WO2018159724A1 - Organic-inorganic mixture, use thereof, and method for producing same - Google Patents

Organic-inorganic mixture, use thereof, and method for producing same Download PDF

Info

Publication number
WO2018159724A1
WO2018159724A1 PCT/JP2018/007656 JP2018007656W WO2018159724A1 WO 2018159724 A1 WO2018159724 A1 WO 2018159724A1 JP 2018007656 W JP2018007656 W JP 2018007656W WO 2018159724 A1 WO2018159724 A1 WO 2018159724A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
adsorbent
group
inorganic mixture
Prior art date
Application number
PCT/JP2018/007656
Other languages
French (fr)
Japanese (ja)
Inventor
隆一郎 平鍋
竜馬 宮本
智子 金森
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018516580A priority Critical patent/JPWO2018159724A1/en
Publication of WO2018159724A1 publication Critical patent/WO2018159724A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Definitions

  • the present invention is an organic-inorganic mixture capable of adsorbing boron, arsenic, fluorine and phosphorus suitable for various water treatments such as drinking water production, industrial water production, water purification treatment, wastewater treatment, seawater desalination, industrial water production, etc. About.
  • Patent Documents 1 and 2 have not obtained a removal rate sufficient for practical use for removing boron in seawater desalination.
  • This invention makes it a subject to provide the technique for implement
  • the present inventors have found that a mixture of hydrous oxide and crosslinked polyvinyl alcohol (hereinafter referred to as PVA) becomes an adsorbent with a high removal rate. That is, the present invention has any one of the following configurations (1) to (12).
  • the ratio of the mass of the compound (M) to the sum of the masses of the compound (M) and the crosslinked polyvinyl alcohol (P) is 50% by mass or more and 90% by mass or less. Inorganic mixture.
  • the cross-linking agent is selected from a compound having two or more functional groups selected from the group consisting of an epoxy group, an aldehyde group, a methylol group, and a halogen group, and a compound containing at least one of titanium or zirconium.
  • the organic-inorganic mixture according to (1) or (2) which is at least one kind of compound.
  • Substrate (X) and adsorption layer (Y) containing the organic-inorganic mixture according to any one of (1) to (3), Having a sheet.
  • the sheet according to (4), wherein the adsorption layer (Y) has a thickness of 1 ⁇ m or more and 25 ⁇ m or less.
  • thermoplasticity The sheet according to any one of (4) to (6), wherein the substrate (X) has thermoplasticity.
  • an adsorbent having a high removal rate for specific ions and a method for producing the same are provided.
  • FIG. 1 is a schematic cross-sectional view of a sheet-like adsorbent in an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the core fiber of the fibrous adsorbent in the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the fibrous adsorbent in the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a laminate in the embodiment of the present invention.
  • 5 is a view showing a photograph of the surface of the adsorbent in Example 1.
  • FIG. 6 is a view showing a photograph of a cross section of the adsorbent in Example 1.
  • FIG. 1 is a schematic cross-sectional view of a sheet-like adsorbent in an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the core fiber of the fibrous adsorbent in the embodiment of the present invention.
  • FIG. 3 is a schematic cross-
  • Organic-inorganic mixture contains at least one compound (M) selected from the group consisting of metal oxides, hydroxides and hydrated oxides.
  • M metal oxides
  • As the metal at least one element selected from the group consisting of aluminum, iron, titanium, tin, silicon, zirconium or cerium is employed. These metal oxides, hydroxides, and hydrated oxides are preferable because they have a large adsorption capacity for boron, arsenic, fluorine, and phosphorus. Zirconium and cerium have particularly large adsorption capacities.
  • the organic-inorganic mixture preferably contains the compound (M) as particles. When the organic-inorganic mixture includes particles, the particles may be either primary particles or secondary particles.
  • primary particles and secondary particles are used as terms having a general meaning in the field of metals. Specifically, primary particles are particles generated by the growth of a single crystal nucleus, and secondary particles are particles formed by coalescence, aggregation, or consolidation of primary particles.
  • the average particle size is preferably 80 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the organic-inorganic mixture of the present invention is a mixture of PVA and particles. That is, since PVA plays the role of a binder, it can be said that it is a useful technique when a fine hydrous oxide that is difficult to handle is advantageous.
  • the particle diameter is preferably 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 1 ⁇ m or more.
  • the organic-inorganic mixture of the present invention contains crosslinked polyvinyl alcohol (PVA) (P).
  • Crosslinking is formed by a bond between a hydroxy group of PVA and a crosslinking agent.
  • Crosslinked PVA (P) is insoluble in water.
  • the organic / inorganic mixture has a high removal rate because the compound (M) is supported (specifically dispersed) in the crosslinked PVA (P) as a binder. Function as.
  • boron will be described as an example of an adsorption target, but the same description applies to arsenic, fluorine, phosphorus, and the like.
  • an adsorbent having a porous body and a metal oxide supported on the porous body has been proposed. Therefore, in the conventional adsorbent, an aqueous solution containing boron (hereinafter referred to as mixed water) is adsorbed by the metal oxide by contacting the metal oxide while moving through the pores of the porous body. The Therefore, boron is preferentially adsorbed on the metal oxide on the surface of the adsorbent, and the metal oxide in the central portion of the adsorbent is not fully utilized.
  • Patent Document 1 in addition to forming a porous adsorbent with ethylene vinyl alcohol by a phase separation method, the water-soluble polymer polybilylpyrrolidone is eluted after molding so that the surface layer (surface and its vicinity) Devised measures such as enlarging the opening. That is, in Patent Document 1, an attempt is made to shorten the time for the mixed water to reach the central portion of the metal oxide. However, it takes time for the mixed water to reach the metal oxide at the center of the adsorbent through the fine porous portion. Moreover, when the pores are formed by the phase separation method, the size and number of the holes are likely to be non-uniform, and macropores called macrovoids are generated.
  • the organic / inorganic mixture of the present invention has a high ability to remove boron.
  • PVA is a polyhydric alcohol, so that it can adsorb boron and that PVA can diffuse boron. That is, even if the adsorbent to which the organic-inorganic mixture of the present invention is applied is not porous, boron can move in the adsorbent by PVA.
  • boron adsorbed on the compound (M) on the surface layer of the adsorbent moves from the surface layer to the inside by diffusing through the surrounding cross-linked PVA.
  • the amount of boron decreases in the surface layer of the adsorbent, it becomes possible to adsorb boron from the mixed water that newly contacts the adsorbent.
  • boron can be continuously adsorbed on the surface in this way, a higher adsorption rate can be obtained as compared with conventional porous bodies.
  • an adsorbent having a high adsorption rate is used, a high removal rate can be maintained even if the water flow rate is high. That is, the higher the adsorption speed, the higher the removal rate.
  • a high removal rate can be realized, and an adsorption capacity equal to or higher than that of the conventional product can be obtained.
  • the ratio represented by (mass of compound (M)) / (mass of compound (M) + mass of crosslinked PVA (P)) ⁇ 100 is preferably 10% by mass or more. 50% by mass or more is more preferable, and 60% by mass or more is more preferable. A favorable adsorption capacity is obtained because the content is within these ranges.
  • the ratio is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less. By the said ratio being in this range, the deformation
  • the proportion of the mass of the crosslinked PVA (P) is preferably 90% by mass or more, 95% by mass or more, or 100% by mass. It may be.
  • the crosslinked PVA (P) is removed by heating to 400 ° C. or higher in an electric furnace, and the mass of the residue is regarded as the mass of the compound (M).
  • a method of dividing by the mass of the mixture is mentioned.
  • the polyvinyl alcohol constituting the crosslinked PVA (P) in the organic-inorganic mixture of the present invention contains a vinyl alcohol unit as a main constituent component.
  • the proportion of vinyl alcohol units in the crosslinked PVA is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95% or more.
  • a high adsorption capacity can be obtained when the proportion of vinyl alcohol units is in the above range.
  • components other than the vinyl alcohol unit contained in the crosslinked PVA include vinyl acetate, vinyl butyral, vinyl acetal, N-vinylacetamide, polyethylene, polypropylene, and a modified polyvinyl alcohol copolymer.
  • modified polyvinyl alcohol copolymer examples include block copolymers and graft copolymers modified with acrylic, urethane, polyester, epoxy, polyethylene, polypropylene, etc., or carboxyl groups, sulfonic acid groups, amino groups, phosphorus Examples include acid groups, isocyanate groups, oxazoline groups, methylol groups, nitrile groups, acetoacetyl groups, cationic groups, aldehyde groups, alkoxide groups, and modified products with halogen atoms.
  • the structure of the crosslinking is not particularly limited, but it is preferably formed by a bond between the hydroxyl group of PVA and a crosslinking agent.
  • the crosslinking agent include compounds having two or more functional groups selected from the group consisting of epoxy groups, aldehyde groups, methylol groups, and halogen groups (halogen atoms), and metal compounds.
  • One type of cross-linking agent may be used, or a plurality of types may be used in combination.
  • cross-linking agents having an epoxy group examples include: epoxy chlorohydrin; diepoxy alkane; diepoxy alkene; or (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether or (poly) glycerin diglycidyl ether And diglycidyl ether compounds such as ethylene glycol diglycidyl ether are preferred.
  • a dialdehyde compound is mentioned as an example of the crosslinking agent which has an aldehyde group.
  • dialdehyde compound examples include glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde, and isophthalaldehyde, and glutaraldehyde is particularly preferable.
  • the crosslinking agent which is a metal compound suppresses swelling of the crosslinked PVA due to water, it is suitable for an organic-inorganic mixture used in the presence of water or water vapor.
  • the metal compound at least one of titanium and zirconium is preferable, and a titanium-based crosslinking agent (crosslinking agent which is a titanium compound) is particularly preferable.
  • titanium-based cross-linking agent titanium alkoxide-based cross-linking agents such as titanium diisopropoxybis (triethanolaminate) and titanium lactate ammonium salt are preferable for suppressing swelling.
  • Adsorbent The organic-inorganic mixture described above is applicable to the adsorbent.
  • the shape of the adsorbent include, but are not limited to, a sheet shape, a fiber shape, and a granular shape.
  • the sheet-like adsorbent preferably has a base material (X) and an adsorption layer (Y) that is disposed on at least one side of the base material (X) and contains the above-described organic-inorganic mixture.
  • a fiber-shaped adsorbent has a core fiber and the adsorption layer arrange
  • the sheet-like adsorbent 1 shown in FIG. 1 is a multilayer sheet having a substrate (X) and an adsorbing layer (Y) laminated on one side and having adsorbing performance.
  • the adsorption layer (Y) is the above-described organic-inorganic mixture.
  • the adsorption layer (Y) is preferably a non-porous solid.
  • the thickness of the adsorption layer is preferably small when it is used for continuous water flow and is large when it is intermittent water that allows sufficient diffusion time. Specifically, it is as follows.
  • the thickness of the adsorption layer (Y) is preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the lower limit of the thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the thickness of the adsorption layer (Y) is related to both the adsorption speed and the adsorption capacity.
  • the volume of the adsorption layer is the same, the surface area can be increased by reducing the thickness, so that the contact area with the mixed water increases. Therefore, the adsorption rate per unit volume is increased. Further, when the thickness is 25 ⁇ m or less, boron easily diffuses throughout the adsorbent and the adsorption capacity increases.
  • the thickness of the adsorption layer (Y) here is the thickness of one layer, and the first adsorption layer (Y), the substrate (X), and the second adsorption layer (Y) are laminated in this order.
  • the thickness of each adsorption layer (Y) is preferably 25 ⁇ m or less.
  • the adsorption capacity can be ensured when the thickness of the adsorption layer (Y) is 1 ⁇ m or more.
  • the adsorbent is a laminate of the base material (X) and the adsorption layer (Y)
  • the base material (X) is preferably a film or a nonwoven fabric, and the material of the base material (X) is thermoplastic. It is preferable to contain a synthetic resin as a main component.
  • a contains B as a main component means that the B content in A is 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more. means.
  • polyolefin resins such as polyethylene, polypropylene and polymethylpentene
  • polyamide resins such as nylon 6 and nylon 66
  • polyethylene terephthalate and polybutylene terephthalate polybutylene terephthalate
  • polyester resins such as polypropylene terephthalate and polyethylene-2,6-naphthalate
  • polyacetal resins polyvinylidene fluoride resins, and polyphenylene sulfide resins
  • the film is preferably a biaxially oriented film. This is because the biaxially oriented film has high toughness. In the biaxially oriented film, the molecules are oriented in two directions perpendicular to each other.
  • a nonwoven fabric is a thin leaf body containing fibers entangled randomly. Typical examples of the nonwoven fabric include a melt blown nonwoven fabric and a spunbond nonwoven fabric. In the nonwoven fabric, natural fibers and chemical fibers may be mixed.
  • the base material (X) is added with various additives such as an antioxidant, a flame retardant, a lubricant, and a colorant within a range that does not impair the physical properties of the base material (X). be able to.
  • the fiber adsorbent will be described.
  • the fiber diameter (diameter) D is preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more, and further preferably 100 ⁇ m or more. When the fiber diameter is 20 ⁇ m or more, a gap can be held between the fibers when the fibers are stacked, so that the water flow resistance can be reduced.
  • the fiber diameter is preferably 1000 ⁇ m or less, more preferably 600 ⁇ m or less, and more preferably 400 ⁇ m or less.
  • the fiber diameter is 1000 ⁇ m or less, the area where the fibrous adsorbent comes into contact with the raw water can be increased, and the adsorption rate can be increased.
  • the fiber diameter D is the maximum diameter of the adsorbent cross section.
  • the fibrous adsorbent may be composed only of an organic / inorganic mixture, or may include a thermoplastic fiber (hereinafter referred to as “core fiber”) as a core and an organic / inorganic mixture coated around the core. But you can.
  • a fibrous adsorbent containing thermoplastic fibers has the advantage of having high strength.
  • thermoplastic fiber synthetic fiber or natural fiber, or a blended yarn or a blended yarn of these can be used.
  • Synthetic fibers include polyolefins such as polyethylene and polypropylene; polyesters such as PET (polyethylene terephthalate) and polycarbonate; polyamides, aromatic polyamides; acrylics, polyacrylonitriles; polyvinyl chloride, PTFE (polytetrafluoroethylene), polyvinylidene fluoride, etc. And halogenated polyolefin.
  • polyamides and polyesters are particularly preferable, and polyamides are particularly nylon and polyesters are particularly preferable PET.
  • Natural fibers include wool, silk, and cotton.
  • the core fiber may be a monofilament, but is preferably a multifilament including a plurality of single fibers. Since the core fiber is a multifilament and the compound (M) and the polymer resin are present in the fiber gap, the total mass of the compound (M) and the polymer resin is sufficiently large relative to the mass of the core fiber. It becomes large and exhibits excellent adsorption performance.
  • the cross-sectional shape of the core fiber is not particularly limited, and examples thereof include a circular cross section and an irregular cross section.
  • a more preferable cross section is an irregular cross section.
  • the core fiber having an irregular cross section has a large specific surface area, and the gap between the core fibers when a plurality of core fibers are bundled increases, so that the amount of resin that can be coated increases. As a result, since the total mass of the compound (M) and the polymer resin is sufficiently large with respect to the mass of the core fiber, excellent adsorption performance is exhibited.
  • the irregular cross section is not particularly limited, and has, for example, a polygonal cross section, a flat cross section, a lens mold cross section, and so-called multi-lobe cross sections such as a three-lobe cross section and a six-lobe cross section, as many as three to eight convex portions. Examples include irregular cross sections and hollow cross sections. Also, other known irregular cross sections may be used.
  • the profile of the fiber cross section is preferably 1.2 or more and 6.0 or less. The degree of irregularity is obtained by dividing the circumscribed circle diameter of the sectional shape by the inscribed circle diameter of the sectional shape (FIG. 2).
  • FIG. 3 shows a cross-sectional view of a fibrous adsorbent 2 having a plurality of core fibers A and an organic-inorganic mixture B existing between and around the core fibers. Since the core fiber A is an island component and the organic-inorganic mixture B is a sea component, this fibrous adsorbent is a sea-island type fiber.
  • the cross-sectional shape of the core fiber is a circular diameter, but the above-described configuration is appropriately employed as the cross-sectional shape of the core fiber and other configurations.
  • the adsorbent of the present invention can be obtained by mixing the compound (M), PVA and its cross-linking agent in a solvent such as water and molding it into a sheet.
  • the detailed method is exemplified by a method of laminating on a PET film to form a sheet, but is not limited to the following method.
  • a predetermined amount of the compound (M), PVA, and its cross-linking agent as raw materials for the adsorption layer (Y) are weighed and mixed with a solvent to obtain an aqueous coating material.
  • the PET pellets which are the raw material of the substrate (X), at 120 to 180 ° C. for 2 to 4 hours under reduced pressure, the PET pellets are supplied to a melt extruder and are fed into a sheet form from a T die die provided in the extruder at 260 to 300 ° C. Then, the casting drum is landed in front of the casting drum while rotating at a constant speed. At this time, the angle between the molten polymer and the casting drum is preferably 0 ° to 90 °, more preferably 10 ° to 60 °.
  • the molten polymer is adhered and solidified by an electrostatic application method and / or an air knife method, and is cooled and solidified to obtain an unoriented (unstretched) film.
  • This unstretched film may be stretched within a range where heat shrinkage is suitable.
  • the unoriented film obtained as needed is stretched with a plurality of roll groups, in the longitudinal direction (referred to as the “longitudinal direction”, indicating the traveling direction of the film) using the peripheral speed difference between the rolls.
  • the stretching temperature is preferably 80 to 170 ° C, more preferably 100 to 160 ° C, and further preferably 120 to 150 ° C.
  • the draw ratio is preferably 1.1 to 4 times, more preferably 1.5 to 3 times.
  • the laminated surface of this film is subjected to corona discharge treatment in air, the wet tension of the surface is set to 47 mN / m or more, and the adjusted aqueous coating is applied to the treated surface.
  • the coated laminated film is gripped with a clip, guided to a drying zone, dried at a temperature lower than Tg of the PET resin constituting the substrate (X), raised to a temperature higher than Tg, and again at a temperature near Tg. dry.
  • the film is stretched 2.5 to 5 times in a transverse direction (referred to as a direction orthogonal to the film traveling direction) in a heating zone at 70 to 150 ° C.
  • PVA is crosslinked by performing a heat treatment for 5 to 300 seconds in a heating zone of 130 to 240 ° C.
  • a sheet-like adsorbent is formed.
  • a 3 to 12% relaxation treatment may be performed as necessary.
  • Biaxial stretching may be longitudinal, transverse sequential stretching, or simultaneous biaxial stretching, and may be re-stretched in either the longitudinal or transverse direction after longitudinal and transverse stretching.
  • the above-described adsorbent can be used in a method for removing a solute from water regardless of a sheet shape, a fiber shape, or the like. Specifically, this removal method includes removing at least one element selected from the group consisting of arsenic, boron, fluorine and phosphorus from water by bringing the adsorbent into contact with water.
  • the adsorbent is applied to various water treatments such as drinking water production, industrial water production, water purification treatment, wastewater treatment, seawater desalination, industrial water production and the like.
  • the sheet-like adsorbent is applied to a laminate including a plurality of sheet-like adsorbents and spacers arranged therebetween. FIG.
  • the laminate 10 includes a plurality of sheet-like adsorbents 1 and spacers 3 arranged therebetween.
  • a member used as a spacer in a conventional water treatment element such as a net, a tricot, and a sheet having unevenness can be used.
  • a spiral-type water treatment apparatus has a rod-shaped or cylindrical core material and the above-described laminate wound around the core material.
  • the material for the core material polyolefin such as polyethylene and polypropylene, and fluororesin such as PTFE and PFA are suitable, but are not limited thereto.
  • the mixed water supplied from one end face of the spiral-type water treatment element passes through the sheet-like channel material and is taken out from the opposite end face. It is preferable to use the fibrous adsorbent by filling the column. The water taken into the inside from one end of the column flows through the gaps between the fibers as the adsorbent, and the solute is removed during that time. Permeate is withdrawn from the other end of the column.
  • Example 1 Polyethylene terephthalate (inherent viscosity 0.65) was dried at 180 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle
  • a polyester film was obtained.
  • One side of this biaxially oriented polyester film is subjected to corona discharge treatment in the air, and using an applicator (5 mil setting), the following coating solution 1 is coated on the treated surface of the film as a coating solution and dried at 180 ° C. with hot air Sheet-like adsorbent was obtained by drying in the machine for 180 seconds.
  • the thickness of the adsorption layer (Y) provided by single-sided coating was 25 ⁇ m, and the boron removal rate was 29%.
  • FIG. 5 and FIG. 6 show photographs of the surface and cross section of the obtained adsorbent, respectively.
  • Example 2 A biaxially oriented polyester film was obtained by performing the same operation as in Example 1 except that polypropylene terephthalate (Corterra Bright manufactured by DuPont) was used instead of polyethylene terephthalate. Both sides of this biaxially oriented polyester film are subjected to corona discharge treatment in the air, and the coating liquid 2 is coated on one side of the film using a metalling bar (# 20), in a hot air dryer at 110 ° C. Dried for 60 seconds. Thereafter, the coating liquid 2 was coated on the uncoated surface in the same manner and dried in a hot air dryer at 180 ° C. for 180 seconds, whereby double-side coating was performed to obtain the sheet-like adsorbent of the present invention.
  • the thickness of the adsorption layer (Y) after drying was 15 ⁇ m, respectively, and the boron removal rate was 26%.
  • Example 3 A polyethylene terephthalate raw material (inherent viscosity 0.50) was dried at 180 ° C. for 3 hours. Thereafter, the mixture was supplied to an extruder equipped with a rectangular die having a hole diameter of 0.8 mm and a hole number of 100, and the die temperature was 290 ° C., the hot air temperature was 295 ° C., the hot air speed was 7000 m / min, and the polymer discharge rate was 35 g / min. Spinning, collecting fibers on a net conveyor at a collection distance of 10 cm, and winding them to produce an unstretched nonwoven fabric with a basis weight of 90 g / m 2 .
  • a coating liquid 3 was coated on one side of the corona discharge treatment surface using an applicator (3 mil setting) to obtain a sheet-like adsorbent.
  • the thickness of the adsorption layer (Y) provided by single-side coating was 18 ⁇ m, and the boron removal rate was 27%.
  • Example 4 A polyethylene terephthalate raw material (inherent viscosity 0.50) was dried at 180 ° C. for 3 hours. After that, it is supplied to an extruder equipped with a rectangular die having a hole diameter of 0.8 mm and a hole number of 72, and is spun at a die temperature of 290 ° C. and a polymer discharge rate of 35 g / min, so that the upper end is located at a position of 30 mm on the lower surface of the die. Install a cooling device (chimney), cool the melt with cooling air at 25 ° C. and a wind speed of 1.5 m / sec, converge while applying oil, and wind it up with a winder at a speed of 1500 m / min. A core fiber was prepared.
  • a cooling device chimney
  • a woven fabric was produced using the obtained fibers with a plain weaving machine and the number of warp and weft meshes was 40 (pieces / inch). This fabric is subjected to corona discharge treatment in air, and then dipped in the coating solution 1 described in Example 1, and then the excess coating solution is drained with a mangle so that the fiber shape of the fabric is maintained. did.
  • the fabric with the coating solution adhering to the fibers was fixed to a metal frame, dried at 80 ° C. for 30 minutes, and then subjected to a crosslinking treatment at 160 ° C. for 1 hour to obtain a fibrous adsorbent.
  • the resulting adsorbent had a boron removal rate of 22%.
  • Example 1 One side of the biaxially oriented polyester film obtained in Example 1 was subjected to corona discharge treatment in air, and using an applicator (3 mil setting), the coating liquid 4 was coated on one side of the film, and a cold water bath at 5 ° C.
  • the sheet-like adsorbent on which the porous body was laminated was obtained by allowing it to stay for 20 seconds and solidifying.
  • the thickness of the adsorption layer (Y) provided by single-sided coating was 25 ⁇ m, had many voids, and the boron removal rate was 8%.
  • the organic / inorganic mixture of the present invention is suitable as an adsorbent.
  • ADVANTAGE OF THE INVENTION According to this invention, the adsorption agent with a high removal rate with respect to specific ions, and its manufacturing method are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Multicomponent Fibers (AREA)
  • Water Treatment By Sorption (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide an adsorbent that exhibits a high removal rate for specific ions, and a method for producing the adsorbent. This organic-inorganic mixture contains: at least one compound (M) selected from the group consisting of oxides, hydroxides, and hydrous oxides of aluminum, iron, titanium, tin, silicon, zirconium, or cerium; and a cross-linked polyvinyl alcohol (P), the organic-inorganic mixture being suitable as an adsorbent.

Description

有機無機混合物、その利用およびその製造方法Organic-inorganic mixture, use thereof and production method thereof
 本発明は、飲料水製造、工業用水製造、浄水処理、排水処理、海水淡水化、工業用水製造などの各種水処理に好適なホウ素、ヒ素、フッ素、リンを吸着できる有機無機混合物およびその利用等に関する。 The present invention is an organic-inorganic mixture capable of adsorbing boron, arsenic, fluorine and phosphorus suitable for various water treatments such as drinking water production, industrial water production, water purification treatment, wastewater treatment, seawater desalination, industrial water production, etc. About.
 近年、飲料水製造分野および工業用水製造分野、すなわち浄水処理用途、排水処理用途および海水淡水化用途などの水処理分野においてホウ素、ヒ素、フッ素などのサイズの細かいイオン類や低分子有機物を除去できる膜の要望が高まってきている。例えば、地下水に含まれるヒ素、排水中に含まれるリン、海水などに含まれているホウ素などであるが、これらのイオン類を多孔質膜のろ過分離で除去するのは不可能である。この中で海水中のホウ素は半透膜による逆浸透で除去しているのが実情であるが、逆浸透でもホウ素濃度の暫定値以下にすることは容易なことではない。例えば、半透膜を緻密にすると透水性能が低下して電力費などの処理コストが大きくなるし、除去率を高めるためにアルカリを使用すると逆浸透膜の劣化が早まる。
 一方、ホウ素などに由来するイオン類を吸着剤で除去する検討がなされており、吸着剤としては、三次元網目構造を有するエチレンビニルアルコール多孔質体にセリウム酸化物を担持させた粒状の吸着剤(例えば、特許文献1、2)が知られている。
In recent years, it is possible to remove small-sized ions such as boron, arsenic, and fluorine and low molecular organic substances in the fields of drinking water and industrial water production, that is, water treatment such as water purification treatment, wastewater treatment and seawater desalination. There is an increasing demand for membranes. For example, arsenic contained in groundwater, phosphorus contained in wastewater, boron contained in seawater, etc., but these ions cannot be removed by filtration separation of a porous membrane. Of these, boron in seawater is actually removed by reverse osmosis using a semipermeable membrane, but it is not easy to reduce the boron concentration below the provisional value even by reverse osmosis. For example, if the semipermeable membrane is made dense, the water permeation performance is lowered and the processing cost such as the power cost is increased, and if the alkali is used to increase the removal rate, the deterioration of the reverse osmosis membrane is accelerated.
On the other hand, studies have been made to remove ions derived from boron and the like with an adsorbent. As the adsorbent, a granular adsorbent in which a cerium oxide is supported on a porous ethylene vinyl alcohol having a three-dimensional network structure. (For example, Patent Documents 1 and 2) are known.
日本国特開2009-297707号公報Japanese Unexamined Patent Publication No. 2009-297707 日本国特開2007-21436号公報Japanese Unexamined Patent Publication No. 2007-21436
 特許文献1、2に記載された吸着剤は海水淡水化のホウ素除去に実用できるだけの十分な除去率は得られていない。
 本発明は、より高い除去率を実現するための技術を提供することを課題とする。
The adsorbents described in Patent Documents 1 and 2 have not obtained a removal rate sufficient for practical use for removing boron in seawater desalination.
This invention makes it a subject to provide the technique for implement | achieving a higher removal rate.
 本発明者らは、含水酸化物と架橋されたポリビニルアルコール(以下、PVAと表記する。)の混合物が、除去率が高い吸着剤となることを見出した。すなわち、本発明は下記(1)~(12)のいずれかの構成を有する。 The present inventors have found that a mixture of hydrous oxide and crosslinked polyvinyl alcohol (hereinafter referred to as PVA) becomes an adsorbent with a high removal rate. That is, the present invention has any one of the following configurations (1) to (12).
(1) アルミニウム、鉄、チタン、スズ、ケイ素、ジルコニウムまたはセリウムの酸化物、水酸化物および含水酸化物からなる群より選択される少なくとも1種の化合物(M)と、
 架橋されたポリビニルアルコール(P)と
を含有し、
 前記架橋されたポリビニルアルコール(P)は、ポリビニルアルコール(P)のヒドロキシ基と架橋剤との結合によって架橋されている、
有機無機混合物。
(2) 前記化合物(M)と架橋されたポリビニルアルコール(P)の質量の和に対する前記化合物(M)の質量の割合が、50質量%以上90質量%以下である(1)に記載の有機無機混合物。
(3) 前記架橋剤は、エポキシ基、アルデヒド基、メチロール基、およびハロゲン基からなる群より選択される2つ以上の官能基を有する化合物、並びにチタンまたはジルコニウムの少なくとも一方を含有する化合物から選択される少なくとも1種の化合物である、(1)または(2)に記載の有機無機混合物。
(4) 基材(X)と
 (1)~(3)のいずれかに記載の有機無機混合物を含有する吸着層(Y)と、
を有するシート。
(5) 前記吸着層(Y)の厚みが1μm以上25μm以下である(4)に記載のシート。
(6) 前記基材(X)は熱可塑性を有する(4)または(5)に記載のシート。
(7) 前記基材(X)が不織布である(4)~(6)のいずれかに記載のシート。
(8) 重ねられた複数の(4)~(7)のいずれかに記載のシートと、
 前記シートの間に配置されるスペーサーと、
を備える積層物。
(9)(a)熱可塑性樹脂フィルムに、アルミニウム、鉄、チタン、スズ、ケイ素、ジルコニウムおよびセリウムの酸化物、水酸化物並びに含水酸化物からなる群より選択される少なくとも1種の化合物と、ポリビニルアルコールおよび架橋剤が溶解した水溶液を塗布すること、
(b)前記工程(a)後に前記熱可塑性樹脂フィルムを乾燥させること、
(c)前記工程(b)後に前記熱可塑性樹脂フィルムを延伸すること、
(d)前記工程(c)後にポリビニルアルコールを前記架橋剤により架橋すること、
を含む(4)~(7)のいずれかに記載のシートの製造方法。
(10) 島成分である芯繊維と、海成分である(1)~(3)に記載の有機無機混合物とを備える海島型のファイバー。
(11) ファイバー径Dが100μm以上600μm以下である(10)に記載のファイバー。
(12) (4)から(7)のいずれかに記載のシートまたは(10)もしくは(11)に記載のファイバーに水を接触させることで、前記水からヒ素、ホウ素、フッ素およびリンからなる群より選択される少なくとも1種の元素を除去することを含む水処理方法。
(1) at least one compound (M) selected from the group consisting of oxides, hydroxides and hydrated oxides of aluminum, iron, titanium, tin, silicon, zirconium or cerium;
Containing crosslinked polyvinyl alcohol (P),
The crosslinked polyvinyl alcohol (P) is crosslinked by a bond between a hydroxyl group of the polyvinyl alcohol (P) and a crosslinking agent.
Organic inorganic mixture.
(2) The ratio of the mass of the compound (M) to the sum of the masses of the compound (M) and the crosslinked polyvinyl alcohol (P) is 50% by mass or more and 90% by mass or less. Inorganic mixture.
(3) The cross-linking agent is selected from a compound having two or more functional groups selected from the group consisting of an epoxy group, an aldehyde group, a methylol group, and a halogen group, and a compound containing at least one of titanium or zirconium. The organic-inorganic mixture according to (1) or (2), which is at least one kind of compound.
(4) Substrate (X) and adsorption layer (Y) containing the organic-inorganic mixture according to any one of (1) to (3),
Having a sheet.
(5) The sheet according to (4), wherein the adsorption layer (Y) has a thickness of 1 μm or more and 25 μm or less.
(6) The sheet according to (4) or (5), wherein the substrate (X) has thermoplasticity.
(7) The sheet according to any one of (4) to (6), wherein the substrate (X) is a nonwoven fabric.
(8) a plurality of stacked sheets according to any one of (4) to (7);
A spacer disposed between the sheets;
A laminate comprising:
(9) (a) at least one compound selected from the group consisting of oxides, hydroxides and hydrated oxides of aluminum, iron, titanium, tin, silicon, zirconium and cerium on the thermoplastic resin film; Applying an aqueous solution in which polyvinyl alcohol and a crosslinking agent are dissolved;
(B) drying the thermoplastic resin film after the step (a);
(C) stretching the thermoplastic resin film after the step (b);
(D) cross-linking polyvinyl alcohol with the cross-linking agent after the step (c),
The method for producing a sheet according to any one of (4) to (7), comprising:
(10) A sea-island type fiber comprising a core fiber that is an island component and the organic-inorganic mixture according to any one of (1) to (3) that is a sea component.
(11) The fiber according to (10), wherein the fiber diameter D is 100 μm or more and 600 μm or less.
(12) A group consisting of arsenic, boron, fluorine and phosphorus from the water by bringing water into contact with the sheet according to any one of (4) to (7) or the fiber according to (10) or (11) A water treatment method comprising removing at least one element selected from the group.
 本発明によれば、特定イオン類に対する除去率が高い吸着剤、およびその製造方法が提供される。 According to the present invention, an adsorbent having a high removal rate for specific ions and a method for producing the same are provided.
図1は、本発明の実施形態におけるシート状吸着剤の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a sheet-like adsorbent in an embodiment of the present invention. 図2は、本発明の実施形態におけるファイバー状吸着剤の芯繊維の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of the core fiber of the fibrous adsorbent in the embodiment of the present invention. 図3は、本発明の実施形態におけるファイバー状吸着剤の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of the fibrous adsorbent in the embodiment of the present invention. 図4は、本発明の実施形態における積層物の模式的な断面図である。FIG. 4 is a schematic cross-sectional view of a laminate in the embodiment of the present invention. 図5は、実施例1における吸着剤の表面の写真を示す図である。5 is a view showing a photograph of the surface of the adsorbent in Example 1. FIG. 図6は、実施例1における吸着剤の断面の写真を示す図である。6 is a view showing a photograph of a cross section of the adsorbent in Example 1. FIG.
 1.有機無機混合物
 本発明の有機無機混合物は、金属の酸化物、水酸化物および含水酸化物からなる群より選択される少なくとも1種の化合物(M)を含有する。
 金属としては、アルミニウム、鉄、チタン、スズ、ケイ素、ジルコニウムまたはセリウムからなる群より選択される少なくとも1種の元素が採用される。これらの金属の酸化物、水酸化物および含水酸化物は、ホウ素、ヒ素、フッ素、リンの吸着容量が大きいので好ましい。ジルコニウムおよびセリウムは、特に吸着容量が大きい。
 有機無機混合物は、化合物(M)を粒子として含有することが好ましい。有機無機混合物が粒子を含む場合、粒子は、一次粒子または二次粒子のいずれであってもよい。
 本明細書において、一次粒子(primary particle)および二次粒子(secondary particle)とは、金属の分野で一般的な意味を持つ用語として用いられる。具体的には、一次粒子とは、単一の結晶核の成長によって生成した粒子であり、二次粒子とは、一次粒子が合体、凝集、または固結することで形成された粒子である。
1. Organic-inorganic mixture The organic-inorganic mixture of the present invention contains at least one compound (M) selected from the group consisting of metal oxides, hydroxides and hydrated oxides.
As the metal, at least one element selected from the group consisting of aluminum, iron, titanium, tin, silicon, zirconium or cerium is employed. These metal oxides, hydroxides, and hydrated oxides are preferable because they have a large adsorption capacity for boron, arsenic, fluorine, and phosphorus. Zirconium and cerium have particularly large adsorption capacities.
The organic-inorganic mixture preferably contains the compound (M) as particles. When the organic-inorganic mixture includes particles, the particles may be either primary particles or secondary particles.
In the present specification, primary particles and secondary particles are used as terms having a general meaning in the field of metals. Specifically, primary particles are particles generated by the growth of a single crystal nucleus, and secondary particles are particles formed by coalescence, aggregation, or consolidation of primary particles.
 粒子径の平均は80μm以下であることが好ましく、8μm以下であることがより好ましく、3μm以下であることがさらに好ましい。粒子径の平均が80μm以下であることで、粒子の比表面積が大きくなり、大きな吸着速度が得られる。本発明の有機無機混合物はPVAと粒子との混合物である。つまり、PVAがバインダーの役割を果たすので、ハンドリングが困難な微小な含水酸化物が有利な場合に有用な手法と言える。
 また、取扱が容易であるという点から、粒子径は0.05μm以上、0.1μm以上、または1μm以上が好ましい。
The average particle size is preferably 80 μm or less, more preferably 8 μm or less, and even more preferably 3 μm or less. When the average particle diameter is 80 μm or less, the specific surface area of the particles is increased, and a large adsorption rate is obtained. The organic-inorganic mixture of the present invention is a mixture of PVA and particles. That is, since PVA plays the role of a binder, it can be said that it is a useful technique when a fine hydrous oxide that is difficult to handle is advantageous.
Further, from the viewpoint of easy handling, the particle diameter is preferably 0.05 μm or more, 0.1 μm or more, or 1 μm or more.
 本発明の有機無機混合物は、架橋されたポリビニルアルコール(PVA)(P)を含有する。架橋は、PVAのヒドロキシ基と架橋剤との結合によって形成されている。架橋されたPVA(P)は水に対して不溶である。
 有機無機混合物において、バインダーである架橋されたPVA(P)内に化合物(M)が担持されている(具体的には分散している)ことで、有機無機混合物は高い除去率を有する吸着剤として機能する。以下、吸着対象の一例としてホウ素を挙げて説明するが、ヒ素、フッ素、リン等についても同様の説明が当てはまる。
The organic-inorganic mixture of the present invention contains crosslinked polyvinyl alcohol (PVA) (P). Crosslinking is formed by a bond between a hydroxy group of PVA and a crosslinking agent. Crosslinked PVA (P) is insoluble in water.
In the organic / inorganic mixture, the organic / inorganic mixture has a high removal rate because the compound (M) is supported (specifically dispersed) in the crosslinked PVA (P) as a binder. Function as. Hereinafter, boron will be described as an example of an adsorption target, but the same description applies to arsenic, fluorine, phosphorus, and the like.
 従来、多孔質体とその多孔質体に担持された金属酸化物とを有する吸着剤が提案されている。よって、従来の吸着剤では、ホウ素を含んだ水溶液(以下、混合水と称する。)が、多孔質体の孔の中を移動しながら金属酸化物と接触することで、金属酸化物に吸着される。そのため、吸着剤の表面の金属酸化物に優先的にホウ素が吸着され、吸着剤の中心部分の金属酸化物は充分に活用されていない。 Conventionally, an adsorbent having a porous body and a metal oxide supported on the porous body has been proposed. Therefore, in the conventional adsorbent, an aqueous solution containing boron (hereinafter referred to as mixed water) is adsorbed by the metal oxide by contacting the metal oxide while moving through the pores of the porous body. The Therefore, boron is preferentially adsorbed on the metal oxide on the surface of the adsorbent, and the metal oxide in the central portion of the adsorbent is not fully utilized.
 例えば特許文献1では、相分離法によりエチレンビニルアルコールで多孔質の吸着剤を形成することに加えて、水溶性ポリマーであるポリビリルピロリドンを成形後に溶出させることで表層(表面およびその近傍)の開口部を大きくするなどの工夫を行っている。すなわち、特許文献1では、混合水が中心部分の金属酸化物まで到達する時間を短くすることが試みられている。
 しかし、微細な多孔質部分を通過して混合水を吸着剤の中心の金属酸化物まで到達させるには、時間を要する。また、相分離法により多孔化すると、孔の大きさおよび数が不均一になりやすく、マクロボイドと呼ばれる巨大孔も生じる。その結果、吸着剤における部位によって混合水との接触しやすさが異なり、吸着剤全体を有効に活用できない。また、特許文献1の技術では高額なポリビニルピロリドンを使用することから大きな生産コストがかかる。
For example, in Patent Document 1, in addition to forming a porous adsorbent with ethylene vinyl alcohol by a phase separation method, the water-soluble polymer polybilylpyrrolidone is eluted after molding so that the surface layer (surface and its vicinity) Devised measures such as enlarging the opening. That is, in Patent Document 1, an attempt is made to shorten the time for the mixed water to reach the central portion of the metal oxide.
However, it takes time for the mixed water to reach the metal oxide at the center of the adsorbent through the fine porous portion. Moreover, when the pores are formed by the phase separation method, the size and number of the holes are likely to be non-uniform, and macropores called macrovoids are generated. As a result, the ease of contact with the mixed water differs depending on the site in the adsorbent, and the entire adsorbent cannot be used effectively. Moreover, since the technique of patent document 1 uses expensive polyvinyl pyrrolidone, a big production cost starts.
 本発明の有機無機混合物は、ホウ素を除去する高い能力を持つ。その理由としては、PVA(P)は多価アルコールであるので、ホウ素を吸着することができること、およびPVAがホウ素を拡散させることができることが挙げられる。つまり、本発明の有機無機混合物を適用した吸着剤は、多孔質でなくても、PVAによってホウ素が吸着剤内を移動することができる。 The organic / inorganic mixture of the present invention has a high ability to remove boron. The reason for this is that PVA (P) is a polyhydric alcohol, so that it can adsorb boron and that PVA can diffuse boron. That is, even if the adsorbent to which the organic-inorganic mixture of the present invention is applied is not porous, boron can move in the adsorbent by PVA.
 具体的には以下のとおりである。有機無機混合物で形成された吸着剤に混合水が接触すると、混合水内のホウ素の一部は、吸着剤の表層(吸着剤の表面およびその近傍)に存在する化合物(M)に吸着され、一方で、吸着されなかったホウ素も、PVA間を拡散移動して吸着剤内部に存在する化合物(M)に吸着される。その結果、表層の化合物(M)だけでなく、内部の化合物(M)も活用されるので、従来の多孔体と同等以上の吸着容量を得ることができる。
 また、吸着剤の表層の化合物(M)に吸着されたホウ素は、その周囲の架橋PVAを通じて拡散することで、表層から内部へと移動する。その結果、吸着剤の表層ではホウ素量が減少するので、新たに吸着剤に接触する混合水からホウ素を吸着することが可能となる。このように表面で継続してホウ素を吸着できるので、従来の多孔体と比べて高い吸着速度が得られる。高い吸着速度を有する吸着剤を用いると、通水速度が高くても高い除去率を維持することができる。つまり、吸着速度が高いほど除去率は高くなる。
 以上のように、本発明の吸着剤によると、高い除去率を実現することができ、従来品と同等以上の吸着容量を得ることができる。
Specifically, it is as follows. When the mixed water comes into contact with the adsorbent formed of the organic-inorganic mixture, a part of boron in the mixed water is adsorbed by the compound (M) present on the surface layer of the adsorbent (the surface of the adsorbent and the vicinity thereof), On the other hand, boron that has not been adsorbed is also adsorbed by the compound (M) existing in the adsorbent by diffusing and moving between the PVA. As a result, not only the surface layer compound (M) but also the internal compound (M) is utilized, so that an adsorption capacity equal to or higher than that of a conventional porous body can be obtained.
Further, boron adsorbed on the compound (M) on the surface layer of the adsorbent moves from the surface layer to the inside by diffusing through the surrounding cross-linked PVA. As a result, since the amount of boron decreases in the surface layer of the adsorbent, it becomes possible to adsorb boron from the mixed water that newly contacts the adsorbent. Since boron can be continuously adsorbed on the surface in this way, a higher adsorption rate can be obtained as compared with conventional porous bodies. When an adsorbent having a high adsorption rate is used, a high removal rate can be maintained even if the water flow rate is high. That is, the higher the adsorption speed, the higher the removal rate.
As described above, according to the adsorbent of the present invention, a high removal rate can be realized, and an adsorption capacity equal to or higher than that of the conventional product can be obtained.
 本発明の有機無機混合物において、(化合物(M)の質量)/(化合物(M)の質量+架橋PVA(P)の質量)×100で表わされる割合は、10質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。含有率がこれらの範囲にあることで、良好な吸着容量が得られる。
 一方で、上記割合は90質量%以下であることが好ましく、80質量%以下であることがより好ましく、さらには75質量%以下であることが好ましい。上記割合がこの範囲にあることで、有機無機混合物を成形して得られる成形物の変形または破断が抑制される。
 また、有機無機混合物全体の質量から化合物(M)を除いた質量において、架橋PVA(P)の質量の占める割合は、90質量%以上であることが好ましく、95質量%以上、または100質量%であってもよい。
In the organic-inorganic mixture of the present invention, the ratio represented by (mass of compound (M)) / (mass of compound (M) + mass of crosslinked PVA (P)) × 100 is preferably 10% by mass or more. 50% by mass or more is more preferable, and 60% by mass or more is more preferable. A favorable adsorption capacity is obtained because the content is within these ranges.
On the other hand, the ratio is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less. By the said ratio being in this range, the deformation | transformation or fracture | rupture of the molding obtained by shape | molding an organic inorganic mixture is suppressed.
Further, in the mass excluding the compound (M) from the mass of the whole organic-inorganic mixture, the proportion of the mass of the crosslinked PVA (P) is preferably 90% by mass or more, 95% by mass or more, or 100% by mass. It may be.
 化合物(M)の含有率を測定する方法としては、電気炉で400℃以上に熱することで架橋PVA(P)を除去し、残渣の質量を化合物(M)の質量と見なして、有機無機混合物の質量で除する方法が挙げられる。 As a method for measuring the content of the compound (M), the crosslinked PVA (P) is removed by heating to 400 ° C. or higher in an electric furnace, and the mass of the residue is regarded as the mass of the compound (M). A method of dividing by the mass of the mixture is mentioned.
 本発明の有機無機混合物における架橋PVA(P)を構成するポリビニルアルコールは、ビニルアルコール単位を主要構成成分とする。る。架橋PVAにいて、ビニルアルコール単位が占める割合は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95%以上である。ビニルアルコール単位の占める割合が上記の範囲にあることで、高い吸着容量が得られる。
 架橋PVAが含むビニルアルコール単位以外の構成成分としては、例えば、ビニルアセテート、ビニルブチラール、ビニルアセタール、N-ビニルアセトアミド、ポリエチレン、ポリプロピレン、変性ポリビニルアルコール共重合体が挙げられる。変性ポリビニルアルコール共重合体としては、例えば、アクリル、ウレタン、ポリエステル、エポキシ、ポリエチレン、ポリプロピレンなどで変性したブロック共重合体やグラフト共重合体など、あるいは、カルボキシル基、スルホン酸基、アミノ基、リン酸基、イソシアネート基、オキサゾリン基、メチロール基、ニトリル基、アセトアセチル基、カチオン基、アルデヒド基、アルコシキド基、ハロゲン原子などによる変性物などが挙げられる。
The polyvinyl alcohol constituting the crosslinked PVA (P) in the organic-inorganic mixture of the present invention contains a vinyl alcohol unit as a main constituent component. The The proportion of vinyl alcohol units in the crosslinked PVA is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95% or more. A high adsorption capacity can be obtained when the proportion of vinyl alcohol units is in the above range.
Examples of components other than the vinyl alcohol unit contained in the crosslinked PVA include vinyl acetate, vinyl butyral, vinyl acetal, N-vinylacetamide, polyethylene, polypropylene, and a modified polyvinyl alcohol copolymer. Examples of the modified polyvinyl alcohol copolymer include block copolymers and graft copolymers modified with acrylic, urethane, polyester, epoxy, polyethylene, polypropylene, etc., or carboxyl groups, sulfonic acid groups, amino groups, phosphorus Examples include acid groups, isocyanate groups, oxazoline groups, methylol groups, nitrile groups, acetoacetyl groups, cationic groups, aldehyde groups, alkoxide groups, and modified products with halogen atoms.
 架橋の構造は特に限定されるものではないが、PVAのヒドロキシル基と架橋剤との結合で形成されることが好ましい。架橋剤としては例えば、エポキシ基、アルデヒド基、メチロール基、およびハロゲン基(ハロゲン原子)からなる群より選択される2つ以上の官能基を有する化合物、並びに金属化合物が挙げられる。架橋剤は1種類であってもよいし、複数種類を組み合わせて用いられてもよい。
 エポキシ基を有する架橋剤の例としては、エポキシクロロヒドリン;ジエポキシアルカン;ジエポキシアルケン;または(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテルもしくは(ポリ)グリセリンジグリシジルエーテルなどのジグリシジルエーテル化合物が挙げられ、とくにエチレングリコールジグリシジルエーテルが好ましい。
 また、アルデヒド基を有する架橋剤の例としては、ジアルデヒド化合物が挙げられる。ジアルデヒド化合物としては、グルタルアルデヒド、スクシンアルデヒド、マロンジアルデヒド、テレフタルアルデヒド、イソフタルアルデヒドなどが挙げられ、特にグルタルアルデヒドが好ましい。
 また、金属化合物である架橋剤は、水による架橋PVAの膨潤を抑制するので、水または水蒸気の存在下で使用される有機無機混合物に適している。金属化合物としては、チタンまたはジルコニウムの少なくとも一方の化合物が好ましく、特にチタン系架橋剤(チタンの化合物である架橋剤)が好ましい。チタン系架橋剤としては、膨潤抑制のためチタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩など、チタンのアルコシキド系架橋剤が好ましい。 
The structure of the crosslinking is not particularly limited, but it is preferably formed by a bond between the hydroxyl group of PVA and a crosslinking agent. Examples of the crosslinking agent include compounds having two or more functional groups selected from the group consisting of epoxy groups, aldehyde groups, methylol groups, and halogen groups (halogen atoms), and metal compounds. One type of cross-linking agent may be used, or a plurality of types may be used in combination.
Examples of cross-linking agents having an epoxy group include: epoxy chlorohydrin; diepoxy alkane; diepoxy alkene; or (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether or (poly) glycerin diglycidyl ether And diglycidyl ether compounds such as ethylene glycol diglycidyl ether are preferred.
Moreover, a dialdehyde compound is mentioned as an example of the crosslinking agent which has an aldehyde group. Examples of the dialdehyde compound include glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde, and isophthalaldehyde, and glutaraldehyde is particularly preferable.
Moreover, since the crosslinking agent which is a metal compound suppresses swelling of the crosslinked PVA due to water, it is suitable for an organic-inorganic mixture used in the presence of water or water vapor. As the metal compound, at least one of titanium and zirconium is preferable, and a titanium-based crosslinking agent (crosslinking agent which is a titanium compound) is particularly preferable. As the titanium-based cross-linking agent, titanium alkoxide-based cross-linking agents such as titanium diisopropoxybis (triethanolaminate) and titanium lactate ammonium salt are preferable for suppressing swelling.
 2.吸着剤
 上述の有機無機混合物は吸着剤に適用可能である。吸着剤の形状としては、例えば、シート状、ファイバー状、粒状等が挙げられるが、これらに限定されない。シート状の吸着剤は、基材(X)と、上記基材(X)の少なくとも片面に配置され、上述の有機無機混合物を含有する吸着層(Y)とを有することが好ましい。また、ファイバー状の吸着剤は、芯繊維と、芯繊維の周囲に配置された吸着層とを有することが好ましい。
2. Adsorbent The organic-inorganic mixture described above is applicable to the adsorbent. Examples of the shape of the adsorbent include, but are not limited to, a sheet shape, a fiber shape, and a granular shape. The sheet-like adsorbent preferably has a base material (X) and an adsorption layer (Y) that is disposed on at least one side of the base material (X) and contains the above-described organic-inorganic mixture. Moreover, it is preferable that a fiber-shaped adsorbent has a core fiber and the adsorption layer arrange | positioned around the core fiber.
 以下、シート状の吸着剤を例に、その形状等を説明する。図1に示すシート状吸着剤1は、基材(X)と、その片面に積層され、かつ吸着性能を有する吸着層(Y)と、を有する多層シート状である。
 ここで、吸着層(Y)は上述の有機無機混合物である。吸着層(Y)は多孔質ではない固体(solid)であることが好ましい。
 吸着層の厚みは、連続通水に用いられる場合は小さく、拡散時間が十分取れる断続通水の場合には大きくすることが好ましい。具体的には以下のとおりである。
 吸着層(Y)の厚みは25μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましい。一方で厚みの下限としては1μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
Hereinafter, the shape and the like of the sheet-like adsorbent will be described as an example. The sheet-like adsorbent 1 shown in FIG. 1 is a multilayer sheet having a substrate (X) and an adsorbing layer (Y) laminated on one side and having adsorbing performance.
Here, the adsorption layer (Y) is the above-described organic-inorganic mixture. The adsorption layer (Y) is preferably a non-porous solid.
The thickness of the adsorption layer is preferably small when it is used for continuous water flow and is large when it is intermittent water that allows sufficient diffusion time. Specifically, it is as follows.
The thickness of the adsorption layer (Y) is preferably 25 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. On the other hand, the lower limit of the thickness is preferably 1 μm or more, more preferably 2 μm or more, and further preferably 5 μm or more.
 吸着層(Y)の厚みは吸着速度と吸着容量の両方に関係している。吸着層の体積が同じ場合、厚みを小さくすることで、表面積を大きくできるので、混合水との接触面積が大きくなる。よって、単位体積当たりの吸着速度が大きくなる。また、厚みが25μm以下であることでホウ素が吸着剤全体に拡散しやすくなって吸着容量が大きくなる。ここでいう吸着層(Y)の厚みとは1つの層の厚みのことであり、第1の吸着層(Y)、基材(X)、第2の吸着層(Y)がこの順に積層されている場合など、シートが2つ以上の吸着層(Y)を有する場合は、それぞれの吸着層(Y)の厚みが25μm以下であることが好ましい。
 一方で、吸着層(Y)の厚みが1μm以上であることで吸着容量が確保できる。
 吸着剤が、基材(X)と吸着層(Y)の積層体である場合、基材(X)はフィルムもしくは不織布状であることが好ましく、基材(X)の素材としては熱可塑性の合成樹脂を主成分として含有することが好ましい。
The thickness of the adsorption layer (Y) is related to both the adsorption speed and the adsorption capacity. When the volume of the adsorption layer is the same, the surface area can be increased by reducing the thickness, so that the contact area with the mixed water increases. Therefore, the adsorption rate per unit volume is increased. Further, when the thickness is 25 μm or less, boron easily diffuses throughout the adsorbent and the adsorption capacity increases. The thickness of the adsorption layer (Y) here is the thickness of one layer, and the first adsorption layer (Y), the substrate (X), and the second adsorption layer (Y) are laminated in this order. When the sheet has two or more adsorption layers (Y), the thickness of each adsorption layer (Y) is preferably 25 μm or less.
On the other hand, the adsorption capacity can be ensured when the thickness of the adsorption layer (Y) is 1 μm or more.
When the adsorbent is a laminate of the base material (X) and the adsorption layer (Y), the base material (X) is preferably a film or a nonwoven fabric, and the material of the base material (X) is thermoplastic. It is preferable to contain a synthetic resin as a main component.
 本明細書において、「AがBを主成分として含有する」とは、AにおけるBの含有率が70質量%以上、80質量%以上、90質量%以上、または95質量%以上であることを意味する。 In this specification, “A contains B as a main component” means that the B content in A is 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more. means.
 基材(X)の主成分である熱可塑性の合成樹脂として、具体的には、ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂;ナイロン6,ナイロン66などのポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル樹脂;ならびにポリアセタール樹脂、ポリフッ化ビニリデン樹脂、ポリフェニレンスルフィド樹脂などが挙げられる。 Specific examples of the thermoplastic synthetic resin that is the main component of the substrate (X) include polyolefin resins such as polyethylene, polypropylene and polymethylpentene; polyamide resins such as nylon 6 and nylon 66; polyethylene terephthalate and polybutylene terephthalate. And polyester resins such as polypropylene terephthalate and polyethylene-2,6-naphthalate; and polyacetal resins, polyvinylidene fluoride resins, and polyphenylene sulfide resins.
 フィルムは、二軸配向フィルムであることが好ましい。二軸配向フィルムは靱性が高いためである。二軸配向フィルムでは、互いに垂直な2方向において分子が配向している。
 不織布とはランダムに交絡した繊維を含む薄葉体である。不織布として代表的なものとしては、メルトブロー不織布、スパンボンド不織布などが挙げられる。不織布においては、天然繊維と化学繊維とが混合されていてもよい。
The film is preferably a biaxially oriented film. This is because the biaxially oriented film has high toughness. In the biaxially oriented film, the molecules are oriented in two directions perpendicular to each other.
A nonwoven fabric is a thin leaf body containing fibers entangled randomly. Typical examples of the nonwoven fabric include a melt blown nonwoven fabric and a spunbond nonwoven fabric. In the nonwoven fabric, natural fibers and chemical fibers may be mixed.
 また、基材(X)は、熱可塑性の合成樹脂以外に、酸化防止剤、難燃剤、易滑剤、着色剤などの各種添加剤を、基材(X)の物性を損なわない範囲で添加することができる。
 ファイバー状の吸着剤について説明する。ファイバー径(直径)Dは20μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることがさらに好ましい。ファイバー径が20μm以上であることで、ファイバーを重ねたときに、ファイバー間に空隙を保持することができるので、通水抵抗を小さくすることができる。
 一方で、ファイバー径は1000μm以下であることが好ましく、600μm以下であることがより好ましく、400μm以下であることがより好ましい。ファイバー径が1000μm以下であることによって、ファイバー状である吸着剤が原水と接する面積を大きくすることができ、吸着速度を大きくすることができる。
 なお、ファイバー径Dは、吸着剤断面の最大径である。
In addition to the thermoplastic synthetic resin, the base material (X) is added with various additives such as an antioxidant, a flame retardant, a lubricant, and a colorant within a range that does not impair the physical properties of the base material (X). be able to.
The fiber adsorbent will be described. The fiber diameter (diameter) D is preferably 20 μm or more, more preferably 50 μm or more, and further preferably 100 μm or more. When the fiber diameter is 20 μm or more, a gap can be held between the fibers when the fibers are stacked, so that the water flow resistance can be reduced.
On the other hand, the fiber diameter is preferably 1000 μm or less, more preferably 600 μm or less, and more preferably 400 μm or less. When the fiber diameter is 1000 μm or less, the area where the fibrous adsorbent comes into contact with the raw water can be increased, and the adsorption rate can be increased.
The fiber diameter D is the maximum diameter of the adsorbent cross section.
 ファイバー状の吸着剤は、有機無機混合物のみで構成されていてもよいし、芯である熱可塑性繊維(以下、「芯繊維」と称する)と、その周囲にコーティングされた有機無機混合物とを含んでもよい。熱可塑性繊維を含むファイバー状の吸着剤は、高い強度を有するという利点を有する。熱可塑性繊維としては、合成繊維若しくは天然繊維、またはこれらの混紡糸若しくは混繊糸を用いることができる。 The fibrous adsorbent may be composed only of an organic / inorganic mixture, or may include a thermoplastic fiber (hereinafter referred to as “core fiber”) as a core and an organic / inorganic mixture coated around the core. But you can. A fibrous adsorbent containing thermoplastic fibers has the advantage of having high strength. As the thermoplastic fiber, synthetic fiber or natural fiber, or a blended yarn or a blended yarn of these can be used.
 合成繊維としては、ポリエチレン、ポリプロピレン等のポリオレフィン;PET(ポリエチレンテレフタレート)、ポリカーボネート等のポリエステル;ポリアミド、芳香族ポリアミド;アクリル、ポリアクリロニトリル;ポリ塩化ビニル、PTFE(ポリテトラフルオロエチレン)、ポリフッ化ビニリデン等のハロゲン化ポリオレフィン等が挙げられる。これらの繊維の中でも特にポリアミド、ポリエステルが好ましく、ポリアミドでは特にナイロン、ポリエステルでは特にPETが好ましい。
 天然繊維としては、羊毛、絹、綿が挙げられる。
Synthetic fibers include polyolefins such as polyethylene and polypropylene; polyesters such as PET (polyethylene terephthalate) and polycarbonate; polyamides, aromatic polyamides; acrylics, polyacrylonitriles; polyvinyl chloride, PTFE (polytetrafluoroethylene), polyvinylidene fluoride, etc. And halogenated polyolefin. Among these fibers, polyamides and polyesters are particularly preferable, and polyamides are particularly nylon and polyesters are particularly preferable PET.
Natural fibers include wool, silk, and cotton.
 芯繊維は、モノフィラメントであっても良いが、複数本の単繊維を含んだマルチフィラメントであることが好ましい。芯となる繊維がマルチフィラメントであり、さらに化合物(M)と高分子樹脂とが繊維間隙に存在することで、化合物(M)と高分子樹脂の質量の合計が芯繊維の質量に対し十分に大きくなり、優れた吸着性能を発現する。 The core fiber may be a monofilament, but is preferably a multifilament including a plurality of single fibers. Since the core fiber is a multifilament and the compound (M) and the polymer resin are present in the fiber gap, the total mass of the compound (M) and the polymer resin is sufficiently large relative to the mass of the core fiber. It becomes large and exhibits excellent adsorption performance.
 芯繊維の断面形状は特に限定されるものではなく、円形断面、異形断面が挙げられる。より好ましい断面としては異形断面である。異形断面を有する芯繊維は、比表面積が大きく、複数の芯繊維を束ねたときの芯繊維間の隙間が大きくなるので、被覆できる樹脂量が多くなる。その結果、化合物(M)と高分子樹脂の総質量が芯繊維の質量に対し十分に大きくなるので、優れた吸着性能を発現する。
 異形断面は特に限定されておらず、例えば多角断面、偏平断面、レンズ型断面、並びに三葉断面および六葉断面などのいわゆるマルチローバル断面と呼ばれる3~8ヶの凸部と同数の凹部を有する異形断面、中空断面等が挙げられる。また、その他公知の異形断面でもよい。
 繊維断面の異形度は1.2以上6.0以下が好ましい。異形度とは、断面形状の外接円径を断面形状の内接円径で除したものである(図2)。異形度が1.2以下では異形断面の凹凸が小さくなり、比表面積や間隙を利用した被覆量増大効果を十分に発現することができなくなる。一方、異形度が6.0を超えるような高異形糸では、繊維が工程で損傷を受けやすく、糸切れといった問題が生じやすい。
The cross-sectional shape of the core fiber is not particularly limited, and examples thereof include a circular cross section and an irregular cross section. A more preferable cross section is an irregular cross section. The core fiber having an irregular cross section has a large specific surface area, and the gap between the core fibers when a plurality of core fibers are bundled increases, so that the amount of resin that can be coated increases. As a result, since the total mass of the compound (M) and the polymer resin is sufficiently large with respect to the mass of the core fiber, excellent adsorption performance is exhibited.
The irregular cross section is not particularly limited, and has, for example, a polygonal cross section, a flat cross section, a lens mold cross section, and so-called multi-lobe cross sections such as a three-lobe cross section and a six-lobe cross section, as many as three to eight convex portions. Examples include irregular cross sections and hollow cross sections. Also, other known irregular cross sections may be used.
The profile of the fiber cross section is preferably 1.2 or more and 6.0 or less. The degree of irregularity is obtained by dividing the circumscribed circle diameter of the sectional shape by the inscribed circle diameter of the sectional shape (FIG. 2). When the degree of profile is 1.2 or less, irregularities in the profile of the profile become small, and the effect of increasing the coating amount using the specific surface area or gap cannot be fully exhibited. On the other hand, in the case of a highly deformed yarn having a degree of deformation exceeding 6.0, the fiber is easily damaged in the process, and a problem such as yarn breakage is likely to occur.
 図3に、複数の芯繊維Aと、芯繊維の間および周囲に存在する有機無機混合物Bとを有するファイバー状吸着剤2の断面図を示す。芯繊維Aは島成分、有機無機混合物Bは海成分であるので、このファイバー状吸着剤は、海島型のファイバーである。図3では芯繊維の断面形状は円径であるが、芯繊維の断面形状およびその他の構成としては、上述した構成が適宜採用される。 FIG. 3 shows a cross-sectional view of a fibrous adsorbent 2 having a plurality of core fibers A and an organic-inorganic mixture B existing between and around the core fibers. Since the core fiber A is an island component and the organic-inorganic mixture B is a sea component, this fibrous adsorbent is a sea-island type fiber. In FIG. 3, the cross-sectional shape of the core fiber is a circular diameter, but the above-described configuration is appropriately employed as the cross-sectional shape of the core fiber and other configurations.
 3.製造方法
 本発明の吸着剤は化合物(M)とPVAおよびその架橋剤を水などの溶媒中で混合し、シート状に成形することで得ることができる。その詳細な方法について、PETフィルム上に積層させてシート化させる方法を例にとって例示するが、以下の方法に限定されるものではない。
 吸着層(Y)の原料となる化合物(M)とPVAおよびその架橋剤を所定量秤量し、溶媒で混合することで水系塗剤を得る。
3. Production Method The adsorbent of the present invention can be obtained by mixing the compound (M), PVA and its cross-linking agent in a solvent such as water and molding it into a sheet. The detailed method is exemplified by a method of laminating on a PET film to form a sheet, but is not limited to the following method.
A predetermined amount of the compound (M), PVA, and its cross-linking agent as raw materials for the adsorption layer (Y) are weighed and mixed with a solvent to obtain an aqueous coating material.
 基材(X)の原料となるPETペレットを120~180℃で2~4時間減圧乾燥後、溶融押出し機に供給して260~300℃で押出機に具備されたT型ダイ口金からシート状に溶融押出しし、キャスティングドラムを一定速度で回転させながら、キャスティングドラムの前方に着地させる。このとき溶融ポリマーとキャスティングドラムの角度は0°~90°が好ましく、さらに好ましくは10°~60°である。溶融ポリマーを静電印加法および/またはエアーナイフ法により密着固化し、冷却固化させて未配向(未延伸)フィルムを得る。
 この未延伸フィルムを熱収縮が好適になる範囲で延伸してもよい。必要に応じて得られた未配向フィルムを、複数のロール群を備えた延伸機で、ロール間の周速差を利用して縦方向(フィルムの進行方向を指し「長手方向」ともいう)に延伸する。延伸温度は80~170℃が好ましく、100~160℃がより好ましく、120~150℃がさらに好ましい。延伸倍率は1.1~4倍が好ましく、1.5~3倍がより好ましい。
After drying PET pellets, which are the raw material of the substrate (X), at 120 to 180 ° C. for 2 to 4 hours under reduced pressure, the PET pellets are supplied to a melt extruder and are fed into a sheet form from a T die die provided in the extruder at 260 to 300 ° C. Then, the casting drum is landed in front of the casting drum while rotating at a constant speed. At this time, the angle between the molten polymer and the casting drum is preferably 0 ° to 90 °, more preferably 10 ° to 60 °. The molten polymer is adhered and solidified by an electrostatic application method and / or an air knife method, and is cooled and solidified to obtain an unoriented (unstretched) film.
This unstretched film may be stretched within a range where heat shrinkage is suitable. The unoriented film obtained as needed is stretched with a plurality of roll groups, in the longitudinal direction (referred to as the “longitudinal direction”, indicating the traveling direction of the film) using the peripheral speed difference between the rolls. Stretch. The stretching temperature is preferably 80 to 170 ° C, more preferably 100 to 160 ° C, and further preferably 120 to 150 ° C. The draw ratio is preferably 1.1 to 4 times, more preferably 1.5 to 3 times.
 このフィルムの積層面に空気中でコロナ放電処理を施し、該表面の濡れ張力を47mN/m以上とし、その処理面に調整した水系塗剤を塗布する。この塗布された積層フィルムをクリップで把持して乾燥ゾーンに導き、基材(X)を構成するPET樹脂のTg未満の温度で乾燥した後、Tg以上の温度に上げ、再度Tg近傍の温度で乾燥させる。次に連続的に70~150℃の加熱ゾーンで横方向(フィルムの進行方向とは直交する方向を指し「幅方向」ともいう)に2.5~5倍延伸する。さらに130~240℃の加熱ゾーンで5~300秒間熱処理を行うことでPVAを架橋させる。こうしてシート状の吸着剤が形成される。なお、上記熱処理中に必要に応じて3~12%の弛緩処理を施してもよい。
 二軸延伸は縦、横逐次延伸あるいは同時二軸延伸のいずれでもよく、また縦、横延伸後、縦、横いずれかの方向に再延伸してもよい。
The laminated surface of this film is subjected to corona discharge treatment in air, the wet tension of the surface is set to 47 mN / m or more, and the adjusted aqueous coating is applied to the treated surface. The coated laminated film is gripped with a clip, guided to a drying zone, dried at a temperature lower than Tg of the PET resin constituting the substrate (X), raised to a temperature higher than Tg, and again at a temperature near Tg. dry. Next, the film is stretched 2.5 to 5 times in a transverse direction (referred to as a direction orthogonal to the film traveling direction) in a heating zone at 70 to 150 ° C. Further, PVA is crosslinked by performing a heat treatment for 5 to 300 seconds in a heating zone of 130 to 240 ° C. Thus, a sheet-like adsorbent is formed. During the heat treatment, a 3 to 12% relaxation treatment may be performed as necessary.
Biaxial stretching may be longitudinal, transverse sequential stretching, or simultaneous biaxial stretching, and may be re-stretched in either the longitudinal or transverse direction after longitudinal and transverse stretching.
 4.使用方法
 上述の吸着剤は、シート状、ファイバー状等の形状にかかわらず、水から溶質を除去する方法に使用可能である。具体的には、この除去方法は、吸着剤に水を接触させることで、水からヒ素、ホウ素、フッ素およびリンからなる群より選択される少なくとも1種の元素を除去することを含む。これによって、吸着剤は、飲料水製造、工業用水製造、浄水処理、排水処理、海水淡水化、工業用水製造などの各種水処理に適用される。
 また、シート状吸着剤は、複数のシート状吸着剤と、その間に配置されるスペーサーとを含む積層物に適用される。図4に一例である積層物10の断面図を示す。積層物10は、複数のシート状吸着剤1と、その間に配置されるスペーサー3とを備える。スペーサー3としては、ネット、トリコット、凹凸を有するシートなど、従来の水処理エレメントでスペーサーとして使用される部材を使用できる。
4). Method of Use The above-described adsorbent can be used in a method for removing a solute from water regardless of a sheet shape, a fiber shape, or the like. Specifically, this removal method includes removing at least one element selected from the group consisting of arsenic, boron, fluorine and phosphorus from water by bringing the adsorbent into contact with water. Thus, the adsorbent is applied to various water treatments such as drinking water production, industrial water production, water purification treatment, wastewater treatment, seawater desalination, industrial water production and the like.
The sheet-like adsorbent is applied to a laminate including a plurality of sheet-like adsorbents and spacers arranged therebetween. FIG. 4 shows a cross-sectional view of a laminate 10 as an example. The laminate 10 includes a plurality of sheet-like adsorbents 1 and spacers 3 arranged therebetween. As the spacer 3, a member used as a spacer in a conventional water treatment element such as a net, a tricot, and a sheet having unevenness can be used.
 水処理時には、シート状吸着剤の間に水を通すことで、溶質濃度が低下した水を得ることができる。流路材によって、混合液の空間速度SVを制御することで得られる除去量を制御できるとともに、従来の粒状吸着剤で生じていた擦過や潰れによる劣化が抑制されて長期間使用することができる。
 また、この積層物は、スパイラル型の水処理エレメントに適用可能である。スパイラル型の水処理装置は、棒状または筒状の芯材と、芯材の周囲に巻回された上述の積層物とを有する。芯材の素材としては、ポリエチレン、ポリプロピレンなどのポリオレフィンや、PTFE、PFAなどのフッ素樹脂が好適であるが、これに限定されない。スパイラル型の水処理エレメントの一方の端面から供給される混合水は、シート状流路材の間を通って、逆側の端面から取り出される。
 ファイバー状の吸着剤は、カラムに充填して使用することが好ましい。カラムの一端から内部に取り込まれた水は、吸着剤であるファイバーの隙間を流れ、その間に溶質が除去される。透過水はカラムの他端から取り出される。
During water treatment, water with a reduced solute concentration can be obtained by passing water between the sheet-like adsorbents. The removal amount obtained by controlling the space velocity SV of the mixed liquid can be controlled by the flow path material, and deterioration due to scratching and crushing that has occurred in the conventional granular adsorbent can be suppressed and used for a long time. .
Moreover, this laminated body is applicable to a spiral type water treatment element. A spiral-type water treatment apparatus has a rod-shaped or cylindrical core material and the above-described laminate wound around the core material. As the material for the core material, polyolefin such as polyethylene and polypropylene, and fluororesin such as PTFE and PFA are suitable, but are not limited thereto. The mixed water supplied from one end face of the spiral-type water treatment element passes through the sheet-like channel material and is taken out from the opposite end face.
It is preferable to use the fibrous adsorbent by filling the column. The water taken into the inside from one end of the column flows through the gaps between the fibers as the adsorbent, and the solute is removed during that time. Permeate is withdrawn from the other end of the column.
 以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本発明に関する物性値は、以下の方法で測定することができる。 Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. In addition, the physical-property value regarding this invention can be measured with the following method.
 (吸着層(Y)の厚み)
 シート状吸着剤を液体窒素にて凍結した後、厚み方向に切断したサンプルを10点得る。それぞれのサンプル断面をSEM(走査型電子顕微鏡)にて1,000~10,000倍で観察し、断面写真を得る。その10点(10個)のサンプルの吸着層(Y)厚みの測定値を平均して、サンプルの吸着層(Y)厚みとする。
(Thickness of adsorption layer (Y))
After freezing the sheet adsorbent with liquid nitrogen, 10 samples cut in the thickness direction are obtained. The cross section of each sample is observed with a SEM (scanning electron microscope) at 1,000 to 10,000 times to obtain a cross-sectional photograph. The measured values of the adsorption layer (Y) thickness of the 10 samples (10 pieces) are averaged to obtain the adsorption layer (Y) thickness of the sample.
 (ホウ素除去率)
 内径10mmのカラムに高さ100mmとなるようにロール状にした吸着剤を充填し、愛媛県松山市で採取した海水を温度25℃、ろ過差圧16kPaの条件で60分間通水し、供給水および透過水中に存在するホウ素濃度を測定した。ホウ素濃度の測定には、ICP発光分析装置(日立製作所製P-4010)を用いた。ホウ素除去性能は以下の式で定義されるホウ素除去率により評価した。
(Boron removal rate)
A column with an inner diameter of 10 mm is packed with an adsorbent rolled up to a height of 100 mm, and seawater collected in Matsuyama, Ehime Prefecture is passed for 60 minutes under conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. And the boron concentration present in the permeate was measured. An ICP emission spectrometer (P-4010 manufactured by Hitachi, Ltd.) was used for measuring the boron concentration. The boron removal performance was evaluated by the boron removal rate defined by the following formula.
(ホウ素除去率)={1-(透過水中のホウ素濃度)/(供給水中のホウ素濃度)}×100・・・式(2) (Boron removal rate) = {1− (boron concentration in permeated water) / (boron concentration in feed water)} × 100 (2)
 (実施例1)
 ポリエチレンテレフタレート(固有粘度0.65)を、180℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、20℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未延伸ポリエステルフィルムを得た。
 次いで、該未延伸ポリエステルフィルムを、加熱ロールにてフィルム温度を上昇させ、予熱温度を110℃、延伸温度を105℃として長手方向に2.2倍延伸し、次いでテンター式横延伸機にて予熱温度95℃、延伸温度120℃で幅方向に2.3倍延伸し、そのままテンター内にて幅方向に4%の弛緩処理を行いながら温度230℃で5秒間の熱固定を行い、二軸配向ポリエステルフィルムを得た。
 この二軸配向ポリエステルフィルムの片面に空気中でコロナ放電処理を施し、アプリケーター(5mil設定)を用いて、フィルムの処理面にコーティング液として下記の塗液1を片面コーティングし、180℃の熱風乾燥機中で180秒乾燥させることによりシート状吸着剤を得た。片面コーティングにより設けられた吸着層(Y)の厚みは25μmであり、ホウ素除去率は29%であった。
Example 1
Polyethylene terephthalate (inherent viscosity 0.65) was dried at 180 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling, applying an electrostatic force on the casting drum cooled at 20 degreeC, and obtained the unstretched polyester film.
Next, the unstretched polyester film is stretched 2.2 times in the longitudinal direction at a preheating temperature of 110 ° C. and a stretching temperature of 105 ° C. with a heating roll, and then preheated with a tenter type transverse stretching machine. Biaxially stretched 2.3 times in the width direction at a temperature of 95 ° C and a stretching temperature of 120 ° C, and heat-fixed at 230 ° C for 5 seconds while performing a 4% relaxation treatment in the width direction in the tenter. A polyester film was obtained.
One side of this biaxially oriented polyester film is subjected to corona discharge treatment in the air, and using an applicator (5 mil setting), the following coating solution 1 is coated on the treated surface of the film as a coating solution and dried at 180 ° C. with hot air Sheet-like adsorbent was obtained by drying in the machine for 180 seconds. The thickness of the adsorption layer (Y) provided by single-sided coating was 25 μm, and the boron removal rate was 29%.
・塗液1
 水78質量部
 PVA(ケン化度98%、分子量1700)10質量部
 含水酸化セリウム(平均粒径4.5μm)10質量部
 ジイソプロポキシ・ビス(トリエタノ-ルアミネ-ト)チタン(マツモトファインケミカル株式会社製、80wt%イソプロパノール溶液)2質量部
 また、図5および図6に、得られた吸着剤の表面および断面の写真をそれぞれ示す。
Coating liquid 1
Water 78 parts by mass PVA (degree of saponification 98%, molecular weight 1700) 10 parts by mass Hydrous cerium oxide (average particle size 4.5 μm) 10 parts by mass Diisopropoxy bis (triethanolamine) titanium (Matsumoto Fine Chemical Co., Ltd.) Manufactured, 80 wt% isopropanol solution) 2 parts by mass Further, FIG. 5 and FIG. 6 show photographs of the surface and cross section of the obtained adsorbent, respectively.
 (実施例2)
 ポリエチレンテレフタレートに替えてポリプロピレンテレフタレート(DuPont製 コルテラ ブライト)を用いた以外は実施例1と同じ操作を行うことで、二軸配向ポリエステルフィルムを得た。この二軸配向ポリエステルフィルムの両面に空気中でコロナ放電処理を施し、メタリングバー(#20)を用いて、フィルムの一方の面に塗液2をコーティングし、110℃の熱風乾燥機中で60秒乾燥させた。その後、コーティングされていない面に同様に塗液2をコーティングして180℃の熱風乾燥機中で180秒乾燥させることによって、両面コーティングすることにより本発明のシート状吸着剤を得た。乾燥後の吸着層(Y)の厚みはそれぞれ15μmであり、ホウ素除去率は26%であった。
(Example 2)
A biaxially oriented polyester film was obtained by performing the same operation as in Example 1 except that polypropylene terephthalate (Corterra Bright manufactured by DuPont) was used instead of polyethylene terephthalate. Both sides of this biaxially oriented polyester film are subjected to corona discharge treatment in the air, and the coating liquid 2 is coated on one side of the film using a metalling bar (# 20), in a hot air dryer at 110 ° C. Dried for 60 seconds. Thereafter, the coating liquid 2 was coated on the uncoated surface in the same manner and dried in a hot air dryer at 180 ° C. for 180 seconds, whereby double-side coating was performed to obtain the sheet-like adsorbent of the present invention. The thickness of the adsorption layer (Y) after drying was 15 μm, respectively, and the boron removal rate was 26%.
・塗液2
 水78質量部
 PVA(ケン化度98%、分子量1700)10質量部
 含水酸化セリウム(平均粒径4.5μm)10質量部
 メチロール化メラミン(三和ケミカル株式会社製、ニカラック)2質量部
Coating liquid 2
Water 78 parts by weight PVA (degree of saponification 98%, molecular weight 1700) 10 parts by weight Hydrous cerium oxide (average particle size 4.5 μm) 10 parts by weight Methylolated melamine (manufactured by Sanwa Chemical Co., Ltd., Nicarac) 2 parts by weight
 (実施例3)
 ポリエチレンテレフタレート原料(固有粘度0.50)を、180℃で3時間乾燥した。その後、孔径0.8mm、孔数100個の矩形口金を備えた押出機に供給し、口金温度290℃、熱風温度295℃、熱風速度7000m/min ポリマー吐出量35g/分で、メルトブロー法にて紡出し、捕集距離10cmでネットコンベア上に繊維を捕集して巻き取り、目付90g/m2の未延伸不織布を作製した。
 この未延伸不織の片面に空気中でコロナ放電処理を施し、アプリケーター(3mil設定)を用いて、コロナ放電処理面に塗液3を片面コーティングすることによりシート状吸着剤を得た。片面コーティングにより設けられた吸着層(Y)の厚みは18μmであり、ホウ素除去率は27%であった。
(Example 3)
A polyethylene terephthalate raw material (inherent viscosity 0.50) was dried at 180 ° C. for 3 hours. Thereafter, the mixture was supplied to an extruder equipped with a rectangular die having a hole diameter of 0.8 mm and a hole number of 100, and the die temperature was 290 ° C., the hot air temperature was 295 ° C., the hot air speed was 7000 m / min, and the polymer discharge rate was 35 g / min. Spinning, collecting fibers on a net conveyor at a collection distance of 10 cm, and winding them to produce an unstretched nonwoven fabric with a basis weight of 90 g / m 2 .
One side of this unstretched nonwoven was subjected to corona discharge treatment in the air, and a coating liquid 3 was coated on one side of the corona discharge treatment surface using an applicator (3 mil setting) to obtain a sheet-like adsorbent. The thickness of the adsorption layer (Y) provided by single-side coating was 18 μm, and the boron removal rate was 27%.
・塗液3
 水68質量部
 PVA(ケン化度98%、分子量1700)10質量部
 含水酸化セリウム(平均粒径4.5μm)20質量部
 ジイソプロポキシ・ビス(トリエタノ-ルアミネ-ト)チタン(マツモトファインケミカル株式会社製、80wt%イソプロパノール溶液)2質量部
Coating liquid 3
68 parts by weight of water PVA (degree of saponification 98%, molecular weight 1700) 10 parts by weight Hydrous cerium oxide (average particle size 4.5 μm) 20 parts by weight Diisopropoxy bis (triethanolamine) titanium (Matsumoto Fine Chemical Co., Ltd.) Manufactured, 80 wt% isopropanol solution) 2 parts by mass
 (実施例4)
 ポリエチレンテレフタレート原料(固有粘度0.50)を、180℃で3時間乾燥した。その後、孔径0.8mm、孔数72個の矩形口金を備えた押出機に供給し、口金温度290℃、ポリマー吐出量35g/分で紡出し、口金の下面30mmの位置に上端が位置するよう冷却装置(チムニー)を設置し、25℃、風速1.5m/秒の冷却風によって溶融物を冷却して、油剤を付与しながら収束させて、1500m/分の速さでワインダーで巻き取ることで芯となる繊維を作製した。得られた繊維を平織り機で経糸および緯糸のメッシュ数が40(個/inch)で織物を作製した。
 この織物に空気中でコロナ放電処理を施し、次に、実施例1に記載の塗液1に浸漬させた後、織物のファイバー形状が保たれるようにマングルで過剰な塗液を液切りしした。塗液が繊維に付着した織物を金属製の枠に固定し、80℃で30分乾燥させ、次いで160℃で1時間架橋処理を行うことでファイバー状の吸着剤を得た。得られた吸着剤のホウ素除去率は22%であった。
Example 4
A polyethylene terephthalate raw material (inherent viscosity 0.50) was dried at 180 ° C. for 3 hours. After that, it is supplied to an extruder equipped with a rectangular die having a hole diameter of 0.8 mm and a hole number of 72, and is spun at a die temperature of 290 ° C. and a polymer discharge rate of 35 g / min, so that the upper end is located at a position of 30 mm on the lower surface of the die. Install a cooling device (chimney), cool the melt with cooling air at 25 ° C. and a wind speed of 1.5 m / sec, converge while applying oil, and wind it up with a winder at a speed of 1500 m / min. A core fiber was prepared. A woven fabric was produced using the obtained fibers with a plain weaving machine and the number of warp and weft meshes was 40 (pieces / inch).
This fabric is subjected to corona discharge treatment in air, and then dipped in the coating solution 1 described in Example 1, and then the excess coating solution is drained with a mangle so that the fiber shape of the fabric is maintained. did. The fabric with the coating solution adhering to the fibers was fixed to a metal frame, dried at 80 ° C. for 30 minutes, and then subjected to a crosslinking treatment at 160 ° C. for 1 hour to obtain a fibrous adsorbent. The resulting adsorbent had a boron removal rate of 22%.
 (比較例1)
 実施例1で得た二軸配向ポリエステルフィルムの片面に空気中でコロナ放電処理を施し、アプリケーター(3mil設定)を用いて、フィルムの一方の面に塗液4をコーティングし、5℃の冷水浴中に20秒間滞留させ、固化させることで、多孔体が積層されたシート状吸着剤を得た。片面コーティングで設けられた吸着層(Y)の厚みは25μmであり、ボイドを多数有しており、ホウ素除去率は8%であった。
(Comparative Example 1)
One side of the biaxially oriented polyester film obtained in Example 1 was subjected to corona discharge treatment in air, and using an applicator (3 mil setting), the coating liquid 4 was coated on one side of the film, and a cold water bath at 5 ° C. The sheet-like adsorbent on which the porous body was laminated was obtained by allowing it to stay for 20 seconds and solidifying. The thickness of the adsorption layer (Y) provided by single-sided coating was 25 μm, had many voids, and the boron removal rate was 8%.
・塗液4
 ジメチルスルホキシド 70質量部
 エチレン-ビニルアルコール共重合体 15質量部
 含水酸化セリウム(平均粒径4.5μm)15質量部
・ Coating solution 4
Dimethyl sulfoxide 70 parts by mass Ethylene-vinyl alcohol copolymer 15 parts by mass Hydrous cerium oxide (average particle size 4.5 μm) 15 parts by mass
 本発明の有機無機混合物は、吸着剤として好適である。本発明によれば、特定イオン類に対する除去率が高い吸着剤、およびその製造方法が提供される。 The organic / inorganic mixture of the present invention is suitable as an adsorbent. ADVANTAGE OF THE INVENTION According to this invention, the adsorption agent with a high removal rate with respect to specific ions, and its manufacturing method are provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年2月28日出願の日本特許出願(特願2017-036091)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Feb. 28, 2017 (Japanese Patent Application No. 2017-036091), the contents of which are incorporated herein by reference.

Claims (12)

  1.  アルミニウム、鉄、チタン、スズ、ケイ素、ジルコニウムまたはセリウムの酸化物、水酸化物および含水酸化物からなる群より選択される少なくとも1種の化合物(M)と、
     架橋されたポリビニルアルコール(P)と
    を含有し、
     前記架橋されたポリビニルアルコール(P)は、ポリビニルアルコール(P)のヒドロキシ基と架橋剤との結合によって架橋されている、
    有機無機混合物。
    At least one compound (M) selected from the group consisting of oxides, hydroxides and hydrated oxides of aluminum, iron, titanium, tin, silicon, zirconium or cerium;
    Containing crosslinked polyvinyl alcohol (P),
    The crosslinked polyvinyl alcohol (P) is crosslinked by a bond between a hydroxyl group of the polyvinyl alcohol (P) and a crosslinking agent.
    Organic inorganic mixture.
  2.  前記化合物(M)と架橋されたポリビニルアルコール(P)の質量の和に対する前記化合物(M)の質量の割合が、50質量%以上90質量%以下である
    請求項1に記載の有機無機混合物。
    2. The organic-inorganic mixture according to claim 1, wherein the ratio of the mass of the compound (M) to the sum of the masses of the polyvinyl alcohol (P) crosslinked with the compound (M) is 50% by mass or more and 90% by mass or less.
  3.  前記架橋剤は、エポキシ基、アルデヒド基、メチロール基、およびハロゲン基からなる群より選択される2つ以上の官能基を有する化合物、並びにチタンまたはジルコニウムの少なくとも一方を含有する化合物から選択される少なくとも1種の化合物である、
    請求項1または2に記載の有機無機混合物。
    The crosslinking agent is at least selected from a compound having two or more functional groups selected from the group consisting of an epoxy group, an aldehyde group, a methylol group, and a halogen group, and a compound containing at least one of titanium or zirconium. One compound,
    The organic-inorganic mixture according to claim 1 or 2.
  4.  基材(X)と
     請求項1~3のいずれかに記載の有機無機混合物を含有する吸着層(Y)と、
    を有するシート。
    A substrate (X) and an adsorption layer (Y) containing the organic-inorganic mixture according to any one of claims 1 to 3,
    Having a sheet.
  5.  前記吸着層(Y)の厚みが1μm以上25μm以下である
    請求項4に記載のシート。
    The sheet according to claim 4, wherein the adsorption layer (Y) has a thickness of 1 μm to 25 μm.
  6.  前記基材(X)は熱可塑性を有する
    請求項4または5に記載のシート。
    The sheet according to claim 4 or 5, wherein the substrate (X) has thermoplasticity.
  7.  前記基材(X)が不織布である
    請求項4~6のいずれかに記載のシート。
    The sheet according to any one of claims 4 to 6, wherein the substrate (X) is a nonwoven fabric.
  8.  重ねられた複数の請求項4~7のいずれかに記載のシートと、
     前記シートの間に配置されるスペーサーと、
    を備える積層物。
    A plurality of stacked sheets according to any one of claims 4 to 7;
    A spacer disposed between the sheets;
    A laminate comprising:
  9. (a)熱可塑性樹脂フィルムに、アルミニウム、鉄、チタン、スズ、ケイ素、ジルコニウムおよびセリウムの酸化物、水酸化物並びに含水酸化物からなる群より選択される少なくとも1種の化合物と、ポリビニルアルコールおよび架橋剤が溶解した水溶液を塗布すること、
    (b)前記工程(a)後に前記熱可塑性樹脂フィルムを乾燥させること、
    (c)前記工程(b)後に前記熱可塑性樹脂フィルムを延伸すること、
    (d)前記工程(c)後にポリビニルアルコールを前記架橋剤により架橋すること、
    を含む請求項4~7のいずれかに記載のシートの製造方法。
    (A) at least one compound selected from the group consisting of oxides, hydroxides and hydrated oxides of aluminum, iron, titanium, tin, silicon, zirconium and cerium, a polyvinyl alcohol, and a thermoplastic resin film; Applying an aqueous solution in which a crosslinking agent is dissolved;
    (B) drying the thermoplastic resin film after the step (a);
    (C) stretching the thermoplastic resin film after the step (b);
    (D) cross-linking polyvinyl alcohol with the cross-linking agent after the step (c),
    The method for producing a sheet according to any one of claims 4 to 7, comprising:
  10.  島成分である芯繊維と、海成分である請求項1~3のいずれか1項に記載の有機無機混合物とを備える海島型のファイバー。 A sea-island type fiber comprising a core fiber that is an island component and an organic-inorganic mixture according to any one of claims 1 to 3 that is a sea component.
  11.  ファイバー径Dが100μm以上600μm以下である請求項10に記載のファイバー。 The fiber according to claim 10, wherein the fiber diameter D is 100 μm or more and 600 μm or less.
  12.  請求項4から7のいずれかに記載のシートまたは請求項10もしくは11に記載のファイバーに水を接触させることで、前記水からヒ素、ホウ素、フッ素およびリンからなる群より選択される少なくとも1種の元素を除去すること
    を含む水処理方法。
     
    At least one selected from the group consisting of arsenic, boron, fluorine and phosphorus from the water by bringing water into contact with the sheet according to any one of claims 4 to 7 or the fiber according to claim 10 or 11. A water treatment method comprising removing the element.
PCT/JP2018/007656 2017-02-28 2018-02-28 Organic-inorganic mixture, use thereof, and method for producing same WO2018159724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018516580A JPWO2018159724A1 (en) 2017-02-28 2018-02-28 Organic-inorganic mixture, its use and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036091 2017-02-28
JP2017-036091 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159724A1 true WO2018159724A1 (en) 2018-09-07

Family

ID=63371223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007656 WO2018159724A1 (en) 2017-02-28 2018-02-28 Organic-inorganic mixture, use thereof, and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2018159724A1 (en)
WO (1) WO2018159724A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722202A (en) * 2022-11-08 2023-03-03 中国科学院上海高等研究院 Yttrium-zirconium-terephthalic acid based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281086A (en) * 1975-12-24 1977-07-07 Commw Scient Ind Res Org Composite materials
JPS52123986A (en) * 1976-04-13 1977-10-18 Toray Ind Inc Adsorption of ionic or polar substances
JPS5471091A (en) * 1977-10-07 1979-06-07 Ici Australia Ltd Manufacture of composite matter containing adsorbent
JPS58122039A (en) * 1982-01-18 1983-07-20 Toray Ind Inc Adsorbing material made of fiber
JPS5991603A (en) * 1982-11-16 1984-05-26 株式会社明電舎 Thermal conductive electrically insulating material and method of producing same
JP2007098363A (en) * 2005-10-07 2007-04-19 Nippon Sheet Glass Co Ltd Adsorbing material
JP2010227757A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Composite separation membrane
JP2013002865A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Adsorbent composition, adsorbent for radioactive cesium, and method for separating radioactive cesium using the adsorbent
JP2013193043A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Water-absorbing material composition and water-absorbing sheet
WO2015159865A1 (en) * 2014-04-14 2015-10-22 富士フイルム株式会社 Moisture-absorbing material, method for producing same and blister pack
JP2016215156A (en) * 2015-05-22 2016-12-22 株式会社クラレ Safety filter for water treatment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281086A (en) * 1975-12-24 1977-07-07 Commw Scient Ind Res Org Composite materials
JPS52123986A (en) * 1976-04-13 1977-10-18 Toray Ind Inc Adsorption of ionic or polar substances
JPS5471091A (en) * 1977-10-07 1979-06-07 Ici Australia Ltd Manufacture of composite matter containing adsorbent
JPS58122039A (en) * 1982-01-18 1983-07-20 Toray Ind Inc Adsorbing material made of fiber
JPS5991603A (en) * 1982-11-16 1984-05-26 株式会社明電舎 Thermal conductive electrically insulating material and method of producing same
JP2007098363A (en) * 2005-10-07 2007-04-19 Nippon Sheet Glass Co Ltd Adsorbing material
JP2010227757A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Composite separation membrane
JP2013002865A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Adsorbent composition, adsorbent for radioactive cesium, and method for separating radioactive cesium using the adsorbent
JP2013193043A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Water-absorbing material composition and water-absorbing sheet
WO2015159865A1 (en) * 2014-04-14 2015-10-22 富士フイルム株式会社 Moisture-absorbing material, method for producing same and blister pack
JP2016215156A (en) * 2015-05-22 2016-12-22 株式会社クラレ Safety filter for water treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722202A (en) * 2022-11-08 2023-03-03 中国科学院上海高等研究院 Yttrium-zirconium-terephthalic acid based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof
CN115722202B (en) * 2022-11-08 2024-03-29 中国科学院上海高等研究院 Yttrium-zirconium-terephthalic acid-based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2018159724A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US10682599B2 (en) Filter medium for liquid filter and method for manufacturing same
US20180345228A1 (en) Forward osmosis membranes
Arribas et al. Self-sustained electro-spun polysulfone nano-fibrous membranes and their surface modification by interfacial polymerization for micro-and ultra-filtration
CN101835529B (en) Gas separation membrane
JP6197649B2 (en) Composite semipermeable membrane
KR102064358B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102352507B1 (en) A method for manufacturing a composite membrane and an apparatus for manufacturing a composite membrane
KR102035597B1 (en) Complex semi-permeable membrane
US11103817B2 (en) Cartridge filter using nanofiber composite fiber yarn and method for manufacturing same
TWI670177B (en) Substrate for liquid filter and method of producing the same
CN107431166A (en) Lamination polyolefin micro porous polyolefin membrane, battery barrier film and its manufacture method
WO2014003141A1 (en) Composite semipermeable membrane
JP2006187731A (en) Separation membrane and water treatment apparatus
CN107207761A (en) Polyolefin micro porous polyolefin membrane, battery separator and their manufacture method
KR20180130096A (en) Polyolefin microporous membrane, battery separator and method of manufacturing them
CN112449614A (en) Selectively permeable graphene oxide membranes for gas dehydration
US10010833B2 (en) Spiral wound membrane module with reinforced fold line
WO2018159724A1 (en) Organic-inorganic mixture, use thereof, and method for producing same
CN108579461A (en) Hollow porous membranes
JPH0553526B2 (en)
WO2014003140A1 (en) Composite semipermeable membrane and composite semipermeable membrane element
JP7147432B2 (en) composite semipermeable membrane
JP6245407B1 (en) Separation membrane element
CN111533935B (en) Polyolefin microporous membrane, separator for battery, and method for producing same
JP2016068081A (en) Separation membrane element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516580

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760799

Country of ref document: EP

Kind code of ref document: A1