WO2018159502A1 - Drive method of balloon with iabp drive device, and iabp drive device - Google Patents

Drive method of balloon with iabp drive device, and iabp drive device Download PDF

Info

Publication number
WO2018159502A1
WO2018159502A1 PCT/JP2018/006782 JP2018006782W WO2018159502A1 WO 2018159502 A1 WO2018159502 A1 WO 2018159502A1 JP 2018006782 W JP2018006782 W JP 2018006782W WO 2018159502 A1 WO2018159502 A1 WO 2018159502A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
expansion
pressure
drive
driving
Prior art date
Application number
PCT/JP2018/006782
Other languages
French (fr)
Japanese (ja)
Inventor
秀洋 黒木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019502965A priority Critical patent/JP7103339B2/en
Publication of WO2018159502A1 publication Critical patent/WO2018159502A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/497Details relating to driving for balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/295Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • A61M60/569Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow synchronous with the native heart beat

Definitions

  • the present invention relates to a balloon driving method by an IABP driving device used in an IABP (intra-aortic balloon pumping) method and an IABP driving device.
  • the driving device that drives the balloon of the balloon catheter in the IABP method a signal related to the heartbeat of the patient acquired by an electrocardiograph or a sphygmomanometer is input, and the balloon is expanded and contracted based on the signal (for example, patent Reference 1).
  • the balloon is expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system that transmits the pressure to the balloon.
  • the positive pressure and the negative pressure applied to the piping system are formed by a pump, and the positive pressure and the negative pressure generated by the pump are maintained at substantially constant pressures in the positive pressure tank and the negative pressure tank, respectively.
  • the volume of the balloon used for the IABP method is input in advance to a driving device that drives the balloon.
  • the balloon drive device is configured so that when a positive pressure is applied to the piping system and the balloon expands, shuttle gas corresponding to the balloon volume input in advance flows into the balloon and the balloon is fully expanded. Adjust the amount of shuttle gas.
  • the IABP method there is a case where it is desired to gradually weaken the assisting effect of the cardiac function by the balloon when the patient's cardiac function is recovered. In such a case, the size of the balloon to be expanded is gradually reduced. In some cases, a so-called volume weaning method is used. Further, depending on the condition of the patient to which the IABP method is applied, there is a case where it is desired to continue driving the balloon while the balloon is not completely expanded at the time of expansion. As an IABP driving device that can cope with such cases, there is known an IABP driving device that can expand the balloon smaller than the case of full expansion by adjusting the amount or pressure of the shuttle gas fed into the balloon (for example, , See Patent Document 2).
  • the present invention is made in view of such a situation, and relates to a balloon driving method and an IABP driving device by an IABP driving device that can prevent formation of a thrombus on the balloon surface.
  • a balloon driving method comprises: A balloon driving method using an IABP driving device, wherein a balloon catheter to which a balloon is connected is attached, and the balloon is driven to repeat expansion and contraction. Detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion; When the first expansion drive continues for a predetermined time of 30 seconds or longer, a second expansion drive that expands the balloon to a greater extent than the time of expansion of the balloon in the first expansion drive is performed for a predetermined number of heartbeats. And a process.
  • the balloon driving method of the present invention when the first expansion drive in which the balloon is incompletely expanded at the time of expansion is detected and the first expansion drive continues for a predetermined time of 30 seconds or more, the balloon is expanded at the first expansion drive.
  • 2nd expansion drive which expands a balloon largely rather than is performed.
  • the balloon In the second expansion drive, the balloon is fully expanded, or the balloon is expanded to a state closer to complete expansion compared to the previous expansion. Therefore, according to such a balloon driving method, the time during which the balloon cannot be completely expanded does not continue beyond a predetermined time, and therefore, a problem that thrombus is formed on the surface of the balloon can be prevented.
  • an augmentation set value for setting an amount of shuttle gas for expanding the balloon is set to a predetermined threshold value or less.
  • the augmentation setting value is set to a predetermined threshold value or less, there is a high possibility that the balloon is not sufficiently expanded, so that it is possible to appropriately detect the first expansion drive by detecting this. it can.
  • the detection step it may be detected that the balloon exclusion pressure is not recognized in the blood pressure waveform.
  • the first expansion drive is appropriately performed by detecting that the balloon exclusion pressure is not recognized in the blood pressure waveform. Can be detected.
  • the balloon in the second expansion drive, may be expanded in a state where there is more shuttle gas for expanding the balloon than when the balloon is expanded in the first expansion drive.
  • the balloon In the second expansion drive, the balloon is expanded in a state where the shuttle gas for expanding the balloon is larger than that in the expansion of the balloon in the first expansion drive, so that the balloon is driven at the same timing as the first expansion drive.
  • the balloon can be expanded more than the first expansion drive.
  • the IABP driving device has a balloon driving unit that drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits the pressure to the balloon.
  • the balloon driving unit includes an auxiliary tank that communicates with the piping system and an auxiliary valve, and an auxiliary valve that is a valve that selectively opens and closes communication between the piping system and the auxiliary tank.
  • the balloon In the first expansion drive, the balloon may be expanded by opening and closing the auxiliary valve so as to reduce the pressure difference between the plateau pressure and the reference pressure in the internal pressure waveform of the balloon,
  • the balloon In the second expansion drive, the balloon may be expanded by maintaining the auxiliary valve in a closed state.
  • the balloon By changing the operation of the auxiliary valve during the expansion of the balloon between the first expansion drive and the second expansion drive, the balloon can be greatly expanded only in the second expansion drive that is temporarily performed. Thrombus formation can be suitably prevented while performing appropriate cardiac function support.
  • the IABP driving device is A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
  • a controller that controls the balloon driving unit so that a heartbeat signal that is a signal related to a heartbeat is input and the balloon is expanded and contracted in synchronization with the heartbeat;
  • An incomplete expansion detection unit for detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion; When the first expansion drive in which the balloon is incompletely expanded at the time of expansion lasts for a predetermined time of 30 seconds or more, the control unit starts from the time of expansion of the balloon in the first expansion drive for a predetermined number of heartbeats. After the second expansion drive for greatly expanding the balloon, the balloon drive unit is controlled to perform the first expansion drive again.
  • the control unit of the IABP driving device detects the first expansion driving in which the balloon is incompletely expanded, and when the first expansion driving continues for a predetermined time of 30 seconds or more, the first driving is performed with respect to the balloon driving unit.
  • the second expansion drive for expanding the balloon to a greater extent than the expansion drive is performed, and then the first expansion drive is performed again.
  • the time during which the balloon cannot be fully expanded may continue beyond a predetermined time. Therefore, the problem that thrombus is formed on the surface of the balloon can be prevented.
  • the second expansion drive can be performed corresponding to the heartbeat cycle in the same manner as the first expansion drive, and the first expansion drive is performed again after the second expansion drive is performed. There is no need to interrupt the assisting function of the cardiac function between the drive and the second expansion drive, and there is little variation in the assist effect on the patient's heart.
  • FIG. 1 is an overall external view of an IABP driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic structure of the IABP driving device shown in FIG.
  • FIG. 3 is an external view of the monitor unit viewed from the front.
  • FIG. 4 is a conceptual diagram showing the circulation of shuttle gas accompanying the operation of the auxiliary valve included in the IABP driving device.
  • FIG. 5 is a conceptual diagram showing changes in the internal pressure waveform accompanying the operation of the auxiliary valve included in the IABP driving device.
  • FIG. 6 is a flowchart showing an example of a balloon driving method performed by the IABP driving apparatus shown in FIG. FIG.
  • FIG. 7 is a flowchart illustrating an example of the first extended drive detection operation by the detection unit of the IABP drive device illustrated in FIG. 1.
  • FIG. 8 is a conceptual diagram showing valve opening / closing timings and internal pressure waveforms in the balloon driving method performed by the detection unit of the IABP driving device shown in FIG.
  • FIG. 1 is an overall external view of an IABP driving apparatus 10 according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a schematic structure of the IABP driving apparatus 10.
  • the IABP driving apparatus 10 is a driving apparatus that is used to attach an IABP balloon catheter 90 to which a balloon 92 is connected, and to drive the balloon 92 so as to repeat expansion and contraction.
  • the balloon catheter 90 is used by being attached to the apparatus main body 20 of the IABP driving apparatus 10 shown in FIG.
  • a balloon 92 connected to the tip of the balloon catheter 90 is used by being placed in the descending aorta.
  • the IABP driving device 10 can assist the blood circulation function of the heart by expanding and contracting the balloon 92 in accordance with the heartbeat.
  • the IABP driving device 10 includes a device main body 20 and a monitor unit 60. Inside the apparatus main body 20 are accommodated a balloon driving unit 20a for expanding and contracting the balloon 92, a power source unit (not shown) for supplying power to the expansion / contraction unit, and the like. A caster 49 is attached to the lower part of the apparatus main body 20, and the IABP driving apparatus 10 can be easily moved in a hospital or the like.
  • the monitor unit 60 is attached to the apparatus main body 20 via a monitor installation unit 48 provided on the upper surface of the apparatus main body 20.
  • the monitor unit 60 is detachable from the apparatus main body 20.
  • the monitor unit 60 is connected to the apparatus main body 20 via a cable or the like (not shown), and receives power supply from the apparatus main body 20, exchanges data with the apparatus main body 20, I / O can be performed.
  • a balloon driving unit 20a for expanding and contracting the balloon 92 is accommodated inside the apparatus main body 20.
  • the balloon driving unit 20a is attached with a balloon catheter 90 to which a balloon 92 is connected, and applies a positive pressure and a negative pressure alternately to the secondary piping system 21b, which is a piping system that transmits pressure to the balloon 92. 92 is driven.
  • the balloon drive unit 20a has a secondary piping system 21b that communicates with the balloon catheter 90 and a primary piping system 21a that communicates with the pump 30 as primary pressure generating means.
  • the primary piping system 21a and the secondary piping system 21b are separated by a pressure transmission partition device 25 (isolator).
  • the pressure transmission partition device 25 has a diaphragm 26 that transmits the pressure of the primary piping system 21a to the secondary piping system 21b.
  • the fluids inside the primary piping system 21a and the secondary piping system 21b cannot move, but the diaphragm 26 moves to move the pressure (volume) of the primary piping system 21a. Change) is transmitted to the secondary piping system 21b.
  • the balloon drive unit 20a that arranges the primary piping system 21a and the secondary piping system 21b with the pressure transmission partition wall device 25 interposed therebetween has the capacity (chemical equivalent) of the shuttle gas enclosed in the secondary piping system 21b. It has the advantage that it can be controlled to a certain level and the consumption of the shuttle gas used in the secondary piping system 21b can be suppressed.
  • air can be used as the internal fluid of the primary piping system 21a
  • helium gas can be used as the internal fluid (shuttle gas) of the secondary piping system 21b.
  • a pump 30 is disposed in the primary piping system 21a.
  • a positive pressure tank 31 is connected to the positive pressure output port of the pump 30, and a negative pressure tank 35 is connected to the negative pressure generating port of the pump 30.
  • the pump 30 used in the present embodiment shown in FIG. 2 generates a positive pressure and a negative pressure simultaneously by driving.
  • a pump such as a compressor
  • a pump that generates a positive pressure and a pump that generates a negative pressure such as a compressor
  • You may comprise separately from a vacuum pump etc.).
  • the positive pressure tank 31 and the negative pressure tank 35 include a positive pressure adjustment valve 32 and a negative pressure adjustment valve 36 for selectively opening and closing communication between the inside of each tank 31 and 35 and the outside (atmosphere), and each tank.
  • the positive pressure tank 31 and the negative pressure tank 35 are controlled so as to have a substantially constant internal pressure even while the balloon 92 is being driven.
  • the internal pressures of the positive pressure tank 31 and the negative pressure tank 35 are not particularly limited.
  • the pressure PT1 of the positive pressure tank 31 is maintained at 300 mmHg (gauge pressure)
  • the pressure PT2 of the negative pressure tank 35 is maintained at ⁇ 150 mmHg (gauge pressure). Controlled.
  • the positive pressure tank 31 and the negative pressure tank 35 are connected to the input end of the pressure transmission partition device 25 via a positive pressure side solenoid valve 28 and a negative pressure side solenoid valve 29 that are controlled to open and close independently.
  • the balloon driving unit 20a can expand and contract the balloon 92 by switching the open / close state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29.
  • the secondary piping system 21b connected to the balloon catheter 90 is filled with shuttle gas that circulates in the balloon catheter 90 and the secondary piping system 21b to expand and contract the balloon 92.
  • the secondary piping system 21 b includes a measuring unit 22 that measures a balloon internal pressure that is an internal pressure of the balloon 92, an adjustment unit 24 that adjusts the balloon internal pressure, and an auxiliary unit 40 that assists the expansion and contraction of the balloon 92.
  • the measurement unit 22 includes a pressure sensor or the like, and measures the pressure inside the balloon catheter 90 that is filled with the shuttle gas.
  • An internal pressure signal that is a signal related to the balloon internal pressure measured by the measurement unit 22 is output to the control unit 62 of the monitor unit 60.
  • the adjusting unit 24 adjusts the amount of shuttle gas flowing through the secondary piping system 21b and the balloon catheter 90 in order to expand the balloon 92, thereby adjusting the balloon internal pressure. For example, when the augmentation set value for setting the amount of shuttle gas for expanding the balloon 92 is changed, the adjusting unit 24 supplies the shuttle gas to the secondary piping system 21b or from the secondary piping system 21b. By discharging the shuttle gas, the balloon internal pressure is adjusted by increasing or decreasing the reference pressure that is the balloon internal pressure when the balloon 92 is deflated.
  • the auxiliary unit 40 includes an auxiliary tank 42 and an auxiliary valve 41.
  • the auxiliary tank 42 sucks a part of the shuttle gas in the secondary piping system 21b in accordance with the pressure difference between the secondary piping system 21b and its internal pressure, or causes the secondary piping system 21b to transfer the shuttle gas therein.
  • This is a tank that discharges a part of the tank, and is connected to the secondary piping system 21 b via the auxiliary valve 41.
  • the auxiliary valve 41 is an electromagnetic valve that is provided at a connection portion between the secondary piping system 21b and the auxiliary tank 42 and selectively opens and closes communication between the auxiliary tank 42 and the secondary piping system 21b. The opening / closing operation is controlled by the unit 62 at a predetermined timing.
  • auxiliary tank 42 may be connected to an adjusting means (not shown) for replenishing the auxiliary tank 42 with shuttle gas or discharging the shuttle gas from the auxiliary tank 42.
  • adjustment part 24 which adjusts a balloon internal pressure may be connected to the secondary piping system 21b via the auxiliary
  • FIG. 4 is a conceptual diagram showing the flow of shuttle gas accompanying the operation of the auxiliary valve 41 included in the balloon driving unit 20a shown in FIG.
  • the operation of the auxiliary valve 41 when the balloon 92 is expanded is as follows. That is, the control unit 62 shown in FIG. 2 opens the positive pressure side electromagnetic valve 28 and starts applying positive pressure into the secondary piping system 21b by the pressure transmission partition device 25 (when switching from negative pressure to positive pressure). ), The positive pressure side solenoid valve 28 is closed after a predetermined time (for example, 95 msec) has elapsed.
  • a predetermined time for example, 95 msec
  • control unit 62 for example, 105 msec
  • a predetermined time for example, 105 msec
  • the auxiliary valve 41 is opened 10 msec after the positive pressure side solenoid valve 28 is closed) and the auxiliary valve 41 is set before the next switching (switching from positive pressure to negative pressure) (for example, 10 msec before the next switching). close.
  • the operation of the auxiliary valve 41 when the balloon 92 is expanded is as follows. That is, the control unit 62 shown in FIG. 2 opens the negative pressure side electromagnetic valve 29 and starts applying negative pressure into the secondary piping system 21b by the pressure transmission partition device 25 (when switching from positive pressure to negative pressure). ) And the negative pressure side solenoid valve 29 is closed after a predetermined time (for example, 640 msec) has elapsed. In parallel with this, the control unit 62 sets the auxiliary valve after elapse of a predetermined time (for example, 130 msec) from the time when the application of the negative pressure into the secondary piping system 21b is started (the time when switching from the positive pressure to the negative pressure). 41 is opened, and the auxiliary valve 41 is closed before the next switching (switching from negative pressure to positive pressure) (for example, 10 msec before the next switching).
  • a predetermined time for example, 130 msec
  • the timing for opening the auxiliary valve 41 can be selected in accordance with the state of expansion or contraction of the balloon 92.
  • the balloon 92 can be set to be fully expanded or contracted.
  • positive pressure or negative pressure is experimentally applied to the balloon 92 using, for example, a water mock tester (for example, a back pressure of 70 mmHg, a gauge pressure).
  • the volume change can be obtained by actual measurement.
  • FIG. 5 is a conceptual diagram showing changes in the internal pressure waveforms 186 and 286 with or without operation of the auxiliary valve 41.
  • FIG. 5A shows the pressure waveform 186 of the secondary piping system 21b and the balloon volume change (B1) when the auxiliary valve 41 is not operated. In FIG. 5A, the auxiliary valve 41 is always kept closed.
  • the pressure in the secondary piping system 21b is as shown by the internal pressure waveform 186 in FIG.
  • the pressure in the secondary piping system 21b overshoots the plateau pressure (pressure when the balloon 92 is fully expanded) P1, then drops to the plateau pressure P1, and the next switching (to negative pressure)
  • the pressure in the secondary piping system 21b is lowered by switching to the negative pressure, and the pressure in the secondary piping system 18 is the reference pressure (pressure when the balloon 92 is fully contracted).
  • FIG. 5B shows the internal pressure waveform 286 of the secondary piping system 21b and the balloon volume change (B2) when the auxiliary valve 41 is operated.
  • the auxiliary valve 41 is opened at a predetermined timing (t1) when a positive pressure is applied to the secondary piping system 21b, and then the secondary valve The auxiliary valve 41 is closed at a predetermined timing when a positive pressure is applied to the piping system 21b.
  • FIG. 5B as described in FIG.
  • the auxiliary valve 41 is opened at a predetermined timing (t2) when the negative pressure is applied to the secondary piping system 21b, and thereafter The auxiliary valve 41 is closed at a predetermined timing when a negative pressure is applied to the secondary piping system 21b.
  • the auxiliary valve 41 In the state where the auxiliary valve 41 is operated, as shown in the internal pressure waveform 286 of FIG. 5B, when a positive pressure is applied to the secondary piping system 21b, the pressure in the secondary piping system 21b increases, When the balloon 92 is fully expanded after the overshoot (t1), the auxiliary valve 41 is opened to reduce the pressure in the secondary piping system 21b and the plateau pressure (when the balloon 92 is fully expanded). The pressure in the secondary piping system 21b drops and rises after overshooting due to the switching to the negative pressure. When the balloon 92 is fully contracted (t2), the auxiliary valve 41 is opened to increase the pressure in the secondary piping system 21b to increase the reference pressure (the pressure when the balloon 92 is fully contracted).
  • the auxiliary valve 41 As is clear from a comparison between FIG. 5A and FIG. 5B, by operating the auxiliary valve 41, the plateau pressure decreases from P1 to P3, and the reference pressure increases from P2 to P4. is doing. Therefore, by operating the auxiliary valve 41, the difference between the plateau pressure and the reference pressure can be reduced. As a result, the arrival time from the reference pressure to the plateau pressure can be shortened during expansion, while the arrival time from the plateau pressure to the reference pressure can be shortened during contraction, and thus the auxiliary valve 41 can be operated. Thus, the IABP driving device 10 can improve the responsiveness of the balloon 92.
  • the monitor unit 60 includes a control unit 62, a display unit 64, an incomplete expansion detection unit 65, an operation signal input unit 68, a pilot lamp 70, and a heartbeat signal input unit 69.
  • the display unit 64 is disposed in a region on the upper half of the front surface of the monitor unit 60 and is configured by a display display such as a liquid crystal display or an organic EL display.
  • the control unit 62 is configured by a microprocessor or the like, and controls various configurations of the balloon driving unit 20a, the display unit 64, and the like included in the IABP driving device 10 by performing various arithmetic processes.
  • a heartbeat signal which is a signal related to a heartbeat
  • the control unit 62 controls the balloon driving unit 20a so that the balloon 92 expands and contracts in synchronization with the heartbeat.
  • the pilot lamp 70 informs the operator of the driving state of the IABP driving device 10 including abnormality occurring in the IABP driving device 10 by changing the lighting color or lighting / flashing.
  • the lighting state of the pilot lamp 70 is controlled by the control unit 62.
  • the display unit 64 includes a waveform display unit 64a and a blood pressure / heart rate display unit 64b.
  • the waveform display unit 64a is disposed at the center of the display unit 64, and the waveform display unit 64a displays three waveforms side by side in the order of an electrocardiogram waveform 82, a blood pressure waveform 84, and an internal pressure waveform 86.
  • the electrocardiogram waveform 82 displays an electrocardiogram signal representing the electrical activity of the patient's heart.
  • the electrocardiogram signal is acquired by an electrocardiograph through an electrode pad attached to the patient, and is input to the monitor unit 60 through a heartbeat signal input unit 69 shown in FIG.
  • the control unit 62 of the monitor unit 60 displays the electrocardiogram signal input via the heartbeat signal input unit 69 on the waveform display unit 64 a as an electrocardiogram waveform 82.
  • the electrocardiogram signal may be directly acquired by the IABP driving apparatus 10 itself by incorporating the electrocardiograph in the IABP driving apparatus 10 or via an electrocardiograph (polygraph, bedside monitor, etc.) outside the IABP driving apparatus 10. May be acquired indirectly.
  • the blood pressure waveform 84 displays a blood pressure signal representing the blood pressure of the patient.
  • the blood pressure signal is measured using a pressure transducer or the like attached to the balloon catheter 90 or another catheter connected to the artery, and is input to the monitor unit 60 via the heartbeat signal input unit 69 shown in FIG. .
  • the control unit 62 of the monitor unit 60 displays the blood pressure signal input via the heartbeat signal input unit 69 as a blood pressure waveform 84 on the waveform display unit 64a.
  • the heartbeat signal can be arbitrarily selected from either an electrocardiogram signal or a blood pressure signal.
  • the internal pressure waveform 86 displays an internal pressure signal representing the balloon internal pressure that is the internal pressure of the balloon 92. As shown in FIG. 2, the internal pressure signal is output from the measurement unit 22 provided in the secondary piping system 21 b in the apparatus main body 20 and is input to the monitor unit 60.
  • a blood pressure / heart rate display unit 64b for displaying the blood pressure and heart rate numerically is arranged on the right side of the display unit 64.
  • the heart rate, systolic pressure, diastolic pressure, average pressure, and augmentation pressure are displayed in this order from the upper side of the blood pressure / heart rate display unit 64b.
  • the heart rate is calculated based on the electrocardiogram signal, and the systolic pressure, diastolic pressure, average pressure, and augmentation pressure are calculated by the control unit 62 based on the blood pressure signal.
  • the operation signal input unit 68 is disposed below the front surface of the monitor unit 60.
  • the operator of the IABP driving device 10 can input various signals related to driving of the IABP driving device 10 such as the driving conditions of the balloon 92 and the display conditions of the monitor unit 60 via the operation signal input unit 68.
  • the operation signal input unit 68 has a set value input unit 68a for inputting an augmentation set value for setting the amount of shuttle gas for expanding the balloon 92.
  • an operation signal for changing the augmentation set value and setting a new value is input to the monitor unit 60.
  • the control unit 62 of the monitor unit 60 controls the adjustment unit 24 of the apparatus main body 20 to control the secondary piping system 21b and the balloon.
  • the amount of shuttle gas flowing through the catheter 90 (chemical equivalent of helium gas) is increased or decreased, and the balloon internal pressure is adjusted.
  • the augmentation set value can be set in 10 stages from the minimum value “1” to the maximum value “10”, and the secondary piping system 21b and the balloon catheter are increased as the augmentation set value is increased.
  • the amount of shuttle gas flowing in 90 is increased.
  • the IABP driving device 10 of the present embodiment detects the first expansion drive in which the balloon 92 is incompletely expanded when the balloon 92 is expanded.
  • the augmentation setting value is “10” which is the initial value
  • the secondary piping system is used except in a special case where the heart rate of the patient is very fast.
  • the amount of shuttle gas flowing in the secondary piping system 21b and the balloon catheter 90 is adjusted so that the balloon 92 can be fully expanded in a state where a positive pressure is applied to 21b.
  • the balloon 92 is not completely expanded even when a positive pressure is applied to the secondary piping system 21b by changing the above-described augmentation setting value, and the balloon 92 is not expanded. It is possible to implement a first expansion drive that incompletely expands. Such first expansion drive is performed when it is desired to weaken the assisting effect of the cardiac function by the balloon 92 according to the recovery state of the cardiac function of the patient.
  • the state in which the balloon 92 is fully expanded means that the balloon 92 has been expanded to a predetermined volume, and the surface of the balloon 92 is substantially free of irregularities, and the balloon 92 has been incompletely expanded.
  • the state means a state in which the balloon 92 is not expanded to a predetermined volume and the surface of the balloon 92 is uneven even when the balloon 92 is expanded to the maximum volume during one expansion.
  • the volume of the balloon 92 is determined by selecting the size of the balloon 92 used in advance according to the patient's physique and the like, and is selected in the range of 30 to 45 ml, for example.
  • the incomplete expansion detection unit 65 shown in FIG. 2 performs normal driving when the augmentation set value for setting the amount of shuttle gas flowing in the secondary piping system 21b and the balloon catheter 90 is equal to or less than that value. Under the condition, it is estimated that the balloon 92 is incompletely expanded at the time of expansion, and is detected to be less than a preset threshold value (“5” in the present embodiment), and the augmentation setting value is the predetermined value. When the balloon 92 is driven below the threshold, it is determined that the first expansion drive is performed by the balloon drive unit 20a.
  • the incomplete expansion detection unit 65 detects that the balloon exclusion pressure 84a is not recognized in the blood pressure waveform 84, and the balloon 92 is driven in a state where the balloon exclusion pressure 84a is not recognized in the blood pressure waveform 84. In this case, it is determined that the first expansion drive is performed by the balloon drive unit 20a.
  • the incomplete expansion detection unit 65 recognizes the balloon exclusion pressure 84a in the blood pressure waveform 84 when the systolic pressure 84b in the blood pressure waveform 84 shown in FIG. 3 is equal to or higher than the augmentation pressure 84c in the blood pressure waveform 84. Judge that there is no.
  • the incomplete expansion detection unit 65 detects whether or not the balloon 92 is driven in the first expansion accompanied by incomplete expansion at the time of expansion from the augmentation set value and the blood pressure waveform 84, and the result is obtained. This is transmitted to the control unit 62. Based on the detection result by the incomplete extension detection unit 65, the control unit 62 monitors the time for which the first extension drive continues. Further, when the first expansion drive continues for one minute or longer, the control unit 62 performs the second expansion drive that greatly expands the balloon 92 for a predetermined number of heartbeats, and then performs the first expansion drive again. Next, the balloon driving unit 20a is controlled. In the second expansion drive, the number of times the balloon 92 is greatly expanded can be arbitrarily set, but is preferably 1 to 3 times, and more preferably 1 time.
  • control unit 62 and the incomplete extension detection unit 65 are configured by a single microprocessor or the like. It may be configured by a plurality of circuits.
  • FIG. 6 is a flowchart illustrating an example of a control method in which the control unit 62 illustrated in FIG. 2 controls the balloon driving unit 20a, and an example of a method of driving the balloon 92 by the IABP driving device 10.
  • the control unit 62 of the IABP driving device 10 causes the balloon driving unit 20a to start driving the balloon 92.
  • the control unit 62 controls the balloon driving unit 20a to expand and contract the balloon 92 in synchronization with the heartbeat, and the cardiac function assisting operation by the IABP driving device 10 is started.
  • the control unit 62 starts a detection timer that measures the duration of the first expansion drive.
  • step S002 the control unit 62 determines whether or not the balloon driving unit 20a is performing the first expansion driving in which the balloon 92 is incompletely expanded at the time of expansion.
  • step S002 the control unit 62 makes the above determination based on the detection result by the incomplete extension detection unit 65 shown in FIG.
  • FIG. 7 is a flowchart showing an incomplete expansion detection process by the incomplete expansion detection unit 65.
  • the incomplete expansion detection unit 65 starts a detection process for detecting whether or not the first expansion drive of the balloon 92 is performed.
  • the incomplete extension detection unit 65 starts the detection process in response to a request from the control unit 62 or at a predetermined cycle.
  • the incomplete expansion detection unit 65 has a systolic pressure (blood pressure value Sys) 84b calculated from the blood pressure signal equal to or higher than an augmentation pressure (Aug) 84c calculated from the blood pressure signal. Determine whether or not. If the systolic pressure (blood pressure value Sys) 84b is greater than or equal to the augmentation pressure (Aug) 84c, the incomplete expansion detection unit 65 proceeds to step S104, and the balloon 92 is incompletely expanded at the time of expansion. Is detected. In step S104, the incomplete expansion detection unit 65 notifies the control unit 62 that the first expansion drive is currently being performed by the balloon drive unit 20a. On the other hand, when the systolic pressure (blood pressure value Sys) 84b is not equal to or higher than the augmentation pressure (Aug) 84c, the process proceeds to step S103.
  • the incomplete expansion detection unit 65 determines whether or not the augmentation set value for setting the amount of shuttle gas is equal to or less than “5” set as the threshold value. If the augmentation setting value is from “1” to “5”, the incomplete expansion detection unit 65 proceeds to step S104 and detects that the balloon 92 is incompletely expanded at the time of expansion. The operation in step S104 is as described above.
  • step S105 the incomplete expansion detection unit 65 proceeds to step S105, and the balloon 92 is incompletely expanded at the time of expansion. It is detected that there is no (or the balloon 92 is fully expanded upon expansion).
  • step S105 the incomplete expansion detection unit 65 notifies the control unit 62 that the first expansion drive is not currently being performed by the balloon drive unit 20a.
  • the incomplete expansion detection unit 65 detects whether or not the first expansion drive is performed in which the balloon 92 is incompletely expanded at the time of expansion, and the detection result is transmitted to the control unit 62. The detection process is terminated.
  • step S002 shown in FIG. 6 when the control unit 62 determines that the first extension drive is not performed based on the detection result of the incomplete extension detection unit 65, the control unit 62 proceeds to step S005 and performs the first extension drive. After resetting the detection timer (restarting from 0 seconds), the process returns to the operation of step S002.
  • the control unit 62 detects whether or not the first expansion drive by the balloon drive unit 20a continues for one minute or longer. More specifically, the control unit 62 performs the determination in step S003 depending on whether or not the value of the detection timer of the first extended drive started at the start of driving is 1 minute or more.
  • step S003 if the value of the detection timer indicating the duration of the first extended drive is 1 minute or more, the process proceeds to step S004, and if the value of the detection timer is less than 1 minute, the process returns to step S002.
  • step S004 the control unit 62 performs a step of performing the second expansion drive for expanding the balloon 92 larger than the immediately preceding first expansion drive for one heartbeat.
  • FIG. 8 shows the internal pressure waveform 386 and the valve of the second expansion drive 95 implemented by the control unit 62 controlling the balloon drive unit 20a and the first expansion drive 94 performed immediately before the second expansion drive 95. It is a conceptual diagram showing an open / close state.
  • the control unit 62 closes the negative pressure side solenoid valve 29 and simultaneously closes the negative pressure side solenoid valve 29 so that it can be understood from the open / closed state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29.
  • the electromagnetic valve 28 is opened, and the positive pressure side electromagnetic valve 28 is closed after a predetermined time (for example, 105 msec) has elapsed since the start of application of positive pressure into the secondary piping system 21b.
  • the control unit 62 starts the application of positive pressure in the secondary piping system 21b for a predetermined time (for example, the auxiliary valve 41 is opened after a lapse of 95 msec (that is, 10 msec after the positive pressure side solenoid valve 28 is closed), and the auxiliary valve 41 is closed before the next switching (for example, 10 msec before the next switching). .
  • the first expansion drive 94 when the balloon 92 is expanded, by operating the auxiliary valve 41 provided in the secondary piping system 21b continuous to the balloon 92, a part of the shuttle gas is generated as shown in FIG. It flows into the auxiliary tank 42.
  • the flow of the shuttle gas into the auxiliary tank 42 causes the plateau pressure P5 in the internal pressure waveform 386 of the balloon 92 shown in FIG. 8 to decrease, so that the auxiliary valve 41 has the plateau pressure P5 and the reference pressure P6 in the internal pressure waveform 386 of the balloon 92. Reduce the pressure difference.
  • the opening / closing operation of the auxiliary valve 61 described here as in the first expansion drive 94 is also performed in normal driving when the balloon 92 is fully expanded during expansion.
  • the control unit 62 closes the negative pressure side electromagnetic valve 29 and simultaneously opens the positive pressure side electromagnetic valve 28, as in the case of the first expansion drive 94.
  • the positive pressure side solenoid valve 28 is closed after elapse of a predetermined time (for example, 105 msec) from the time when application of the positive pressure is started in the next piping system 21b.
  • a predetermined time for example, 105 msec
  • the control unit 62 applies a positive pressure to the secondary piping system 21b.
  • the auxiliary valve 41 is kept closed until the next switching (that is, the time when the negative pressure side electromagnetic valve 29 is opened) from the time when the operation is started.
  • the balloon 92 is expanded in a state where there is more shuttle gas for expanding the balloon 92 than in the first expansion drive 94 shown in the left part of FIG. Accordingly, in the second expansion drive 95, the plateau pressure P7 in the internal pressure waveform 386 of the balloon 92 increases from the plateau pressure P5 of the first expansion drive 94, and the balloon 92 is fully expanded or at least the immediately preceding first expansion drive. It expands to a state close to complete expansion as compared with 94 expansion.
  • control unit 62 causes the balloon drive unit 20a to perform the second expansion drive 95 as described above in step S004, and then proceeds to step S005 to reset the detection timer for the first expansion drive. After restarting from 0 seconds, the process returns to the operation of step S002.
  • the control unit 62 performs the second expansion drive 95 for one heartbeat on the balloon drive unit 20a.
  • the balloon 92 can be fully expanded by the second expansion drive 95, or the balloon 92 can be expanded to a state close to the complete expansion, a problem that a thrombus is formed on the surface of the balloon 92 can be prevented.
  • the control unit 62 causes the balloon drive unit 20a to perform the second expansion drive 95 when the first expansion drive 94 continues for one minute or longer.
  • the duration of the first extension drive 94 for performing the two extension drive 95 is not limited to one minute, and may be selected from an arbitrary time of 30 seconds or more, and is preferably about 1 to 3 minutes, for example. If the timing at which the second expansion drive 95 is performed is earlier than this, the cardiac function assisting effect by the IABP driving device 10 becomes too stronger than intended, and there is a possibility that problems such as inability to perform intended wings or the like may occur. In addition, if the timing for performing the second expansion drive 95 is too late, there is a possibility that formation of a thrombus on the surface of the balloon 92 cannot be prevented appropriately.
  • the IABP driving device 10 assists the cardiac function appropriately according to the patient's condition, and the state where the balloon 92 is not fully expanded continues for a predetermined time or more. It is possible to prevent the problem that thrombus is formed on the surface of the balloon 92.
  • the IABP driving device 10 and the method for driving the balloon 92 using the IABP driving device 10 have been described with reference to the embodiments and specific operations using the embodiments.
  • the present invention is limited only to the above-described embodiments. It is not a thing.
  • the configuration of the balloon driving unit 20a is not limited to that shown in FIG. 2, and the balloon 92 can be expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system. Any configuration may be used.
  • the incomplete expansion detection unit 65 for detecting the first expansion drive 94 shown in FIG. 2 detects that the augmentation set value is equal to or less than a predetermined threshold, or eliminates the balloon in the blood pressure waveform 84. It is not limited to the one that detects that the pressure 84a is not recognized. For example, one that detects that the heart rate is equal to or higher than a predetermined value (for example, 120 bpm).
  • the first extended drive may be detected based on information such as other related setting values and signals.
  • the detection of the first expansion drive does not mean only detection of incomplete expansion when the balloon is expanded, but the balloon 92 is incompletely expanded during expansion based on related information. It is a concept that includes presuming that
  • SYMBOLS 10 IABP drive device 20 ... Apparatus main body 20a ... Balloon drive part 21a ... Primary piping system 21b ... Secondary piping system (pipe system) DESCRIPTION OF SYMBOLS 22 ... Measuring part 24 ... Adjustment part 25 ... Pressure transmission partition apparatus 26 ... Diaphragm 28 ... Positive pressure side solenoid valve 29 ... Negative pressure side solenoid valve 30 ... Pump 31 ... Positive pressure tank 32 ... Positive pressure adjustment valve 35 ... Negative pressure tank 36 ... Negative pressure adjusting valve 40 ... auxiliary part 41 ... auxiliary valve 42 ... auxiliary tank PT1, PT2 ... pressure P5, P7 ... plateau pressure P6 ... reference pressure 48 ...

Abstract

[Problem] To provide a balloon drive method that uses an IABP drive device that can prevent the formation of thrombi on the balloon surface. [Solution] In this method of driving a balloon with an IABP drive device which is mounted with a balloon catheter with a balloon connected thereto, and which performs driving to repeat expansion and contraction of the balloon. This balloon drive method involves a detection step for detecting first expansion driving in which a balloon does not completely expand during expansion, and a step in which, when the first expansion driving has continued for a prescribed time interval of at least 30 seconds, second expansion driving is performed for expanding the balloon bigger than during the first expansion driving for a prescribed number of heartbeats.

Description

IABP駆動装置によるバルーンの駆動方法及びIABP駆動装置Balloon driving method by IABP driving device and IABP driving device
 本発明は、IABP(大動脈内バルーンポンピング)法で用いられるIABP駆動装置によるバルーンの駆動方法及びIABP駆動装置に関する。 The present invention relates to a balloon driving method by an IABP driving device used in an IABP (intra-aortic balloon pumping) method and an IABP driving device.
 IABP法において、十分な補助(心臓の負担軽減)効果を得るためには、患者の心臓の拍動に対して適切なタイミングで大動脈内に留置したバルーンを拡張及び収縮させる必要がある。そこで、IABP法においてバルーンカテーテルのバルーンを駆動する駆動装置では、心電計や血圧計によって取得された患者の心拍に関する信号が入力され、その信号に基づき、バルーンを拡張及び収縮する(たとえば、特許文献1参照)。 In the IABP method, in order to obtain a sufficient assisting effect (reducing the burden on the heart), it is necessary to expand and contract the balloon placed in the aorta at an appropriate timing with respect to the heartbeat of the patient. Therefore, in the driving device that drives the balloon of the balloon catheter in the IABP method, a signal related to the heartbeat of the patient acquired by an electrocardiograph or a sphygmomanometer is input, and the balloon is expanded and contracted based on the signal (for example, patent Reference 1).
 また、IABP駆動装置では、バルーンへ圧力を伝達する配管系に対して、陽圧と陰圧とを交互に印加することにより、バルーンを拡張・収縮させる。ここで、配管系に印加する陽圧及び陰圧はポンプによって形成され、そのポンプによって形成された陽圧及び陰圧は陽圧タンク及び陰圧タンクにおいてそれぞれ略一定の圧力に維持される。 Also, in the IABP drive device, the balloon is expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system that transmits the pressure to the balloon. Here, the positive pressure and the negative pressure applied to the piping system are formed by a pump, and the positive pressure and the negative pressure generated by the pump are maintained at substantially constant pressures in the positive pressure tank and the negative pressure tank, respectively.
 IABP法に用いられるバルーンの容積は、バルーンを駆動する駆動装置に予め入力される。通常、バルーンの駆動装置は、配管系に対して陽圧を印加してバルーンが拡張するタイミングで、予め入力したバルーン容積に相当するシャトルガスがバルーン内に流入し、バルーンが完全拡張するように、シャトルガスの量を調整する。 The volume of the balloon used for the IABP method is input in advance to a driving device that drives the balloon. Normally, the balloon drive device is configured so that when a positive pressure is applied to the piping system and the balloon expands, shuttle gas corresponding to the balloon volume input in advance flows into the balloon and the balloon is fully expanded. Adjust the amount of shuttle gas.
 ところで、IABP法においては、患者の心機能が回復した場合などに、バルーンによる心機能の補助効果を徐々に弱めたい場合があり、そのような場合に、バルーンが拡張する大きさを徐々に小さくする、いわゆるボリュームウィーニングと呼ばれる手法が用いられる場合がある。また、IABP法を適用する患者の状態に応じて、拡張時にバルーンが完全拡張しない状態で、バルーンの駆動を継続したい場合も存在する。これらのような場合に対応できるIABP駆動装置として、バルーンに送り込むシャトルガスの量又は圧力を調節することによって、バルーンを完全拡張の場合よりも小さく拡張させることができるものが知られている(たとえば、特許文献2参照)。 By the way, in the IABP method, there is a case where it is desired to gradually weaken the assisting effect of the cardiac function by the balloon when the patient's cardiac function is recovered. In such a case, the size of the balloon to be expanded is gradually reduced. In some cases, a so-called volume weaning method is used. Further, depending on the condition of the patient to which the IABP method is applied, there is a case where it is desired to continue driving the balloon while the balloon is not completely expanded at the time of expansion. As an IABP driving device that can cope with such cases, there is known an IABP driving device that can expand the balloon smaller than the case of full expansion by adjusting the amount or pressure of the shuttle gas fed into the balloon (for example, , See Patent Document 2).
国際公開第2011/114779号International Publication No. 2011/111479 特開平5-192396号公報JP-A-5-192396
 しかしながら、拡張時においてもバルーンが完全拡張しない状態で駆動を継続すると、バルーンの膜が常に弛んだ状態となるため、バルーン表面に凹凸が生じた状態が持続されてしまい、凹みの部分に血液が長時間滞留して、血栓が形成されやすくなる問題が生じる。 However, if the driving is continued in a state where the balloon is not completely expanded even at the time of expansion, since the balloon membrane is always in a loose state, the state in which the balloon surface has irregularities is maintained, and blood is retained in the recessed portion. The problem that it stays for a long time and thrombus tends to be formed arises.
 本発明は、このような実状に鑑みてなされ、バルーン表面における血栓の形成を防止し得るIABP駆動装置によるバルーンの駆動方法及びIABP駆動装置に関する。 The present invention is made in view of such a situation, and relates to a balloon driving method and an IABP driving device by an IABP driving device that can prevent formation of a thrombus on the balloon surface.
 上記目的を達成するために、本発明に係るバルーンの駆動方法は、
 バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンを拡張及び収縮を繰り返すように駆動させるIABP駆動装置によるバルーンの駆動方法であって、
 前記バルーンが拡張時において不完全拡張する第1拡張駆動を検出する検出工程と、
 前記第1拡張駆動が30秒間以上の所定時間続いた場合、所定の回数の心拍に対して、前記第1拡張駆動における前記バルーンの拡張時よりも前記バルーンを大きく拡張させる第2拡張駆動を行う工程と、を有する。
In order to achieve the above object, a balloon driving method according to the present invention comprises:
A balloon driving method using an IABP driving device, wherein a balloon catheter to which a balloon is connected is attached, and the balloon is driven to repeat expansion and contraction.
Detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion;
When the first expansion drive continues for a predetermined time of 30 seconds or longer, a second expansion drive that expands the balloon to a greater extent than the time of expansion of the balloon in the first expansion drive is performed for a predetermined number of heartbeats. And a process.
 本発明によるバルーンの駆動方法は、バルーンが拡張時において不完全拡張する第1拡張駆動を検出し、第1拡張駆動が30秒間以上の所定時間続いた場合、第1拡張駆動におけるバルーンの拡張時よりもバルーンを大きく拡張させる第2拡張駆動を行う。第2拡張駆動では、バルーンが完全拡張するか、又は直前の拡張時に比べて完全拡張に近い状態までバルーンが拡張する。したがって、このようなバルーンの駆動方法によれば、バルーンが完全拡張できない時間が所定の時間を超えて継続することがないので、バルーンの表面に血栓が形成される問題を防止できる。 According to the balloon driving method of the present invention, when the first expansion drive in which the balloon is incompletely expanded at the time of expansion is detected and the first expansion drive continues for a predetermined time of 30 seconds or more, the balloon is expanded at the first expansion drive. 2nd expansion drive which expands a balloon largely rather than is performed. In the second expansion drive, the balloon is fully expanded, or the balloon is expanded to a state closer to complete expansion compared to the previous expansion. Therefore, according to such a balloon driving method, the time during which the balloon cannot be completely expanded does not continue beyond a predetermined time, and therefore, a problem that thrombus is formed on the surface of the balloon can be prevented.
 また、たとえば、前記検出工程では、前記バルーンを拡張させるシャトルガスの量を設定するオーグメンテーション設定値が、所定の閾値以下に設定されたことを検出してもよい。 Also, for example, in the detection step, it may be detected that an augmentation set value for setting an amount of shuttle gas for expanding the balloon is set to a predetermined threshold value or less.
 オーグメンテーション設定値が所定の閾値以下に設定されている状態では、バルーンが十分に拡張できていない可能性が高いため、これを検出することにより、第1拡張駆動を適切に検出することができる。 In a state where the augmentation setting value is set to a predetermined threshold value or less, there is a high possibility that the balloon is not sufficiently expanded, so that it is possible to appropriately detect the first expansion drive by detecting this. it can.
 また、たとえば、前記検出工程では、血圧波形にバルーン排除圧が認められなくなることを検出してもよい。 Further, for example, in the detection step, it may be detected that the balloon exclusion pressure is not recognized in the blood pressure waveform.
 血圧波形にバルーン排除圧が認められない状態では、バルーンが十分に拡張できていない可能性が高いため、血圧波形にバルーン排除圧が認められないことを検出することにより、第1拡張駆動を適切に検出することができる。 In the state where the balloon exclusion pressure is not recognized in the blood pressure waveform, there is a high possibility that the balloon is not sufficiently expanded. Therefore, the first expansion drive is appropriately performed by detecting that the balloon exclusion pressure is not recognized in the blood pressure waveform. Can be detected.
 また、たとえば、前記第2拡張駆動では、前記第1拡張駆動における前記バルーンの拡張時よりも、前記バルーンを拡張させるシャトルガスが多い状態で、前記バルーンを拡張させてもよい。 Also, for example, in the second expansion drive, the balloon may be expanded in a state where there is more shuttle gas for expanding the balloon than when the balloon is expanded in the first expansion drive.
 前記第2拡張駆動では、バルーンを拡張させるためのシャトルガスが、第1拡張駆動におけるバルーンの拡張時より多い状態でバルーンを拡張させることにより、第1拡張駆動と同じタイミングでバルーンを駆動させながら、第1拡張駆動よりもバルーンを大きく拡張させることができる。 In the second expansion drive, the balloon is expanded in a state where the shuttle gas for expanding the balloon is larger than that in the expansion of the balloon in the first expansion drive, so that the balloon is driven at the same timing as the first expansion drive. The balloon can be expanded more than the first expansion drive.
 また、たとえば、前記IABP駆動装置は、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部を有し、
 前記バルーン駆動部は、前記配管系と内部が連通する補助タンクと、前記配管系と前記補助タンクとの間の連通を選択的に開閉する弁である補助バルブとを有し、
 前記第1拡張駆動では、前記バルーンの内圧波形におけるプラトー圧と基準圧との圧力差を小さくするように、前記補助バルブを開閉動作させて、前記バルーンを拡張させてもよく、
 前記第2拡張駆動では、前記補助バルブを閉状態に維持して前記バルーンを拡張させてもよい。
Further, for example, the IABP driving device has a balloon driving unit that drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits the pressure to the balloon.
The balloon driving unit includes an auxiliary tank that communicates with the piping system and an auxiliary valve, and an auxiliary valve that is a valve that selectively opens and closes communication between the piping system and the auxiliary tank.
In the first expansion drive, the balloon may be expanded by opening and closing the auxiliary valve so as to reduce the pressure difference between the plateau pressure and the reference pressure in the internal pressure waveform of the balloon,
In the second expansion drive, the balloon may be expanded by maintaining the auxiliary valve in a closed state.
 第1拡張駆動と第2拡張駆動で、バルーンの拡張時における補助バルブの動作を変えることにより、一時的に行われる第2拡張駆動においてのみバルーンを大きく拡張させることができるため、患者の状態にあわせた適切な心機能補助を行いつつ、血栓の形成を好適に防止できる。 By changing the operation of the auxiliary valve during the expansion of the balloon between the first expansion drive and the second expansion drive, the balloon can be greatly expanded only in the second expansion drive that is temporarily performed. Thrombus formation can be suitably prevented while performing appropriate cardiac function support.
 また、本発明に係るIABP駆動装置は、
 バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部と、
 心拍に関する信号である心拍信号が入力され、心拍に同期して前記バルーンが拡張及び収縮するように、前記バルーン駆動部を制御する制御部と、
 前記バルーンが拡張時において不完全拡張する第1拡張駆動を検出する不完全拡張検出部と、を有し、
 前記制御部は、前記バルーンが拡張時において不完全拡張する第1拡張駆動が30秒間以上の所定時間続いた場合、所定の回数の心拍に対して前記第1拡張駆動における前記バルーンの拡張時よりも前記バルーンを大きく拡張させる第2拡張駆動を行った後、再び前記第1拡張駆動を行うように、前記バルーン駆動部を制御する。
Moreover, the IABP driving device according to the present invention is
A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
A controller that controls the balloon driving unit so that a heartbeat signal that is a signal related to a heartbeat is input and the balloon is expanded and contracted in synchronization with the heartbeat;
An incomplete expansion detection unit for detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion;
When the first expansion drive in which the balloon is incompletely expanded at the time of expansion lasts for a predetermined time of 30 seconds or more, the control unit starts from the time of expansion of the balloon in the first expansion drive for a predetermined number of heartbeats. After the second expansion drive for greatly expanding the balloon, the balloon drive unit is controlled to perform the first expansion drive again.
 本発明に係るIABP駆動装置の制御部は、バルーンが不完全拡張する第1拡張駆動を検出し、30秒間以上の所定時間第1拡張駆動が続いた場合、バルーン駆動部に対して、第1拡張駆動よりもバルーンを大きく拡張させる第2拡張駆動を行わせ、その後再び第1拡張駆動を行う。第2拡張駆動では、バルーンが完全拡張するか、又は直前の拡張時に比べて完全拡張に近い状態までバルーンが拡張するため、バルーンが完全拡張できない時間が、所定の時間を超えて継続することがないので、バルーンの表面に血栓が形成される問題を防止できる。また、第2拡張駆動は、第1拡張駆動と同じように心拍周期に対応して行うことができ、かつ、第2拡張駆動を行ったのちに再び第1拡張駆動を行うため、第1拡張駆動と第2拡張駆動との切り換えの間に心機能の補助動作を中断する必要がなく、また、患者の心臓に対する補助効果の変動もほとんど生じない。 The control unit of the IABP driving device according to the present invention detects the first expansion driving in which the balloon is incompletely expanded, and when the first expansion driving continues for a predetermined time of 30 seconds or more, the first driving is performed with respect to the balloon driving unit. The second expansion drive for expanding the balloon to a greater extent than the expansion drive is performed, and then the first expansion drive is performed again. In the second expansion drive, since the balloon is fully expanded, or the balloon expands to a state closer to the full expansion compared to the previous expansion, the time during which the balloon cannot be fully expanded may continue beyond a predetermined time. Therefore, the problem that thrombus is formed on the surface of the balloon can be prevented. In addition, the second expansion drive can be performed corresponding to the heartbeat cycle in the same manner as the first expansion drive, and the first expansion drive is performed again after the second expansion drive is performed. There is no need to interrupt the assisting function of the cardiac function between the drive and the second expansion drive, and there is little variation in the assist effect on the patient's heart.
図1は、本発明の一実施形態に係るIABP駆動装置の全体外観図である。FIG. 1 is an overall external view of an IABP driving apparatus according to an embodiment of the present invention. 図2は、図1に示すIABP駆動装置の概略構造を表すブロック図である。FIG. 2 is a block diagram showing a schematic structure of the IABP driving device shown in FIG. 図3は、モニタ部を正面から見た外観図である。FIG. 3 is an external view of the monitor unit viewed from the front. 図4は、IABP駆動装置に含まれる補助バルブの動作に伴うシャトルガスの流通を示す概念図である。FIG. 4 is a conceptual diagram showing the circulation of shuttle gas accompanying the operation of the auxiliary valve included in the IABP driving device. 図5は、IABP駆動装置に含まれる補助バルブの動作に伴う内圧波形の変化を示す概念図である。FIG. 5 is a conceptual diagram showing changes in the internal pressure waveform accompanying the operation of the auxiliary valve included in the IABP driving device. 図6は、図1に示すIABP駆動装置で行われるバルーンの駆動方法の一例を表すフローチャートである。FIG. 6 is a flowchart showing an example of a balloon driving method performed by the IABP driving apparatus shown in FIG. 図7は、図1に示すIABP駆動装置の検出部による第1拡張駆動の検出動作の一例を表すフローチャートである。FIG. 7 is a flowchart illustrating an example of the first extended drive detection operation by the detection unit of the IABP drive device illustrated in FIG. 1. 図8は、図1に示すIABP駆動装置の検出部で行われるバルーンの駆動方法におけるバルブ開閉タイミングと内圧波形を表す概念図である。FIG. 8 is a conceptual diagram showing valve opening / closing timings and internal pressure waveforms in the balloon driving method performed by the detection unit of the IABP driving device shown in FIG.
 以下、本発明に係るIABP駆動装置を、図面に示す実施形態に基づき、詳細に説明する。 Hereinafter, an IABP driving device according to the present invention will be described in detail based on an embodiment shown in the drawings.
 図1は、本発明の一実施形態に係るIABP駆動装置10の全体外観図であり、図2はIABP駆動装置10の概略構造を表すブロック図である。IABP駆動装置10は、図2に示すように、バルーン92が接続されたIABP用バルーンカテーテル90を取り付けて、バルーン92を拡張及び収縮を繰り返すように駆動させるために用いられる駆動装置である。バルーンカテーテル90は、図1に示すIABP駆動装置10の装置本体20に取り付けて使用される。バルーンカテーテル90の先端に接続されたバルーン92は、下行大動脈内に留置されて使用される。IABP駆動装置10は、心臓の拍動に合わせてバルーン92を拡張及び収縮させることにより、心臓の血液循環機能を補助することができる。 FIG. 1 is an overall external view of an IABP driving apparatus 10 according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a schematic structure of the IABP driving apparatus 10. As shown in FIG. 2, the IABP driving apparatus 10 is a driving apparatus that is used to attach an IABP balloon catheter 90 to which a balloon 92 is connected, and to drive the balloon 92 so as to repeat expansion and contraction. The balloon catheter 90 is used by being attached to the apparatus main body 20 of the IABP driving apparatus 10 shown in FIG. A balloon 92 connected to the tip of the balloon catheter 90 is used by being placed in the descending aorta. The IABP driving device 10 can assist the blood circulation function of the heart by expanding and contracting the balloon 92 in accordance with the heartbeat.
 図1に示すように、IABP駆動装置10は、装置本体20とモニタ部60とを有する。装置本体20の内部には、バルーン92を拡張及び収縮させるためのバルーン駆動部20aや拡張・収縮手段に電力を供給するための電源手段(不図示)等が収容されている。装置本体20の下部には、キャスター49が取り付けられており、IABP駆動装置10は、病院内等において、容易に移動させることが可能になっている。 As shown in FIG. 1, the IABP driving device 10 includes a device main body 20 and a monitor unit 60. Inside the apparatus main body 20 are accommodated a balloon driving unit 20a for expanding and contracting the balloon 92, a power source unit (not shown) for supplying power to the expansion / contraction unit, and the like. A caster 49 is attached to the lower part of the apparatus main body 20, and the IABP driving apparatus 10 can be easily moved in a hospital or the like.
 モニタ部60は、装置本体20の上面に設けられたモニタ設置部48を介して、装置本体20に取り付けられている。モニタ部60は、装置本体20に対して着脱自在である。ただし、モニタ部60は、図示しないケーブル等を介して装置本体20に接続されており、装置本体20から電力の供給を受けたり、装置本体20との間でデータの受け渡しを行ったり、信号の入出力を行ったりすることができる。 The monitor unit 60 is attached to the apparatus main body 20 via a monitor installation unit 48 provided on the upper surface of the apparatus main body 20. The monitor unit 60 is detachable from the apparatus main body 20. However, the monitor unit 60 is connected to the apparatus main body 20 via a cable or the like (not shown), and receives power supply from the apparatus main body 20, exchanges data with the apparatus main body 20, I / O can be performed.
 図2に示すように、装置本体20の内部には、バルーン92を拡張・収縮するためのバルーン駆動部20aが収納されている。バルーン駆動部20aは、バルーン92が接続されたバルーンカテーテル90が取り付けられ、バルーン92へ圧力を伝達する配管系である二次配管系21bに陽圧と陰圧とを交互に印加して、バルーン92を駆動する。 As shown in FIG. 2, a balloon driving unit 20a for expanding and contracting the balloon 92 is accommodated inside the apparatus main body 20. The balloon driving unit 20a is attached with a balloon catheter 90 to which a balloon 92 is connected, and applies a positive pressure and a negative pressure alternately to the secondary piping system 21b, which is a piping system that transmits pressure to the balloon 92. 92 is driven.
 バルーン駆動部20aは、バルーンカテーテル90内に連通する二次配管系21bと、一次側圧力発生手段としてのポンプ30に連通する一次配管系21aとを有している。一次配管系21aと二次配管系21bとは、圧力伝達隔壁装置25(アイソレータ)によって分離されている。圧力伝達隔壁装置25は、一次配管系21aの圧力を二次配管系21bに伝えるダイヤフラム26を有している。バルーン駆動部20aにおいては、一次配管系21aと二次配管系21bとの間をそれぞれの内部の流体が移動することはできないが、ダイヤフラム26が移動することにより、一次配管系21aの圧力(容積変化)が、二次配管系21bへ伝えられる。 The balloon drive unit 20a has a secondary piping system 21b that communicates with the balloon catheter 90 and a primary piping system 21a that communicates with the pump 30 as primary pressure generating means. The primary piping system 21a and the secondary piping system 21b are separated by a pressure transmission partition device 25 (isolator). The pressure transmission partition device 25 has a diaphragm 26 that transmits the pressure of the primary piping system 21a to the secondary piping system 21b. In the balloon driving unit 20a, the fluids inside the primary piping system 21a and the secondary piping system 21b cannot move, but the diaphragm 26 moves to move the pressure (volume) of the primary piping system 21a. Change) is transmitted to the secondary piping system 21b.
 このように、一次配管系21aと二次配管系21bとを圧力伝達隔壁装置25を挟んで配置するバルーン駆動部20aは、二次配管系21bに封入されるシャトルガスの容量(化学当量)を一定に制御し易いという利点や、二次配管系21bに使用されるシャトルガスの消費量を抑制することができるという利点を有する。 In this way, the balloon drive unit 20a that arranges the primary piping system 21a and the secondary piping system 21b with the pressure transmission partition wall device 25 interposed therebetween has the capacity (chemical equivalent) of the shuttle gas enclosed in the secondary piping system 21b. It has the advantage that it can be controlled to a certain level and the consumption of the shuttle gas used in the secondary piping system 21b can be suppressed.
 一次配管系21aの内部流体としては、たとえば空気を用いることができ、二次配管系21bの内部流体(シャトルガス)としては、たとえばヘリウムガスを用いることができる。二次配管系21bの内部流体を、粘性及び質量が小さいヘリウムガスとすることにより、バルーン92の拡張・収縮の応答性を高めることができる。 For example, air can be used as the internal fluid of the primary piping system 21a, and helium gas can be used as the internal fluid (shuttle gas) of the secondary piping system 21b. By making the internal fluid of the secondary piping system 21b helium gas having a small viscosity and mass, the response of expansion / contraction of the balloon 92 can be enhanced.
 図2に示すように、一次配管系21aには、ポンプ30が配置してある。このポンプ30の陽圧出力口には陽圧タンク31が接続してあり、ポンプ30の陰圧発生口には陰圧タンク35が接続してある。なお、図2に示す本実施形態で用いるポンプ30は、駆動により陽圧と陰圧とを同時に発生させるものであるが、陽圧を発生させるポンプ(コンプレッサ等)と陰圧を発生させるポンプ(真空ポンプ等)とを別個のものとして構成してもよい。 As shown in FIG. 2, a pump 30 is disposed in the primary piping system 21a. A positive pressure tank 31 is connected to the positive pressure output port of the pump 30, and a negative pressure tank 35 is connected to the negative pressure generating port of the pump 30. The pump 30 used in the present embodiment shown in FIG. 2 generates a positive pressure and a negative pressure simultaneously by driving. However, a pump (such as a compressor) that generates a positive pressure and a pump that generates a negative pressure (such as a compressor) You may comprise separately from a vacuum pump etc.).
 陽圧タンク31及び陰圧タンク35には、各タンク31、35の内部と外部(大気)との連通を選択的に開閉するための陽圧調整弁32及び陰圧調整弁36と、各タンク31、35の内部圧力を測定する圧力センサとが設けられており、陽圧タンク31及び陰圧タンク35は、バルーン92の駆動中においても、略一定の内圧になるように制御される。陽圧タンク31及び陰圧タンク35の内圧は、特に限定されないが、たとえば陽圧タンク31の圧力PT1を300mmHg(ゲージ圧)、陰圧タンク35の圧力PT2を-150mmHg(ゲージ圧)に保つように制御される。 The positive pressure tank 31 and the negative pressure tank 35 include a positive pressure adjustment valve 32 and a negative pressure adjustment valve 36 for selectively opening and closing communication between the inside of each tank 31 and 35 and the outside (atmosphere), and each tank. The positive pressure tank 31 and the negative pressure tank 35 are controlled so as to have a substantially constant internal pressure even while the balloon 92 is being driven. The internal pressures of the positive pressure tank 31 and the negative pressure tank 35 are not particularly limited. For example, the pressure PT1 of the positive pressure tank 31 is maintained at 300 mmHg (gauge pressure), and the pressure PT2 of the negative pressure tank 35 is maintained at −150 mmHg (gauge pressure). Controlled.
 陽圧タンク31と陰圧タンク35とは、それぞれ独立して開閉制御される陽圧側電磁弁28と陰圧側電磁弁29を介して、圧力伝達隔壁装置25の入力端に接続してある。バルーン駆動部20aは、陽圧側電磁弁28と陰圧側電磁弁29の開閉状態を切り換えることにより、バルーン92を拡張・収縮させることができる。 The positive pressure tank 31 and the negative pressure tank 35 are connected to the input end of the pressure transmission partition device 25 via a positive pressure side solenoid valve 28 and a negative pressure side solenoid valve 29 that are controlled to open and close independently. The balloon driving unit 20a can expand and contract the balloon 92 by switching the open / close state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29.
 一方、バルーンカテーテル90に接続する二次配管系21bには、バルーンカテーテル90及び二次配管系21b内を流通してバルーン92を拡張・収縮させるシャトルガスが充填されている。二次配管系21bには、バルーン92の内圧であるバルーン内圧を測定する測定部22と、バルーン内圧を調整する調整部24と、バルーン92の拡張・収縮を補助する補助部40とが備えられる。測定部22は、圧力センサ等で構成されており、シャトルガスで満たされるバルーンカテーテル90の内部の圧力を測定する。測定部22によって測定されたバルーン内圧に関する信号である内圧信号は、モニタ部60の制御部62に出力される。 On the other hand, the secondary piping system 21b connected to the balloon catheter 90 is filled with shuttle gas that circulates in the balloon catheter 90 and the secondary piping system 21b to expand and contract the balloon 92. The secondary piping system 21 b includes a measuring unit 22 that measures a balloon internal pressure that is an internal pressure of the balloon 92, an adjustment unit 24 that adjusts the balloon internal pressure, and an auxiliary unit 40 that assists the expansion and contraction of the balloon 92. . The measurement unit 22 includes a pressure sensor or the like, and measures the pressure inside the balloon catheter 90 that is filled with the shuttle gas. An internal pressure signal that is a signal related to the balloon internal pressure measured by the measurement unit 22 is output to the control unit 62 of the monitor unit 60.
 調整部24は、バルーン92を拡張させるために二次配管系21b及びバルーンカテーテル90内を流通するシャトルガス量を調整し、バルーン内圧を調整する。たとえば、調整部24は、バルーン92を拡張させるシャトルガスの量を設定するオーグメンテーション設定値が変更されると、二次配管系21bにシャトルガスを供給するか、又は二次配管系21bからシャトルガスを排出することで、バルーン92が収縮したときのバルーン内圧である基準圧を上昇又は下降させることにより、バルーン内圧を調整する。 The adjusting unit 24 adjusts the amount of shuttle gas flowing through the secondary piping system 21b and the balloon catheter 90 in order to expand the balloon 92, thereby adjusting the balloon internal pressure. For example, when the augmentation set value for setting the amount of shuttle gas for expanding the balloon 92 is changed, the adjusting unit 24 supplies the shuttle gas to the secondary piping system 21b or from the secondary piping system 21b. By discharging the shuttle gas, the balloon internal pressure is adjusted by increasing or decreasing the reference pressure that is the balloon internal pressure when the balloon 92 is deflated.
 補助部40は、補助タンク42と補助バルブ41とを有する。補助タンク42は、二次配管系21bとその内圧との圧力差に応じて、二次配管系21b内のシャトルガスの一部を吸入し、又は二次配管系21bにその内部のシャトルガスの一部を排出するタンクであり、補助バルブ41を介して二次配管系21bに接続されている。補助バルブ41は、二次配管系21bと補助タンク42との接続部分に設けられており、補助タンク42と二次配管系21bとの間の連通を選択的に開閉する電磁弁であり、制御部62により所定のタイミングでその開閉動作が制御されるようになっている。 The auxiliary unit 40 includes an auxiliary tank 42 and an auxiliary valve 41. The auxiliary tank 42 sucks a part of the shuttle gas in the secondary piping system 21b in accordance with the pressure difference between the secondary piping system 21b and its internal pressure, or causes the secondary piping system 21b to transfer the shuttle gas therein. This is a tank that discharges a part of the tank, and is connected to the secondary piping system 21 b via the auxiliary valve 41. The auxiliary valve 41 is an electromagnetic valve that is provided at a connection portion between the secondary piping system 21b and the auxiliary tank 42 and selectively opens and closes communication between the auxiliary tank 42 and the secondary piping system 21b. The opening / closing operation is controlled by the unit 62 at a predetermined timing.
 なお、補助タンク42には、補助タンク42へシャトルガスを補充したり、補助タンク42からシャトルガスを排出したりするための図示しない調整手段が接続されていてもよい。また、バルーン内圧を調整する調整部24は、補助部40を介して二次配管系21bに接続されていてもよい。 It should be noted that the auxiliary tank 42 may be connected to an adjusting means (not shown) for replenishing the auxiliary tank 42 with shuttle gas or discharging the shuttle gas from the auxiliary tank 42. Moreover, the adjustment part 24 which adjusts a balloon internal pressure may be connected to the secondary piping system 21b via the auxiliary | assistant part 40. FIG.
 補助バルブ41の動作については、図4及び図5を用いて説明する。
 図4は、図2に示すバルーン駆動部20aに含まれる補助バルブ41の動作に伴うシャトルガスの流通を示す概念図である。バルーン92を拡張させる際における補助バルブ41の動作は以下のようなものである。すなわち、図2に示す制御部62は、陽圧側電磁弁28を開いて圧力伝達隔壁装置25により二次配管系21b内に陽圧の印加を開始した時点(陰圧から陽圧に切り換えた時点)から所定時間(たとえば、95msec)の経過後に陽圧側電磁弁28を閉じる。これと並行して、制御部62は、二次配管系21b内に陽圧の印加を開始した時点(陰圧から陽圧に切り換えた時点)から所定時間(たとえば、105msec)の経過後(すなわち、陽圧側電磁弁28を閉じてから10msec後)に補助バルブ41を開き、次の切り換え(陽圧から陰圧への切り換え)の前(たとえば、次の切り換えの10msec前)に補助バルブ41を閉じる。
The operation of the auxiliary valve 41 will be described with reference to FIGS.
FIG. 4 is a conceptual diagram showing the flow of shuttle gas accompanying the operation of the auxiliary valve 41 included in the balloon driving unit 20a shown in FIG. The operation of the auxiliary valve 41 when the balloon 92 is expanded is as follows. That is, the control unit 62 shown in FIG. 2 opens the positive pressure side electromagnetic valve 28 and starts applying positive pressure into the secondary piping system 21b by the pressure transmission partition device 25 (when switching from negative pressure to positive pressure). ), The positive pressure side solenoid valve 28 is closed after a predetermined time (for example, 95 msec) has elapsed. In parallel with this, the control unit 62 (for example, 105 msec) after the elapse of a predetermined time (for example, 105 msec) from the time when the application of the positive pressure into the secondary piping system 21b is started (ie, when the negative pressure is switched from the positive pressure). The auxiliary valve 41 is opened 10 msec after the positive pressure side solenoid valve 28 is closed) and the auxiliary valve 41 is set before the next switching (switching from positive pressure to negative pressure) (for example, 10 msec before the next switching). close.
 図4(a)に示すように、二次配管系21bに陽圧が印加された状態で補助バルブ41が開かれると、二次配管系21b内のシャトルガスの一部が、二次配管系21bと補助タンク42との圧力差に応じて、図中に矢印で示すように、補助タンク42内に吸引され、これにより、二次配管系21b内の圧力(プラトー圧)は、補助タンク42によるヘリウムガスの吸引量だけ低下する。 As shown in FIG. 4A, when the auxiliary valve 41 is opened in a state where a positive pressure is applied to the secondary piping system 21b, a part of the shuttle gas in the secondary piping system 21b is converted into the secondary piping system 21b. Depending on the pressure difference between 21b and the auxiliary tank 42, as shown by the arrows in the figure, it is sucked into the auxiliary tank 42, whereby the pressure (plateau pressure) in the secondary piping system 21b is reduced to the auxiliary tank 42. Decreases by the amount of helium gas sucked by.
 また、バルーン92を拡張させる際における補助バルブ41の動作は以下のようなものである。すなわち、図2に示す制御部62は、陰圧側電磁弁29を開いて圧力伝達隔壁装置25により二次配管系21b内に陰圧の印加を開始した時点(陽圧から陰圧に切り換えた時点)から所定時間(たとえば、640msec)の経過後に陰圧側電磁弁29を閉じる。これと並行して、制御部62は、二次配管系21b内に陰圧の印加を開始した時点(陽圧から陰圧に切り換えた時点)から所定時間(たとえば、130msec)の経過後に補助バルブ41を開き、次の切り換え(陰圧から陽圧への切り換え)の前(たとえば、次の切り換えの10msec前)に補助バルブ41を閉じる。 The operation of the auxiliary valve 41 when the balloon 92 is expanded is as follows. That is, the control unit 62 shown in FIG. 2 opens the negative pressure side electromagnetic valve 29 and starts applying negative pressure into the secondary piping system 21b by the pressure transmission partition device 25 (when switching from positive pressure to negative pressure). ) And the negative pressure side solenoid valve 29 is closed after a predetermined time (for example, 640 msec) has elapsed. In parallel with this, the control unit 62 sets the auxiliary valve after elapse of a predetermined time (for example, 130 msec) from the time when the application of the negative pressure into the secondary piping system 21b is started (the time when switching from the positive pressure to the negative pressure). 41 is opened, and the auxiliary valve 41 is closed before the next switching (switching from negative pressure to positive pressure) (for example, 10 msec before the next switching).
 図4(b)に示すように、二次配管系21bに陰圧が印加された状態で補助バルブ41が開かれると、補助タンク42内のヘリウムガスの一部(又は全部)が、二次配管系21b内と補助タンク42との圧力差に応じて、図中に矢印で示すように、二次配管系21b内に排出され、これにより、二次配管系21bの圧力(基準圧)は、補助タンク42によるヘリウムガスの排出量だけ上昇する。 As shown in FIG. 4B, when the auxiliary valve 41 is opened in a state where negative pressure is applied to the secondary piping system 21b, a part (or all) of the helium gas in the auxiliary tank 42 becomes secondary. Depending on the pressure difference between the piping system 21b and the auxiliary tank 42, as shown by the arrows in the figure, the pressure is discharged into the secondary piping system 21b, whereby the pressure (reference pressure) of the secondary piping system 21b is reduced. The amount of helium gas discharged from the auxiliary tank 42 increases.
 補助バルブ41を開くタイミング(陽圧又は陰圧から陰圧又は陽圧への切り換えの時点からの所定時間)は、バルーン92の拡張又は収縮の状態との関係で最適な時間を選定することができ、たとえば、バルーン92が拡張しきった時点又は縮みきった時点となるように設定することができる。この所定時間(拡張しきった時点又は縮みきった時点)は、たとえば水モック試験機(たとえば、背圧を70mmHg、ゲージ圧)を用いて実験的にバルーン92に陽圧又は陰圧を印加してその容積変化を実測することにより求めることができる。 The timing for opening the auxiliary valve 41 (predetermined time from the time of switching from the positive pressure or the negative pressure to the negative pressure or the positive pressure) can be selected in accordance with the state of expansion or contraction of the balloon 92. For example, the balloon 92 can be set to be fully expanded or contracted. For this predetermined time (when the expansion or contraction is complete), positive pressure or negative pressure is experimentally applied to the balloon 92 using, for example, a water mock tester (for example, a back pressure of 70 mmHg, a gauge pressure). The volume change can be obtained by actual measurement.
 図5は、補助バルブ41の動作の有無に伴う内圧波形186、286の変化を示す概念図である。図5(a)は、補助バルブ41を動作させない状態における二次配管系21bの圧力波形186とバルーンの容積変化(B1)を表している。図5(a)では、補助バルブ41は常に閉じた状態に保たれている。 FIG. 5 is a conceptual diagram showing changes in the internal pressure waveforms 186 and 286 with or without operation of the auxiliary valve 41. FIG. 5A shows the pressure waveform 186 of the secondary piping system 21b and the balloon volume change (B1) when the auxiliary valve 41 is not operated. In FIG. 5A, the auxiliary valve 41 is always kept closed.
 図2に示す補助バルブ41が閉じられた状態において、二次配管系21bに陽圧が印加されると、図5(a)の内圧波形186に示すように、二次配管系21b内の圧力が上昇し、二次配管系21b内の圧力はプラトー圧(バルーン92が拡張しきったときの圧力)P1よりもオーバーシュートした後、プラトー圧P1まで下降して、次の切り換え(陰圧への切り換え)まで略一定の状態となり、陰圧への切り換えにより、二次配管系21b内の圧力が下降し、二次配管系18内の圧力は基準圧(バルーン92が縮みきったときの圧力)P2よりもオーバーシュートした後、基準圧P2まで上昇して、次の切り換え(陽圧への切り換え)の時点まで略一定の状態となり、これらを順次繰り返すことになる。その結果、図5(a)の(B1)で示すような容積変化が生じ、心臓の拍動に合わせたバルーン92の拡張及び収縮が可能になり、心機能の補助動作を行うことができる。 In the state where the auxiliary valve 41 shown in FIG. 2 is closed, when a positive pressure is applied to the secondary piping system 21b, the pressure in the secondary piping system 21b is as shown by the internal pressure waveform 186 in FIG. The pressure in the secondary piping system 21b overshoots the plateau pressure (pressure when the balloon 92 is fully expanded) P1, then drops to the plateau pressure P1, and the next switching (to negative pressure) The pressure in the secondary piping system 21b is lowered by switching to the negative pressure, and the pressure in the secondary piping system 18 is the reference pressure (pressure when the balloon 92 is fully contracted). After overshooting more than P2, the pressure rises to the reference pressure P2 and becomes substantially constant until the next switching (switching to the positive pressure), and these are repeated sequentially. As a result, a volume change as shown in (B1) of FIG. 5A occurs, and the balloon 92 can be expanded and contracted in accordance with the pulsation of the heart, and an assisting operation of the cardiac function can be performed.
 図5(b)は、補助バルブ41を動作させる状態における二次配管系21bの内圧波形286とバルーンの容積変化(B2)を表している。図5(b)では、図4(a)で説明したように、二次配管系21bに対して陽圧を印加している所定のタイミング(t1)で補助バルブ41を開き、その後、二次配管系21bに対して陽圧を印加している所定のタイミングで補助バルブ41を閉じる。また、図5(b)では、図4(b)で説明したように、二次配管系21bに対して陰圧を印加している所定のタイミング(t2)で補助バルブ41を開き、その後、二次配管系21bに対して陰圧を印加している所定のタイミングで補助バルブ41を閉じる。 FIG. 5B shows the internal pressure waveform 286 of the secondary piping system 21b and the balloon volume change (B2) when the auxiliary valve 41 is operated. In FIG. 5B, as explained in FIG. 4A, the auxiliary valve 41 is opened at a predetermined timing (t1) when a positive pressure is applied to the secondary piping system 21b, and then the secondary valve The auxiliary valve 41 is closed at a predetermined timing when a positive pressure is applied to the piping system 21b. Further, in FIG. 5B, as described in FIG. 4B, the auxiliary valve 41 is opened at a predetermined timing (t2) when the negative pressure is applied to the secondary piping system 21b, and thereafter The auxiliary valve 41 is closed at a predetermined timing when a negative pressure is applied to the secondary piping system 21b.
 補助バルブ41を動作させた状態では、図5(b)の内圧波形286に示すように、二次配管系21bに陽圧が印加されると、二次配管系21b内の圧力が上昇し、オーバーシュートした後に減少に転じ、バルーン92が拡張しきった時点(t1)で、補助バルブ41が開かれることによって二次配管系21b内の圧力は低下してプラトー圧(バルーン92が拡張しきったときの圧力)P3まで下降して、次の切り換え(陰圧への切り換え)まで略一定の状態となり、陰圧への切り換えにより、二次配管系21b内の圧力が下降し、オーバーシュートした後に上昇に転じ、バルーン92が縮みきった時点(t2)で、補助バルブ41が開かれることによって二次配管系21b内の圧力は上昇して基準圧(バルーン92が縮みきったときの圧力)P4まで上昇して、次の切り換え(陽圧への切り換え)まで略一定の状態となり、これらを順次繰り返すことになる。その結果、同図に符号(B2)で示すような容積変化が生じ、心臓の拍動に合わせたバルーン92の拡張及び収縮が可能になり、心機能の補助動作を行うことができる。 In the state where the auxiliary valve 41 is operated, as shown in the internal pressure waveform 286 of FIG. 5B, when a positive pressure is applied to the secondary piping system 21b, the pressure in the secondary piping system 21b increases, When the balloon 92 is fully expanded after the overshoot (t1), the auxiliary valve 41 is opened to reduce the pressure in the secondary piping system 21b and the plateau pressure (when the balloon 92 is fully expanded). The pressure in the secondary piping system 21b drops and rises after overshooting due to the switching to the negative pressure. When the balloon 92 is fully contracted (t2), the auxiliary valve 41 is opened to increase the pressure in the secondary piping system 21b to increase the reference pressure (the pressure when the balloon 92 is fully contracted). ) Rose to P4, become substantially constant until the next change (switch to positive pressure) and repeats them sequentially. As a result, a volume change as indicated by reference numeral (B2) in the figure occurs, and the balloon 92 can be expanded and contracted in accordance with the pulsation of the heart, and the assisting operation of the cardiac function can be performed.
 図5(a)と図5(b)との比較から明らかなように、補助バルブ41を動作させることにより、プラトー圧はP1からP3と下降しており、基準圧はP2からP4へと上昇している。したがって、補助バルブ41を動作させることによって、プラトー圧と基準圧との差を小さくすることができる。これにより、拡張時には基準圧からプラトー圧への到達時間を短くすることができ、一方、収縮時にはプラトー圧から基準圧への到達時間を短くすることができ、したがって、補助バルブ41を動作させることにより、IABP駆動装置10は、バルーン92の応答性を向上させることができる。 As is clear from a comparison between FIG. 5A and FIG. 5B, by operating the auxiliary valve 41, the plateau pressure decreases from P1 to P3, and the reference pressure increases from P2 to P4. is doing. Therefore, by operating the auxiliary valve 41, the difference between the plateau pressure and the reference pressure can be reduced. As a result, the arrival time from the reference pressure to the plateau pressure can be shortened during expansion, while the arrival time from the plateau pressure to the reference pressure can be shortened during contraction, and thus the auxiliary valve 41 can be operated. Thus, the IABP driving device 10 can improve the responsiveness of the balloon 92.
 図2に示すように、モニタ部60は、制御部62と、表示部64と、不完全拡張検出部65と、操作信号入力部68と、パイロットランプ70と、心拍信号入力部69とを有する。図3に示すように、表示部64は、モニタ部60の前面上半分程度の領域に配置されており、たとえば液晶ディスプレイや有機ELディスプレイのような表示ディスプレイで構成される。 As shown in FIG. 2, the monitor unit 60 includes a control unit 62, a display unit 64, an incomplete expansion detection unit 65, an operation signal input unit 68, a pilot lamp 70, and a heartbeat signal input unit 69. . As shown in FIG. 3, the display unit 64 is disposed in a region on the upper half of the front surface of the monitor unit 60 and is configured by a display display such as a liquid crystal display or an organic EL display.
 制御部62は、マイクロプロセッサ等で構成され、各種の演算処理を実施することにより、IABP駆動装置10に含まれるバルーン駆動部20aや表示部64その他の構成を制御する。後述するように、制御部62には、心拍信号入力部69を介して、心拍に関する信号である心拍信号が入力される。また、制御部62は、心拍に同期してバルーン92が拡張及び収縮するように、バルーン駆動部20aを制御する。パイロットランプ70は、IABP駆動装置10に発生した異常などを含むIABP駆動装置10の駆動状態を、点灯色や点灯・点滅の変化により操作者に知らせる。パイロットランプ70の点灯状態は、制御部62によって制御される。 The control unit 62 is configured by a microprocessor or the like, and controls various configurations of the balloon driving unit 20a, the display unit 64, and the like included in the IABP driving device 10 by performing various arithmetic processes. As will be described later, a heartbeat signal, which is a signal related to a heartbeat, is input to the control unit 62 via the heartbeat signal input unit 69. The control unit 62 controls the balloon driving unit 20a so that the balloon 92 expands and contracts in synchronization with the heartbeat. The pilot lamp 70 informs the operator of the driving state of the IABP driving device 10 including abnormality occurring in the IABP driving device 10 by changing the lighting color or lighting / flashing. The lighting state of the pilot lamp 70 is controlled by the control unit 62.
 図2及び図3に示すように、表示部64は、波形表示部64aと、血圧・心拍数表示部64bとを有している。波形表示部64aは、表示部64の中央に配置されており、波形表示部64aには、心電図波形82、血圧波形84、内圧波形86の順に、3つの波形が並んで表示される。心電図波形82は、患者の心臓の電気的な活動を表す心電図信号を表示したものである。心電図信号は、患者に取り付けられた電極パッドを介して心電計により取得され、図2に示す心拍信号入力部69を介してモニタ部60に入力される。モニタ部60の制御部62は、心拍信号入力部69を介して入力された心電図信号を、心電図波形82として波形表示部64aに表示する。なお、心電図信号は、IABP駆動装置10に心電計を内蔵させてIABP駆動装置10自体に直接取得させてもよく、IABP駆動装置10外の心電計(ポリグラフやベッドサイドモニタ等)を介して間接的に取得されてもよい。 2 and 3, the display unit 64 includes a waveform display unit 64a and a blood pressure / heart rate display unit 64b. The waveform display unit 64a is disposed at the center of the display unit 64, and the waveform display unit 64a displays three waveforms side by side in the order of an electrocardiogram waveform 82, a blood pressure waveform 84, and an internal pressure waveform 86. The electrocardiogram waveform 82 displays an electrocardiogram signal representing the electrical activity of the patient's heart. The electrocardiogram signal is acquired by an electrocardiograph through an electrode pad attached to the patient, and is input to the monitor unit 60 through a heartbeat signal input unit 69 shown in FIG. The control unit 62 of the monitor unit 60 displays the electrocardiogram signal input via the heartbeat signal input unit 69 on the waveform display unit 64 a as an electrocardiogram waveform 82. The electrocardiogram signal may be directly acquired by the IABP driving apparatus 10 itself by incorporating the electrocardiograph in the IABP driving apparatus 10 or via an electrocardiograph (polygraph, bedside monitor, etc.) outside the IABP driving apparatus 10. May be acquired indirectly.
 血圧波形84は、患者の血圧を表す血圧信号を表示したものである。血圧信号は、バルーンカテーテル90又は動脈に接続された他のカテーテルに対して取り付けられた圧力トランスデューサ等を用いて測定され、図2に示す心拍信号入力部69を介してモニタ部60に入力される。モニタ部60の制御部62は、心拍信号入力部69を介して入力された血圧信号を、血圧波形84として波形表示部64aに表示する。なお、心拍信号は、心電図信号及び血圧信号のいずれかから任意に選択して用いることができる。 The blood pressure waveform 84 displays a blood pressure signal representing the blood pressure of the patient. The blood pressure signal is measured using a pressure transducer or the like attached to the balloon catheter 90 or another catheter connected to the artery, and is input to the monitor unit 60 via the heartbeat signal input unit 69 shown in FIG. . The control unit 62 of the monitor unit 60 displays the blood pressure signal input via the heartbeat signal input unit 69 as a blood pressure waveform 84 on the waveform display unit 64a. The heartbeat signal can be arbitrarily selected from either an electrocardiogram signal or a blood pressure signal.
 内圧波形86は、バルーン92の内圧であるバルーン内圧を表す内圧信号を表示したものである。内圧信号は、図2に示すように、装置本体20における二次配管系21bに設けられた測定部22が出力し、モニタ部60に入力される。 The internal pressure waveform 86 displays an internal pressure signal representing the balloon internal pressure that is the internal pressure of the balloon 92. As shown in FIG. 2, the internal pressure signal is output from the measurement unit 22 provided in the secondary piping system 21 b in the apparatus main body 20 and is input to the monitor unit 60.
 図3に示すように、表示部64の右側には、血圧及び心拍数を数値表示する血圧・心拍数表示部64bが配置されている。図3に示す例では、血圧・心拍数表示部64bの上方から、心拍数、収縮期圧、拡張期圧、平均圧、オーグメンテーション圧の順に表示されている。心拍数は心電図信号に基づき、収縮期圧、拡張期圧、平均圧及びオーグメンテーション圧については血圧信号に基づき、それぞれ制御部62で算出される。 As shown in FIG. 3, on the right side of the display unit 64, a blood pressure / heart rate display unit 64b for displaying the blood pressure and heart rate numerically is arranged. In the example shown in FIG. 3, the heart rate, systolic pressure, diastolic pressure, average pressure, and augmentation pressure are displayed in this order from the upper side of the blood pressure / heart rate display unit 64b. The heart rate is calculated based on the electrocardiogram signal, and the systolic pressure, diastolic pressure, average pressure, and augmentation pressure are calculated by the control unit 62 based on the blood pressure signal.
 図3に示すように、操作信号入力部68は、モニタ部60の前面下方に配置されている。IABP駆動装置10の操作者は、操作信号入力部68を介して、バルーン92の駆動条件や、モニタ部60の表示条件など、IABP駆動装置10の駆動に関する様々な信号を入力することができる。 As shown in FIG. 3, the operation signal input unit 68 is disposed below the front surface of the monitor unit 60. The operator of the IABP driving device 10 can input various signals related to driving of the IABP driving device 10 such as the driving conditions of the balloon 92 and the display conditions of the monitor unit 60 via the operation signal input unit 68.
 操作信号入力部68は、バルーン92を拡張させるシャトルガスの量を設定するオーグメンテーション設定値を入力するための設定値入力部68aを有している。IABP駆動装置10の操作者が、設定値入力部68aの押ボタンを押すと、オーグメンテーション設定値を変更して新たな値を設定する操作信号が、モニタ部60に入力される。オーグメンテーション設定値を変更して新たな値を設定する操作信号が入力された場合、モニタ部60の制御部62は、装置本体20の調整部24を制御し、二次配管系21b及びバルーンカテーテル90内に流通するシャトルガスの量(ヘリウムガスの化学当量)を増加又は減少させ、バルーン内圧を調整する。 The operation signal input unit 68 has a set value input unit 68a for inputting an augmentation set value for setting the amount of shuttle gas for expanding the balloon 92. When the operator of the IABP driving device 10 presses the push button of the set value input unit 68a, an operation signal for changing the augmentation set value and setting a new value is input to the monitor unit 60. When an operation signal for changing the augmentation set value and setting a new value is input, the control unit 62 of the monitor unit 60 controls the adjustment unit 24 of the apparatus main body 20 to control the secondary piping system 21b and the balloon. The amount of shuttle gas flowing through the catheter 90 (chemical equivalent of helium gas) is increased or decreased, and the balloon internal pressure is adjusted.
 本実施形態では、オーグメンテーション設定値は、最小値「1」から最大値「10」までの10段階に設定可能であり、オーグメンテーション設定値を大きくするほど二次配管系21b及びバルーンカテーテル90内に流通するシャトルガスの量が大きくなるようになっている。 In the present embodiment, the augmentation set value can be set in 10 stages from the minimum value “1” to the maximum value “10”, and the secondary piping system 21b and the balloon catheter are increased as the augmentation set value is increased. The amount of shuttle gas flowing in 90 is increased.
 図2に示す不完全拡張検出部65は、バルーン92が拡張時において不完全拡張する第1拡張駆動を検出する。ここで、本実施形態のIABP駆動装置10では、オーグメンテーション設定値が初期値である「10」であれば、患者の心拍数が非常に速いような特殊なケースを除き、二次配管系21bに陽圧が印加された状態において、バルーン92が完全拡張できるように、二次配管系21b及びバルーンカテーテル90内に流通するシャトルガスの量が調整されることとなる。 2 detects the first expansion drive in which the balloon 92 is incompletely expanded when the balloon 92 is expanded. Here, in the IABP driving device 10 of the present embodiment, if the augmentation setting value is “10” which is the initial value, the secondary piping system is used except in a special case where the heart rate of the patient is very fast. The amount of shuttle gas flowing in the secondary piping system 21b and the balloon catheter 90 is adjusted so that the balloon 92 can be fully expanded in a state where a positive pressure is applied to 21b.
 しかし、IABP駆動装置10では、上述したオーグメンテーション設定値を変更すること等により、二次配管系21bに陽圧が印加された状態においてもバルーン92が完全拡張せず、バルーン92が拡張時に不完全拡張する第1拡張駆動を実施することが可能である。このような第1拡張駆動は、患者の心機能の回復状態に応じてバルーン92による心機能の補助効果を弱めたい場合などに実施される。なお、バルーン92が完全拡張した状態とは、バルーン92が所定の容積まで拡張して、バルーン92の表面に実質的に凹凸がなくなった状態であることを意味し、バルーン92が不完全拡張した状態とは、バルーン92の1回の拡張時のなかで最大の容積まで拡張したときであっても、バルーン92が所定の容積まで拡張せず、バルーン92の表面に凹凸が存在する状態を意味する。また、バルーン92の容積は、患者の体格などに応じて予め用いるバルーン92の大きさを選択することによって定められ、たとえば30~45mlの範囲で選択される。 However, in the IABP driving device 10, the balloon 92 is not completely expanded even when a positive pressure is applied to the secondary piping system 21b by changing the above-described augmentation setting value, and the balloon 92 is not expanded. It is possible to implement a first expansion drive that incompletely expands. Such first expansion drive is performed when it is desired to weaken the assisting effect of the cardiac function by the balloon 92 according to the recovery state of the cardiac function of the patient. The state in which the balloon 92 is fully expanded means that the balloon 92 has been expanded to a predetermined volume, and the surface of the balloon 92 is substantially free of irregularities, and the balloon 92 has been incompletely expanded. The state means a state in which the balloon 92 is not expanded to a predetermined volume and the surface of the balloon 92 is uneven even when the balloon 92 is expanded to the maximum volume during one expansion. To do. The volume of the balloon 92 is determined by selecting the size of the balloon 92 used in advance according to the patient's physique and the like, and is selected in the range of 30 to 45 ml, for example.
 図2に示す不完全拡張検出部65は、二次配管系21b及びバルーンカテーテル90内に流通するシャトルガスの量を設定するオーグメンテーション設定値が、その値以下である場合には通常の駆動条件下においてバルーン92が拡張時に不完全拡張することになると推定される、予め設定された閾値(本実施形態では「5」)以下であることを検出し、オーグメンテーション設定値がその所定の閾値以下でバルーン92が駆動されている場合は、バルーン駆動部20aによって第1拡張駆動が行われていると判断する。また、さらに、不完全拡張検出部65は、血圧波形84にバルーン排除圧84aが認められなくなることを検出し、血圧波形84にバルーン排除圧84aが認められない状態でバルーン92が駆動されている場合は、バルーン駆動部20aによって第1拡張駆動が行われていると判断する。なお、不完全拡張検出部65は、図3に示す血圧波形84における収縮期圧84bが、血圧波形84におけるオーグメンテーション圧84c以上である場合に、血圧波形84にバルーン排除圧84aが認められないと判断する。 The incomplete expansion detection unit 65 shown in FIG. 2 performs normal driving when the augmentation set value for setting the amount of shuttle gas flowing in the secondary piping system 21b and the balloon catheter 90 is equal to or less than that value. Under the condition, it is estimated that the balloon 92 is incompletely expanded at the time of expansion, and is detected to be less than a preset threshold value (“5” in the present embodiment), and the augmentation setting value is the predetermined value. When the balloon 92 is driven below the threshold, it is determined that the first expansion drive is performed by the balloon drive unit 20a. Furthermore, the incomplete expansion detection unit 65 detects that the balloon exclusion pressure 84a is not recognized in the blood pressure waveform 84, and the balloon 92 is driven in a state where the balloon exclusion pressure 84a is not recognized in the blood pressure waveform 84. In this case, it is determined that the first expansion drive is performed by the balloon drive unit 20a. The incomplete expansion detection unit 65 recognizes the balloon exclusion pressure 84a in the blood pressure waveform 84 when the systolic pressure 84b in the blood pressure waveform 84 shown in FIG. 3 is equal to or higher than the augmentation pressure 84c in the blood pressure waveform 84. Judge that there is no.
 このように、不完全拡張検出部65は、オーグメンテーション設定値や、血圧波形84から、バルーン92が拡張時の不完全拡張を伴う第1拡張駆動されているか否かを検出し、結果を制御部62に伝える。制御部62は、不完全拡張検出部65による検出結果に基づき、第1拡張駆動が続く時間を監視する。さらに、制御部62は、第1拡張駆動が1分間以上続いた場合、所定の回数の心拍に対してバルーン92を大きく拡張させる第2拡張駆動を行った後、再び第1拡張駆動を行うように、バルーン駆動部20aを制御する。第2拡張駆動において、バルーン92を大きく拡張させる回数は任意に設定することができるが、好ましくは1~3回であり、さらに好ましくは1回である。 As described above, the incomplete expansion detection unit 65 detects whether or not the balloon 92 is driven in the first expansion accompanied by incomplete expansion at the time of expansion from the augmentation set value and the blood pressure waveform 84, and the result is obtained. This is transmitted to the control unit 62. Based on the detection result by the incomplete extension detection unit 65, the control unit 62 monitors the time for which the first extension drive continues. Further, when the first expansion drive continues for one minute or longer, the control unit 62 performs the second expansion drive that greatly expands the balloon 92 for a predetermined number of heartbeats, and then performs the first expansion drive again. Next, the balloon driving unit 20a is controlled. In the second expansion drive, the number of times the balloon 92 is greatly expanded can be arbitrarily set, but is preferably 1 to 3 times, and more preferably 1 time.
 なお、制御部62と不完全拡張検出部65の区別は、機能を説明するための便宜的なものであり、制御部62と不完全拡張検出部65とは1つのマイクロプロセッサ等で構成されていてもよく、複数の回路等で構成されていてもよい。 Note that the distinction between the control unit 62 and the incomplete extension detection unit 65 is for convenience of explanation, and the control unit 62 and the incomplete extension detection unit 65 are configured by a single microprocessor or the like. It may be configured by a plurality of circuits.
 以下、図6~図8を用いて、図2に示すIABP駆動装置10によるバルーン92の具体的な駆動について説明する。図6は、図2に示す制御部62がバルーン駆動部20aを制御する制御方法の一例であり、IABP駆動装置10によるバルーン92の駆動方法の一例を表すフローチャートである。図6に示すステップS001では、IABP駆動装置10の制御部62は、バルーン駆動部20aに対して、バルーン92の駆動を開始させる。制御部62は、バルーン駆動部20aが心拍に同期してバルーン92を拡張・収縮させるように制御し、IABP駆動装置10による心機能補助動作が開始される。また、制御部62は、バルーン92の駆動を開始した際に、第1拡張駆動の継続時間を測る検出タイマーをスタートさせる。 Hereinafter, specific driving of the balloon 92 by the IABP driving apparatus 10 shown in FIG. 2 will be described with reference to FIGS. FIG. 6 is a flowchart illustrating an example of a control method in which the control unit 62 illustrated in FIG. 2 controls the balloon driving unit 20a, and an example of a method of driving the balloon 92 by the IABP driving device 10. In step S001 shown in FIG. 6, the control unit 62 of the IABP driving device 10 causes the balloon driving unit 20a to start driving the balloon 92. The control unit 62 controls the balloon driving unit 20a to expand and contract the balloon 92 in synchronization with the heartbeat, and the cardiac function assisting operation by the IABP driving device 10 is started. In addition, when the driving of the balloon 92 is started, the control unit 62 starts a detection timer that measures the duration of the first expansion drive.
 ステップS002では、制御部62は、バルーン駆動部20aによって、バルーン92が拡張時において不完全拡張する第1拡張駆動が行われているか否かを判断する。ステップS002において、制御部62は、図2に示す不完全拡張検出部65による検出結果に基づき、上述の判断を行う。図7は、不完全拡張検出部65による不完全拡張の検出工程を表すフローチャートである。図7のステップS101では、不完全拡張検出部65が、バルーン92の第1拡張駆動が行われているか否かを検出する検出工程を開始する。不完全拡張検出部65は、制御部62からの求めに応じて、又は所定の周期で、検出工程を開始する。 In step S002, the control unit 62 determines whether or not the balloon driving unit 20a is performing the first expansion driving in which the balloon 92 is incompletely expanded at the time of expansion. In step S002, the control unit 62 makes the above determination based on the detection result by the incomplete extension detection unit 65 shown in FIG. FIG. 7 is a flowchart showing an incomplete expansion detection process by the incomplete expansion detection unit 65. In step S101 in FIG. 7, the incomplete expansion detection unit 65 starts a detection process for detecting whether or not the first expansion drive of the balloon 92 is performed. The incomplete extension detection unit 65 starts the detection process in response to a request from the control unit 62 or at a predetermined cycle.
 図7のステップS102では、不完全拡張検出部65は、血圧信号より算出される収縮期圧(血圧値Sys)84bが、同じく血圧信号より算出されるオーグメンテーション圧(Aug)84c以上であるか否かを判断する。不完全拡張検出部65は、収縮期圧(血圧値Sys)84bがオーグメンテーション圧(Aug)84c以上である場合は、ステップS104へ進み、バルーン92が拡張時において不完全拡張していることを検出する。ステップS104では、不完全拡張検出部65は、現在、バルーン駆動部20aによって第1拡張駆動が行われている旨、制御部62に伝える。また、これとは反対に、収縮期圧(血圧値Sys)84bがオーグメンテーション圧(Aug)84c以上でなかった場合、ステップS103の処理へ進む。 In step S102 of FIG. 7, the incomplete expansion detection unit 65 has a systolic pressure (blood pressure value Sys) 84b calculated from the blood pressure signal equal to or higher than an augmentation pressure (Aug) 84c calculated from the blood pressure signal. Determine whether or not. If the systolic pressure (blood pressure value Sys) 84b is greater than or equal to the augmentation pressure (Aug) 84c, the incomplete expansion detection unit 65 proceeds to step S104, and the balloon 92 is incompletely expanded at the time of expansion. Is detected. In step S104, the incomplete expansion detection unit 65 notifies the control unit 62 that the first expansion drive is currently being performed by the balloon drive unit 20a. On the other hand, when the systolic pressure (blood pressure value Sys) 84b is not equal to or higher than the augmentation pressure (Aug) 84c, the process proceeds to step S103.
 図7のステップS103では、不完全拡張検出部65は、シャトルガスの量を設定するオーグメンテーション設定値が、閾値として設定されている「5」以下であるか否かを判断する。不完全拡張検出部65は、オーグメンテーション設定値が「1」から「5」までである場合、ステップS104へ進み、バルーン92が拡張時において不完全拡張していることを検出する。ステップS104における動作は前述したとおりである。 7, the incomplete expansion detection unit 65 determines whether or not the augmentation set value for setting the amount of shuttle gas is equal to or less than “5” set as the threshold value. If the augmentation setting value is from “1” to “5”, the incomplete expansion detection unit 65 proceeds to step S104 and detects that the balloon 92 is incompletely expanded at the time of expansion. The operation in step S104 is as described above.
 また、これとは反対に、不完全拡張検出部65は、オーグメンテーション設定値が「6」から「10」までである場合、ステップS105へ進み、バルーン92が拡張時において不完全拡張していない(あるいは、バルーン92が拡張時に完全拡張している)ことを検出する。ステップS105では、不完全拡張検出部65は、現在、バルーン駆動部20aによって第1拡張駆動が行われていないことを、制御部62に伝える。 On the other hand, if the augmentation setting value is from “6” to “10”, the incomplete expansion detection unit 65 proceeds to step S105, and the balloon 92 is incompletely expanded at the time of expansion. It is detected that there is no (or the balloon 92 is fully expanded upon expansion). In step S105, the incomplete expansion detection unit 65 notifies the control unit 62 that the first expansion drive is not currently being performed by the balloon drive unit 20a.
 図7に示すように、不完全拡張検出部65は、バルーン92が拡張時において不完全拡張する第1拡張駆動が行われているか否かを検出し、検出結果を制御部62に伝えた後、検出工程を終了する。 As shown in FIG. 7, the incomplete expansion detection unit 65 detects whether or not the first expansion drive is performed in which the balloon 92 is incompletely expanded at the time of expansion, and the detection result is transmitted to the control unit 62. The detection process is terminated.
 図6に示すステップS002において、制御部62は、不完全拡張検出部65の検出結果に基づき、第1拡張駆動が行われていないと判断した場合は、ステップS005へ進んで第1拡張駆動の検出タイマーをリセットした(0秒から再スタートさせた)後、ステップS002の動作へ戻る。 In step S002 shown in FIG. 6, when the control unit 62 determines that the first extension drive is not performed based on the detection result of the incomplete extension detection unit 65, the control unit 62 proceeds to step S005 and performs the first extension drive. After resetting the detection timer (restarting from 0 seconds), the process returns to the operation of step S002.
 図6に示すステップS002において、制御部62は、不完全拡張検出部65の検出結果に基づき、第1拡張駆動が行われていると判断した場合は、ステップS003へ進む。ステップS003において、制御部62は、バルーン駆動部20aによる第1拡張駆動が、1分間以上続いているかを検出する。より具体的には、制御部62は、駆動開始時にスタートさせた第1拡張駆動の検出タイマーの値が1分以上であるか否かにより、ステップS003の判断を行う。ステップS003において、第1拡張駆動の継続時間を表す検出タイマーの値が1分以上であればステップS004へ進み、検出タイマーの値が1分を下回る場合はステップS002へ戻る。 In step S002 shown in FIG. 6, when the control unit 62 determines that the first extension drive is being performed based on the detection result of the incomplete extension detection unit 65, the process proceeds to step S003. In step S003, the control unit 62 detects whether or not the first expansion drive by the balloon drive unit 20a continues for one minute or longer. More specifically, the control unit 62 performs the determination in step S003 depending on whether or not the value of the detection timer of the first extended drive started at the start of driving is 1 minute or more. In step S003, if the value of the detection timer indicating the duration of the first extended drive is 1 minute or more, the process proceeds to step S004, and if the value of the detection timer is less than 1 minute, the process returns to step S002.
 ステップS004では、1回の心拍に対して、直前の第1拡張駆動よりもバルーン92を大きく拡張させる第2拡張駆動を行う工程を、制御部62が実施する。図8は、制御部62がバルーン駆動部20aを制御することによって実施された第2拡張駆動95と、第2拡張駆動95の直前に行われた第1拡張駆動94における内圧波形386及びバルブの開閉状態を表す概念図である。 In step S004, the control unit 62 performs a step of performing the second expansion drive for expanding the balloon 92 larger than the immediately preceding first expansion drive for one heartbeat. FIG. 8 shows the internal pressure waveform 386 and the valve of the second expansion drive 95 implemented by the control unit 62 controlling the balloon drive unit 20a and the first expansion drive 94 performed immediately before the second expansion drive 95. It is a conceptual diagram showing an open / close state.
 図8の左側部分に示す第1拡張駆動94では、陽圧側電磁弁28及び陰圧側電磁弁29の開閉状態から理解できるように、制御部62は、陰圧側電磁弁29を閉じると同時に陽圧側電磁弁28を開き、二次配管系21b内に陽圧の印加を開始した時点から所定時間(たとえば105msec)の経過後に陽圧側電磁弁28を閉じる。また、陽圧側電磁弁28、陰圧側電磁弁29及び補助バルブ41の開閉状態から理解できるように、制御部62は、二次配管系21b内に陽圧の印加を開始した時点から所定時間(たとえば、95msec)の経過後(すなわち、陽圧側電磁弁28を閉じてから10msec後)に補助バルブ41を開き、次の切り換えの前(たとえば、次の切り換えの10msec前)に補助バルブ41を閉じる。 In the first extended drive 94 shown in the left part of FIG. 8, the control unit 62 closes the negative pressure side solenoid valve 29 and simultaneously closes the negative pressure side solenoid valve 29 so that it can be understood from the open / closed state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29. The electromagnetic valve 28 is opened, and the positive pressure side electromagnetic valve 28 is closed after a predetermined time (for example, 105 msec) has elapsed since the start of application of positive pressure into the secondary piping system 21b. In addition, as can be understood from the open / closed states of the positive pressure side solenoid valve 28, the negative pressure side solenoid valve 29, and the auxiliary valve 41, the control unit 62 starts the application of positive pressure in the secondary piping system 21b for a predetermined time ( For example, the auxiliary valve 41 is opened after a lapse of 95 msec (that is, 10 msec after the positive pressure side solenoid valve 28 is closed), and the auxiliary valve 41 is closed before the next switching (for example, 10 msec before the next switching). .
 第1拡張駆動94では、バルーン92の拡張時に、バルーン92に連続する二次配管系21bに備えられる補助バルブ41を動作させることにより、図4(a)に示すようにシャトルガスの一部が補助タンク42に流入する。補助タンク42へのシャトルガスの流入により、図8に示すバルーン92の内圧波形386におけるプラトー圧P5が下降するため、補助バルブ41は、バルーン92の内圧波形386におけるプラトー圧P5と基準圧P6との圧力差を小さくする。なお、ここで第1拡張駆動94におけるものとして説明した補助バルブ61の開閉動作は、バルーン92が拡張時に完全拡張する場合の通常の駆動においても行われるものである。 In the first expansion drive 94, when the balloon 92 is expanded, by operating the auxiliary valve 41 provided in the secondary piping system 21b continuous to the balloon 92, a part of the shuttle gas is generated as shown in FIG. It flows into the auxiliary tank 42. The flow of the shuttle gas into the auxiliary tank 42 causes the plateau pressure P5 in the internal pressure waveform 386 of the balloon 92 shown in FIG. 8 to decrease, so that the auxiliary valve 41 has the plateau pressure P5 and the reference pressure P6 in the internal pressure waveform 386 of the balloon 92. Reduce the pressure difference. Note that the opening / closing operation of the auxiliary valve 61 described here as in the first expansion drive 94 is also performed in normal driving when the balloon 92 is fully expanded during expansion.
 一方、図8の右側部分に示す第2拡張駆動95では、制御部62は、第1拡張駆動94の場合と同様に、陰圧側電磁弁29を閉じると同時に陽圧側電磁弁28を開き、二次配管系21b内に陽圧の印加を開始した時点から所定時間(たとえば、105msec)の経過後に陽圧側電磁弁28を閉じる。しかしながら、陽圧側電磁弁28、陰圧側電磁弁29及び補助バルブ41の開閉状態から理解できるように、第2拡張駆動95においては、制御部62は、二次配管系21b内に陽圧の印加を開始した時点から次の切り換え(すなわち、陰圧側電磁弁29を開く時点)まで、補助バルブ41を閉状態に維持する。 On the other hand, in the second expansion drive 95 shown in the right part of FIG. 8, the control unit 62 closes the negative pressure side electromagnetic valve 29 and simultaneously opens the positive pressure side electromagnetic valve 28, as in the case of the first expansion drive 94. The positive pressure side solenoid valve 28 is closed after elapse of a predetermined time (for example, 105 msec) from the time when application of the positive pressure is started in the next piping system 21b. However, as can be understood from the open / closed states of the positive pressure side solenoid valve 28, the negative pressure side solenoid valve 29, and the auxiliary valve 41, in the second expansion drive 95, the control unit 62 applies a positive pressure to the secondary piping system 21b. The auxiliary valve 41 is kept closed until the next switching (that is, the time when the negative pressure side electromagnetic valve 29 is opened) from the time when the operation is started.
 第2拡張駆動95では、補助バルブ41を閉状態に維持してバルーン92を拡張させることにより、図4(a)に示すようなシャトルガスの補助タンク42への流入が生じない。したがって、第2拡張駆動95では、図8左側部分に示す第1拡張駆動94よりも、バルーン92を拡張させるシャトルガスが多い状態でバルーン92を拡張させることになる。したがって、第2拡張駆動95では、バルーン92の内圧波形386におけるプラトー圧P7が、第1拡張駆動94のプラトー圧P5より上昇し、バルーン92は完全拡張するか、少なくとも、直前の第1拡張駆動94による拡張時に比べて完全拡張に近い状態まで拡張する。 In the second expansion drive 95, by keeping the auxiliary valve 41 closed and expanding the balloon 92, the shuttle gas does not flow into the auxiliary tank 42 as shown in FIG. Therefore, in the second expansion drive 95, the balloon 92 is expanded in a state where there is more shuttle gas for expanding the balloon 92 than in the first expansion drive 94 shown in the left part of FIG. Accordingly, in the second expansion drive 95, the plateau pressure P7 in the internal pressure waveform 386 of the balloon 92 increases from the plateau pressure P5 of the first expansion drive 94, and the balloon 92 is fully expanded or at least the immediately preceding first expansion drive. It expands to a state close to complete expansion as compared with 94 expansion.
 図6に示すように、制御部62は、ステップS004において上述のような第2拡張駆動95をバルーン駆動部20aに実施させた後、ステップS005へ進んで第1拡張駆動の検出タイマーをリセットした(0秒から再スタートさせた)後、ステップS002の動作へ戻る。 As shown in FIG. 6, the control unit 62 causes the balloon drive unit 20a to perform the second expansion drive 95 as described above in step S004, and then proceeds to step S005 to reset the detection timer for the first expansion drive. After restarting from 0 seconds, the process returns to the operation of step S002.
 このように、図6に示す駆動方法では、1分間以上第1拡張駆動94が続く場合に、制御部62がバルーン駆動部20aに対して、1心拍分の第2拡張駆動95を行うように制御することにより、バルーンが完全拡張できない時間が、所定の時間を超えて継続することを防止することができる。また、第2拡張駆動95により、バルーン92を完全拡張させるか、又は完全拡張に近い状態までバルーン92を拡張させることができるため、バルーン92の表面に血栓が形成される問題を防止できる。 Thus, in the driving method shown in FIG. 6, when the first expansion drive 94 continues for one minute or longer, the control unit 62 performs the second expansion drive 95 for one heartbeat on the balloon drive unit 20a. By controlling, it is possible to prevent the time during which the balloon cannot be fully expanded from continuing beyond a predetermined time. In addition, since the balloon 92 can be fully expanded by the second expansion drive 95, or the balloon 92 can be expanded to a state close to the complete expansion, a problem that a thrombus is formed on the surface of the balloon 92 can be prevented.
 図6に示す例では、ステップS003に示すように、制御部62は、第1拡張駆動94が1分間以上続く場合に、バルーン駆動部20aに対して第2拡張駆動95を行わせるが、第2拡張駆動95を行わせる第1拡張駆動94の継続時間は1分間に限定されず、30秒間以上の任意の時間から選択すればよく、たとえば1~3分間程度とすることが好ましい。第2拡張駆動95を行わせるタイミングがこれより早すぎると、IABP駆動装置10による心機能補助効果が狙いより強くなりすぎ、意図したウィーング等を行えないなど問題が生じる恐れがある。また、第2拡張駆動95を行わせるタイミングが遅すぎると、バルーン92の表面における血栓の形成を適切に防止できなくなるおそれがある。 In the example shown in FIG. 6, as shown in step S003, the control unit 62 causes the balloon drive unit 20a to perform the second expansion drive 95 when the first expansion drive 94 continues for one minute or longer. The duration of the first extension drive 94 for performing the two extension drive 95 is not limited to one minute, and may be selected from an arbitrary time of 30 seconds or more, and is preferably about 1 to 3 minutes, for example. If the timing at which the second expansion drive 95 is performed is earlier than this, the cardiac function assisting effect by the IABP driving device 10 becomes too stronger than intended, and there is a possibility that problems such as inability to perform intended wings or the like may occur. In addition, if the timing for performing the second expansion drive 95 is too late, there is a possibility that formation of a thrombus on the surface of the balloon 92 cannot be prevented appropriately.
 図6に示すような制御を行うことにより、IABP駆動装置10は、患者の状態に応じて適切に心機能を補助しつつ、かつ、バルーン92が完全拡張しない状態が所定時間以上連続することを防止し、バルーン92の表面に血栓が形成される問題を防止することができる。 By performing the control as shown in FIG. 6, the IABP driving device 10 assists the cardiac function appropriately according to the patient's condition, and the state where the balloon 92 is not fully expanded continues for a predetermined time or more. It is possible to prevent the problem that thrombus is formed on the surface of the balloon 92.
 以上のように、IABP駆動装置10及びこれによるバルーン92の駆動方法について、実施形態及びそれを用いた具体的な動作を挙げて説明したが、本発明は、上述した実施形態のみに限定されるものではない。たとえば、IABP駆動装置10において、バルーン駆動部20aの構成は、図2に示すものに限定されず、陽圧と陰圧を交互に配管系に印加して、バルーン92を拡張・収縮できるものであれば、どのような構成であってもよい。 As described above, the IABP driving device 10 and the method for driving the balloon 92 using the IABP driving device 10 have been described with reference to the embodiments and specific operations using the embodiments. However, the present invention is limited only to the above-described embodiments. It is not a thing. For example, in the IABP driving device 10, the configuration of the balloon driving unit 20a is not limited to that shown in FIG. 2, and the balloon 92 can be expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system. Any configuration may be used.
 また、図2に示す第1拡張駆動94を検出するための不完全拡張検出部65としては、オーグメンテーション設定値が所定の閾値以下であることを検出するものや、血圧波形84にバルーン排除圧84aが認められなくなることを検出するものに限定されず、たとえば心拍数が所定値(たとえば120bpm)以上となることを検出するものなど、バルーンが拡張時において不完全拡張する第1拡張駆動に関連する他の設定値や信号などの情報に基づいて第1拡張駆動を検出するものであってもよい。なお、第1拡張駆動の検出とは、バルーンの拡張時の不完全拡張を直接的に検出するもののみを意味するものではなく、関連する情報に基づいてバルーン92が拡張時に不完全拡張していると推定することをも含む概念である。 Further, the incomplete expansion detection unit 65 for detecting the first expansion drive 94 shown in FIG. 2 detects that the augmentation set value is equal to or less than a predetermined threshold, or eliminates the balloon in the blood pressure waveform 84. It is not limited to the one that detects that the pressure 84a is not recognized. For example, one that detects that the heart rate is equal to or higher than a predetermined value (for example, 120 bpm). The first extended drive may be detected based on information such as other related setting values and signals. The detection of the first expansion drive does not mean only detection of incomplete expansion when the balloon is expanded, but the balloon 92 is incompletely expanded during expansion based on related information. It is a concept that includes presuming that
 10…IABP駆動装置
 20…装置本体
 20a…バルーン駆動部
 21a…一次配管系
 21b…二次配管系(配管系)
 22…測定部
 24…調整部
 25…圧力伝達隔壁装置
 26…ダイヤフラム
 28…陽圧側電磁弁
 29…陰圧側電磁弁
 30…ポンプ
 31…陽圧タンク
 32…陽圧調整弁
 35…陰圧タンク
 36…陰圧調整弁
 40…補助部
 41…補助バルブ
 42…補助タンク
 PT1、PT2…圧力
 P5、P7…プラトー圧
 P6…基準圧
 48…モニタ設置部
 49…キャスター
 60…モニタ部
 62…制御部
 64…表示部
 64a…波形表示部
 64b…血圧・心拍数表示部
 65…不完全拡張検出部
 68…操作信号入力部
 68a…設定値入力部
 69…心拍信号入力部
 70…パイロットランプ
 82…心電図波形
 84…血圧波形
 84a…バルーン排除圧
 84b…収縮期圧
 84c…オーグメンテーション圧
 86、88、186、286、386…内圧波形
 90…バルーンカテーテル
 92…バルーン
 94…第1拡張駆動
 95…第2拡張駆動
DESCRIPTION OF SYMBOLS 10 ... IABP drive device 20 ... Apparatus main body 20a ... Balloon drive part 21a ... Primary piping system 21b ... Secondary piping system (pipe system)
DESCRIPTION OF SYMBOLS 22 ... Measuring part 24 ... Adjustment part 25 ... Pressure transmission partition apparatus 26 ... Diaphragm 28 ... Positive pressure side solenoid valve 29 ... Negative pressure side solenoid valve 30 ... Pump 31 ... Positive pressure tank 32 ... Positive pressure adjustment valve 35 ... Negative pressure tank 36 ... Negative pressure adjusting valve 40 ... auxiliary part 41 ... auxiliary valve 42 ... auxiliary tank PT1, PT2 ... pressure P5, P7 ... plateau pressure P6 ... reference pressure 48 ... monitor installation part 49 ... caster 60 ... monitor part 62 ... control part 64 ... display Unit 64a ... waveform display unit 64b ... blood pressure / heart rate display unit 65 ... incomplete expansion detection unit 68 ... operation signal input unit 68a ... set value input unit 69 ... heart rate signal input unit 70 ... pilot lamp 82 ... electrocardiogram waveform 84 ... blood pressure Waveform 84a ... Balloon exclusion pressure 84b ... Systolic pressure 84c ... Augmentation pressure 86, 88, 186, 286, 386 ... Internal pressure waveform 90 ... Rune catheter 92 ... balloon 94 ... first extended drive 95 ... second expanded drive

Claims (6)

  1.  バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンを拡張及び収縮を繰り返すように駆動させるIABP駆動装置によるバルーンの駆動方法であって、
     前記バルーンが拡張時において不完全拡張する第1拡張駆動を検出する検出工程と、
     前記第1拡張駆動が30秒間以上の所定時間続いた場合、前記第1拡張駆動における前記バルーンの拡張時よりも前記バルーンを大きく拡張させる第2拡張駆動を行う工程と、
     を有するバルーンの駆動方法。
    A balloon driving method using an IABP driving device, wherein a balloon catheter to which a balloon is connected is attached, and the balloon is driven to repeat expansion and contraction.
    Detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion;
    When the first expansion drive continues for a predetermined time of 30 seconds or more, performing a second expansion drive that expands the balloon larger than when the balloon is expanded in the first expansion drive;
    A method of driving a balloon having
  2.  請求項1に記載されたバルーンの駆動方法であって、
     前記検出工程では、前記バルーンを拡張させるシャトルガスの量を設定するオーグメンテーション設定値が、所定の閾値以下に設定されていることを検出するバルーンの駆動方法。
    A balloon driving method according to claim 1, comprising:
    In the detecting step, a balloon driving method for detecting that an augmentation set value for setting an amount of shuttle gas for expanding the balloon is set to a predetermined threshold value or less.
  3.  請求項1に記載されたバルーンの駆動方法であって、
     前記検出工程では、血圧波形にバルーン排除圧が認められなくなることを検出するバルーンの駆動方法。
    A balloon driving method according to claim 1, comprising:
    In the detection step, a balloon driving method for detecting that no balloon exclusion pressure is recognized in the blood pressure waveform.
  4.  請求項1から3までのいずれかに記載されたバルーンの駆動方法であって、
     前記第2拡張駆動では、前記第1拡張駆動における前記バルーンの拡張時よりも、前記バルーンを拡張させるシャトルガスが多い状態で、前記バルーンを拡張させることを特徴とするバルーンの駆動方法。
    A balloon driving method according to any one of claims 1 to 3, comprising:
    In the second expansion drive, the balloon is expanded in a state in which the amount of shuttle gas for expanding the balloon is larger than that during expansion of the balloon in the first expansion drive.
  5.  請求項1から4までのいずれかに記載されたバルーンの駆動方法であって、
     前記IABP駆動装置は、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部を有し、
     前記バルーン駆動部は、前記配管系と内部が連通する補助タンクと、前記配管系と前記補助タンクとの間の連通を選択的に開閉する弁である補助バルブとを有し、
     前記第1拡張駆動では、前記バルーンの内圧波形におけるプラトー圧と基準圧との圧力差を小さくするように、前記補助バルブを開閉動作させて、前記バルーンを拡張させ、
     前記第2拡張駆動では、前記補助バルブを閉状態に維持して前記バルーンを拡張させるバルーンの駆動方法。
    A balloon driving method according to any one of claims 1 to 4, comprising:
    The IABP driving device includes a balloon driving unit that drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon,
    The balloon driving unit includes an auxiliary tank that communicates with the piping system and an auxiliary valve, and an auxiliary valve that is a valve that selectively opens and closes communication between the piping system and the auxiliary tank.
    In the first expansion drive, the balloon is expanded by opening and closing the auxiliary valve so as to reduce the pressure difference between the plateau pressure and the reference pressure in the internal pressure waveform of the balloon,
    In the second expansion drive, a balloon driving method in which the balloon is expanded by maintaining the auxiliary valve in a closed state.
  6.  バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部と、
     心拍に関する信号である心拍信号が入力され、心拍に同期して前記バルーンが拡張及び収縮するように、前記バルーン駆動部を制御する制御部と、
     前記バルーンが拡張時において不完全拡張する第1拡張駆動を検出する不完全拡張検出部と、を有し、
     前記制御部は、前記バルーンが拡張時において不完全拡張する第1拡張駆動が30秒間以上の所定時間続いた場合、所定の回数の心拍に対して前記第1拡張駆動における前記バルーンの拡張時よりも前記バルーンを大きく拡張させる第2拡張駆動を行った後、再び前記第1拡張駆動を行うように、前記バルーン駆動部を制御するIABP駆動装置。
    A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
    A controller that controls the balloon driving unit so that a heartbeat signal that is a signal related to a heartbeat is input and the balloon is expanded and contracted in synchronization with the heartbeat;
    An incomplete expansion detection unit for detecting a first expansion drive in which the balloon is incompletely expanded at the time of expansion;
    When the first expansion drive in which the balloon is incompletely expanded at the time of expansion lasts for a predetermined time of 30 seconds or more, the control unit starts from the time of expansion of the balloon in the first expansion drive for a predetermined number of heartbeats. An IABP driving device that controls the balloon driving unit so as to perform the first expansion driving again after performing the second expansion driving that greatly expands the balloon.
PCT/JP2018/006782 2017-03-01 2018-02-23 Drive method of balloon with iabp drive device, and iabp drive device WO2018159502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502965A JP7103339B2 (en) 2017-03-01 2018-02-23 IABP drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038738 2017-03-01
JP2017-038738 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159502A1 true WO2018159502A1 (en) 2018-09-07

Family

ID=63370967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006782 WO2018159502A1 (en) 2017-03-01 2018-02-23 Drive method of balloon with iabp drive device, and iabp drive device

Country Status (2)

Country Link
JP (1) JP7103339B2 (en)
WO (1) WO2018159502A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192396A (en) * 1991-05-29 1993-08-03 Aisin Seiki Co Ltd Balloon pump driving device in aorta reducible in expanding capacity
WO2011114779A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Medical inflation/deflation drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192396A (en) * 1991-05-29 1993-08-03 Aisin Seiki Co Ltd Balloon pump driving device in aorta reducible in expanding capacity
WO2011114779A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Medical inflation/deflation drive device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIRAE, H. ET AL.: "Advances in new technology aimed at ideal IABP", THE JAPANESE JOURNAL OF MEDICAL INSTRUMENTATION, vol. 66, no. 10, 1996, pages 619 - 620 *

Also Published As

Publication number Publication date
JPWO2018159502A1 (en) 2019-12-26
JP7103339B2 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
JP3114187B2 (en) Serial left ventricular assist device
JP2902040B2 (en) Drive device of balloon pump with arterial pressure sensor
AU740206B2 (en) Pressure control system for cardiac assist device
AU2004268630B2 (en) Timing of intra-aortic balloon pump therapy
JPS6357058A (en) Drive apparatus of medical pump
JP2015516186A (en) Compression therapy device having multiple simultaneous activation chambers
WO2011114779A1 (en) Medical inflation/deflation drive device
JP5637051B2 (en) Aortic balloon pumping drive control program and aortic balloon pumping drive
US20110196189A1 (en) Extra-cardiac differential ventricular actuation by inertial and baric partitioning
JPH05192396A (en) Balloon pump driving device in aorta reducible in expanding capacity
JP7227570B2 (en) IABP driver
WO2018159502A1 (en) Drive method of balloon with iabp drive device, and iabp drive device
KR20080010530A (en) Blood pressure actuating apparatus and method driven by fluid and thereby test method of a sphygmomanometer
WO2019108515A1 (en) Apparatus, methods and systems for dynamic ventricular assistance
JP6749387B2 (en) A device for controlling biomechanical ventricular-aortic matching
JP7346939B2 (en) Medical inflation/deflation drive device
JP6958612B2 (en) Balloon driving method by IABP driving device and IABP driving device
EP3566741A1 (en) Intra-aortic dual balloon pump catheter device
JP2023031938A (en) Medical expansion and contraction drive device
US20240066274A1 (en) Intra-aortic dual balloon driving pump catheter device
JPH03242150A (en) Driving device of blood pump equipment
JPH11155946A (en) Blood pump driving device, and blood pump driving system
JP2019063261A (en) Iabp driving device
JPH03118073A (en) Medical pump system
JPS63242265A (en) Pumping drive apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760783

Country of ref document: EP

Kind code of ref document: A1