WO2018159520A1 - Glass laminate and method for producing same - Google Patents

Glass laminate and method for producing same Download PDF

Info

Publication number
WO2018159520A1
WO2018159520A1 PCT/JP2018/006904 JP2018006904W WO2018159520A1 WO 2018159520 A1 WO2018159520 A1 WO 2018159520A1 JP 2018006904 W JP2018006904 W JP 2018006904W WO 2018159520 A1 WO2018159520 A1 WO 2018159520A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard resin
resin sheet
glass laminate
glass
light
Prior art date
Application number
PCT/JP2018/006904
Other languages
French (fr)
Japanese (ja)
Inventor
祐作 野本
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019502970A priority Critical patent/JP7107915B2/en
Publication of WO2018159520A1 publication Critical patent/WO2018159520A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor

Definitions

  • the present invention relates to a glass laminate and a method for producing the same.
  • planar light emitters In applications using glass members such as automobile glazing, development of a glass laminate in which an inorganic glass plate and a transparent hard resin sheet are laminated has been promoted for the purpose of reducing the weight of the member and improving safety. Furthermore, in recent years, examinations of planar light emitters in which a light source is combined with a glass laminate using a transparent resin excellent in light guide performance such as methacrylic resin and a light guide method is applied have begun. Such planar light emitters can be preferably used for high-performance automotive glazing materials such as automotive sunroof materials that can also function as interior lighting.
  • a conventional glass laminate in which an inorganic glass plate and a general methacrylic resin sheet are bonded has the following problems.
  • a soft resin sheet such as a polyvinyl butyral sheet serving as an intermediate film and an methacrylic resin sheet are stacked, and then heat-pressed by a hot press method, a vacuum bag method, or an autoclave method.
  • a hot press method under the heating conditions in which the interlayer film is not completely melted, there is a risk of poor adhesion between the inorganic glass plate and the methacrylic resin sheet or distortion of the glass laminate. Therefore, it is preferable to sufficiently heat the interlayer film so that it completely melts.
  • the temperature required for this is generally above 80 ° C. However, when heating is performed at such a temperature, the methacrylic resin softens and melts and further flows under pressure, which may cause surface roughness.
  • Patent Document 1 discloses a glass laminate including a glass layer and a resin layer comprising a methacrylic resin composition containing a methacrylic resin and a styrene / maleic anhydride copolymer resin and having an increased Tg. (Claim 1).
  • a glass laminate described in Patent Document 1 is applied to a planar light emitter, there is a risk that light emission defects such as color unevenness may occur in the emitted light due to the influence of the styrene / maleic anhydride copolymer resin.
  • the difference in linear expansion coefficient between the inorganic glass plate and the hard resin sheet is the cause, and the glass laminate after thermocompression bonding is brought to room temperature.
  • the glass laminate may be warped, resulting in defects such as delamination and cracking.
  • Patent Document 2 discloses a glass laminate having a laminated structure of plastic plate / first intermediate film / second intermediate film / inorganic glass plate (claims 1 and 19).
  • Patent Document 3 discloses a glass laminate in which an inorganic glass plate and a resin plate are laminated via first and second intermediate films (first and second pressure-sensitive adhesive layers) having different viscoelastic properties. (Claims 1 and 6).
  • the glass laminate of Patent Document 3 preferably includes a transparent water vapor barrier layer between the first and second intermediate films (Claim 3).
  • the glass laminates described in Patent Documents 2 and 3 do not require high-temperature and high-pressure treatment during the production of the glass laminate, it is possible to suppress the occurrence of defects such as warpage, delamination, and cracking.
  • the method for producing a glass laminate described in Patent Document 2 has a first laminate having a laminated structure of a plastic plate / first intermediate film and a laminated structure of a second intermediate film / inorganic glass plate. This is a method in which the two laminated bodies are bonded together after the second laminated body is produced separately (claim 1). Therefore, there are many steps and the cost is high.
  • the glass laminate described in Patent Document 3 needs to have a transparent water vapor barrier layer between the first and second intermediate films, and is poor in productivity.
  • the glass laminate used for vehicles and the like can be exposed to any environment such as a high temperature environment, a low temperature environment, a temperature change environment, a high humidity environment, and a rainy environment. Even when used in such an environment, it is preferable that defects such as surface roughness, warpage, delamination, and cracking hardly occur and have good durability. In addition, defects such as warpage, delamination, and cracking can occur not only due to the difference in the linear expansion coefficient between the inorganic glass plate and the resin sheet, but also due to the difference in water absorption between these members.
  • the present invention has been made in view of the above circumstances, can be reduced in weight, has good transparency, and has surface roughness, warpage, delamination, cracking, and the like in the step of bonding the inorganic glass plate and the resin sheet. It is an object to provide a glass laminate that can suppress the occurrence of defects, has good durability, and has excellent light guiding performance.
  • the present invention provides the following glass laminates [1] to [14], a manufacturing method thereof, a planar light emitter, and a vehicle member.
  • the hard resin sheet comprises a hard resin composition having the following characteristics (a) and (b):
  • the glass laminated body which the said intermediate film consists of a soft resin composition which has the following characteristic (c) and (d).
  • the storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz is 1.0 ⁇ 10 7 Pa or less.
  • the peak temperature at which the loss tangent tan ⁇ at the frequency of 1.0 Hz is maximum is 25 ° C. or less.
  • the hard resin composition includes a methyl methacrylate (co) polymer composed of 60 to 100% by mass of methyl methacrylate units and 0 to 40% by mass of (meth) acrylic acid ester units other than methyl methacrylate.
  • the glass laminate according to [2], wherein the tridentate syndiotacticity (rr) of the methyl methacrylate (co) polymer is 50 to 85%.
  • the hard resin composition further contains 0.0001 to 0.001 of light diffusing particles having an absolute value of a refractive index difference ( ⁇ n) of 0.3 to 3 with respect to the refractive index of the matrix resin of the hard resin sheet.
  • the soft resin composition includes a thermoplastic polyurethane resin.
  • the intermediate film has a surface uneven structure on at least one side.
  • a planar light-emitting body comprising the glass laminate of any one of [1] to [8] and a light source for introducing light into at least one end face of the glass laminate.
  • a vehicle member comprising the glass laminate of any one of [1] to [8] or the planar light emitter of [9].
  • the vehicle member according to [10] which is an automobile glazing material or an automobile sunroof material.
  • the weight can be reduced, the transparency is good, and the occurrence of defects such as surface roughness, warpage, delamination, and cracking in the process of bonding the inorganic glass plate and the resin sheet is suppressed. It is possible to provide a glass laminate having good durability and excellent light guiding performance.
  • the glass laminate of the present invention includes a laminated structure in which a hard resin sheet is laminated on an inorganic glass plate via an intermediate film.
  • the hard resin sheet is made of a hard resin composition having specific heat resistance characteristics and optical characteristics, specifically, the following characteristics (a) and (b).
  • the interlayer film is made of a soft resin composition having specific viscoelastic characteristics, specifically, the following characteristics (c) and (d).
  • Tg Glass transition temperature
  • B The light transmittance at a wavelength of 420 nm with an optical path length of 200 mm is 60% or more.
  • C The storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz is 1.0 ⁇ 10 7 Pa or less.
  • the peak temperature at which the loss tangent tan ⁇ at the frequency of 1.0 Hz is maximum is 25 ° C. or less.
  • various parameters such as the peak temperature at which the weight average molecular weight (Mw), glass transition temperature (Tg), light transmittance, storage elastic modulus G ′, and loss tangent tan ⁇ are maximized are [implementing the invention]. Measured value measured by the method described in the section of [Form for Use] or [Example]. In the present specification, arbitrary numerical ranges A to B indicate a numerical range of A to B.
  • the glass laminate of the present invention is a composite material including an inorganic glass plate and a hard resin sheet, the weight can be reduced as compared with a single glass. Moreover, even if it receives a strong impact from the outside, it is difficult to break, and even if the glass is broken, the glass fragments do not scatter and the safety is excellent.
  • the hard resin sheet has specific heat resistance (characteristic (a)). Therefore, in the process of bonding the inorganic glass plate and the hard resin sheet, the hard resin sheet can be used even if sufficient heating is performed so that the intermediate film completely melts in order to bond the inorganic glass plate and the hard resin sheet well. Softening, melting, and flow are suppressed. As a result, the occurrence of surface roughness of the hard resin sheet is suppressed, and a uniform glass laminate having a uniform thickness can be obtained.
  • the interlayer film has specific viscoelastic properties (characteristics (c) and (d)).
  • the intermediate film can have a function of favorably bonding the inorganic glass plate and the hard resin sheet and a function of improving the impact resistance of the glass laminate.
  • the interlayer film further has an internal stress relaxation performance, and in this step, in the step of bonding the inorganic glass plate and the hard resin sheet, the thermocompression bonding is caused by the difference in the linear expansion coefficient between the inorganic glass plate and the hard resin sheet. It can have a function of suppressing the occurrence of defects such as warpage, delamination, and cracking of the glass laminate that may occur in the process in which the subsequent glass laminate returns to room temperature.
  • the above-mentioned effects due to the heat resistance of the hard resin sheet and the viscoelastic properties of the interlayer film are not limited to the production of the glass laminate, but can be used in any environment such as high temperature environment, low temperature environment, temperature change environment, high humidity environment, and rain environment. It can be obtained in the same way under the environment. Therefore, even if the glass laminate of the present invention is used in an arbitrary environment, the surface roughness due to softening and melting of the hard resin sheet and flow, the difference in linear expansion coefficient between the inorganic glass plate and the hard resin sheet, and the water absorption rate The occurrence of defects such as warpage, delamination, and cracking that may occur due to the difference in resistance is unlikely to occur, and good durability can be achieved.
  • the glass laminate of the present invention since the hard resin sheet has specific optical characteristics (characteristic (b)), transparency is good and light guiding performance is excellent. Therefore, the glass laminate of the present invention can be used as a light guide plate. By combining the glass laminate of the present invention with a light source that introduces light into one end face of the glass laminate, a planar light emitter having good light emission performance can be provided.
  • Inorganic glass plate There is no particular limitation on the inorganic glass plate, and float plate glass, polished plate glass, mold plate glass, mesh plate glass, heat ray absorbing plate glass, special glass (for example, metal such as silver or metal such as indium tin oxide for the purpose of controlling sunlight) Oxide-sputtered), low-E glass, tempered glass, and combinations thereof. These may be colorless or colored.
  • the hard resin sheet is made of a hard resin composition having a glass transition temperature (Tg) of 120 ° C. or higher and a light transmittance of 60% or more at a wavelength of 420 nm with an optical path length of 200 mm.
  • the hard resin sheet may have a single layer structure or a laminated structure composed of a plurality of hard resin composition layers having different compositions.
  • the hard resin composition has a glass transition temperature (Tg) of 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher.
  • Tg glass transition temperature
  • the light transmittance of the hard resin composition at a wavelength of 420 nm at an optical path length of 200 mm is 60% or more, preferably 70% or more, and more preferably 80% or more.
  • the wavelength of 420 nm is a wavelength in a region close to 470 nm which is a peak wavelength of a general blue LED (light emitting diode) used as one of light sources of an optical member such as a light guide plate. If the light transmittance at this wavelength of 420 nm is low, there is a possibility that yellowishness may slightly increase.
  • the spectral light transmittance at a wavelength of 420 nm is measured using an injection molded long optical path molded product (200 mm ⁇ 50 mm ⁇ 2 mm) under the condition of an optical path length of 200 mm. Shall.
  • the hard resin composition is a methacrylic resin composition containing a methyl methacrylate (co) polymer (A).
  • the methyl methacrylate (co) polymer (A) is a polymethyl methacrylate (PMMA) that is a homopolymer of methyl methacrylate (MMA), or a co-polymer of MMA and one or more other monomers. It is a coalescence.
  • PMMA polymethyl methacrylate
  • MMA polymethyl methacrylate
  • MMA polymethyl methacrylate
  • MMA polymethyl methacrylate
  • MMA polymethyl methacrylate
  • MMA polymethyl methacrylate
  • MMA homopolymer of methyl methacrylate
  • co-polymer of MMA MMA
  • It is a coalescence.
  • One or more methyl methacrylate (co) polymers (A) can be used.
  • the content of the MMA unit in the methyl methacrylate (co) polymer (A) is not particularly limited, and is preferably 60% by mass or more, more preferably 80% by mass or more, because the hard resin sheet has excellent scratch resistance. More preferably, it is 90% by mass or more, particularly preferably 99% by mass or more, and most preferably 100% by mass.
  • the content of MMA units in the methyl methacrylate (co) polymer (A) was purified by reprecipitation of the methyl methacrylate (co) polymer (A) in methanol, and then pyrolysis gas chromatography was used. Thus, thermal decomposition and separation of volatile components can be carried out, and calculation can be made from the ratio of peak areas of MMA and copolymer components.
  • the methyl methacrylate (co) polymer (A) can contain (meth) acrylic acid ester units other than MMA units.
  • (meth) acrylic acid esters other than MMA include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, Methacrylic acid alkyl esters such as heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, and dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cycloheptyl methacrylate, cyclooctyl methacrylate, and methacrylic acid tricyclo [5.2
  • the content of (meth) acrylic acid ester units other than MMA units in the methyl methacrylate (co) polymer (A) is preferably 40% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. Particularly preferably, it is 1% by mass or less, and most preferably 0% by mass.
  • the methyl methacrylate (co) polymer (A) is obtained by polymerizing one or more monomers including MMA.
  • a plurality of types of monomers in the polymerization usually, a plurality of types of monomers are mixed to prepare a monomer mixture and then subjected to polymerization.
  • the polymerization method is not particularly limited, and radical polymerization and anionic polymerization are preferable from the viewpoints of productivity and heat resistance.
  • the methyl methacrylate (co) polymer (A) preferably has a triadic syndiotacticity (rr) (hereinafter also referred to as “rr ratio”) from the viewpoint of heat resistance and moldability. 85%.
  • the lower limit of the rr ratio is more preferably 53%, still more preferably 55%, particularly preferably 58%, and most preferably 60%.
  • the upper limit of the rr ratio is more preferably 77%, and particularly preferably 65%.
  • the rr ratio is a ratio in which two chains (doublet, diad) of three consecutive structural unit chains (triplet, triad) are both racemo (represented as rr).
  • chains doublet, diad
  • racemo those having the same configuration
  • racemo those opposite to each other
  • the rr ratio of the methyl methacrylate (co) polymer (A) was determined by measuring a 1 H-NMR spectrum in deuterated chloroform at 30 ° C., from which tetramethylsilane (TMS) was 0 ppm.
  • TMS tetramethylsilane
  • the area (X) of the region of 0.6 to 0.95 ppm and the area (Y) of the region of 0.6 to 1.35 ppm are measured and calculated by the formula: (X / Y) ⁇ 100 it can.
  • the weight average molecular weight (Mw) of the methyl methacrylate (co) polymer (A) is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, particularly preferably 80,000 to 200,000. 000.
  • Mw is 40,000 or more, the hard resin sheet is excellent in mechanical strength, and when it is 500,000 or less, the hard resin sheet is excellent in moldability.
  • the methyl methacrylate (co) polymer (A) has a glass transition temperature (Tg) of preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and particularly preferably 140 ° C. or higher.
  • Tg glass transition temperature
  • the methyl methacrylate (co) polymer (A) has a light transmittance at a wavelength of 420 nm at an optical path length of 200 mm, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the light transmittance is 60% or more, the hard resin sheet is excellent in transparency and light guiding performance.
  • the melt flow rate (MFR) of the methyl methacrylate (co) polymer (A) is preferably 1 to 10 g / 10 min.
  • the lower limit value of MFR is more preferably 1.2 g / 10 minutes, particularly preferably 1.5 g / 10 minutes.
  • the upper limit value of MFR is more preferably 7.0 g / 10 minutes, and particularly preferably 4.0 g / 10 minutes.
  • MFR is a value measured using a melt indexer at a temperature of 230 ° C. and a load of 3.8 kg unless otherwise specified.
  • the hard resin composition contains one or more polycarbonate resins (PC) in place of the methyl methacrylate (co) polymer (A) or in combination with the methyl methacrylate (co) polymer (A). be able to.
  • the polycarbonate-based resin (PC) is a polymer having a basic structure including a carbonic acid bond represented by a general formula: — (— O—X—O—C ( ⁇ O) —) —.
  • X is generally a hydrocarbon group, but a hydrocarbon group into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
  • PC Polycarbonate resins
  • aromatic polycarbonate resins can be classified into aromatic polycarbonate resins and aliphatic polycarbonate resins, based on the type of hydrocarbons that are directly bonded to carbonic acid bonds. Any of them may be used, but an aromatic polycarbonate resin is more preferable from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • the aromatic polycarbonate resin can be obtained, for example, by reacting an aromatic dihydroxy compound, a carbonate precursor, and, if necessary, a polyhydroxy compound.
  • the aromatic polycarbonate resin may be linear or branched.
  • the aromatic polycarbonate resin may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating units.
  • the form of the copolymer is arbitrary such as a random copolymer and a block copolymer.
  • aromatic dihydroxy compound bis (hydroxyaryl) alkanes are preferable. Among them, bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (that is, bisphenol A) is particularly preferable from the viewpoint of impact resistance and heat resistance.
  • the carbonate precursor include carbonyl halide and carbonate ester. One or more aromatic dihydroxy compounds and carbonate precursors can be used.
  • Examples of the method for producing a polycarbonate resin (PC) include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization of a cyclic carbonate compound, and a solid phase transesterification of a prepolymer.
  • PC polycarbonate resin
  • SD Polycarbonate SD2201W, SD2211W manufactured by Sumika Stylon Polycarbonate Co., Ltd.
  • Iupilon HL-Series manufactured by Mitsubishi Engineering Plastics Co., Ltd., and the like
  • the viscosity average molecular weight (Mv) of the polycarbonate-based resin (PC) is only required to be moldable, and is usually 12,000 to 50,000, preferably 14,000 to 40,000, more preferably 16,000 to 30,000. It is. If the Mv of the polycarbonate resin (PC) is less than 12,000, the mechanical strength may decrease. If Mv exceeds 50,000, the melt fluidity is lowered and the moldability may be insufficient.
  • the polycarbonate resin (PC) may be a mixture of a plurality of polycarbonate resins (PC) having different Mvs. In this case, if the molecular weight of the mixture is within the above range, a polycarbonate resin (PC) having Mv outside the above range may be included.
  • viscosity average molecular weight (Mv) uses methylene chloride as a solvent and measures the intrinsic viscosity [ ⁇ ] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. It is a value calculated from the viscosity formula of Schnell of the following formula (1).
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following formula (2) by measuring the specific viscosity ⁇ sp at the solution concentration c (g / dl).
  • the polycarbonate resin (PC) has a glass transition temperature (Tg) of preferably 140 ° C. or higher, more preferably 145 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • Tg glass transition temperature
  • the hard resin sheet has excellent heat resistance.
  • the polycarbonate resin (PC) preferably has a light transmittance at an optical path length of 200 mm and a wavelength of 420 nm of 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the light transmittance is 60% or more, the hard resin sheet is excellent in transparency and light guiding performance.
  • the hard resin composition containing methyl methacrylate (co) polymer (A) and / or polycarbonate-based resin (PC) can further contain light diffusing particles.
  • the light diffusing particles are particles that have a refractive index different from that of the matrix resin and scatter light.
  • the hard resin sheet contains light diffusing particles, when light is introduced from the light source to the one end surface of the glass laminate of the present invention, the light is scattered in the thickness direction of the glass laminate, toward the opposite other end surface. It becomes possible to guide light well in the surface direction of the glass laminate.
  • the light diffusing particles are contained in the hard resin sheet
  • a glass laminate that is excellent in light guide performance and suitable as a light guide plate for a planar light emitter without the need to separately provide a light diffusing layer by printing, surface unevenness processing, etc.
  • the body can be provided.
  • the hard resin sheet may be formed of only a hard resin such as methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC). In the present invention, even when the hard resin sheet is formed of only the hard resin, the hard resin sheet is considered to be made of the hard resin composition for convenience.
  • the hard resin sheet preferably has good transparency when the light source is turned off.
  • the light diffusing particle diameter, content, and light diffusing particle so that the light guide performance can be effectively improved by the light scattering action of the light diffusing particle after sufficiently ensuring the transparency of the hard resin sheet.
  • the difference in refractive index between the matrix resin and the matrix resin is designed.
  • the volume average particle diameter d ( ⁇ m) is preferably 0.5 to 5 ⁇ m, more preferably 0.75 to 4 ⁇ m, and particularly preferably 1 to 3 ⁇ m.
  • the “volume average particle diameter d” is a particle diameter obtained by a laser diffraction scattering method.
  • the content of the light diffusing particles in the hard resin composition is preferably 0.0001 to 0.1% by mass, more preferably 0.000125 to 0.01% by mass. Particularly preferred is 0.00025 to 0.001 mass%.
  • the absolute value of the refractive index difference ( ⁇ n) between the matrix resin (preferably methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC)) in the hard resin composition and the light diffusing particles is too small. Then, since the light scattering effect cannot be obtained effectively, it is difficult to extract light efficiently. When the light is excessively large, backscattering is dominant and it is difficult to extract light efficiently.
  • the absolute value of the refractive index difference ( ⁇ n) is too small or too large, it is necessary to increase the content of the light diffusing particles in order to obtain sufficient luminance, which may result in insufficient transparency.
  • the absolute value of the difference in refractive index ( ⁇ n) is preferably 0.3 to 3, more preferably 0.4 to 3, from the balance between brightness and transparency during lighting.
  • the product ( ⁇ n ⁇ d) of the absolute value of the refractive index difference ( ⁇ n) and the volume average particle diameter d ( ⁇ m) is preferably 0.1 ⁇ m or more, more preferably 0, from the balance between brightness and transparency at the time of lighting. .5 ⁇ m or more.
  • inorganic compound particles having a large refractive index difference with respect to the matrix resin are preferable, and metal oxide particles such as titanium oxide particles and zinc oxide particles are preferable. These can be used alone or in combination of two or more.
  • the hard resin composition may contain a polymer other than the methyl methacrylate (co) polymer (A) and the polycarbonate resin (PC) as long as the effects of the present invention are not impaired.
  • Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, styrene- Styrenic resins such as maleic anhydride-MMA copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, ACS resin, and MBS resin; methyl methacrylate-styrene copolymer; polyethylene terephthalate and poly Polyester resins such as butylene terephthalate; polyamide resins such as nylon 6, nylon 66, and polyamide elastomers; polyphenylene sul
  • thermoplastic resins thermosetting resins such as phenol resins, melamine resins, silicone resins, and epoxy resins
  • acrylic rubbers, silicone rubbers styrene thermoplastic elastomers such as SEPS, SEBS, SIS
  • IR And olefin rubbers such as EPR and EPDM.
  • the content of the other polymer in the hard resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the hard resin composition may contain other various additives as required.
  • Other additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes / pigments, matting agents , Impact resistance modifiers, and phosphors.
  • the content of these additives can be appropriately set within a range not impairing the effects of the present invention.
  • the content of the antioxidant is 0.01 to 1% by mass
  • the content of the ultraviolet absorber is 0.01 to 3%.
  • the content of the light stabilizer is 0.01 to 3% by mass
  • the content of the lubricant is 0.01 to 3% by mass
  • the content of the dye / pigment is 0.01 to 3% by mass.
  • the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays.
  • the ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, and formamidines.
  • benzotriazoles, triazines, or ultraviolet absorbers having a maximum molar extinction coefficient ⁇ max at a wavelength of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less are preferable.
  • Benzotriazoles are preferably used when the glass laminate is applied to optical applications because it has a high effect of suppressing deterioration in optical properties such as coloring due to ultraviolet irradiation.
  • benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (such as “trade name TINUVIN329” manufactured by BASF Japan Ltd.), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (such as “trade name TINUVIN234” manufactured by BASF Japan Ltd.), and 2,2′-methylenebis [ 6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (“ADEKA STAB LA-31” manufactured by ADEKA Corporation) and the like are preferable.
  • a triazine UV absorber is preferably used.
  • Such UV absorbers include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (“ADEKA STAB LA-F70” manufactured by ADEKA Corporation) And hydroxyphenyltriazine-based ultraviolet absorbers (such as “TINUVIN477” and “TINUVIN460” manufactured by BASF Japan Ltd.) which are analogs thereof.
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6 monotetraalkylpiperidine skeleton. Examples thereof include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (“ADEKA STAB LA-77Y” manufactured by ADEKA Corporation) and the like.
  • a hard fat composition preferably containing methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC)
  • the timing of adding the optional component is not particularly limited, and the methyl methacrylate (co) polymer (A) polymerized during polymerization of the methyl methacrylate (co) polymer (A) and / or the polycarbonate resin (PC) (A) ) And polycarbonate resin (PC) may be mixed at any timing or after mixing.
  • the MFR of the hard resin composition is preferably 1 to 10 g / 10 minutes.
  • the lower limit value of MFR is more preferably 1.5 g / 10 minutes, and particularly preferably 2.0 g / 10 minutes.
  • the upper limit value of MFR is more preferably 7.0 g / 10 minutes, particularly preferably 4.0 g / 10 minutes.
  • the molding method of the hard resin sheet is not particularly limited, and examples thereof include an extrusion molding method, a cast molding method, and an injection molding method, and the extrusion molding method and the like are preferable.
  • a hard resin sheet having a laminated structure composed of a plurality of hard resin composition layers can be formed by known multilayer molding.
  • the hard resin sheet can also be multilayer extruded with an interlayer or any other layer.
  • the intermediate film is a transparent layer that bonds the inorganic glass plate and the hard resin sheet.
  • the intermediate film is made of a soft resin composition having specific viscoelastic properties.
  • the interlayer film may have a single layer structure or a laminated structure composed of a plurality of soft resin composition layers having different compositions.
  • the soft resin composition has a storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz of 1.0 ⁇ 10 7 Pa or less, preferably 5.0 ⁇ 10 6 Pa or less, more preferably 1. 0 ⁇ 10 6 Pa or less.
  • the storage elastic modulus G ′ is 1.0 ⁇ 10 7 Pa or less, the difference in linear expansion coefficient and the difference in water absorption between the inorganic glass plate and the hard resin sheet during the production and actual use of the glass laminate. It is possible to effectively suppress the occurrence of defects such as warpage, delamination, and cracking that may occur due to.
  • the soft resin composition has a peak temperature at which the loss tangent tan ⁇ at a frequency of 1.0 Hz is maximized at 25 ° C. or lower, preferably 20 ° C. or lower, more preferably 15 ° C. or lower.
  • the maximum peak temperature of the loss tangent tan ⁇ is 25 ° C. or less, the glass laminate of the present invention can suppress the occurrence of the above-described defects and has excellent impact resistance.
  • the soft resin constituting the soft resin composition examples include polyvinyl butyral, ethylene-vinyl acetate copolymer, ethylene ionomer, thermoplastic polyurethane resin, and modified products thereof. These can be used alone or in combination of two or more.
  • the intermediate film has a function of favorably bonding the inorganic glass plate and the hard resin sheet and a function of improving the impact resistance of the glass laminate. Furthermore, it has internal stress relaxation performance, which may occur during manufacturing and actual use of glass laminates due to differences in linear expansion coefficient and water absorption between inorganic glass plates and hard resin sheets. It has a function of suppressing the occurrence of defects such as warping, delamination, and cracking.
  • a thermoplastic polyurethane resin is particularly preferred because of its excellent function.
  • the intermediate film may be formed of only a soft resin such as a thermoplastic polyurethane resin, or may further contain various additives in addition to the soft resin as described above. In the present invention, even when such an intermediate film is formed of only a soft resin, for convenience, the intermediate film is considered to be formed of a soft resin composition.
  • the thermoplastic polyurethane resin is obtained by reacting a polyisocyanate, a polyol and a chain extender.
  • the thermoplastic polyurethane-based resin is preferably a block copolymer composed of a hard segment formed by a reaction between a chain extender and polyisocyanate and a soft segment formed by a reaction between a polyol and polyisocyanate.
  • diisocyanate is preferable, and aliphatic diisocyanate compounds such as hexamethylene diisocyanate, tetramethylene diisocyanate, dodecamethylene diisocyanate, and 2,4,4-trimethyl-1,6-hexane diisocyanate; bis (4-isocyanatocyclohexyl) Alicyclic diisocyanate compounds such as methane, 2,2-bis (4-isocyanatocyclohexyl) propane, 1,4-cyclohexyl diisocyanate, and 1-methyl-2,4- (or 2,6) -diisocyanatecyclohexane; isophorone Aliphatic and alicyclic mixed diisocyanate compounds such as diisocyanate; toluene diisocyanate, diphenylmethane diisocyanate (MDI), polymeric MD , Tolylene diisocyanate, p- phenylene diisocyanate,
  • MDI dipheny
  • polyol examples include polyester diols obtained by a polyesterification reaction of an aliphatic dibasic acid or an anhydride thereof with a dihydric alcohol (preferably an aliphatic dihydric alcohol).
  • the aliphatic dibasic acid is represented by the general formula HOOC—R—COOH (wherein R is an alkylene group having 2 to 12 carbon atoms, preferably 4 to 8 carbon atoms), adipic acid, succinic acid, Examples include palmitic acid, suberic acid, azelaic acid, and sebacic acid.
  • the dihydric alcohol is preferably an alcohol having 2 to 15 carbon atoms, and examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol.
  • polyols include polyoxytetramethylene diol having an oxymethylene group, oxypropylene group or polyoxyalkylene diol having an oxyethylene group and an oxypropylene group, and the above oxyalkylene group and oxytetramethylene group.
  • polyether diol examples include polyether diol.
  • polystyrene resin examples include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; polycarbonate diols obtained by polycondensation of compounds such as phosgene, chloroformate, diallyl carbonate, and alkylene carbonate with low molecular weight polyols. .
  • dialkyl carbonates such as dimethyl carbonate and diethyl carbonate
  • polycarbonate diols obtained by polycondensation of compounds such as phosgene, chloroformate, diallyl carbonate, and alkylene carbonate with low molecular weight polyols.
  • One or more polyols can be used.
  • chain extender examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and bishydroxyethoxybenzene.
  • the storage elastic modulus G ′ and the loss tangent tan ⁇ peak temperature of the thermoplastic polyurethane resin are determined by the hard segment (reaction site between the chain extender and the polyisocyanate) and the soft segment (polyol and polyisocyanate) constituting the thermoplastic polyurethane resin. It is possible to adjust by selecting the mass ratio to the reaction site), the glass transition temperature (Tg) of the soft segment, and the weight average molecular weight (Mw) or type of each component. For example, the storage modulus G ′ tends to decrease when a soft segment having a high mass ratio is used, and the tan ⁇ peak temperature tends to decrease when a soft segment having a low glass transition temperature (Tg) is used.
  • the surface shape of the intermediate film is not particularly limited, and may have a surface uneven structure such as an embossed structure on at least one surface, preferably both surfaces.
  • a surface uneven structure such as an embossed structure
  • the height of the surface uneven structure is not particularly limited, and is preferably 5 to 500 ⁇ m, more preferably 7 to 300 ⁇ m, and particularly preferably 10 to 200 ⁇ m.
  • the height of the surface concavo-convex structure is less than 5 ⁇ m, when the inorganic glass plate and the hard resin sheet are laminated, air bubbles formed between the inorganic glass plate and the intermediate film and between the hard resin sheet and the intermediate film are efficiently formed. In some cases, it cannot be removed.
  • the thickness exceeds 500 ⁇ m, it is difficult to form a surface uneven structure.
  • the shape of the surface uneven structure may be regular or irregular. Examples of the method for forming the surface uneven structure include an emboss roll method, a calender roll method, and a profile extrusion method. Among these, the embossing roll method is preferable because a relatively large amount of the uneven pattern can be easily formed.
  • the intermediate film can be formed using a soft resin sheet.
  • the molding method of the soft resin sheet is not particularly limited, and examples thereof include an extrusion molding method, a cast molding method, and an injection molding method, and the extrusion molding method and the like are preferable.
  • a soft resin sheet having a laminated structure composed of a plurality of soft resin composition layers can be formed by known multilayer molding.
  • the soft resin sheet can also be multilayer extruded with a hard resin sheet or any other layer.
  • the uneven surface structure can be imparted during or after the cooling step when molding the soft resin sheet, or after the production of the soft resin sheet.
  • a glass laminate 1 according to the first embodiment shown in FIG. 1 is a glass laminate having a three-layer structure in which an intermediate film 12 and a hard resin sheet 13 are sequentially provided on an inorganic glass plate 11.
  • the thickness of each component is not particularly limited.
  • the thickness of the inorganic glass plate 11 is preferably 0.1 to 4.0 mm, more preferably 0.5 to 3.0 mm, and particularly preferably 1.0 to 2.0 mm from the viewpoint of rigidity and weight reduction. .
  • the thickness of the intermediate film 12 is preferably 0.03 to 8.0 mm, more preferably 0.1 to 7.0 mm, and particularly preferably 0 from the viewpoints of interlayer adhesion, impact resistance, and internal stress relaxation performance. .4 to 6.0 mm.
  • the thickness of the hard resin sheet 13 is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm, and particularly preferably 1.0 to 3 in terms of scratch resistance, weather resistance, impact resistance, and the like. 0.0 mm.
  • the manufacturing method in particular of the glass laminated body 1 of 1st Embodiment is not restrict
  • the method to match is mentioned.
  • the inorganic glass plate 11 may be subjected to adhesion enhancement treatment on at least one surface in advance, if necessary.
  • the adhesion enhancing process is described in, for example, US Pat. No. 7,625,627.
  • the thermocompression bonding method is not particularly limited, and examples thereof include a hot press method, a vacuum bag method, and an autoclave method.
  • a pre-laminated body in which a soft resin sheet that becomes an inorganic glass plate 11 and an intermediate film 12 and a hard resin sheet 13 are placed in a vacuum bag, air is sucked from the vacuum bag by means of a vacuum line or the like, and the vacuum bag A method of heating and pressurizing inside an autoclave or the like while maintaining the inside vacuum state is preferable.
  • the heating temperature required for this is generally above 80 ° C, preferably above 90 ° C.
  • the upper limit of the heating temperature is preferably 120 ° C, more preferably 110 ° C.
  • a laminated sheet composed of the intermediate film 12 and the hard resin sheet 13 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and bonded by thermocompression bonding.
  • a laminated sheet composed of the intermediate film 12 and the hard resin sheet 13 can be performed by known multilayer molding.
  • the multilayer molding method include a multilayer extrusion molding method, a multilayer blow molding method, a multilayer press molding method, a multicolor injection molding method, and an insert injection molding method. From the viewpoint of productivity, multilayer extrusion molding in which the intermediate film 12 and the hard resin sheet 13 are laminated by melt coextrusion is preferable.
  • multilayer extrusion molding using a molding apparatus provided with a flat T die and a plurality of cooling rolls adjacent to each other is preferable.
  • the T-die method include a feed block method in which a plurality of types of heat-melted resins are laminated before the T-die flows, and a multi-manifold method in which a plurality of types of heat-melted resins are laminated inside the T die. It is done. From the viewpoint of improving the smoothness of the interface between layers, the multi-manifold method is preferable.
  • the cooling roll in contact with at least the hard resin sheet among the plurality of cooling rolls is preferably a polishing roll having a mirror-finished surface.
  • the glass laminated body of this invention is not limited to the three-layer structure shown in figure, A design change is possible suitably.
  • Each of the inorganic glass plate 11, the intermediate film 12, and the hard resin sheet 13 may be singular or plural.
  • the glass laminate can include other optional layers as required.
  • the constituent material of the other layer is not particularly limited, and examples thereof include various resins (thermoplastic resin, thermosetting resin, energy ray curable resin, and combinations thereof) having different compositions from the intermediate film and the hard resin sheet. .
  • the function of other layers is not particularly limited, and is a support layer that supports other elements, an abrasion-resistant layer, an antistatic layer, an antifouling layer, a friction reducing layer, an antiglare layer, an antireflection layer, an adhesive layer, and heat ray absorption.
  • You may function as various functional layers, such as a layer, a sound insulation layer, and an impact strength provision layer.
  • Other layers may be singular or plural. When there are a plurality of other layers, the composition may be the same or non-identical.
  • the glass laminate 2 of the second embodiment shown in FIG. 2 has the glass laminate 1 of the first embodiment as a basic structure, and further, between the intermediate film 12 and the hard resin sheet 13, the hard resin sheet 13 is It is the aspect provided with the thermoplastic resin layer 14 from which a composition differs.
  • the thermoplastic resin layer 14 may have a single layer structure or a laminated structure.
  • the constituent resin of the thermoplastic resin layer 14 is not particularly limited.
  • Methacrylic resin Polyolefin resin such as polyethylene and polypropylene; Polystyrene resin; Polyester resin; Polyamide resin; Polycarbonate resin; Polyvinyl chloride, Polychlorinated resin Vinylidene, polyvinyl alcohol, polyvinylidene fluoride; modified polyphenylene ether, polyphenylene sulfide; silicone modified resin; polyether ether ketone; polysulfone; polyphenylene oxide; polyimide, polyetherimide; Among these, methacrylic resins and polycarbonate resins are preferable from the viewpoints of transparency, heat resistance, and impact resistance.
  • the thickness of the thermoplastic resin layer 14 is not particularly limited, and is preferably 0.04 to 3 mm, more preferably 0.05 to 1.5 mm, and particularly preferably 0.06 to 1.0 mm.
  • the impact resistance of a glass laminated body can be improved because the thickness of the thermoplastic resin layer 14 is 0.04 mm or more, and the curvature of a glass laminated body can be suppressed because it is 3 mm or less.
  • the manufacturing method in particular of the glass laminated body 2 of 2nd Embodiment is not restrict
  • a method of preparing a laminated sheet composed of the intermediate film 12, the thermoplastic resin layer 14, and the hard resin sheet 13 in advance, and laminating the laminated sheet on the inorganic glass plate 11 and bonding them by thermocompression bonding. is mentioned.
  • a design change is possible suitably similarly to 1st Embodiment.
  • the glass laminated body 3 of 3rd Embodiment shown in FIG. 3 is the aspect which equipped the glass laminated body 1 of 1st Embodiment as basic structure, and also was equipped with the abrasion-resistant layer 21 on the hard resin sheet 13.
  • FIG. The glass laminate 4 of the fourth embodiment shown in FIG. 4 is a mode in which the glass laminate 2 of the second embodiment is a basic structure and the scratch-resistant layer 21 is further provided on the hard resin sheet 13.
  • the glass laminate 5 of the fifth embodiment shown in FIG. 5 is a mode in which the glass laminate 1 of the first embodiment is a basic structure and the scratch-resistant layers 21 are provided on both surfaces of the hard resin sheet 13.
  • the scratch-resistant layer 21 can be formed, for example, by applying a fluid curable composition composed of a monomer, an oligomer, a resin, and the like to the surface of the hard resin sheet 13 and curing it.
  • the curable composition is, for example, a thermosetting composition that is cured by heat, or an energy beam curable composition that is cured by an energy beam such as an electron beam, radiation, or ultraviolet rays.
  • Thermosetting compositions include phenolic resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, unsaturated polyester resins, polyurethane resins, epoxy resins, aminoalkyd resins, melamine-urea cocondensation resins, It includes a thermosetting resin such as silicon resin and polysiloxane resin.
  • the thermosetting composition may contain a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, or the like, if necessary.
  • Curing agents include isocyanates for polyurethane resins, organic sulfonic acids for polyester resins, amines for epoxy resins, peroxides such as methyl ethyl ketone peroxide and azobisisobutyl esters for unsaturated polyester resins, etc. These radical initiators are preferably used.
  • the energy ray curable composition examples include a composition containing an oligomer and / or a monomer having a group containing a polymerizable unsaturated bond such as an acryloyl group and a methacryloyl group, a thiol group, or an epoxy group in the molecule. From the viewpoint of enhancing the scratch resistance, a composition containing an oligomer and / or monomer having a plurality of acryloyl groups or methacryloyl groups is preferred.
  • the energy beam curable composition may contain a photopolymerization initiator and / or a photosensitizer.
  • Photopolymerization initiators include carbonyl compounds such as benzoin methyl ether, acetophenone, 3-methylacetophenone, benzophenone and 4-chlorobenzophenone; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; 2, 4, 6 -Trimethylbenzoyldiphenylphosphine oxide and benzoyldiethoxyphosphine oxide.
  • the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
  • the thickness of the scratch-resistant layer 21 is not particularly limited, and is preferably 2 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and particularly preferably 4 to 7 ⁇ m.
  • the thickness of the scratch-resistant layer is 2 ⁇ m or more, good scratch resistance can be expressed, and when the thickness is 10 ⁇ m or less, the impact resistance of the glass laminate tends to be excellent.
  • the manufacturing method in particular of the glass laminated body 3 of 3rd Embodiment is not restrict
  • seat 13 in this order is mentioned.
  • a laminated sheet composed of the intermediate film 12, the hard resin sheet 13, and the scratch-resistant layer 21 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and bonded by thermocompression bonding. Can be mentioned.
  • thermoplastic resin layer 14 is previously formed in one surface by the inorganic glass plate 11, the soft resin sheet used as the intermediate film 12, and the other There is a method in which the hard resin sheet 13 having the scratch-resistant layer 21 formed on the surface is superposed in this order, followed by thermocompression bonding.
  • a laminated sheet composed of the intermediate film 12, the thermoplastic resin layer 14, the hard resin sheet 13, and the scratch-resistant layer 21 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and thermocompression bonded. And pasting them together.
  • the manufacturing method in particular of the glass laminated body 5 of 5th Embodiment is not restrict
  • a laminated sheet composed of the intermediate film 12, the first scratch-resistant layer 21, the hard resin sheet 13, and the second scratch-resistant layer 21 is prepared in advance, and this laminated sheet is used as the inorganic glass plate 11. There is a method of stacking them on top of each other and applying them by thermocompression bonding.
  • the hard resin sheet 13 having the scratch-resistant layers 21 on both sides has the same distortion caused by curing of the curable composition on both sides of the hard resin sheet 13, so that warpage is suppressed and the soft resin composition constituting the intermediate film 12. Adhesion with objects is improved. Note that the glass laminates 3 to 5 of the third to fifth embodiments can be appropriately changed in design as in the first embodiment.
  • the present invention weight reduction is possible, transparency is good, and defects such as surface roughness, warpage, delamination, and cracking in the process of bonding the inorganic glass plate and the resin sheet are performed.
  • production can be suppressed, durability can be provided, and the glass laminated body excellent in the light guide performance can be provided.
  • the planar light-emitting body of the present invention includes the above-described glass laminate of the present invention and a light source for introducing light from one or both end surfaces of the glass laminate.
  • FIG. 6 the schematic cross section of the planar light-emitting body of one Embodiment which concerns on this invention is shown.
  • the planar light-emitting body 6 of this embodiment includes a glass laminate 61, a light source 62 disposed adjacent to both end faces of the hard resin sheet 61C of the glass laminate 61, and light for efficiently using light.
  • a reflective cover 63 is shown.
  • the glass laminate 61 is a glass laminate of the present invention including a laminated structure in which a hard resin sheet 61C is laminated on an inorganic glass plate 61A via an intermediate film 61B.
  • the glass laminate 61 of the first embodiment shown in FIGS. ⁇ A laminated structure of any one of the glass laminates 1 to 5 of the fifth embodiment.
  • Light emitted from the light source 62 is incident from both end surfaces that are the light incident side end surfaces of the hard resin sheet 61 ⁇ / b> C of the glass laminate 61, and is guided toward the center of the glass laminate 61.
  • a planar light-emitting body 7 having a design change shown in FIG. 7 includes a glass laminate 61, and a light source 62 and a light reflection cover 63 arranged adjacent to one end face of the glass laminate 61.
  • FIG. 7 the same components as those in FIG. 6 are denoted by the same reference numerals.
  • the glass laminate of the present invention includes, for example, building parts such as safety window glass and partitions; optical parts such as liquid crystal protective plates, light guide plates, front plates of various displays, and diffusion plates; automobile interior / exterior members (side visors, Vehicle components such as rear visor, head wing, headlight cover, bumper, sunroof, and glazing); bathroom components such as greenhouses, large aquariums, box aquariums, bathtubs, sanitary components, clock panels, desk mats, game parts, toys And a mask for protecting the face during welding.
  • the glass laminate and the planar light emitter of the present invention are suitable as a vehicle member, and are suitable as an automobile glazing material, particularly an automobile sunroof material.
  • a high-performance automobile glazing material such as an automobile sunroof material that functions as a transparent plate when the light source is turned off and functions as interior lighting when the light source is turned on.
  • Evaluation items and evaluation methods are as follows. (Glass transition temperature (Tg) of hard resin composition) 10 mg of the hard resin composition was dried at 80 ° C. for 24 hours, and then placed in an aluminum pan. After performing nitrogen substitution for 30 minutes or more using a differential scanning calorimeter (TA Instruments “Q20”), the temperature was increased from 25 ° C. to 200 ° C. at a rate of 20 ° C./min in a nitrogen stream of 10 ml / min. After being held at 200 ° C. for 10 minutes, it was naturally cooled to 25 ° C. (primary scanning). Next, the temperature was raised again to 200 ° C. at a rate of 10 ° C./min (secondary scanning), and the glass transition temperature (Tg) was calculated by the midpoint method.
  • Tg Glass transition temperature
  • a planar light emitter 7 as shown in FIG. 7 was prepared and evaluated.
  • the glass laminate 61 was previously subjected to a light absorption process 64 on the other end face facing the end face on the light incident side.
  • a light source 62 and a light reflection cover 63 are disposed adjacent to the end surface on the light incident side of the glass laminate 61.
  • the light source 62 one in which seven LEDs are arranged in a line in a parallel direction with respect to the end surface on the light incident side of the glass laminate at an interval of 10 mm was used.
  • “LED NFSW036BT” diameter of light emitting part: 3 mm
  • a voltage of 2.8 V was applied to each LED.
  • the light emitted from the light source 62 enters from the end surface on the light incident side of the glass laminate 61 and is guided through the glass laminate 61 to the other end surface subjected to the light absorption process 64.
  • the distance from the end surface on the light incident side to the other end surface on which the light absorption process 64 was performed was set to 300 mm.
  • the position of the end face on the light incident side was set to 0 mm, and the distance to an arbitrary point between the other end face subjected to the light absorption process 64 was set as the “light guide distance”.
  • the brightness at the time of light source lighting in 200 mm of light guide distances, and the change of a color eye were evaluated visually from the hard resin sheet 61C side. Even when the light guide distance was 200 mm, high luminance surface light emission could be confirmed, the change in chromaticity due to the light guide distance was small, and the change in the color from the end surface on the light incident side to the other end surface was not determined to be “good”. A case where surface emission was low in luminance or color unevenness was observed was judged as “bad”.
  • ⁇ Methacrylic resin (A2)> The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate (MMA), 2,2′-azobis (2-methylpropionitrile) (hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.0065 Part by mass and 0.290 parts by mass of n-octyl mercaptan were added and stirred to obtain a raw material liquid. Nitrogen was fed into the raw material liquid to remove dissolved oxygen in the raw material liquid. The raw material liquid was put in a tank reactor connected to the autoclave through a pipe up to 2/3 of the capacity.
  • MMA purified methyl methacrylate
  • 2,2′-azobis (2-methylpropionitrile) hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.
  • the polymerization reaction was first started by a batch method.
  • the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 120 minutes while maintaining the temperature at 120 ° C., and the supply flow rate of the raw material liquid
  • the reaction liquid was withdrawn from the tank reactor at a flow rate corresponding to 1 and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 45% by mass.
  • the reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes.
  • the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin.
  • the molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into a strand, and cut with a pelletizer.
  • ⁇ Methacrylic resin (A3)> The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, at room temperature, 1600 g of toluene, 2.49 g (1,0.8 mmol) of 1,1,4,7,10,10-hexamethyltriethylenetetramine, isobutyl bis (2,6-dioxy) having a concentration of 0.45M. 5.
  • ⁇ Methacrylic resin (A4)> The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, 630 g of methyl methacrylate (MMA), 350 g of tricyclo [5.2.1.0 2,6 ] dec-8-yl (TCDMA) methacrylate, 20 g of methyl acrylate (MA), azobisiso 0.6 g of butyronitrile, 2.0 g of n-octyl mercaptan, 2500 g of ion-exchanged water, 0.9 g of a dispersant, and 10.7 g of a pH adjuster were charged. While stirring, the liquid temperature was raised from room temperature to 70 ° C.
  • MMA methyl methacrylate
  • TCDMA tricyclo [5.2.1.0 2,6 ] dec-8-yl
  • MA methyl acrylate
  • MA methyl acrylate
  • Table 1 shows the monomer unit composition, MMA ratio, rr ratio, and Mw of the methacrylic resin used.
  • PU1 ⁇ Thermoplastic polyurethane sheet (PU1)> Lubrizol “Estane AG-8451” was calendered and then embossed on both sides to obtain a 760 ⁇ m-thick thermoplastic polyurethane sheet (PU1).
  • Polyvinyl butyral sheet (PVB1)> As a plasticizer for 61.5 parts by mass of Kuraray Co., Ltd. polyvinyl butyral (raw material polyvinyl alcohol with a viscosity average polymerization degree of 1700, acetalization degree of 74 mol%, vinyl alcohol unit 19 mol%, vinyl acetate unit 7 mol%) , “Kuraray polyol P-510” (manufactured by Kuraray Co., Ltd., having a number average molecular weight of 500 per two hydroxyl groups, a polyester diol composed of 3-methyl-1,5-pentanediol and adipic acid) 38.5 parts by mass Added. The obtained polyvinyl butyral resin composition was extruded and then subjected to double-sided embossing to obtain a polyvinyl butyral sheet (PVB1) having a thickness of 760 ⁇ m.
  • Polyvinyl butyral sheet (PVB3) As the polyvinyl butyral sheet (PVB3), “Trosifol Extra-Stiff” (thickness: 760 ⁇ m) manufactured by Kuraray Co., Ltd. was prepared.
  • EI1 ⁇ Ethylene ionomer sheet (EI1)> As an ethylene ionomer sheet (EI1), “SentryGlas” (thickness: 760 ⁇ m) manufactured by Kuraray Co., Ltd. was prepared.
  • the product ( ⁇ n ⁇ d) is shown in Table 2.
  • As the ultraviolet absorber a hydroxyphenyl triazine ultraviolet absorber (“TINUVIN479” manufactured by BASF) was used.
  • the obtained pellet-shaped hard resin compositions (HRC1) to (HRC8) are continuously charged into a vent type single-screw extruder having a shaft diameter of 50 mm, under conditions of a cylinder temperature of 190 to 260 ° C.
  • the hard resin composition in a molten state is extruded from a T-die having a width of 400 mm set at 260 ° C., and formed into a sheet by niping with a pair of metal rigid rolls set at 100 ° C. and 130 ° C., 0.47 m / min I picked up at the speed of.
  • hard resin sheets (HRS1) to (HRS9) width 300 mm, length 400 mm, thickness 2 mm
  • an ultraviolet curable hard coat paint containing a polyfunctional acrylic resin on one surface of each of the obtained hard resin sheets (“UV-1700B” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) ) was used to form a scratch-resistant layer (thickness of about 4 ⁇ m) by a roll coating method.
  • an ultraviolet curable hard coat coating material containing a polyfunctional acrylic resin (“Aika Itron Z-850-3AF” manufactured by Aika Kogyo Co., Ltd.) was used on both sides of the obtained hard resin sheet.
  • a scratch-resistant layer (thickness of about 4 ⁇ m) was formed by a coating method. As described above, a hard resin sheet having a scratch-resistant layer on at least one surface was obtained.
  • Examples 1 to 7, Comparative Examples 1 to 6 In each of Examples 1 to 7 and Comparative Examples 1 to 6, a hard resin having an inorganic glass plate, a soft resin sheet serving as an intermediate film, and a scratch-resistant layer on at least one surface, by changing the materials used After the sheets are stacked in this order, they are thermocompression-bonded to form a glass laminate (FIG. 3) having a laminated structure of scratch-resistant layer / hard resin sheet / intermediate film / inorganic glass plate, or scratch-resistant layer / hard.
  • a glass laminate (FIG. 5) having a laminate structure of resin sheet / scratch resistant layer / intermediate film / inorganic glass plate was prepared and evaluated.
  • thermocompression bonding was performed by a vacuum bag method under a temperature profile condition in which the temperature was raised from 30 ° C. to 110 ° C. over 60 minutes and then maintained at 110 ° C. for 30 minutes.
  • a planar light emitter as shown in FIG. 7 was prepared and evaluated. Table 3 shows the materials and characteristics used in each layer and the evaluation results in each example.
  • the hard resin composition includes a laminated structure of a hard resin sheet / intermediate film / inorganic glass plate, and the hard resin sheet has specific heat resistance characteristics and optical characteristics (characteristics (a) and (b)).
  • Each of the obtained glass laminates had a high light transmittance even at a long light guide distance of the hard resin sheet, preferably contained an appropriate amount of light diffusing particles, and excellent in light guide performance. Therefore, a planar light emitting body having high luminance and uniform surface light emission without color unevenness was obtained.
  • Comparative Example 3 in which a hard resin sheet (HRS9) made of a polycarbonate resin having low light transmittance was used as the hard resin sheet, optical distortion occurred immediately after production and after a heat cycle test, and the obtained planar light emission The body had low brightness and color unevenness.
  • Comparative Examples 4 to 6 in which a soft resin having a high storage elastic modulus G ′ at 20 ° C. and a high peak temperature of loss tangent tan ⁇ was used for the intermediate film, warping occurred immediately after production, and the heat cycle test over time The amount of warpage increased and eventually the glass plate was cracked.
  • the present invention is not limited to the above-described embodiments and examples, and can be appropriately modified without departing from the gist of the present invention.

Abstract

The present invention provides a glass laminate which is able to be reduced in weight, while having good transparency, good durability and excellent light guide performance, and which is able to be suppressed in the occurrence of defects such as surface roughening, warping, ply separation and cracking in a step for bonding an inorganic glass plate and a resin sheet. This glass laminate (1) comprises a multilayer structure wherein a hard resin sheet (13) is laminated on an inorganic glass plate (11) with an intermediate film (12) being interposed therebetween. The hard resin sheet is formed from a hard resin composition that has characteristics (a) and (b); and the intermediate film is formed from a soft resin composition that has characteristics (c) and (d). (a) The glass transition temperature is 120°C or more. (b) The transmittance for an optical path length of 200 mm at a wavelength of 420 nm is 60% or more. (c) The storage elastic modulus G' at a set temperature of 25°C at a frequency of 1.0 Hz is 1.0 × 107 Pa or less. (d) The peak temperature at which the loss tangent δ at a frequency of 1.0 Hz is maximum is 25°C or less.

Description

ガラス積層体とその製造方法Glass laminate and manufacturing method thereof
 本発明は、ガラス積層体とその製造方法に関する。 The present invention relates to a glass laminate and a method for producing the same.
 自動車グレージング等のガラス部材を用いる用途では、部材の軽量化および安全性向上を目的に、無機ガラス板と透明な硬質樹脂シートとを積層したガラス積層体の開発が進められている。さらに、近年、メタクリル系樹脂等の導光性能に優れた透明樹脂を用いたガラス積層体に光源を組み合わせ、導光方式を適用した面状発光体の検討も始まっている。かかる面状発光体は、車内照明としても機能可能な自動車サンルーフ材等の高機能自動車グレージング材等に好ましく用いることができる。 In applications using glass members such as automobile glazing, development of a glass laminate in which an inorganic glass plate and a transparent hard resin sheet are laminated has been promoted for the purpose of reducing the weight of the member and improving safety. Furthermore, in recent years, examinations of planar light emitters in which a light source is combined with a glass laminate using a transparent resin excellent in light guide performance such as methacrylic resin and a light guide method is applied have begun. Such planar light emitters can be preferably used for high-performance automotive glazing materials such as automotive sunroof materials that can also function as interior lighting.
国際公開第2014/187500号International Publication No. 2014/187500 国際公開第2007/029541号International Publication No. 2007/029541 特開2001-234129号公報(特許第3878386号公報)JP 2001-234129 A (Patent No. 3878386)
 無機ガラス板と一般的なメタクリル系樹脂シートとを接着した従来のガラス積層体は、以下のような課題を有している。一般的に、無機ガラス板と中間膜となるポリビニルブチラールシート等の軟質樹脂シートとメタクリル系樹脂シートとを重ねた後、熱プレス法、真空バッグ法、またはオートクレーブ法により、加熱圧着する。この方法において、中間膜が完全に溶融しない加熱条件では、無機ガラス板とメタクリル系樹脂シートとの接着不良またはガラス積層体の歪みが生じる恐れがある。そのため、中間膜が完全溶融するように加熱を充分に行うことが好ましい。そのために必要な温度は、一般的に80℃超である。しかしながら、かかる温度で加熱を行うと、メタクリル系樹脂が軟化溶融しさらに加圧によって流動することで、表面荒れが生じる恐れがある。 A conventional glass laminate in which an inorganic glass plate and a general methacrylic resin sheet are bonded has the following problems. In general, a soft resin sheet such as a polyvinyl butyral sheet serving as an intermediate film and an methacrylic resin sheet are stacked, and then heat-pressed by a hot press method, a vacuum bag method, or an autoclave method. In this method, under the heating conditions in which the interlayer film is not completely melted, there is a risk of poor adhesion between the inorganic glass plate and the methacrylic resin sheet or distortion of the glass laminate. Therefore, it is preferable to sufficiently heat the interlayer film so that it completely melts. The temperature required for this is generally above 80 ° C. However, when heating is performed at such a temperature, the methacrylic resin softens and melts and further flows under pressure, which may cause surface roughness.
 上記課題の解決手段として、メタクリル系樹脂シートのガラス転移温度(Tg)を高めることが考えられる。特許文献1には、ガラス層と、メタクリル系樹脂およびスチレン・マレイン酸無水物共重合体樹脂を含み、Tgを高めたメタクリル系樹脂組成物からなる樹脂層とを含むガラス積層体が開示されている(請求項1)。しかしながら、特許文献1に記載のガラス積層体を面状発光体に適用する場合、スチレン・マレイン酸無水物共重合体樹脂の影響により、出射光に色ムラ等の発光不良が生じる恐れがある。 As a means for solving the above problems, it is conceivable to increase the glass transition temperature (Tg) of the methacrylic resin sheet. Patent Document 1 discloses a glass laminate including a glass layer and a resin layer comprising a methacrylic resin composition containing a methacrylic resin and a styrene / maleic anhydride copolymer resin and having an increased Tg. (Claim 1). However, when the glass laminate described in Patent Document 1 is applied to a planar light emitter, there is a risk that light emission defects such as color unevenness may occur in the emitted light due to the influence of the styrene / maleic anhydride copolymer resin.
 また、無機ガラス板とメタクリル系樹脂シート等の硬質樹脂シートとを貼り合わせる工程では、無機ガラス板と硬質樹脂シートとの線膨張係数の差が原因となり、加熱圧着後のガラス積層体が室温に戻る過程でガラス積層体に反り、層剥離、および割れ等の不良が発生する恐れがある。 Also, in the process of bonding an inorganic glass plate and a hard resin sheet such as a methacrylic resin sheet, the difference in linear expansion coefficient between the inorganic glass plate and the hard resin sheet is the cause, and the glass laminate after thermocompression bonding is brought to room temperature. In the returning process, the glass laminate may be warped, resulting in defects such as delamination and cracking.
 上記課題の解決手段として、複数の中間膜を介して無機ガラス板と硬質樹脂シートとを接着することが考えられる。特許文献2には、プラスチック板/第1の中間膜/第2の中間膜/無機ガラス板の積層構造を有するガラス積層体が開示されている(請求項1、19)。特許文献3には、異なる粘弾性特性を有する第1、第2の中間膜(第1、第2の感圧接着層)を介して、無機ガラス板と樹脂板とを積層したガラス積層体が開示されている(請求項1、6)。特許文献3のガラス積層体は、第1、第2の中間膜の間に好ましくは、透明な水蒸気バリアー層を備える(請求項3)。
 特許文献2、3に記載のガラス積層体は、ガラス積層体の製造時に高温高圧処理を要さないため、反り、層剥離、および割れ等の不良の発生を抑制することができる。しかしながら、特許文献2に記載のガラス積層体の製造方法は、プラスチック板/第1の中間膜の積層構造を有する第1の積層体と、第2の中間膜/無機ガラス板の積層構造を有する第2の積層体とを別々に作製した後、これら2つの積層体を貼り合わせる方法である(請求項1)。そのため、工程が多く、高コストである。特許文献3に記載のガラス積層体は、第1、第2の中間膜の間に好ましくは透明な水蒸気バリアー層を備える必要があり、生産性に乏しい。
As a means for solving the above problems, it is conceivable to bond the inorganic glass plate and the hard resin sheet via a plurality of intermediate films. Patent Document 2 discloses a glass laminate having a laminated structure of plastic plate / first intermediate film / second intermediate film / inorganic glass plate (claims 1 and 19). Patent Document 3 discloses a glass laminate in which an inorganic glass plate and a resin plate are laminated via first and second intermediate films (first and second pressure-sensitive adhesive layers) having different viscoelastic properties. (Claims 1 and 6). The glass laminate of Patent Document 3 preferably includes a transparent water vapor barrier layer between the first and second intermediate films (Claim 3).
Since the glass laminates described in Patent Documents 2 and 3 do not require high-temperature and high-pressure treatment during the production of the glass laminate, it is possible to suppress the occurrence of defects such as warpage, delamination, and cracking. However, the method for producing a glass laminate described in Patent Document 2 has a first laminate having a laminated structure of a plastic plate / first intermediate film and a laminated structure of a second intermediate film / inorganic glass plate. This is a method in which the two laminated bodies are bonded together after the second laminated body is produced separately (claim 1). Therefore, there are many steps and the cost is high. The glass laminate described in Patent Document 3 needs to have a transparent water vapor barrier layer between the first and second intermediate films, and is poor in productivity.
 また、車両等に使用されるガラス積層体は、高温環境、低温環境、温度変化環境、高湿環境、および降雨環境等の任意の環境に曝され得る。かかる環境下で使用されても、表面荒れ、反り、層剥離、および割れ等の不良の発生が生じ難い、良好な耐久性を有することが好ましい。なお、反り、層剥離、および割れ等の不良は、無機ガラス板と樹脂シートとの線膨張係数の差だけではなく、これら部材の吸水率の差によっても、生じ得る。 Also, the glass laminate used for vehicles and the like can be exposed to any environment such as a high temperature environment, a low temperature environment, a temperature change environment, a high humidity environment, and a rainy environment. Even when used in such an environment, it is preferable that defects such as surface roughness, warpage, delamination, and cracking hardly occur and have good durability. In addition, defects such as warpage, delamination, and cracking can occur not only due to the difference in the linear expansion coefficient between the inorganic glass plate and the resin sheet, but also due to the difference in water absorption between these members.
 本発明は上記事情に鑑みてなされたものであり、軽量化が可能で、透明性が良好で、無機ガラス板と樹脂シートとを貼り合わせる工程での表面荒れ、反り、層剥離、および割れ等の不良の発生を抑制することができ、耐久性が良好で、導光性能に優れたガラス積層体を提供することを目的とする。 The present invention has been made in view of the above circumstances, can be reduced in weight, has good transparency, and has surface roughness, warpage, delamination, cracking, and the like in the step of bonding the inorganic glass plate and the resin sheet. It is an object to provide a glass laminate that can suppress the occurrence of defects, has good durability, and has excellent light guiding performance.
 本発明は、以下の[1]~[14]のガラス積層体とその製造方法、面状発光体、および車両部材を提供する。 The present invention provides the following glass laminates [1] to [14], a manufacturing method thereof, a planar light emitter, and a vehicle member.
[1] 無機ガラス板上に中間膜を介して硬質樹脂シートが積層された積層構造を含むガラス積層体であって、
 前記硬質樹脂シートが下記特性(a)および(b)を有する硬質樹脂組成物からなり、
 前記中間膜が下記特性(c)および(d)を有する軟質樹脂組成物からなる、ガラス積層体。
(a)ガラス転移温度が120℃以上である。
(b)光路長200mmでの波長420nmにおける光透過率が60%以上である。
(c)設定温度25℃、周波数1.0Hzでの貯蔵弾性率G′が1.0×10Pa以下である。
(d)周波数1.0Hzでの損失正接tanδが最大となるピーク温度が25℃以下である。
[1] A glass laminate including a laminated structure in which a hard resin sheet is laminated via an intermediate film on an inorganic glass plate,
The hard resin sheet comprises a hard resin composition having the following characteristics (a) and (b):
The glass laminated body which the said intermediate film consists of a soft resin composition which has the following characteristic (c) and (d).
(A) The glass transition temperature is 120 ° C. or higher.
(B) The light transmittance at a wavelength of 420 nm with an optical path length of 200 mm is 60% or more.
(C) The storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz is 1.0 × 10 7 Pa or less.
(D) The peak temperature at which the loss tangent tan δ at the frequency of 1.0 Hz is maximum is 25 ° C. or less.
[2] 前記硬質樹脂組成物が、メタクリル酸メチル単位60~100質量%およびメタクリル酸メチル以外の(メタ)アクリル酸エステル単位0~40質量%からなるメタクリル酸メチル(共)重合体を含む、[1]のガラス積層体。
[3] 前記メタクリル酸メチル(共)重合体の三連子表示のシンジオタクティシティ(rr)が50~85%である、[2]のガラス積層体。
[4] 前記硬質樹脂組成物がさらに、前記硬質樹脂シートのマトリクス樹脂の屈折率との屈折率差(Δn)の絶対値が0.3~3である光拡散粒子を0.0001~0.1質量%含む、[1]~[3]のいずれかのガラス積層体。
[5] 前記屈折率差(Δn)の絶対値と前記光拡散粒子の体積平均粒径d(μm)との積(Δn・d)が0.1μm以上である、[4]のガラス積層体。
[6] 前記軟質樹脂組成物が熱可塑性ポリウレタン系樹脂を含む、[1]~[5]のいずれかのガラス積層体。
[7] 前記中間膜は少なくとも片面に表面凹凸構造を有する、[1]~[6]のいずれかのガラス積層体。
[8] 前記硬質樹脂シートの少なくとも一方の面上にさらに耐擦傷性層を備える、[1]~[7]のいずれかのガラス積層体。
[2] The hard resin composition includes a methyl methacrylate (co) polymer composed of 60 to 100% by mass of methyl methacrylate units and 0 to 40% by mass of (meth) acrylic acid ester units other than methyl methacrylate. The glass laminate of [1].
[3] The glass laminate according to [2], wherein the tridentate syndiotacticity (rr) of the methyl methacrylate (co) polymer is 50 to 85%.
[4] The hard resin composition further contains 0.0001 to 0.001 of light diffusing particles having an absolute value of a refractive index difference (Δn) of 0.3 to 3 with respect to the refractive index of the matrix resin of the hard resin sheet. The glass laminate according to any one of [1] to [3], containing 1% by mass.
[5] The glass laminate according to [4], wherein a product (Δn · d) of an absolute value of the refractive index difference (Δn) and a volume average particle diameter d (μm) of the light diffusing particles is 0.1 μm or more. .
[6] The glass laminate according to any one of [1] to [5], wherein the soft resin composition includes a thermoplastic polyurethane resin.
[7] The glass laminate according to any one of [1] to [6], wherein the intermediate film has a surface uneven structure on at least one side.
[8] The glass laminate according to any one of [1] to [7], further comprising a scratch-resistant layer on at least one surface of the hard resin sheet.
[9] [1]~[8]のいずれかのガラス積層体と、当該ガラス積層体の少なくとも一方の端面に光を導入する光源とを含む、面状発光体。
[10] [1]~[8]のいずれかのガラス積層体、または[9]の面状発光体を含む、車両部材。
[11] 自動車グレージング材または自動車サンルーフ材である、[10]の車両部材。
[9] A planar light-emitting body comprising the glass laminate of any one of [1] to [8] and a light source for introducing light into at least one end face of the glass laminate.
[10] A vehicle member comprising the glass laminate of any one of [1] to [8] or the planar light emitter of [9].
[11] The vehicle member according to [10], which is an automobile glazing material or an automobile sunroof material.
[12] 前記中間膜および前記硬質樹脂シートを溶融共押出しにより積層する工程を含む、[1]~[8]のいずれかのガラス積層体の製造方法。
[13] 前記無機ガラス板と前記中間膜となる軟質樹脂シートと前記硬質樹脂シートとをこの順で重ねた後、加熱圧着する、[1]~[8]のいずれかのガラス積層体の製造方法。
[14] 前記無機ガラス板と、前記中間膜となる軟質樹脂シートと、あらかじめ少なくとも一方の面に前記耐擦傷性層が形成された前記硬質樹脂シートとをこの順で重ねた後、加熱圧着する、[8]のガラス積層体の製造方法。
[12] The method for producing a glass laminate according to any one of [1] to [8], comprising a step of laminating the intermediate film and the hard resin sheet by melt coextrusion.
[13] Production of a glass laminate according to any one of [1] to [8], wherein the inorganic glass plate, the soft resin sheet serving as the intermediate film, and the hard resin sheet are stacked in this order, and then heat-pressed. Method.
[14] The inorganic glass plate, the soft resin sheet serving as the intermediate film, and the hard resin sheet having the scratch-resistant layer formed on at least one surface in advance are stacked in this order, followed by thermocompression bonding. [8] A method for producing a glass laminate.
 本発明によれば、軽量化が可能で、透明性が良好で、無機ガラス板と樹脂シートとを貼り合わせる工程での表面荒れ、反り、層剥離、および割れ等の不良の発生を抑制することができ、耐久性が良好で、導光性能に優れたガラス積層体を提供することができる。 According to the present invention, the weight can be reduced, the transparency is good, and the occurrence of defects such as surface roughness, warpage, delamination, and cracking in the process of bonding the inorganic glass plate and the resin sheet is suppressed. It is possible to provide a glass laminate having good durability and excellent light guiding performance.
本発明に係る第1実施形態のガラス積層体の模式断面図である。It is a schematic cross section of the glass laminated body of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態のガラス積層体の模式断面図である。It is a schematic cross section of the glass laminated body of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態のガラス積層体の模式断面図である。It is a schematic cross section of the glass laminated body of 3rd Embodiment which concerns on this invention. 本発明に係る第4実施形態のガラス積層体の模式断面図である。It is a schematic cross section of the glass laminated body of 4th Embodiment which concerns on this invention. 本発明に係る第5実施形態のガラス積層体の模式断面図である。It is a schematic cross section of the glass laminated body of 5th Embodiment which concerns on this invention. 本発明に係る一実施形態の面状発光体の模式断面図である。It is a schematic cross section of the planar light-emitting body of one Embodiment which concerns on this invention. 本発明に係る他の実施形態の面状発光体([実施例]で作製した面状発光体)の模式断面図である。It is a schematic cross section of the planar light emitter (planar light emitter produced in [Example]) according to another embodiment of the present invention.
[ガラス積層体]
 本発明のガラス積層体は、無機ガラス板上に中間膜を介して硬質樹脂シートが積層された積層構造を含む。本発明のガラス積層体において、硬質樹脂シートは特定の耐熱特性および光学特性、具体的には下記特性(a)および(b)を有する硬質樹脂組成物からなる。中間膜は特定の粘弾性特性、具体的には下記特性(c)および(d)を有する軟質樹脂組成物からなる。
(a)ガラス転移温度(Tg)が120℃以上である。
(b)光路長200mmでの波長420nmにおける光透過率が60%以上である。
(c)設定温度25℃、周波数1.0Hzでの貯蔵弾性率G′が1.0×10Pa以下である。
(d)周波数1.0Hzでの損失正接tanδが最大となるピーク温度が25℃以下である。
[Glass laminate]
The glass laminate of the present invention includes a laminated structure in which a hard resin sheet is laminated on an inorganic glass plate via an intermediate film. In the glass laminate of the present invention, the hard resin sheet is made of a hard resin composition having specific heat resistance characteristics and optical characteristics, specifically, the following characteristics (a) and (b). The interlayer film is made of a soft resin composition having specific viscoelastic characteristics, specifically, the following characteristics (c) and (d).
(A) Glass transition temperature (Tg) is 120 degreeC or more.
(B) The light transmittance at a wavelength of 420 nm with an optical path length of 200 mm is 60% or more.
(C) The storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz is 1.0 × 10 7 Pa or less.
(D) The peak temperature at which the loss tangent tan δ at the frequency of 1.0 Hz is maximum is 25 ° C. or less.
 本明細書において、重量平均分子量(Mw)、ガラス転移温度(Tg)、光透過率、貯蔵弾性率G′、および損失正接tanδが最大となるピーク温度等の各種パラメータは、[発明を実施するための形態]または[実施例]の項に記載の方法にて測定される測定値を示す。
 本明細書において、任意の数値範囲A~Bは、A以上B以下の数値範囲を示す。
In the present specification, various parameters such as the peak temperature at which the weight average molecular weight (Mw), glass transition temperature (Tg), light transmittance, storage elastic modulus G ′, and loss tangent tan δ are maximized are [implementing the invention]. Measured value measured by the method described in the section of [Form for Use] or [Example].
In the present specification, arbitrary numerical ranges A to B indicate a numerical range of A to B.
 本発明のガラス積層体は、無機ガラス板と硬質樹脂シートとを含む複合材であるため、ガラス単体に比して軽量化が可能である。また、外部から強い衝撃を受けても破損しづらく、仮にガラスが破損したとしてもガラス破片が飛散せず、安全性に優れる。 Since the glass laminate of the present invention is a composite material including an inorganic glass plate and a hard resin sheet, the weight can be reduced as compared with a single glass. Moreover, even if it receives a strong impact from the outside, it is difficult to break, and even if the glass is broken, the glass fragments do not scatter and the safety is excellent.
 本発明のガラス積層体では、硬質樹脂シートが特定の耐熱性(特性(a))を有する。そのため、無機ガラス板と硬質樹脂シートとを貼り合わせる工程において、無機ガラス板と硬質樹脂シートとを良好に接着させるために中間膜が完全溶融するように充分な加熱を行っても、硬質樹脂シートの軟化溶融および流動が抑制される。その結果、硬質樹脂シートの表面荒れの発生が抑制され、均一な厚みを有し、面状の良好なガラス積層体を得ることができる。 In the glass laminate of the present invention, the hard resin sheet has specific heat resistance (characteristic (a)). Therefore, in the process of bonding the inorganic glass plate and the hard resin sheet, the hard resin sheet can be used even if sufficient heating is performed so that the intermediate film completely melts in order to bond the inorganic glass plate and the hard resin sheet well. Softening, melting, and flow are suppressed. As a result, the occurrence of surface roughness of the hard resin sheet is suppressed, and a uniform glass laminate having a uniform thickness can be obtained.
 本発明のガラス積層体では、中間膜が特定の粘弾性特性(特性(c)、(d))を有する。中間膜は、無機ガラス板と硬質樹脂シートとを良好に接着させる機能と、ガラス積層体の耐衝撃性を向上させる機能を有することができる。中間膜はさらに、内部応力緩和性能を有し、これにより、無機ガラス板と硬質樹脂シートとを貼り合わせる工程において、無機ガラス板と硬質樹脂シートとの線膨張係数の差に起因して加熱圧着後のガラス積層体が室温に戻る過程で生じる恐れがあるガラス積層体の反り、層剥離、および割れ等の不良の発生を抑制する機能を有することができる。 In the glass laminate of the present invention, the interlayer film has specific viscoelastic properties (characteristics (c) and (d)). The intermediate film can have a function of favorably bonding the inorganic glass plate and the hard resin sheet and a function of improving the impact resistance of the glass laminate. The interlayer film further has an internal stress relaxation performance, and in this step, in the step of bonding the inorganic glass plate and the hard resin sheet, the thermocompression bonding is caused by the difference in the linear expansion coefficient between the inorganic glass plate and the hard resin sheet. It can have a function of suppressing the occurrence of defects such as warpage, delamination, and cracking of the glass laminate that may occur in the process in which the subsequent glass laminate returns to room temperature.
 硬質樹脂シートの耐熱性および中間膜の粘弾性特性による上記作用効果は、ガラス積層体の製造時だけではなく、高温環境、低温環境、温度変化環境、高湿環境、および降雨環境等の任意の環境下でも同様に得られる。そのため、本発明のガラス積層体は、任意の環境で使用されても、硬質樹脂シートの軟化溶融および流動による表面荒れ、並びに、無機ガラス板と硬質樹脂シートとの線膨張係数の差および吸水率の差に起因して生じる恐れがある反り、層剥離、および割れ等の不良の発生が生じ難い、良好な耐久性を有することができる。 The above-mentioned effects due to the heat resistance of the hard resin sheet and the viscoelastic properties of the interlayer film are not limited to the production of the glass laminate, but can be used in any environment such as high temperature environment, low temperature environment, temperature change environment, high humidity environment, and rain environment. It can be obtained in the same way under the environment. Therefore, even if the glass laminate of the present invention is used in an arbitrary environment, the surface roughness due to softening and melting of the hard resin sheet and flow, the difference in linear expansion coefficient between the inorganic glass plate and the hard resin sheet, and the water absorption rate The occurrence of defects such as warpage, delamination, and cracking that may occur due to the difference in resistance is unlikely to occur, and good durability can be achieved.
 本発明のガラス積層体では、硬質樹脂シートが特定の光学特性(特性(b))を有するため、透明性が良好で、導光性能に優れる。そのため、本発明のガラス積層体は、導光板としての利用が可能である。本発明のガラス積層体は、ガラス積層体の一端面に光を導入する光源と組み合わせることで、発光性能が良好な面状発光体を提供することができる。 In the glass laminate of the present invention, since the hard resin sheet has specific optical characteristics (characteristic (b)), transparency is good and light guiding performance is excellent. Therefore, the glass laminate of the present invention can be used as a light guide plate. By combining the glass laminate of the present invention with a light source that introduces light into one end face of the glass laminate, a planar light emitter having good light emission performance can be provided.
(無機ガラス板)
 無機ガラス板としては特に制限されず、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラス、特殊ガラス(例えば太陽光を制御する目的で銀等の金属またはインジウム錫酸化物等の金属酸化物のスパッタリングが施されたもの)、低Eガラス、強化ガラス、およびこれらの組合せ等が挙げられる。これらは無色でも有色でもよい。
(Inorganic glass plate)
There is no particular limitation on the inorganic glass plate, and float plate glass, polished plate glass, mold plate glass, mesh plate glass, heat ray absorbing plate glass, special glass (for example, metal such as silver or metal such as indium tin oxide for the purpose of controlling sunlight) Oxide-sputtered), low-E glass, tempered glass, and combinations thereof. These may be colorless or colored.
(硬質樹脂シート)
 硬質樹脂シートは、ガラス転移温度(Tg)が120℃以上であり、光路長200mmでの波長420nmにおける光透過率が60%以上である硬質樹脂組成物からなる。硬質樹脂シートは、単層構造でも組成の異なる複数の硬質樹脂組成物層からなる積層構造でもよい。
(Hard resin sheet)
The hard resin sheet is made of a hard resin composition having a glass transition temperature (Tg) of 120 ° C. or higher and a light transmittance of 60% or more at a wavelength of 420 nm with an optical path length of 200 mm. The hard resin sheet may have a single layer structure or a laminated structure composed of a plurality of hard resin composition layers having different compositions.
 硬質樹脂組成物は、ガラス転移温度(Tg)が120℃以上、好ましくは130℃以上、より好ましくは140℃以上である。Tgが120℃以上であることで、硬質樹脂シートが耐熱性能に優れたものとなり、ガラス積層体の製造時および実使用時における硬質樹脂シートの表面荒れが効果的に抑制される。 The hard resin composition has a glass transition temperature (Tg) of 120 ° C. or higher, preferably 130 ° C. or higher, more preferably 140 ° C. or higher. When the Tg is 120 ° C. or higher, the hard resin sheet has excellent heat resistance, and the surface roughness of the hard resin sheet during production and actual use of the glass laminate is effectively suppressed.
 硬質樹脂組成物は、光路長200mmでの波長420nmにおける光透過率が60%以上、好ましくは70%以上、より好ましくは80%以上である。光透過率が60%以上であることで、硬質樹脂シートは、透明性および導光性能に優れるものとなる。
 波長420nmは、導光板等の光学部材の光源の1つとして用いられる一般的な青色LED(発光ダイオード)のピーク波長である470nmに近接する領域の波長である。この波長420nmでの光透過率が低いと、わずかながらも黄色見が増加する恐れがある。したがって、光透過率の測定波長として420nmを採用することで、透明性および導光性能を適切に評価することができる。
 なお、本明細書において、特に明記しない限り、波長420nmでの分光光透過率は、射出成形された長光路成形品(200mm×50mm×2mm)を用い、200mmの光路長の条件で測定されるものとする。
The light transmittance of the hard resin composition at a wavelength of 420 nm at an optical path length of 200 mm is 60% or more, preferably 70% or more, and more preferably 80% or more. When the light transmittance is 60% or more, the hard resin sheet is excellent in transparency and light guiding performance.
The wavelength of 420 nm is a wavelength in a region close to 470 nm which is a peak wavelength of a general blue LED (light emitting diode) used as one of light sources of an optical member such as a light guide plate. If the light transmittance at this wavelength of 420 nm is low, there is a possibility that yellowishness may slightly increase. Therefore, transparency and light guide performance can be appropriately evaluated by adopting 420 nm as the measurement wavelength of light transmittance.
In this specification, unless otherwise specified, the spectral light transmittance at a wavelength of 420 nm is measured using an injection molded long optical path molded product (200 mm × 50 mm × 2 mm) under the condition of an optical path length of 200 mm. Shall.
 硬質樹脂組成物としては上記の耐熱特性および光学特性(特性(a)、(b))を有するものであればよい。
 一態様において、硬質樹脂組成物は、メタクリル酸メチル(共)重合体(A)を含むメタクリル系樹脂組成物である。メタクリル酸メチル(共)重合体(A)は、メタクリル酸メチル(MMA)の単独重合体であるポリメタクリル酸メチル(PMMA)、または、MMAと他の1種以上の単量体との共重合体である。メタクリル酸メチル(共)重合体(A)は、1種または2種以上用いることができる。
Any hard resin composition may be used as long as it has the above heat resistance and optical properties (characteristics (a) and (b)).
In one embodiment, the hard resin composition is a methacrylic resin composition containing a methyl methacrylate (co) polymer (A). The methyl methacrylate (co) polymer (A) is a polymethyl methacrylate (PMMA) that is a homopolymer of methyl methacrylate (MMA), or a co-polymer of MMA and one or more other monomers. It is a coalescence. One or more methyl methacrylate (co) polymers (A) can be used.
 メタクリル酸メチル(共)重合体(A)中のMMA単位の含有量は特に制限されず、硬質樹脂シートの耐擦傷性が優れることから、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは99質量%以上、最も好ましくは100質量%である。
 メタクリル酸メチル(共)重合体(A)中のMMA単位の含有量は、メタクリル酸メチル(共)重合体(A)をメタノール中で再沈殿することにより精製した後、熱分解ガスクロマトグラフィを用いて熱分解および揮発成分の分離を行い、MMAと共重合成分とのピーク面積の比から算出することができる。
The content of the MMA unit in the methyl methacrylate (co) polymer (A) is not particularly limited, and is preferably 60% by mass or more, more preferably 80% by mass or more, because the hard resin sheet has excellent scratch resistance. More preferably, it is 90% by mass or more, particularly preferably 99% by mass or more, and most preferably 100% by mass.
The content of MMA units in the methyl methacrylate (co) polymer (A) was purified by reprecipitation of the methyl methacrylate (co) polymer (A) in methanol, and then pyrolysis gas chromatography was used. Thus, thermal decomposition and separation of volatile components can be carried out, and calculation can be made from the ratio of peak areas of MMA and copolymer components.
 メタクリル酸メチル(共)重合体(A)は、MMA単位以外の(メタ)アクリル酸エステル単位を含むことができる。MMA以外の(メタ)アクリル酸エステルとしては、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、およびメタクリル酸ドデシル等のメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、およびメタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(TCDMA)等のメタクリル酸シクロアルキルエステル;メタクリル酸フェニル等のメタクリル酸アリールエステル;メタクリル酸ベンジル等のメタクリル酸アラルキルエステル;アクリル酸メチル(MA)、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸シクロヘキシル、アクリル酸2-メトキシエチル、アクリル酸3-メトキシブチル、アクリル酸トリフルオロメチル、アクリル酸トリフルオロエチル、アクリル酸ペンタフルオロエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、およびアクリル酸3-ジメチルアミノエチル等のアクリル酸エステル等が挙げられる。入手性および耐熱性の観点から、TCDMAおよびMA等が好ましい。 The methyl methacrylate (co) polymer (A) can contain (meth) acrylic acid ester units other than MMA units. Examples of (meth) acrylic acid esters other than MMA include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, Methacrylic acid alkyl esters such as heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, and dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cycloheptyl methacrylate, cyclooctyl methacrylate, and methacrylic acid tricyclo [5.2.1.0 2, 6] dec-8-yl (TCDMA) cycloalkyl methacrylate esters and the like; phenyl methacrylate main Aryl ester of crylate; aralkyl methacrylate such as benzyl methacrylate; methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-acrylate Butyl, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, acrylic Cyclohexyl acid, 2-methoxyethyl acrylate, 3-methoxybutyl acrylate, trifluoromethyl acrylate, trifluoroethyl acrylate, pentafluoroethyl acrylate, glycine acrylate Examples thereof include acrylate esters such as zyl, allyl acrylate, phenyl acrylate, toluyl acrylate, benzyl acrylate, isobornyl acrylate, and 3-dimethylaminoethyl acrylate. From the viewpoints of availability and heat resistance, TCDMA and MA are preferred.
 メタクリル酸メチル(共)重合体(A)におけるMMA単位以外の(メタ)アクリル酸エステル単位の含有量は、好ましくは40質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは1質量%以下、最も好ましくは0質量%である。 The content of (meth) acrylic acid ester units other than MMA units in the methyl methacrylate (co) polymer (A) is preferably 40% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. Particularly preferably, it is 1% by mass or less, and most preferably 0% by mass.
 メタクリル酸メチル(共)重合体(A)は、MMAを含む1種以上の単量体を重合することで得られる。重合において、複数種の単量体を用いる場合は、通常、複数種の単量体を混合して単量体混合物を調製した後、重合に供する。重合方法は特に制限されず、生産性と耐熱性の観点から、ラジカル重合およびアニオン重合等が好ましい。 The methyl methacrylate (co) polymer (A) is obtained by polymerizing one or more monomers including MMA. In the case of using a plurality of types of monomers in the polymerization, usually, a plurality of types of monomers are mixed to prepare a monomer mixture and then subjected to polymerization. The polymerization method is not particularly limited, and radical polymerization and anionic polymerization are preferable from the viewpoints of productivity and heat resistance.
 メタクリル酸メチル(共)重合体(A)は、耐熱性および成形性の観点から、三連子表示のシンジオタクティシティ(rr)(以下、「rr比率」ともいう。)が好ましくは50~85%である。耐熱性の観点から、rr比率の下限は、より好ましくは53%、さらに好ましくは55%、特に好ましくは58%、最も好ましくは60%である。成形性の観点から、rr比率の上限は、より好ましくは77%、特に好ましくは65%である。 The methyl methacrylate (co) polymer (A) preferably has a triadic syndiotacticity (rr) (hereinafter also referred to as “rr ratio”) from the viewpoint of heat resistance and moldability. 85%. From the viewpoint of heat resistance, the lower limit of the rr ratio is more preferably 53%, still more preferably 55%, particularly preferably 58%, and most preferably 60%. From the viewpoint of moldability, the upper limit of the rr ratio is more preferably 77%, and particularly preferably 65%.
 rr比率は連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
 メタクリル酸メチル(共)重合体(A)のrr比率は、重水素化クロロホルム中、30℃で、H-NMRスペクトルを測定し、そのスペクトルからテトラメチルシラン(TMS)を0ppmとした際の、0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。
The rr ratio is a ratio in which two chains (doublet, diad) of three consecutive structural unit chains (triplet, triad) are both racemo (represented as rr). In the chain of molecular units (doublet, diad) in the polymer molecule, those having the same configuration are referred to as “meso”, and those opposite to each other are referred to as “racemo”, which are expressed as m and r, respectively.
The rr ratio of the methyl methacrylate (co) polymer (A) was determined by measuring a 1 H-NMR spectrum in deuterated chloroform at 30 ° C., from which tetramethylsilane (TMS) was 0 ppm. The area (X) of the region of 0.6 to 0.95 ppm and the area (Y) of the region of 0.6 to 1.35 ppm are measured and calculated by the formula: (X / Y) × 100 it can.
 メタクリル酸メチル(共)重合体(A)の重量平均分子量(Mw)は、好ましくは40,000~500,000、より好ましくは60,000~300,000、特に好ましくは80,000~200,000である。Mwが40,000以上であることで、硬質樹脂シートは力学強度に優れるものとなり、500,000以下であることで、硬質樹脂シートは成形性に優れるものとなる。 The weight average molecular weight (Mw) of the methyl methacrylate (co) polymer (A) is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, particularly preferably 80,000 to 200,000. 000. When Mw is 40,000 or more, the hard resin sheet is excellent in mechanical strength, and when it is 500,000 or less, the hard resin sheet is excellent in moldability.
 メタクリル酸メチル(共)重合体(A)は、ガラス転移温度(Tg)が、好ましくは120℃以上、より好ましくは130℃以上、特に好ましくは140℃以上である。Tgが120℃以上であることで、硬質樹脂シートは耐熱性に優れるものとなる。 The methyl methacrylate (co) polymer (A) has a glass transition temperature (Tg) of preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and particularly preferably 140 ° C. or higher. When the Tg is 120 ° C. or higher, the hard resin sheet has excellent heat resistance.
 メタクリル酸メチル(共)重合体(A)は、光路長200mmでの波長420nmにおける光透過率が、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。光透過率が60%以上であることで、硬質樹脂シートは透明性および導光性能に優れるものとなる。 The methyl methacrylate (co) polymer (A) has a light transmittance at a wavelength of 420 nm at an optical path length of 200 mm, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. When the light transmittance is 60% or more, the hard resin sheet is excellent in transparency and light guiding performance.
 加熱溶融成形の安定性の観点から、メタクリル酸メチル(共)重合体(A)のメルトフローレート(MFR)は、好ましくは1~10g/10分である。MFRの下限値はより好ましくは1.2g/10分、特に好ましくは1.5g/10分である。MFRの上限値はより好ましくは7.0g/10分、特に好ましくは4.0g/10分である。
 なお、本明細書において、「MFR」は、特に明記しない限り、メルトインデクサーを用い、温度230℃、3.8kg荷重の条件で測定される値である。
From the viewpoint of stability of heat melt molding, the melt flow rate (MFR) of the methyl methacrylate (co) polymer (A) is preferably 1 to 10 g / 10 min. The lower limit value of MFR is more preferably 1.2 g / 10 minutes, particularly preferably 1.5 g / 10 minutes. The upper limit value of MFR is more preferably 7.0 g / 10 minutes, and particularly preferably 4.0 g / 10 minutes.
In the present specification, “MFR” is a value measured using a melt indexer at a temperature of 230 ° C. and a load of 3.8 kg unless otherwise specified.
 硬質樹脂組成物は、メタクリル酸メチル(共)重合体(A)に替えて、またはメタクリル酸メチル(共)重合体(A)と併用して、1種以上のポリカーボネート系樹脂(PC)を含むことができる。ポリカーボネート系樹脂(PC)は、一般式:-(-O-X-O-C(=O)-)-で示される炭酸結合を含む基本構造を有する重合体である。上記式中、Xは一般には炭化水素基であるが、種々の特性付与のためヘテロ原子またはヘテロ結合の導入された炭化水素基を用いてもよい。
 ポリカーボネート系樹脂(PC)は、炭酸結合に直接結合する炭化水素の種類から、芳香族ポリカーボネート系樹脂と脂肪族ポリカーボネート系樹脂とに分類できる。いずれを用いてもよいが、耐熱性、機械的物性、および電気的特性等の観点から、芳香族ポリカーボネート系樹脂がより好ましい。
The hard resin composition contains one or more polycarbonate resins (PC) in place of the methyl methacrylate (co) polymer (A) or in combination with the methyl methacrylate (co) polymer (A). be able to. The polycarbonate-based resin (PC) is a polymer having a basic structure including a carbonic acid bond represented by a general formula: — (— O—X—O—C (═O) —) —. In the above formula, X is generally a hydrocarbon group, but a hydrocarbon group into which a hetero atom or a hetero bond is introduced may be used for imparting various properties.
Polycarbonate resins (PC) can be classified into aromatic polycarbonate resins and aliphatic polycarbonate resins, based on the type of hydrocarbons that are directly bonded to carbonic acid bonds. Any of them may be used, but an aromatic polycarbonate resin is more preferable from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
 芳香族ポリカーボネート系樹脂は例えば、芳香族ジヒドロキシ化合物、カーボネート前駆体、および必要に応じてポリヒドロキシ化合物等を反応させて得ることができる。芳香族ポリカーボネート系樹脂は、直鎖状でも分岐鎖状でもよい。芳香族ポリカーボネート系樹脂は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し単位を有する共重合体であってもよい。共重合体の形態は、ランダム共重合体およびブロック共重合体等、任意である。 The aromatic polycarbonate resin can be obtained, for example, by reacting an aromatic dihydroxy compound, a carbonate precursor, and, if necessary, a polyhydroxy compound. The aromatic polycarbonate resin may be linear or branched. The aromatic polycarbonate resin may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating units. The form of the copolymer is arbitrary such as a random copolymer and a block copolymer.
 芳香族ジヒドロキシ化合物としては、ビス(ヒドロキシアリール)アルカン類が好ましい。中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性および耐熱性の観点から、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。カーボネート前駆体としては、カルボニルハライドおよびカーボネートエステル等が挙げられる。芳香族ジヒドロキシ化合物およびカーボネート前駆体はそれぞれ、1種または2種以上用いることができる。 As the aromatic dihydroxy compound, bis (hydroxyaryl) alkanes are preferable. Among them, bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (that is, bisphenol A) is particularly preferable from the viewpoint of impact resistance and heat resistance. Examples of the carbonate precursor include carbonyl halide and carbonate ester. One or more aromatic dihydroxy compounds and carbonate precursors can be used.
 ポリカーボネート系樹脂(PC)の製造方法としては、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合、およびプレポリマーの固相エステル交換等が挙げられる。 Examples of the method for producing a polycarbonate resin (PC) include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization of a cyclic carbonate compound, and a solid phase transesterification of a prepolymer.
 ポリカーボネート系樹脂(PC)は市販品を用いてもよい。例えば、住化スタイロンポリカーボネート株式会社製「カリバー(登録商標)」および「SDポリカ(登録商標)」;三菱エンジニアリングプラスチック株式会社製「ユーピロン/ノバレックス(登録商標)」;出光興産株式会社製「タフロン(登録商標)」;帝人化成株式会社製「パンライト(登録商標)」等が挙げられる。導光性能の観点から、住化スタイロンポリカーボネート株式会社製「SDポリカSD2201W、SD2211W」;三菱エンジニアリングプラスチック株式会社製「ユーピロン HL‐Series」等が挙げられる。 A commercially available product may be used as the polycarbonate resin (PC). For example, “Caliber (registered trademark)” and “SD Polyca (registered trademark)” manufactured by Sumika Stylon Polycarbonate Co., Ltd .; “Iupilon / Novalex (registered trademark)” manufactured by Mitsubishi Engineering Plastics Co., Ltd .; (Registered trademark) ”;“ Panlite (registered trademark) ”manufactured by Teijin Chemicals Ltd., and the like. From the viewpoint of light guiding performance, “SD Polycarbonate SD2201W, SD2211W” manufactured by Sumika Stylon Polycarbonate Co., Ltd., “Iupilon HL-Series” manufactured by Mitsubishi Engineering Plastics Co., Ltd., and the like can be given.
 ポリカーボネート系樹脂(PC)の粘度平均分子量(Mv)は成形可能であればよく、通常12,000~50,000、好ましくは14,000~40,000、より好ましくは16,000~30,000である。ポリカーボネート系樹脂(PC)のMvが12,000未満では、機械的強度が低下する恐れがある。Mvが50,000超では、溶融流動性が低下し、成形性が不充分となる恐れがある。ポリカーボネート系樹脂(PC)は、Mvの異なる複数のポリカーボネート系樹脂(PC)の混合物であってもよい。この場合には、混合物の分子量が上記範囲内にあれば、Mvが上記範囲外のポリカーボネート系樹脂(PC)を含んでいてもよい。 The viscosity average molecular weight (Mv) of the polycarbonate-based resin (PC) is only required to be moldable, and is usually 12,000 to 50,000, preferably 14,000 to 40,000, more preferably 16,000 to 30,000. It is. If the Mv of the polycarbonate resin (PC) is less than 12,000, the mechanical strength may decrease. If Mv exceeds 50,000, the melt fluidity is lowered and the moldability may be insufficient. The polycarbonate resin (PC) may be a mixture of a plurality of polycarbonate resins (PC) having different Mvs. In this case, if the molecular weight of the mixture is within the above range, a polycarbonate resin (PC) having Mv outside the above range may be included.
 本明細書において、「粘度平均分子量(Mv)」は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて、温度20℃で極限粘度[η](単位:dl/g)を測定し、下記式(1)のSchnellの粘度式から算出される値である。なお、極限粘度[η]は、溶液濃度c(g/dl)での比粘度ηspを測定し、下記式(2)により算出される値である。
Schnellの粘度式:[η]=1.23×10-4・Mv0.83・・・(1)、
ηsp/c=[η]+0.45×[η]・c・・・(2)
In the present specification, “viscosity average molecular weight (Mv)” uses methylene chloride as a solvent and measures the intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. It is a value calculated from the viscosity formula of Schnell of the following formula (1). The intrinsic viscosity [η] is a value calculated from the following formula (2) by measuring the specific viscosity η sp at the solution concentration c (g / dl).
Schnell's viscosity formula: [η] = 1.23 × 10 −4 · Mv 0.83 (1),
η sp /c=[η]+0.45×[η] 2 · c (2)
 ポリカーボネート系樹脂(PC)は、ガラス転移温度(Tg)が好ましくは140℃以上、より好ましくは145℃以上、特に好ましくは150℃以上である。Tgが140℃以上であることで、硬質樹脂シートは耐熱性に優れるものとなる。 The polycarbonate resin (PC) has a glass transition temperature (Tg) of preferably 140 ° C. or higher, more preferably 145 ° C. or higher, and particularly preferably 150 ° C. or higher. When the Tg is 140 ° C. or higher, the hard resin sheet has excellent heat resistance.
 ポリカーボネート系樹脂(PC)は、光路長200mmでの波長420nmにおける光透過率が好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。光透過率が60%以上であることで、硬質樹脂シートは透明性および導光性能に優れるものとなる。 The polycarbonate resin (PC) preferably has a light transmittance at an optical path length of 200 mm and a wavelength of 420 nm of 60% or more, more preferably 70% or more, and particularly preferably 80% or more. When the light transmittance is 60% or more, the hard resin sheet is excellent in transparency and light guiding performance.
 好ましくはメタクリル酸メチル(共)重合体(A)および/またはポリカーボネート系樹脂(PC)を含む硬質樹脂組成物はさらに、光拡散粒子を含むことができる。光拡散粒子は、マトリクス樹脂と異なる屈折率を有し、光を散乱する粒子である。硬質樹脂シートが光拡散粒子を含む場合、光源から本発明のガラス積層体の一端面に光を導入したとき、ガラス積層体の厚さ方向に光を散乱しながら、対向する他端面に向かって、ガラス積層体の面方向に光を良好に導光させることが可能となる。硬質樹脂シート内に光拡散粒子を含有させる態様では、印刷および表面凹凸加工等により光拡散層を別途設ける必要なく安価に、導光性能に優れ、面状発光体の導光板として好適なガラス積層体を提供することが可能となる。
 なお、硬質樹脂シートはメタクリル酸メチル(共)重合体(A)および/またはポリカーボネート系樹脂(PC)等の硬質樹脂のみから形成されていてもよい。本発明においては、このように硬質樹脂シートが硬質樹脂のみから形成されている場合においても、便宜上、硬質樹脂シートは硬質樹脂組成物からなると考えるものとする。
Preferably, the hard resin composition containing methyl methacrylate (co) polymer (A) and / or polycarbonate-based resin (PC) can further contain light diffusing particles. The light diffusing particles are particles that have a refractive index different from that of the matrix resin and scatter light. When the hard resin sheet contains light diffusing particles, when light is introduced from the light source to the one end surface of the glass laminate of the present invention, the light is scattered in the thickness direction of the glass laminate, toward the opposite other end surface. It becomes possible to guide light well in the surface direction of the glass laminate. In the embodiment in which the light diffusing particles are contained in the hard resin sheet, a glass laminate that is excellent in light guide performance and suitable as a light guide plate for a planar light emitter without the need to separately provide a light diffusing layer by printing, surface unevenness processing, etc. The body can be provided.
The hard resin sheet may be formed of only a hard resin such as methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC). In the present invention, even when the hard resin sheet is formed of only the hard resin, the hard resin sheet is considered to be made of the hard resin composition for convenience.
 光拡散粒子を含む場合においても、硬質樹脂シートは、光源の消灯時には良好な透明性を有することが好ましい。硬質樹脂シートの透明性を充分に確保した上で、光拡散粒子の光散乱作用による導光性能の向上効果が効果的に得られるように、光拡散粒子の径、含有量、および光拡散粒子とマトリクス樹脂との屈折率差を設計する。 Even when light diffusing particles are included, the hard resin sheet preferably has good transparency when the light source is turned off. The light diffusing particle diameter, content, and light diffusing particle so that the light guide performance can be effectively improved by the light scattering action of the light diffusing particle after sufficiently ensuring the transparency of the hard resin sheet. The difference in refractive index between the matrix resin and the matrix resin is designed.
 光拡散粒子の体積平均粒径は、過小では光散乱効果が効果的に得られず、ガラス積層体の入射端面付近とそこから離れた位置とで色目に差が生じる恐れがあり、過大では、比較的粒径の大きな粒子が面状発光体の点灯時に輝点となって発光外観を損ねる恐れがある。体積平均粒径d(μm)は、好ましくは0.5~5μm、より好ましくは0.75~4μm、特に好ましくは1~3μmである。なお、本明細書において、「体積平均粒径d」は、レーザー回折散乱法によって求められる粒径である。 If the volume average particle diameter of the light diffusing particles is too small, the light scattering effect cannot be effectively obtained, and there is a possibility that the color difference may occur between the vicinity of the incident end face of the glass laminate and the position away from it, There is a risk that particles having a relatively large particle size may become a bright spot when the planar light-emitting body is turned on and impair the appearance of light emission. The volume average particle diameter d (μm) is preferably 0.5 to 5 μm, more preferably 0.75 to 4 μm, and particularly preferably 1 to 3 μm. In the present specification, the “volume average particle diameter d” is a particle diameter obtained by a laser diffraction scattering method.
 硬質樹脂組成物中の光拡散粒子の含有量は、過高では硬質樹脂シートの透明性が不充分となる恐れがあり、過低では光散乱効果および導光効果が不充分となる恐れがある。透明性と、光散乱効果および導光効果とのバランスの観点から、光拡散粒子の含有量は、好ましくは0.0001~0.1質量%、より好ましくは0.000125~0.01質量%、特に好ましくは0.00025~0.001質量%である。 If the content of the light diffusing particles in the hard resin composition is too high, the transparency of the hard resin sheet may be insufficient, and if it is too low, the light scattering effect and the light guide effect may be insufficient. . From the viewpoint of the balance between transparency, light scattering effect and light guide effect, the content of the light diffusing particles is preferably 0.0001 to 0.1% by mass, more preferably 0.000125 to 0.01% by mass. Particularly preferred is 0.00025 to 0.001 mass%.
 硬質樹脂組成物中のマトリクス樹脂(好ましくはメタクリル酸メチル(共)重合体(A)および/またはポリカーボネート系樹脂(PC))と光拡散粒子との屈折率差(Δn)の絶対値は、過小では、光散乱効果が効果的に得られないため、効率良く光を取り出すことが難しく、過大では、散乱光は後方散乱が支配的となるため、効率良く光を取り出すことが難しくなる。屈折率差(Δn)の絶対値が過小または過大では、充分な輝度を得るには光拡散粒子の含有量を増やす必要があり、それによって透明性が不充分となる恐れがある。点灯時の明るさと透明性のバランスから、屈折率差(Δn)の絶対値は好ましくは0.3~3、より好ましくは0.4~3である。
 点灯時の明るさと透明性のバランスから、屈折率差(Δn)の絶対値と体積平均粒径d(μm)との積(Δn・d)は、好ましくは0.1μm以上、より好ましくは0.5μm以上である。
The absolute value of the refractive index difference (Δn) between the matrix resin (preferably methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC)) in the hard resin composition and the light diffusing particles is too small. Then, since the light scattering effect cannot be obtained effectively, it is difficult to extract light efficiently. When the light is excessively large, backscattering is dominant and it is difficult to extract light efficiently. When the absolute value of the refractive index difference (Δn) is too small or too large, it is necessary to increase the content of the light diffusing particles in order to obtain sufficient luminance, which may result in insufficient transparency. The absolute value of the difference in refractive index (Δn) is preferably 0.3 to 3, more preferably 0.4 to 3, from the balance between brightness and transparency during lighting.
The product (Δn · d) of the absolute value of the refractive index difference (Δn) and the volume average particle diameter d (μm) is preferably 0.1 μm or more, more preferably 0, from the balance between brightness and transparency at the time of lighting. .5 μm or more.
 光拡散粒子としては、マトリクス樹脂に対する屈折率差の大きい無機化合物粒子が好まく、酸化チタン粒子および酸化亜鉛粒子等の金属酸化物粒子等が好ましい。これらは、1種または2種以上用いることができる。 As the light diffusing particles, inorganic compound particles having a large refractive index difference with respect to the matrix resin are preferable, and metal oxide particles such as titanium oxide particles and zinc oxide particles are preferable. These can be used alone or in combination of two or more.
 硬質樹脂組成物は、本発明の効果を損なわない範囲で、メタクリル酸メチル(共)重合体(A)およびポリカーボネート系樹脂(PC)以外の他の重合体を含有していてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、およびポリノルボルネン等のポリオレフィン系樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、スチレン-無水マレイン酸-MMA共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、およびMBS樹脂等のスチレン系樹脂;メタクリル酸メチル-スチレン共重合体;ポリエチレンテレフタレートおよびポリブチレンテレフタレート等のポリエステル系樹脂;ナイロン6、ナイロン66、およびポリアミドエラストマー等のポリアミド系樹脂;ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリウレタン系樹脂、フェノキシ系樹脂、変性ポリフェニレンエーテル、およびシリコーン変性樹脂等の他の熱可塑性樹脂;フェノール系樹脂、メラミン系樹脂、シリコーン系樹脂、およびエポキシ系樹脂等の熱硬化性樹脂;アクリルゴム、シリコーンゴム;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー;IR、EPR、EPDM等のオレフィン系ゴム等が挙げられる。これらは1種または2種以上用いることができる。
 硬質樹脂組成物中における他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
The hard resin composition may contain a polymer other than the methyl methacrylate (co) polymer (A) and the polycarbonate resin (PC) as long as the effects of the present invention are not impaired. Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, styrene- Styrenic resins such as maleic anhydride-MMA copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, ACS resin, and MBS resin; methyl methacrylate-styrene copolymer; polyethylene terephthalate and poly Polyester resins such as butylene terephthalate; polyamide resins such as nylon 6, nylon 66, and polyamide elastomers; polyphenylene sulfide, polyether ether ketone, polysulfone, polyphenylene oxa Polyimide, polyetherimide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyurethane resin, phenoxy resin, modified polyphenylene ether, silicone modified resin, etc. Other thermoplastic resins; thermosetting resins such as phenol resins, melamine resins, silicone resins, and epoxy resins; acrylic rubbers, silicone rubbers; styrene thermoplastic elastomers such as SEPS, SEBS, SIS; IR And olefin rubbers such as EPR and EPDM. These can be used alone or in combination of two or more.
The content of the other polymer in the hard resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
 硬質樹脂組成物は必要に応じて、他の各種添加剤を含有していてもよい。他の添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料・顔料、艶消し剤、耐衝撃性改質剤、および蛍光体等が挙げられる。これら添加剤の含有量は本発明の効果を損なわない範囲で適宜設定でき、好ましくは、酸化防止剤の含有量は0.01~1質量%、紫外線吸収剤の含有量は0.01~3質量%、光安定剤の含有量は0.01~3質量%、滑剤の含有量は0.01~3質量%、染料・顔料の含有量は0.01~3質量%である。 The hard resin composition may contain other various additives as required. Other additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes / pigments, matting agents , Impact resistance modifiers, and phosphors. The content of these additives can be appropriately set within a range not impairing the effects of the present invention. Preferably, the content of the antioxidant is 0.01 to 1% by mass, and the content of the ultraviolet absorber is 0.01 to 3%. The content of the light stabilizer is 0.01 to 3% by mass, the content of the lubricant is 0.01 to 3% by mass, and the content of the dye / pigment is 0.01 to 3% by mass.
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、およびホルムアミジン類等が挙げられる。中でも、ベンゾトリアゾール類、トリァジン類、または波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm・mol-1cm-1以下である紫外線吸収剤が好ましい。 The ultraviolet absorber is a compound having an ability to absorb ultraviolet rays. The ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy. Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, and formamidines. Among them, benzotriazoles, triazines, or ultraviolet absorbers having a maximum molar extinction coefficient ε max at a wavelength of 380 to 450 nm of 1200 dm 3 · mol −1 cm −1 or less are preferable.
 ベンゾトリアゾール類は紫外線被照による着色等の光学特性低下を抑制する効果が高いので、ガラス積層体を光学用途に適用する場合に好ましく用いられる。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASFジャパン株式会社製「商品名TINUVIN329」等)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン株式会社製「商品名TINUVIN234」等)、および2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](株式会社ADEKA製「アデカスタブLA-31」等)等が好ましい。 Benzotriazoles are preferably used when the glass laminate is applied to optical applications because it has a high effect of suppressing deterioration in optical properties such as coloring due to ultraviolet irradiation. Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (such as “trade name TINUVIN329” manufactured by BASF Japan Ltd.), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (such as “trade name TINUVIN234” manufactured by BASF Japan Ltd.), and 2,2′-methylenebis [ 6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (“ADEKA STAB LA-31” manufactured by ADEKA Corporation) and the like are preferable.
 また、波長380nm付近の波長を効率的に吸収したい場合は、トリアジン類の紫外線吸収剤が好ましく用いられる。かかる紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(株式会社ADEKA製「アデカスタブLA-F70」等)、およびその類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASFジャパン株式会社製「TINUVIN477」および「TINUVIN460」等)等が挙げられる。 Further, when it is desired to efficiently absorb a wavelength around 380 nm, a triazine UV absorber is preferably used. Such UV absorbers include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (“ADEKA STAB LA-F70” manufactured by ADEKA Corporation) And hydroxyphenyltriazine-based ultraviolet absorbers (such as “TINUVIN477” and “TINUVIN460” manufactured by BASF Japan Ltd.) which are analogs thereof.
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6一テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(株式会社ADEKA製「アデカスタブLA-77Y」等)等が挙げられる。 The light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6 monotetraalkylpiperidine skeleton. Examples thereof include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (“ADEKA STAB LA-77Y” manufactured by ADEKA Corporation) and the like.
 好ましくはメタクリル酸メチル(共)重合体(A)および/またはポリカーボネート系樹脂(PC)を含む硬質脂組成物に光拡散粒子、他の重合体および他の添加剤等の任意成分を添加する場合、任意成分の添加のタイミングは特に制限されず、メタクリル酸メチル(共)重合体(A)および/またはポリカーボネート系樹脂(PC)の重合時、重合されたメタクリル酸メチル(共)重合体(A)とポリカーボネート系樹脂(PC)との混合時または混合後のいずれのタイミングでもよい。 When adding optional components such as light diffusing particles, other polymers and other additives to a hard fat composition preferably containing methyl methacrylate (co) polymer (A) and / or polycarbonate resin (PC) The timing of adding the optional component is not particularly limited, and the methyl methacrylate (co) polymer (A) polymerized during polymerization of the methyl methacrylate (co) polymer (A) and / or the polycarbonate resin (PC) (A) ) And polycarbonate resin (PC) may be mixed at any timing or after mixing.
 加熱溶融成形の安定性の観点から、硬質樹脂組成物のMFRは、好ましくは1~10g/10分である。MFRの下限値は、より好ましくは1.5g/10分、特に好ましくは2.0g/10分である。MFRの上限値は、より好ましくは7.0g/10分、特に好ましくは4.0g/10分である。 From the viewpoint of stability of heat-melt molding, the MFR of the hard resin composition is preferably 1 to 10 g / 10 minutes. The lower limit value of MFR is more preferably 1.5 g / 10 minutes, and particularly preferably 2.0 g / 10 minutes. The upper limit value of MFR is more preferably 7.0 g / 10 minutes, particularly preferably 4.0 g / 10 minutes.
 硬質樹脂シートの成形方法は特に制限されず、押出成形法、キャスト成形法、および射出成形法等が挙げられ、押出成形法等が好ましい。
 複数の硬質樹脂組成物層からなる積層構造の硬質樹脂シートは、公知の多層成形によって成形することができる。
 硬質樹脂シートは、中間膜、または他の任意の層と共に多層押出成形することもできる。
The molding method of the hard resin sheet is not particularly limited, and examples thereof include an extrusion molding method, a cast molding method, and an injection molding method, and the extrusion molding method and the like are preferable.
A hard resin sheet having a laminated structure composed of a plurality of hard resin composition layers can be formed by known multilayer molding.
The hard resin sheet can also be multilayer extruded with an interlayer or any other layer.
(中間膜)
 中間膜は、無機ガラス板と硬質樹脂シートとを接着させる透明な層である。中間膜は、特定の粘弾性特性を有する軟質樹脂組成物からなる。中間膜は、単層構造でも組成の異なる複数の軟質樹脂組成物層からなる積層構造でもよい。
(Interlayer film)
The intermediate film is a transparent layer that bonds the inorganic glass plate and the hard resin sheet. The intermediate film is made of a soft resin composition having specific viscoelastic properties. The interlayer film may have a single layer structure or a laminated structure composed of a plurality of soft resin composition layers having different compositions.
 軟質樹脂組成物は、設定温度25℃、周波数1.0Hzでの貯蔵弾性率G′が1.0×10Pa以下であり、好ましくは5.0×10Pa以下、より好ましくは1.0×10Pa以下である。貯蔵弾性率G′が1.0×10Pa以下であることで、ガラス積層体の製造時および実使用時において、無機ガラス板と硬質樹脂シートとの線膨張係数の差および吸水率の差に起因して生じる恐れがある反り、層剥離、および割れ等の不良の発生を効果的に抑制することができる。
 軟質樹脂組成物は、周波数1.0Hzでの損失正接tanδが最大となるピーク温度が25℃以下であり、好ましくは20℃以下、より好ましくは15℃以下である。損失正接tanδの最大ピーク温度が25℃以下であることで、本発明のガラス積層体は、上記不良の発生を抑制することができ、かつ耐衝撃性に優れるものとなる。
The soft resin composition has a storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz of 1.0 × 10 7 Pa or less, preferably 5.0 × 10 6 Pa or less, more preferably 1. 0 × 10 6 Pa or less. When the storage elastic modulus G ′ is 1.0 × 10 7 Pa or less, the difference in linear expansion coefficient and the difference in water absorption between the inorganic glass plate and the hard resin sheet during the production and actual use of the glass laminate. It is possible to effectively suppress the occurrence of defects such as warpage, delamination, and cracking that may occur due to.
The soft resin composition has a peak temperature at which the loss tangent tan δ at a frequency of 1.0 Hz is maximized at 25 ° C. or lower, preferably 20 ° C. or lower, more preferably 15 ° C. or lower. When the maximum peak temperature of the loss tangent tan δ is 25 ° C. or less, the glass laminate of the present invention can suppress the occurrence of the above-described defects and has excellent impact resistance.
 軟質樹脂組成物を構成する軟質樹脂としては、ポリビニルブチラール、エチレン-酢酸ビニル共重合体、エチレン系アイオノマー、熱可塑性ポリウレタン系樹脂、およびこれらの変性物等が挙げられる。これらは、1種または2種以上用いることができる。
 中間膜は、無機ガラス板と硬質樹脂シートとを良好に接着させる機能と、ガラス積層体の耐衝撃性を向上させる機能を有する。さらに、内部応力緩和性能を有し、これにより、無機ガラス板と硬質樹脂シートとの線膨張係数の差および吸水率の差に起因して、ガラス積層体の製造時および実使用時において生じる恐れがある反り、層剥離、および割れ等の不良の発生を抑制する機能を有する。かかる機能に優れることから、熱可塑性ポリウレタン系樹脂が特に好ましい。中間膜は熱可塑性ポリウレタン系樹脂等の軟質樹脂のみから形成されていてもよいし、上記のような軟質樹脂の他に各種添加剤等をさらに含んでいてもよい。なお、本発明においては、このような中間膜が軟質樹脂のみから形成されている場合においても、便宜上、中間膜は軟質樹脂組成物からなると考えるものとする。
Examples of the soft resin constituting the soft resin composition include polyvinyl butyral, ethylene-vinyl acetate copolymer, ethylene ionomer, thermoplastic polyurethane resin, and modified products thereof. These can be used alone or in combination of two or more.
The intermediate film has a function of favorably bonding the inorganic glass plate and the hard resin sheet and a function of improving the impact resistance of the glass laminate. Furthermore, it has internal stress relaxation performance, which may occur during manufacturing and actual use of glass laminates due to differences in linear expansion coefficient and water absorption between inorganic glass plates and hard resin sheets. It has a function of suppressing the occurrence of defects such as warping, delamination, and cracking. A thermoplastic polyurethane resin is particularly preferred because of its excellent function. The intermediate film may be formed of only a soft resin such as a thermoplastic polyurethane resin, or may further contain various additives in addition to the soft resin as described above. In the present invention, even when such an intermediate film is formed of only a soft resin, for convenience, the intermediate film is considered to be formed of a soft resin composition.
 熱可塑性ポリウレタン系樹脂は、ポリイソシアネートとポリオールと鎖伸長剤とを反応させて得られる。熱可塑性ポリウレタン系樹脂は、鎖伸長剤とポリイソシアネートとの反応によってできたハードセグメントと、ポリオールとポリイソシアネートとの反応によってできたソフトセグメントとからなるブロック共重合体であることが好ましい。 The thermoplastic polyurethane resin is obtained by reacting a polyisocyanate, a polyol and a chain extender. The thermoplastic polyurethane-based resin is preferably a block copolymer composed of a hard segment formed by a reaction between a chain extender and polyisocyanate and a soft segment formed by a reaction between a polyol and polyisocyanate.
 ポリイソシアネートとしてはジイソシアネートが好ましく、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、および2,4,4-トリメチル-1,6-ヘキサンジイソシアネート等の脂肪族系ジイソシアネート化合物;ビス(4-イソシアネートシクロヘキシル)メタン、2,2-ビス(4-イソシアネートシクロヘキシル)プロパン、1,4-シクロヘキシルジイソシアネート、および1-メチル-2,4-(または2,6)-ジイソシアネートシクロヘキサン等の脂環族系ジイソシアネート化合物;イソホロンジイソシアネート等の脂肪族・脂環族混合系ジイソシアネート化合物;トルエンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)、ポリメリックMDI、トリレンジイソシアネート、p-フェニレンジイソシアネート、ナフタレンジイソシアネート、およびビスフェノールAジイソシアネート等の芳香族系ジイソシアネート化合物等が挙げられる。ジイソシアネートは、日光による変色を防ぐ観点から、脂肪族または脂環式のジイソシアネートを使用するのが好ましい。これらは1種または2種以上用いることができる。 As the polyisocyanate, diisocyanate is preferable, and aliphatic diisocyanate compounds such as hexamethylene diisocyanate, tetramethylene diisocyanate, dodecamethylene diisocyanate, and 2,4,4-trimethyl-1,6-hexane diisocyanate; bis (4-isocyanatocyclohexyl) Alicyclic diisocyanate compounds such as methane, 2,2-bis (4-isocyanatocyclohexyl) propane, 1,4-cyclohexyl diisocyanate, and 1-methyl-2,4- (or 2,6) -diisocyanatecyclohexane; isophorone Aliphatic and alicyclic mixed diisocyanate compounds such as diisocyanate; toluene diisocyanate, diphenylmethane diisocyanate (MDI), polymeric MD , Tolylene diisocyanate, p- phenylene diisocyanate, aromatic diisocyanate compounds such as naphthalene diisocyanate and bisphenol A diisocyanate, and the like. The diisocyanate is preferably an aliphatic or alicyclic diisocyanate from the viewpoint of preventing discoloration due to sunlight. These can be used alone or in combination of two or more.
 ポリオールとしては例えば、脂肪族の二塩基酸またはその無水物を、二価アルコール(好ましくは脂肪族の二価アルコール)とポリエステル化反応させることによって得られるポリエステルジオールが挙げられる。脂肪族の二塩基酸は一般式HOOC-R-COOHで表され(式中、Rは、炭素数2~12、好ましくは4~8個のアルキレン基である。)、アジピン酸、スクシン酸、パルミチン酸、スベリン酸、アゼライン酸、およびセバシン酸等が挙げられる。二価アルコールは好ましくは炭素数2~15のアルコールであり、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、および1,6-ヘキサンジオール等が挙げられる。 Examples of the polyol include polyester diols obtained by a polyesterification reaction of an aliphatic dibasic acid or an anhydride thereof with a dihydric alcohol (preferably an aliphatic dihydric alcohol). The aliphatic dibasic acid is represented by the general formula HOOC—R—COOH (wherein R is an alkylene group having 2 to 12 carbon atoms, preferably 4 to 8 carbon atoms), adipic acid, succinic acid, Examples include palmitic acid, suberic acid, azelaic acid, and sebacic acid. The dihydric alcohol is preferably an alcohol having 2 to 15 carbon atoms, and examples thereof include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol.
 他のポリオールとしては、オキシメチレン基を有するポリオキシテトラメチレンジオール、オキシプロピレン基あるいはオキシエチレン基とオキシプロピレン基とを有するポリオキシアルキレンジオール、および上記のオキシアルキレン基とオキシテトラメチレン基とを有するポリエーテルジオール等が挙げられる。 Other polyols include polyoxytetramethylene diol having an oxymethylene group, oxypropylene group or polyoxyalkylene diol having an oxyethylene group and an oxypropylene group, and the above oxyalkylene group and oxytetramethylene group. Examples include polyether diol.
 他のポリオールとしては、ジメチルカーボネートおよびジエチルカーボネート等のジアルキルカーボネート;ホスゲン、クロロギ酸エステル、ジアリルカーボネート、およびアルキレンカーボネート等の化合物と、低分子量ポリオールとを重縮合させて得られるポリカーボネートジオール等が挙げられる。
 ポリオールは、1種または2種以上用いることができる。
Examples of other polyols include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; polycarbonate diols obtained by polycondensation of compounds such as phosgene, chloroformate, diallyl carbonate, and alkylene carbonate with low molecular weight polyols. .
One or more polyols can be used.
 鎖伸長剤としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、およびビスヒドロキシエトキシベンゼン等が挙げられる。 Examples of the chain extender include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and bishydroxyethoxybenzene.
 熱可塑性ポリウレタン系樹脂の貯蔵弾性率G′および損失正接tanδピーク温度は、熱可塑性ポリウレタン系樹脂を構成するハードセグメント(鎖伸長剤とポリイソシアネートとの反応部位)とソフトセグメント(ポリオールとポリイソシアネートとの反応部位)との質量比、ソフトセグメントのガラス転移温度(Tg)、および、各成分の重量平均分子量(Mw)または種類等を選択することにより調節できる。例えば、ソフトセグメントの質量比の多いものを用いれば貯蔵弾性率G′は低下する傾向があり、ソフトセグメントのガラス転移温度(Tg)の低いものを用いればtanδピーク温度は低下する傾向がある。 The storage elastic modulus G ′ and the loss tangent tan δ peak temperature of the thermoplastic polyurethane resin are determined by the hard segment (reaction site between the chain extender and the polyisocyanate) and the soft segment (polyol and polyisocyanate) constituting the thermoplastic polyurethane resin. It is possible to adjust by selecting the mass ratio to the reaction site), the glass transition temperature (Tg) of the soft segment, and the weight average molecular weight (Mw) or type of each component. For example, the storage modulus G ′ tends to decrease when a soft segment having a high mass ratio is used, and the tan δ peak temperature tends to decrease when a soft segment having a low glass transition temperature (Tg) is used.
 中間膜の表面形状は特に限定されず、少なくとも片面、好ましくは両面にエンボス構造等の表面凹凸構造を有することができる。中間膜が表面凹凸構造を有する場合、無機ガラス板と硬質樹脂シートと積層する際の取り扱い性(泡抜け性)に優れる。表面凹凸構造の高さについては特に制限されず、好ましくは5~500μm、より好ましくは7~300μm、特に好ましくは10~200μmである。表面凹凸構造の高さが5μm未満では、無機ガラス板と硬質樹脂シートと積層する際に、無機ガラス板と中間膜との間、および硬質樹脂シートと中間膜との間にできる気泡を効率よく除去できない場合があり、500μm超では、表面凹凸構造の形成が難しい。表面凹凸構造の形状は、規則的でもよいし、不規則的でもよい
 表面凹凸構造の形成方法としては、エンボスロール法、カレンダーロール法、および異形押出法等が挙げられる。中でも、比較的多くの一定量の凹凸模様を簡易に形成することができることから、エンボスロール法が好ましい。
The surface shape of the intermediate film is not particularly limited, and may have a surface uneven structure such as an embossed structure on at least one surface, preferably both surfaces. When the intermediate film has a surface concavo-convex structure, it is excellent in handleability (bubble removal property) when the inorganic glass plate and the hard resin sheet are laminated. The height of the surface uneven structure is not particularly limited, and is preferably 5 to 500 μm, more preferably 7 to 300 μm, and particularly preferably 10 to 200 μm. When the height of the surface concavo-convex structure is less than 5 μm, when the inorganic glass plate and the hard resin sheet are laminated, air bubbles formed between the inorganic glass plate and the intermediate film and between the hard resin sheet and the intermediate film are efficiently formed. In some cases, it cannot be removed. When the thickness exceeds 500 μm, it is difficult to form a surface uneven structure. The shape of the surface uneven structure may be regular or irregular. Examples of the method for forming the surface uneven structure include an emboss roll method, a calender roll method, and a profile extrusion method. Among these, the embossing roll method is preferable because a relatively large amount of the uneven pattern can be easily formed.
 中間膜は、軟質樹脂シートを用いて形成することができる。軟質樹脂シートの成形方法は特に制限されず、押出成形法、キャスト成形法、および射出成形法等が挙げられ、押出成形法等が好ましい。
 複数の軟質樹脂組成物層からなる積層構造の軟質樹脂シートは、公知の多層成形によって成形することができる。
 軟質樹脂シートは、硬質樹脂シート、または他の任意の層と共に多層押出成形することもできる。
 なお、表面凹凸構造は、軟質樹脂シートを成形する際の冷却工程中または冷却工程後、若しくは軟質樹脂シートの製造後に付与することができる。
The intermediate film can be formed using a soft resin sheet. The molding method of the soft resin sheet is not particularly limited, and examples thereof include an extrusion molding method, a cast molding method, and an injection molding method, and the extrusion molding method and the like are preferable.
A soft resin sheet having a laminated structure composed of a plurality of soft resin composition layers can be formed by known multilayer molding.
The soft resin sheet can also be multilayer extruded with a hard resin sheet or any other layer.
The uneven surface structure can be imparted during or after the cooling step when molding the soft resin sheet, or after the production of the soft resin sheet.
(ガラス積層体の積層構成と製造方法)
 図面を参照して、本発明に係る第1~第5実施形態のガラス積層体の構造と製造方法の例について、説明する。これらの図において、同じ構成要素には同じ参照符号を付してある。
(Laminated structure and manufacturing method of glass laminate)
With reference to the drawings, examples of the structure and manufacturing method of the glass laminates according to the first to fifth embodiments of the present invention will be described. In these drawings, the same components are denoted by the same reference numerals.
 図1に示す第1実施形態のガラス積層体1は、無機ガラス板11上に中間膜12と硬質樹脂シート13とを順次備えた3層構造のガラス積層体である。
 各構成要素の厚さは特に制限されない。無機ガラス板11の厚さは、剛性および軽量化の観点から、好ましくは0.1~4.0mm、より好ましくは0.5~3.0mm、特に好ましくは1.0~2.0mmである。中間膜12の厚さは、層間接着性、耐衝撃性、および内部応力緩和性能の観点から、好ましくは0.03~8.0mm、より好ましくは0.1~7.0mm、特に好ましくは0.4~6.0mmである。硬質樹脂シート13の厚さは、耐擦傷性、耐候性、および耐衝撃性等の観点から、好ましくは0.1~10mm、より好ましくは0.5~5mm、特に好ましくは1.0~3.0mmである。
A glass laminate 1 according to the first embodiment shown in FIG. 1 is a glass laminate having a three-layer structure in which an intermediate film 12 and a hard resin sheet 13 are sequentially provided on an inorganic glass plate 11.
The thickness of each component is not particularly limited. The thickness of the inorganic glass plate 11 is preferably 0.1 to 4.0 mm, more preferably 0.5 to 3.0 mm, and particularly preferably 1.0 to 2.0 mm from the viewpoint of rigidity and weight reduction. . The thickness of the intermediate film 12 is preferably 0.03 to 8.0 mm, more preferably 0.1 to 7.0 mm, and particularly preferably 0 from the viewpoints of interlayer adhesion, impact resistance, and internal stress relaxation performance. .4 to 6.0 mm. The thickness of the hard resin sheet 13 is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm, and particularly preferably 1.0 to 3 in terms of scratch resistance, weather resistance, impact resistance, and the like. 0.0 mm.
 第1実施形態のガラス積層体1の製造方法は特に制限されず、無機ガラス板11と中間膜12となる軟質樹脂シートと硬質樹脂シート13とをこの順で重ねた後、加熱圧着して貼り合わせる方法が挙げられる。なお、無機ガラス板11には必要に応じて、あらかじめ少なくとも一方の面に対して、接着増強処理を施しておいてもよい。接着増強処理は例えば米国特許第7,625,627号明細書に記載されている。 The manufacturing method in particular of the glass laminated body 1 of 1st Embodiment is not restrict | limited, After laminating | stacking the soft resin sheet used as the inorganic glass plate 11, the intermediate film 12, and the hard resin sheet 13 in this order, it heat-presses and sticks. The method to match is mentioned. Note that the inorganic glass plate 11 may be subjected to adhesion enhancement treatment on at least one surface in advance, if necessary. The adhesion enhancing process is described in, for example, US Pat. No. 7,625,627.
 加熱圧着法としては特に制限されず、熱プレス法、真空バッグ法、およびオートクレーブ法等が挙げられる。例えば、無機ガラス板11と中間膜12となる軟質樹脂シートと硬質樹脂シート13とを重ねた予備積層体を真空バッグ内に入れ、真空ライン等の手段によって真空バッグから空気を吸引し、真空バッグ内の真空状態を維持したまま、オートクレーブ等の内部で加熱および加圧する方法が好ましい。加熱圧着時には、中間膜12が完全溶融するように加熱を充分に行うことが好ましい。そのために必要な加熱温度は、一般的に80℃超、好ましくは90℃以上である。硬質樹脂シート13の表面荒れを抑制するために、加熱温度の上限は好ましくは120℃、より好ましくは110℃である。 The thermocompression bonding method is not particularly limited, and examples thereof include a hot press method, a vacuum bag method, and an autoclave method. For example, a pre-laminated body in which a soft resin sheet that becomes an inorganic glass plate 11 and an intermediate film 12 and a hard resin sheet 13 are placed in a vacuum bag, air is sucked from the vacuum bag by means of a vacuum line or the like, and the vacuum bag A method of heating and pressurizing inside an autoclave or the like while maintaining the inside vacuum state is preferable. At the time of thermocompression bonding, it is preferable to sufficiently heat so that the intermediate film 12 is completely melted. The heating temperature required for this is generally above 80 ° C, preferably above 90 ° C. In order to suppress the surface roughness of the hard resin sheet 13, the upper limit of the heating temperature is preferably 120 ° C, more preferably 110 ° C.
 その他の製造方法としては、あらかじめ中間膜12と硬質樹脂シート13とからなる積層シートを用意し、この積層シートを無機ガラス板11上に重ね、加熱圧着して貼り合わせる方法が挙げられる。
 中間膜12と硬質樹脂シート13とからなる積層シートは、公知の多層成形によって行うことができる。多層成形法としては、多層押出成形法、多層ブロー成形法、多層プレス成形法、多色射出成形法、およびインサート射出成形法等が挙げられる。
 生産性の観点から、中間膜12と硬質樹脂シート13とを溶融共押出しにより積層する多層押出成形が好ましい。特に、フラットなTダイと互いに隣接する複数の冷却ロールとを備えた成形装置を用いた多層押出成形が好ましい。
 Tダイの方式としては、加熱溶融状態の複数種の樹脂をTダイ流入前に積層するフィードブロック方式、および、加熱溶融状態の複数種の樹脂をTダイ内部で積層するマルチマニホールド方式等が挙げられる。層間の界面の平滑性を高める観点から、マルチマニホールド方式が好ましい。
 複数の冷却ロールのうち少なくとも硬質樹脂シートに接する冷却ロールは、表面が鏡面仕上げされたポリシングロールであることが好ましい。
As another manufacturing method, there is a method in which a laminated sheet composed of the intermediate film 12 and the hard resin sheet 13 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and bonded by thermocompression bonding.
A laminated sheet composed of the intermediate film 12 and the hard resin sheet 13 can be performed by known multilayer molding. Examples of the multilayer molding method include a multilayer extrusion molding method, a multilayer blow molding method, a multilayer press molding method, a multicolor injection molding method, and an insert injection molding method.
From the viewpoint of productivity, multilayer extrusion molding in which the intermediate film 12 and the hard resin sheet 13 are laminated by melt coextrusion is preferable. In particular, multilayer extrusion molding using a molding apparatus provided with a flat T die and a plurality of cooling rolls adjacent to each other is preferable.
Examples of the T-die method include a feed block method in which a plurality of types of heat-melted resins are laminated before the T-die flows, and a multi-manifold method in which a plurality of types of heat-melted resins are laminated inside the T die. It is done. From the viewpoint of improving the smoothness of the interface between layers, the multi-manifold method is preferable.
The cooling roll in contact with at least the hard resin sheet among the plurality of cooling rolls is preferably a polishing roll having a mirror-finished surface.
 なお、本発明のガラス積層体は図示する3層構造に限定されず、適宜設計変更が可能である。無機ガラス板11、中間膜12、硬質樹脂シート13は、それぞれ単数でも複数でもよい。
 ガラス積層体は必要に応じて、他の任意の層を含むことができる。他の層の構成材料は特に制限されず、中間膜および硬質樹脂シートとは組成の異なる各種樹脂(熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化性樹脂、およびこれらの組合せ)等が挙げられる。
 他の層の機能は特に制限されず、他の要素を支持する支持層、耐擦傷性層、帯電防止層、防汚層、摩擦低減層、防眩層、反射防止層、粘着層、熱線吸収層、遮音層および衝撃強度付与層等の各種機能層として機能してもよい。他の層は単数でも複数でもよい。他の層が複数である場合、組成は同一でも非同一でもよい。
In addition, the glass laminated body of this invention is not limited to the three-layer structure shown in figure, A design change is possible suitably. Each of the inorganic glass plate 11, the intermediate film 12, and the hard resin sheet 13 may be singular or plural.
The glass laminate can include other optional layers as required. The constituent material of the other layer is not particularly limited, and examples thereof include various resins (thermoplastic resin, thermosetting resin, energy ray curable resin, and combinations thereof) having different compositions from the intermediate film and the hard resin sheet. .
The function of other layers is not particularly limited, and is a support layer that supports other elements, an abrasion-resistant layer, an antistatic layer, an antifouling layer, a friction reducing layer, an antiglare layer, an antireflection layer, an adhesive layer, and heat ray absorption. You may function as various functional layers, such as a layer, a sound insulation layer, and an impact strength provision layer. Other layers may be singular or plural. When there are a plurality of other layers, the composition may be the same or non-identical.
 図2に示す第2実施形態のガラス積層体2は、第1実施形態のガラス積層体1を基本構造とし、さらに、中間膜12と硬質樹脂シート13との間に、硬質樹脂シート13とは組成の異なる熱可塑性樹脂層14を備えた態様である。熱可塑性樹脂層14は、単層構造でも積層構造でもよい。
 熱可塑性樹脂層14の構成樹脂としては特に制限されず、メタクリル系樹脂;ポリエチレンおよびポリプロピレン等のポリオレフィン系樹脂;ポリスチレン系樹脂;ポリエステル系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリフッ化ビニリデン;変性ポリフェニレンエーテル、ポリフェニレンスルフィド;シリコーン変性樹脂;ポリエーテルエーテルケトン;ポリスルホン;ポリフェニレンオキサイド;ポリイミド、ポリエーテルイミド;フェノキシ系樹脂等が挙げられる。中でも、透明性、耐熱性、および耐衝撃性の観点から、メタクリル系樹脂およびポリカーボネート系樹脂等が好ましい。
The glass laminate 2 of the second embodiment shown in FIG. 2 has the glass laminate 1 of the first embodiment as a basic structure, and further, between the intermediate film 12 and the hard resin sheet 13, the hard resin sheet 13 is It is the aspect provided with the thermoplastic resin layer 14 from which a composition differs. The thermoplastic resin layer 14 may have a single layer structure or a laminated structure.
The constituent resin of the thermoplastic resin layer 14 is not particularly limited. Methacrylic resin; Polyolefin resin such as polyethylene and polypropylene; Polystyrene resin; Polyester resin; Polyamide resin; Polycarbonate resin; Polyvinyl chloride, Polychlorinated resin Vinylidene, polyvinyl alcohol, polyvinylidene fluoride; modified polyphenylene ether, polyphenylene sulfide; silicone modified resin; polyether ether ketone; polysulfone; polyphenylene oxide; polyimide, polyetherimide; Among these, methacrylic resins and polycarbonate resins are preferable from the viewpoints of transparency, heat resistance, and impact resistance.
 熱可塑性樹脂層14の厚さは特に制限されず、好ましくは0.04~3mm、より好ましくは0.05~1.5mm、特に好ましくは0.06~1.0mmである。熱可塑性樹脂層14の厚さが0.04mm以上であることでガラス積層体の耐衝撃性を向上でき、3mm以下であることでガラス積層体の反りを抑制できる。 The thickness of the thermoplastic resin layer 14 is not particularly limited, and is preferably 0.04 to 3 mm, more preferably 0.05 to 1.5 mm, and particularly preferably 0.06 to 1.0 mm. The impact resistance of a glass laminated body can be improved because the thickness of the thermoplastic resin layer 14 is 0.04 mm or more, and the curvature of a glass laminated body can be suppressed because it is 3 mm or less.
 第2実施形態のガラス積層体2の製造方法は特に制限されず、無機ガラス板11と、中間膜12となる軟質樹脂シートと、あらかじめ一方の面に熱可塑性樹脂層14が形成された硬質樹脂シート13とをこの順で重ねた後、加熱圧着する方法が挙げられる。
 その他の製造方法としては、あらかじめ中間膜12と熱可塑性樹脂層14と硬質樹脂シート13とからなる積層シートを用意し、この積層シートを無機ガラス板11上に重ね、加熱圧着して貼り合わせる方法が挙げられる。
 なお、第2実施形態のガラス積層体2においても、第1実施形態と同様に適宜設計変更が可能である。
The manufacturing method in particular of the glass laminated body 2 of 2nd Embodiment is not restrict | limited, The hard resin by which the thermoplastic resin layer 14 was previously formed in one surface by the inorganic glass plate 11, the soft resin sheet used as the intermediate film 12 The method of heat-pressing after laminating | stacking the sheet | seat 13 in this order is mentioned.
As another manufacturing method, a method of preparing a laminated sheet composed of the intermediate film 12, the thermoplastic resin layer 14, and the hard resin sheet 13 in advance, and laminating the laminated sheet on the inorganic glass plate 11 and bonding them by thermocompression bonding. Is mentioned.
In addition, also in the glass laminated body 2 of 2nd Embodiment, a design change is possible suitably similarly to 1st Embodiment.
 図3に示す第3実施形態のガラス積層体3は、第1実施形態のガラス積層体1を基本構造とし、さらに、硬質樹脂シート13上に耐擦傷性層21を備えた態様である。
 図4に示す第4実施形態のガラス積層体4は、第2実施形態のガラス積層体2を基本構造とし、さらに、硬質樹脂シート13上に耐擦傷性層21を備えた態様である。
 図5に示す第5実施形態のガラス積層体5は、第1実施形態のガラス積層体1を基本構造とし、さらに、硬質樹脂シート13の両面に耐擦傷性層21を備えた態様である。
The glass laminated body 3 of 3rd Embodiment shown in FIG. 3 is the aspect which equipped the glass laminated body 1 of 1st Embodiment as basic structure, and also was equipped with the abrasion-resistant layer 21 on the hard resin sheet 13. Moreover, FIG.
The glass laminate 4 of the fourth embodiment shown in FIG. 4 is a mode in which the glass laminate 2 of the second embodiment is a basic structure and the scratch-resistant layer 21 is further provided on the hard resin sheet 13.
The glass laminate 5 of the fifth embodiment shown in FIG. 5 is a mode in which the glass laminate 1 of the first embodiment is a basic structure and the scratch-resistant layers 21 are provided on both surfaces of the hard resin sheet 13.
 耐擦傷性層21は例えば、モノマー、オリゴマー、および樹脂等からなる流動性の硬化性組成物を硬質樹脂シート13の表面に塗布し、硬化させることで形成することができる。硬化性組成物は例えば、熱により硬化する熱硬化性組成物、または電子線、放射線、紫外線等のエネルギー線で硬化するエネルギー線硬化性組成物である。 The scratch-resistant layer 21 can be formed, for example, by applying a fluid curable composition composed of a monomer, an oligomer, a resin, and the like to the surface of the hard resin sheet 13 and curing it. The curable composition is, for example, a thermosetting composition that is cured by heat, or an energy beam curable composition that is cured by an energy beam such as an electron beam, radiation, or ultraviolet rays.
 熱硬化性組成物は、フェノール系樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、アミノアルキッド系樹脂、メラミン-尿素共縮合樹脂、珪素樹脂、およびポリシロキサン樹脂等の熱硬化性樹脂を含む。
 熱硬化性組成物は必要に応じて、架橋剤および重合開始剤等の硬化剤または重合促進剤等を含有していてもよい。硬化剤としては、ポリウレタン系樹脂にはイソシアネート、ポリエステル系樹脂には有機スルホン酸等、エポキシ系樹脂にはアミン、不飽和ポリエステル系樹脂にはメチルエチルケトンパーオキサイド等の過酸化物およびアゾビスイソブチルエステル等のラジカル開始剤が好ましく用いられる。
Thermosetting compositions include phenolic resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, unsaturated polyester resins, polyurethane resins, epoxy resins, aminoalkyd resins, melamine-urea cocondensation resins, It includes a thermosetting resin such as silicon resin and polysiloxane resin.
The thermosetting composition may contain a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, or the like, if necessary. Curing agents include isocyanates for polyurethane resins, organic sulfonic acids for polyester resins, amines for epoxy resins, peroxides such as methyl ethyl ketone peroxide and azobisisobutyl esters for unsaturated polyester resins, etc. These radical initiators are preferably used.
 エネルギー線硬化性組成物としては、分子中にアクリロイル基およびメタクリロイル基等の重合性不飽和結合を含む基、チオール基、またはエポキシ基を有するオリゴマーおよび/またはモノマーを含有する組成物が挙げられる。耐擦傷性を高める観点から、アクリロイル基またはメタクリロイル基を複数有するオリゴマーおよび/またはモノマーを含有する組成物が好ましい。
 エネルギー線硬化性組成物は、光重合開始剤および/または光増感剤を含有していてもよい。光重合開始剤としては、ベンゾインメチルエーテル、アセトフェノン、3-メチルアセトフェノン、ベンゾフェノン、および4-クロロベンゾフェノン等のカルボニル化合物;テトラメチルチウラムモノスルフィドおよびテトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。光増感剤としては、n-ブチルアミン、トリエチルアミン、およびトリ-n-ブチルホスフイン等が挙げられる。
Examples of the energy ray curable composition include a composition containing an oligomer and / or a monomer having a group containing a polymerizable unsaturated bond such as an acryloyl group and a methacryloyl group, a thiol group, or an epoxy group in the molecule. From the viewpoint of enhancing the scratch resistance, a composition containing an oligomer and / or monomer having a plurality of acryloyl groups or methacryloyl groups is preferred.
The energy beam curable composition may contain a photopolymerization initiator and / or a photosensitizer. Photopolymerization initiators include carbonyl compounds such as benzoin methyl ether, acetophenone, 3-methylacetophenone, benzophenone and 4-chlorobenzophenone; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; 2, 4, 6 -Trimethylbenzoyldiphenylphosphine oxide and benzoyldiethoxyphosphine oxide. Examples of the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
 耐擦傷性層21の厚さは特に制限されず、好ましくは2~10μm、より好ましくは3~8μm、特に好ましくは4~7μmである。耐擦傷性層の厚さが2μm以上であることで良好な耐擦傷性を発現でき、10μm以下であることでガラス積層体の耐衝撃性が優れたものとなる傾向がある。 The thickness of the scratch-resistant layer 21 is not particularly limited, and is preferably 2 to 10 μm, more preferably 3 to 8 μm, and particularly preferably 4 to 7 μm. When the thickness of the scratch-resistant layer is 2 μm or more, good scratch resistance can be expressed, and when the thickness is 10 μm or less, the impact resistance of the glass laminate tends to be excellent.
 第3実施形態のガラス積層体3の製造方法は特に制限されず、無機ガラス板11と、中間膜12となる軟質樹脂シートと、あらかじめ一方の面に耐擦傷性層21が形成された硬質樹脂シート13とをこの順で重ねた後、加熱圧着する方法が挙げられる。その他の製造方法としては、あらかじめ中間膜12と硬質樹脂シート13と耐擦傷性層21からなる積層シートを用意し、この積層シートを無機ガラス板11上に重ね、加熱圧着して貼り合わせる方法が挙げられる。 The manufacturing method in particular of the glass laminated body 3 of 3rd Embodiment is not restrict | limited, The hard resin by which the abrasion-resistant layer 21 was previously formed in one surface by the inorganic glass plate 11, the soft resin sheet used as the intermediate film 12, and one side The method of heat-pressing after laminating | stacking the sheet | seat 13 in this order is mentioned. As another manufacturing method, there is a method in which a laminated sheet composed of the intermediate film 12, the hard resin sheet 13, and the scratch-resistant layer 21 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and bonded by thermocompression bonding. Can be mentioned.
 第4実施形態のガラス積層体4の製造方法は特に制限されず、無機ガラス板11と、中間膜12となる軟質樹脂シートと、あらかじめ一方の面に熱可塑性樹脂層14が形成され、他方の面に耐擦傷性層21が形成された硬質樹脂シート13とをこの順で重ねた後、加熱圧着する方法が挙げられる。その他の製造方法としては、あらかじめ中間膜12と熱可塑性樹脂層14と硬質樹脂シート13と耐擦傷性層21からなる積層シートを用意し、この積層シートを無機ガラス板11上に重ね、加熱圧着して貼り合わせる方法が挙げられる。 The manufacturing method in particular of the glass laminated body 4 of 4th Embodiment is not restrict | limited, The thermoplastic resin layer 14 is previously formed in one surface by the inorganic glass plate 11, the soft resin sheet used as the intermediate film 12, and the other There is a method in which the hard resin sheet 13 having the scratch-resistant layer 21 formed on the surface is superposed in this order, followed by thermocompression bonding. As another manufacturing method, a laminated sheet composed of the intermediate film 12, the thermoplastic resin layer 14, the hard resin sheet 13, and the scratch-resistant layer 21 is prepared in advance, and this laminated sheet is laminated on the inorganic glass plate 11 and thermocompression bonded. And pasting them together.
 第5実施形態のガラス積層体5の製造方法は特に制限されず、無機ガラス板11と、中間膜12となる軟質樹脂シートと、あらかじめ両面に耐擦傷性層21が形成された硬質樹脂シート13とをこの順で重ねた後、加熱圧着する方法が挙げられる。その他の製造方法としては、あらかじめ中間膜12と第1の耐擦傷性層21と硬質樹脂シート13と第2の耐擦傷性層21からなる積層シートを用意し、この積層シートを無機ガラス板11上に重ね、加熱圧着して貼り合わせる方法が挙げられる。両面に耐擦傷性層21を有する硬質樹脂シート13は、硬化性組成物の硬化による歪みが硬質樹脂シート13の両面で同等となるため、反りが抑制され、中間膜12を構成する軟質樹脂組成物との接着性が向上する。
 なお、第3~第5実施形態のガラス積層体3~5においても、第1実施形態と同様に適宜設計変更が可能である。
The manufacturing method in particular of the glass laminated body 5 of 5th Embodiment is not restrict | limited, The hard resin sheet 13 by which the abrasion resistant layer 21 was previously formed in both surfaces by the inorganic glass plate 11, the soft resin sheet used as the intermediate film 12, and And in this order, and then heat-pressing. As another manufacturing method, a laminated sheet composed of the intermediate film 12, the first scratch-resistant layer 21, the hard resin sheet 13, and the second scratch-resistant layer 21 is prepared in advance, and this laminated sheet is used as the inorganic glass plate 11. There is a method of stacking them on top of each other and applying them by thermocompression bonding. The hard resin sheet 13 having the scratch-resistant layers 21 on both sides has the same distortion caused by curing of the curable composition on both sides of the hard resin sheet 13, so that warpage is suppressed and the soft resin composition constituting the intermediate film 12. Adhesion with objects is improved.
Note that the glass laminates 3 to 5 of the third to fifth embodiments can be appropriately changed in design as in the first embodiment.
 以上説明したように、本発明によれば、軽量化が可能で、透明性が良好で、無機ガラス板と樹脂シートとを貼り合わせる工程での表面荒れ、反り、層剥離、および割れ等の不良の発生を抑制することができ、耐久性が良好で、導光性能に優れたガラス積層体を提供することができる。 As described above, according to the present invention, weight reduction is possible, transparency is good, and defects such as surface roughness, warpage, delamination, and cracking in the process of bonding the inorganic glass plate and the resin sheet are performed. Generation | occurrence | production can be suppressed, durability can be provided, and the glass laminated body excellent in the light guide performance can be provided.
[面状発光体]
 本発明の面状発光体は、一態様において、上記の本発明のガラス積層体と、このガラス積層体の片端面または両端面から光を導入する光源とを含む。
 図6に、本発明に係る一実施形態の面状発光体の模式断面図を示す。
 本実施形態の面状発光体6は、ガラス積層体61と、このガラス積層体61の硬質樹脂シート61Cの両端面にそれぞれ隣接して配置された光源62および光を効率良く利用するための光反射カバー63とを備える。
 ガラス積層体61は、無機ガラス板61A上に中間膜61Bを介して硬質樹脂シート61Cが積層された積層構造を含む本発明のガラス積層体であり、例えば図1~図5に示した第1~第5実施形態のガラス積層体1~5のうちのいずれかの積層構造を有する。
 光源62からの出射光は、ガラス積層体61の硬質樹脂シート61Cの光入射側の端面である両端面から入射し、ガラス積層体61の中央部に向けて導光される。
 ガラス積層体61に含まれる硬質樹脂シート61Cが光拡散粒子を含む態様では、ガラス積層体61の厚さ方向に光を散乱しながらガラス積層体61の中央部に向かって、ガラス積層体61の面方向に光を良好に導光させることができる。
 図7に示す設計変更の面状発光体7は、ガラス積層体61と、このガラス積層体61の片端面に隣接して配置された光源62および光反射カバー63とを備える。なお、図7において、図6と同じ構成要素には同じ参照符号を付してある。
 本発明によれば、ガラス積層体の少なくとも一方の端面から光を供給したときに、導光距離によらず、均一な色相の光を取り出すことが可能な発光特性に優れた面状発光体を提供することができる。
[Planar light emitter]
In one aspect, the planar light-emitting body of the present invention includes the above-described glass laminate of the present invention and a light source for introducing light from one or both end surfaces of the glass laminate.
In FIG. 6, the schematic cross section of the planar light-emitting body of one Embodiment which concerns on this invention is shown.
The planar light-emitting body 6 of this embodiment includes a glass laminate 61, a light source 62 disposed adjacent to both end faces of the hard resin sheet 61C of the glass laminate 61, and light for efficiently using light. A reflective cover 63.
The glass laminate 61 is a glass laminate of the present invention including a laminated structure in which a hard resin sheet 61C is laminated on an inorganic glass plate 61A via an intermediate film 61B. For example, the glass laminate 61 of the first embodiment shown in FIGS. ~ A laminated structure of any one of the glass laminates 1 to 5 of the fifth embodiment.
Light emitted from the light source 62 is incident from both end surfaces that are the light incident side end surfaces of the hard resin sheet 61 </ b> C of the glass laminate 61, and is guided toward the center of the glass laminate 61.
In an embodiment in which the hard resin sheet 61C included in the glass laminate 61 includes light diffusing particles, the glass laminate 61 is moved toward the center of the glass laminate 61 while scattering light in the thickness direction of the glass laminate 61. Light can be guided well in the surface direction.
A planar light-emitting body 7 having a design change shown in FIG. 7 includes a glass laminate 61, and a light source 62 and a light reflection cover 63 arranged adjacent to one end face of the glass laminate 61. In FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals.
According to the present invention, when a light is supplied from at least one end face of a glass laminate, a planar light emitter excellent in light emission characteristics that can extract light of a uniform hue regardless of the light guide distance. Can be provided.
[用途]
 本発明のガラス積層体は例えば、安全窓ガラスおよび間仕切り等の建築用部品;液晶保護板、導光板、各種ディスプレイの前面板、および拡散板等の光学関係部品;自動車内装/外装部材(サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、バンパー、サンルーフ、およびグレージング等)等の車両部材;温室、大型水槽、箱水槽、バスタブ等の浴室部材、サニタリー部材、時計パネル、デスクマット、遊技部品、玩具、および熔接時の顔面保護用マスク等に用いることができる。
 本発明のガラス積層体および面状発光体は車両部材として好適であり、自動車グレージング材、特に自動車サンルーフ材等として好適である。本発明の面状発光体を用いることで、光源の消灯時には透明板として機能し、点灯時には車内照明として機能する自動車サンルーフ材等の高機能自動車グレージング材を提供することが可能となる。
[Usage]
The glass laminate of the present invention includes, for example, building parts such as safety window glass and partitions; optical parts such as liquid crystal protective plates, light guide plates, front plates of various displays, and diffusion plates; automobile interior / exterior members (side visors, Vehicle components such as rear visor, head wing, headlight cover, bumper, sunroof, and glazing); bathroom components such as greenhouses, large aquariums, box aquariums, bathtubs, sanitary components, clock panels, desk mats, game parts, toys And a mask for protecting the face during welding.
The glass laminate and the planar light emitter of the present invention are suitable as a vehicle member, and are suitable as an automobile glazing material, particularly an automobile sunroof material. By using the planar light emitter of the present invention, it is possible to provide a high-performance automobile glazing material such as an automobile sunroof material that functions as a transparent plate when the light source is turned off and functions as interior lighting when the light source is turned on.
 以下、本発明に係る実施例、および比較例について説明する。
[評価項目および評価方法]
 評価項目および評価方法は、以下の通りである。
(硬質樹脂組成物のガラス転移温度(Tg))
 硬質樹脂組成物10mgを80℃で24時間乾燥した後、アルミパンに入れた。示差走査熱量計(TA Instruments社製「Q20」)を用い、30分以上窒素置換を行った後、10ml/分の窒素気流中、25℃から200℃まで20℃/分の速度で昇温し、200℃で10分間保持した後、25℃まで自然冷却した(1次走査)。次いで、10℃/分の速度で再度200℃まで昇温し(2次走査)、中点法にてガラス転移温度(Tg)を算出した。
Examples according to the present invention and comparative examples will be described below.
[Evaluation items and methods]
Evaluation items and evaluation methods are as follows.
(Glass transition temperature (Tg) of hard resin composition)
10 mg of the hard resin composition was dried at 80 ° C. for 24 hours, and then placed in an aluminum pan. After performing nitrogen substitution for 30 minutes or more using a differential scanning calorimeter (TA Instruments “Q20”), the temperature was increased from 25 ° C. to 200 ° C. at a rate of 20 ° C./min in a nitrogen stream of 10 ml / min. After being held at 200 ° C. for 10 minutes, it was naturally cooled to 25 ° C. (primary scanning). Next, the temperature was raised again to 200 ° C. at a rate of 10 ° C./min (secondary scanning), and the glass transition temperature (Tg) was calculated by the midpoint method.
(硬質樹脂組成物の光透過率(%))
 射出成形機(株式会社名機製作所製「M-100-DM」)を用い、シリンダ温度270℃、金型温度50℃および成形サイクル40秒の条件で硬質樹脂組成物を射出成形して、厚さ2mm、短辺50mm、長辺200mmの短冊状の試験片を得た。試験片の短辺側の両端面を成形導光用ゲート加工機(メガロテクニカ株式会社製「GCPB-S」)を用いて研磨した後、試験片の光路長200mmでの波長420nmにおける光透過率を、日本分光株式会社製「紫外可視近赤外分光光度計V-670」を用いて測定した。
(Light transmittance of hard resin composition (%))
Using an injection molding machine (“M-100-DM” manufactured by Meiki Seisakusho Co., Ltd.), the hard resin composition was injection molded under the conditions of a cylinder temperature of 270 ° C., a mold temperature of 50 ° C., and a molding cycle of 40 seconds. A strip-shaped test piece having a length of 2 mm, a short side of 50 mm, and a long side of 200 mm was obtained. After both ends of the short side of the test piece are polished using a molded light guiding gate processing machine (“GCPB-S” manufactured by Megaro Technica Co., Ltd.), the light transmittance at a wavelength of 420 nm with an optical path length of 200 mm is provided. Was measured using “UV-visible near-infrared spectrophotometer V-670” manufactured by JASCO Corporation.
(軟質樹脂組成物の貯蔵弾性率G′(Pa)および損失正接tanδのピーク温度(℃))
 軟質樹脂組成物を金型枠に入れ、200℃、50kg/cmの条件にて、5分間熱プレスし、厚さ1mmの単層シートを得た。得られた単層シートを直径8mmの円柱状の打ち抜き片を用いて打ち抜くことで、直径8mm、厚さ1mmの試験片を作製した。得られた試験片について、ティー・エイ・インスツルメント社製「ARES-G2」を用い、25℃から140℃まで昇温した後、動的歪み5.0%、1.0Hzの条件で、140℃から-40℃まで3℃/minで降温した際の貯蔵弾性率(G′)および損失弾性率(G″)を測定した。得られたG′およびG″から、損失正接tanδ(損失正接(tanδ)=損失弾性率(G″)/貯蔵弾性率(G′))を求め、測定温度範囲内でtanδの値が最大となる温度を損失正接tanδのピーク温度とした。
(Peak temperature (° C.) of storage elastic modulus G ′ (Pa) and loss tangent tan δ of soft resin composition)
The soft resin composition was placed in a mold frame and hot-pressed for 5 minutes under the conditions of 200 ° C. and 50 kg / cm 2 to obtain a single-layer sheet having a thickness of 1 mm. A test piece having a diameter of 8 mm and a thickness of 1 mm was produced by punching the obtained single-layer sheet using a cylindrical punching piece having a diameter of 8 mm. About the obtained test piece, after raising the temperature from 25 ° C. to 140 ° C. using “ARES-G2” manufactured by TA Instruments, under conditions of dynamic strain of 5.0% and 1.0 Hz, The storage elastic modulus (G ′) and loss elastic modulus (G ″) were measured when the temperature was lowered from 140 ° C. to −40 ° C. at 3 ° C./min. From the obtained G ′ and G ″, the loss tangent tan δ (loss Tangent (tan δ) = loss elastic modulus (G ″) / storage elastic modulus (G ′)) was determined, and the temperature at which the value of tan δ was maximum within the measurement temperature range was defined as the peak temperature of loss tangent tan δ.
(ガラス積層体の外観評価)
<製造直後>
 製造直後のガラス積層体に対して、外観不良の有無を評価した。目視観察にて、色相不良(黄変)、光学歪み、最外層の表面荒れ、中間層の皺、気泡、白化、反り、層剥離、および割れ等の外観不良が確認されたものを「不良」、前記外観不良が確認されなかったものを「良好」と判定した。
<ヒートサイクル試験後>
 製造されたガラス積層体を、温度20℃・相対湿度20%の環境下に1時間放置した。その後、相対湿度85%の環境下で、1℃/分の速度で70℃まで昇温し、4時間保持した後、1℃/分の速度で温度-40℃まで降温し、4時間保持する湿熱プロファイルを1サイクルとし、これを10サイクル繰り返した。このヒートサイクル試験後のガラス積層体に対して、製造直後と同様の方法にて、外観不良の有無を評価した。
(Appearance evaluation of glass laminate)
<Immediately after manufacture>
The glass laminate immediately after production was evaluated for the appearance defects. "Failure" is a product that has been visually inspected for poor appearance (yellowing), optical distortion, surface roughness of the outermost layer, wrinkles in the intermediate layer, bubbles, whitening, warpage, delamination, cracks, etc. The case where the appearance defect was not confirmed was determined as “good”.
<After heat cycle test>
The produced glass laminate was left in an environment of a temperature of 20 ° C. and a relative humidity of 20% for 1 hour. Thereafter, the temperature was raised to 70 ° C. at a rate of 1 ° C./min in an environment with a relative humidity of 85%, held for 4 hours, then lowered to −40 ° C. at a rate of 1 ° C./min, and held for 4 hours. The wet heat profile was 1 cycle, and this was repeated 10 cycles. With respect to the glass laminate after the heat cycle test, the presence or absence of an appearance defect was evaluated by the same method as that immediately after the production.
(面状発光体の作製と評価)
 得られたガラス積層体を用いて図7に示したような面状発光体7を作製し、評価した。ガラス積層体61にはあらかじめ、光入射側の端面に対向する他方の端面に光吸収処理64を施しておいた。ガラス積層体61の光入射側の端面に隣接して、光源62と光反射カバー63とを配置した。光源62としては、7個のLEDを10mmの間隔で、ガラス積層体の光入射側の端面に対して平行方向に一列に配置したものを用いた。LEDとしては、日亜化学工業株式会社製「LED NFSW036BT」(発光部の径:3mm)を用いた。個々のLEDに2.8Vの電圧を印加した。
 光源62からの出射光は、ガラス積層体61の光入射側の端面から入射し、ガラス積層体61内を光吸収処理64が施された他方の端面に導光される。光入射側の端面から光吸収処理64が施された他方の端面までの距離を300mmとした。光入射側の端面の位置を0mmとし、光吸収処理64が施された他方の端面までの間の任意の地点までの距離を「導光距離」とした。
 得られた面状発光体について、導光距離200mmにおける光源点灯時の明るさと色目の変化を硬質樹脂シート61C側から目視評価した。導光距離200mmにおいても高輝度の面発光が確認でき、導光距離による色度変化が小さく、光入射側の端面から他方の端面まで色目の変化が確認されないものを「良好」と判定した。面発光が低輝度であった、または色ムラが見られたものを「不良」と判定した。
(Production and evaluation of planar light emitters)
Using the obtained glass laminate, a planar light emitter 7 as shown in FIG. 7 was prepared and evaluated. The glass laminate 61 was previously subjected to a light absorption process 64 on the other end face facing the end face on the light incident side. A light source 62 and a light reflection cover 63 are disposed adjacent to the end surface on the light incident side of the glass laminate 61. As the light source 62, one in which seven LEDs are arranged in a line in a parallel direction with respect to the end surface on the light incident side of the glass laminate at an interval of 10 mm was used. As the LED, “LED NFSW036BT” (diameter of light emitting part: 3 mm) manufactured by Nichia Corporation was used. A voltage of 2.8 V was applied to each LED.
The light emitted from the light source 62 enters from the end surface on the light incident side of the glass laminate 61 and is guided through the glass laminate 61 to the other end surface subjected to the light absorption process 64. The distance from the end surface on the light incident side to the other end surface on which the light absorption process 64 was performed was set to 300 mm. The position of the end face on the light incident side was set to 0 mm, and the distance to an arbitrary point between the other end face subjected to the light absorption process 64 was set as the “light guide distance”.
About the obtained planar light-emitting body, the brightness at the time of light source lighting in 200 mm of light guide distances, and the change of a color eye were evaluated visually from the hard resin sheet 61C side. Even when the light guide distance was 200 mm, high luminance surface light emission could be confirmed, the change in chromaticity due to the light guide distance was small, and the change in the color from the end surface on the light incident side to the other end surface was not determined to be “good”. A case where surface emission was low in luminance or color unevenness was observed was judged as “bad”.
[材料]
 用いた材料は、以下の通りである。
<無機ガラス板>
(G1)市販のフロートガラス(厚さ2.8mm)。
[material]
The materials used are as follows.
<Inorganic glass plate>
(G1) Commercially available float glass (thickness 2.8 mm).
<メタクリル系樹脂(A1)>
 メタクリル系樹脂(A1)として、株式会社クラレ製パラペット(Mw=82,000、MMA単独重合体(MMA比率=100%)、rr比率=52%)を用意した。
<Methacrylic resin (A1)>
As a methacrylic resin (A1), a parapet (Mw = 82,000, MMA homopolymer (MMA ratio = 100%), rr ratio = 52%) manufactured by Kuraray Co., Ltd. was prepared.
<メタクリル系樹脂(A2)>
 撹拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル(MMA)100質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(水素引抜能:1%、1時間半減期温度:83℃)0.0065質量部、およびn-オクチルメルカプタン0.290質量部を入れ、撹拌して、原料液を得た。この原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
 上記オートクレーブと配管を介して接続された槽型反応器に容量の2/3まで原料液を入れた。温度を120℃に維持した状態で、先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度120℃に維持したまま、平均滞留時間が120分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は45質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温230℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットした。以上のようにして、ペレット状のメタクリル系樹脂(A2)(Mw=83,000、MMA単独重合体(MMA比率=100質量%)、rr比率=55%)を得た。
<Methacrylic resin (A2)>
The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate (MMA), 2,2′-azobis (2-methylpropionitrile) (hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.0065 Part by mass and 0.290 parts by mass of n-octyl mercaptan were added and stirred to obtain a raw material liquid. Nitrogen was fed into the raw material liquid to remove dissolved oxygen in the raw material liquid.
The raw material liquid was put in a tank reactor connected to the autoclave through a pipe up to 2/3 of the capacity. While maintaining the temperature at 120 ° C., the polymerization reaction was first started by a batch method. When the polymerization conversion rate reaches 55% by mass, the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 120 minutes while maintaining the temperature at 120 ° C., and the supply flow rate of the raw material liquid The reaction liquid was withdrawn from the tank reactor at a flow rate corresponding to 1 and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 45% by mass.
The reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes. Next, the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin. The molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into a strand, and cut with a pelletizer. As described above, pellet-shaped methacrylic resin (A2) (Mw = 83,000, MMA homopolymer (MMA ratio = 100 mass%), rr ratio = 55%) was obtained.
<メタクリル系樹脂(A3)>
 撹拌翼と三方コックが取り付けられた5Lのガラス製反応容器内を窒素で置換した。これに、室温下にて、トルエン1600g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン2.49g(10.8mmol)、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液53.5g(30.9mmol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95%、n-ヘキサン5%)6.17g(10.3mmol)を仕込んだ。撹拌しながら、これに、蒸留精製したメタクリル酸メチル(MMA)550gを20℃にて30分かけて滴下した。滴下終了後、20℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点におけるMMAの重合転化率は100%であった。
 得られた溶液にトルエン1500gを加えて希釈した。次いで、希釈液をメタノール100kgに注ぎ入れ、沈澱物を得、得られた沈殿物を80℃、140Paにて24時間乾燥した。以上のようにして、メタクリル系樹脂(A3)(Mw=81,400、MMA単独重合体(MMA比率=100質量%)、rr比率=73%)を得た。
<Methacrylic resin (A3)>
The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, at room temperature, 1600 g of toluene, 2.49 g (1,0.8 mmol) of 1,1,4,7,10,10-hexamethyltriethylenetetramine, isobutyl bis (2,6-dioxy) having a concentration of 0.45M. 5. 53.5 g (30.9 mmol) of a toluene solution of -t-butyl-4-methylphenoxy) aluminum, and a solution of 1.3-M sec-butyllithium (solvent: cyclohexane 95%, n-hexane 5%) 17 g (10.3 mmol) was charged. While stirring, 550 g of methyl methacrylate (MMA) purified by distillation was added dropwise thereto at 20 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 20 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. The polymerization conversion rate of MMA at this time was 100%.
The obtained solution was diluted by adding 1500 g of toluene. Next, the diluted solution was poured into 100 kg of methanol to obtain a precipitate, and the obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours. As described above, a methacrylic resin (A3) (Mw = 81,400, MMA homopolymer (MMA ratio = 100 mass%), rr ratio = 73%) was obtained.
<メタクリル系樹脂(A4)>
 撹拌翼と三方コックが取り付けられた5Lのガラス製反応容器内を窒素で置換した。これに、メタクリル酸メチル(MMA)を630g、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(TCDMA)を350g、アクリル酸メチル(MA)を20g、アゾビスイソブチロニトリルを0.6g、n-オクチルメルカプタンを2.0g、イオン交換水を2500g、分散剤を0.9g、およびpH調整剤を10.7g仕込んだ。撹拌しながら、液温を室温から70℃に上げ、120分間保持して、重合反応を行った。液温を室温まで下げ、重合反応液をガラス製反応容器内から抜き出した。重合反応液から固形分を濾過で取り出し、水で洗浄し、80℃にて24時間熱風乾燥させた。得られた固形分を二軸押出機に供給し、シリンダ温度230℃で溶融混練して押出成形した。以上のようにして、ペレット状のメタクリル系樹脂(A4)(Mw=119,300、MMA/TCDMA/MA共重合体(MMA比率=67.2質量%、TCDMA比率=31.7質量%、MA比率=1.1質量%))を得た。
<Methacrylic resin (A4)>
The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, 630 g of methyl methacrylate (MMA), 350 g of tricyclo [5.2.1.0 2,6 ] dec-8-yl (TCDMA) methacrylate, 20 g of methyl acrylate (MA), azobisiso 0.6 g of butyronitrile, 2.0 g of n-octyl mercaptan, 2500 g of ion-exchanged water, 0.9 g of a dispersant, and 10.7 g of a pH adjuster were charged. While stirring, the liquid temperature was raised from room temperature to 70 ° C. and held for 120 minutes to carry out the polymerization reaction. The liquid temperature was lowered to room temperature, and the polymerization reaction liquid was extracted from the glass reaction vessel. The solid content was removed from the polymerization reaction solution by filtration, washed with water, and dried in hot air at 80 ° C. for 24 hours. The obtained solid content was supplied to a twin screw extruder, melt kneaded at a cylinder temperature of 230 ° C., and extruded. As described above, pellet-shaped methacrylic resin (A4) (Mw = 119,300, MMA / TCDMA / MA copolymer (MMA ratio = 67.2 mass%, TCDMA ratio = 31.7 mass%, MA) Ratio = 1.1 mass%)).
<メタクリル系樹脂(A5)>
 メタクリル系樹脂(A5)として、株式会社クラレ製パラペット(Mw=120,000、MMA/MA共重合体(MMA比率=93.6質量%、MA比率=6.4質量%)、rr比率=48%)を用意した。
<Methacrylic resin (A5)>
As methacrylic resin (A5), Kuraray Co., Ltd. parapet (Mw = 120,000, MMA / MA copolymer (MMA ratio = 93.6 mass%, MA ratio = 6.4 mass%), rr ratio = 48 %).
 用いたメタクリル系樹脂の単量体単位組成、MMA比率、rr比率、およびMwを表1に示しておく。 Table 1 shows the monomer unit composition, MMA ratio, rr ratio, and Mw of the methacrylic resin used.
<ビニル系共重合体(V)>
(V1)電気化学工業株式会社製「レジスファイR-200」(Mw=80,000、スチレン(St)/無水マレイン酸(MAH)/MMA共重合体(St比率56質量%、MAH比率=18質量%、MMA比率=26質量%))。
<Vinyl copolymer (V)>
(V1) “Regisphi R-200” (Mw = 80,000, styrene (St) / maleic anhydride (MAH) / MMA copolymer (St ratio 56 mass%, MAH ratio = 18 mass) manufactured by Denki Kagaku Kogyo Co., Ltd. %, MMA ratio = 26 mass%)).
<ポリカーボネート系樹脂(PC)>
(PC1)三菱エンジニアリングプラスチックス株式会社製「ユーピロンHL-8000」(Mw=27,000、温度300℃、1.2kg荷重下でのMFR=139g/10分)、
(PC2)三菱エンジニアリングプラスチックス株式会社製「ユーピロンE-2000」(Mw=60,000、温度300℃、1.2kg荷重下でのMFR=5.3g/10分)。
<Polycarbonate resin (PC)>
(PC1) “Iupilon HL-8000” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (Mw = 27,000, temperature 300 ° C., MFR under 1.2 kg load = 139 g / 10 minutes),
(PC2) “Iupilon E-2000” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (Mw = 60,000, temperature 300 ° C., MFR under 1.2 kg load = 5.3 g / 10 min).
<熱可塑性ポリウレタンシート(PU1)>
 ルブリゾール社製「Estane AG-8451」をカレンダー成形した後、両面エンボス加工を施して、厚さ760μmの熱可塑性ポリウレタンシート(PU1)を得た。
<Thermoplastic polyurethane sheet (PU1)>
Lubrizol “Estane AG-8451” was calendered and then embossed on both sides to obtain a 760 μm-thick thermoplastic polyurethane sheet (PU1).
<ポリビニルブチラールシート(PVB1)>
 株式会社クラレ製ポリビニルブチラール(原料ポリビニルアルコールの粘度平均重合度1700、アセタール化度74モル%、ビニルアルコール単位19モル%、ビニルアセテート単位7モル%)61.5質量部に対して、可塑剤として、「クラレポリオールP-510」(株式会社クラレ製、水酸基2つ当たりの数平均分子量が500、3-メチル-1,5-ペンタンジオールとアジピン酸とからなるポリエステルジオール)38.5質量部を添加した。得られたポリビニルブチラール樹脂組成物を押出成形した後、両面エンボス加工を施して、厚さ760μmのポリビニルブチラールシート(PVB1)を得た。
<Polyvinyl butyral sheet (PVB1)>
As a plasticizer for 61.5 parts by mass of Kuraray Co., Ltd. polyvinyl butyral (raw material polyvinyl alcohol with a viscosity average polymerization degree of 1700, acetalization degree of 74 mol%, vinyl alcohol unit 19 mol%, vinyl acetate unit 7 mol%) , “Kuraray polyol P-510” (manufactured by Kuraray Co., Ltd., having a number average molecular weight of 500 per two hydroxyl groups, a polyester diol composed of 3-methyl-1,5-pentanediol and adipic acid) 38.5 parts by mass Added. The obtained polyvinyl butyral resin composition was extruded and then subjected to double-sided embossing to obtain a polyvinyl butyral sheet (PVB1) having a thickness of 760 μm.
<ポリビニルブチラールシート(PVB2)>
 株式会社クラレ製ポリビニルブチラール(原料ポリビニルアルコールの粘度平均重合度1700、アセタール化度74モル%、ビニルアルコール単位19モル%、ビニルアセテート単位7モル%)72.5質量部に対して、可塑剤として、トリエチレングリコールジ2-エチルヘキサノエート27.5質量部を添加した。得られたポリビニルブチラール樹脂組成物を押出成形した後、両面エンボス加工を施して、厚さ760μmのポリビニルブチラールシート(PVB2)を得た。
<Polyvinyl butyral sheet (PVB2)>
As a plasticizer for 72.5 parts by mass of Kuraray Co., Ltd. polyvinyl butyral (the raw material polyvinyl alcohol has a viscosity average polymerization degree of 1700, an acetalization degree of 74 mol%, a vinyl alcohol unit of 19 mol%, and a vinyl acetate unit of 7 mol%) Then, 27.5 parts by mass of triethylene glycol di-2-ethylhexanoate was added. The obtained polyvinyl butyral resin composition was extruded and then subjected to double-sided embossing to obtain a polyvinyl butyral sheet (PVB2) having a thickness of 760 μm.
<ポリビニルブチラールシート(PVB3)>
 ポリビニルブチラールシート(PVB3)として、株式会社クラレ製「Trosifol Extra-Stiff」(厚さ760μm)を用意した。
<Polyvinyl butyral sheet (PVB3)>
As the polyvinyl butyral sheet (PVB3), “Trosifol Extra-Stiff” (thickness: 760 μm) manufactured by Kuraray Co., Ltd. was prepared.
<エチレン系アイオノマーシート(EI1)>
 エチレン系アイオノマーシート(EI1)として、株式会社クラレ製「SentryGlas」(厚さ760μm)を用意した。
<Ethylene ionomer sheet (EI1)>
As an ethylene ionomer sheet (EI1), “SentryGlas” (thickness: 760 μm) manufactured by Kuraray Co., Ltd. was prepared.
[製造例1~9](硬質樹脂組成物、硬質樹脂シート、および耐擦傷性層付きの硬質樹脂シートの製造)
 表2に示す配合比でメタクリル系樹脂(A1)~(A5)、ビニル系共重合体(V1)、ポリカーボネート系樹脂(PC1)~(PC2)、光拡散粒子、および、紫外線吸収剤を二軸押出機に供給し、シリンダ温度240℃で溶融混錬して押出成形して、ペレット状の硬質樹脂組成物(HRC1)~(HRC8)を得た。光拡散粒子としては、酸化チタン粒子(体積平均粒径d=1.0μm、テイカ株式会社製「JR-1000」)を用いた。マトリクス樹脂の屈折率と光拡散粒子の屈折率との屈折率差(Δn)の絶対値、および、屈折率差(Δn)の絶対値と光拡散粒子の体積平均粒径d(μm)との積(Δn・d)を表2に示しておく。紫外線吸収剤としては、ヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製「TINUVIN479」)を用いた。
 得られたペレット状の硬質樹脂組成物(HRC1)~(HRC8)を軸径50mmのベント式単軸押出機に連続的に投入し、シリンダ温度190~260℃、吐出量30kg/時の条件にて溶融押出した。溶融状態の硬質樹脂組成物を260℃に設定した幅400mmのTダイより押出し、100℃、130℃に設定した一対の金属剛体ロールでニップすることでシート状に成形し、0.47m/minの速度で引き取った。以上のようにして、硬質樹脂シート(HRS1)~(HRS9)(幅300mm、長さ400mm、厚さ2mm)を得た。
 製造例1~5、7~9では、得られた各硬質樹脂シートの一方の面に、多官能アクリル系樹脂を含む紫外線硬化型ハードコート塗料(日本合成化学工業株式会社製「UV-1700B」)を用いて、ロールコート法により耐擦傷性層(厚さ約4μm)を形成した。
 製造例6では、得られた硬質樹脂シートの両面に、多官能アクリル系樹脂を含む紫外線硬化型ハードコート塗料(アイカ工業株式会社製「アイカアイトロンZ-850-3AF」)を用いて、ディップコート法により耐擦傷性層(厚さ約4μm)を形成した。
 以上のようにして、少なくとも一方の面に耐擦傷性層を有する硬質樹脂シートを得た。
[Production Examples 1 to 9] (Production of hard resin composition, hard resin sheet, and hard resin sheet with a scratch-resistant layer)
Biaxially mixed methacrylic resins (A1) to (A5), vinyl copolymers (V1), polycarbonate resins (PC1) to (PC2), light diffusing particles, and ultraviolet absorbers at the compounding ratios shown in Table 2. The mixture was supplied to an extruder, melt-kneaded at a cylinder temperature of 240 ° C., and extrusion molded to obtain pellet-shaped hard resin compositions (HRC1) to (HRC8). As the light diffusing particles, titanium oxide particles (volume average particle diameter d = 1.0 μm, “JR-1000” manufactured by Teika Co., Ltd.) were used. The absolute value of the refractive index difference (Δn) between the refractive index of the matrix resin and the refractive index of the light diffusing particle, and the absolute value of the refractive index difference (Δn) and the volume average particle diameter d (μm) of the light diffusing particle. The product (Δn · d) is shown in Table 2. As the ultraviolet absorber, a hydroxyphenyl triazine ultraviolet absorber (“TINUVIN479” manufactured by BASF) was used.
The obtained pellet-shaped hard resin compositions (HRC1) to (HRC8) are continuously charged into a vent type single-screw extruder having a shaft diameter of 50 mm, under conditions of a cylinder temperature of 190 to 260 ° C. and a discharge rate of 30 kg / hour. And melt extruded. The hard resin composition in a molten state is extruded from a T-die having a width of 400 mm set at 260 ° C., and formed into a sheet by niping with a pair of metal rigid rolls set at 100 ° C. and 130 ° C., 0.47 m / min I picked up at the speed of. As described above, hard resin sheets (HRS1) to (HRS9) (width 300 mm, length 400 mm, thickness 2 mm) were obtained.
In Production Examples 1 to 5 and 7 to 9, an ultraviolet curable hard coat paint containing a polyfunctional acrylic resin on one surface of each of the obtained hard resin sheets (“UV-1700B” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) ) Was used to form a scratch-resistant layer (thickness of about 4 μm) by a roll coating method.
In Production Example 6, an ultraviolet curable hard coat coating material containing a polyfunctional acrylic resin (“Aika Itron Z-850-3AF” manufactured by Aika Kogyo Co., Ltd.) was used on both sides of the obtained hard resin sheet. A scratch-resistant layer (thickness of about 4 μm) was formed by a coating method.
As described above, a hard resin sheet having a scratch-resistant layer on at least one surface was obtained.
[実施例1~7、比較例1~6]
 実施例1~7、比較例1~6の各例においては、用いる材料を変えて、無機ガラス板と、中間膜となる軟質樹脂シートと、少なくとも一方の面に耐擦傷性層を有する硬質樹脂シートとをこの順で重ねた後、加熱圧着して、耐擦傷性層/硬質樹脂シート/中間膜/無機ガラス板の積層構造を有するガラス積層体(図3)または、耐擦傷性層/硬質樹脂シート/耐擦傷性層/中間膜/無機ガラス板の積層構造を有するガラス積層体(図5)を作製し、評価した。加熱圧着は、真空バッグ法により、30℃から110℃に60分間で昇温し、その後110℃で30分間保持する温度プロファイルの条件にて実施した。得られたガラス積層体を用いて、図7に示したような面状発光体を作製し、評価した。各例において、各層に用いた材料と特性、および評価結果を表3に示す。
[Examples 1 to 7, Comparative Examples 1 to 6]
In each of Examples 1 to 7 and Comparative Examples 1 to 6, a hard resin having an inorganic glass plate, a soft resin sheet serving as an intermediate film, and a scratch-resistant layer on at least one surface, by changing the materials used After the sheets are stacked in this order, they are thermocompression-bonded to form a glass laminate (FIG. 3) having a laminated structure of scratch-resistant layer / hard resin sheet / intermediate film / inorganic glass plate, or scratch-resistant layer / hard. A glass laminate (FIG. 5) having a laminate structure of resin sheet / scratch resistant layer / intermediate film / inorganic glass plate was prepared and evaluated. The thermocompression bonding was performed by a vacuum bag method under a temperature profile condition in which the temperature was raised from 30 ° C. to 110 ° C. over 60 minutes and then maintained at 110 ° C. for 30 minutes. Using the obtained glass laminate, a planar light emitter as shown in FIG. 7 was prepared and evaluated. Table 3 shows the materials and characteristics used in each layer and the evaluation results in each example.
[評価結果]
 実施例1~7では、硬質樹脂シート/中間膜/無機ガラス板の積層構造を含み、硬質樹脂シートが特定の耐熱特性と光学特性(特性(a)、(b))を有する硬質樹脂組成物からなり、中間膜が特定の粘弾性特性(特性(c)、(d))を有する軟質樹脂組成物からなるガラス積層体を製造した。得られたガラス積層体はいずれも、製造直後およびヒートサイクル試験後のいずれにおいても、表面荒れ、反り、層剥離、および割れ等の外観不良が発生せず、耐久性が良好であった。得られたガラス積層体はいずれも、硬質樹脂シートが長い導光距離においても高い光透過率を有し、好ましくは光拡散粒子を適当量含み、導光性能に優れるものであった。そのため、高輝度で色ムラのない均一な面発光の面状発光体が得られた。
[Evaluation results]
In Examples 1 to 7, the hard resin composition includes a laminated structure of a hard resin sheet / intermediate film / inorganic glass plate, and the hard resin sheet has specific heat resistance characteristics and optical characteristics (characteristics (a) and (b)). A glass laminate comprising a soft resin composition in which the interlayer film has specific viscoelastic properties (characteristics (c) and (d)) was produced. All of the obtained glass laminates had good durability, with no appearance defects such as surface roughness, warpage, delamination, and cracks occurring immediately after production and after the heat cycle test. Each of the obtained glass laminates had a high light transmittance even at a long light guide distance of the hard resin sheet, preferably contained an appropriate amount of light diffusing particles, and excellent in light guide performance. Therefore, a planar light emitting body having high luminance and uniform surface light emission without color unevenness was obtained.
 硬質樹脂シートに、耐熱性の低い硬質樹脂シート(HRS7)を用いた比較例1では、製造直後およびヒートサイクル試験後に硬質樹脂シートに表面荒れが発生した。
 硬質樹脂シートに、スチレン(St)/無水マレイン酸(MAH)/MMA共重合体(ビニル系共重合体(V1))を含み、光透過率が低い硬質樹脂組成物からなる硬質樹脂シート(HRS8)を用いた比較例2では、得られた面状発光体は低輝度で色ムラも見られた。
 硬質樹脂シートに、光透過率が低いポリカーボネート系樹脂からなる硬質樹脂シート(HRS9)を用いた比較例3では、製造直後およびヒートサイクル試験後に光学歪みが発生し、さらに、得られた面状発光体は低輝度で色ムラも見られた。
 中間膜に、20℃における貯蔵弾性率G′が高く、損失正接tanδのピーク温度が高い軟質樹脂を用いた比較例4~6では、製造直後に反りが発生し、ヒートサイクル試験において経時的に反り量が増し、最終的にはガラス板に割れが発生した。
In Comparative Example 1 in which a hard resin sheet (HRS7) having low heat resistance was used as the hard resin sheet, surface roughness occurred in the hard resin sheet immediately after production and after the heat cycle test.
A hard resin sheet (HRS8) comprising a hard resin composition containing styrene (St) / maleic anhydride (MAH) / MMA copolymer (vinyl copolymer (V1)) and having a low light transmittance. In Comparative Example 2 using), the obtained planar light-emitting body had low luminance and color unevenness.
In Comparative Example 3 in which a hard resin sheet (HRS9) made of a polycarbonate resin having low light transmittance was used as the hard resin sheet, optical distortion occurred immediately after production and after a heat cycle test, and the obtained planar light emission The body had low brightness and color unevenness.
In Comparative Examples 4 to 6, in which a soft resin having a high storage elastic modulus G ′ at 20 ° C. and a high peak temperature of loss tangent tan δ was used for the intermediate film, warping occurred immediately after production, and the heat cycle test over time The amount of warpage increased and eventually the glass plate was cracked.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above-described embodiments and examples, and can be appropriately modified without departing from the gist of the present invention.
 この出願は、2017年2月28日に出願された日本出願特願2017-036964号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-036964 filed on February 28, 2017, the entire disclosure of which is incorporated herein.
1~5、61 ガラス積層体
6、7 面状発光体
11、61A 無機ガラス板
12、61B 中間膜
13、61C 硬質樹脂シート
14 熱可塑性樹脂層
62 光源
63 光反射カバー
64 光吸収処理
1 to 5, 61 Glass laminate 6, 7 Planar light emitter 11, 61A Inorganic glass plate 12, 61B Intermediate film 13, 61C Hard resin sheet 14 Thermoplastic resin layer 62 Light source 63 Light reflection cover 64 Light absorption treatment

Claims (14)

  1.  無機ガラス板上に中間膜を介して硬質樹脂シートが積層された積層構造を含むガラス積層体であって、
     前記硬質樹脂シートが下記特性(a)および(b)を有する硬質樹脂組成物からなり、
     前記中間膜が下記特性(c)および(d)を有する軟質樹脂組成物からなる、ガラス積層体。
    (a)ガラス転移温度が120℃以上である。
    (b)光路長200mmでの波長420nmにおける光透過率が60%以上である。
    (c)設定温度25℃、周波数1.0Hzでの貯蔵弾性率G′が1.0×10Pa以下である。
    (d)周波数1.0Hzでの損失正接tanδが最大となるピーク温度が25℃以下である。
    A glass laminate including a laminated structure in which a hard resin sheet is laminated via an intermediate film on an inorganic glass plate,
    The hard resin sheet comprises a hard resin composition having the following characteristics (a) and (b):
    The glass laminated body which the said intermediate film consists of a soft resin composition which has the following characteristic (c) and (d).
    (A) The glass transition temperature is 120 ° C. or higher.
    (B) The light transmittance at a wavelength of 420 nm with an optical path length of 200 mm is 60% or more.
    (C) The storage elastic modulus G ′ at a set temperature of 25 ° C. and a frequency of 1.0 Hz is 1.0 × 10 7 Pa or less.
    (D) The peak temperature at which the loss tangent tan δ at the frequency of 1.0 Hz is maximum is 25 ° C. or less.
  2.  前記硬質樹脂組成物が、メタクリル酸メチル単位60~100質量%およびメタクリル酸メチル以外の(メタ)アクリル酸エステル単位0~40質量%からなるメタクリル酸メチル(共)重合体を含む、請求項1に記載のガラス積層体。 2. The hard resin composition comprises a methyl methacrylate (co) polymer comprising 60 to 100% by mass of methyl methacrylate units and 0 to 40% by mass of (meth) acrylic acid ester units other than methyl methacrylate. The glass laminate according to 1.
  3.  前記メタクリル酸メチル(共)重合体の三連子表示のシンジオタクティシティ(rr)が50~85%である、請求項2に記載のガラス積層体。 The glass laminate according to claim 2, wherein the trimethodic syndiotacticity (rr) of the methyl methacrylate (co) polymer is 50 to 85%.
  4.  前記硬質樹脂組成物がさらに、前記硬質樹脂シートのマトリクス樹脂の屈折率との屈折率差(Δn)の絶対値が0.3~3である光拡散粒子を0.0001~0.1質量%含む、請求項1~3のいずれか1項に記載のガラス積層体。 The hard resin composition further comprises 0.0001 to 0.1% by mass of light diffusing particles having an absolute value of a refractive index difference (Δn) of 0.3 to 3 with respect to the refractive index of the matrix resin of the hard resin sheet. The glass laminate according to any one of claims 1 to 3, further comprising:
  5.  前記屈折率差(Δn)の絶対値と前記光拡散粒子の体積平均粒径d(μm)との積(Δn・d)が0.1μm以上である、請求項4に記載のガラス積層体。 The glass laminate according to claim 4, wherein a product (Δn · d) of an absolute value of the refractive index difference (Δn) and a volume average particle diameter d (μm) of the light diffusing particles is 0.1 μm or more.
  6.  前記軟質樹脂組成物が熱可塑性ポリウレタン系樹脂を含む、請求項1~5のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 5, wherein the soft resin composition contains a thermoplastic polyurethane resin.
  7.  前記中間膜は少なくとも片面に表面凹凸構造を有する、請求項1~6のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 6, wherein the intermediate film has a surface uneven structure on at least one side.
  8.  前記硬質樹脂シートの少なくとも一方の面上にさらに耐擦傷性層を備える、請求項1~7のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 7, further comprising a scratch-resistant layer on at least one surface of the hard resin sheet.
  9.  請求項1~8のいずれか1項に記載のガラス積層体と、当該ガラス積層体の少なくとも一方の端面に光を導入する光源とを含む、面状発光体。 A planar light emitter comprising the glass laminate according to any one of claims 1 to 8 and a light source for introducing light into at least one end face of the glass laminate.
  10.  請求項1~8のいずれか1項に記載のガラス積層体、または請求項9に記載の面状発光体を含む、車両部材。 A vehicle member comprising the glass laminate according to any one of claims 1 to 8, or the planar light emitter according to claim 9.
  11.  自動車グレージング材または自動車サンルーフ材である、請求項10に記載の車両部材。 The vehicle member according to claim 10, which is an automobile glazing material or an automobile sunroof material.
  12.  前記中間膜および前記硬質樹脂シートを溶融共押出しにより積層する工程を含む、請求項1~8のいずれか1項に記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 1 to 8, comprising a step of laminating the intermediate film and the hard resin sheet by melt coextrusion.
  13.  前記無機ガラス板と前記中間膜となる軟質樹脂シートと前記硬質樹脂シートとをこの順で重ねた後、加熱圧着する、請求項1~8のいずれか1項に記載のガラス積層体の製造方法。 The method for producing a glass laminate according to any one of claims 1 to 8, wherein the inorganic glass plate, the soft resin sheet serving as the intermediate film, and the hard resin sheet are stacked in this order, and then heat-pressed. .
  14.  前記無機ガラス板と、前記中間膜となる軟質樹脂シートと、あらかじめ少なくとも一方の面に前記耐擦傷性層が形成された前記硬質樹脂シートとをこの順で重ねた後、加熱圧着する、請求項8に記載のガラス積層体の製造方法。 The inorganic glass plate, the soft resin sheet serving as the intermediate film, and the hard resin sheet having the scratch-resistant layer formed on at least one surface in advance in this order, and then thermocompression bonded. The manufacturing method of the glass laminated body of 8.
PCT/JP2018/006904 2017-02-28 2018-02-26 Glass laminate and method for producing same WO2018159520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502970A JP7107915B2 (en) 2017-02-28 2018-02-26 Glass laminate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036964 2017-02-28
JP2017-036964 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159520A1 true WO2018159520A1 (en) 2018-09-07

Family

ID=63370041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006904 WO2018159520A1 (en) 2017-02-28 2018-02-26 Glass laminate and method for producing same

Country Status (2)

Country Link
JP (1) JP7107915B2 (en)
WO (1) WO2018159520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117833A1 (en) * 2019-12-11 2021-06-17 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
US11339931B1 (en) 2019-07-16 2022-05-24 Apple Inc. Light-control panel with gradual index transition
EP3901113A4 (en) * 2018-12-21 2022-08-31 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, and laminated glass
EP4198085A4 (en) * 2020-08-14 2024-02-07 Asahi Chemical Ind Methacrylic resin composition and molded body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608059A (en) * 1983-06-27 1985-01-16 積水化学工業株式会社 Laminated glass
JPH01244843A (en) * 1988-03-28 1989-09-29 Bridgestone Corp Soundproof and safety glass structural body
JPH0789015A (en) * 1993-09-28 1995-04-04 Asahi Chem Ind Co Ltd Transparent soundproof panel
JPH08156187A (en) * 1994-11-29 1996-06-18 Takiron Co Ltd Glass resin composite panel
JP2001192242A (en) * 2000-01-11 2001-07-17 Nippon Sheet Glass Co Ltd Laminated multi-layer window structure for vehicle
JP2003535359A (en) * 2000-05-23 2003-11-25 サン−ゴバン グラス フランス Diffusion layer
WO2007029541A1 (en) * 2005-09-01 2007-03-15 Sekisui Chemical Co., Ltd. Method for producing laminated glass partially made of plastic plate, and laminated glass
JP2010177077A (en) * 2009-01-30 2010-08-12 Sumitomo Chemical Co Ltd Edge light type illuminating device
JP2017040825A (en) * 2015-08-20 2017-02-23 株式会社クラレ Multilayer film, polarizer protective film, and polarizing plate
WO2018070480A1 (en) * 2016-10-14 2018-04-19 株式会社クラレ Glass laminate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608059A (en) * 1983-06-27 1985-01-16 積水化学工業株式会社 Laminated glass
JPH01244843A (en) * 1988-03-28 1989-09-29 Bridgestone Corp Soundproof and safety glass structural body
JPH0789015A (en) * 1993-09-28 1995-04-04 Asahi Chem Ind Co Ltd Transparent soundproof panel
JPH08156187A (en) * 1994-11-29 1996-06-18 Takiron Co Ltd Glass resin composite panel
JP2001192242A (en) * 2000-01-11 2001-07-17 Nippon Sheet Glass Co Ltd Laminated multi-layer window structure for vehicle
JP2003535359A (en) * 2000-05-23 2003-11-25 サン−ゴバン グラス フランス Diffusion layer
WO2007029541A1 (en) * 2005-09-01 2007-03-15 Sekisui Chemical Co., Ltd. Method for producing laminated glass partially made of plastic plate, and laminated glass
JP2010177077A (en) * 2009-01-30 2010-08-12 Sumitomo Chemical Co Ltd Edge light type illuminating device
JP2017040825A (en) * 2015-08-20 2017-02-23 株式会社クラレ Multilayer film, polarizer protective film, and polarizing plate
WO2018070480A1 (en) * 2016-10-14 2018-04-19 株式会社クラレ Glass laminate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901113A4 (en) * 2018-12-21 2022-08-31 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, and laminated glass
US11850827B2 (en) 2018-12-21 2023-12-26 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
US11339931B1 (en) 2019-07-16 2022-05-24 Apple Inc. Light-control panel with gradual index transition
WO2021117833A1 (en) * 2019-12-11 2021-06-17 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
CN114787097A (en) * 2019-12-11 2022-07-22 积水化学工业株式会社 Interlayer film for laminated glass and laminated glass
KR20220112780A (en) 2019-12-11 2022-08-11 세키스이가가쿠 고교가부시키가이샤 Interlayer film for laminated glass, and laminated glass
US20230001675A1 (en) * 2019-12-11 2023-01-05 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
EP4198085A4 (en) * 2020-08-14 2024-02-07 Asahi Chemical Ind Methacrylic resin composition and molded body

Also Published As

Publication number Publication date
JP7107915B2 (en) 2022-07-27
JPWO2018159520A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP7107915B2 (en) Glass laminate and its manufacturing method
US9731481B2 (en) Synthetic resin laminate
KR102093533B1 (en) Methacrylic resin composition and molded body thereof
KR102394025B1 (en) Methacrylic resin or methacrylic resin composition
US10414133B2 (en) Synthetic resin laminate
CN107406657B (en) Resin composition, film, method for producing same, molded article, and article
WO2019235160A1 (en) Glass laminate, method for producing same, and display device front panel using same
CN102753587A (en) Fluorine-containing (meth)acrylic (co)polymer and molded body films thereof
JP6370683B2 (en) Thermoplastic resin film and method for producing the same, decorative film, laminated film, and laminated body
WO2018021449A1 (en) Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body
US20170232717A1 (en) Laminate film, molded laminate, and method for producing same
JP7010832B2 (en) Glass laminate
JPWO2017200032A1 (en) Methacrylic resin composition and molded body
JP6826591B2 (en) Ionomer laminated sheet and its manufacturing method and laminated body
JPWO2020138315A1 (en) Acrylic resin compositions, moldings, films and laminates
CN111527133A (en) Acrylic resin film and method for producing same
KR20220002595A (en) Thermoplastic multilayer articles, methods of making, and uses thereof
JPWO2020100913A1 (en) Modified methacrylic resin and molded article
JP7441743B2 (en) thermoplastic resin film
JP7402136B2 (en) laminated glass
JP7241088B2 (en) Thermoplastic resin multilayer film, method for producing the same, and laminate
JPH09187906A (en) Laminate
CN112823183B (en) Acrylic resin film
WO2017170737A1 (en) Ionomer layered sheet, method for producing same, and layered body
WO2021215435A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761780

Country of ref document: EP

Kind code of ref document: A1