermore, the acquired data can also be managed with a smartphone. Furthermore, a mail transmission / reception function can be provided. For example, an incoming mail can be notified to the user by an LED (Light Emitting Diode) lamp and / or vibration.
 図19は、リストバンド型電子機器1601の外観の一例を示す。電子機器1601は、人体に着脱自在とされる時計型のいわゆるウェアラブル機器である。電子機器1601は、腕に装着されるバンド部1611と、数字、文字及び図柄等を表示する表示装置1612と、操作ボタン1613とを備えている。バンド部1611には、複数の孔部1611aと、内周面(電子機器1601の装着時に腕に接触する側の面)側に設けられた突起1611bとが形成されている。 FIG. 19 shows an example of the appearance of the wristband type electronic device 1601. The electronic device 1601 is a so-called wearable device that is detachable from the human body. The electronic device 1601 includes a band portion 1611 attached to the arm, a display device 1612 that displays numbers, characters, symbols, and the like, and operation buttons 1613. The band portion 1611 is formed with a plurality of hole portions 1611a and protrusions 1611b provided on the inner peripheral surface (the surface that comes into contact with the arm when the electronic device 1601 is attached).
 電子機器1601は、使用状態においては、図19に示すようにバンド部1611が略円形となるように湾曲され、孔部1611aに突起1611bが挿入されて腕に装着される。突起1611bを挿入する孔部1611aの位置を調整することにより、腕の太さに対応して径の大きさを調整することができる。電子機器1601は、使用されない状態では、孔部1611aから突起1611bが取り外され、バンド部1611が略平坦な状態で保管される。バンド部1611内部には、バンド部1611のほぼ全体にわたってセンサ(図示せず)が設けられている。 In the state of use, the electronic device 1601 is bent so that the band portion 1611 is substantially circular as shown in FIG. 19, and the protrusion 1611b is inserted into the hole portion 1611a and attached to the arm. By adjusting the position of the hole 1611a into which the protrusion 1611b is inserted, the diameter can be adjusted corresponding to the thickness of the arm. When the electronic device 1601 is not used, the protrusion 1611b is removed from the hole 1611a, and the band 1611 is stored in a substantially flat state. Inside the band part 1611, a sensor (not shown) is provided over almost the entire band part 1611.
 図20は、電子機器1601の構成の一例を示す。電子機器1601は、上述した表示装置1612の他に、駆動制御部としてのコントローラIC1615と、センサ1620と、ホスト機器1616と、電源としての電池1617と、充放電制御部1618とを備える。センサ1620がコントローラIC1615を含んでいてもよい。 FIG. 20 shows an example of the configuration of the electronic device 1601. In addition to the display device 1612 described above, the electronic device 1601 includes a controller IC 1615 as a drive control unit, a sensor 1620, a host device 1616, a battery 1617 as a power source, and a charge / discharge control unit 1618. Sensor 1620 may include a controller IC 1615.
 センサ1620は、押圧と曲げとの両方を検出可能なものである。センサ1620は、押圧に応じた静電容量の変化を検出し、それに応じた出力信号をコントローラIC1615に出力する。また、センサ1620は、曲げに応じた抵抗値の変化(抵抗変化)を検出し、それに応じた出力信号をコントローラIC1615に出力する。コントローラIC1615は、センサ1620からの出力信号に基づき、センサ1620の押圧および曲げを検出し、それの検出結果に応じた情報をホスト機器1616に出力する。 The sensor 1620 can detect both pressing and bending. The sensor 1620 detects a change in capacitance according to the pressing, and outputs an output signal corresponding to the change to the controller IC 1615. Further, the sensor 1620 detects a change in resistance value (resistance change) according to bending, and outputs an output signal corresponding to the change to the controller IC 1615. The controller IC 1615 detects pressing and bending of the sensor 1620 based on the output signal from the sensor 1620 and outputs information corresponding to the detection result to the host device 1616.
 ホスト機器1616は、コントローラIC1615から供給される情報に基づき、各種の処理を実行する。例えば、表示装置1612に対する文字情報や画像情報等の表示、表示装置1612に表示されたカーソルの移動、画面のスクロール等の処理を実行する。 The host device 1616 executes various processes based on information supplied from the controller IC 1615. For example, processing such as displaying character information and image information on the display device 1612, moving the cursor displayed on the display device 1612, scrolling the screen, and the like is executed.
 表示装置1612は、例えばフレキシブルな表示装置であり、ホスト機器1616から供給される映像信号や制御信号等に基づき、映像(画面)を表示する。表示装置1612としては、例えば、液晶ディスプレイ、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、電子ペーパー等が挙げられるが、これに限定されるものではない。 The display device 1612 is, for example, a flexible display device, and displays a video (screen) based on a video signal, a control signal, or the like supplied from the host device 1616. Examples of the display device 1612 include, but are not limited to, a liquid crystal display, an electroluminescence (EL) display, and electronic paper.
 電池1617は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。充放電制御部1618は、電池1617の充放電動作を制御する。具体的には、外部電源等から電池1617への充電を制御する。また、電池1617からホスト機器1616への電力の供給を制御する。 The battery 1617 is a battery according to any one of the first and second embodiments and the modifications thereof. The charge / discharge control unit 1618 controls the charge / discharge operation of the battery 1617. Specifically, charging of the battery 1617 from an external power source or the like is controlled. Further, power supply from the battery 1617 to the host device 1616 is controlled.
「応用例としてのスマートウオッチ」
 以下、本開示をスマートウオッチに対して適用した応用例について説明する。
 このスマートウオッチは、既存の腕時計のデザインと同様または類似の外観を有し、腕時計と同様にユーザの腕に装着して使用するものであり、ディスプレイに表示される情報で、電話や電子メールの着信等の各種メッセージをユーザに通知する機能を有する。また、電子マネー機能、活動量計等の機能を有していてもよいし、通信端末(スマートフォン等)とBluetooth(登録商標)等の近距離無線通信を行う機能を有していてもよい。
"Smart watch as an application"
Hereinafter, an application example in which the present disclosure is applied to a smart watch will be described.
This smart watch has the same or similar appearance as the design of an existing wristwatch, and is worn on the user's wrist in the same way as a wristwatch. The information displayed on the display is used for telephone and e-mail. It has a function of notifying the user of various messages such as incoming calls. Further, it may have a function such as an electronic money function and an activity meter, or may have a function of performing short-range wireless communication such as Bluetooth (registered trademark) with a communication terminal (smartphone or the like).
(スマートウオッチの全体構成)
 図21は、スマートウオッチ2000の全体構成の一例を示す。スマートウオッチ2000は、時計本体3000とバンド型電子機器2100とを備える。時計本体3000は、時刻を表示する文字盤3100を備える。時計本体3000は、文字盤3100の代わりに、液晶ディスプレイ等で電子的に時刻を表示してもよい。
(Overall configuration of smart watch)
FIG. 21 shows an example of the overall configuration of the smart watch 2000. The smart watch 2000 includes a watch body 3000 and a band type electronic device 2100. The watch body 3000 includes a dial 3100 for displaying time. The watch body 3000 may display the time electronically on a liquid crystal display or the like instead of the dial 3100.
 バンド型電子機器2100は、時計本体3000に取り付けられる金属製のバンドであり、ユーザの腕に装着される。バンド型電子機器2100は、複数のセグメント2110~2230を連結した構成を有する。時計本体3000の一方のバンド取付孔にセグメント2110が取り付けられ、時計本体3000の他方のバンド取付孔にセグメント2230が取り付けられる。セグメント2110~2230はそれぞれ、金属で構成される。 The band-type electronic device 2100 is a metal band attached to the watch body 3000, and is attached to the user's arm. The band-type electronic device 2100 has a configuration in which a plurality of segments 2110 to 2230 are connected. The segment 2110 is attached to one band attachment hole of the watch body 3000, and the segment 2230 is attached to the other band attachment hole of the watch body 3000. Each of the segments 2110 to 2230 is made of metal.
 なお、図21では、バンド型電子機器2100の構成の一例を説明するために、時計本体3000とセグメント2230とが離れた状態を示すが、実際の使用時には、時計本体3000にセグメント2230が取り付けられる。時計本体3000にセグメント2230が取り付けられることで、スマートウオッチ2000は、通常の腕時計と同様に、ユーザの腕に装着することができる。それぞれのセグメント2110~2230の接続箇所は、可動させることが可能である。セグメントの接続箇所が可動できることで、バンド型電子機器2100をユーザの腕にフィットさせることができる。 FIG. 21 shows a state in which the watch main body 3000 and the segment 2230 are separated in order to describe an example of the configuration of the band-type electronic device 2100, but the segment 2230 is attached to the watch main body 3000 in actual use. . By attaching the segment 2230 to the watch main body 3000, the smart watch 2000 can be mounted on the user's arm in the same manner as a normal wristwatch. The connection location of each segment 2110 to 2230 can be moved. Since the connection part of the segment is movable, the band-type electronic device 2100 can be fitted to the user's arm.
 セグメント2170とセグメント2160との間には、バックル部2300が配置される。バックル部2300は、ロックを外した状態のとき長く伸び、ロックした状態のとき短くなる。各セグメント2110~2230は、複数種類のサイズで構成される。 Between the segment 2170 and the segment 2160, a buckle portion 2300 is disposed. The buckle portion 2300 extends long when unlocked and shortens when locked. Each segment 2110 to 2230 has a plurality of sizes.
(スマートウオッチの回路構成)
 図22は、バンド型電子機器2100の回路構成の一例を示す。バンド型電子機器2100の内部の回路は、時計本体3000とは独立した構成である。時計本体3000は、文字盤3100に配置された針を回転させるムーブメント部3200を備える。ムーブメント部3200には、電池3300が接続されている。これらのムーブメント部3200や電池3300は、時計本体3000の筐体内に内蔵されている。電池3300は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。
(Smart watch circuit configuration)
FIG. 22 illustrates an example of a circuit configuration of the band-type electronic device 2100. The circuit inside the band-type electronic device 2100 has a configuration independent of the watch main body 3000. The watch main body 3000 includes a movement unit 3200 that rotates hands arranged on the dial 3100. A battery 3300 is connected to the movement unit 3200. The movement unit 3200 and the battery 3300 are built in the casing of the watch main body 3000. The battery 3300 is a battery according to any of the first and second embodiments and the modifications thereof.
 セグメント2110~2230のうち3つのセグメント2170、2190、2210には、電子部品等が配置される。セグメント2170には、データ処理部4101と無線通信部4102とNFC通信部4104とGPS部4106とが配置される。無線通信部4102、NFC通信部4104、GPS部4106には、それぞれアンテナ4103、4105、4107が接続されている。それぞれのアンテナ4103、4105、4107は、セグメント2170が有するスリット(図示せず)の近傍に配置される。 Among the segments 2110 to 2230, the three segments 2170, 2190, and 2210 are arranged with electronic components and the like. In the segment 2170, a data processing unit 4101, a wireless communication unit 4102, an NFC communication unit 4104, and a GPS unit 4106 are arranged. Antennas 4103, 4105, and 4107 are connected to the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106, respectively. Each antenna 4103, 4105, and 4107 is arrange | positioned in the vicinity of the slit (not shown) which the segment 2170 has.
 無線通信部4102は、例えばBluetooth(登録商標)の規格で他の端末と近距離無線通信を行う。NFC通信部4104は、NFCの規格で、近接したリーダー/ライタと無線通信を行う。GPS部4106は、GPS(Global Positioning System)と称されるシステムの衛星からの電波を受信して、現在位置の測位を行う測位部である。これらの無線通信部4102、NFC通信部4104、GPS部4106で得たデータは、データ処理部4101に供給される。 The wireless communication unit 4102 performs short-range wireless communication with other terminals based on, for example, Bluetooth (registered trademark) standards. The NFC communication unit 4104 performs wireless communication with an adjacent reader / writer according to the NFC standard. The GPS unit 4106 is a positioning unit that receives radio waves from a satellite of a system called GPS (Global Positioning System) and measures the current position. Data obtained by the wireless communication unit 4102, NFC communication unit 4104, and GPS unit 4106 is supplied to the data processing unit 4101.
 セグメント2170には、ディスプレイ4108とバイブレータ4109とモーションセンサ4110と音声処理部4111とが配置されている。ディスプレイ4108とバイブレータ4109は、バンド型電子機器2100の装着者に通知する通知部として機能するものである。ディスプレイ4108は、複数個の発光ダイオードで構成され、発光ダイオードの点灯や点滅でユーザに通知を行う。複数個の発光ダイオードは、例えばセグメント2170が有するスリット(図示せず)の内部に配置され、電話の着信や電子メールの受信等が点灯又は点滅で通知される。ディスプレイ4108としては、文字や数字等を表示するタイプのものが使用されてもよい。バイブレータ4109は、セグメント2170を振動させる部材である。バンド型電子機器2100は、バイブレータ4109によるセグメント2170の振動で、電話の着信や電子メールの受信等を通知する。 In the segment 2170, a display 4108, a vibrator 4109, a motion sensor 4110, and an audio processing unit 4111 are arranged. The display 4108 and the vibrator 4109 function as a notification unit that notifies the wearer of the band-type electronic device 2100. The display 4108 includes a plurality of light emitting diodes, and notifies the user by lighting or blinking of the light emitting diodes. The plurality of light-emitting diodes are disposed, for example, in a slit (not shown) included in the segment 2170, and notification of incoming calls, reception of e-mails, and the like is made by lighting or blinking. As the display 4108, a display that displays characters, numbers, and the like may be used. Vibrator 4109 is a member that vibrates segment 2170. The band-type electronic device 2100 notifies an incoming call, an e-mail, or the like by the vibration of the segment 2170 by the vibrator 4109.
 モーションセンサ4110は、スマートウオッチ2000を装着したユーザの動きを検出する。モーションセンサ4110としては、加速度センサ、ジャイロセンサ、電子コンパス、気圧センサ等が使用される。また、セグメント2170は、モーションセンサ4110以外のセンサを内蔵してもよい。例えば、スマートウオッチ2000を装着したユーザの脈拍等を検出するバイオセンサが内蔵されてもよい。音声処理部4111には、マイクロホン4112とスピーカ4113とが接続され、音声処理部4111が、無線通信部4102での無線通信で接続された相手と通話の処理を行う。また、音声処理部4111は、音声入力操作のための処理を行うこともできる。 Motion sensor 4110 detects the movement of the user wearing smart watch 2000. As the motion sensor 4110, an acceleration sensor, a gyro sensor, an electronic compass, an atmospheric pressure sensor, or the like is used. The segment 2170 may incorporate a sensor other than the motion sensor 4110. For example, a biosensor that detects the pulse of the user wearing the smart watch 2000 may be incorporated. A microphone 4112 and a speaker 4113 are connected to the audio processing unit 4111, and the audio processing unit 4111 performs a call process with the other party connected by wireless communication in the wireless communication unit 4102. The voice processing unit 4111 can also perform processing for voice input operation.
 セグメント2190には電池2411が内蔵され、セグメント2210には電池2421が内蔵される。電池2411、2421は、セグメント2170内の回路に駆動用の電源を供給する。セグメント2170内の回路と電池2411、2421は、フレキシブル回路基板(図示せず)により接続されている。なお、図22には示さないが、セグメント2170は、電池2411、2421を充電するための端子を備える。また、セグメント2190、2210には、電池2411、2421以外の電子部品が配置されてもよい。例えば、セグメント2190、2210は、電池2411、2421の充放電を制御する回路を備えるようにしてもよい。電池2411、2421は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。 In the segment 2190, a battery 2411 is incorporated, and in the segment 2210, a battery 2421 is incorporated. The batteries 2411 and 2421 supply driving power to the circuits in the segment 2170. The circuit in the segment 2170 and the batteries 2411 and 2421 are connected by a flexible circuit board (not shown). Note that, although not shown in FIG. 22, the segment 2170 includes terminals for charging the batteries 2411 and 2421. Further, electronic components other than the batteries 2411 and 2421 may be disposed in the segments 2190 and 2210. For example, the segments 2190 and 2210 may include a circuit that controls charging and discharging of the batteries 2411 and 2421. The batteries 2411 and 2421 are batteries according to any one of the first and second embodiments and modifications thereof.
「応用例としてのメガネ型端末」
 以下、本開示を頭部装着型ディスプレイ(ヘッドマウントディスプレイ(HMD))の一種に代表されるメガネ型端末に適用した応用例について説明する。
 以下に説明するメガネ型端末は、目の前の風景にテキスト、シンボル、画像等の情報を重畳して表示することができるものである。すなわち、透過式メガネ型端末専用の軽量且つ薄型の画像表示装置ディスプレイモジュールを搭載している。
“Glasses type terminal as an application example”
Hereinafter, an application example in which the present disclosure is applied to a glasses-type terminal represented by a kind of head-mounted display (head-mounted display (HMD)) will be described.
The glasses-type terminal described below can display information such as text, symbols, and images superimposed on the scenery in front of you. That is, a light-weight and thin image display device display module dedicated to a transmissive glasses-type terminal is mounted.
 この画像表示装置は、光学エンジンとホログラム導光板からなる。光学エンジンは、マイクロディスプレイレンズを使用して画像、テキスト等の映像光を出射する。この映像光がホログラム導光板に入射される。ホログラム導光板は、透明板の両端部にホログラム光学素子が組み込まれたもので、光学エンジンからの映像光を厚さ1mmのような非常に薄い透明板の中を伝搬させて観察者の目に届ける。このような構成によって、透過率が例えば85%という厚さ3mm(導光板前後の保護プレートを含む)レンズを実現している。かかるメガネ型端末によって、スポーツ観戦中にプレーヤ、チームの成績等をリアルタイムで見ることができたり、旅先での観光ガイドを表示したりできる。 This image display device comprises an optical engine and a hologram light guide plate. The optical engine emits image light such as an image and text using a micro display lens. This image light is incident on the hologram light guide plate. A hologram light guide plate has hologram optical elements incorporated at both ends of a transparent plate, and propagates image light from an optical engine through a very thin transparent plate having a thickness of 1 mm to the eyes of an observer. deliver. With such a configuration, a lens having a transmittance of, for example, 85% and a thickness of 3 mm (including protective plates before and after the light guide plate) is realized. With such a glasses-type terminal, it is possible to see the results of players and teams in real time while watching sports, and to display a tourist guide at a destination.
 メガネ型端末の具体例は、図23に示すように、画像表示部が眼鏡型の構成とされている。すなわち、通常の眼鏡と同様に、眼前に右画像表示部5001及び左画像表示部5002を保持するためのフレーム5003を有する。フレーム5003は、観察者の正面に配置されるフロント部5004と、フロント部5004の両端に蝶番を介して回動自在に取り付けられた2つのテンプル部5005、5006から成る。フレーム5003は、金属や合金、プラスチック、これらの組合せといった、通常の眼鏡を構成する材料と同じ材料から作製されている。なお、ヘッドホン部を設けるようにしてもよい。 As a specific example of the glasses-type terminal, as shown in FIG. 23, the image display unit has a glasses-type configuration. That is, as with normal glasses, the frame 5003 for holding the right image display unit 5001 and the left image display unit 5002 is provided in front of the eyes. The frame 5003 includes a front portion 5004 disposed in front of the observer, and two temple portions 5005 and 5006 that are rotatably attached to both ends of the front portion 5004 via hinges. The frame 5003 is made of the same material as that of normal glasses, such as metal, alloy, plastic, or a combination thereof. A headphone unit may be provided.
 右画像表示部5001および左画像表示部5002は、利用者の右の眼前と、左の眼前とにそれぞれ位置するように配置されている。テンプル部5005、5006が利用者の頭部に右画像表示部5001および左画像表示部5002を保持する。フロント部5004とテンプル部5005の接続箇所において、テンプル部5005の内側に右表示駆動部5007が配置されている。フロント部5004とテンプル部5006の接続箇所において、テンプル部5006の内側に左表示駆動部5008が配置されている。 The right image display unit 5001 and the left image display unit 5002 are arranged so as to be positioned in front of the user's right eye and in front of the left eye, respectively. Temple units 5005 and 5006 hold a right image display unit 5001 and a left image display unit 5002 on the user's head. A right display driving unit 5007 is disposed inside the temple unit 5005 at a connection portion between the front unit 5004 and the temple unit 5005. A left display driving unit 5008 is arranged inside the temple unit 5006 at a connection portion between the front unit 5004 and the temple unit 5006.
 フレーム5003には、電池5009、5010が設けられている。電池5009、5010は、第1、第2の実施形態およびその変形例のいずれかに係る電池である。図23では省略されているが、フレーム5003には、加速度センサ、ジャイロ、電子コンパス、マイクロホン/スピーカ等が設けられている。さらに、フレーム5003には、撮像装置が設けられ、静止画/動画の撮影が可能とされている。さらに、フレーム5003には、メガネ部と例えば無線又は有線のインターフェースでもって接続されたコントローラが設けられている。コントローラには、タッチセンサ、各種ボタン、スピーカ、マイクロホン等が設けられている。さらに、フレーム5003は、スマートフォンとの連携機能を有している。例えばスマートフォンのGPS機能を活用してユーザの状況に応じた情報を提供することが可能とされている。以下、画像表示装置(右画像表示部5001又は左画像表示部5002)について主に説明する。 The frame 5003 is provided with batteries 5009 and 5010. Batteries 5009 and 5010 are batteries according to any one of the first and second embodiments and modifications thereof. Although omitted in FIG. 23, the frame 5003 is provided with an acceleration sensor, a gyro, an electronic compass, a microphone / speaker, and the like. Further, the frame 5003 is provided with an imaging device so that still images / moving images can be taken. Further, the frame 5003 is provided with a controller connected to the glasses unit by, for example, a wireless or wired interface. The controller is provided with a touch sensor, various buttons, a speaker, a microphone, and the like. Further, the frame 5003 has a cooperation function with a smartphone. For example, it is possible to provide information according to the user's situation by utilizing the GPS function of a smartphone. Hereinafter, the image display device (the right image display unit 5001 or the left image display unit 5002) will be mainly described.
 図24は、メガネ型端末の画像表示装置(右画像表示部5001又は左画像表示部5002)の構成の一例を示す。画像表示装置5100は、画像生成装置5110、及び画像生成装置5110から出射された光が入射され、導光され、観察者の瞳5041に向かって出射される光学装置(導光手段)5120から構成されている。なお、光学装置5120は、画像生成装置5110に取り付けられている。 FIG. 24 shows an example of the configuration of an image display device (right image display unit 5001 or left image display unit 5002) of a glasses-type terminal. The image display device 5100 includes an image generation device 5110 and an optical device (light guide unit) 5120 that receives the light emitted from the image generation device 5110 and is guided toward the observer's pupil 5041. Has been. The optical device 5120 is attached to the image generation device 5110.
 光学装置5120は、第1の構成の光学装置から構成され、画像生成装置5110から入射された光が内部を全反射により伝播した後、観察者の瞳5041に向かって出射される導光板5121、導光板5121に入射された光が導光板5121の内部で全反射されるように、導光板5121に入射された光を偏向させる第1偏向手段5130、及び導光板5121の内部を全反射により伝播した光を導光板5121から出射させるために、導光板5121の内部を全反射により伝播した光を複数回に亙り偏向させる第2偏向手段5140を備えている。 The optical device 5120 includes the optical device having the first configuration, and the light incident from the image generation device 5110 propagates through the interior by total reflection, and then is emitted toward the observer's pupil 5041. The first light deflecting unit 5130 that deflects the light incident on the light guide plate 5121 and the light guide plate 5121 are propagated by total reflection so that the light incident on the light guide plate 5121 is totally reflected inside the light guide plate 5121. In order to emit the emitted light from the light guide plate 5121, second deflection means 5140 is provided that deflects the light propagated through the light guide plate 5121 by total reflection over a plurality of times.
 第1偏向手段5130及び第2偏向手段5140は導光板5121の内部に配設されている。そして、第1偏向手段5130は、導光板5121に入射された光を反射し、第2偏向手段5140は、導光板5121の内部を全反射により伝播した光を、複数回に亙り、透過、反射する。即ち、第1偏向手段5130は反射鏡として機能し、第2偏向手段5140は半透過鏡として機能する。より具体的には、導光板5121の内部に設けられた第1偏向手段5130は、アルミニウムから成り、導光板5121に入射された光を反射させる光反射膜(一種のミラー)から構成されている。一方、導光板5121の内部に設けられた第2偏向手段5140は、誘電体積層膜が多数積層された多層積層構造体から構成されている。誘電体積層膜は、例えば、高誘電率材料としてのTiO2膜、及び、低誘電率材料としてのSiO2膜から構成されている。 The first deflecting unit 5130 and the second deflecting unit 5140 are disposed inside the light guide plate 5121. The first deflecting unit 5130 reflects the light incident on the light guide plate 5121, and the second deflecting unit 5140 transmits the light propagating through the light guide plate 5121 by total reflection, and transmits and reflects the light. To do. That is, the first deflecting unit 5130 functions as a reflecting mirror, and the second deflecting unit 5140 functions as a semi-transmissive mirror. More specifically, the first deflecting means 5130 provided inside the light guide plate 5121 is made of aluminum, and is composed of a light reflecting film (a kind of mirror) that reflects light incident on the light guide plate 5121. . On the other hand, the second deflecting means 5140 provided inside the light guide plate 5121 is composed of a multilayer laminated structure in which a large number of dielectric laminated films are laminated. The dielectric laminated film is composed of, for example, a TiO 2 film as a high dielectric constant material and an SiO 2 film as a low dielectric constant material.
 誘電体積層膜と誘電体積層膜との間には、導光板5121を構成する材料と同じ材料から成る薄片が挟まれている。なお、第1偏向手段5130においては、導光板5121に入射された平行光が導光板5121の内部で全反射されるように、導光板5121に入射された平行光が反射(又は回折)される。一方、第2偏向手段5140においては、導光板5121の内部を全反射により伝播した平行光が複数回に亙り反射(又は回折)され、導光板5121から平行光の状態で出射される。 A thin piece made of the same material as that constituting the light guide plate 5121 is sandwiched between the dielectric laminated film and the dielectric laminated film. In the first deflecting unit 5130, the parallel light incident on the light guide plate 5121 is reflected (or diffracted) so that the parallel light incident on the light guide plate 5121 is totally reflected inside the light guide plate 5121. . On the other hand, in the second deflecting unit 5140, the parallel light propagated through the light guide plate 5121 by total reflection is reflected (or diffracted) a plurality of times and is emitted from the light guide plate 5121 in the state of parallel light.
 第1偏向手段5130は、導光板5121の第1偏向手段5130を設ける部分5124を切り出すことで、導光板5121に第1偏向手段5130を形成すべき斜面を設け、係る斜面に光反射膜を真空蒸着した後、導光板5121の切り出した部分5124を第1偏向手段5130に接着すればよい。また、第2偏向手段5140は、導光板5121を構成する材料と同じ材料(例えば、ガラス)と誘電体積層膜(例えば、真空蒸着法にて成膜することができる)とが多数積層された多層積層構造体を作製し、導光板5121の第2偏向手段5140を設ける部分5125を切り出して斜面を形成し、係る斜面に多層積層構造体を接着し、研磨等を行って、外形を整えればよい。こうして、導光板5121の内部に第1偏向手段5130及び第2偏向手段5140が設けられた光学装置5120を得ることができる。 The first deflecting unit 5130 cuts out a portion 5124 of the light guide plate 5121 where the first deflecting unit 5130 is provided, thereby providing the light guide plate 5121 with an inclined surface on which the first deflecting unit 5130 is to be formed, and vacuuming the light reflecting film on the inclined surface. After vapor deposition, the cut-out portion 5124 of the light guide plate 5121 may be bonded to the first deflecting means 5130. In addition, the second deflecting unit 5140 is formed by laminating a large number of the same material (for example, glass) as the material constituting the light guide plate 5121 and a dielectric laminated film (for example, it can be formed by a vacuum deposition method). A multilayer laminated structure is manufactured, and a portion 5125 provided with the second deflecting means 5140 of the light guide plate 5121 is cut out to form a slope, and the multilayer laminated structure is bonded to the slope and polished to adjust the outer shape. That's fine. In this way, an optical device 5120 in which the first deflection unit 5130 and the second deflection unit 5140 are provided inside the light guide plate 5121 can be obtained.
 光学ガラスやプラスチック材料から成る導光板5121は、導光板5121の軸線と平行に延びる2つの平行面(第1面5122及び第2面5123)を有している。第1面5122と第2面5123とは対向している。そして、光入射面に相当する第1面5122から平行光が入射され、内部を全反射により伝播した後、光出射面に相当する第1面5122から出射される。 The light guide plate 5121 made of optical glass or plastic material has two parallel surfaces (a first surface 5122 and a second surface 5123) extending in parallel with the axis of the light guide plate 5121. The first surface 5122 and the second surface 5123 are opposed to each other. Then, parallel light enters from the first surface 5122 corresponding to the light incident surface, propagates through the interior by total reflection, and then exits from the first surface 5122 corresponding to the light exit surface.
 また、画像生成装置5110は、第1の構成の画像生成装置から構成され、2次元マトリクス状に配列された複数の画素を有する画像形成装置5111、及び画像形成装置5111の各画素から出射された光を平行光として、出射するコリメート光学系5112を備えている。 The image generation device 5110 includes the first configuration image generation device, the image formation device 5111 having a plurality of pixels arranged in a two-dimensional matrix, and the pixels of the image formation device 5111. A collimating optical system 5112 for emitting light as parallel light is provided.
 ここで、画像形成装置5111は、反射型空間光変調装置5150、及び、白色光を出射する発光ダイオードから成る光源5153から構成されている。より具体的には、反射型空間光変調装置5150は、ライト・バルブとしてのLCOS(Liquid Crystal On Silicon)から成る液晶表示装置(LCD)5151、及び、光源5153からの光の一部を反射して液晶表示装置5151へと導き、且つ、液晶表示装置5151によって反射された光の一部を通過させてコリメート光学系5112へと導く偏光ビームスプリッター5152から構成されている。なお、LCDはLCOSタイプに限定されない。 Here, the image forming apparatus 5111 includes a reflective spatial light modulator 5150 and a light source 5153 including a light emitting diode that emits white light. More specifically, the reflective spatial light modulator 5150 reflects a part of light from a liquid crystal display (LCD) 5151 composed of LCOS (Liquid Crystal On On Silicon) as a light valve and a light source 5153. The polarizing beam splitter 5152 is guided to the liquid crystal display device 5151, and part of the light reflected by the liquid crystal display device 5151 is transmitted to the collimating optical system 5112. The LCD is not limited to the LCOS type.
 液晶表示装置5151は、2次元マトリクス状に配列された複数(例えば、320×240個)の画素を備えている。偏光ビームスプリッター5152は、周知の構成、構造を有する。光源5153から出射された無偏光の光は、偏光ビームスプリッター5152に衝突する。偏光ビームスプリッター5152において、P偏光成分は通過し、系外に出射される。一方、S偏光成分は、偏光ビームスプリッター5152において反射され、液晶表示装置5151に入射し、液晶表示装置5151の内部で反射され、液晶表示装置5151から出射される。ここで、液晶表示装置5151から出射した光の内、「白」を表示する画素から出射した光にはP偏光成分が多く含まれ、「黒」を表示する画素から出射した光にはS偏光成分が多く含まれる。従って、液晶表示装置5151から出射され、偏光ビームスプリッター5152に衝突する光の内、P偏光成分は、偏光ビームスプリッター5152を通過し、コリメート光学系5112へと導かれる。 The liquid crystal display device 5151 includes a plurality of (for example, 320 × 240) pixels arranged in a two-dimensional matrix. The polarization beam splitter 5152 has a known configuration and structure. Non-polarized light emitted from the light source 5153 collides with the polarization beam splitter 5152. In the polarization beam splitter 5152, the P-polarized component passes and is emitted out of the system. On the other hand, the S-polarized component is reflected by the polarization beam splitter 5152, enters the liquid crystal display device 5151, is reflected inside the liquid crystal display device 5151, and is emitted from the liquid crystal display device 5151. Here, among the light emitted from the liquid crystal display device 5151, the light emitted from the pixel displaying “white” contains a lot of P-polarized light components, and the light emitted from the pixel displaying “black” is S-polarized light. Contains many ingredients. Therefore, among the light emitted from the liquid crystal display device 5151 and colliding with the polarization beam splitter 5152, the P-polarized component passes through the polarization beam splitter 5152 and is guided to the collimating optical system 5112.
 一方、S偏光成分は、偏光ビームスプリッター5152において反射され、光源5153に戻される。液晶表示装置5151は、例えば、2次元マトリクス状に配列された複数(例えば、320×240個)の画素(液晶セルの数は画素数の3倍)を備えている。コリメート光学系112は、例えば、凸レンズから構成され、平行光を生成させるために、コリメート光学系5112における焦点距離の所(位置)に画像形成装置5111(より具体的には、液晶表示装置5151)が配置されている。また、1画素は、赤色を出射する赤色発光副画素、緑色を出射する緑色発光副画素、及び、青色を出射する青色発光副画素から構成されている。 On the other hand, the S-polarized light component is reflected by the polarization beam splitter 5152 and returned to the light source 5153. The liquid crystal display device 5151 includes, for example, a plurality of (for example, 320 × 240) pixels (the number of liquid crystal cells is three times the number of pixels) arranged in a two-dimensional matrix. The collimating optical system 112 is composed of, for example, a convex lens, and in order to generate parallel light, the image forming apparatus 5111 (more specifically, the liquid crystal display device 5151) is located at the focal position (position) in the collimating optical system 5112. Is arranged. One pixel is composed of a red light emitting subpixel that emits red, a green light emitting subpixel that emits green, and a blue light emitting subpixel that emits blue.
「応用例としての車両における蓄電システム」
 本開示を車両用の蓄電システムに適用した例について、図25を参照して説明する。図25に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
"Vehicle power storage system as an application example"
An example in which the present disclosure is applied to a power storage system for a vehicle will be described with reference to FIG. FIG. 25 schematically illustrates an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied. A series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
 このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。バッテリー7208に対して、上述した本開示の蓄電装置が適用される。 The hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed. The above-described power storage device of the present disclosure is applied to the battery 7208.
 ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モータである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モータでも直流モータでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。 Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source. An example of the power driving force conversion device 7203 is a motor. The electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b. Note that the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary. Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown). Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。 The rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。 When the hybrid vehicle decelerates by a braking mechanism (not shown), the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
 バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。 The battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
 図示しないが、二次電池に関する情報に基いて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。 Although not shown, an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided. As such an information processing apparatus, for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力がいずれも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。 In the above description, a series hybrid vehicle that runs on a motor using electric power generated by a generator driven by an engine or electric power stored once in a battery has been described as an example. However, the present disclosure is also effective for a parallel hybrid vehicle that uses both the engine and motor outputs as the drive source, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable. Furthermore, the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
 以上、本開示に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本開示に係る技術は、以上説明した構成のうち、バッテリー7208に好適に適用され得る。 Heretofore, an example of the hybrid vehicle 7200 to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be suitably applied to the battery 7208 among the configurations described above.
「応用例としての住宅における蓄電システム」
 本開示を住宅用の蓄電システムに適用した例について、図26を参照して説明する。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
"Storage system in a house as an application example"
An example in which the present disclosure is applied to a residential power storage system will be described with reference to FIG. For example, in a power storage system 9100 for a house 9001, power is stored from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c through a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like. Supplied to the device 9003. At the same time, power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004. The electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003. The same power storage system can be used not only for the house 9001 but also for buildings.
 住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサー9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。 The house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information. Each device is connected by a power network 9009 and an information network 9012. As the power generation device 9004, a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003. The power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like. Furthermore, the electric power consumption device 9005 includes an electric vehicle 9006. The electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
 蓄電装置9003に対して、上述した本開示のバッテリユニットが適用される。蓄電装置9003は、二次電池又はキャパシタから構成されている。例えば、リチウムイオン電池によって構成されている。リチウムイオン電池は、定置型であっても、電動車両9006で使用されるものでも良い。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。 The battery unit of the present disclosure described above is applied to the power storage device 9003. The power storage device 9003 is composed of a secondary battery or a capacitor. For example, a lithium ion battery is used. The lithium ion battery may be a stationary type or used in the electric vehicle 9006. The smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company. The power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
 各種のセンサー9011は、例えば人感センサー、照度センサー、物体検知センサー、消費電力センサー、振動センサー、接触センサー、温度センサー、赤外線センサー等である。各種センサー9011により取得された情報は、制御装置9010に送信される。センサー9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。 The various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information on the house 9001 to an external power company or the like via the Internet.
 パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。 The power hub 9008 performs processing such as branching of power lines and DC / AC conversion. As a communication method of the information network 9012 connected to the control device 9010, a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark), or the like. There is a method of using a sensor network based on a wireless communication standard such as Wi-Fi. The Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication. ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
 制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。 The control device 9010 is connected to an external server 9013. The server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider. Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
 各部を制御する制御装置9010は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサー9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。 A control device 9010 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example. The control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, various sensors 9011, the server 9013 and the information network 9012, for example, a function of adjusting the amount of commercial power used and the amount of power generation have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
 以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。 As described above, electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
 なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。 In this example, the control device 9010 is stored in the power storage device 9003. However, the control device 9010 may be stored in the smart meter 9007, or may be configured independently. Furthermore, the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
 以上、本開示に係る技術が適用され得る蓄電システム9100の一例について説明した。本開示に係る技術は、以上説明した構成のうち、蓄電装置9003が有する二次電池に好適に適用され得る。 Heretofore, an example of the power storage system 9100 to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be suitably applied to the secondary battery included in the power storage device 9003 among the configurations described above.
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。 As mentioned above, although embodiment of this art, its modification, and an example were explained concretely, this art is not limited to the above-mentioned embodiment, its modification, and an example. Various modifications based on technical ideas are possible.
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。 For example, the configurations, methods, processes, shapes, materials, numerical values, and the like given in the above-described embodiment and its modified examples and examples are merely examples, and different configurations, methods, processes, and shapes are necessary as necessary. , Materials and numerical values may be used. In addition, chemical formulas of compounds and the like are representative and are not limited to the described valences and the like as long as they are general names of the same compounds.
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。 In addition, the above-described embodiment and its modified examples, and the configurations, methods, processes, shapes, materials, numerical values, and the like of the examples can be combined with each other without departing from the gist of the present technology.
 また、本技術は電池を備える種々の電子機器に適用可能であり、上述の応用例で説明した電子機器に限定されるものではない。上述の応用例以外の電子機器としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD、ELディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられるが、これに限定されるものでなない。 In addition, the present technology can be applied to various electronic devices including a battery, and is not limited to the electronic devices described in the above application examples. Examples of electronic devices other than the application examples described above include notebook personal computers, tablet computers, mobile phones (for example, smartphones), personal digital assistants (PDAs), display devices (LCD, EL displays, electronic devices). Paper), imaging devices (eg digital still cameras, digital video cameras, etc.), audio equipment (eg portable audio players), game machines, cordless phones, electronic books, electronic dictionaries, radios, headphones, navigation systems, memory cards , Pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave, dishwasher, washing machine, dryer, lighting equipment, toy, medical equipment, robot, road conditioner, communication Although aircraft and the like, without such limited thereto.
 また、本技術は以下の構成を採用することもできる。
(1)
 Liを含む電池素子と、
 前記電池素子を覆う外装材と、
 前記電池素子と前記外装材との間に設けられ、Liを含む保護層と
 を備える全固体電池。
(2)
 前記外装材は、結晶粒子を含む(1)に記載の全固体電池。
(3)
 前記結晶粒子は、酸化アルミニウム、酸化ケイ素、窒化ケイ素、窒化アルミニウムおよび炭化ケイ素のうちの少なくとも1種を含む(2)に記載の全固体電池。
(4)
 前記結晶粒子の平均粒径は、10μm以下である(2)または(3)に記載の全固体電池。
(5)
 前記外装材は、ガラスを含み、
 前記結晶粒子は、前記ガラスのガラス転移温度では溶融しない結晶を含む(2)から(4)のいずれかに記載の全固体電池。
(6)
 前記保護層は、Liを含む固体電解質を含み、
 前記保護層中における前記固体電解質の体積占有率は、10vol%以上である(1)から(5)のいずれかに記載の全固体電池。
(7)
 前記保護層のLiイオン伝導率は、1.0×10-10S/cm以上である(1)から(6)のいずれかに記載の全固体電池。
(8)
 前記外装材は、非Liイオン伝導性を有するガラス含む(1)から(7)のいずれかに記載の全固体電池。
(9)
 前記外装材の平均厚みは、100μm以下である(1)から(8)のいずれかに記載の全固体電池。
(10)
 前記外装材のLiイオン伝導率は、1×10-8S/cm以下であり、
 前記外装材の電気伝導率は、1×10-8S/cm以下である(1)から(9)のいずれかに記載の全固体電池。
(11)
 前記外装材の水分透過率は、1.0g/m2/day以下である(1)から(10)のいずれかに記載の全固体電池。
(12)
 前記外装材は、ガラスを含み、
 前記ガラスは、B、Bi、Te、P、V、Sn、PbおよびSiのうちの少なくとも1種を含む(1)から(11)のいずれかに記載の全固体電池。
(13)
 前記電池素子は、正極層と負極層と固体電解質層とを備え、
 前記正極層、前記負極層および前記固体電解質層が、Liを含む固体電解質を含む(1)から(12)のいずれかに記載の全固体電池。
(14)
 前記正極層が前記外装材および前記保護層から露出する部分に設けられた正極端子と、
 前記負極層が前記外装材および前記保護層から露出する部分に設けられた負極端子と
 をさらに備える(13)に記載の全固体電池。
(15)
 前記正極層は、正極集電層と、正極活物質層とを備え、
 前記負極層は、負極集電層と、負極活物質層とを備え、
 前記正極集電層が前記外装材および前記保護層から露出する部分に設けられた正極端子と、
 前記負極集電層が前記外装材および前記保護層から露出する部分に設けられた負極端子と
 をさらに備える(13)に記載の全固体電池。
(16)
 前記正極端子および前記負極端子は、ガラスと金属とを含み、
 前記ガラスのガラス転移温度は、前記外装材の焼結温度以下である(14)または(15)に記載の全固体電池。
(17)
 前記正極端子および前記負極端子はそれぞれ独立して、Ag、Pt、Au、Ni、Cu、Pd、AlおよびFeのうちの少なくとも1種を含む(14)または(15)に記載の全固体電池。
(18)
 (1)から(17)のいずれかに記載の全固体電池から電力の供給を受ける電子機器。
(19)
 (1)から(17)のいずれかに記載の全固体電池から電力の供給を受ける電子カード。
(20)
 Liを含む電池素子をLiを含む保護層で覆い、前記保護層上に外装材を形成し、
 前記外装材上に結晶粒子を含む層を形成し、前記外装材を焼結したのち、前記結晶粒子を含む層を除去する
 ことを含む全固体電池の製造方法。
The present technology can also employ the following configurations.
(1)
A battery element containing Li;
An exterior material covering the battery element;
An all-solid-state battery comprising: a protective layer provided between the battery element and the exterior material and including Li.
(2)
The all-solid battery according to (1), wherein the exterior material includes crystal particles.
(3)
The all-solid-state battery according to (2), wherein the crystal particles include at least one of aluminum oxide, silicon oxide, silicon nitride, aluminum nitride, and silicon carbide.
(4)
The average particle size of the crystal particles is the all solid state battery according to (2) or (3), which is 10 μm or less.
(5)
The exterior material includes glass,
The all-solid-state battery according to any one of (2) to (4), wherein the crystal particles include crystals that do not melt at the glass transition temperature of the glass.
(6)
The protective layer includes a solid electrolyte containing Li,
The all-solid-state battery according to any one of (1) to (5), wherein a volume occupation ratio of the solid electrolyte in the protective layer is 10 vol% or more.
(7)
The all-solid-state battery according to any one of (1) to (6), wherein the protective layer has a Li ion conductivity of 1.0 × 10 −10 S / cm or more.
(8)
The all-solid battery according to any one of (1) to (7), wherein the exterior material includes glass having non-Li ion conductivity.
(9)
The average thickness of the said exterior material is an all-solid-state battery in any one of (1) to (8) which is 100 micrometers or less.
(10)
Li ion conductivity of the exterior material is 1 × 10 −8 S / cm or less,
The all-solid-state battery in any one of (1) to (9) whose electrical conductivity of the said exterior material is 1 * 10 < -8 > S / cm or less.
(11)
The all-solid-state battery according to any one of (1) to (10), wherein the exterior material has a moisture permeability of 1.0 g / m 2 / day or less.
(12)
The exterior material includes glass,
The all-solid-state battery according to any one of (1) to (11), wherein the glass includes at least one of B, Bi, Te, P, V, Sn, Pb, and Si.
(13)
The battery element includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer,
The all-solid-state battery in any one of (1) to (12) in which the said positive electrode layer, the said negative electrode layer, and the said solid electrolyte layer contain the solid electrolyte containing Li.
(14)
A positive electrode terminal provided at a portion where the positive electrode layer is exposed from the exterior material and the protective layer;
The all-solid-state battery according to (13), further comprising: a negative electrode terminal provided at a portion where the negative electrode layer is exposed from the exterior material and the protective layer.
(15)
The positive electrode layer includes a positive electrode current collecting layer and a positive electrode active material layer,
The negative electrode layer includes a negative electrode current collecting layer and a negative electrode active material layer,
A positive electrode terminal provided on a portion where the positive electrode current collecting layer is exposed from the exterior material and the protective layer;
The all-solid-state battery according to (13), further comprising: a negative electrode terminal provided at a portion where the negative electrode current collecting layer is exposed from the exterior material and the protective layer.
(16)
The positive terminal and the negative terminal include glass and metal,
The glass transition temperature of the glass is the all solid state battery according to (14) or (15), which is equal to or lower than a sintering temperature of the exterior material.
(17)
The all-solid-state battery according to (14) or (15), wherein each of the positive electrode terminal and the negative electrode terminal independently contains at least one of Ag, Pt, Au, Ni, Cu, Pd, Al, and Fe.
(18)
(1) Electronic equipment which receives supply of electric power from the all-solid-state battery in any one of (17).
(19)
(1) The electronic card which receives supply of electric power from the all-solid-state battery in any one of (17).
(20)
Covering a battery element containing Li with a protective layer containing Li, forming an exterior material on the protective layer,
A method for producing an all-solid-state battery, comprising: forming a layer containing crystal particles on the exterior material; sintering the exterior material; and removing the layer containing the crystal particles.
 11  外装電池素子
 11SA  第1端面
 11SB  第2端面
 11SB  第3端面
 11SC  第4端面
 12  正極端子
 13  負極端子
 14  保護層
 15  外装材
 16  結晶粒子
 16A  結晶粉末層
 20  電池素子
 21  正極
 21A  正極集電層
 21B  正極活物質層
 22、24  負極
 22A  負極集電層
 22B  負極活物質層
 23  固体電解質層
DESCRIPTION OF SYMBOLS 11 Exterior battery element 11SA 1st end surface 11SB 2nd end surface 11SB 3rd end surface 11SC 4th end surface 12 Positive electrode terminal 13 Negative electrode terminal 14 Protective layer 15 Exterior material 16 Crystal particle 16A Crystal powder layer 20 Battery element 21 Positive electrode 21A Positive electrode current collection layer 21B Positive electrode active material layer 22, 24 Negative electrode 22A Negative electrode current collecting layer 22B Negative electrode active material layer 23 Solid electrolyte layer

Claims (20)

  1.  Liを含む電池素子と、
     前記電池素子を覆う外装材と、
     前記電池素子と前記外装材との間に設けられ、Liを含む保護層と
     を備える全固体電池。
    A battery element containing Li;
    An exterior material covering the battery element;
    An all-solid-state battery comprising: a protective layer provided between the battery element and the exterior material and including Li.
  2.  前記外装材は、結晶粒子を含む請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the exterior material includes crystal particles.
  3.  前記結晶粒子は、酸化アルミニウム、酸化ケイ素、窒化ケイ素、窒化アルミニウムおよび炭化ケイ素のうちの少なくとも1種を含む請求項2に記載の全固体電池。 The all-solid-state battery according to claim 2, wherein the crystal particles include at least one of aluminum oxide, silicon oxide, silicon nitride, aluminum nitride, and silicon carbide.
  4.  前記結晶粒子の平均粒径は、10μm以下である請求項2に記載の全固体電池。 The all-solid-state battery according to claim 2, wherein the average particle diameter of the crystal particles is 10 μm or less.
  5.  前記外装材は、ガラスを含み、
     前記結晶粒子は、前記ガラスのガラス転移温度では溶融しない結晶を含む請求項2に記載の全固体電池。
    The exterior material includes glass,
    The all-solid-state battery according to claim 2, wherein the crystal particles include crystals that do not melt at the glass transition temperature of the glass.
  6.  前記保護層は、Liを含む固体電解質を含み、
     前記保護層中における前記固体電解質の体積占有率は、10vol%以上である請求項1に記載の全固体電池。
    The protective layer includes a solid electrolyte containing Li,
    2. The all-solid-state battery according to claim 1, wherein a volume occupation ratio of the solid electrolyte in the protective layer is 10 vol% or more.
  7.  前記保護層のLiイオン伝導率は、1.0×10-10S/cm以上である請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the protective layer has a Li ion conductivity of 1.0 × 10 −10 S / cm or more.
  8.  前記外装材は、非Liイオン伝導性を有するガラス含む請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the exterior material includes glass having non-Li ion conductivity.
  9.  前記外装材の平均厚みは、100μm以下である請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein an average thickness of the exterior material is 100 μm or less.
  10.  前記外装材のLiイオン伝導率は、1×10-8S/cm以下であり、
     前記外装材の電気伝導率は、1×10-8S/cm以下である請求項1に記載の全固体電池。
    Li ion conductivity of the exterior material is 1 × 10 −8 S / cm or less,
    The all-solid-state battery according to claim 1, wherein the exterior material has an electric conductivity of 1 × 10 −8 S / cm or less.
  11.  前記外装材の水分透過率は、1.0g/m2/day以下である請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the exterior material has a moisture permeability of 1.0 g / m 2 / day or less.
  12.  前記外装材は、ガラスを含み、
     前記ガラスは、B、Bi、Te、P、V、Sn、PbおよびSiのうちの少なくとも1種を含む請求項1に記載の全固体電池。
    The exterior material includes glass,
    The all-solid-state battery according to claim 1, wherein the glass contains at least one of B, Bi, Te, P, V, Sn, Pb, and Si.
  13.  前記電池素子は、正極層と負極層と固体電解質層とを備え、
     前記正極層、前記負極層および前記固体電解質層が、Liを含む固体電解質を含む請求項1に記載の全固体電池。
    The battery element includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer,
    The all-solid-state battery of Claim 1 in which the said positive electrode layer, the said negative electrode layer, and the said solid electrolyte layer contain the solid electrolyte containing Li.
  14.  前記正極層が前記外装材および前記保護層から露出する部分に設けられた正極端子と、
     前記負極層が前記外装材および前記保護層から露出する部分に設けられた負極端子と
     をさらに備える請求項13に記載の全固体電池。
    A positive electrode terminal provided at a portion where the positive electrode layer is exposed from the exterior material and the protective layer;
    The all-solid-state battery according to claim 13, further comprising: a negative electrode terminal provided at a portion where the negative electrode layer is exposed from the exterior material and the protective layer.
  15.  前記正極層は、正極集電層と、正極活物質層とを備え、
     前記負極層は、負極集電層と、負極活物質層とを備え、
     前記正極集電層が前記外装材および前記保護層から露出する部分に設けられた正極端子と、
     前記負極集電層が前記外装材および前記保護層から露出する部分に設けられた負極端子と
     をさらに備える請求項13に記載の全固体電池。
    The positive electrode layer includes a positive electrode current collecting layer and a positive electrode active material layer,
    The negative electrode layer includes a negative electrode current collecting layer and a negative electrode active material layer,
    A positive electrode terminal provided on a portion where the positive electrode current collecting layer is exposed from the exterior material and the protective layer;
    The all-solid-state battery according to claim 13, further comprising: a negative electrode terminal provided at a portion where the negative electrode current collecting layer is exposed from the exterior material and the protective layer.
  16.  前記正極端子および前記負極端子は、ガラスと金属とを含み、
     前記ガラスのガラス転移温度は、前記外装材の焼結温度以下である請求項14に記載の全固体電池。
    The positive terminal and the negative terminal include glass and metal,
    The all-solid-state battery according to claim 14, wherein a glass transition temperature of the glass is equal to or lower than a sintering temperature of the exterior material.
  17.  前記正極端子および前記負極端子はそれぞれ独立して、Ag、Pt、Au、Ni、Cu、Pd、AlおよびFeのうちの少なくとも1種を含む請求項14に記載の全固体電池。 The all-solid-state battery according to claim 14, wherein the positive electrode terminal and the negative electrode terminal independently include at least one of Ag, Pt, Au, Ni, Cu, Pd, Al, and Fe.
  18.  請求項1に記載の全固体電池から電力の供給を受ける電子機器。 An electronic device that receives power supply from the all-solid-state battery according to claim 1.
  19.  請求項1に記載の全固体電池から電力の供給を受ける電子カード。 An electronic card that receives power from the all-solid-state battery according to claim 1.
  20.  Liを含む電池素子をLiを含む保護層で覆い、前記保護層上に外装材を形成し、
     前記外装材上に結晶粒子を含む層を形成し、前記外装材を焼結したのち、前記結晶粒子を含む層を除去する
     ことを含む全固体電池の製造方法。
    Covering a battery element containing Li with a protective layer containing Li, forming an exterior material on the protective layer,
    A method for producing an all-solid-state battery, comprising: forming a layer containing crystal particles on the exterior material; sintering the exterior material; and removing the layer containing the crystal particles.
PCT/JP2017/041199 2017-03-10 2017-11-16 All-solid state battery and manufacturing method therefor, and electronic device and electronic card WO2018163514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045951 2017-03-10
JP2017-045951 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163514A1 true WO2018163514A1 (en) 2018-09-13

Family

ID=63447542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041199 WO2018163514A1 (en) 2017-03-10 2017-11-16 All-solid state battery and manufacturing method therefor, and electronic device and electronic card

Country Status (1)

Country Link
WO (1) WO2018163514A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181909A1 (en) * 2018-03-19 2019-09-26 Tdk株式会社 All-solid-state battery
WO2020111127A1 (en) * 2018-11-30 2020-06-04 Tdk株式会社 All-solid-state secondary battery
WO2021070927A1 (en) * 2019-10-11 2021-04-15 株式会社村田製作所 Solid-state battery
CN112673505A (en) * 2018-09-14 2021-04-16 株式会社村田制作所 Solid-state battery and solid-state battery pack
CN112689922A (en) * 2018-09-14 2021-04-20 株式会社村田制作所 Solid-state battery and solid-state battery pack
CN114503339A (en) * 2019-10-11 2022-05-13 株式会社村田制作所 Solid-state battery
CN114556653A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid-state battery
WO2022114140A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
WO2022114155A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
EP3863098A4 (en) * 2018-10-02 2022-08-31 Murata Manufacturing Co., Ltd. Solid-state battery
WO2023127192A1 (en) * 2021-12-28 2023-07-06 Fdk株式会社 Solid-state battery, and solid-state battery manufacturing method
JP7356257B2 (en) 2019-05-10 2023-10-04 共同印刷株式会社 Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2009038552A (en) * 2007-08-01 2009-02-19 Nec Corp Portable electronic equipment
JP2016001601A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Solid battery and battery pack using the same
JP2016511929A (en) * 2013-02-28 2016-04-21 アイ テン Monolithic all-solid-state battery manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2009038552A (en) * 2007-08-01 2009-02-19 Nec Corp Portable electronic equipment
JP2016511929A (en) * 2013-02-28 2016-04-21 アイ テン Monolithic all-solid-state battery manufacturing process
JP2016001601A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Solid battery and battery pack using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019181909A1 (en) * 2018-03-19 2021-03-11 Tdk株式会社 All solid state battery
JP7276316B2 (en) 2018-03-19 2023-05-18 Tdk株式会社 All-solid battery
WO2019181909A1 (en) * 2018-03-19 2019-09-26 Tdk株式会社 All-solid-state battery
US12015124B2 (en) 2018-09-14 2024-06-18 Murata Manufacturing Co., Ltd. Solid-state battery and solid-state battery group
CN112689922B (en) * 2018-09-14 2024-05-28 株式会社村田制作所 Solid battery and solid battery pack
EP3852180A4 (en) * 2018-09-14 2022-07-20 Murata Manufacturing Co., Ltd. Solid-state battery and solid-state battery group
CN112673505A (en) * 2018-09-14 2021-04-16 株式会社村田制作所 Solid-state battery and solid-state battery pack
CN112689922A (en) * 2018-09-14 2021-04-20 株式会社村田制作所 Solid-state battery and solid-state battery pack
EP3852181A4 (en) * 2018-09-14 2022-06-22 Murata Manufacturing Co., Ltd. Solid-state battery and solid-state battery group
EP3863098A4 (en) * 2018-10-02 2022-08-31 Murata Manufacturing Co., Ltd. Solid-state battery
US11942605B2 (en) 2018-10-02 2024-03-26 Murata Manufacturing Co., Ltd. Solid-state battery
CN113169372A (en) * 2018-11-30 2021-07-23 Tdk株式会社 All-solid-state secondary battery
WO2020111127A1 (en) * 2018-11-30 2020-06-04 Tdk株式会社 All-solid-state secondary battery
JP7356257B2 (en) 2019-05-10 2023-10-04 共同印刷株式会社 Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same
CN114556653A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid-state battery
CN114556671A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid battery
CN114503339A (en) * 2019-10-11 2022-05-13 株式会社村田制作所 Solid-state battery
JPWO2021070927A1 (en) * 2019-10-11 2021-04-15
JP7259980B2 (en) 2019-10-11 2023-04-18 株式会社村田製作所 solid state battery
WO2021070927A1 (en) * 2019-10-11 2021-04-15 株式会社村田製作所 Solid-state battery
EP4044296A4 (en) * 2019-10-11 2023-11-01 Murata Manufacturing Co., Ltd. Solid battery
WO2022114155A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
WO2022114140A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
WO2023127192A1 (en) * 2021-12-28 2023-07-06 Fdk株式会社 Solid-state battery, and solid-state battery manufacturing method

Similar Documents

Publication Publication Date Title
US11710855B2 (en) All-solid-state battery, electronic device, electronic card, wearable device, and electric motor vehicle
WO2018163514A1 (en) All-solid state battery and manufacturing method therefor, and electronic device and electronic card
US11642971B2 (en) All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
JP6933250B2 (en) All-solid-state batteries, electronic devices, electronic cards, wearable devices and electric vehicles
JP6729716B2 (en) Solid-state battery, method of manufacturing solid-state battery, battery pack, vehicle, power storage system, power tool, and electronic device
US11764395B2 (en) All-solid-state battery
JP6848980B2 (en) Lithium-ion conductors, all-solid-state batteries, electronic devices, electronic cards, wearable devices and electric vehicles
WO2018203474A1 (en) Solid cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
US11196090B2 (en) Solid battery, battery pack, vehicle, power storage system, power tool, and electronic device
WO2018212120A1 (en) Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device
WO2018092434A1 (en) All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
JP6870285B2 (en) Charging device
WO2018074021A1 (en) Charging-discharging device, charging-discharging method, electronic device, electric vehicle and powering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP