WO2018162767A1 - Contenedor para almacenamiento y transporte de combustible nuclear gastado. - Google Patents

Contenedor para almacenamiento y transporte de combustible nuclear gastado. Download PDF

Info

Publication number
WO2018162767A1
WO2018162767A1 PCT/ES2017/070130 ES2017070130W WO2018162767A1 WO 2018162767 A1 WO2018162767 A1 WO 2018162767A1 ES 2017070130 W ES2017070130 W ES 2017070130W WO 2018162767 A1 WO2018162767 A1 WO 2018162767A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
vessel
frame
fuel
cells
Prior art date
Application number
PCT/ES2017/070130
Other languages
English (en)
French (fr)
Inventor
Alfonso ALVAREZ-MIRANDA MORAN
David GARRIDO QUEVEDO
Original Assignee
Equipos Nucleares, S.A., S.M.E.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equipos Nucleares, S.A., S.M.E. filed Critical Equipos Nucleares, S.A., S.M.E.
Priority to PCT/ES2017/070130 priority Critical patent/WO2018162767A1/es
Priority to KR1020197028407A priority patent/KR20190117759A/ko
Priority to CN201780089551.1A priority patent/CN110506310A/zh
Priority to EP17899513.0A priority patent/EP3594964A4/en
Publication of WO2018162767A1 publication Critical patent/WO2018162767A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • G21F5/012Fuel element racks in the containers

Definitions

  • the present invention aims at a compact dual purpose metal container: storage and transportation of spent nuclear fuel. More specifically, this container is intended to manage spent nuclear fuel from nuclear power plants with a pressurized water reactor (PWR) and boiling water (BWR), its possible transport to an individual or centralized temporary warehouse.
  • PWR pressurized water reactor
  • BWR boiling water
  • nuclear fuel is stored in the pools of nuclear power plants for the decay of its activity and its cooling. Subsequently, spent nuclear fuel can be stored dry until its definitive management in storage containers or storage and transport containers, called the latter with dual purpose.
  • high-level waste transport is not carried out in Spain, since they remain in the pools or in containers at the plants themselves;
  • suitable, dual-purpose containers with which the risks associated with the transport of this type of waste are minimized, when it is carried out from nuclear power plants to the new one installation.
  • the known dual-use metal containers are multi-wall containers.
  • a cylindrical vessel with an airtight closure system that has walls of considerable thickness, in order to provide shielding for the radiations that are generated inside, sometimes a lead layer is used as a special shield for gamma radiation;
  • the second wall is made up of a neutron shield with which it is achieved by a more external layer of moderator or poison.
  • the outer surface of the container usually incorporates a series of fins of copper, stainless steel or other metal, arranged in axial or radial position, in order to facilitate cooling by natural convection, so that the temperature of the fuel pods is lower to the authorized limits.
  • the central cavity of the container consists of a stainless steel or aluminum basket, which includes components with a certain Boron content, for criticality control, which houses a certain number of spent fuel elements.
  • the sealing of the container is achieved by a double lid, the innermost one is made of steel and has containment and shielding functions, while the outer lid has functions of maintaining structural integrity, in case of impacts due to potential accidents.
  • Some of the containers intended for both storage and transportation of spent nuclear fuel are manufactured from a single ferrule, with structural, confinement and shielding functions, mainly, against gamma radiation.
  • One of the objectives of the present invention is the design and manufacture of a series of dual purpose containers, of maximum capacity and at a competitive cost, capable of housing PWR and BWR fuel, activated material of fuel attachments, and equipped with, or with the possibility of providing it with impact limiters, of location and improved properties compared to those currently used.
  • the dual-purpose containers have optimal evacuation characteristics of the residual heat generated by the fuel elements.
  • the container object of the invention comprises:
  • This vessel has a superiorly open cylindrical configuration, formed from a cylindrical ferrule to which a base is welded that closes the vessel at the bottom.
  • a double bolted lid system provides confinement and shielding. This system also allows the easy recoverability of the combustible elements during any normal or abnormal operating condition, while allowing continuous monitoring of the pressure between covers to ensure and control a possible leakage of the confinement barrier.
  • borado aluminum tubes Inside said steel vessel there is a frame armed with stainless steel plates, which define a grid to house inside a borado aluminum tubes into which, in turn, the combustible elements are introduced, allowing the maintenance of the subcritical state and the thermal criteria that ensure the thermal limits of the pods.
  • borado aluminum tubes can be replaced by borado aluminum sheets that would be an integral part of the grid that forms the frame.
  • aluminum profiles are placed to help dissipate the residual heat generated by the combustible elements to the outside, in a totally passive way, capable of evacuating the generated heat.
  • a filler material is introduced, which acts as a shield against neutron radiation; and, as the outermost surface, a metal envelope of said neutron shield. At least two stumps are removed from the inner vessel to lift the container and 2 stumps to move the container.
  • This configuration allows the same container to be used for storage, either in the ATI (Individualized Temporary Warehouse) of the plants or in the future ATC (Centralized Temporary Warehouse) and for intermodal transport (by road, by rail or by sea), without the need to recondition it.
  • ATI Intelligentized Temporary Warehouse
  • ATC Centralized Temporary Warehouse
  • intermodal transport by road, by rail or by sea
  • the design of the container is completely autonomous, and does not require sharing any system or component with the nuclear power plant, during storage (with the exception of the pressure transducer, which is installed in the outer lid and must be connected to a sampling system of data to monitor, continuously, the pressure in the space between covers).
  • the frame consists of a structure (grid) of stainless steel formed by sheets between 5 and 10 mm thick, which constitute cells inside which tubes or sheets of square section of thickness between 5 and 20 mm are introduced, manufactured in a composite material with an aluminum metal matrix ("Matrix Metal Composite” for its acronym in English, MMC) and boron carbide (AI-B 4 C), which has neutron absorption capacity.
  • MMC aluminum metal matrix
  • AI-B 4 C boron carbide
  • the thickness of the MMC tubes or sheets is chosen based on the spent fuel design that is housed inside.
  • the frame is secured within the cavity of the container by means of guides composed of aluminum profiles screwed around the stainless steel structure of the frame, which transfer the heat of decay from the frame to the body of the container, to facilitate its evacuation abroad.
  • the evacuation of the heat of decay generated by the combustible elements housed in the container is carried out by passive means. No type of refrigerant fluid is used in the container, only the inner cavity being pressurized with an atmosphere of inert helium gas. Helium has an adequate thermal conductivity and favors the evacuation of the heat of decay of the fuels housed in the frame.
  • the heat transfer mechanisms considered in the design of the container are detailed below.
  • the fuel elements are housed inside the frame cells, these being the only thermal source of the container under normal operating conditions.
  • the heat is transmitted from the U0 2 pads to the element sheaths, and from these to the helium that occupies the existing strikes in the internal cavity of the container.
  • the rest of the elements that form the fuel element also evacuate heat to the inert atmosphere of helium.
  • the MMC sheets or tubes of the frame in addition to having good properties for criticality control, have excellent thermal conductivity due to their high aluminum content.
  • the stainless steel sheets of the frame also contribute to the dissipation of heat to the outside, transmitting it by conduction to the guides.
  • the aluminum frame guides also help evacuate heat from the inside of the frame. The heat transfer from the set of components of the frame to the inner wall of the vessel is produced by conduction and radiation mechanisms.
  • the heat that reaches the inner surface of the vessel is transmitted by conduction through its thickness, and subsequently also by conduction through the aluminum profiles and the neutron absorber, reaching the neutron shielding envelope.
  • This envelope houses inside the neutron shielding material.
  • the outer envelope is the last conductive element before final evacuation of heat in the radial direction. It is planned to place the heat dissipating profiles, placed between the vessel and the outer ferrule, in an intermediate position between tangential and radially, forming an approximate angle of 45 e with respect to the radius or the tangent at the point of contact with the vessel or with the outer ferrule, to achieve optimum heat radiation.
  • Figure 1 shows a general perspective view of a dual purpose container made in accordance with the present invention, in which several partial cuts have been made to see all of its components and their distribution.
  • Figure 2 represents a perspective view of the vessel (1) with a partial section, which forms the structural part of the container.
  • Figure 3 represents a perspective view of the frame (4) of a dual purpose container, with MMC tubes inserted into the frame grid structure that constitute the stainless steel sheets, with a partial section of said frame (4 ).
  • Figure 4 depicts a perspective view of the frame of a dual purpose container, with MMC plates assembled next to the stainless steel plates, constituting the frame grid structure, also with a partial section of said frame (4).
  • Figure 5 is a sectional detail of an area of the frame (4) of the container, in which two types of guides (43 and 44) that are an essential part of the heat evacuation system of this container can be observed, and the insertion of MMC tubes (5) into the grid formed with stainless steel plates (41).
  • Figure 6 shows a section of a container according to a horizontal plane.
  • the vessel (1) of the container is mainly formed by a set of forges (1 1) that constitute the inner ferrule. Welded to it at its bottom is the bottom (12), consisting of a circular flat forge.
  • Radially located on the inner ferrule are aluminum profiles (2) heat sinks, the neutron shielding material (3), and as the outermost surface, the envelope (6) of the neutron shield.
  • the external surfaces of the container have been designed and finished so that they have no protruding parts, with the exception of the four lifting stumps (9) and rotation (10).
  • the design of the vessel (1) of the container with all the elements that concern it are shown in figure 2. All the components that make up the vessel are detailed below:
  • the inner ferrule (1 1) that is manufactured in carbon steel that It provides the structural strength of the container, and the main shielding component against gamma radiation. It can be formed of 1 or two pieces, welded together.
  • two seating surfaces 13, 14
  • the sealing surfaces with the inner and outer covers are protected by a stainless steel plating deposition
  • the lifting stumps (9) and rotation (10) are bolted on the outside of the ferrule.
  • the set of aluminum profiles (2) heat sinks are positioned by contact, in whose holes the neutron shielding material (3) is installed.
  • the bottom (12) is constituted by a forge in the form of a flat circular plate, with cylindrical heel for its union with the cylindrical envelope by welding. In its outer face it contains several threaded holes to tie the bolts of the lower impact limiter, which will be used during transport of the container to the ATC, or to any other location for the storage of spent fuel.
  • the neutron shielding material (3) used consists of a solid synthetic polymer in service, with an epoxy resin base on which boron carbide is adhered. This material is located inside the cells that make up the aluminum profiles.
  • the aluminum heat sink profiles (2) mounted are preferably aluminum alloy cells between 2 and 10 mm thick, located radially between the two cylindrical ferrules, into which the neutron shielding material (3) is inserted.
  • the deviation between the consecutive plates is about 10 °, so that each of these heat dissipating profiles is located at an angle of approximately 45 e with respect to the radius or the tangent at the point of contact with the vessel (1) or with the outer ferrule (6).
  • ferrule (6) and surrounding fences form a cylindrical shell made of laminated carbon steel sheet between 10 and 40mm thick, with upper and lower sealing rings (called fences). It confines and insulates from outside the neutron shielding material (3) and the set of profiles (2) heat sinks.
  • the relief valve is located on this envelope, whose function is to limit the pressure inside the envelope.
  • the lifting stumps (9) are located at the top of the container. These are two solid stumps of high strength steel, whose function is the lifting and handling of the container. Each of the lifting stumps is fixed by means of a series of bolts to mechanized cavities in the ferrule of the container, in two diametrically opposite positions.
  • the rotation stumps (10) are used during container flipping maneuvers in the transport or transfer cradle. They are similar to the lifting stumps (9). Both sets of stumps have the possibility of including a cavity within which neutron shielding material (2) is located, due to the greater intensity of neutron source in the lower part of the active length of the fuel elements. Similar to the lifting stumps, the rotating stumps are bolted to the vessel (1).
  • the stumps to be used in the design of the dual purpose container can be either "male” or “female” depending on the limitations imposed on the plant itself or by transport requirements.
  • the inner cover (7) consists of a circular flat forge made of low alloy steel. On its periphery there are a series of through holes for attachment to the body of the container, by means of bolts of alloy carbon steel. The lower face of the lid (7) closes on the seating surface (14) of the vessel (1) with a double metal seal (15) that is part of the confinement system avoiding the possibility of radioactive escape.
  • the outer cover (8) forms a second sealed barrier of the container, redundant barrier, whose main mission is to protect the confinement system against impacts of all kinds. It consists of another circular flat plate or forge that closes on the lower surface on the seating surface (13) of the vessel (1), fixing it with a group of alloy steel bolts. The bottom face of the lid closes on the seating surface of the vessel with a double metal seal (15). Between the inner cover (7) and the outer cover (8), once closed and bolted, there is a minimum gap, called space between covers. On its outer face the cover (8) has a series of threaded holes (81) to tie the bolts of the upper impact limiter.
  • the container design includes three penetrations on its closing lids: two in the inner lid (7) and one in the outer lid (8).
  • the vent and drain penetrations are embedded in the inner lid, have direct access to the inner cavity of the container and are, therefore, penetrations of the confinement system.
  • the pressure control penetration in the outer cover allows detecting possible anomalies in the operation of the container.
  • the penetrations of drainage and venting of the inner cover have two quick disconnect valves; Both penetrations are used to access the inner cavity of the container after loading the fuel.
  • the fuel frame (4) is composed of three metal subsets:
  • MMC Metal Composite
  • the frame guides (43, 44) are aluminum alloy profiles that secure the fuel cells (42) and constitute a fundamental part of the transition system between the polygonal periphery of the cells and the cylindrical interior of the vessel (1) .
  • Its section has triangular shaped cells (44) and quadrangular (43), the face always being curved near the cylindrical shell of the vessel.
  • the frame guides (43, 44) are screwed to the vertical reinforcing plates, which are welded to the outer faces of the frame structure (42) of frame plates (4).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Contenedor para almacenamiento y transporte de combustible nuclear gastado, que comprende un cuerpo formado por un vaso cilíndrico de acero (1), cerrado inferiormente y provisto de un sistema de cierre empernado superior dotada de unos medios de sellado estanco, que proporciona la resistencia estructural del contenedor y blindaje neutrónico al combustible, que se almacena un bastidor interior (4) formado por un emparrillado de chapas de acero inoxidable (41), que definen una pluralidad de celdas (42) aptas para incluir en cada una de ellas un tubo (5) de sección equivalente a las mismas, y alrededor de dichas celdas (42) unas guías de aleación de aluminio (43, 44) de sección rectangular y triangular, que transfieren el calor de decaimiento desde el bastidor (4) al vaso de acero (1), que presenta exteriormente un conjunto de perfiles de aluminio (2) disipadores de calor y entre los huecos existentes entre los mismos un relleno de material de blindaje neutrónico (3).

Description

DESCRIPCIÓN
Contenedor para almacenamiento y transporte de combustible nuclear gastado. Objeto de la invención
La presente invención tiene por objeto un contenedor metálico compacto de doble propósito: el almacenamiento y el transporte de combustible nuclear gastado. Más concretamente este contenedor está destinado para gestionar el combustible nuclear gastado procedente de las centrales nucleares con reactor de agua a presión (PWR) y agua a ebullición (BWR), su posible transporte a un almacén temporal individual o centralizado.
Antecedentes de la invención
Una vez utilizado en los reactores nucleares, el combustible nuclear se almacena en las piscinas de las centrales nucleares para el decaimiento de su actividad y su enfriamiento. Posteriormente, el combustible nuclear gastado puede ser almacenado en seco hasta su gestión definitiva en contenedores de almacenamiento o contenedores de almacenamiento y transporte, denominados estos últimos de doble propósito. Actualmente en España no se realizan transportes de residuos de alta actividad, ya que permanecen en las piscinas o en contenedores en las propias centrales; no obstante, ante la creación de un Almacén Temporal Centralizado se plantea la necesidad de emplear contenedores adecuados, de doble propósito, con los que se minimicen los riesgos asociados al transporte de este tipo de residuos, cuando se realice desde las centrales nucleares hasta la nueva instalación.
Estos sistemas de almacenamiento están compuestos por un conjunto de elementos que garantizan el almacenamiento y transporte seguro del combustible gastado. Su diseño tiene como objeto garantizar el cumplimiento de las funciones de seguridad establecidas que exige la normativa: mantener la subcriticidad y el confinamiento del material, y evitar su degradación ; esto se consigue entre otros elementos con el blindaje de la radiación gamma y neutrónica y la evacuación del calor residual originado por el combustible irradiado. Dependiendo del tipo de combustible nuclear, un contenedor de combustible gastado puede almacenar en la mayor parte de los casos entre 20 y 100 elementos. Los elementos de combustible gastado que cumplen los requisitos establecidos en la licencia del contenedor (tiempo de enfriamiento, quemado y grado de enriquecimiento, entre otros parámetros) pueden ser almacenados según un plan de carga revisado y aprobado.
Los contenedores metálicos de doble uso conocidos son recipientes con múltiple pared. Típicamente: un vaso cilindrico con un sistema de cierre hermético que tiene unas paredes de espesor considerable, a fin de proporcionar blindaje para las radiaciones que se generan en su interior, a veces se utiliza una capa de plomo como blindaje especial a la radiación gamma; la segunda pared está conformada por un blindaje neutrónico con el que se consigue mediante una capa más externa de moderador o veneno. La superficie externa del contenedor habitualmente incorpora una serie de aletas de cobre, acero inoxidable u otro metal, dispuestas en posición axial o radial, con el fin de facilitar la refrigeración por convección natural, de modo que la temperatura de las vainas del combustible sea inferior a los límites autorizados. La cavidad central del contenedor consiste en una cesta de acero inoxidable o aluminio, que incluye componentes con un cierto contenido en Boro, para el control de la criticidad, que alberga un cierto número de elementos combustibles gastados. El sellado del contenedor se logra mediante una doble tapa, la más interna es de acero y tiene funciones de contención y blindaje, en tanto que la tapa externa tiene funciones de mantenimiento de la integridad estructural, en caso de impactos a consecuencia de accidentes potenciales.
Algunos de los contenedores destinados tanto a almacenamiento como al transporte de combustible nuclear gastado se fabrican a partir de una única virola, con funciones estructurales, de confinamiento y de blindaje, principalmente, frente a las radiaciones gamma.
Descripción de la invención
Uno de los objetivos de la presente invención es el diseño y fabricación de una serie de contenedores de doble propósito, de máxima capacidad y a un coste competitivo, capaz de albergar combustible PWR y BWR, material activado de aditamentos de combustible, y dotado de, o con posibilidad de dotarlo, de unos limitadores de impacto, de ubicación y propiedades mejoradas con respecto a los usados actualmente. Los contenedores de doble propósito presentan óptimas características de evacuación del calor residual generado por los elementos combustibles. El contenedor objeto de la invención comprende:
- Un vaso de acero al carbono, de pared simple, con funciones estructurales, de confinamiento y de blindaje, principalmente, frente a las radiaciones gamma. Este vaso presenta una configuración cilindrica, abierta superiormente, formado a partir de una virola cilindrica a la que se suelda una base que cierra el vaso por el fondo. Un sistema doble de tapas empernadas proporciona confinamiento y blindaje. Este sistema permite además la fácil recuperabilidad de los elementos combustibles durante cualquier condición normal o anormal de operación, al tiempo que permite una monitorización continua de la presión entre tapas para asegurar y controlar una posible fuga de la barrera de confinamiento.
- En el interior de dicho vaso de acero se ubica un bastidor armado con chapas de acero inoxidable, que definen un emparrillado para alojar en su interior unos tubos de aluminio borado dentro de los cuales se introducen, a su vez, los elementos combustibles, permitiendo el mantenimiento del estado subcrítico y los criterios térmicos que aseguran los límites térmicos de las vainas. En circunstancias donde los requisitos de criticidad no son muy exigentes, los tubos de aluminio borado pueden ser sustituidos por chapas de aluminio borado que formarían parte integrante del emparrillado que conforma el bastidor.
- Situadas radialmente sobre el vaso de acero que conforma el contenedor se sitúan unos perfiles de aluminio para ayudar a disipar hacia el exterior el calor residual generado por los elementos combustibles, de forma totalmente pasiva, capaz de evacuar el calor generado. En estos perfiles se introduce un material de relleno, que ejerce las funciones de blindaje frente a las radiaciones neutrónicas; y, como superficie más exterior, una envolvente metálica de dicho blindaje neutrónico. Del vaso interior arrancan al menos dos muñones para elevar el contenedor y 2 muñones para movilizar el contenedor. Esta configuración permite emplear el mismo contenedor para almacenamiento, ya sea en el ATI (Almacén Temporal Individualizado) de las centrales o en el futuro ATC (Almacén Temporal Centralizado) y para su transporte intermodal (por carretera, por ferrocarril o marítimo), sin necesidad de reacondicionarlo. Para la operación de transporte únicamente será necesario acoplar al contenedor dos limitadores de impacto que se empernan a la tapa exterior y al fondo del contenedor, y una barrera de protección antipersonal así como la propia cuna de transporte sobre la que se sitúa el contenedor.
El diseño del contenedor es totalmente autónomo, y no requiere compartir ningún sistema ni componente con la central nuclear, durante su almacenamiento (a excepción del transductor de presión, que va instalado en la tapa exterior y ha de estar conectado con un sistema de muestreo de datos para monitorizar, de manera continua, la presión en el espacio entre tapas).
El bastidor consta de una estructura (emparrillado) de acero inoxidable formado por chapas de entre 5 y 10 mm de espesor, que constituyen celdas en cuyo interior se introducen unos tubos o chapas de sección cuadrada de espesor de entre 5 y 20mm, fabricados en un material compuesto con una matriz metálica de aluminio ("Matrix Metal Composite" por sus siglas en inglés, MMC) y carburo de boro (AI-B4C), el cual tiene capacidad de absorción de neutrones. El espesor de los tubos ó chapas de MMC se elige en función del diseño de combustible gastado que se aloje en su interior. El bastidor, a su vez, se asegura dentro de la cavidad del contenedor mediante unas guías compuestas de perfiles aluminio atornilladas alrededor de la estructura de acero inoxidable del bastidor, las cuales transfieren el calor de decaimiento del bastidor al cuerpo del contenedor, para facilitar su evacuación al exterior.
La evacuación del calor de decaimiento generado por los elementos combustibles alojados en el contenedor se realiza por medios pasivos. No se utiliza ningún tipo de fluido refrigerante en el contenedor, presurizándose únicamente la cavidad interior con una atmósfera de gas inerte de helio. El helio presenta una adecuada conductividad térmica y favorece la evacuación del calor de decaimiento de los combustibles alojados en el bastidor. Los mecanismos de transmisión de calor considerados en el diseño del contenedor se detallan a continuación.
- En el interior de las celdas del bastidor se alojan los elementos de combustible, siendo estos la única fuente térmica del contenedor en condiciones normales de operación. El calor se transmite de las pastillas de U02 a las vainas del elemento, y de estas al helio que ocupa los huelgos existentes en la cavidad interna del contenedor. El resto de elementos que forman el elemento combustible (rejillas, cabezales, resortes y tubos guía) también evacúan calor a la atmosfera inerte de helio.
- Las chapas o tubos de MMC del bastidor, además de tener buenas propiedades para el control de criticidad, poseen una excelente conductividad térmica debido a su alto contenido en aluminio.
- Las chapas de acero inoxidable del bastidor también contribuyen a la disipación del calor al exterior, transmitiéndolo por conducción a las guías. Finalmente, las guías del bastidor de aluminio ayudan también a evacuar el calor del interior del bastidor. La transferencia de calor desde el conjunto de componentes del bastidor a la pared interior del vaso, se produce por mecanismos de conducción y radiación.
- El calor que llega a la superficie interior del vaso se transmite por conducción a través de su espesor, y posteriormente también por conducción a través de los perfiles de aluminio y del absorbente neutrónico, llegando hasta la envolvente de blindaje neutrónico. Esta envolvente aloja en su interior el material de blindaje neutrónico. La envolvente exterior es el último elemento conductor antes de la evacuación final al exterior del calor en dirección radial. Se ha previsto situar los perfiles disipadores de calor, colocades entre el vaso y la virola exterior, en una posición intermedia entre tangencial y radialmente, formando un ángulo aproximado de 45e con respecto al radio o a la tangente en el punto de contacto con el vaso o con la virola externa, para lograr la óptima radiación del calor. - En el fondo del contenedor el calor se transmite desde la cavidad interior a la superficie exterior por conducción, a través del fondo del vaso y en dirección axial. - En las tapas el calor se propaga por conducción, convección y radiación desde los elementos combustibles hasta la tapa interior, también en dirección axial. Los mismos mecanismos de transmisión de calor son efectivos en el espacio entre tapas, también presurizado con helio. - Desde las superficies exteriores del contenedor, el calor generado por los elementos combustibles así como el calor absorbido por la radiación solar se transmite al medio ambiente por medio de los mecanismos de convección y radiación, y desde el fondo del contenedor a la losa de la instalación de almacenamiento por conducción.
Descripción de las figuras
Para complementar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se acompaña a la presente memoria descriptiva un juego de dibujos en los que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 muestra una vista general en perspectiva de un contenedor de doble propósito realizado conforme a la presente invención, en el cual se han practicado diversos cortes parciales para ver la totalidad de sus componentes y su distribución.
La figura 2 representa una vista en perspectiva del vaso (1 ) con una sección parcial, que forma la parte estructural del contenedor. La figura 3 representa una vista en perspectiva del bastidor (4) de un contenedor de doble propósito, con tubos de MMC introducidos dentro de la estructura de emparrillado del bastidor que constituyen las chapas de acero inoxidable, con una sección parcial de dicho bastidor (4). La figura 4 representa una vista en perspectiva del bastidor de un contenedor de doble propósito, con chapas de MMC ensambladas junto a las chapas de acero inoxidable, constituyendo la estructura de emparrillado del bastidor, también con una sección parcial de dicho bastidor (4).
La figura 5 es un detalle en sección de una zona del bastidor (4) del contenedor, en la que se pueden observar dos tipos de guías (43 y 44) que forman parte esencial del sistema de evacuación de calor de este contenedor, y la inserción de los tubos de MMC (5) dentro del emparrillado formado con las chapas de acero inoxidable (41 ).
La figura 6 muestra una sección de un contenedor según un plano horizontal.
Realización preferente de la invención
Como se puede observar en las figuras referenciadas, el vaso (1 ) del contenedor está formado, principalmente, por conjunto de forjas (1 1 ) que constituyen la virola interior. Soldado a ella en su parte inferior se encuentra el fondo (12), constituido por una forja plana circular.
Situadas radialmente sobre la virola interior se sitúan unos perfiles de aluminio (2) disipadores de calor, el material de blindaje neutronico (3), y como superficie más exterior, la envolvente (6) del blindaje neutronico.
Para facilitar la descontaminación, las superficies externas del contenedor se han diseñado y terminado de forma que no tengan partes salientes, a excepción de los cuatro muñones de elevación (9) y rotación (10).
El diseño del vaso (1 ) del contenedor con todos los elementos que lo atañen se muestran en la figura 2. Todos los componentes que integran el vaso se detallan a continuación: La virola interior (1 1 ) que se fabrica en acero al carbono que proporciona la resistencia estructural del contenedor, y el principal componente de blindaje frente a la radiación gamma. Puede estar formada de 1 o dos piezas, soldadas entre sí.
En el extremo superior de la virola se han mecanizado dos superficies de asiento (13, 14) para recibir, mediante conexión empernada, a las tapas interior (7) y exterior (8). Las superficies de sellado con las tapas interior y exterior van protegidas mediante una deposición por plaqueado de acero inoxidable Por el exterior de la virola se empernan los muñones de elevación (9) y rotación (10).
Sobre la superficie exterior de la virola del vaso (1 ) se posicionan por contacto el conjunto de perfiles de aluminio (2) disipadores de calor, en cuyos huecos se instala el material de blindaje neutrónico (3)..
El fondo (12) está constituido por una forja con forma de placa circular plana, con talón cilindrico para su unión con la envolvente cilindrica mediante soldadura. En su cara exterior contiene varios agujeros roscados para amarrar los pernos del limitador de impacto inferior, que se utilizará durante el transporte del contenedor hasta el ATC, o hasta cualquier otro emplazamiento para el almacenamiento de combustible gastado.
El material de blindaje neutrónico (3) empleado consiste en un polímero sintético sólido en servicio, con una base de resina epoxi sobre el que se adhiere carburo de boro. Este material está situado en el interior de las celdas que constituyen los perfiles de aluminio.
Los perfiles de aluminio disipadores de calor (2) montados, son preferentemente celdas de aleación de aluminio de entre 2 y 10 mm de espesor, situados radialmente entre las dos virolas cilindricas, en cuyo interior se introduce el material del blindaje neutrónico (3). El esviaje entre las chapas consecutivas es de unos 10 °, de forma que cada una de estos perfiles disipadores de calor se sitúa formando aproximadamente un ángulo de 45e con respecto al radio o a la tangente en el punto de contacto con el vaso (1 ) o con la virola externa (6).
Finalmente, la virola (6) y cercos envolventes conforman una envolvente cilindrica fabricada en chapa laminada de acero al carbono de entre 10 y 40mm de espesor, con anillos de cierre superior e inferior (denominados cercos). Confina y aisla del exterior al material de blindaje neutrónico (3) y al conjunto de perfiles (2) disipadores de calor. Sobre esta envolvente se sitúa la válvula de alivio, cuya función es limitar la presión en el interior de la envolvente.
Los muñones de elevación (9) están ubicados en la parte superior del contenedor. Se trata de dos muñones macizos de acero de alta resistencia, que tienen como función el izado y manejo del contenedor. Cada uno de los muñones de elevación se fija mediante una serie de pernos a unas cavidades mecanizadas en la virola del contenedor, en dos posiciones diametralmente opuestas. Los muñones de rotación (10) se usan durante las maniobras de volteo del contenedor en las cuna de transporte o de transferencia. Son similares a los muñones de elevación (9). Ambos conjuntos de muñones tienen la posibilidad de incluir una cavidad dentro de la cual va ubicado material de blindaje neutrónico (2), debido a la mayor intensidad de fuente neutrónica en la parte inferior de la longitud activa de los elementos combustibles. De manera similar a los muñones de elevación, los muñones de rotación van empernados al vaso (1 ). Los muñones a emplear en el diseño del contenedor de doble propósito pueden ser tanto de tipo "macho", o "hembra" en función de las limitaciones impuestas en la propia central o por requisitos de transporte.
Una vez que la carga se aloja en la cavidad interna se aisla del exterior mediante dos tapas, interior (7) y exterior (8), capaces cada una de ellas de conservar estanca a aquella. Ambas tapas van empernadas al vaso (1 ), dejando entre ambas tapas aproximadamente 5 mm, para presurizar esta cámara con helio. La medida de la presión del espacio entre tapas avisa en el hipotético caso de que se produjese una fuga en el sistema de confinamiento del contenedor. La tapa interior (7) consiste en una forja plana circular fabricada en acero de baja aleación. En su periferia hay una serie de agujeros pasantes para su unión al cuerpo del contenedor, mediante pernos de acero al carbono aleado. La cara inferior de la tapa (7) cierra sobre la superficie de asiento (14) del vaso (1 ) con una junta metálica (15) doble de sellado que forma parte del sistema de confinamiento evitando la posibilidad de escape radiactivo.
La tapa exterior (8) forma una segunda barrera estanca del contenedor, barrera redundante, cuya misión principal es proteger el sistema de confinamiento contra impactos de todo tipo. Consiste en otra placa o forja plana circular que por la cara inferior cierra sobre la superficie de asiento (13) del vaso (1 ), fijándose en éste con un grupo de pernos de acero al carbono aleado. La cara inferior de la tapa cierra sobre la superficie de asiento del vaso con una junta metálica doble (15). Entre la tapa interior (7) y la tapa exterior (8), una vez cerradas y empernadas, existe un huelgo mínimo, llamado espacio entre tapas. En su cara exterior la tapa (8) presente una serie de agujeros roscados (81 ) para amarrar los pernos del limitador de impacto superior.
El diseño del contenedor incluye tres penetraciones sobre sus tapas de cierre: dos en la tapa interior (7) y una en la tapa exterior (8). Las penetraciones de venteo y de drenaje están embebidas en la tapa interior, tienen acceso directo a la cavidad interior del contenedor y son, por lo tanto, penetraciones del sistema de confinamiento. La penetración de control de presión en la tapa exterior permite detectar posibles anomalías en el funcionamiento del contenedor. Las penetraciones de drenaje y venteo de la tapa interior tienen sendas válvulas de desconexión rápida; ambas penetraciones son utilizadas para acceder a la cavidad interior del contenedor después de la carga de combustible.
Por su parte el bastidor de combustible (4) está compuesto de tres subconjuntos metálicos:
Una estructura de emparrillado (42), formada por un conjunto de chapas (41 ) de acero inoxidable austenítico, dispuestas longitudinalmente a la generatriz del vaso (1 ), conectadas entre sí por medio de ranuras (41 1 ) que permiten encajarse unas con otras, formando las celdas donde se alojan los elementos de combustible. Todas las chapas (41 ) llevan ranuras verticales para poder encajarse, dando lugar a celdas cuadradas. En las superficies exteriores de la malla de celdas se sueldan, de manera discontinua, placas verticales del mismo material y espesor que refuerzan el conjunto. - Los elementos combustibles ocupan el interior de las celdas del entramado (42) introducidos en unos tubos (5), consistentes en un tubos de sección cuadrada fabricados material compuesto de aluminio y carburo de boro (Matrix Metal Composite, MMC) con capacidad de absorción neutrónica, que contribuye al mantenimiento de la cavidad interna en estado subcrítico.
Finalmente, las guías del bastidor (43, 44) son perfiles de aleación de aluminio que aseguran las celdas de combustible (42) y constituyen parte fundamental del sistema de transición entre la periferia poligonal de las celdas y el interior cilindrico del vaso (1 ). Su sección tiene celdas con formas triangular (44) y cuadrangular (43), siendo siempre curva la cara próxima a la envolvente cilindrica del vaso.
Las guías del bastidor (43, 44) se atornillan a las placas verticales de refuerzo, que van soldadas a las caras exteriores de la estructura de emparrillado (42) de chapas del bastidor (4).
Una vez descrita suficientemente la naturaleza de la invención, así como un ejemplo de realización preferente, se hace constar a los efectos oportunos que los materiales, forma, tamaño y disposición de los elementos descritos podrán ser modificados, siempre y cuando ello no suponga una alteración de las características esenciales de la invención que se reivindican a continuación:

Claims

REIVINDICACIONES
1 . - Contenedor para almacenamiento y transporte de combustible nuclear gastado, del tipo de los que comprende un cuerpo formado por un vaso cilindrico de acero (1 ) cerrado inferiormente y provisto de un sistema de cierre empernado superior mediante unos medios de sellado estanco, que proporciona la resistencia estructural del contenedor y blindaje neutrónico al combustible, que se almacena un bastidor interior (4) formado por un emparrillado de chapas de acero inoxidable (41 ), que definen una pluralidad de celdas (42) aptas para incluir en cada una de ellas un tubo (5) de sección equivalente a las mismas, adecuado para contener en su interior una carga de combustible nuclear gastado, caracterizado por que el bastidor (4) presenta alrededor de la estructura de acero inoxidable (42) unas guías de aleación de aluminio (43, 44) de sección rectangular y triangular, con las caras exteriores curvas, formando entre dichas guías y el emparrillado de celdas (42) una conformación cilindrica que se adapta a la cavidad del vaso (1 ), transfiriendo el calor de decaimiento desde el bastidor (4) al vaso de acero (1 ), el cual presenta sobre la superficie exterior un conjunto de perfiles de aluminio (2) disipadoras de calor y entre los huecos existentes entre las mismas un relleno de material de blindaje neutrónico (3), que se protege exteriormente por medio de una virola cilindrica (6) que confina y aisla del exterior al material de blindaje neutrónico (3) y al conjunto de perfiles disipadores de calor (2) facilitando la evacuación térmica al exterior.
2. - Contenedor, según la reivindicación 1 , caracterizado por que el vaso (1 ) está constituido por al menos una virola (1 1 ), o varias soldadas conformando un cuerpo cilindrico, en cuya base inferior se suelda el fondo (12), mientras que en la boca superior se han mecanizado dos superficies de asiento (13, 14) adecuadas para fijar en ellas mediante pernos sendas tapas interior (7) y exterior (8); presentando el fondo (12) y la tapa exterior (8) una serie de agujeros roscados (81 ) en los que se fijan mediante pernos sendos limitadores de impactos que protegen el contenedor durante el transporte.
3. - Contenedor, según las reivindicaciones anteriores, caracterizado por que las tapas interior (7) y exterior (8) se empernan en el vaso (1 ), interponiendo en las uniones sendas juntas metálicas (14, 15) de confinamiento que evita cualquier escape radiactivo sellado, presurizándose con helio el espacio o cámara existente entre la tapa la interior (7) y la exterior (8) a fin de permitir la medida de la presión de este espacio detectar cualquier fuga en el sistema de confinamiento del contenedor.
4. - Contenedor, según las reivindicaciones anteriores, caracterizado por que los perfiles disipadores de calor (2), situadas entre el vaso (1 ) y la virola exterior (6), se sitúan en una posición intermedia entre tangencial y radialmente, formando un ángulo aproximado de 45e con respecto al radio o a la tangente en el punto de contacto con el vaso (1 ) o con la virola externa (6), y que no van soldadas al cuerpo del contenedor (1 ), si no que quedan fijadas por la propia virola externa (6).
5. - Contenedor, según las reivindicaciones anteriores, caracterizado por que en el vaso (1 ) se fijan exteriormente sendos pares de muñones (9, 10) diametralmente opuestos, dos de elevación (9) ubicados en la parte superior del contenedor y dos de rotación (10) usados durante las maniobras de volteo del contenedor en las cuna de transporte o de transferencia.
6. - Contenedor, según las reivindicaciones anteriores, en el que la estructura del emparrillado (42) que conforma la zona del bastidor (4) que ocupa el combustible está constituida por un conjunto de chapas (41 ) de acero inoxidable austenítico, dispuestas longitudinalmente a la generatriz del vaso, se caracteriza por que dichas chapas (41 ) están conectadas entre sí por medio de ranuras verticales (41 1 ) que permiten encajarse unas con otras por medios puramente mecánicos, dando lugar a celdas cuadradas en las que se alojan los tubos (5) de combustible, fabricados material compuesto de aluminio y carburo de boro con capacidad de absorción neutrónica, que contribuye al mantenimiento de la cavidad interna en estado subcrítico.
PCT/ES2017/070130 2017-03-08 2017-03-08 Contenedor para almacenamiento y transporte de combustible nuclear gastado. WO2018162767A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/ES2017/070130 WO2018162767A1 (es) 2017-03-08 2017-03-08 Contenedor para almacenamiento y transporte de combustible nuclear gastado.
KR1020197028407A KR20190117759A (ko) 2017-03-08 2017-03-08 사용후핵연료의 저장 및 운반용 컨테이너
CN201780089551.1A CN110506310A (zh) 2017-03-08 2017-03-08 储存和运输乏核燃料的容器
EP17899513.0A EP3594964A4 (en) 2017-03-08 2017-03-08 CONTAINER FOR STORAGE AND TRANSPORT OF DEPLETED NUCLEAR FUEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070130 WO2018162767A1 (es) 2017-03-08 2017-03-08 Contenedor para almacenamiento y transporte de combustible nuclear gastado.

Publications (1)

Publication Number Publication Date
WO2018162767A1 true WO2018162767A1 (es) 2018-09-13

Family

ID=63448210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070130 WO2018162767A1 (es) 2017-03-08 2017-03-08 Contenedor para almacenamiento y transporte de combustible nuclear gastado.

Country Status (4)

Country Link
EP (1) EP3594964A4 (es)
KR (1) KR20190117759A (es)
CN (1) CN110506310A (es)
WO (1) WO2018162767A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634583A (zh) * 2019-09-25 2019-12-31 中国核动力研究设计院 单根乏燃料棒转运容器及其使用方法
WO2020139123A1 (ru) 2018-12-28 2020-07-02 Акционерное общество "Логистический центр ЯТЦ" (АО "ЛЦ ЯТЦ") Контейнер и способ хранения отработавшего ядерного топлива

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466500B (zh) * 2020-11-13 2022-10-11 中广核工程有限公司 核电站乏燃料贮罐运输容器
CN113808770A (zh) * 2021-08-10 2021-12-17 中国核电工程有限公司 一种用于乏燃料组件贮存和运输的密封容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898747A (en) * 1997-05-19 1999-04-27 Singh; Krishna P. Apparatus suitable for transporting and storing nuclear fuel rods and methods for using the apparatus
US20020118786A1 (en) * 2001-02-26 2002-08-29 Mitsubishi Heavy Industries, Ltd. Cask
US6878952B1 (en) * 1999-09-02 2005-04-12 Mitsubishi Heavy Industries, Ltd. Cask
US20140044227A1 (en) * 2012-08-13 2014-02-13 Transnuclear, Inc. Composite basket assembly
US8712001B2 (en) * 2006-06-30 2014-04-29 Holtec International, Inc. Fuel basket spacer, apparatus and method using the same for storing high level radioactive waste

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336460A (en) * 1979-07-25 1982-06-22 Nuclear Assurance Corp. Spent fuel cask
US4983352A (en) * 1984-11-13 1991-01-08 Westinghouse Electric Corp. Closure system for a spent fuel storage cask
US5406600A (en) * 1993-10-08 1995-04-11 Pacific Nuclear Systems, Inc. Transportation and storage cask for spent nuclear fuels
JP2004069620A (ja) * 2002-08-08 2004-03-04 Mitsubishi Heavy Ind Ltd リサイクル燃料集合体格納用バスケット及びリサイクル燃料集合体格納容器
JP2007033242A (ja) * 2005-07-27 2007-02-08 Hitachi Ltd 使用済み燃料収納容器
JP2008281437A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 使用済燃料キャスクの燃料収納構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898747A (en) * 1997-05-19 1999-04-27 Singh; Krishna P. Apparatus suitable for transporting and storing nuclear fuel rods and methods for using the apparatus
US6878952B1 (en) * 1999-09-02 2005-04-12 Mitsubishi Heavy Industries, Ltd. Cask
US20020118786A1 (en) * 2001-02-26 2002-08-29 Mitsubishi Heavy Industries, Ltd. Cask
US8712001B2 (en) * 2006-06-30 2014-04-29 Holtec International, Inc. Fuel basket spacer, apparatus and method using the same for storing high level radioactive waste
US20140044227A1 (en) * 2012-08-13 2014-02-13 Transnuclear, Inc. Composite basket assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594964A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139123A1 (ru) 2018-12-28 2020-07-02 Акционерное общество "Логистический центр ЯТЦ" (АО "ЛЦ ЯТЦ") Контейнер и способ хранения отработавшего ядерного топлива
KR20220008727A (ko) 2018-12-28 2022-01-21 엔에프씨 로지스틱스, 조인트-스탁 컴패니 (엔에프씨엘 제이에스씨) 사용 후 핵 연료의 장기 건식 보관방법 및 저장용기
CN110634583A (zh) * 2019-09-25 2019-12-31 中国核动力研究设计院 单根乏燃料棒转运容器及其使用方法
CN110634583B (zh) * 2019-09-25 2022-02-22 中国核动力研究设计院 单根乏燃料棒转运容器及其使用方法

Also Published As

Publication number Publication date
KR20190117759A (ko) 2019-10-16
EP3594964A4 (en) 2020-11-11
CN110506310A (zh) 2019-11-26
EP3594964A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US11250963B2 (en) Nuclear fuel storage facility
KR100944404B1 (ko) 하이 레벨 폐기물을 저장하는 시스템과 방법
RU2525229C2 (ru) Устройство для хранения и/или транспортировки высокорадиоактивных отходов, а также способ его изготовления
WO2018162767A1 (es) Contenedor para almacenamiento y transporte de combustible nuclear gastado.
US9466400B2 (en) Ventilated transfer cask with lifting feature
US10147509B2 (en) Ventilated system for storing high level radioactive waste
US11521761B2 (en) Radiation shielded enclosure for spent nuclear fuel cask
US11676736B2 (en) Ventilated metal storage overpack (VMSO)
JP7458492B2 (ja) 核廃棄物貯蔵用無換気キャスク
WO2018162768A1 (es) Limitador de impacto para contenedores de transporte de combustible nuclear gastado
KR101069729B1 (ko) 중저준위 방사성폐기물 드럼 수납용 적재용기
RU2458417C1 (ru) Чехол для отработавших тепловыделяющих сборок
WO2023079201A1 (es) Contenedor para residuos radioactivos
Chung et al. Evaluation of the KN-12 spent fuel transport cask by analysis
ES2372763T3 (es) Sistema y método para almacenar residuos de alto nivel.
ES2942222A1 (es) Un modulo de blindaje para un contenedor de residuos radioactivos
CN117976259A (zh) 小型堆核动力模块
Gartz et al. Castor transport and storage casks for VVER and RBMK fuel assemblies
Lee et al. CASTOR® KN-12 SPENT NUCLEAR FUEL TRANSPORT CASK
PARK Development of consolidated spent fuel dry storage system
Tamald et al. Design of spent-fuel concrete pit dry storage and handling system
UA65790A (en) Container for transporting and storing spent fuel assemblies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028407

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017899513

Country of ref document: EP

Effective date: 20191008