WO2018159873A1 - Integrated evaluation diagnosis method for building energy - Google Patents

Integrated evaluation diagnosis method for building energy Download PDF

Info

Publication number
WO2018159873A1
WO2018159873A1 PCT/KR2017/002253 KR2017002253W WO2018159873A1 WO 2018159873 A1 WO2018159873 A1 WO 2018159873A1 KR 2017002253 W KR2017002253 W KR 2017002253W WO 2018159873 A1 WO2018159873 A1 WO 2018159873A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
energy
information
energy consumption
area
Prior art date
Application number
PCT/KR2017/002253
Other languages
French (fr)
Korean (ko)
Inventor
이경일
이승호
김회서
박연아
이한명
Original Assignee
(사)아이비에스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (사)아이비에스코리아 filed Critical (사)아이비에스코리아
Priority to PCT/KR2017/002253 priority Critical patent/WO2018159873A1/en
Publication of WO2018159873A1 publication Critical patent/WO2018159873A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/14Payment architectures specially adapted for billing systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Definitions

  • the present invention relates to an integrated evaluation and diagnostic method for building energy, and more particularly, to a building energy that can evaluate and diagnose the energy performance of an existing building in consideration of the operation status of an existing building rather than a new building.
  • Integrated assessment diagnostic method Integrated assessment diagnostic method.
  • the energy analysis program is a simulation program for evaluating the energy consumption and the cost of a building, and includes energy plus and trnssys.
  • the conventional building energy simulation is for professional use, and there is a problem in that the contents of the input unit to be input are very many.
  • the reliability of the existing building is low because the operation status of the existing building without a building energy management system (BEMS) is not considered.
  • BEMS building energy management system
  • An object of the present invention is to provide an integrated evaluation diagnostic method for building energy for improving the building energy efficiency for an existing building.
  • An integrated evaluation diagnostic method for building energy includes the steps of: inputting weather data of an area in which a building is located; Building general information including the area where the building is located, the purpose of the area where the building is located, building operation information including the days and hours of use of the building, occupancy density, human body heat generation, device heating density, and lighting heating density.
  • Inputting a usage profile of the building including indoor heating information including; Inputting design information of the building including the envelope information of the building and thermal property information of the envelope; Inputting facility information of the building including information on the air conditioning, heat source, and power generation facilities installed in the building; Calculating a virtual energy yield and a virtual energy consumption for the building from a building energy simulation model preset using the usage profile of the building and the design information of the building; Measuring actual energy consumption of the building by using facility information of the building and a meter for each energy source installed in the building; Evaluating the energy performance of the building by analyzing the weather data, the virtual energy yield, the virtual energy expenditure, and the actual energy expenditure.
  • the integrated evaluation diagnostic system for building energy has an advantage of evaluating energy performance more accurately and efficiently by evaluating building energy performance in consideration of both virtual energy consumption and actual energy consumption.
  • FIG. 1 is a view schematically showing the configuration of an integrated evaluation diagnostic system for building energy according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for assessing integrated assessment of building energy according to an embodiment of the present invention.
  • FIG. 3 is a view showing a sheet for inputting a use profile of a building according to an embodiment of the present invention.
  • FIG. 4 is a view showing a sheet for inputting the envelope information of the building according to an embodiment of the present invention.
  • FIG. 5 is a view showing a sheet for inputting the thermal property information for the outer shell of the building according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a sheet for inputting information about an air conditioning system and a heat source system among facility information of a building according to an exemplary embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a sheet for inputting information on an auxiliary device, a hot water supply system, a lighting control system, and other power systems among facility information of a building according to an exemplary embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a sheet for inputting control information of a heating and hot water supply system among facility information of a building according to an exemplary embodiment of the present invention.
  • FIG. 9 is a view showing a sheet for inputting the control information of the cooling, ventilation, lighting system of the facility information of the building according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a sheet for inputting information of a renewable energy system among facility information of a building according to an exemplary embodiment of the present invention.
  • 11 is a view showing the measurement data of the energy source and the usage amount of each energy source of the building according to an embodiment of the present invention.
  • FIG. 12 is a view showing a sheet for inputting weather data of a building according to an embodiment of the present invention.
  • FIG. 13 is a view showing a sheet for inputting schedule information of a building according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing the configuration of an integrated evaluation diagnostic system for building energy according to an embodiment of the present invention.
  • the integrated evaluation diagnostic system for building energy includes an input unit 10, a meter 20, a simulation unit 30, an actual energy consumption evaluation / diagnostic unit 40, and And an output unit 50.
  • the input unit 10 is a sheet for inputting weather data, a usage profile, design information, and facility information.
  • the input unit 10 may be directly input by the user, and data previously stored in a separate database or program may be selected and input.
  • the weather data includes outside air temperature, humidity, wind speed, and solar radiation in the area where the building is located.
  • weather data of the area may be automatically selected and input.
  • the meteorological data is monthly data of a year for measuring an amount of energy used by an energy source of the building.
  • monthly outside air temperature, monthly wind speed, monthly solar radiation, and the like For example, monthly outside air temperature, monthly wind speed, monthly solar radiation, and the like.
  • the present invention is not limited thereto, and the weather data may include at least two years of weather data.
  • the weather data may be directly input by the user or may use weather data stored in a separate program or database.
  • the usage profile includes building general information, building operation information, and indoor heat generation information.
  • the building general information includes an identification ID of the building, an area in which the building is located, a use of the area in which the building is located, a total floor area of the building, the number of floors of the building, a floor height of the building, a ceiling of the building, and the air conditioning of the building. Include area ratios.
  • the area where the building is located provides a list of 13 cities in Korea, including Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Gangneung, Wonju, Chuncheon, Jeonju, Cheongju, Mokpo, and Jeju. You can enter from a list.
  • the weather data may be automatically selected as the weather data of the region.
  • the use of the area in which the building is located is also called a terrain, and can be selected and input from open areas, countryside, and downtown.
  • the use of the area can be used later for wind power generation systems and for calculating the amount of infiltration.
  • the total floor area of the building, the number of floors of the building, the floor height of the building, the ceiling of the building, and the air conditioning area ratio of the building can be collected and input from the design drawing of the building.
  • the building operation information includes a use day and a use time of the building.
  • the days of use of the building may be entered in units of weeks. For example, if the building is used from Monday to Friday, you can select and enter the number 5.
  • the use time of the building may be divided into a weekday use time and a weekend use time, and the use time of the building may be input from 24 hours per day. For example, if a building is used from 9 to 18:00 during the week, the number 9 can be selected and entered.
  • the indoor heat generation information includes occupant density, human body heat generation amount, device heat generation density, and illumination heat generation density.
  • the indoor heat generation information may include a heating set temperature or a cooling set temperature.
  • the occupancy of the occupancy can be input to the occupancy of the air conditioning unit per unit area. For example, it can be entered as 0.14 to 0.25 / m 2 .
  • the calorific value of the human body may input a calorific value per occupant of the patient. For example, you can input 116 ⁇ 121W / in.
  • the heat generation density of the device is input to the heat generation amount per unit area of the office equipment, TV, etc. in the air conditioning room.
  • the illumination heating density may input an amount of heat generated per unit area of illumination in the air conditioning room.
  • the design information may be collected and input from a design drawing of the building.
  • the envelope information includes the heat capacity, the amount of infiltration, the orientation and area of the opaque envelope, and the orientation and area of the transparent envelope.
  • the heat capacity of the building can be input with reference to the cross-sectional detail of the design drawing.
  • the amount of infiltration may be input to the amount of inlet air through the shell of the building.
  • the area with respect to the said shell inputs the total area for each orientation.
  • the area of the shell may be input by referring to a plan view and an elevation view of the design drawing.
  • the opaque envelope includes a roof or a wall, and inputs the remaining area excluding the area of the transparent envelope for each orientation.
  • the transparent shell includes windows and the like. For example, when the area of the south facing shell is 100, if the area of the opaque shell is 70, the transparent outer shell area is 30.
  • heat property information on the outer cover of the design information includes a heat permeability (U-value), a solar heat capture coefficient (SHGC), an absorption rate, and an emissivity. That is, the heat transmission rate, the absorption rate, and the emissivity for the opaque sheath may be input, and the heat transmission rate, the heat radiation acquisition coefficient, and the overhang angle for the transparent sheath may be input.
  • the heat transmission rate may be input by referring to a drywall list and a guide included in the design drawing.
  • the solar thermal acquisition coefficient may be input by referring to a window list and a guide diagram of the design drawing.
  • the absorptivity and emissivity can also be input with reference to the cross-sectional details of the design drawing.
  • the facility information includes information on air conditioning, heat sources, and power generation facilities installed in the building. That is, the facility information includes information on an air conditioning system, a heat source system, an air conditioning system auxiliary device, a hot water supply system, a lighting control system, other power systems, control of various systems, and a renewable energy related system.
  • FIG. 6 shows a sheet for inputting information about the air conditioning system and the heat source system among the facility information.
  • information on the air conditioning system (HVAC) in the facility information includes a type, a ventilation method, an outside air introduction amount, a heat recovery device, an exhaust recycle, a cooling, and a heating air supply temperature.
  • the type, ventilation method, and heat recovery device may be input with reference to the equipment list included in the facility drawing.
  • the information on the heat source system among the facility information includes the type of system, efficiency, and load charge ratio.
  • the type and efficiency of the system can be entered with reference to the equipment list included in the facility drawing.
  • the load charge ratio may be arbitrarily input by the user.
  • FIG. 7 shows a sheet for inputting information on an auxiliary device, a hot water supply system, a lighting control system, and other power systems among the facility information.
  • information on the air conditioning system auxiliary device among the facility information includes fan specific power, usage, and pump automatic control ratio.
  • the fan specific power and use can be input with reference to the equipment list.
  • the fan specific power is an amount of power used by the fan to supply a flow rate of 1 liter per second.
  • the fan specific power can be entered as one of 1 to 10, where 1 is good, 5 is average and 10 is bad.
  • the pump automatic control ratio the automatic control diagram can be used.
  • the information on the hot water supply system among the facility information includes the type of system, the efficiency, the amount of hot water required per person per day, and the pipe heat loss rate.
  • the efficiency set in the program may be applied, and when the use of the user input value is selected, the user input value may be reflected.
  • the information on the lighting control system among the facility information includes a lighting control method.
  • the lighting control method includes an illumination intensity control, a dimming control, and a room detection control.
  • FIG. 8 shows control information of a heating and hot water supply system among the facility information
  • FIG. 9 shows control information of a cooling, ventilation and lighting system among the facility information.
  • control information of various systems among the facility information includes information on heating system control, hot water supply control, cooling system control, ventilation system control, and lighting system control.
  • the control information may select and input a function by reflecting a building automation and control system (BACS) of the building.
  • the BACS grade of each system is determined as the lowest grade in each evaluation item. That is, if any one of the plurality of evaluation items is a D grade, the system grade is determined as a D grade.
  • information on a renewable energy related system among the facility information includes information about a solar hot water supply system, a solar power generation system, and a wind power generation system.
  • the information about the solar hot water supply system includes whether a program default value is used, a collector type, a collector area, a collector orientation, a collector slope, a solar heat storage capacity, and the like.
  • the information about the photovoltaic power generation system includes whether program default settings are used, a photovoltaic module type, a module area, a module orientation, a module tilt, a solar radiation blocking level, and an installation method.
  • the solar radiation blocking level refers to a rate at which solar radiation does not reach the solar module due to external obstacles such as surrounding buildings or trees.
  • the information on the wind power generation system includes whether to use the program default value, generator height, generator turbine diameter and power generation capacity.
  • the program default setting value may be used by selecting yes in whether to use the program default setting value.
  • the meter 20 measures the usage amount of each energy source of the facilities installed in the building.
  • the meter 20 includes a power meter, a calorimeter, a flow meter, a wind meter, a gas meter and the like.
  • 11 is a view showing the measurement data of the energy source and the usage amount of each energy source of the building.
  • the meter 20 sets energy sources to be used according to cooling, heating and hot water supply systems of buildings, and measures monthly energy source usage for each energy source.
  • the economic feasibility may be analyzed using the measured energy source usage and the energy cost stored in the program.
  • the simulation unit 30 includes a commercially available dynamic simulation program such as Energy Plus or Trnsys.
  • the simulation unit 30 calculates a virtual energy production amount and a virtual energy consumption amount for the building from a preset building energy simulation model using the use profile of the building and the design information of the building.
  • the actual energy consumption evaluation / diagnosis unit 40 is a program for evaluating the energy consumption for each energy source by collecting and analyzing the usage amounts for each energy source measured by the meter 20.
  • the output unit 50 the virtual energy output calculated in the simulation unit 30, the virtual energy consumption, the amount of energy used by the energy source measured by the meter 20, the actual energy consumption evaluation / diagnosis unit 40 Output at least one of the energy consumption evaluation results determined in step.
  • FIG. 2 is a flowchart illustrating a method for assessing integrated assessment of building energy according to an embodiment of the present invention.
  • the simulation unit 30 executes a simulation from a building energy simulation model set in advance using the use file and the design information. (S2)
  • the values input from the input unit 10 are loaded to execute a simulation to calculate energy production and energy consumption for the building (S3).
  • the calculated energy production amount and energy consumption amount are imaginary values because they are calculated through simulation.
  • the virtual energy consumption amount may be displayed as the energy use amount and the energy use amount by the output unit 50.
  • the amount of use of each energy use and the amount of use of each energy source may be displayed separately by year and month.
  • the energy use may be classified into heating, cooling, hot water supply, lighting, ventilation, and the like.
  • the energy source may be classified into electricity, gas, diesel, kerosene, district heating, district cooling, and the like.
  • the energy usage for each energy use may be expressed as energy consumption per unit area and CO 2 emissions per unit area.
  • the virtual energy consumption may be analyzed by comparing building energy statistics stored in advance in a database or the like.
  • the actual energy consumption evaluation / diagnosis unit 40 measures and evaluates the actual energy consumption based on the facility information of the building and the value measured by the meter 20. (S4)
  • the value measured by the meter 20 can be used as it is without performing correction. Meanwhile, the facility information of the building input through the input unit 10 may be corrected.
  • the virtual energy consumption calculated through the simulation and the actual energy consumption measured by the meter may be compared and analyzed to determine the current energy consumption level of the building.
  • the energy consumption reduction factor may be determined by comparing the virtual energy consumption with the actual energy consumption.
  • the energy usage distribution of the similar building group having similar conditions to the building may be determined from a preset database to determine the energy efficiency level of the building.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Finance (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Geometry (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An integrated evaluation diagnosis system for building energy, according to the present invention, has an advantage of being capable of more accurately and effectively evaluating energy performance by evaluating building energy performance in consideration of both virtual energy consumption and real energy consumption.

Description

건물 에너지에 대한 통합 평가 진단 방법Integrated assessment diagnostic method for building energy
본 발명은 건물 에너지에 대한 통합 평가 진단 방법에 관한 것으로서, 보다 상세하게는 신축 건물이 아닌 기존 건축 건물의 운영 현황을 고려하여 기존 건축 건물에 대한 에너지 성능을 평가하고 진단할 수 있는 건물 에너지에 대한 통합 평가 진단 방법에 관한 것이다.The present invention relates to an integrated evaluation and diagnostic method for building energy, and more particularly, to a building energy that can evaluate and diagnose the energy performance of an existing building in consideration of the operation status of an existing building rather than a new building. Integrated assessment diagnostic method.
건물 에너지 시뮬레이션은 건물의 전체 또는 일부 시스템의 에너지 성능을 평가하기 위해서 컴퓨터 기반의 에너지 분석 프로그램을 이용하여 에너지 모델을 만드는 것을 의미한다. 상기 에너지 분석 프로그램은, 건물의 에너지 사용량 및 비용 등을 평가할 수 있는 시뮬레이션 프로그램이며, 에너지 플러스(Energy plus)나 트랜시스(Trnsys) 등이 있다. Building energy simulation means creating an energy model using a computer-based energy analysis program to evaluate the energy performance of all or part of a building's system. The energy analysis program is a simulation program for evaluating the energy consumption and the cost of a building, and includes energy plus and trnssys.
그러나, 종래의 건물 에너지 시뮬레이션은 전문가용이며 입력해야 되는 입력부의 내용이 매우 많은 문제점이 있다. 또한, 건물 에너지 관리 시스템(BEMS)이 설치되지 않은 기존 건축 건물의 운영 현황이 고려되지 않기 때문에 기존 건축 건물에 대해서는 신뢰성이 낮은 문제점이 있다. However, the conventional building energy simulation is for professional use, and there is a problem in that the contents of the input unit to be input are very many. In addition, there is a problem that the reliability of the existing building is low because the operation status of the existing building without a building energy management system (BEMS) is not considered.
본 발명의 목적은, 기존 건축 건물을 대상으로 건물 에너지 효율 향상을 위한 건물 에너지에 대한 통합 평가 진단 방법을 제공하는 데 있다. An object of the present invention is to provide an integrated evaluation diagnostic method for building energy for improving the building energy efficiency for an existing building.
본 발명에 따른 건물 에너지에 대한 통합 평가 진단 방법은, 건물이 위치한 지역의 기상 데이터를 입력하는 단계와; 상기 건물이 위치한 지역, 상기 건물이 위치한 지역의 용도를 포함한 건물 일반 정보와, 상기 건물의 이용 일수와 이용시간을 포함한 건물 운영 정보와, 재실 인원 밀도, 인체 발열량, 기기 발열 밀도, 조명 발열 밀도를 포함한 실내 발열 정보를 포함하는 상기 건물의 용도 프로파일을 입력하는 단계와; 상기 건물의 외피 정보와 상기 외피에 대한 열속성 정보를 포함한 상기 건물의 설계 정보를 입력하는 단계와; 상기 건물에 설치된 공조, 열원 및 발전 설비들에 대한 정보를 포함한 상기 건물의 설비 정보를 입력하는 단계와; 상기 건물의 용도 프로파일과 상기 건물의 설계 정보를 이용하여 미리 설정된 건물 에너지 시뮬레이션 모델로부터 상기 건물에 대한 가상의 에너지 생산량과 가상의 에너지 소비량을 계산하는 단계와; 상기 건물의 설비 정보와 상기 건물에 설치된 에너지원별 계량기를 이용하여 상기 건물에 대한 실제 에너지 소비량을 측정하는 단계와; 상기 기상 데이터, 상기 가상의 에너지 생산량, 상기 가상의 에너지 소비량, 상기 실제 에너지 소비량을 분석하여, 상기 건물의 에너지 성능을 평가하는 단계를 포함한다.An integrated evaluation diagnostic method for building energy according to the present invention includes the steps of: inputting weather data of an area in which a building is located; Building general information including the area where the building is located, the purpose of the area where the building is located, building operation information including the days and hours of use of the building, occupancy density, human body heat generation, device heating density, and lighting heating density. Inputting a usage profile of the building including indoor heating information including; Inputting design information of the building including the envelope information of the building and thermal property information of the envelope; Inputting facility information of the building including information on the air conditioning, heat source, and power generation facilities installed in the building; Calculating a virtual energy yield and a virtual energy consumption for the building from a building energy simulation model preset using the usage profile of the building and the design information of the building; Measuring actual energy consumption of the building by using facility information of the building and a meter for each energy source installed in the building; Evaluating the energy performance of the building by analyzing the weather data, the virtual energy yield, the virtual energy expenditure, and the actual energy expenditure.
본 발명에 따른 건물 에너지에 대한 통합 평가 진단 시스템은, 가상의 에너지 소비량과 실제 에너지 소비량을 모두 고려하여 건물 에너지 성능을 평가함으로써, 보다 정확하고 효율적으로 에너지 성능을 평가할 수 있는 이점이 있다. The integrated evaluation diagnostic system for building energy according to the present invention has an advantage of evaluating energy performance more accurately and efficiently by evaluating building energy performance in consideration of both virtual energy consumption and actual energy consumption.
도 1은 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 시스템의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of an integrated evaluation diagnostic system for building energy according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 방법을 나타낸 순서도이다. 2 is a flowchart illustrating a method for assessing integrated assessment of building energy according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 건물의 용도 프로파일을 입력하는 시트를 나타낸 도면이다.3 is a view showing a sheet for inputting a use profile of a building according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 건물의 외피 정보를 입력하는 시트를 나타낸 도면이다.4 is a view showing a sheet for inputting the envelope information of the building according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 건물의 외피에 대한 열속성 정보를 입력하는 시트를 나타낸 도면이다. 5 is a view showing a sheet for inputting the thermal property information for the outer shell of the building according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 건물의 설비 정보 중에서 공조 시스템과 열원 시스템에 대한 정보를 입력하는 시트를 나타내는 도면이다. FIG. 6 is a diagram illustrating a sheet for inputting information about an air conditioning system and a heat source system among facility information of a building according to an exemplary embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 건물의 설비 정보 중에서 보조 기기, 급탕 시스템, 조명 제어 시스템 및 기타 전력 시스템에 대한 정보를 입력하는 시트를 나타내는 도면이다.FIG. 7 is a diagram illustrating a sheet for inputting information on an auxiliary device, a hot water supply system, a lighting control system, and other power systems among facility information of a building according to an exemplary embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 건물의 설비 정보 중에서 난방, 급탕 시스템의 제어 정보를 입력하는 시트를 나타내는 도면이다.8 is a diagram illustrating a sheet for inputting control information of a heating and hot water supply system among facility information of a building according to an exemplary embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 건물의 설비 정보 중에서 냉방, 환기, 조명시스템의 제어 정보를 입력하는 시트를 나타내는 도면이다.9 is a view showing a sheet for inputting the control information of the cooling, ventilation, lighting system of the facility information of the building according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 건물의 설비 정보 중 신재생 에너지 시스템의 정보를 입력하는 시트를 나타내는 도면이다.10 is a diagram illustrating a sheet for inputting information of a renewable energy system among facility information of a building according to an exemplary embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 건물의 에너지원 및 에너지원별 사용량의 측정 데이터를 나타낸 도면이다. 11 is a view showing the measurement data of the energy source and the usage amount of each energy source of the building according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 건물의 기상 데이터를 입력하는 시트를 나타낸 도면이다.12 is a view showing a sheet for inputting weather data of a building according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 건물의 스케줄 정보를 입력하는 시트를 나타낸 도면이다.13 is a view showing a sheet for inputting schedule information of a building according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다. Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 시스템의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of an integrated evaluation diagnostic system for building energy according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 시스템은, 입력부(10), 계량기(20), 시뮬레이션부(30), 실제 에너지 소비량 평가/진단부(40) 및 출력부(50)를 포함한다.Referring to FIG. 1, the integrated evaluation diagnostic system for building energy according to an embodiment of the present invention includes an input unit 10, a meter 20, a simulation unit 30, an actual energy consumption evaluation / diagnostic unit 40, and And an output unit 50.
상기 입력부(10)는, 기상 데이터, 용도 프로파일, 설계 정보 및 설비 정보를 입력하기 위한 시트이다. 상기 입력부(10)는, 사용자가 직접 입력하는 것도 가능하고, 별도의 데이터베이스나 프로그램에 기저장된 데이터가 선택되어 입력될 수 있다. The input unit 10 is a sheet for inputting weather data, a usage profile, design information, and facility information. The input unit 10 may be directly input by the user, and data previously stored in a separate database or program may be selected and input.
상기 기상 데이터는, 상기 건물이 위치한 지역의 외기 온도, 습도, 풍속, 일사량을 포함한다. 상기 건물이 위치한 지역이 선택되면, 상기 지역의 기상 데이터가 자동 선택되어 입력될 수 있다. The weather data includes outside air temperature, humidity, wind speed, and solar radiation in the area where the building is located. When the area where the building is located is selected, weather data of the area may be automatically selected and input.
도 12를 참조하면, 상기 기상 데이터는, 상기 건물의 에너지원별 사용량을 측정하는 연도의 월별 데이터이다. 예를 들어, 월별 외기온도, 월별 풍속, 월별 일사량 등을 포함한다. 다만, 이에 한정되지 않고, 상기 기상 데이터는 적어도 두 해(Year)의 기상 데이터를 포함할 수 있다. 또한, 상기 기상 데이터는, 사용자가 직접 입력하는 것도 가능하고, 별도의 프로그램이나 데이터베이스에 저장된 기상 데이터를 사용할 수도 있다. Referring to FIG. 12, the meteorological data is monthly data of a year for measuring an amount of energy used by an energy source of the building. For example, monthly outside air temperature, monthly wind speed, monthly solar radiation, and the like. However, the present invention is not limited thereto, and the weather data may include at least two years of weather data. In addition, the weather data may be directly input by the user or may use weather data stored in a separate program or database.
도 3을 참조하면, 상기 용도 프로파일은, 건물 일반 정보, 건물 운영 정보 및 실내 발열 정보를 포함한다. Referring to FIG. 3, the usage profile includes building general information, building operation information, and indoor heat generation information.
상기 건물 일반 정보는, 상기 건물의 식별 아이디, 상기 건물이 위치한 지역, 상기 건물이 위치한 지역의 용도, 상기 건물의 연면적, 상기 건물의 층수, 상기 건물의 층고, 상기 건물의 천정고, 상기 건물의 공조면적 비율을 포함한다.The building general information includes an identification ID of the building, an area in which the building is located, a use of the area in which the building is located, a total floor area of the building, the number of floors of the building, a floor height of the building, a ceiling of the building, and the air conditioning of the building. Include area ratios.
예를 들면, 상기 건물이 위치한 지역은, 서울, 부산, 인천, 대구, 대전, 광주, 강릉, 원주, 춘천, 전주, 청주, 목포, 제주를 포함한 국내의 13개의 도시 목록을 제공하고, 상기 도시 목록 중에서 선택하여 입력할 수 있다. 상기 도시 목록 중에서 지역이 선택되면, 상기 기상 데이터는 상기 지역의 기상 데이터가 자동 선택될 수 있다. For example, the area where the building is located provides a list of 13 cities in Korea, including Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Gangneung, Wonju, Chuncheon, Jeonju, Cheongju, Mokpo, and Jeju. You can enter from a list. When a region is selected from the city list, the weather data may be automatically selected as the weather data of the region.
상기 건물이 위치한 지역의 용도는 지형이라고도 하며, 개활지, 시골, 도심지 중 선택하여 입력할 수 있다. 상기 지역의 용도는, 추후 풍력 발전 시스템과 침기량 계산에 사용될 수 있다.The use of the area in which the building is located is also called a terrain, and can be selected and input from open areas, countryside, and downtown. The use of the area can be used later for wind power generation systems and for calculating the amount of infiltration.
상기 건물의 연면적, 상기 건물의 층수, 상기 건물의 층고, 상기 건물의 천정고, 상기 건물의 공조면적 비율은, 상기 건물의 설계 도면으로부터 수집하여 입력할 수 있다. The total floor area of the building, the number of floors of the building, the floor height of the building, the ceiling of the building, and the air conditioning area ratio of the building can be collected and input from the design drawing of the building.
상기 건물 운영 정보는, 상기 건물의 이용 일수, 이용시간을 포함한다.The building operation information includes a use day and a use time of the building.
상기 건물의 이용 일수는 주(week) 단위로 입력할 수 있다. 예를 들어, 월요일부터 금요일까지 사용하는 건물인 경우, 숫자 5를 선택하여 입력할 수 있다.The days of use of the building may be entered in units of weeks. For example, if the building is used from Monday to Friday, you can select and enter the number 5.
상기 건물의 이용시간은 주중 이용 시간과 주말 이용 시간으로 구분하여 입력하고, 하루인 24시간 중에서 건물의 이용시간을 입력할 수 있다. 예를 들어, 주중에 9시부터 18시까지 사용하는 건물인 경우, 숫자 9를 선택하여 입력할 수 있다. The use time of the building may be divided into a weekday use time and a weekend use time, and the use time of the building may be input from 24 hours per day. For example, if a building is used from 9 to 18:00 during the week, the number 9 can be selected and entered.
상기 실내 발열 정보는, 재실 인원 밀도, 인체 발열량, 기기 발열 밀도, 조명 발열 밀도를 포함한다. 또한, 상기 실내 발열 정보에는 난방 설정 온도나 냉방 설정 온도를 포함한다.The indoor heat generation information includes occupant density, human body heat generation amount, device heat generation density, and illumination heat generation density. The indoor heat generation information may include a heating set temperature or a cooling set temperature.
상기 재실 인원 밀도는, 공조실 단위 면적당 재실 인원을 입력할 수 있다. 예를 들어, 0.14 내지 0.25인/m2으로 입력할 수 있다. The occupancy of the occupancy can be input to the occupancy of the air conditioning unit per unit area. For example, it can be entered as 0.14 to 0.25 / m 2 .
상기 인체 발열량은, 재실 인원 1인당 발열량을 입력할 수 있다. 예를 들어 116~121W/인으로 입력할 수 있다.The calorific value of the human body may input a calorific value per occupant of the patient. For example, you can input 116 ~ 121W / in.
상기 기기 발열 밀도는, 상기 공조실 내 사무기기, TV 등의 단위면적당 발열량을 입력한다.The heat generation density of the device is input to the heat generation amount per unit area of the office equipment, TV, etc. in the air conditioning room.
상기 조명 발열 밀도는, 상기 공조실 내 조명의 단위면적당 발열량을 입력할 수 있다. The illumination heating density may input an amount of heat generated per unit area of illumination in the air conditioning room.
한편, 상기 설계 정보는, 상기 건물의 외피 정보와 상기 외피에 대한 열속성 정보를 포함한다. 상기 설계정보는, 상기 건물의 설계 도면으로부터 수집하여 입력할 수 있다. On the other hand, the design information, the envelope information of the building and the thermal property information for the envelope. The design information may be collected and input from a design drawing of the building.
도 4를 참조하면, 상기 설계 정보 중에서 상기 외피 정보는, 상기 건물의 열용량, 침기량, 불투명 외피의 방위와 면적, 투명 외피의 방위와 면적을 포함한다. Referring to FIG. 4, among the design information, the envelope information includes the heat capacity, the amount of infiltration, the orientation and area of the opaque envelope, and the orientation and area of the transparent envelope.
상기 건물의 열용량은 상기 설계 도면의 단면 상세도를 참고하여 입력할 수 있다. 상기 침기량은, 상기 건물의 외피를 통한 외기 유입량을 입력할 수 있다. The heat capacity of the building can be input with reference to the cross-sectional detail of the design drawing. The amount of infiltration may be input to the amount of inlet air through the shell of the building.
상기 외피에 대한 면적은, 각 방위 별로 총 면적을 입력한다. 상기 외피에 대한 면적은, 상기 설계도면의 평면도 및 입면도를 참고하여 입력할 수 있다. 상기 불투명 외피는, 지붕이나 벽체를 포함하며, 각 방위별로 상기 투명 외피의 면적을 제외한 나머지 면적을 입력한다. 상기 투명 외피는, 창호 등을 포함한다. 예를 들어, 남향 외피의 면적이 100일 때, 불투명 외피의 면적이 70이면 투명 외피 면적은 30이다. The area with respect to the said shell inputs the total area for each orientation. The area of the shell may be input by referring to a plan view and an elevation view of the design drawing. The opaque envelope includes a roof or a wall, and inputs the remaining area excluding the area of the transparent envelope for each orientation. The transparent shell includes windows and the like. For example, when the area of the south facing shell is 100, if the area of the opaque shell is 70, the transparent outer shell area is 30.
도 5를 참조하면, 상기 설계 정보 중에서 상기 외피에 대한 열속성 정보는, 열관류율(U-value), 일사열 취득계수(SHGC), 흡수율 및 방사율을 포함한다. 즉, 상기 불투명 외피에 대한 열관류율, 흡수율 및 방사율을 입력할 수 있고, 상기 투명 외피에 대한 열관류율, 일사열 취득계수, 오버행 각도를 입력할 수 있다. Referring to FIG. 5, heat property information on the outer cover of the design information includes a heat permeability (U-value), a solar heat capture coefficient (SHGC), an absorption rate, and an emissivity. That is, the heat transmission rate, the absorption rate, and the emissivity for the opaque sheath may be input, and the heat transmission rate, the heat radiation acquisition coefficient, and the overhang angle for the transparent sheath may be input.
상기 열관류율은, 상기 설계도면에 포함된 건식 벽체 일람표 및 안내도를 참고하여 입력할 수 있다. 상기 일사열 취득계수는 상기 설계 도면의 창호 일람표 및 안내도를 참고하여 입력할 수 있다. 상기 흡수율과 방사율은 상기 설계 도면의 단면 상세도 참고하여 입력할 수 있다. The heat transmission rate may be input by referring to a drywall list and a guide included in the design drawing. The solar thermal acquisition coefficient may be input by referring to a window list and a guide diagram of the design drawing. The absorptivity and emissivity can also be input with reference to the cross-sectional details of the design drawing.
한편, 상기 설비 정보는, 상기 건물에 설치된 공조, 열원 및 발전 설비들에 대한 정보를 포함한다. 즉, 상기 설비 정보는, 공조 시스템, 열원 시스템, 공조계통 보조기기, 급탕 시스템, 조명 제어 시스템, 기타 전력 시스템, 각종 시스템의 제어, 및 신재생 에너지 관련 시스템에 대한 정보를 포함한다. Meanwhile, the facility information includes information on air conditioning, heat sources, and power generation facilities installed in the building. That is, the facility information includes information on an air conditioning system, a heat source system, an air conditioning system auxiliary device, a hot water supply system, a lighting control system, other power systems, control of various systems, and a renewable energy related system.
도 6은 상기 설비 정보 중에서 상기 공조 시스템과 상기 열원 시스템에 대한 정보를 입력하는 시트를 나타낸다. 6 shows a sheet for inputting information about the air conditioning system and the heat source system among the facility information.
도 6을 참조하면, 상기 설비 정보 중에서 상기 공조 시스템(HVAC)에 대한 정보는, 종류, 환기방식, 외기 도입량, 열회수장치, 배기 재순환, 냉,난방 급기 온도를 포함한다. 상기 종류, 환기방식 및 열회수 장치는 설비 도면에 포함된 장비 일람표를 참조하여 입력할 수 있다. Referring to FIG. 6, information on the air conditioning system (HVAC) in the facility information includes a type, a ventilation method, an outside air introduction amount, a heat recovery device, an exhaust recycle, a cooling, and a heating air supply temperature. The type, ventilation method, and heat recovery device may be input with reference to the equipment list included in the facility drawing.
상기 설비 정보 중에서 상기 열원 시스템에 대한 정보는, 시스템의 종류, 효율, 부하 담당비율을 포함한다. 상기 시스템의 종류나 효율은 상기 설비 도면에 포함된 장비 일람표를 참조하여 입력할 수 있다. 상기 부하 담당 비율은 사용자가 임의 입력할 수 있다.The information on the heat source system among the facility information includes the type of system, efficiency, and load charge ratio. The type and efficiency of the system can be entered with reference to the equipment list included in the facility drawing. The load charge ratio may be arbitrarily input by the user.
도 7은 상기 설비 정보 중에서 보조 기기, 급탕 시스템, 조명 제어 시스템 및 기타 전력 시스템에 대한 정보를 입력하는 시트를 나타낸다. 7 shows a sheet for inputting information on an auxiliary device, a hot water supply system, a lighting control system, and other power systems among the facility information.
도 7을 참조하면, 상기 설비 정보 중에서 공조계통 보조기기에 대한 정보는, 팬 비전력, 용도, 펌프 자동제어 비율을 포함한다. 상기 팬 비전력과 용도는 상기 장비 일람표를 참조하여 입력할 수 있다. 상기 팬 비전력(Specific power)은, 1초당 1리터의 유량을 공급하기 위해 팬에서 사용하는 전력량이다. 상기 팬 비전력은 1 내지 10 중의 하나의 수치로 입력할 수 있으며, 1은 좋음이고 5는 평균이며 10은 나쁨을 나타낼 수 있다. 상기 펌프 자동제어 비율은, 상기 자동제어 도면을 이용할 수 있다. Referring to FIG. 7, information on the air conditioning system auxiliary device among the facility information includes fan specific power, usage, and pump automatic control ratio. The fan specific power and use can be input with reference to the equipment list. The fan specific power is an amount of power used by the fan to supply a flow rate of 1 liter per second. The fan specific power can be entered as one of 1 to 10, where 1 is good, 5 is average and 10 is bad. As the pump automatic control ratio, the automatic control diagram can be used.
상기 설비 정보 중에서 급탕 시스템에 대한 정보는, 시스템 종류, 효율, 1인당 1일 요구 급탕량 및 배관 열손실률을 포함한다. 상기 급탕 시스템은 종류를 선택할 경우 프로그램 내부에 설정된 효율이 적용될 수 있고, 사용자 입력값 사용을 선택하면 사용자 입력값을 반영할 수 있다. The information on the hot water supply system among the facility information includes the type of system, the efficiency, the amount of hot water required per person per day, and the pipe heat loss rate. When the type of hot water supply system is selected, the efficiency set in the program may be applied, and when the use of the user input value is selected, the user input value may be reflected.
상기 설비 정보 중에서 조명 제어 시스템에 대한 정보는, 조명 제어 방법을 포함한다. 상기 조명 제어 방법은, 항 조도 제어, 디밍 제어, 재실 감지 제어를 포함한다. The information on the lighting control system among the facility information includes a lighting control method. The lighting control method includes an illumination intensity control, a dimming control, and a room detection control.
상기 설비 정보 중에서 기타 전력 사용 시스템은, 엘리베이터 등을 포함한다. 상기 엘리베이터의 전력 사용량 계산을 위해 엘리베이터 대수를 입력할 수 있다. Among the facility information, other power usage systems include elevators and the like. The number of elevators may be input to calculate the power consumption of the elevator.
도 8은 상기 설비 정보 중에서 난방, 급탕 시스템의 제어 정보를 나타내고, 도 9는 상기 설비 정보 중에서 냉방, 환기, 조명시스템의 제어 정보를 나타낸다.FIG. 8 shows control information of a heating and hot water supply system among the facility information, and FIG. 9 shows control information of a cooling, ventilation and lighting system among the facility information.
도 8 및 도 9를 참조하면, 상기 설비 정보 중에서 각종 시스템의 제어 정보는, 난방 시스템 제어, 급탕 공급 제어, 냉방 시스템 제어, 환기 시스템 제어 및 조명 시스템 제어에 대한 정보를 포함한다. 상기 제어 정보는, 상기 건물의 자동 제어 시스템(Building Automation and Control System, BACS)을 반영하여, 항목(function)을 선택 입력할 수 있다. 상기 각 시스템별 BACS 등급은 각 평가항목에서 가장 낮은 등급으로 결정된다. 즉, 복수의 평가항목들 중 하나의 항목이라도 D등급이면 그 시스템의 등급은 D등급으로 결정된다.8 and 9, control information of various systems among the facility information includes information on heating system control, hot water supply control, cooling system control, ventilation system control, and lighting system control. The control information may select and input a function by reflecting a building automation and control system (BACS) of the building. The BACS grade of each system is determined as the lowest grade in each evaluation item. That is, if any one of the plurality of evaluation items is a D grade, the system grade is determined as a D grade.
도 10은 상기 설비 정보 중에서 신재생 에너지 시스템의 제어 정보를 나타낸다.10 shows control information of the renewable energy system among the facility information.
도 10을 참조하면, 상기 설비 정보 중에서 신재생 에너지 관련 시스템에 대한 정보는, 태양열 급탕 시스템, 태양광 발전 시스템, 풍력 발전 시스템에 대한 정보를 포함한다.Referring to FIG. 10, information on a renewable energy related system among the facility information includes information about a solar hot water supply system, a solar power generation system, and a wind power generation system.
상기 태양열 급탕 시스템에 대한 정보는, 프로그램 기본 설정값 사용 여부, 집열기 종류, 집열기 면적, 집열기 방위, 집열기 기울기, 태양열 축열조 용량 등을 포함한다.The information about the solar hot water supply system includes whether a program default value is used, a collector type, a collector area, a collector orientation, a collector slope, a solar heat storage capacity, and the like.
상기 태양광 발전 시스템에 대한 정보는, 프로그램 기본 설정값 사용 여부, 광발전 모듈 종류, 모듈 면적, 모듈 방위, 모듈 기울기, 일사 차단 수준 및 설치 방법을 포함한다. 상기 일사 차단 수준은, 주변 건물이나 나무 등 외부 장애물로 인해 일사가 태양광 모듈에 도달하지 못하는 비율을 의미한다. The information about the photovoltaic power generation system includes whether program default settings are used, a photovoltaic module type, a module area, a module orientation, a module tilt, a solar radiation blocking level, and an installation method. The solar radiation blocking level refers to a rate at which solar radiation does not reach the solar module due to external obstacles such as surrounding buildings or trees.
상기 풍력 발전 시스템에 대한 정보는, 프로그램 기본 설정값 사용 여부, 발전기 높이, 발전기 터빈 지름 및 발전 용량을 포함한다. The information on the wind power generation system includes whether to use the program default value, generator height, generator turbine diameter and power generation capacity.
상기 신재생 시스템에 대한 정보가 없는 경우, 프로그램 기본 설정값 사용 여부에서 예를 선택하여 프로그램 기본 설정값을 사용할 수 있다.If there is no information on the new playback system, the program default setting value may be used by selecting yes in whether to use the program default setting value.
상기 계량기(20)는, 건물에 설치된 설비들의 에너지원별 사용량을 측정한다. 상기 계량기(20)는, 전력량계, 열량계, 유량계, 풍량계, 가스미터 등을 포함한다.The meter 20 measures the usage amount of each energy source of the facilities installed in the building. The meter 20 includes a power meter, a calorimeter, a flow meter, a wind meter, a gas meter and the like.
도 11은 건물의 에너지원 및 에너지원별 사용량의 측정 데이터를 나타낸 도면이다.11 is a view showing the measurement data of the energy source and the usage amount of each energy source of the building.
도 11을 참조하면, 상기 계량기(20)는, 건물의 냉방, 난방 및 급탕 시스템 등에 따라 각각 사용하는 에너지원을 설정하고, 각 에너지원별로 월별 에너지원 사용량을 측정한다. 상기 측정된 에너지원 사용량과 프로그램 내부에 저장된 에너지원 단가를 이용하여 경제성을 분석할 수 있다. Referring to FIG. 11, the meter 20 sets energy sources to be used according to cooling, heating and hot water supply systems of buildings, and measures monthly energy source usage for each energy source. The economic feasibility may be analyzed using the measured energy source usage and the energy cost stored in the program.
상기 시뮬레이션부(30)는, 에너지플러스(Energy Plus)나 트랜시스(Trnsys) 등과 같은 상용화된 동적 시뮬레이션 프로그램을 포함한다. 상기 시뮬레이션부(30)는, 상기 건물의 용도 프로파일과 상기 건물의 설계 정보를 이용하여 미리 설정된 건물 에너지 시뮬레이션 모델로부터 상기 건물에 대한 가상의 에너지 생산량과 가상의 에너지 소비량을 계산한다. The simulation unit 30 includes a commercially available dynamic simulation program such as Energy Plus or Trnsys. The simulation unit 30 calculates a virtual energy production amount and a virtual energy consumption amount for the building from a preset building energy simulation model using the use profile of the building and the design information of the building.
상기 실제 에너지 소비량 평가/진단부(40)는, 상기 계량기(20)에서 측정한 에너지원별 사용량들을 수집, 분석하여 에너지원별 에너지 소비량을 평가하는 프로그램이다.The actual energy consumption evaluation / diagnosis unit 40 is a program for evaluating the energy consumption for each energy source by collecting and analyzing the usage amounts for each energy source measured by the meter 20.
상기 출력부(50)는, 상기 시뮬레이션부(30)에서 계산된 가상의 에너지 생산량, 가상의 에너지 소비량, 상기 계량기(20)에서 측정한 에너지원별 사용량, 상기 실제 에너지 소비량 평가/진단부(40)에서 판단한 에너지 소비량 평가 결과 중 적어도 하나를 출력한다. The output unit 50, the virtual energy output calculated in the simulation unit 30, the virtual energy consumption, the amount of energy used by the energy source measured by the meter 20, the actual energy consumption evaluation / diagnosis unit 40 Output at least one of the energy consumption evaluation results determined in step.
한편, 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 방법을 설명하면 다음과 같다. Meanwhile, the integrated evaluation diagnostic method for building energy according to an embodiment of the present invention will be described.
도 2는 본 발명의 실시예에 따른 건물 에너지에 대한 통합 평가 진단 방법을 나타낸 순서도이다. 2 is a flowchart illustrating a method for assessing integrated assessment of building energy according to an embodiment of the present invention.
도 2를 참조하면, 먼저, 평가 진단을 하고자 하는 건물에 대한 기상 데이터, 용도 프로파일, 설계 정보 및 설비 정보를 입력한다.(S1)Referring to FIG. 2, first, weather data, a usage profile, design information, and facility information of a building to be evaluated are inputted (S1).
상기 시뮬레이션부(30)는, 상기 용도 파일과 상기 설계 정보를 이용하여, 미리 설정된 건물 에너지 시뮬레이션 모델로부터 시뮬레이션을 실행한다.(S2)The simulation unit 30 executes a simulation from a building energy simulation model set in advance using the use file and the design information. (S2)
상기 입력부(10)로부터 입력된 값들을 불러들여 시뮬레이션을 실행하여, 상기 건물에 대한 에너지 생산량과 에너지 소비량을 계산한다.(S3)The values input from the input unit 10 are loaded to execute a simulation to calculate energy production and energy consumption for the building (S3).
상기 계산된 에너지 생산량과 에너지 소비량은, 시뮬레이션을 통해 계산된 값이므로 가상의 값이다. The calculated energy production amount and energy consumption amount are imaginary values because they are calculated through simulation.
상기 가상의 에너지 소비량은, 상기 출력부(50)를 통해 에너지 용도별 사용량과 에너지원별 사용량으로 표시될 수 있다. 상기 에너지 용도별 사용량과 상기 에너지원별 사용량은, 연간과 월별로 구분하여 표시할 수 있다. 상기 에너지 용도는, 난방, 냉방, 급탕, 조명, 환기 및 기타 등으로 구분될 수 있다. 상기 에너지원은 전기, 가스, 경유, 등유, 지역난방, 지역냉방 등으로 구분될 수 있다. The virtual energy consumption amount may be displayed as the energy use amount and the energy use amount by the output unit 50. The amount of use of each energy use and the amount of use of each energy source may be displayed separately by year and month. The energy use may be classified into heating, cooling, hot water supply, lighting, ventilation, and the like. The energy source may be classified into electricity, gas, diesel, kerosene, district heating, district cooling, and the like.
상기 에너지 용도별 사용량은, 단위 면적당 에너지 소비량과 단위 면적당 CO2 배출량으로 나타낼 수 있다.The energy usage for each energy use may be expressed as energy consumption per unit area and CO 2 emissions per unit area.
상기 가상의 에너지 소비량은, 데이터베이스 등에 미리 저장된 건물 에너지 통계자료와 비교하여 분석할 수 있다. The virtual energy consumption may be analyzed by comparing building energy statistics stored in advance in a database or the like.
또한, 상기 실제 에너지 소비량 평가/진단부(40)는, 상기 건물의 설비 정보와 상기 계량기(20)에서 측정된 값을 통해 실제 에너지 소비량을 측정하고, 평가한다.(S4)In addition, the actual energy consumption evaluation / diagnosis unit 40 measures and evaluates the actual energy consumption based on the facility information of the building and the value measured by the meter 20. (S4)
상기 계량기(20)에서 측정된 값은 보정을 수행하지 않고 그대로 이용할 수 있다. 한편, 상기 입력부(10)를 통해 입력된 상기 건물의 설비 정보는 보정될 수 있다. The value measured by the meter 20 can be used as it is without performing correction. Meanwhile, the facility information of the building input through the input unit 10 may be corrected.
상기와 같이 시뮬레이션을 통해 계산된 가상의 에너지 소비량과, 상기 계량기를 통해 측정된 실제 에너지 소비량을 비교 분석하여, 현재 건물의 에너지 사용량 수준을 판단할 수 있다.As described above, the virtual energy consumption calculated through the simulation and the actual energy consumption measured by the meter may be compared and analyzed to determine the current energy consumption level of the building.
또한, 가상의 에너지 소비량과 상기 실제 에너지 소비량을 비교하여, 에너지 소비량 절감 요소를 판단할 수 있다. In addition, the energy consumption reduction factor may be determined by comparing the virtual energy consumption with the actual energy consumption.
또한, 미리 설정된 데이터베이스로부터 상기 건물과 유사한 조건을 갖는 유사건물군의 에너지 사용량 분포를 확인하여, 상기 건물의 에너지 효율 등급을 판단할 수 있다.In addition, the energy usage distribution of the similar building group having similar conditions to the building may be determined from a preset database to determine the energy efficiency level of the building.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명에 따르면 건물의 에너지 성능을 보다 정확하고 효과적으로 진단하고 평가할 수 있다.According to the present invention it is possible to diagnose and evaluate the energy performance of the building more accurately and effectively.

Claims (10)

  1. 건물이 위치한 지역의 기상 데이터를 입력하는 단계와;Inputting weather data of the area where the building is located;
    상기 건물이 위치한 지역, 상기 건물이 위치한 지역의 용도를 포함한 건물 일반 정보와, 상기 건물의 이용 일수와 이용시간을 포함한 건물 운영 정보와, 재실 인원 밀도, 인체 발열량, 기기 발열 밀도, 조명 발열 밀도를 포함한 실내 발열 정보를 포함하는 상기 건물의 용도 프로파일을 입력하는 단계와;Building general information including the area where the building is located, the purpose of the area where the building is located, building operation information including the days and hours of use of the building, occupancy density, human body heat generation, device heating density, and lighting heating density. Inputting a usage profile of the building including indoor heating information including;
    상기 건물의 외피 정보와 상기 외피에 대한 열속성 정보를 포함한 상기 건물의 설계 정보를 입력하는 단계와;Inputting design information of the building including the envelope information of the building and thermal property information of the envelope;
    상기 건물에 설치된 공조, 열원 및 발전 설비들에 대한 정보를 포함한 상기 건물의 설비 정보를 입력하는 단계와;Inputting facility information of the building including information on the air conditioning, heat source, and power generation facilities installed in the building;
    상기 건물의 용도 프로파일과 상기 건물의 설계 정보를 이용하여 미리 설정된 건물 에너지 시뮬레이션 모델로부터 상기 건물에 대한 가상의 에너지 생산량과 가상의 에너지 소비량을 계산하는 단계와;Calculating a virtual energy yield and a virtual energy consumption for the building from a building energy simulation model preset using the usage profile of the building and the design information of the building;
    상기 건물의 설비 정보와 상기 건물에 설치된 에너지원별 계량기를 이용하여 상기 건물에 대한 실제 에너지 소비량을 측정하는 단계와;Measuring actual energy consumption of the building by using facility information of the building and a meter for each energy source installed in the building;
    상기 기상 데이터, 상기 가상의 에너지 생산량, 상기 가상의 에너지 소비량, 상기 실제 에너지 소비량을 분석하여, 상기 건물의 에너지 성능을 평가하는 단계를 포함하는 건물 에너지에 대한 통합 평가 진단 방법.Evaluating the energy performance of the building by analyzing the weather data, the virtual energy yield, the virtual energy expenditure, and the actual energy expenditure.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 건물의 에너지 성능을 평가하는 단계는,Evaluating the energy performance of the building,
    미리 설정된 데이터베이스로부터 상기 건물과 유사한 조건을 갖는 유사건물군의 에너지 사용량 분포를 이용하여, 상기 건물의 에너지 효율 등급을 판단하는 건물 에너지에 대한 통합 평가 진단 방법. Integrated evaluation method for building energy to determine the energy efficiency class of the building by using the energy usage distribution of the similar building group having similar conditions to the building from a preset database.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 건물의 에너지 성능을 평가하는 단계는,Evaluating the energy performance of the building,
    상기 가상의 에너지 소비량과 상기 실제 에너지 소비량을 비교하여, 에너지 소비량 절감 요소를 판단하는 건물 에너지에 대한 통합 평가 진단 방법. And comparing the virtual energy consumption with the actual energy consumption to determine an energy consumption reduction factor.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 기상 데이터는, 상기 건물의 에너지 소비량을 측정하는 연도의 월별 외기온도, 습도, 풍속, 직일사량 중 적어도 하나를 포함하고, The meteorological data includes at least one of monthly external air temperature, humidity, wind speed, and direct sunlight in a year for measuring energy consumption of the building,
    사용자가 직접 입력하거나 데이터베이스에 미리 저장된 기상 데이터를 이용하는 건물 에너지에 대한 통합 평가 진단 방법.Integrated assessment diagnostic method for building energy, either directly entered by the user or using pre-stored weather data in a database.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 건물 일반 정보는, The building general information,
    상기 건물의 연면적, 층수, 층고, 천정고, 공조면적 비율을 더 포함하고, Further comprising the ratio of total floor area, number of floors, floor height, ceiling height, air conditioning area of the building,
    상기 건물의 설계 도면으로부터 수집하여 입력하는 건물 에너지에 대한 통합 평가 진단 방법.Integrated assessment diagnostic method for the building energy collected from the design drawing of the building and input.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 건물의 외피 정보는, The envelope information of the building,
    상기 건물의 열용량, 침기량, 불투명 외피의 방위와 면적, 투명 외피의 방위와 면적을 포함하는 건물 에너지에 대한 통합 평가 진단 방법.An integrated assessment diagnostic method for building energy comprising heat capacity of said building, infiltration amount, orientation and area of opaque envelope, orientation and area of transparent envelope.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 외피에 대한 열속성 정보는, 열관류율(U-value), 일사열 취득계수(SHGC), 흡수율, 방사율을 포함하는 건물 에너지에 대한 통합 평가 진단 방법.The thermal property information on the envelope, the integrated evaluation diagnostic method for building energy, including heat transmittance (U-value), solar heat acquisition coefficient (SHGC), absorption, emissivity.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 설비들에 대한 정보는,Information about the facilities,
    상기 건물에 설치된 공조 시스템, 열원 시스템, 공조계통 보조기기, 급탕 시스템, 조명 제어 시스템, 기타 전력 시스템, 각종 시스템의 제어 및 신재생 에너지 관련 시스템에 대한 정보 중 적어도 하나를 포함하고,At least one of information on an air conditioning system, a heat source system, an air conditioning system auxiliary device, a hot water supply system, a lighting control system, other power systems, various systems, and renewable energy related systems installed in the building,
    상기 건물의 설비 도면과 장비 일람표로부터 수집하여 입력하는 건물 에너지에 대한 통합 평가 진단 방법.Integrated assessment and diagnostic method for building energy collected and input from the facility drawings and equipment list of the building.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 가상의 에너지 소비량은,The virtual energy consumption is,
    단위 면적당 에너지 소비량과 단위 면적당 CO2 배출량을 포함하는 건물 에너지에 대한 통합 평가 진단 방법.Integrated assessment diagnostic method for building energy, including energy consumption per unit area and CO 2 emissions per unit area.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 가상의 에너지 소비량은,The virtual energy consumption is,
    냉방, 난방, 급탕, 조명, 환기에 따라 구분하는 에너지 용도별 소비량과, 전기, 가스, 경유, 등유, 지역난방, 지역 냉방에 따라 구분하는 에너지원별 소비량을 구분하여 표시하는 건물 에너지에 대한 통합 평가 진단 방법.Integrated assessment diagnosis on energy consumption classified by cooling, heating, hot water supply, lighting and ventilation, and energy consumption by energy sources classified according to electricity, gas, diesel, kerosene, district heating, and district cooling Way.
PCT/KR2017/002253 2017-03-02 2017-03-02 Integrated evaluation diagnosis method for building energy WO2018159873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002253 WO2018159873A1 (en) 2017-03-02 2017-03-02 Integrated evaluation diagnosis method for building energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002253 WO2018159873A1 (en) 2017-03-02 2017-03-02 Integrated evaluation diagnosis method for building energy

Publications (1)

Publication Number Publication Date
WO2018159873A1 true WO2018159873A1 (en) 2018-09-07

Family

ID=63370983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002253 WO2018159873A1 (en) 2017-03-02 2017-03-02 Integrated evaluation diagnosis method for building energy

Country Status (1)

Country Link
WO (1) WO2018159873A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109992908A (en) * 2019-04-08 2019-07-09 东南大学 A kind of Urban Building Energy Consumption simulation system
CN111199065A (en) * 2019-12-12 2020-05-26 珠海中建兴业绿色建筑设计研究院有限公司 Zero-energy-consumption building design method and device and terminal equipment
CN112668257A (en) * 2021-01-25 2021-04-16 东莞市万科建筑技术研究有限公司 Multi-heat-source-based building indoor natural ventilation design method
CN114819766A (en) * 2022-06-27 2022-07-29 四川省建筑科学研究院有限公司 Batch diagnosis method, energy-saving method and system for operation performance of office buildings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934979B1 (en) * 2007-09-29 2010-01-06 한양대학교 산학협력단 Method for Assessment Environment Impact during Life Cycle of Sustainable Building
KR20130065844A (en) * 2011-12-02 2013-06-20 한국전자통신연구원 System and method for managing energy equipments efficiency in intelligent building
KR20130130513A (en) * 2012-05-22 2013-12-02 (주)시리우스소프트 Intelligent building energy consumption management system
KR20140048515A (en) * 2012-10-16 2014-04-24 한국전자통신연구원 Evaluation apparatus and method of energy consumption of building
KR20140121527A (en) * 2013-04-05 2014-10-16 한국전자통신연구원 Apparatus and method for control of building energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934979B1 (en) * 2007-09-29 2010-01-06 한양대학교 산학협력단 Method for Assessment Environment Impact during Life Cycle of Sustainable Building
KR20130065844A (en) * 2011-12-02 2013-06-20 한국전자통신연구원 System and method for managing energy equipments efficiency in intelligent building
KR20130130513A (en) * 2012-05-22 2013-12-02 (주)시리우스소프트 Intelligent building energy consumption management system
KR20140048515A (en) * 2012-10-16 2014-04-24 한국전자통신연구원 Evaluation apparatus and method of energy consumption of building
KR20140121527A (en) * 2013-04-05 2014-10-16 한국전자통신연구원 Apparatus and method for control of building energy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109992908A (en) * 2019-04-08 2019-07-09 东南大学 A kind of Urban Building Energy Consumption simulation system
CN109992908B (en) * 2019-04-08 2023-02-17 东南大学 Urban building energy consumption simulation system
CN111199065A (en) * 2019-12-12 2020-05-26 珠海中建兴业绿色建筑设计研究院有限公司 Zero-energy-consumption building design method and device and terminal equipment
CN111199065B (en) * 2019-12-12 2023-09-22 珠海中建兴业绿色建筑设计研究院有限公司 Zero-energy-consumption building design method and device and terminal equipment
CN112668257A (en) * 2021-01-25 2021-04-16 东莞市万科建筑技术研究有限公司 Multi-heat-source-based building indoor natural ventilation design method
CN114819766A (en) * 2022-06-27 2022-07-29 四川省建筑科学研究院有限公司 Batch diagnosis method, energy-saving method and system for operation performance of office buildings

Similar Documents

Publication Publication Date Title
WO2018159873A1 (en) Integrated evaluation diagnosis method for building energy
Shin et al. Evaluation of the energy performance of a net zero energy building in a hot and humid climate
Sun et al. Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building
Belleri et al. Natural ventilation design: An analysis of predicted and measured performance
Sherman The Use of Blower‐Door Data 1
WO2013176334A1 (en) Intelligent system for managing energy consumption in building
Kim Methodology for rating a building's overall performance based on the ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings
Pereira et al. Methodology for detection of occupant actions in residential buildings using indoor environment monitoring systems
WO2023145996A1 (en) Digital twin platform for supporting energy management and optimization of energy-consuming building
KR20160027481A (en) Building energy efficiency and service evaluation system, and processing method thereof
Dermardiros et al. Energy performance, comfort, and lessons learned from an institutional building designed for net zero energy
WO2020027538A1 (en) Device and method for determining whether power generation system is abnormal
WO2019093575A1 (en) Waste heat recovery heating system of building
Dang et al. Building simulation of energy consumption and ambient temperature: Application to the predis platform
WO2016182105A1 (en) Device and method for generating missing solar irradiance data
Popiolek et al. Comprehensive on site thermal diagnostics of buildings–Polish practical experience
Ferraro et al. Monitoring solar heating systems: a practical handbook
Hilliaho Energy Saving Potential and Interior Temperatures of Glazed Spaces: Evaluation through Measurements and Simulations
Kha Semi-transparent building-integrated photovoltiac (BIPV) windows for the tropics
Chiesa et al. Sustainable school buildings: design-management-monitoring, results and weaknesses. The case study of the High School “L. Orsini”, Imola
Akbari Simulation of indoor radon and energy recovery ventilation systems in residential buildings
WO2021117995A1 (en) Data management device and method for analyzing energy efficiency and performance of zero-energy building
Accili Natural ventilation strategies for nearly–Zero Energy Sports Halls
Yamasawa et al. Ventilation Performance of Natural Ventilation Building with Solar Chimney
Winiger et al. Power generation using district heat: Energy efficient retrofitted plus-energy school Rostock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17899095

Country of ref document: EP

Kind code of ref document: A1