WO2018161376A1 - 一种基于数据驱动的无线射频灵敏度测量方法 - Google Patents

一种基于数据驱动的无线射频灵敏度测量方法 Download PDF

Info

Publication number
WO2018161376A1
WO2018161376A1 PCT/CN2017/078036 CN2017078036W WO2018161376A1 WO 2018161376 A1 WO2018161376 A1 WO 2018161376A1 CN 2017078036 W CN2017078036 W CN 2017078036W WO 2018161376 A1 WO2018161376 A1 WO 2018161376A1
Authority
WO
WIPO (PCT)
Prior art keywords
error rate
packet
radio frequency
signal strength
parameters
Prior art date
Application number
PCT/CN2017/078036
Other languages
English (en)
French (fr)
Inventor
全智
Original Assignee
深圳市中承科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中承科技有限公司 filed Critical 深圳市中承科技有限公司
Publication of WO2018161376A1 publication Critical patent/WO2018161376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Definitions

  • the present invention relates to the field of wireless communication system measurement technologies, and in particular, to a data-driven wireless radio frequency sensitivity measurement method.
  • FIG. 1 is a schematic diagram of a conventional RF sensitivity test process based on exhaustive search.
  • a fixed number N of test data packets need to be sent to a device under test at a certain power.
  • the fixed step size is used in the measurement process, and the measurement accuracy mostly depends on the given step size.
  • the general enterprise mostly adopts a larger step size, which greatly reduces the measurement accuracy. .
  • the traditional wireless system RF sensitivity measurement starts from a higher signal strength and then searches in a step-down manner. If the distance between the starting point and the RF sensitivity is long, a large amount of time is required for measurement; On the other hand, in the process of measuring the error rate, a fixed number of test data packets are used, which causes unnecessary time waste for partial error rate measurement.
  • the present invention provides a data-driven wireless radio frequency sensitivity measurement method.
  • the present invention provides a data-driven wireless radio frequency sensitivity measurement method, comprising the following steps:
  • Step one using a conventional error rate measurement method, randomly selecting the signal strength of the set number of times, and measuring the packet error rate under each signal strength in the wireless system to be tested;
  • Step 2 Using differential evolution algorithm to measure parameters in the equivalent dynamic linear data model according to the measurement result of the error packet rate ⁇ , ⁇ , ⁇ , ⁇ are estimated, and the equivalent dynamic linear data model is to replace the discrete nonlinear system at the operating point with a pseudo-bias Data model, the discrete nonlinear system model is:
  • s(k) represents the signal strength measured at the kth time
  • p(k) represents the error packet rate measured at the signal strength s(k)
  • n a and n b are the order of the packet error rate and the signal strength, respectively.
  • f( ⁇ ) is a nonlinear function
  • Step 3 using the equivalent dynamic linear data model to predict the signal strength s(k) with the given error rate p r as the target;
  • Step 4 estimating the number of test data packets based on the predicted value of the signal strength s(k)
  • the number of transmissions to the device under test at the predicted signal strength s(k) is Test the data packet to obtain the packet error rate p(k) of the device under test at the signal strength. If the error between the packet error rate p(k) and the target value p r is less than or equal to the specified error value, the result is The radio frequency sensitivity of the wireless system to be tested, if the error between the packet error rate p(k) and the target value p r is greater than the specified error value, the measurement result (s(k), p(k)) is taken as the input pair.
  • the conventional method for measuring the error rate of the packet in the first step specifically includes:
  • the number of times set in the first step is three, and the measurement result of the error packet rate is:
  • S(3) represents the three signal strengths randomly selected
  • P(3) represents the packet error rate measured at the three signal intensities
  • the discrete nonlinear system model needs to satisfy the following conditions:
  • the parameters are The specific methods for estimating ⁇ , ⁇ , ⁇ , and ⁇ are as follows:
  • the initial parameters are randomly selected from the defined range:
  • Three sets of different parameters x ⁇ , x ⁇ , x ⁇ are randomly selected from N p vectors to generate mutation operators:
  • F s is called the “scaling factor” and is a real constant. Its value range is generally F s ⁇ [1,2]. At the same time, to ensure that the parameters are still within a reasonable range, additional restrictions are added:
  • rand() is a random number between [0,1]
  • C r is a constant between [0,1], called "crossover probability"
  • the greedy selection strategy is used to update the parameter group. By comparing the cost of the newly generated experimental parameters with the current parameters, the less expensive parameters are selected as the children to enter the new parameter group, if the new parameter cost is less than the optimal parameter cost Be , the optimal parameters are updated.
  • step 3 the method for RF sensitivity prediction based on the equivalent dynamic linear data model is as follows:
  • is a weighting constant to treat different measured values differently, according to optimization conditions Available:
  • is the step size coefficient to increase the generality of the algorithm.
  • additional conditions need to be added:
  • is a positive number
  • is the step size factor
  • the specific method for estimating the number of test data packets is as follows:
  • the number of test data packets to be transmitted is estimated.
  • the system channel adopts a non-attenuating Gaussian white noise channel
  • the estimated number of transmitted packets is:
  • is a confidence parameter, Indicates the upper critical point of the Q function value in the standard normal distribution, and the p value is the error rate.
  • the predicted value, the prediction function is:
  • R (1- ⁇ )r
  • L is the length of the test data packet, and the unit is bits.
  • the specific method for determining the radio frequency sensitivity of the wireless system in step 4 is as follows:
  • the data-driven wireless radio frequency sensitivity measurement method of the present invention can quickly measure the radio frequency sensitivity in the wireless communication system by minimizing the tracking error instead of the traditional exhaustive search, and introduces an adaptive test packet number.
  • the measurement time can be further reduced under the premise of ensuring measurement accuracy.
  • the present invention satisfies the requirements for mass production of wireless devices in terms of measurement efficiency and accuracy, and specifically includes the following advantages:
  • the specified error range can be reduced and the measurement accuracy can be improved.
  • the number of measurements is reduced, and the measurement efficiency is improved; on the other hand, the estimated number of test packets is used in each error packet rate test, which avoids inaccurate measurement results due to the small number of test packets sent, and avoids sending test packets. Too many numbers wastes test time.
  • FIG. 1 is a schematic diagram of a conventional method for RF sensitivity testing based on exhaustive search
  • FIG. 2 is a flow chart of a method for providing an example of a data-driven wireless radio frequency sensitivity measurement method according to the present invention
  • FIG. 3 is a schematic diagram of data based on a data driven RF sensitivity measurement process
  • Figure 4 is a schematic diagram of data of iteration statistics under different error conditions
  • FIG. 5 is a schematic diagram of data of the number of data packets required during the measurement of the error rate.
  • a data-driven wireless radio frequency sensitivity measurement method includes the following steps:
  • Step 11 using a conventional error rate measurement method, randomly selecting the signal strength of the set number of times, and measuring the packet error rate under each signal strength in the wireless system to be tested;
  • Step 12 Using differential evolution algorithm to measure parameters in the equivalent dynamic linear data model according to the measurement result of the error packet rate ⁇ , ⁇ , ⁇ , ⁇ are estimated, the equivalent dynamic linear data model is to replace the discrete nonlinear system at the operating point with a pseudo-bias Data model, the discrete nonlinear system model is:
  • s(k) represents the signal strength measured at the kth time
  • p(k) represents the error packet rate measured at the signal strength s(k)
  • n a and n b are the order of the packet error rate and the signal strength, respectively.
  • f( ⁇ ) is a nonlinear function
  • step 13 the signal strength s(k) is predicted based on the equivalent dynamic linear data model with a given error rate p r as the target;
  • Step 14 estimating the number of test data packets based on the predicted value of the signal strength s(k) The number of transmissions to the device under test at the predicted signal strength s(k) is Test the data packet to obtain the packet error rate p(k) of the device under test at this signal strength;
  • Step 15 it is determined whether the error between the error packet rate p(k) and the target value p r is less than or equal to the specified error value, and if so, step 16 is performed; otherwise, step 17 is performed;
  • Step 16 the result is used as the radio frequency sensitivity of the wireless system to be tested, and the process ends;
  • Step 17 the current measurement result (s(k), p(k)) is taken as an input pair parameter ⁇ , ⁇ , ⁇ , ⁇ are updated, and the process returns to step 12.
  • the conventional method for measuring a packet error rate in the foregoing step 11 specifically includes:
  • the number of times set in step 11 may be three, and the measurement result of the packet error rate is:
  • S(3) represents the three signal strengths randomly selected
  • P(3) represents the packet error rate measured at the three signal intensities.
  • the number of times of setting may be three or more, and no longer one example will be given here.
  • the discrete nonlinear system model needs to meet the following conditions:
  • the parameters are The specific methods for estimating ⁇ , ⁇ , ⁇ , and ⁇ are as follows:
  • the initial parameters are randomly selected from the defined range:
  • Three sets of different parameters x ⁇ , x ⁇ , x ⁇ are randomly selected from N p vectors to generate mutation operators:
  • F s is called the “scaling factor” and is a real constant. Its value range is generally F s ⁇ [1,2]. At the same time, to ensure that the parameters are still within a reasonable range, additional restrictions are added:
  • rand() is a random number between [0,1]
  • C r is a constant between [0,1], called "crossover probability"
  • the greedy selection strategy is used to update the parameter group. By comparing the cost of the newly generated experimental parameters with the current parameters, the less expensive parameters are selected as the children to enter the new parameter group, if the new parameter cost is less than the optimal parameter cost Be , the optimal parameters are updated.
  • the method for RF sensitivity prediction based on the equivalent dynamic linear data model is as follows:
  • is a weighting constant to treat different measured values differently, according to optimization conditions Available:
  • is the step size coefficient to increase the generality of the algorithm.
  • additional conditions need to be added:
  • is a positive number.
  • is the step size factor
  • the specific method for estimating the number of test data packets is as follows:
  • the test packet number method to be transmitted is estimated.
  • the system channel adopts a non-attenuating Gaussian white noise channel
  • is a confidence parameter
  • the upper critical point of the Q function value is ⁇ /2 in the standard normal distribution
  • the p value is the predicted value of the packet error rate.
  • the prediction function is:
  • R (1- ⁇ )r
  • L is the length of the test packet in bits.
  • the specific method for determining the radio frequency sensitivity of the wireless system in step 14 is as follows:
  • test environment of the present invention is as follows:
  • the RF module is connected to the test equipment through a secure digital transmission line that can transmit forward data packets and backward feedback.
  • the test equipment is connected to a control computer through a universal asynchronous receiver/transmitter to control the number of test data packets sent by each error packet rate measurement.
  • the data packets used in the test are encoded by a BPSK modulator according to the IEEE 802.11a convolutional coding standard.
  • the data packet is transmitted over the additive white Gaussian noise channel and decoded at the receiving end by a soft decoding Viterbi algorithm with no memory truncation.
  • Figure 3 is a data diagram of the data-driven RF sensitivity measurement process.
  • Figure 3 shows the data-driven RF sensitivity measurement process. You only need to set the three signal strengths arbitrarily and measure the corresponding error rate. The RF sensitivity can be predicted in the next process, and the iteration step size is updated in real time, and finally the RF sensitivity of the wireless system is locked within a reasonable number of iterations.
  • Figure 4 is a schematic diagram of the data of the number of iterations under different error conditions.
  • Figure 4 shows the statistical results of 100 tests under different errors. It can be seen from the figure that the larger the error, the fewer the number of iterations required; For all three error specifications, data-driven sensitivity measurement methods can achieve results within a reasonable number of iterations.
  • FIG. 5 is a schematic diagram of data required for performing packet error rate measurement
  • FIG. 5 is a graph showing the number of data packet transmissions in each error rate measurement process during a certain RF sensitivity measurement process. It can be clearly seen from the figure that the real-time prediction method proposed by the present invention is far less than the conventional method in the case of guaranteeing the same error rate, which can greatly reduce the error packet. The measurement time of the rate improves the overall measurement efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于数据驱动的无线射频灵敏度测量方法,包括:采用常规误包率测量方法,随机挑选设定次数的信号强度,并测量出待测无线系统中各信号强度下的误包率;根据误包率的测量结果对等价动态线性数据模型中的参数aa,ρ,λ,η,μ进行估计;以给定误包率p r 为目标,采用基于等价动态线性数据模型对信号强度进行预测;根据预测值估计测试数据包数bb,在预测值下向被测设备发送数目为bb测试数据包,得到被测设备在此信号强度下的误包率p(k),若p(k)与pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度,否则将测量结果作为输入对上述参数进行更新,并重复上述步骤直至得到待测射频灵敏度。本发明提高了测量精度和效率。

Description

一种基于数据驱动的无线射频灵敏度测量方法 技术领域
本发明涉及无线通信系统测量技术领域,具体涉及一种基于数据驱动的无线射频灵敏度测量方法。
背景技术
传统无线系统射频灵敏度测量采用的是穷尽搜索的方式,从较高的信号强度开始,按照固定的步长不断地减小信号强度,并测量每个信号强度下的误包率,直至误包率大于规定要求,则最后一个使误包率小于给定的信号强度被认为使此无线系统的射频灵敏度。
图1为传统基于穷尽搜索的射频灵敏度测试过程的方法示意图,如图1所示,在传统误包率测量过程中,需要在某一功率下向被测设备发送固定数目N的测试数据包,通过被测设备反馈可得到该被测设备准确接收到的测试数据包数目为Y,则可知该设备在此功率下的误包率为p=Y/N。
采用传统的测量方法测试射频灵敏度,具有以下缺陷:
1)测量精度低
传统方式在测量过程中采用的是固定步长,则测量精度大部分取决于所给定的步长,而一般的企业为了减少测试时间,大多采用较大的步长,极大地降低了测量精度。
2)测量时间长
一方面,传统无线系统射频灵敏度测量从一个较高的信号强度开始,然后采用逐步减小的方式进行查找,如果起始点与射频灵敏度之间距离较长,则需要大量的时间进行测量;另一方面,在进行误包率测量的过程中,采用的是固定数量的测试数据包,这样对于部分的误包率测量造成了不必要的时间浪费。
发明内容
本发明为了解决现有技术存在的上述问题,提供了一种基于数据驱动的无线射频灵敏度测量方法。
实现上述目的,本发明提供了一种基于数据驱动的无线射频灵敏度测量方法,包括如下步骤:
步骤一,采用常规的误包率测量方法,随机挑选设定次数的信号强度,并测量出待测无线系统中各信号强度下的误包率;
步骤二,根据误包率的测量结果使用差分进化算法对等价动态线性数据模型中的参数
Figure PCTCN2017078036-appb-000001
ρ,λ,η,μ进行估计,所述等价动态线性数据模型为将离散的非线性系统在操作点替 换为带有伪偏导
Figure PCTCN2017078036-appb-000002
的数据模型,所述离散的非线性系统模型为:
p(k)=f(p(k-1),…p(k-na),s(k),…,s(k-nb)).      (1)
其中s(k)表示第k次测量的信号强度,p(k)表示在该信号强度s(k)下测得的误包率,na,nb分别为误包率和信号强度的次序,f(·)为非线性函数;
步骤三,以给定的误包率pr为目标,采用基于等价动态线性数据模型对信号强度s(k)进行预测;
步骤四,根据信号强度s(k)的预测值估计测试数据包数
Figure PCTCN2017078036-appb-000003
在预测信号强度s(k)下向被测设备发送数目为
Figure PCTCN2017078036-appb-000004
测试数据包,得到被测设备在此信号强度下的误包率p(k),若误包率p(k)与目标值pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度,若误包率p(k)与目标值pr之间的误差大于规定误差值,则将此次测量结果(s(k),p(k))作为输入对参数
Figure PCTCN2017078036-appb-000005
ρ,λ,η,μ进行更新,重复步骤二至步骤四直至得到待测无线系统的射频灵敏度。
作为本发明的进一步优选方案,步骤一中所述常规的误包率测量方法具体包括:
在某一信号强度下向被测设备发送固定数目N的测试数据包,被测设备的反馈可得到该被测设备准确接收到的测试数据包数目为Y,则该无线系统在此信号强度下的误包率为p=Y/N。
作为本发明的进一步优选方案,步骤一中所述设定次数为三个,则误包率的测量结果为:
S(3)=[s(1),s(2),s(3)],P(3)=[p(1),p(2),p(3)].
其中S(3)表示随意挑选的三个信号强度,P(3)表示在三个信号强度下测得的误包率。
作为本发明的进一步优选方案,步骤二中,所述离散的非线性系统模型需满足以下条件:
1)非线性系统可观测且可控;
2)f(·)函数在s(k),s(k-1)的偏微分是连续的;
3)非线性系统满足广义李普希茨条件,即对于任意k和ΔS(k)≠0,都有|Δp(k)|≤b|ΔS(k)|,其中Δp(k)=p(k)-p(k-1),ΔS(k)=[Δs(k),…,Δs(k-L+1)],Δs(k-i)=s(k-i)-s(k-i-1),i=0,…,L-1,b为正数;
以使如果非线性系统满足上述三个条件,则一定会存在一个伪偏导
Figure PCTCN2017078036-appb-000006
当使得Δs(k)≠0时,使得
Figure PCTCN2017078036-appb-000007
其中Δs(k)=s(k)-s(k-1),
Figure PCTCN2017078036-appb-000008
d为一个常数。
作为本发明的进一步优选方案,作为本发明的进一步优选方案,步骤二中,对参数
Figure PCTCN2017078036-appb-000009
ρ,λ,η,μ进行估计具体方法如下:
1)初始化参数
生成Np个5维实数向量参数群作为差分进化算法的初始参数:
x=[xj,1,xj,2,xj,3,xj,4,xj,5]T,j=1,2,…,Np.        (3)
其中的初始参数是从定义的范围内随机选取:
Figure PCTCN2017078036-appb-000010
并且按照代价函数计算出每组参数的函数值,并选出代价最低的一组作为最优值Be,其中,代价函数为:
Figure PCTCN2017078036-appb-000011
2)变异算子
从Np个向量中随机挑选三组不同的参数xα,xβ,xγ生成变异算子:
mk=xα+Fs·(xβ-xγ).      (6)
其中Fs被称为“缩放因子”,为实数常量,其取值范围一般为Fs∈[1,2].同时为保证参数仍在合理范围内,需添加额外的限制条件:
Figure PCTCN2017078036-appb-000012
3)交叉算子
通过将变异算子与初始参数按照一定的规则进行交叉组合,实现局部开采,重组出新的实验参数:ck=[c1,c2,c3,c4,c5]T,其中
Figure PCTCN2017078036-appb-000013
其中rand()是[0,1]之间的随机数,Cr是[0,1]之间的常数,称为“交叉概率”;
4)选择算子
采用贪婪选择策略来对参数群进行更新,通过比较新生成的实验参数与当前参数的代价,选择代价更小的参数作为子代进入新的参数群,如果新的参数代价小于最优参数代价Be,则对最优参数进行更新。
作为本发明的进一步优选方案,步骤三中,基于等价动态线性数据模型进行射频灵敏度预测的方法如下:
计算
Figure PCTCN2017078036-appb-000014
值:
1)引入代价函数:
Figure PCTCN2017078036-appb-000015
其中μ为加权常数,用以区别对待不同的测量值,根据优化条件
Figure PCTCN2017078036-appb-000016
可 得:
Figure PCTCN2017078036-appb-000017
其中η为步长系数,用以增加算法的一般性。另外为了使该算法更具鲁棒性,需添加额外条件:
Figure PCTCN2017078036-appb-000018
其中,
Figure PCTCN2017078036-appb-000019
δ为正数;
2)将(2)改写为:
Figure PCTCN2017078036-appb-000020
3)引入代价函数:
其中λ为此公式中的加权常数,根据优化条件
Figure PCTCN2017078036-appb-000022
可得:
Figure PCTCN2017078036-appb-000023
其中ρ为步长系数。
作为本发明的进一步优选方案,估计测试数据包数具体方法如下:
在每次进行误包率测量的过程中,对所需要发送的测试数据包数进行估计,此时系统信道采用的是无衰减的高斯白噪声信道,测试数据包采用的是参数为(k,n,ν)的卷积码,码率r=k/n,约束长度为ν,则发送包数的估计值为:
Figure PCTCN2017078036-appb-000024
其中α为置信参数,
Figure PCTCN2017078036-appb-000025
表示标准正态分布中时Q函数值为α/2的上临界点,p值为误包率
的预测值,预测函数为:
Figure PCTCN2017078036-appb-000026
其中:
Figure PCTCN2017078036-appb-000027
式中
Figure PCTCN2017078036-appb-000028
为编码网络中长度为dfree的路径数目,R=(1-θ)r,θ=v/τ为约束长度与块长度的比值,L为测试数据包的长度,单位为bits。
作为本发明的进一步优选方案,步骤四中判定无线系统的射频灵敏度的具体方法如下:
对于给定的误包率pr,经过有限迭代次数k,找到某个信号强度s(k),在该信号强度下测 得的误包率p(k),并使得循迹误差e(k)=pr-p(k)趋近于零,即误包率的误包率p(k)与给定的目标误包率pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度。
本发明的基于数据驱动的无线射频灵敏度测量方法可以达到如下有益效果:
本发明的基于数据驱动的无线射频灵敏度测量方法,通过最小化循迹误差来代替传统的穷尽搜索,能够快速地对无线通信系统中的射频灵敏度进行测量,同时引入了自适应的测试包数,能在保证测量精度的前提下进一步减少测量时间,而且,本发明在测量效率和精度两方面满足了无线设备大规模量产的要求,具体包括以下优点:
1)测量精度高
由于采用自适应的步长代替固定步长,可以减小规定误差范围,提高测量精度。
2)测量时间短
一方面减少了测量次数,提高测量效率;另一方面,在每次误包率测试中使用预估的测试包数量,既避免因为发送测试包数目少造成测量结果不准确,也避免发送测试包数目过多造成测试时间的浪费。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为传统基于穷尽搜索的射频灵敏度测试过程的方法示意图;
图2为本发明基于数据驱动的无线射频灵敏度测量方法提供的一实例的方法流程图;
图3为基于数据驱动的射频灵敏度测量过程的数据示意图;
图4为不同误差条件下迭代次数统计的数据示意图;
图5为进行误包率测量过程中所需数据包数的数据示意图。
本发明目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合附图以及具体实施方式,对本发明做进一步描述。较佳实施例中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等用语,仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
图2为本发明基于数据驱动的无线射频灵敏度测量方法提供的一实例的结构示意图,如图2所示,一种基于数据驱动的无线射频灵敏度测量方法,包括如下步骤:
步骤11,采用常规的误包率测量方法,随机挑选设定次数的信号强度,并测量出待测无线系统中各信号强度下的误包率;
步骤12,根据误包率的测量结果使用差分进化算法对等价动态线性数据模型中的参数
Figure PCTCN2017078036-appb-000029
ρ,λ,η,μ进行估计,所述等价动态线性数据模型为将离散的非线性系统在操作点替换为带有伪偏导
Figure PCTCN2017078036-appb-000030
的数据模型,所述离散的非线性系统模型为:
p(k)=f(p(k-1),…p(k-na),s(k),…,s(k-nb)).      (1)
其中s(k)表示第k次测量的信号强度,p(k)表示在该信号强度s(k)下测得的误包率,na,nb分别为误包率和信号强度的次序,f(·)为非线性函数;
步骤13,以给定的误包率pr为目标,采用基于等价动态线性数据模型对信号强度s(k)进行预测;
步骤14,根据信号强度s(k)的预测值估计测试数据包数
Figure PCTCN2017078036-appb-000031
在预测信号强度s(k)下向被测设备发送数目为
Figure PCTCN2017078036-appb-000032
测试数据包,得到被测设备在此信号强度下的误包率p(k);
步骤15,判断误包率p(k)与目标值pr之间的误差是否小于或等于规定误差值,若是,则执行步骤16,否则,执行步骤17;
步骤16,将该结果作为待测无线系统的射频灵敏度,结束流程;
步骤17,将此次测量结果(s(k),p(k))作为输入对参数
Figure PCTCN2017078036-appb-000033
ρ,λ,η,μ进行更新,返回执行步骤12。
具体实施中,上述步骤11中所述常规的误包率测量方法具体包括:
在某一信号强度下向被测设备发送固定数目N的测试数据包,被测设备的反馈可得到该被测设备准确接收到的测试数据包数目为Y,则该无线系统在此信号强度下的误包率为p=Y/N。可以理解的是,此处虽然仅描述了一种常规的误包率测量方法的一种实现方式,当在本发明不限于该方式,还可以为现有技术的其它常用或常规方法,在此不做具体阐述。
具体实施中,步骤11中所述设定次数可为三个,则误包率的测量结果为:
S(3)=[s(1),s(2),s(3)],P(3)=[p(1),p(2),p(3)].
其中S(3)表示随意挑选的三个信号强度,P(3)表示在三个信号强度下测得的误包率。为满足测量的需求,当然所述设定次数还可以是三个以上,在此就不再一一举例。
优选地,上述步骤12中,所述离散的非线性系统模型需满足以下条件:
1)非线性系统可观测且可控;
2)f(·)函数在s(k),s(k-1)的偏微分是连续的;
3)非线性系统满足广义李普希茨条件,即对于任意k和ΔS(k)≠0,都有|Δp(k)|≤b|ΔS(k)|,其中Δp(k)=p(k)-p(k-1),ΔS(k)=[Δs(k),…,Δs(k-L+1)],Δs(k-i)=s(k-i)-s(k-i-1),i=0,…,L-1,b为正数;
以使如果非线性系统满足上述三个条件,则一定会存在一个伪偏导
Figure PCTCN2017078036-appb-000034
当使得Δs(k)≠0时,使得
Figure PCTCN2017078036-appb-000035
其中Δs(k)=s(k)-s(k-1),
Figure PCTCN2017078036-appb-000036
d为一个常数。
具体实施中,步骤12中,对参数
Figure PCTCN2017078036-appb-000037
ρ,λ,η,μ进行估计具体方法如下:
1)初始化参数
生成Np个5维实数向量参数群作为差分进化算法的初始参数:
x=[xj,1,xj,2,xj,3,xj,4,xj,5]T,j=1,2,…,Np.       (3)
其中的初始参数则是从定义的范围内随机选取:
Figure PCTCN2017078036-appb-000038
并且按照代价函数计算出每组参数的函数值,并选出代价最低的一组作为最优值Be,其中代价函数为:
Figure PCTCN2017078036-appb-000039
2)变异算子
从Np个向量中随机挑选三组不同的参数xα,xβ,xγ生成变异算子:
mk=xα+Fs·(xβ-xγ).    (6)
其中Fs被称为“缩放因子”,为实数常量,其取值范围一般为Fs∈[1,2].同时为保证参数仍在合理范围内,需添加额外的限制条件:
Figure PCTCN2017078036-appb-000040
3)交叉算子
通过将变异算子与初始参数按照一定的规则进行交叉组合,实现局部开采,重组出新的实验参数:ck=[c1,c2,c3,c4,c5]T,其中
Figure PCTCN2017078036-appb-000041
其中rand()是[0,1]之间的随机数,Cr是[0,1]之间的常数,称为“交叉概率”;
4)选择算子
采用贪婪选择策略来对参数群进行更新,通过比较新生成的实验参数与当前参数的代价,选择代价更小的参数作为子代进入新的参数群,如果新的参数代价小于最优参数代价Be,则对最优参数进行更新。
优选地,为了使算法更具一般性,在上述步骤13中,基于等价动态线性数据模型进行射频灵敏度预测的方法如下:
计算
Figure PCTCN2017078036-appb-000042
值:
1)引入代价函数:
Figure PCTCN2017078036-appb-000043
其中μ为加权常数,用以区别对待不同的测量值,根据优化条件
Figure PCTCN2017078036-appb-000044
可得:
Figure PCTCN2017078036-appb-000045
其中η为步长系数,用以增加算法的一般性。另外为了使该算法更具鲁棒性,需添加额外条件:
Figure PCTCN2017078036-appb-000046
其中,
Figure PCTCN2017078036-appb-000047
δ为正数。
2)将(2)改写为:
Figure PCTCN2017078036-appb-000048
3)引入代价函数:
Figure PCTCN2017078036-appb-000049
其中λ为此公式中的加权常数,根据优化条件
Figure PCTCN2017078036-appb-000050
可得:
Figure PCTCN2017078036-appb-000051
其中ρ为步长系数。
具体实施中,估计测试数据包数具体方法如下:
在每次进行误包率测量的过程中,对所需要发送的测试数据包数法进行估计,此时系统信道采用的是无衰减的高斯白噪声信道,测试数据包采用的是参数为(k,n,ν)的卷积码,码率r=k/n,约束长度为ν,则发送包数的估计值为:
Figure PCTCN2017078036-appb-000052
其中α为置信参数,
Figure PCTCN2017078036-appb-000053
表示标准正态分布中时Q函数值为α/2的上临界点,p值为误包率的预测值,预测函数为:
Figure PCTCN2017078036-appb-000054
其中:
Figure PCTCN2017078036-appb-000055
式中
Figure PCTCN2017078036-appb-000056
为编码网络中长度为dfree的路径数目,R=(1-θ)r,θ=v/τ为约束长度与块 长度的比值,L为测试数据包的长度,单位为bits。
具体实施中,步骤14中判定无线系统的射频灵敏度的具体方法如下:
对于给定的误包率pr,经过有限迭代次数k,找到某个信号强度s(k),在该信号强度下测得的误包率p(k),并使得循迹误差e(k)=pr-p(k)趋近于零,即误包率的误包率p(k)与给定的目标误包率pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度。
为了让本领域的技术人员更好地理解并实现本发明的技术方案,下面举例简述本实施例的具体测试过程。
本发明测试环境如下:
选择一块Wi-Fi芯片组外围电路的射频评估板作为被测设备,使用无线测试仪作为测试设备,射频模块通过可以传输前向数据包和后向反馈的安全数字传输线与测试设备相连。同时测试设备通过通用异步接收/发送器与一台控制电脑相连,用以控制每次误包率测量发送的测试数据包数目。
测试中使用的数据包按照IEEE 802.11a卷积编码标准通过一个BPSK调制器进行编码,调制和编码方案为:码率r=1/2,约束长度v=7,生成多项式(133,171),包长L=1000bits。数据包通过加性高斯白噪声信道进行传输,并在接收端通过没有内存截断的软解码维特比算法进行解码。
差分进化算法参数设置如表1所示:
表1.差分进化算法参数设置
Figure PCTCN2017078036-appb-000057
测试实施例1:
图3为基于数据驱动的射频灵敏度测量过程的数据示意图,如图3所示为基于数据驱动的射频灵敏度测量过程,只需随意设定三个信号强度,并测出其相对应的误包率,即可在接下来的过程中对射频灵敏度进行预测,并对迭代步长进行实时更新,最后在合理的迭代次数内锁定该无线系统的射频灵敏度。
测试实施例2
图4为不同误差条件下迭代次数统计的数据示意图,如图4所示为以不同的误差下各测试100次的统计结果,由图中可知,误差越大,所需迭代次数越少;而且对于三种误差规定,基于数据驱动的灵敏度测量方法均可以在合理的迭代次数内得到结果。
测试实施例3:
图5为进行误包率测量过程中所需数据包数的数据示意图,如图5所示为某次射频灵敏度测量过程中,对每次误包率测量中数据包发送数目的统计。由图中可以明显地看出,在保证相同误包率结果情况下,本发明所提出的实时预测的方法每次所需发送的数据包均远远少于传统方法,这样可以大大减少误包率的测量时间,提高整体的测量效率。
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式做出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。

Claims (8)

  1. 一种基于数据驱动的无线射频灵敏度测量方法,其特征在于,包括如下步骤:
    步骤一,采用常规的误包率测量方法,随机挑选设定次数的信号强度,并测量出待测无线系统中各信号强度下的误包率;
    步骤二,根据误包率的测量结果使用差分进化算法对等价动态线性数据模型中的参数
    Figure PCTCN2017078036-appb-100001
    ρ,λ,η,μ进行估计,所述等价动态线性数据模型为将离散的非线性系统在操作点替换为带有伪偏导
    Figure PCTCN2017078036-appb-100002
    的数据模型,所述离散的非线性系统模型为:
    p(k)=f(p(k-1),…p(k-na),s(k),…,s(k-nb)).   (1)
    其中s(k)表示第k次测量的信号强度,p(k)表示在该信号强度s(k)下测得的误包率,na,nb分别为误包率和信号强度的次序,f(·)为非线性函数;
    步骤三,以给定的误包率pr为目标,采用基于等价动态线性数据模型对信号强度s(k)进行预测;
    步骤四,根据信号强度s(k)的预测值估计测试数据包数
    Figure PCTCN2017078036-appb-100003
    在预测信号强度s(k)下向被测设备发送数目为
    Figure PCTCN2017078036-appb-100004
    测试数据包,得到被测设备在此信号强度下的误包率p(k),若误包率p(k)与目标值pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度,若误包率p(k)与目标值pr之间的误差大于规定误差值,则将此次测量结果(s(k),p(k))作为输入对参数
    Figure PCTCN2017078036-appb-100005
    ρ,λ,η,μ进行更新,重复步骤二至步骤四直至得到待测无线系统的射频灵敏度。
  2. 按照权利要求1所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤一中所述常规的误包率测量方法具体包括:
    在某一信号强度下向被测设备发送固定数目N的测试数据包,被测设备的反馈可得到该被测设备准确接收到的测试数据包数目为Y,则该无线系统在此信号强度下的误包率为p=Y/N。
  3. 按照权利要求2所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤一中所述设定次数为三个,则误包率的测量结果为:
    S(3)=[s(1),s(2),s(3)],P(3)=[p(1),p(2),p(3)].
    其中S(3)表示随意挑选的三个信号强度,P(3)表示在三个信号强度下测得的误包率。
  4. 按照权利要求1所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤二中,所述离散的非线性系统模型需满足以下条件:
    1)非线性系统可观测且可控;
    2)f(·)函数在s(k),s(k-1)的偏微分是连续的;
    3)非线性系统满足广义李普希茨条件,即对于任意k和ΔS(k)≠0,都有|Δp(k)|≤ b|ΔS(k)|,其中Δp(k)=p(k)-p(k-1),ΔS(k)=[Δs(k),…,Δs(k-L+1)],Δs(k-i)=s(k-i)-s(k-i-1),i=0,…,L-1,b为正数;
    以使如果非线性系统满足上述三个条件,则一定会存在一个伪偏导
    Figure PCTCN2017078036-appb-100006
    当使得Δs(k)≠0时,使得
    Figure PCTCN2017078036-appb-100007
    其中Δs(k)=s(k)-s(k-1),
    Figure PCTCN2017078036-appb-100008
    d为一个常数。
  5. 按照权利要求4所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤二中,对参数
    Figure PCTCN2017078036-appb-100009
    ρ,λ,η,μ进行估计具体方法如下:
    1)初始化参数
    生成Np个5维实数向量参数群作为差分进化算法的初始参数:
    x=[xj,1,xj,2,xj,3,xj,4,xj,5]T,j=1,2,…,Np.   (3)
    其中的初始参数是从定义的范围内随机选取:
    Figure PCTCN2017078036-appb-100010
    并且按照代价函数计算出每组参数的函数值,并选出代价最低的一组作为最优值Be,其中,代价函数为:
    Figure PCTCN2017078036-appb-100011
    2)变异算子
    从Np个向量中随机挑选三组不同的参数xα,xβ,xγ生成变异算子:
    mk=xα+Fs·(xβ-xγ).      (6)
    其中Fs被称为“缩放因子”,为实数常量,其取值范围一般为Fs∈[1,2].同时为保证参数仍在合理范围内,需添加额外的限制条件:
    Figure PCTCN2017078036-appb-100012
    3)交叉算子
    通过将变异算子与初始参数按照一定的规则进行交叉组合,实现局部开采,重组出新的实验参数:ck=[c1,c2,c3,c4,c5]T,其中
    其中rand()是[0,1]之间的随机数,Cr是[0,1]之间的常数,称为“交叉概率”;
    4)选择算子
    采用贪婪选择策略来对参数群进行更新,通过比较新生成的实验参数与当前参数的代价,选择代价更小的参数作为子代进入新的参数群,如果新的参数代价小于最优参数代价Be,则对最优参数进行更新。
  6. 按照权利要求4所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤三中,基于等价动态线性数据模型进行射频灵敏度预测的方法如下:
    计算
    Figure PCTCN2017078036-appb-100014
    值:
    1)引入代价函数:
    Figure PCTCN2017078036-appb-100015
    其中μ为加权常数,用以区别对待不同的测量值,根据优化条件
    Figure PCTCN2017078036-appb-100016
    可得:
    Figure PCTCN2017078036-appb-100017
    其中η为步长系数,用以增加算法的一般性。另外为了使该算法更具鲁棒性,需添加额外条件:
    Figure PCTCN2017078036-appb-100018
    其中,
    Figure PCTCN2017078036-appb-100019
    δ为正数;
    2)将(2)改写为:
    Figure PCTCN2017078036-appb-100020
    3)引入代价函数:
    Figure PCTCN2017078036-appb-100021
    其中λ为此公式中的加权常数,根据优化条件
    Figure PCTCN2017078036-appb-100022
    可得:
    Figure PCTCN2017078036-appb-100023
    其中ρ为步长系数。
  7. 按照权利要求1所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,采用Agresti-Coull法估计测试数据包数具体方法如下:
    在每次进行误包率测量的过程中,对所需要发送的测试数据包数估计法进行估计,此时系统信道采用的是无衰减的高斯白噪声信道,测试数据包采用的是参数为(k,n,v)的卷积码,码率r=k/n,约束长度为v,则发送包数的估计值为:
    Figure PCTCN2017078036-appb-100024
    其中α为置信参数,
    Figure PCTCN2017078036-appb-100025
    表示标准正态分布中时Q函数值为α/2的上临界点,p值为误包率的预测值,预测函数为:
    Figure PCTCN2017078036-appb-100026
    其中:
    Figure PCTCN2017078036-appb-100027
    式中
    Figure PCTCN2017078036-appb-100028
    为编码网络中长度为dfree的路径数目,R=(1-θ)r,θ=v/τ为约束长度与块长度的比值,L为测试数据包的长度,单位为bits。
  8. 按照权利要求7所述的基于数据驱动的无线射频灵敏度测量方法,其特征在于,步骤四中判定无线系统的射频灵敏度的具体方法如下:
    对于给定的误包率pr,经过有限迭代次数k,找到某个信号强度s(k),在该信号强度下测得的误包率p(k),并使得循迹误差e(k)=pr-p(k)趋近于零,即误包率的误包率p(k)与给定的目标误包率pr之间的误差小于或等于规定误差值,则该结果为待测无线系统的射频灵敏度。
PCT/CN2017/078036 2017-03-08 2017-03-24 一种基于数据驱动的无线射频灵敏度测量方法 WO2018161376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710136227.2A CN106953703B (zh) 2017-03-08 2017-03-08 一种基于数据驱动的无线射频灵敏度测量方法
CN201710136227.2 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018161376A1 true WO2018161376A1 (zh) 2018-09-13

Family

ID=59466717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078036 WO2018161376A1 (zh) 2017-03-08 2017-03-24 一种基于数据驱动的无线射频灵敏度测量方法

Country Status (2)

Country Link
CN (1) CN106953703B (zh)
WO (1) WO2018161376A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896132A (zh) * 2017-11-07 2018-04-10 上海同耀通信技术有限公司 局域网协议检测系统
CN117515434B (zh) * 2024-01-05 2024-03-08 江苏神州半导体科技有限公司 基于射频环境的漏水检测告警方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272377A1 (en) * 2003-04-10 2005-12-08 Young-Min Oh Device and method for measuring receive sensitivity of communication system including receive-only path
CN105491596A (zh) * 2015-11-26 2016-04-13 惠州Tcl移动通信有限公司 一种移动终端灵敏度自动测试获取方法、系统及移动终端
CN205283553U (zh) * 2015-11-30 2016-06-01 华大半导体有限公司 一种低成本灵敏度测试装置
CN106027173A (zh) * 2016-07-05 2016-10-12 上海斐讯数据通信技术有限公司 一种灵敏度测试方法及系统
CN106341831A (zh) * 2015-07-07 2017-01-18 中国移动通信集团公司 一种灵敏度的测量方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272377A1 (en) * 2003-04-10 2005-12-08 Young-Min Oh Device and method for measuring receive sensitivity of communication system including receive-only path
CN106341831A (zh) * 2015-07-07 2017-01-18 中国移动通信集团公司 一种灵敏度的测量方法和装置
CN105491596A (zh) * 2015-11-26 2016-04-13 惠州Tcl移动通信有限公司 一种移动终端灵敏度自动测试获取方法、系统及移动终端
CN205283553U (zh) * 2015-11-30 2016-06-01 华大半导体有限公司 一种低成本灵敏度测试装置
CN106027173A (zh) * 2016-07-05 2016-10-12 上海斐讯数据通信技术有限公司 一种灵敏度测试方法及系统

Also Published As

Publication number Publication date
CN106953703A (zh) 2017-07-14
CN106953703B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN106877973B (zh) 极化码处理的方法及通信设备
WO2016091171A1 (en) Method and apparatus for optimizing cell specific antenna configuration parameters
TWI693808B (zh) 用於測試資料封包信號收發器之靈敏度的方法
Ma et al. Data-driven measurement of receiver sensitivity in wireless communication systems
CN108365850B (zh) 编码方法、编码装置和通信装置
TWI359578B (en) System for determining radiated radio frequency (r
WO2018161376A1 (zh) 一种基于数据驱动的无线射频灵敏度测量方法
US20170134251A1 (en) Method and device for rapidly detecting sensitivity of a wireless radio-frequency receiver
JP6202218B2 (ja) 信号伝送装置及びマルチキャリア通信システム
CN107171985A (zh) 一种信道估计方法及系统
Song et al. Reliable wide-area backscatter via channel polarization
CN105207959B (zh) 一种miso-ofdm系统的信道估计方法
WO2022089217A1 (zh) 密钥生成方法、装置、电子设备及存储介质
JP2022502956A (ja) Csi計算方法、ユーザ端末およびコンピュータ可読記憶媒体
CN102238114A (zh) 有效信噪比确定方法和装置
Hu et al. Study of an evaluation model for AIS receiver sensitivity measurements
CN105763273A (zh) 一种认知无线电频谱感知方法
CN101754343B (zh) 一种信道传输质量的反馈方法、系统和设备
US6957079B2 (en) Base station transmission power control method and apparatus
JP5970544B2 (ja) Lteシステムにおけるセルのユーザスループットの確定方法及び装置
CN101547454B (zh) 一种误码率估算方法
CN106656423A (zh) 一种基于em算法的ldpc码译码噪声方差的估计方法
Quan et al. A fast receiver sensitivity identification method for wireless systems
US9325459B2 (en) Radio frequency communication
CN106254001A (zh) 一种srs信道质量测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17899558

Country of ref document: EP

Kind code of ref document: A1