WO2018159888A1 - Tin/magnesium thin film formed on zinc plated layer and manufacturing method therefor - Google Patents

Tin/magnesium thin film formed on zinc plated layer and manufacturing method therefor Download PDF

Info

Publication number
WO2018159888A1
WO2018159888A1 PCT/KR2017/002642 KR2017002642W WO2018159888A1 WO 2018159888 A1 WO2018159888 A1 WO 2018159888A1 KR 2017002642 W KR2017002642 W KR 2017002642W WO 2018159888 A1 WO2018159888 A1 WO 2018159888A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
thin film
magnesium
zinc
heat treatment
Prior art date
Application number
PCT/KR2017/002642
Other languages
French (fr)
Korean (ko)
Inventor
이명훈
박준무
황성화
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2018159888A1 publication Critical patent/WO2018159888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer

Definitions

  • the present invention relates to a tin / magnesium thin film formed on a galvanized layer and a method for manufacturing the same, and in particular, a strong barrier due to diffusion movement between components through the physical vapor deposition and heat treatment, and the formation of intermetallic compounds. It not only provides corrosion resistance with sacrificial anode effect, but also comprehensively controls the influence of crystal orientation according to the fabrication conditions so that corrosion products on the surface layer can be rapidly and densely and stably formed on the galvanized substrate. It relates to a tin / magnesium thin film formed and a method of manufacturing the same.
  • the metal material is an inorganic material composed of one or more metal elements, and includes iron (Fe), copper (Cu), aluminum (Al), magnesium (Mg), zinc (Zn), tin (Sn), and the like. And some nonmetallic elements such as (C), nitrogen (N) and oxygen (O).
  • the metal material has a crystal structure, the elements are arranged regularly, relatively strong and ductile at room temperature, and also has electrical properties.
  • steel materials applied to fasteners, screws, nails, metal sheets, automobile parts, etc., among other metal materials can withstand corrosion while also resisting corrosive media such as chlorine, neutral media, biodiesel, alcohol, fuel, or cooling fluids. As a material for improving the capability, it can be used to plate the surface of the metal substrate.
  • Zinc is reacted with water or oxygen in the atmosphere to form zinc oxide (ZnO) and zinc hydroxide.
  • Zn (OH) 2 and Simon, Bakelite Zn 5 (OH) 8 Cl 2 ⁇ H 2 O, simonkolleite
  • Metal plating products are mainly produced by wet processes such as electroplating or hot dip plating.
  • Electroplating is widely used because of its uniform and beautiful surface and good processability, but it has problems such as an increase in power consumption, an increase in manufacturing cost, and limitation of elemental addition, which are accompanied by an increase in plating precipitation.
  • hot-dip galvanizing there is an advantage in that it is plated thickly at low cost, but due to the characteristics of the process, it is plated on both sides, resulting in waste of resources. layer) It is difficult to produce.
  • PVD physical vapor deposition
  • the present invention provides a shielding effect and sacrificial anode characteristics due to diffusion movement between components through the physical vapor deposition method and heat treatment, and the formation of intermetallic compounds, as well as the effects of crystal orientation depending on the manufacturing conditions.
  • the present invention provides a tin / magnesium thin film prepared on a galvanized substrate so that corrosion products of the surface layer can be densely and stably formed quickly by controlling the same, and a method of manufacturing the same.
  • the above object is to prepare a substrate on which a galvanized layer is formed; Physically depositing magnesium (Mg) and tin (Sn) on the surface of the galvanized layer to form a magnesium thin film and a tin thin film; Achieved by the method of manufacturing a tin / magnesium thin film formed on a galvanized layer comprising the step of diffusing the zinc, magnesium and tin atoms through heat treatment to form a thin film containing tin / magnesium inter-employment and intermetallic compounds do.
  • Mg magnesium
  • Sn tin
  • the zinc plating layer is preferably formed by electroplating, hot-dipping or physical vapor deposition (PVD) method, the step of forming the magnesium thin film and tin thin film, the zinc Physically depositing magnesium on the surface of the plating layer to form the magnesium thin film, and then physically depositing tin on the surface of the magnesium thin film to sequentially laminate the tin thin film.
  • PVD physical vapor deposition
  • the magnesium thin film and the tin thin film is formed to have a thickness ratio of 0.5 to 2 times each other, the physical vapor deposition, vacuum evaporation (vacuum evaporation), sputtering (sputtering), ion plating (ion plating) and It is preferable to use a method selected from the group consisting of mixtures thereof, and the heat treatment is preferably performed at 232 ° C. or lower, which is the melting point of tin.
  • the above object is also formed on the surface of the galvanized layer, the tin / magnesium thin film formed on the galvanized layer, characterized in that the zinc, magnesium and tin atoms are heat-transferring thin film formed by a solid solution or an intermetallic compound through heat treatment. It is also achieved by
  • the diffusion effect between the components, the intermetallic compound (intermetallic compounds) due to the formation of shielding effect and sacrificial anode characteristics, as well as the effect of crystal orientation according to the manufacturing conditions By considering and controlling the overall composition, it is possible to obtain the effect that the tin / magnesium thin film is manufactured on the galvanized substrate so that it can be stably and tightly and stably produced quickly.
  • 1 and 2 is a flow chart of a method for manufacturing a tin / magnesium thin film formed on the galvanized layer
  • Figure 4 shows the surface of the Sn / Mg thin film, cross-sectional morphology observation results and the schematic diagram of the coating layer conditions through the GDS analysis
  • FIG. 6 shows the composition distribution of the Sn / Mg thin film measured in the depth direction from the surface with brown lines (Sn), green lines (Mg), red lines (O), pink lines (Zn), and blue lines (Fe). It's a graph,
  • the present invention includes a galvanized layer and a tin / magnesium thin film formed on the surface of the galvanized layer, and the zinc, magnesium and tin atoms present in the galvanized layer and the tin / magnesium thin film through heat treatment are diffused and moved to form a solid solution or an intermetallic compound. It is characterized by the thin film formed.
  • a substrate on which a galvanized layer is formed is prepared (S1).
  • Preparing a substrate to increase the corrosion resistance is prepared by forming a galvanized layer thereon.
  • the galvanized layer may be formed through various methods such as electroplating for applying a voltage to a zinc plating solution, applying a voltage, hot-dipping for processing a substrate in a molten zinc bath, and physical vapor deposition (PVD). Can be formed.
  • the substrate is not particularly limited in material, such as iron (Fe), steel (stainless steel), it is easy to apply a substrate having any material.
  • the magnesium thin film and the tin thin film thus formed are preferably formed to have a thickness ratio of 0.5 to 2 times each other. If it is out of this range, in the process of alloying through heat treatment later, the ratio of the composition is biased to one side, so that the desired amount of alloy cannot be obtained.
  • PVD Physical vapor deposition
  • Such physical vapor deposition is preferably used by a method selected from the group consisting of vacuum evaporation, sputtering, ion plating, and mixtures thereof.
  • a method selected from the group consisting of vacuum evaporation, sputtering, ion plating, and mixtures thereof since magnesium is almost impossible to coat using a wet process, it is preferable to form a magnesium thin film on the surface of the zinc plating layer through physical vapor deposition of magnesium.
  • the heat treatment in this step is to apply heat to heat a specific atom so as to permeate between other atoms to form an alloy.
  • invasive solid solution, substituted solid solution, or intermetallic compound formation is any shape. It may consist of. That is, through heat treatment, zinc and magnesium are diffused and moved toward tin, and tin is diffused and moved toward zinc and magnesium to form a tin / magnesium thin film on the surface of the zinc plated layer.
  • the thus formed tin / magnesium thin film includes some zinc, magnesium, and tin, respectively, and some of the tin / magnesium has a zinc / magnesium and tin / magnesium alloy.
  • zinc, magnesium, tin, zinc / magnesium, and tin / magnesium are present by the heat treatment, an alloy thin film having a delayed corrosion rate and improved corrosion resistance can be obtained.
  • zinc / magnesium alloy and tin / magnesium alloy generally corrode magnesium rapidly during the corrosion process, and zinc and tin, which bind magnesium, do not separate in the state of being bonded with magnesium atoms, thereby delaying corrosion.
  • the combination increases the corrosion resistance of the tin / magnesium thin film.
  • the heat treatment temperature is preferably made of 232 °C or less melting point of the tin, when the heat treatment at a temperature exceeding 232 °C the surface gloss of the tin / magnesium thin film is changed to light brown to cause partial peeling. This is undesirable because it may adversely affect the corrosion resistance due to deformation of the surface morphology and reduced adhesion.
  • the diffusion reaction is difficult due to the deformation and oxidation of the morphology, so that zinc / magnesium and tin / magnesium alloys cannot be obtained properly.
  • Tin / magnesium (Sn / Mg) thin film was fabricated on the surface of hot dip galvanized (GI60- 8.4 ⁇ m) by using DC-magnetron sputtering method which is one of physical vapor deposition methods And the corrosion resistance of the heat treatment was compared and analyzed, to determine the effectiveness of the Sn / Mg coating film of high corrosion resistance and to optimize the manufacturing conditions.
  • Sputtering is a kind of vacuum deposition method. When the accelerated electrons collide with the gas atom at a relatively low degree of vacuum and collide with the negative electrode target to be coated, the atom that receives energy greater than the bonding force of the atoms is transferred to the outside.
  • the principle is that the atoms bounce off and fly through the mean free path to the substrate opposite the cathode.
  • an inert gas is used to form a plasma to control chemical reactions and component changes.
  • argon (Ar) gas having 15.8 eV ionization energy is used.
  • the target metal used for the production of Sn / Mg thin film was used as purity 99.99% magnesium (Mg) and 99.99% tin (Sn), and a hot dip galvanized steel sheet (GI 60-8.4) as the deposition substrate. ⁇ m) was used.
  • a pure zinc and pure tin coated hot dip galvanized steel sheet GI60 (8.4 ⁇ m), coated GI60 (8.4 ⁇ m), coated GI 144 (20 ⁇ m) was prepared.
  • Hot dip galvanizing (GI60-8.4 ⁇ m) used as a substrate in the fabrication of specimens has a coating weight of 120g / double-sided zinc (Zn) and sputtering coating using a vacuum process on one side, 60g / M 2 becomes the coating layer constituent.
  • the surface-treated rust preventive oil was degreased, ultrasonically cleaned in acetone and ethanol solvents for 15 minutes using an ultrasonic cleaner, and then dehumidified with a dryer, and then fixed to a test specimen supporter. .
  • the substrate was fixed to a test piece support, and the chamber was sealed to form a vacuum.
  • a low vacuum rotary pump was used to exhaust the air at atmospheric pressure, and a high vacuum was produced using an oil diffusion pump preheated for about 1 hour.
  • ion bombardment cleaning was performed at 350 V under vacuum for 30 minutes by introducing 100 sccm of Ar gas to remove an oxide film on the surface and to improve adhesion of the deposited film.
  • bias voltage is generally applied because active metal ions ejected by continuous cleaning and sputtering of the substrate form a dense film and improve adhesion, but in this embodiment, only a minimum bias voltage is applied in consideration of the destruction of the bilayer structure. It was.
  • Heat treatment was performed in about 15 minutes in an atmosphere of 232 DEG C or lower, which is the melting point of tin. This is because the corrosion resistance is expected to be improved by the formation of dense and thick oxide film and intermetallic compound when exposed to corrosive environment.
  • the solid solution and intermetallic compound formation through diffusion movement between components were disadvantageous as the melting point of tin (Sn) was higher than 232 ° C or longer.
  • the gloss of the surface of the coating layer is changed to light brown and partial peeling occurs. This is considered to adversely affect the corrosion resistance due to the decrease in the deformation adhesion of the surface morphology.
  • the Sn / Mg coating layer was prepared in different ratios, and then heat-treated, and non-heat-treated Mg and Sn test specimens were prepared.
  • a non-coated hot dip galvanized (GI60-8.4 ⁇ m) steel sheet and hot dip galvanized (GI144-20 ⁇ m) steel sheet was prepared together to evaluate the material properties and corrosion resistance.
  • the conventional non-coated hot dip galvanized (GI60-8.4 ⁇ m) steel sheet and hot dip galvanized (GI144-20 ⁇ m) with a zinc thickness of more than 2 times by sputtering and then compared with the heat treated Sn / Mg coated specimens and evaluated the corrosion resistance.
  • the correlation between material properties and corrosion resistance was elucidated.
  • Figure 4 shows the surface of the prepared Sn / Mg film, cross-sectional morphology observation results and the coating layer conditions by GDS analysis, the Sn thickness ratio of SMZ-A is larger than Mg, SMZ-B, SMZ-C are the same It can be seen that the Mg thickness ratio is made larger than Sn.
  • the surface morphology observation results show that the grains of granular structure of Sn particles are densely covering the film, and the smaller the proportion of Sn, the smaller the size of the particles.
  • the thickness of the coating layer can be clearly distinguished according to the fabrication conditions. As the ratio of Sn decreases, the morphology of the upper coating layer changes from the columnar structure to the shape of the granular crystal.
  • FIG. 5 shows the thin film surface and cross-sectional morphology of the Sn / Mg test specimen and the comparative material after heat treatment after fabrication.
  • the heat treated test pieces were found to have a larger surface particle size and bonded to each other as heat treatment time and temperature increased.
  • cross-section specimens atypical morphology was observed at Sn / Mg interlayer boundaries with increasing heat treatment conditions, presumably because of diffusion movement.
  • the roughness of the surface coating layer according to the heat treatment was the best in SMZ-B, and the SMZ-A heat treated at 220 ° C. for 30 minutes showed the most uneven morphology. This morphology change is thought to be caused by the reaction with oxygen, the growth of the nucleus and the diffusion and alloying of the components between the coating layers during the heat treatment process.
  • MZ Mg only
  • SZ Sn only
  • GI60 Zn 8.4 ⁇ m
  • GI144 Zn 20 ⁇ m
  • EDS energy-dispersive x-ray spectroscopy
  • GDS glow discharge atomic emission spectrometer
  • FIG. 6 shows the compositional distribution of the Sn / Mg film measured in the depth direction from the surface with brown lines (Sn), green lines (Mg), red lines (O), pink lines (Zn), and blue lines (Fe). .
  • Sn and Mg were clearly distinguished, and as the conditions were increased, Sn was diffused to the bottom of the coating layer and Mg was diffused to the surface.
  • Mg was diffused to the surface.
  • cross-diffusion and movement between the coating layer components occur.
  • the best component diffusion such as Mg rises to the surface and descends throughout the Sn and Mg layers under the conditions of heat treatment of SMZ-B.
  • the general surface and the X-cut specimens were exposed in the salt spray environment proposed in KS D 9502.
  • the specimen coated with Sn / Mg thin film showed up to 10 times better corrosion resistance than the substrate GI60 (8.4 ⁇ m).
  • the difference in corrosion resistance was clearly confirmed according to the Sn / Mg ratio and the heat treatment conditions.
  • the corrosion resistance was the highest. It acts like a barrier to block the access of corrosion factors such as oxygen (O 2 ) and water (H 2 O) from the outside environment, and to accelerate the dissimilar metal corrosion reaction between the intermediate and lower coating layers as the corrosion accelerates.
  • the morphology of the film produced by varying the ratio of Sn and Mg was in the form of granular crystals, and a uniform single layer was formed through SEM and GDS analysis. I could confirm that.
  • the surface morphology was gradually grown as the heat treatment was combined in a mass (mass), it was confirmed that the surface roughness increased during the heat treatment under the harshest heat treatment conditions. It is thought that the morphology is the best when heat treated at 200 ° C. or lower and exhibited excellent corrosion resistance as well as dense oxide film formation from corrosive environments.
  • Non-thermally treated specimens showed about 70 ⁇ 80 wt% Sn, about 10 wt% Mg, about 5 wt% Zn content through the surface composition distribution of the fabricated thin film. There was a tendency to diffuse migration and a mixed region of Sn-Mg and Mg-Zn was observed.
  • the composition distribution of the coating layer was most uniform when the SMZ-B specimens were heat-treated at 200 ° C or lower, and the SMZ-A and SMZ-C exhibited defects in the coating layer and the SMZ-C showing a narrow mixed region between components as the corrosion progressed.
  • the Sn layer on the upper side is the barrier (barrier) to block the external corrosion factor, it is confirmed that the role of the cathode coating and the anode coating for supplying electrons while dissolving a relatively easy to ionized metal component at the same time.
  • the present invention relates to a tin / magnesium thin film formed on a galvanized layer and a method for manufacturing the same, and in particular, a strong barrier due to diffusion movement between components through the physical vapor deposition and heat treatment, and the formation of intermetallic compounds. It not only provides corrosion resistance with sacrificial anode effect, but also comprehensively controls the influence of crystal orientation according to the fabrication conditions so that corrosion products on the surface layer can be rapidly and densely and stably formed on the galvanized substrate. Tin / magnesium thin film to be formed and its manufacturing method are available.

Abstract

The present invention relates to a tin/magnesium thin film formed on a zinc plated layer and a method for manufacturing the same. The method comprises the steps of: preparing a substrate on which a zinc plated layer is formed; physically depositing magnesium (Mg) and tin (Sn) on the surface of the zinc plated layer to form a magnesium thin film and a tin thin film; and diffusing zinc, magnesium, and tin atoms through heat treatment to form a thin film in which tin/magnesium mutual solubility and intermetallic compounds are present. Due to these features, it is possible to provide a shielding effect and sacrificial anode property by the diffusion between components and the formation of intermetallic compounds through a physical vapor deposition method and the heat treatment. Furthermore, it is possible to obtain the effect that a tin/magnesium thin film can be produced on a zinc-plated substrate stably, densely-stably and rapidly by comprehensively considering and controlling the influence of crystal orientation according to production conditions.

Description

아연도금층에 형성되는 주석/마그네슘 박막 및 그 제조방법Tin / magnesium thin film formed on the galvanized layer and its manufacturing method
본 발명은 아연도금층에 형성되는 주석/마그네슘 박막 및 그 제조방법에 관한 것으로, 상세하게는 물리증착법 및 열처리를 통해 성분간 확산이동, 금속간 화합물(intermetallic compounds) 형성으로 인해 강력한 차폐(barrier) 및 희생양극(sacrificial anode) 효과가 있는 내식 특성을 부여함은 물론, 그 제작조건에 따른 결정배향성의 영향도 종합적으로 고려 제어함으로써 표면층의 부식생성물이 빠르게 치밀-안정적으로 형성 가능하도록 아연도금 기판 상에 형성되는 주석/마그네슘 박막 및 그 제조방법에 관한 것이다.The present invention relates to a tin / magnesium thin film formed on a galvanized layer and a method for manufacturing the same, and in particular, a strong barrier due to diffusion movement between components through the physical vapor deposition and heat treatment, and the formation of intermetallic compounds. It not only provides corrosion resistance with sacrificial anode effect, but also comprehensively controls the influence of crystal orientation according to the fabrication conditions so that corrosion products on the surface layer can be rapidly and densely and stably formed on the galvanized substrate. It relates to a tin / magnesium thin film formed and a method of manufacturing the same.
금속재료는 하나 또는 그 이상의 금속 원소들로 구성되는 무기물질로 철(Fe), 구리(Cu), 알루미늄(Al), 마그네슘(Mg), 아연(Zn), 주석(Sn) 등이 있으며, 탄소(C), 질소(N), 산소(O) 등의 일부 비금속 원소를 포함할 수 있다. 또한 금속재료는 결정구조를 가지고 원소들은 규칙적으로 배열되며, 실온에서 비교적 강하고 연성이 있으며 전기적 특성도 가지고 있다. 특히 금속재료 중 파스너, 스크류, 못, 금속 강판, 자동차 부품 등에 적용되는 철강 재료는 부식에 견딜 수 있도록 하는 한편, 염소, 중성매체, 바이오디젤, 알코올, 연료 또는 냉각용 유체와 같은 부식성 매체에 견디는 능력을 향상시키기 위한 소재로 이를 이용하여 금속 기재의 표면에 도금을 실시할 수 있다. The metal material is an inorganic material composed of one or more metal elements, and includes iron (Fe), copper (Cu), aluminum (Al), magnesium (Mg), zinc (Zn), tin (Sn), and the like. And some nonmetallic elements such as (C), nitrogen (N) and oxygen (O). In addition, the metal material has a crystal structure, the elements are arranged regularly, relatively strong and ductile at room temperature, and also has electrical properties. In particular, steel materials applied to fasteners, screws, nails, metal sheets, automobile parts, etc., among other metal materials, can withstand corrosion while also resisting corrosive media such as chlorine, neutral media, biodiesel, alcohol, fuel, or cooling fluids. As a material for improving the capability, it can be used to plate the surface of the metal substrate.
철강 재료에 대한 부식 문제를 해결하기 위한 방법으로 이용되는 도금 방법 중 현재 아연(Zn) 도금에 의한 표면 처리가 많이 사용되고 있는데, 아연은 대기 중의 물 또는 산소와 반응하여 산화아연(ZnO), 수산화아연(Zn(OH)2) 및 시몬클라이트(Zn5(OH)8Cl2·H2O, simonkolleite)와 같은 안정되고 치밀한 부식생성물을 형성하며, 이를 통해 외부의 부식 환경으로부터 차폐 역할을 하여 철강 재료를 보호하는 역할을 한다. 하지만 산업화가 고도화되고 적용분야가 다양해짐에 따라 더 가혹한 부식 환경에 재료가 노출되기 때문에 보다 우수한 내식성을 확보하기 위한 다양한 방안이 고려되어야 한다. 도금의 내식성을 향상시키기 위해서는 도금량을 증가시키는 것이 가장 용이하겠지만 제품화에 고려되는 사안으로 자원, 에너지 절약, 용접성, 경량화 등의 관점에서 보면 이러한 기술이 적합하지는 못하다. 따라서 아연의 도금량을 감소시키면서 희생 방식성을 저하시키지 않고 도금층의 수명을 연장시키려는 합금화를 통한 소재개발의 연구가 이루어지고 있다.Among the plating methods used to solve the corrosion problem of steel materials, surface treatment by zinc (Zn) plating is widely used. Zinc is reacted with water or oxygen in the atmosphere to form zinc oxide (ZnO) and zinc hydroxide. (Zn (OH) 2) and Simon, Bakelite (Zn 5 (OH) 8 Cl 2 · H 2 O, simonkolleite) and to form a stable and dense corrosion products, such as, by the shielding role against external corrosive environment through which the steel It serves to protect the material. However, as industrialization becomes more advanced and the field of application is diversified, a variety of measures must be considered to ensure better corrosion resistance as the material is exposed to more severe corrosive environments. In order to improve the corrosion resistance of the plating, it is easiest to increase the coating amount, but this technique is not suitable in terms of resources, energy saving, weldability, weight reduction, etc., which are considered in commercialization. Therefore, the research of the material development through alloying to extend the life of the coating layer without reducing the sacrificial corrosion resistance while reducing the plating amount of zinc has been made.
금속 도금 제품은 주로 전기도금 또는 용융도금과 같은 습식공정(wet process)에 의해 생산되고 있다. 전기도금은 표면이 균일 및 미려하고 가공성이 양호하여 널리 사용되나, 도금 석출량 증가에 수반되는 전력소비량의 증가와 제조비용의 상승 및 원소첨가의 제한 등의 문제점을 가지고 있다. 또한 용융 도금의 경우에는 저비용으로 두껍게 도금되는 장점이 있으나, 프로세스 특성상 양면으로 도금되어 자원낭비가 이루어지며, 용탕 내부에 잔존하는 이물질의 부착에 따른 품질저하 문제 및 금속 고유의 융점 차이로 인한 다층막(layer) 제작의 어려움을 안고 있다. 이러한 습식공정은 지난 수십 년간의 기술개발에 의해 거의 포화단계의 기술적 수준에 도달하였기 때문에 미래의 산업현장에서 요구하는 조건을 충족시키기가 대단히 어려운 실정이며, 습식공정 중 발생하는 폐수와 유해성 화학물질 및 탄소발생으로 인한 환경오염, 낮은 에너지 효율, 자원낭비, 도금 불량률과 더불어 박막화 추세에 따른 경제성 확보가 어렵기 때문에 프로세스의 개선을 통해 고내식성 박막 소재의 개발이 절실히 필요한 상황이다.Metal plating products are mainly produced by wet processes such as electroplating or hot dip plating. Electroplating is widely used because of its uniform and beautiful surface and good processability, but it has problems such as an increase in power consumption, an increase in manufacturing cost, and limitation of elemental addition, which are accompanied by an increase in plating precipitation. In addition, in the case of hot-dip galvanizing, there is an advantage in that it is plated thickly at low cost, but due to the characteristics of the process, it is plated on both sides, resulting in waste of resources. layer) It is difficult to produce. Since the wet process has reached the technical level of almost saturation level due to the technology development of the last decades, it is very difficult to meet the requirements of future industrial sites, and the waste water and harmful chemicals generated during the wet process and Environmental pollution, low energy efficiency, waste of resources, plating failure rate and economic feasibility due to thin film trend are difficult to secure, and development of high corrosion resistant thin film material is urgently needed through process improvement.
따라서 최근 미국, 유럽, 일본 등의 선진 연구기관 및 학계에서는 철강제품에 적용하는 기존의 습식 프로세스를 대체하기 위한 노력들이 이루어지고 있으며, 새로운 물질과 친환경 고속 프로세스를 연구 개발 중에 있다. 그 중에 진공(vacuum)에서 원자상 입자의 제어를 통해 고성능의 박막 제작이 가능한 물리증착법(physical vapor deposition, PVD)이 주목받고 있다. 물리증착법은 습식공정과 비교해 세공이 적고 다양한 물질계를 코팅할 수 있으며, 증착량 제어가 용이하고 여러 형태의 합금 및 다층도금에 대하여 고밀도의 양질막을 제작할 수 있다는 장점이 있다.Therefore, recent research institutes and academia in the United States, Europe, and Japan are making efforts to replace existing wet processes applied to steel products, and new materials and eco-friendly high-speed processes are being researched and developed. Among them, physical vapor deposition (PVD), which enables the production of high-performance thin films by controlling atomic particles in a vacuum, has attracted attention. Compared to the wet process, physical vapor deposition has advantages such as less porosity, coating various material systems, easier deposition rate control, and high quality films of high density for various types of alloys and multilayer plating.
따라서 본 발명은, 물리증착법 및 열처리를 통해 성분간 확산이동, 금속간 화합물(intermetallic compounds) 형성으로 인해 차폐 효과 및 희생양극 특성을 부여함은 물론, 제작조건에 따른 결정배향성의 영향을 종합적으로 고려 제어함으로써 표면층의 부식생성물이 치밀-안정적으로 빠르게 형성 가능하도록 아연도금 기판 상에 제조되는 주석/마그네슘 박막 및 그 제조방법을 제공하는 것이다.Therefore, the present invention provides a shielding effect and sacrificial anode characteristics due to diffusion movement between components through the physical vapor deposition method and heat treatment, and the formation of intermetallic compounds, as well as the effects of crystal orientation depending on the manufacturing conditions. The present invention provides a tin / magnesium thin film prepared on a galvanized substrate so that corrosion products of the surface layer can be densely and stably formed quickly by controlling the same, and a method of manufacturing the same.
상기한 목적은, 아연도금층이 형성된 기판을 준비하는 단계와; 상기 아연도금층의 표면에 마그네슘(Mg) 및 주석(Sn)을 물리증착하여 마그네슘박막 및 주석박막을 형성하는 단계와; 열처리를 통해 아연, 마그네슘 및 주석원자가 확산이동하여 주석/마그네슘 상호고용 및 금속간 화합물이 존재하는 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법에 의해서 달성된다.The above object is to prepare a substrate on which a galvanized layer is formed; Physically depositing magnesium (Mg) and tin (Sn) on the surface of the galvanized layer to form a magnesium thin film and a tin thin film; Achieved by the method of manufacturing a tin / magnesium thin film formed on a galvanized layer comprising the step of diffusing the zinc, magnesium and tin atoms through heat treatment to form a thin film containing tin / magnesium inter-employment and intermetallic compounds do.
여기서, 상기 아연도금층은, 전기도금(electrodeposition), 용융도금(hot-dipping) 또는 물리증착도금(PVD) 방법을 통해 형성되는 것이 바람직하며, 상기 마그네슘박막 및 주석박막을 형성하는 단계는, 상기 아연도금층의 표면에 먼저 마그네슘을 물리증착하여 상기 마그네슘박막을 형성한 후, 상기 마그네슘박막의 표면에 주석을 물리증착하여 상기 주석박막을 순차적으로 적층하는 것이 바람직하다.Here, the zinc plating layer is preferably formed by electroplating, hot-dipping or physical vapor deposition (PVD) method, the step of forming the magnesium thin film and tin thin film, the zinc Physically depositing magnesium on the surface of the plating layer to form the magnesium thin film, and then physically depositing tin on the surface of the magnesium thin film to sequentially laminate the tin thin film.
또한, 상기 마그네슘박막 및 상기 주석 박막의 두께는 서로 0.5 내지 2배의 두께비를 이루도록 형성되며, 상기 물리증착은, 진공증착법(vacuum evaporation), 스퍼터링법(sputtering), 이온 플레이팅법(ion plating) 및 이의 혼합으로 이루어진 군으로부터 선택된 방법을 이용하는 것이 바람직하며, 상기 열처리는 주석의 용융점인 232℃ 이하에서 이루어지는 것이 바람직하다.In addition, the magnesium thin film and the tin thin film is formed to have a thickness ratio of 0.5 to 2 times each other, the physical vapor deposition, vacuum evaporation (vacuum evaporation), sputtering (sputtering), ion plating (ion plating) and It is preferable to use a method selected from the group consisting of mixtures thereof, and the heat treatment is preferably performed at 232 ° C. or lower, which is the melting point of tin.
상기한 목적은 또한, 상기 아연도금층의 표면에 형성되며, 열처리를 통해 아연, 마그네슘 및 주석원자가 확산이동하여 고용화 또는 금속간 화합물이 형성된 박막인 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막에 의해서도 달성된다.The above object is also formed on the surface of the galvanized layer, the tin / magnesium thin film formed on the galvanized layer, characterized in that the zinc, magnesium and tin atoms are heat-transferring thin film formed by a solid solution or an intermetallic compound through heat treatment. It is also achieved by
상술한 본 발명의 구성에 따르면, 물리증착법 및 열처리를 통해 성분간 확산이동, 금속간 화합물(intermetallic compounds) 형성으로 인해 차폐 효과 및 희생양극 특성을 부여함은 물론, 제작조건에 따른 결정배향성의 영향을 종합적으로 고려 제어함으로써 안정적이고 치밀-안정적으로 빠르게 생성가능하도록 주석/마그네슘 박막이 아연도금 기판 상에 제조되는 효과를 얻을 수 있다.According to the configuration of the present invention described above, through the physical vapor deposition and heat treatment, the diffusion effect between the components, the intermetallic compound (intermetallic compounds) due to the formation of shielding effect and sacrificial anode characteristics, as well as the effect of crystal orientation according to the manufacturing conditions By considering and controlling the overall composition, it is possible to obtain the effect that the tin / magnesium thin film is manufactured on the galvanized substrate so that it can be stably and tightly and stably produced quickly.
도 1 및 도 2는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법의 순서도이고,1 and 2 is a flow chart of a method for manufacturing a tin / magnesium thin film formed on the galvanized layer,
도 3은 마그네슘 및 주석의 증착률을 나타낸 그래프이고,3 is a graph showing the deposition rate of magnesium and tin,
도 4는 Sn/Mg 박막의 표면, 단면 모폴로지 관찰 결과 및 GDS 분석을 통한 코팅층 조건별 모식도를 나타낸 것이고,Figure 4 shows the surface of the Sn / Mg thin film, cross-sectional morphology observation results and the schematic diagram of the coating layer conditions through the GDS analysis,
도 5는 제작 후 열처리한 Sn/Mg 시험편 및 비교재의 박막 표면, 단면 모폴로지이고,5 is a thin film surface, cross-sectional morphology of the Sn / Mg test specimen and the comparative material after the heat treatment after fabrication,
도 6은 Sn/Mg 박막의 조성분포를 갈색선(Sn), 녹색선(Mg), 적색선(O), 핑크선(Zn) 그리고 파란선(Fe)으로 표면에서부터 깊이방향으로 측정한 결과를 나타낸 그래프이고,FIG. 6 shows the composition distribution of the Sn / Mg thin film measured in the depth direction from the surface with brown lines (Sn), green lines (Mg), red lines (O), pink lines (Zn), and blue lines (Fe). It's a graph,
도 7은 Sn/Mg 박막의 EPMA 분석결과를 나타낸 이미지이고,7 is an image showing the EPMA analysis result of the Sn / Mg thin film,
도 8은 염수분무 시험편의 외관관찰 결과를 그래프로 나타낸 것이다.8 is a graph showing the appearance observation result of the salt spray test piece.
이하 본 발명의 실시예에 따른 아연도금층에 형성되는 주석/마그네슘 박막 및 그 제조방법을 도면을 통해 설명한다.Hereinafter, a tin / magnesium thin film formed on a zinc plated layer according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the accompanying drawings.
본 발명은 아연도금층과, 아연도금층의 표면에 형성된 주석/마그네슘 박막을 포함하며, 열처리를 통해 아연도금층 및 주석/마그네슘 박막에 존재하는 아연, 마그네슘 및 주석원자가 확산이동하여 고용화 또는 금속간 화합물이 형성된 박막인 것이 특징이다.The present invention includes a galvanized layer and a tin / magnesium thin film formed on the surface of the galvanized layer, and the zinc, magnesium and tin atoms present in the galvanized layer and the tin / magnesium thin film through heat treatment are diffused and moved to form a solid solution or an intermetallic compound. It is characterized by the thin film formed.
이러한 주석/마그네슘 박막의 제조방법으로는, 도 1 및 도 2에 도시된 바와 같이 먼저, 아연도금층이 형성된 기판을 준비한다(S1).As a method of manufacturing such a tin / magnesium thin film, as shown in FIGS. 1 and 2, first, a substrate on which a galvanized layer is formed is prepared (S1).
내식성을 증가시키기 위한 대상인 기판을 준비하고 여기에 아연도금층을 형성하여 준비하게 된다. 여기서 아연도금층은 아연도금액 중에 기판을 넣고 전압을 인가하는 전기도금(electrodeposition), 용융된 아연조에 기판을 넣어 처리하는 용융도금(hot-dipping), 물리증착도금(PVD) 등과 같이 다양한 방법을 통해 형성할 수 있다. 또한 기판은 철(Fe), 강판(stainless steel) 등과 같이 소재가 특별히 한정되지는 않으며, 어떤 소재를 가진 기판이라도 용이하게 적용 가능하다.Preparing a substrate to increase the corrosion resistance is prepared by forming a galvanized layer thereon. The galvanized layer may be formed through various methods such as electroplating for applying a voltage to a zinc plating solution, applying a voltage, hot-dipping for processing a substrate in a molten zinc bath, and physical vapor deposition (PVD). Can be formed. In addition, the substrate is not particularly limited in material, such as iron (Fe), steel (stainless steel), it is easy to apply a substrate having any material.
아연도금층의 표면에 마그네슘 및 주석을 물리증착하여 마그네슘박막 및 주석박막을 순차적으로 적층 형성한다(S2).Physically depositing magnesium and tin on the surface of the zinc plating layer to sequentially form a magnesium thin film and a tin thin film (S2).
아연도금층의 표면에 먼저 마그네슘을 물리증착하여 마그네슘박막을 형성한 후, 마그네슘박막의 표면에 주석을 물리증착하여 주석박막을 순차적으로 적층하여 주석/마그네슘(Sn/Mg) 박막을 형성한다. 주석(Sn)의 경우 외부의 물 또는 산소로부터 부식이 되는 것을 방지하는 역할을 하며, 마그네슘(Mg)의 경우 주석에 비해 부식이 잘되는 금속이기 때문에 마그네슘을 먼저 물리증착한 후 표면에 주석을 물리증착하여 가장 표면에 주석박막이 배치되도록 하는 것이 부식 방지에 도움이 된다. 이렇게 형성된 마그네슘박막 및 주석박막의 두께는 서로 0.5 내지 2배의 두께비를 이루도록 형성되는 것이 바람직하다. 이 범위를 벗어날 경우 추후에 열처리를 통해 합금화를 하는 과정에서 조성의 비율이 한쪽으로 치우쳐 원하는 양만큼의 합금을 얻지 못하게 된다.Physically depositing magnesium on the surface of the zinc plating layer to form a magnesium thin film, and then physically depositing tin on the surface of the magnesium thin film to sequentially stack the tin thin film to form a tin / magnesium (Sn / Mg) thin film. Tin (Sn) prevents corrosion from external water or oxygen, and magnesium (Mg) is a metal that is more corrosive than tin, so physically deposit magnesium and then physically deposit tin on the surface. To ensure that the tin film is placed on the most surface to help prevent corrosion. The magnesium thin film and the tin thin film thus formed are preferably formed to have a thickness ratio of 0.5 to 2 times each other. If it is out of this range, in the process of alloying through heat treatment later, the ratio of the composition is biased to one side, so that the desired amount of alloy cannot be obtained.
물리증착(physical vapor deposition, PVD)은 진공분위기 하에서 플라즈마를 이용한 건식 프로세스(dry process)의 일종으로, 종래의 액체를 이용하는 습식 프로세스(wet process)에 비해 다양한 이점이 있다. 첫째, 기체를 이용하는 건식 프로세스이기 때문에 폐액처리가 필요하지 않고 배기가스 처리 등의 공해 대책이 용이하다. 둘째, 액체를 이용하는 습식 프로세스와 같이 반응 용기를 가열하여 고온으로 할 필요가 없고 저온에서 높은 반응속도를 얻을 수 있는데, 이는 플라즈마 내의 고 에너지 전자가 가스를 분해하여 활성종을 대량으로 만들기 때문이다. 셋째, 코팅막의 두께가 수 ㎛ 이내 일지라도 막의 조성에 있어 금속, 합금, 화합물, 세라믹 및 유기고분자 등의 다양한 종류의 박막을 용이하게 제조할 수 있다. 이러한 물리증착은 진공증착법(vacuum evaporation), 스퍼터링법(sputtering), 이온 플레이팅법(ion plating) 및 이의 혼합으로 이루어진 군으로부터 선택된 방법을 이용하는 것이 바람직하다. 특히 마그네슘의 경우 습식 프로세스를 이용한 코팅이 거의 불가능하기 때문에 본 발명의 경우 마그네슘을 물리증착을 통해 아연도금층의 표면에 마그네슘박막을 형성하는 것이 바람직하다.Physical vapor deposition (PVD) is a dry process using plasma under a vacuum atmosphere, and has various advantages over wet processes using a conventional liquid. First, since it is a dry process using gas, no waste liquid treatment is required, and pollution measures such as exhaust gas treatment are easy. Secondly, it is not necessary to heat the reaction vessel to a high temperature like a wet process using a liquid, and a high reaction rate can be obtained at a low temperature because high energy electrons in the plasma decompose gas to make a large amount of active species. Third, even if the thickness of the coating film within a few μm, various kinds of thin films such as metals, alloys, compounds, ceramics and organic polymers can be easily manufactured in the film composition. Such physical vapor deposition is preferably used by a method selected from the group consisting of vacuum evaporation, sputtering, ion plating, and mixtures thereof. In particular, since magnesium is almost impossible to coat using a wet process, it is preferable to form a magnesium thin film on the surface of the zinc plating layer through physical vapor deposition of magnesium.
열처리를 통해 주석/마그네슘 박막을 형성한다(S3).Through the heat treatment to form a tin / magnesium thin film (S3).
본 단계의 열처리(heat treatment)는 열을 가하여 특정 원자가 다른 원자 사이에 스며들어 합금을 형성하기 위해 열을 가하는 것으로, 본 발명에서는 침입형 고용화, 치환형 고용화 또는 금속간 화합물 형성이 어떤 형상으로 이루어지든 무방하다. 즉 열처리를 통해 아연 및 마그네슘은 주석을 향해 확산이동하고, 주석은 아연 및 마그네슘을 향해 확산이동하여 아연도금층의 표면에 주석/마그네슘 박막이 형성된다. 이렇게 형성된 주석/마그네슘 박막은 일부 아연, 마그네슘, 주석이 각각 존재하고, 일부는 고용화되어 아연/마그네슘, 주석/마그네슘 합금이 존재하게 된다. 이와 같이 열처리에 의해 아연, 마그네슘, 주석, 아연/마그네슘, 주석/마그네슘이 존재하기 때문에 부식의 속도가 지연되어 내식성이 향상되는 합금박막을 얻을 수 있게 된다. 특히 아연/마그네슘 합금 및 주석/마그네슘 합금은 일반적으로 부식되는 과정에서 마그네슘이 빠르게 부식되는데, 마그네슘과 결합하는 아연 및 주석이 마그네슘 원자와 결합된 상태에서 분리되지 않아 부식을 지연시키게 된다. 즉 이러한 결합에 의해 주석/마그네슘 박막의 내식성이 증가하게 된다.The heat treatment in this step is to apply heat to heat a specific atom so as to permeate between other atoms to form an alloy. In the present invention, invasive solid solution, substituted solid solution, or intermetallic compound formation is any shape. It may consist of. That is, through heat treatment, zinc and magnesium are diffused and moved toward tin, and tin is diffused and moved toward zinc and magnesium to form a tin / magnesium thin film on the surface of the zinc plated layer. The thus formed tin / magnesium thin film includes some zinc, magnesium, and tin, respectively, and some of the tin / magnesium has a zinc / magnesium and tin / magnesium alloy. As such, since zinc, magnesium, tin, zinc / magnesium, and tin / magnesium are present by the heat treatment, an alloy thin film having a delayed corrosion rate and improved corrosion resistance can be obtained. In particular, zinc / magnesium alloy and tin / magnesium alloy generally corrode magnesium rapidly during the corrosion process, and zinc and tin, which bind magnesium, do not separate in the state of being bonded with magnesium atoms, thereby delaying corrosion. In other words, the combination increases the corrosion resistance of the tin / magnesium thin film.
열처리시 시간 및 온도가 증가함에 따라 합금박막의 표면 입자 사이즈가 커지며 아연/마그네슘, 주석/마그네슘이 각각 서로 결합하는 형태가 된다. 이때 열처리 온도는 주석의 용융점인 232℃ 이하로 이루어지는 것이 바람직한데, 232℃를 초과한 온도에서 열처리를 할 경우 주석/마그네슘 박막의 표면 광택이 연갈색으로 변하여 부분적으로 박리가 발생하게 된다. 이는 표면 모폴로지의 변형 및 밀착성의 감소로 인해 내식성에 악영향을 줄 수 있어 바람직하지 못하다. 또한 모폴로지의 변형 및 산화 반응에 의해 확산반응이 어려워져 아연/마그네슘, 주석/마그네슘 합금을 제대로 얻지 못한다는 문제점도 있다. As the time and temperature increase during the heat treatment, the surface particle size of the alloy thin film increases, and zinc / magnesium and tin / magnesium are bonded to each other. At this time, the heat treatment temperature is preferably made of 232 ℃ or less melting point of the tin, when the heat treatment at a temperature exceeding 232 ℃ the surface gloss of the tin / magnesium thin film is changed to light brown to cause partial peeling. This is undesirable because it may adversely affect the corrosion resistance due to deformation of the surface morphology and reduced adhesion. In addition, there is a problem in that the diffusion reaction is difficult due to the deformation and oxidation of the morphology, so that zinc / magnesium and tin / magnesium alloys cannot be obtained properly.
이하에서는 본 발명의 아연도금층에 형성되는 주석/마그네슘 박막 제조방법을 실시예를 통해 더욱 상세하게 설명한다.Hereinafter, a tin / magnesium thin film manufacturing method formed on the zinc plated layer of the present invention will be described in more detail with reference to Examples.
<실시예><Example>
물리증착법 중 하나인 직류전원 마그네트론 스퍼터링(DC-magnetron sputtering) 방법을 이용하여 용융아연도금 (GI60- 8.4㎛) 표면상에 주석/마그네슘(Sn/Mg)박막을 제작하였고, 열처리를 실시하여 제작조건 및 열처리에 따른 내식성을 비교 분석하였으며, 고내식성의 Sn/Mg 코팅막의 유효성 확인 및 제작 조건을 최적화 하고자 하였다. 스퍼터링 방법은 진공증착법의 한 종류로 비교적 낮은 진공도에서 가속된 전자가 기체원자에 충돌하여 발생한 플라즈마가 코팅하고자하는 음극타깃(target)에 충돌하게 되면, 원자들의 결합력보다 큰 에너지를 전달받은 원자가 외부로 튕겨나가 원자들이 음극 반대편에 위치한 기판까지 평균자유행정(mean free path)을 거쳐 날아가 증착하는 원리이다. 일반적으로 코팅 과정에서 화학적 반응 및 성분변화를 제어하기 위해 불활성 가스를 사용하여 플라즈마를 형성시키게 되며, 여기서는 15.8eV 이온화 에너지를 가지는 아르곤(Ar)가스를 사용하였다. Tin / magnesium (Sn / Mg) thin film was fabricated on the surface of hot dip galvanized (GI60- 8.4㎛) by using DC-magnetron sputtering method which is one of physical vapor deposition methods And the corrosion resistance of the heat treatment was compared and analyzed, to determine the effectiveness of the Sn / Mg coating film of high corrosion resistance and to optimize the manufacturing conditions. Sputtering is a kind of vacuum deposition method. When the accelerated electrons collide with the gas atom at a relatively low degree of vacuum and collide with the negative electrode target to be coated, the atom that receives energy greater than the bonding force of the atoms is transferred to the outside. The principle is that the atoms bounce off and fly through the mean free path to the substrate opposite the cathode. In general, in the coating process, an inert gas is used to form a plasma to control chemical reactions and component changes. Here, argon (Ar) gas having 15.8 eV ionization energy is used.
본 실시예에서 Sn/Mg박막의 제작에 사용된 타깃금속(target metal)은 순도 99.99% 마그네슘(Mg) 및 99.99%주석(Sn)을 사용하였으며, 증착 기판으로는 용융아연도금 강판(GI60 - 8.4㎛)을 사용하였다. 또한 제작된 코팅층의 내식 특성을 비교하기 위해 순수 마그네슘 및 순수 주석이 코팅된 용융아연도금 강판GI60(8.4㎛), 무코팅GI60(8.4㎛), 무코팅 GI 144(20㎛)을 준비하였다. 시험편 제작에서 기판으로 사용된 용융아연도금(GI60 - 8.4㎛)은 120g/의 양면 아연(Zn) 도금 부착량을 가지며 진공프로세스를 이용한 스퍼터링(sputtering) 코팅은 한쪽 면에 실시하여 도금량의 절반인 60g/㎡이 코팅층 구성 성분이 된다. 용융아연도금(GI60- 8.4㎛) 강판의 코팅을 위한 전처리 과정으로 표면 도포된 방청유를 탈지하고 초음파 세척기를 이용해 아세톤 및 에탄올 용매에서 각각 15분간 초음파 세척한 뒤 건조기로 습기제거 후 시험편지지대에 고정하였다. In the present embodiment, the target metal used for the production of Sn / Mg thin film was used as purity 99.99% magnesium (Mg) and 99.99% tin (Sn), and a hot dip galvanized steel sheet (GI 60-8.4) as the deposition substrate. Μm) was used. In addition, in order to compare the corrosion resistance of the prepared coating layer, a pure zinc and pure tin coated hot dip galvanized steel sheet GI60 (8.4㎛), coated GI60 (8.4㎛), coated GI 144 (20㎛) was prepared. Hot dip galvanizing (GI60-8.4㎛) used as a substrate in the fabrication of specimens has a coating weight of 120g / double-sided zinc (Zn) and sputtering coating using a vacuum process on one side, 60g / M 2 becomes the coating layer constituent. As a pretreatment process for the coating of hot-dip galvanized (GI60- 8.4㎛) steel sheets, the surface-treated rust preventive oil was degreased, ultrasonically cleaned in acetone and ethanol solvents for 15 minutes using an ultrasonic cleaner, and then dehumidified with a dryer, and then fixed to a test specimen supporter. .
용융아연도금(GI 60 - 8.4㎛)강판에 코팅막을 형성하기 위한 준비단계로 전처리된 기판을 시험편지지대에 고정 후, 챔버를 밀폐하고 진공을 형성하였다. 우선 저진공 로터리펌프(rotary pump)를 이용하여 대기압에서 배기시키고, 약 1시간 예비 가열한 오일확산펌프(oil diffusion pump)로 고진공을 만들었다. 이어서, 100sccm의 Ar 가스를 도입하여 진공도 상태에서 350V로 30분간 이온봄 바드크리닝 (ion bombardment cleaning)을 실시함으로서 표면에 산화막(oxide film)을 제거하고 증착막의 밀착성을 높이고자 하였다. In the preparatory step of forming a coating film on a hot dip galvanized (GI 60-8.4㎛) steel sheet, the substrate was fixed to a test piece support, and the chamber was sealed to form a vacuum. First, a low vacuum rotary pump was used to exhaust the air at atmospheric pressure, and a high vacuum was produced using an oil diffusion pump preheated for about 1 hour. Subsequently, ion bombardment cleaning was performed at 350 V under vacuum for 30 minutes by introducing 100 sccm of Ar gas to remove an oxide film on the surface and to improve adhesion of the deposited film.
시험편의 클리닝 과정이 끝난 후 스퍼터링 건(sputtering gun)에 장착된 타깃에 전압을 인가하여 클리닝을 실시하였다. 타깃 클리닝 과정에서의 진공도 및 인가전압은 예비실험을 통하여 아르곤 가스에 대한 마그네슘(Mg), 주석(Sn) 스퍼터링율(sputtering rate) 및 입상정의 모폴로지를 형성이 유리하도록 파라미터를 조절하였다. 또한 타켓 표면에 분출된 금속 코팅입자의 성분 및 증착속도를 일정하여 유지되도록 안정화시켰다. 도 3은 마그네슘 및 주석의 증착률을 나타낸 그래프이다.After the cleaning process of the test piece was finished, cleaning was performed by applying a voltage to the target mounted on the sputtering gun. The degree of vacuum and applied voltage during the target cleaning process were adjusted through preliminary experiments to favor the formation of magnesium (Mg), tin (Sn) sputtering rate and granular crystal morphology for argon gas. In addition, the composition and the deposition rate of the metal coating particles ejected on the target surface was stabilized to be kept constant. 3 is a graph showing deposition rates of magnesium and tin.
코팅 준비가 완료된 상태에서 시험편지지대에 비교적 낮은 Bias 전압을 인가하고 90°씩 회전시키며 마그네슘 그리고 주석 타겟을 순서대로 코팅하여 이층(double layer)구조의 박막을 제작하였다. Bias 전압은 일반적으로 기판의 지속적인 클리닝 및 스퍼터링으로 분출된 활성의 금속이온이 치밀하게 막을 형성하고 밀착성을 향상시키기 때문에 인가하게 되나 본 실시예에서는 이층구조가 파괴되는 것을 고려하여 최소한의 바이어스 전압만 인가하였다.When the coating preparation was completed, a relatively low bias voltage was applied to the test specimen support, rotated by 90 °, and magnesium and tin targets were coated in order to prepare a double layer thin film. The bias voltage is generally applied because active metal ions ejected by continuous cleaning and sputtering of the substrate form a dense film and improve adhesion, but in this embodiment, only a minimum bias voltage is applied in consideration of the destruction of the bilayer structure. It was.
열처리(heat treatment)는 주석의 용융점인 232℃ 이하의 분위기에서 약 15분 내외로 실시하였다. 이는 부식 환경에 노출시 치밀하고 두꺼운 산화피막 및 금속간 화합물 형성으로 내식성을 향상시킬 수 있을 것으로 예상되었기 때문이다. 예비실험에서 주석(Sn)의 용융점인 232℃ 이상이거나 그 시간이 길어짐에 따라 성분간 확산이동을 통한 고용화 및 금속간화합물 형성이 불리한 것으로 나타났다. 즉, 열처리가 필요이상 과하게 되면 코팅층 표면의 광택이 연갈색으로 변하고 부분적인 박리가 발생하는 것을 확인 하였으며 이는 표면 모폴로지의 변형 밀착성의 감소로 인해 내식성에 좋지 않은 영향을 줄 것으로 사료되어 위와 같은 열처리 온도 조건을 설정하였다.Heat treatment was performed in about 15 minutes in an atmosphere of 232 DEG C or lower, which is the melting point of tin. This is because the corrosion resistance is expected to be improved by the formation of dense and thick oxide film and intermetallic compound when exposed to corrosive environment. In the preliminary experiment, it was found that the solid solution and intermetallic compound formation through diffusion movement between components were disadvantageous as the melting point of tin (Sn) was higher than 232 ° C or longer. In other words, when the heat treatment is excessively necessary, the gloss of the surface of the coating layer is changed to light brown and partial peeling occurs. This is considered to adversely affect the corrosion resistance due to the decrease in the deformation adhesion of the surface morphology. Was set.
기판으로 사용된 용융아연도금(GI60-8.4㎛)강판을 기준으로 Sn/Mg 코팅층을 각각 다른 비율로 하여 제작 후 열처리를 하였고, 이에 대한 비교시험편으로 비열처리 한 Mg 및 Sn 시험편을 제작하였다. 또한 무코팅한 용융아연도금(GI60-8.4㎛)강판 및 용융아연도금(GI144-20㎛)강판을 함께 준비하여 재료 특성 및 내식성 관련 평가를 실시하였다. 즉, 무코팅한 기존 용융아연(GI60-8.4㎛) 강판 및 아연 두께가 2배 이상인 용융아연도금(GI144-20㎛)을 스퍼터링으로 제작 후 열처리된 Sn/Mg 코팅시편과 내식성 비교 평가를 하였으며, 재료 특성 및 내식성의 상호관계를 해명하였다.Based on the hot-dip galvanized (GI60-8.4㎛) steel sheet used as the substrate, the Sn / Mg coating layer was prepared in different ratios, and then heat-treated, and non-heat-treated Mg and Sn test specimens were prepared. In addition, a non-coated hot dip galvanized (GI60-8.4㎛) steel sheet and hot dip galvanized (GI144-20㎛) steel sheet was prepared together to evaluate the material properties and corrosion resistance. That is, the conventional non-coated hot dip galvanized (GI60-8.4㎛) steel sheet and hot dip galvanized (GI144-20㎛) with a zinc thickness of more than 2 times by sputtering, and then compared with the heat treated Sn / Mg coated specimens and evaluated the corrosion resistance. The correlation between material properties and corrosion resistance was elucidated.
도 4는 제작한 Sn/Mg 막의 표면, 단면 모폴로지 관찰 결과 및 GDS 분석을 통한 코팅층 조건별 모식도를 나타낸 것으로, SMZ-A의 경우 Sn 두께비가 Mg 보다 크고, SMZ-B, SMZ-C는 각각 동일하거나 Mg 두께비가 Sn보다 크게 제작된 것을 확인할 수 있다. 우선 표면 모폴로지 관찰 결과를 보면 입상정(granular structure)의 Sn 입자들이 조밀하게 막을 덮고 있는 것이 확인되며, Sn의 비율이 작을수록 입자의 사이즈가 점차 감소하는 경향을 확인할 수 있다. 단면의 경우 제작 조건별 코팅층의 두께를 명확히 구분할 수 있었으며, Sn의 비율이 감소할수록 상부 코팅층의 모폴로지가 주상정(columnar structure)에서 입상정의 형태로 변화한 것을 확인할 수 있다. 이는 Sn박막이 성장할 때 Mg과 인접한 부근은 코팅면을 따라 입자형태로 형성되다가 일정 두께 이상부터는 주상정의 형태로 성장한 것으로 보인다. 반면 Mg층은 주상정의 형태로 길게 성장한 것으로 나타났다. 이와 같은 경향으로 구성 제작된 Sn/Mg 막들의 표면 및 단면 모폴로지는 내식 특성에 영향을 주게 될 것으로 사료된다.Figure 4 shows the surface of the prepared Sn / Mg film, cross-sectional morphology observation results and the coating layer conditions by GDS analysis, the Sn thickness ratio of SMZ-A is larger than Mg, SMZ-B, SMZ-C are the same It can be seen that the Mg thickness ratio is made larger than Sn. First, the surface morphology observation results show that the grains of granular structure of Sn particles are densely covering the film, and the smaller the proportion of Sn, the smaller the size of the particles. In the case of the cross section, the thickness of the coating layer can be clearly distinguished according to the fabrication conditions. As the ratio of Sn decreases, the morphology of the upper coating layer changes from the columnar structure to the shape of the granular crystal. It is believed that when Sn film grows, the vicinity adjacent to Mg is formed in the form of particles along the coating surface, but grows in the form of columnar tablet from a certain thickness or more. On the other hand, the Mg layer grew long in the form of columnar tablets. It is believed that the surface and cross-sectional morphologies of the Sn / Mg films fabricated with this tendency will affect the corrosion resistance.
도 5는 제작 후 열처리한 Sn/Mg 시험편 및 비교재의 박막 표면, 단면 모폴로지를 보이고 있다. 비열처리 시험편에 비해 열처리 시험편은 열처리 시간 및 온도가 증가함에 따라 표면 입자 사이즈가 커지며 서로 결합하는 형태가 확인되었다. 단면 시편의 경우, 열처리 조건을 증가시킴에 따라 Sn/Mg 층간 경계에서 비정형(atypical)의 모폴로지가 관찰되었고 이는 확산 이동이 일어났기 때문으로 생각된다. 제작 조건별 경향을 살펴보면 SMZ-B에서 열처리에 따른 표면 코팅층의 거칠기가 가장 양호했으며, 220℃에서 30분 열처리한 SMZ-A는 가장 불균일한 모폴로지를 보였다. 이러한 모폴로지의 변화는 열처리 과정에서 산소와의 반응, 핵의 성장 그리고 코팅층간 성분의 확산 및 합급화가 원인으로 작용했을 것으로 생각된다.5 shows the thin film surface and cross-sectional morphology of the Sn / Mg test specimen and the comparative material after heat treatment after fabrication. Compared with the non-heat treated test pieces, the heat treated test pieces were found to have a larger surface particle size and bonded to each other as heat treatment time and temperature increased. In the case of cross-section specimens, atypical morphology was observed at Sn / Mg interlayer boundaries with increasing heat treatment conditions, presumably because of diffusion movement. In terms of fabrication conditions, the roughness of the surface coating layer according to the heat treatment was the best in SMZ-B, and the SMZ-A heat treated at 220 ° C. for 30 minutes showed the most uneven morphology. This morphology change is thought to be caused by the reaction with oxygen, the growth of the nucleus and the diffusion and alloying of the components between the coating layers during the heat treatment process.
한편, 비교시험편으로 비열처리 된 MZ(Mg only), SZ(Sn only), GI60(Zn 8.4㎛) 그리고 GI144(Zn 20㎛)을 살펴보면 MZ는 약 200㎚ 그레인사이즈(grain size)를 가진 육각형 입자들의 겹쳐진 모양을 보였고, SZ은 SMZ-A와 유사한 입상형태의 모폴로지가 관찰되었다. On the other hand, when the MZ (Mg only), SZ (Sn only), GI60 (Zn 8.4㎛) and GI144 (Zn 20㎛) non-heat treated as a comparative test piece, MZ is a hexagonal particle having a grain size of about 200nm grain size They showed overlapped shapes, and SZ showed a granular morphology similar to SMZ-A.
Sn/Mg(SMZ) 막의 제작조건별 조성분포를 확인하기 위해 표면에서부터 깊이 방향으로 EDS(energy-dispersive x-ray spectroscopy)점 분석 및 GDS(glow discharge atomic emission spectrometer)분석을 실시하였고, EPMA(electrone prove x-ray microanalyzer) 분석을 이용하여 액체질소에서 충격 파단 시킨 단면의 계층 간 성분 확산(diffusion)의 결과를 확인 하고자 하였다.In order to confirm the composition distribution according to the fabrication conditions of Sn / Mg (SMZ) film, energy-dispersive x-ray spectroscopy (EDS) point analysis and glow discharge atomic emission spectrometer (GDS) analysis were performed from the surface to the depth direction, and EPMA (electrone) was analyzed. The purpose of this study was to verify the results of the diffusion between layers of impact fractured sections in liquid nitrogen using prove x-ray microanalyzer analysis.
도 6은 Sn/Mg막의 조성분포를 갈색선(Sn), 녹색선(Mg), 적색선(O), 핑크선(Zn) 그리고 파란선(Fe)으로 표면에서부터 깊이방향으로 측정한 결과를 나타내고 있다. 열처리 조건이 약한 시험편에서는 Sn 및 Mg은 확연히 구분되는 것이 보였고, 조건을 증가시킴에 따라 Sn은 코팅층 하부로 확산하고 Mg는 표면까지 확산한 것으로 나타났다. 이를 통해 열처리가 증가함에 따라 코팅층 구성 성분 간 상호 확산 및 이동이 일어난 것을 확인할 수 있다. 이상의 GDS 결과를 종합해보면 열처리 조건이 증가함에 따라 Sn은 상부에서 하부, Mg 및 Zn은 하부에서 상부로 확산 이동하는 경향이 확인되었다. 특히, SMZ-B를 열처리한 조건에서 Mg이 표면까지 상승하고 Sn 및 Mg층 전반에 거쳐 하강하는 등의 가장 양호한 성분 확산이 나타났다.FIG. 6 shows the compositional distribution of the Sn / Mg film measured in the depth direction from the surface with brown lines (Sn), green lines (Mg), red lines (O), pink lines (Zn), and blue lines (Fe). . In the specimens with weak heat treatment conditions, Sn and Mg were clearly distinguished, and as the conditions were increased, Sn was diffused to the bottom of the coating layer and Mg was diffused to the surface. As a result, as the heat treatment increases, it can be seen that cross-diffusion and movement between the coating layer components occur. Summarizing the above GDS results, it was confirmed that as the heat treatment conditions increased, Sn tended to diffuse from the top to the bottom, and Mg and Zn moved from the bottom to the top. In particular, the best component diffusion such as Mg rises to the surface and descends throughout the Sn and Mg layers under the conditions of heat treatment of SMZ-B.
Sn/Mg 막의 제작조건 및 열처리에 따른 조성분포 분석의 마지막 단계로 단면 (cross section)의 EPMA 맵핑(mapping) 분석을 이용하여 표면부터 기판(substrate)까지 확산한 성분의 거동 분석하였다. 도 7은 시험편의 EPMA 분석결과를 나타내며, 비열처리 단계에선 Sn 및 Mg이 각각 붉은색으로 나타난 곳에 주로 분포하고 있는 것을 확인할 수 있다. 열처리가 진행됨에 따라 약한 온도조건(200℃ 이하, 15분 미만)의 경우 Sn성분이 Mg박막으로 확산 이동하여 Sn-Mg 혼재 구간을 형성한 것이 보였고, 온도가 증가함에 따라 Mg이 코팅층의 상/하부로 확산이동하여 Sn-Mg 및 소량의 Mg-Zn 혼재 구간이 확인되었다. 또한, Sn의 용융점과 가까운 열처리(200℃ 초과, 15분 이상) 시 Sn층이 Mg 및 산소와 반응으로 표면에 부분적으로 뭉쳐있는 것이 확인되었고 Zn 성분이 표면까지 확산된 모습을 보였다. As a final step of the composition distribution analysis according to the fabrication conditions and heat treatment of the Sn / Mg film, the behavior of the components diffused from the surface to the substrate was analyzed using the EPMA mapping analysis of the cross section. Figure 7 shows the results of the EPMA analysis of the test piece, it can be seen that in the non-heat treatment step Sn and Mg are mainly distributed in each of the red color. In the case of mild temperature conditions (below 200 ℃, less than 15 minutes) as the heat treatment progressed, it was seen that the Sn component diffused and moved to the Mg thin film to form a Sn-Mg mixed section. Diffusion movement to the bottom, Sn-Mg and a small amount of Mg-Zn mixed section was confirmed. In addition, it was confirmed that the Sn layer partially agglomerated on the surface by reaction with Mg and oxygen when the heat treatment (above 200 ° C, more than 15 minutes) near the melting point of Sn, and the Zn component was diffused to the surface.
제작 조건별 Sn/Mg 막의 내식성을 비교 평가하기 위해 KS D 9502기준에서 제시된 염수분무(salt spray) 환경에서 일반 표면 및 X-컷 된 시험편을 노출시켰다. 부식경향을 살펴보면 Sn/Mg박막을 코팅한 시험편은 기판(substrate)인 GI60(8.4㎛)에 비해 최대 10배 향상된 내식성을 보였다. 또한 Sn/Mg 비율 및 열처리 조건에 따라 내식성 차이가 명확히 확인되었는데, SMZ-B 조건에서 열처리 한 경우 내식성이 가장 뛰어났고, 이는 표면에서 이온화 경향이 적고 치밀한 산화막 형성에 우수한 특성을 나타내는 Sn 성분이 차폐막(barrier)과 같은 역할을 하여 외부 환경의 산소(O2) 및 물(H2O)과 같은 부식인자의 접근을 차단하고, 부식이 가속 진행됨에 따라 중간 및 하부 코팅층 간의 이종금속부식 반응을 단계적으로 억제할 수 있는 금속간 화합물(intermetallics)이 적절히 형성되었기 때문으로 사료된다. 한편 약한 온도조건에서 열처리한 경우 비열처리시편에 비해 감소한 경향을 보였는데 이는 도 5의 모폴로지 관찰에서 보이는 바와 같이 표면 입자사이즈가 일시적으로 증가하여 치밀한 산화막 형성이 불리하고, Zn 관련 금속 간 화합물이 형성되지 않은 것이 원인으로 생각된다. 또한 Sn 용융점에 가까운 강한 열처리 조건의 경우도 앞서 확인한 재료특성과 같이 표면 모폴로지의 거칠기가 증가하고 Mg 및 Zn 성분의 확산이동(diffusion)이 어려웠을 것으로 생각된다. 즉, 모폴로지의 균일 정도와 성분 확산에 의한 금속 간 화합물 형성이 우수한 내식성을 나타내기 위한 주요 요소이며, SMZ-B 조건에서 200℃ 이하에서 열처리 시 위 조건이 충족되어 내식성이 우수했던 것으로 사료된다.In order to compare and evaluate the corrosion resistance of Sn / Mg film according to fabrication conditions, the general surface and the X-cut specimens were exposed in the salt spray environment proposed in KS D 9502. In the corrosion trend, the specimen coated with Sn / Mg thin film showed up to 10 times better corrosion resistance than the substrate GI60 (8.4㎛). In addition, the difference in corrosion resistance was clearly confirmed according to the Sn / Mg ratio and the heat treatment conditions. When the heat treatment was performed under the SMZ-B condition, the corrosion resistance was the highest. It acts like a barrier to block the access of corrosion factors such as oxygen (O 2 ) and water (H 2 O) from the outside environment, and to accelerate the dissimilar metal corrosion reaction between the intermediate and lower coating layers as the corrosion accelerates. It is considered that the intermetallics, which can be inhibited by, have been formed properly. On the other hand, when the heat treatment at a weak temperature condition showed a tendency to decrease compared to the non-heat-treated specimens, as shown in the morphology observation of Figure 5, the surface particle size is temporarily increased, the dense oxide film formation is disadvantageous, Zn-related intermetallic compounds formed It is thought that it is not. In addition, in the case of strong heat treatment near the Sn melting point, the roughness of the surface morphology was increased and the diffusion of Mg and Zn components was difficult as in the material properties identified above. In other words, the formation of intermetallic compound by morphology uniformity and component diffusion is the main factor for showing the excellent corrosion resistance, and it is considered that the above conditions are satisfied when heat treatment is carried out at less than 200 ℃ under SMZ-B conditions.
GI144(20㎛)와 비교시 최대 4배 향상된 내식성을 나타냈는데 이는 GI60기판 (Zn-8.4㎛)에 스퍼터링 및 열처리를 함으로서 아연 도금량은 2배 이하로 감소시키고 내식성은 최대 4배 향상된 것을 의미한다. 이어서, 비열처리된 단일 코팅층 시험편과 대조한 결과에서는 SZ(Sn only) 코팅시험편보다 MZ(Mg only) 시험편이 더 우수한 내식성을 나타냈고, Sn/Mg 코팅 시험편에 비해 내식성은 떨어지는 것으로 평가되었다. 이는 상부 Sn박막 및 Mg박막이 삽입됨으로서 표면의 치밀한 산화막 형성 및 희생방식(sacrificial corrosion protection) 성질을 동시에 가지는 것이 내식성 향상에 영향을 미친것으로 생각된다. Compared with GI144 (20㎛), it showed up to 4 times better corrosion resistance, which means that the sputtering and heat treatment of GI60 substrate (Zn-8.4㎛) reduces zinc plating amount to 2 times or less and up to 4 times better corrosion resistance. Subsequently, the MZ (Mg only) test specimens showed better corrosion resistance than the SZ (Sn only) coated test specimens, and the corrosion resistance was lower than that of the Sn / Mg coated test specimens. This is thought to have an effect of improving the corrosion resistance by inserting the upper Sn thin film and the Mg thin film at the same time to have a dense oxide film on the surface and sacrificial corrosion protection.
한편 희생방식 및 차폐막(barrier) 효과를 집중적으로 확인하기 위하여 표면에 X-컷을 한 뒤 염수분무 환경에 노출시킨 시험편의 외관관찰 결과를 보이고 있다. 앞에서 언급한 바와 같이 코팅막의 내식성 향상을 위해선 표면이 치밀한 산화막 형성에 유리해야 하며, 강판이 노출되어 녹(red rust)이 발생 전에 코팅막이 먼저 이온화되면서 전자를 공급하는 희생 방식성을 가지고 있어야한다. 특히 본 연구에서 제작된 Sn/Mg 막의 경우 서로 다른 3종류의 금속을 사용할 뿐만 아니라 Mg 및 Zn은 철에 비해 이온화 경향이 크고 비한 전위값을 나타내지만, Sn의 경우 귀한 전위값을 가지고 표면 손상에 의해 철과 함께 노출되면 부식을 가속화할 수 있기 때문이다.On the other hand, in order to check the sacrificial method and the barrier effect (barrier) intensively, X-cuts on the surface and the appearance of the specimens exposed to the salt spray environment is shown. As mentioned above, in order to improve the corrosion resistance of the coating film, it is advantageous to form an oxide film having a dense surface, and have a sacrificial anticorrosive property to supply electrons by ionizing the coating film before the steel sheet is exposed and red rust occurs. In particular, the Sn / Mg film fabricated in this study not only uses three different metals but also Mg and Zn tend to have higher ionization tendencies than iron, and show relatively dislocation values. This is because exposure with iron can accelerate corrosion.
부식이 진행됨에 따라 초기에서부터 Zn 부식생성물이 표면을 하얗게 덮는 것을 확인할 수 있었으며, 전체적으로 일반 표면시편에 비해 적청(red rust) 발생시간이 길어진 것을 확인할 수 있었다. 즉 정리해보면 비열처리 및 저온 열처리 시험편에 비하여 열처리 조건이 증가할수록 X컷 시편의 적청 발생 시간은 늦춰지는 것을 알 수 있었고, 이는 금속간화합물이 부식과정을 단계적으로 지연시키면서 이종금속 간 부식(galvanic corrosion)을 최소화하고 지속적으로 전자를 공급함으로서 희생방식적 효과를 가질 수 있었기 때문으로 추정된다. 특히 SMZ-B 코팅이 가장 유리한 조건이었던 것으로 나타났다. 도 8은 염수분무 시험편의 외관관찰 결과를 그래프로 나타낸 것이고, 앞서 확인한 바와 같이 SMZ 코팅시편들이 비교시편에 비해 우수한 내식성을 보였다.As the corrosion progressed, it was confirmed that the Zn corrosion product covered the white surface from the beginning, and the overall red rust generation time was longer than that of the general surface specimens. In other words, as the heat treatment conditions increased, the red-blue occurrence time of X-cut specimens was slower than the non-heat treatment and low-temperature heat treatment specimens. It is presumed to have sacrificial effects by minimizing) and by supplying electrons continuously. SMZ-B coatings in particular were found to be the most favorable conditions. 8 is a graph showing the appearance observation results of the salt spray test specimens, and as confirmed above, the SMZ-coated specimens showed superior corrosion resistance compared to the comparative specimens.
이와 같이 Sn/Mg 막의 제작 조건별 재료 특성 분석의 결과를 보면, Sn 및 Mg의 비율을 다르게 하여 제작한 막의 모폴로지는 입상정의 형태이며, SEM 및 GDS 분석을 통해 균일한 단층막(layer)이 형성된 것을 확인할 수 있었다. 이때 열처리함에 따라 표면 모폴로지가 점차 성장하며 덩어리 형태(mass)로 결합하였으며, 가장 가혹한 열처리 조건에서 열처리 시에는 표면의 거칠기가 증가한 것을 확인할 수 있었다. 이를 통해 200℃ 이하에서 열처리한 경우에 모폴로지가 가장 양호하며 부식 환경으로부터 치밀한 산화막 형성과 더불어 우수한 내식성을 나타낼 수 있었을 것으로 생각된다.As a result of analyzing the material properties of the Sn / Mg film according to the fabrication conditions, the morphology of the film produced by varying the ratio of Sn and Mg was in the form of granular crystals, and a uniform single layer was formed through SEM and GDS analysis. I could confirm that. At this time, the surface morphology was gradually grown as the heat treatment was combined in a mass (mass), it was confirmed that the surface roughness increased during the heat treatment under the harshest heat treatment conditions. It is thought that the morphology is the best when heat treated at 200 ° C. or lower and exhibited excellent corrosion resistance as well as dense oxide film formation from corrosive environments.
제작 박막의 표면 조성분포를 통해 비열처리시편은 약 70~80 wt% Sn, 약 10 wt% Mg, 약 5 wt% Zn 함량을 나타내는 것에 비해, 열처리를 할수록 Sn은 감소, Mg 및 Zn은 상부로 확산 이동하는 경향을 보였고 Sn-Mg 및 Mg-Zn이 혼재하는 영역이 관찰되었다. 코팅층의 조성 분포는 SMZ-B 시험편을 200℃ 이하에서 열처리한 경우에 가장 균일하게 나타났으며 이는 부식이 진행됨에 따라 성분 간 좁은 혼재 영역을 나타내는 SMZ-A 및 코팅층의 결함을 보이는 SMZ-C와 비교하여 상부의 Sn 층이 외부 부식인자를 차단하는 차폐막(barrier)으로서 음극피복의 역할 및 상대적으로 이온화되기 쉬운 금속성분이 용해되면서 전자를 공급하는 양극피복 역할을 동시에 가장 용이하게 하는 것으로 확인된다.Non-thermally treated specimens showed about 70 ~ 80 wt% Sn, about 10 wt% Mg, about 5 wt% Zn content through the surface composition distribution of the fabricated thin film. There was a tendency to diffuse migration and a mixed region of Sn-Mg and Mg-Zn was observed. The composition distribution of the coating layer was most uniform when the SMZ-B specimens were heat-treated at 200 ° C or lower, and the SMZ-A and SMZ-C exhibited defects in the coating layer and the SMZ-C showing a narrow mixed region between components as the corrosion progressed. In comparison, the Sn layer on the upper side is the barrier (barrier) to block the external corrosion factor, it is confirmed that the role of the cathode coating and the anode coating for supplying electrons while dissolving a relatively easy to ionized metal component at the same time.
본 발명은 아연도금층에 형성되는 주석/마그네슘 박막 및 그 제조방법에 관한 것으로, 상세하게는 물리증착법 및 열처리를 통해 성분간 확산이동, 금속간 화합물(intermetallic compounds) 형성으로 인해 강력한 차폐(barrier) 및 희생양극(sacrificial anode) 효과가 있는 내식 특성을 부여함은 물론, 그 제작조건에 따른 결정배향성의 영향도 종합적으로 고려 제어함으로써 표면층의 부식생성물이 빠르게 치밀-안정적으로 형성 가능하도록 아연도금 기판 상에 형성되는 주석/마그네슘 박막 및 그 제조방법 분야에 이용가능하다.The present invention relates to a tin / magnesium thin film formed on a galvanized layer and a method for manufacturing the same, and in particular, a strong barrier due to diffusion movement between components through the physical vapor deposition and heat treatment, and the formation of intermetallic compounds. It not only provides corrosion resistance with sacrificial anode effect, but also comprehensively controls the influence of crystal orientation according to the fabrication conditions so that corrosion products on the surface layer can be rapidly and densely and stably formed on the galvanized substrate. Tin / magnesium thin film to be formed and its manufacturing method are available.

Claims (7)

  1. 아연도금층에 형성되는 주석/마그네슘 박막 제조방법에 있어서,In the method of manufacturing a tin / magnesium thin film formed on the galvanized layer,
    아연도금층이 형성된 기판을 준비하는 단계와;Preparing a substrate on which a galvanized layer is formed;
    상기 아연도금층의 표면에 마그네슘(Mg) 및 주석(Sn)을 물리증착하여 마그네슘박막 및 주석박막을 형성하는 단계와;Physically depositing magnesium (Mg) and tin (Sn) on the surface of the galvanized layer to form a magnesium thin film and a tin thin film;
    열처리를 통해 아연, 마그네슘 및 주석원자가 확산이동하여 주석/마그네슘 상호고용 및 금속간 화합물이 존재하는 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.A method of manufacturing a tin / magnesium thin film formed on a zinc plated layer comprising the step of diffusing a zinc, magnesium and tin atoms through heat treatment to form a thin film in which tin / magnesium mutual employment and an intermetallic compound are present.
  2. 제 1항에 있어서,The method of claim 1,
    상기 아연도금층은, 전기도금(electrodeposition), 용융도금(hot-dipping) 또는 물리증착도금(PVD) 방법을 통해 형성되는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.The galvanized layer is a tin / magnesium thin film manufacturing method formed on the galvanized layer, characterized in that formed by electroplating, electroplating (hot-dipping) or physical vapor deposition (PVD) method.
  3. 제 1항에 있어서,The method of claim 1,
    상기 마그네슘박막 및 주석박막을 형성하는 단계는,Forming the magnesium thin film and tin thin film,
    상기 아연도금층의 표면에 먼저 마그네슘을 물리증착하여 상기 마그네슘박막을 형성한 후, 상기 마그네슘박막의 표면에 주석을 물리증착하여 상기 주석박막을 순차적으로 적층하는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.Tin formed on the galvanized layer, characterized in that the magnesium thin film is first formed on the surface of the zinc plated layer to form the magnesium thin film, and then the tin thin film is sequentially laminated by physically depositing tin on the surface of the magnesium thin film. Magnesium thin film manufacturing method.
  4. 제 1항에 있어서,The method of claim 1,
    상기 마그네슘박막 및 상기 주석 박막의 두께는서로 0.5 내지 2배의 두께비를 이루도록 형성되는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.The thickness of the magnesium thin film and the tin thin film is a tin / magnesium thin film manufacturing method formed on the galvanized layer, characterized in that to form a thickness ratio of 0.5 to 2 times each other.
  5. 제 1항에 있어서,The method of claim 1,
    상기 물리증착은, 진공증착법(vacuum evaporation), 스퍼터링법(sputtering), 이온 플레이팅법(ion plating) 및 이의 혼합으로 이루어진 군으로부터 선택된 방법을 이용하는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.The physical vapor deposition is a tin / magnesium thin film formed on the galvanized layer characterized in that using a method selected from the group consisting of vacuum evaporation, sputtering, ion plating, and mixtures thereof. Way.
  6. 제 1항에 있어서,The method of claim 1,
    상기 열처리는 232℃ 이하에서 이루어지는 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막 제조방법.The heat treatment is a tin / magnesium thin film manufacturing method formed on the galvanized layer, characterized in that made at 232 ℃ or less.
  7. 아연도금층에 형성되는 주석/마그네슘 박막에 있어서,In the tin / magnesium thin film formed on the galvanized layer,
    상기 아연도금층의 표면에 형성되며, 열처리를 통해 아연, 마그네슘 및 주석원자가 확산이동하여 주석/마그네슘 상호고용 및 금속간 화합물이 존재하는 박막인 것을 특징으로 하는 아연도금층에 형성되는 주석/마그네슘 박막.Tin / magnesium thin film formed on the surface of the galvanized layer, zinc, magnesium and tin atoms through the heat treatment is a thin film formed in the galvanized layer characterized in that the tin / magnesium mutual employment and the intermetallic compound is present in the diffusion.
PCT/KR2017/002642 2017-03-03 2017-03-10 Tin/magnesium thin film formed on zinc plated layer and manufacturing method therefor WO2018159888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0027701 2017-03-03
KR1020170027701A KR102010769B1 (en) 2017-03-03 2017-03-03 Tin/magnesium thin film formed on zinc plated layer and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018159888A1 true WO2018159888A1 (en) 2018-09-07

Family

ID=63370978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002642 WO2018159888A1 (en) 2017-03-03 2017-03-10 Tin/magnesium thin film formed on zinc plated layer and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102010769B1 (en)
WO (1) WO2018159888A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226986A (en) * 2001-11-14 2003-08-15 Jfe Steel Kk Surface-treated metal sheet
JP2005068516A (en) * 2003-08-26 2005-03-17 Ajc:Kk Magnesium alloy having excellent corrosion resistance and wear resistance, and its production method
KR20050103511A (en) * 2003-02-26 2005-10-31 도요 고한 가부시키가이샤 Surface-treated al sheet excellent in solderability, heat sink using the same, and method for producing surface-treated al sheet excellent in solderability
KR100804502B1 (en) * 2006-02-28 2008-02-20 손성욱 Surface Treating and Multi-layer Composite Plating Methods for Preventing Metal Allergy and Multi-layer Composite Plating Structures Thereof
US20150203951A1 (en) * 2012-12-12 2015-07-23 Kwik-Coat (Aust) Pty Ltd Alloy coated workpieces

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829786B2 (en) * 1990-11-27 1998-12-02 新日本製鐵株式会社 Manufacturing method of alloyed galvanized steel sheet with excellent spot weldability
JPH08188861A (en) * 1995-01-12 1996-07-23 Nippon Steel Corp Production of galvanizing steel sheet
KR100576737B1 (en) 2004-10-26 2006-05-03 학교법인 포항공과대학교 Method for coating anti-corrosive film and porous support layer for depositing catalyst component on metal structures, Method for depositing catalyst component on the metal structures and Monolith Catalyst Module comprising the same
US7354660B2 (en) 2005-05-10 2008-04-08 Exxonmobil Research And Engineering Company High performance alloys with improved metal dusting corrosion resistance
DE102005045780A1 (en) * 2005-09-23 2007-04-12 Thyssenkrupp Steel Ag Method for producing a corrosion-protected flat steel product
DE102010055968A1 (en) 2010-12-23 2012-06-28 Coventya Spa Substrate with corrosion-resistant coating and process for its preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226986A (en) * 2001-11-14 2003-08-15 Jfe Steel Kk Surface-treated metal sheet
KR20050103511A (en) * 2003-02-26 2005-10-31 도요 고한 가부시키가이샤 Surface-treated al sheet excellent in solderability, heat sink using the same, and method for producing surface-treated al sheet excellent in solderability
JP2005068516A (en) * 2003-08-26 2005-03-17 Ajc:Kk Magnesium alloy having excellent corrosion resistance and wear resistance, and its production method
KR100804502B1 (en) * 2006-02-28 2008-02-20 손성욱 Surface Treating and Multi-layer Composite Plating Methods for Preventing Metal Allergy and Multi-layer Composite Plating Structures Thereof
US20150203951A1 (en) * 2012-12-12 2015-07-23 Kwik-Coat (Aust) Pty Ltd Alloy coated workpieces

Also Published As

Publication number Publication date
KR102010769B1 (en) 2019-08-14
KR20180101022A (en) 2018-09-12

Similar Documents

Publication Publication Date Title
KR102327491B1 (en) Alloy-coated steel sheet and manufacturing method of the same
US20200180272A1 (en) Alloy-coated steel sheet and manufacturing method therefor
KR20140086860A (en) Al-mg coated steel sheet and method for manufacturing the same
JP2017508865A (en) Magnesium-aluminum coated steel sheet and method for producing the same
EP0572673A1 (en) Method of forming layer of evaporation coating
Xi et al. Effect of the process parameters on the microstructure and corrosion resistance of ZnMg alloy coatings prepared via a combined PVD and reaction-diffusion process
KR101829766B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR101829763B1 (en) Alloy-coated steel sheet and method for manufacturing the same
JP2624272B2 (en) Surface treated steel sheet with excellent press formability
WO2018159888A1 (en) Tin/magnesium thin film formed on zinc plated layer and manufacturing method therefor
US11608556B2 (en) Alloy-coated steel sheet and manufacturing method thereof
WO2018117760A1 (en) Zn-mg alloy plated steel material having excellent corrosion resistance and plating adhesion
KR101829764B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR101829765B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR960009199B1 (en) Vacuum deposite mn/galvannealed steel sheets and the method therefor
KR940000086B1 (en) Method for producing mg and galvanized two-layer plating steel sheet with an excellant corrosion resistance and adhesion
JP2575719B2 (en) High corrosion resistant Zn-Mg alloy plated metal material for forming
US11731397B2 (en) Alloy-coated steel sheet and manufacturing method therefor
KR940000280B1 (en) Method for making two-layer plating steel sheet of galvanized coat with al/zn-fe alloy
KR960009192B1 (en) Mn/al two-layers coated steel sheets with an excellent corrosion resistance and adhesion
KR940000081B1 (en) Mn-zn two-layer plating steel sheet with an excellent corrosion resistance, adhesion and plating properties and process therefor
KR960009194B1 (en) Al-mn alloy coated steel sheets with an excellent corrosion resistance and the method therefor
KR100198048B1 (en) Alloy coating sheet with sn-mn
KR940000085B1 (en) Method for producing a ti-zn two-layer plating steel sheet with an excellant corrosion resistance and adhesion
JPH04218660A (en) High corrosion resistant zn-si vapor deposition plated metallic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899156

Country of ref document: EP

Kind code of ref document: A1