WO2018159480A1 - Electric oil pump - Google Patents
Electric oil pump Download PDFInfo
- Publication number
- WO2018159480A1 WO2018159480A1 PCT/JP2018/006647 JP2018006647W WO2018159480A1 WO 2018159480 A1 WO2018159480 A1 WO 2018159480A1 JP 2018006647 W JP2018006647 W JP 2018006647W WO 2018159480 A1 WO2018159480 A1 WO 2018159480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- electric oil
- inverter circuit
- rotor
- oil pump
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/008—Enclosed motor pump units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0088—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0096—Heating; Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
- F04C29/047—Cooling of electronic devices installed inside the pump housing, e.g. inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/20—Fluid liquid, i.e. incompressible
- F04C2210/206—Oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/40—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/808—Electronic circuits (e.g. inverters) installed inside the machine
Definitions
- the present invention relates to an electric oil pump.
- Patent Literature 1 discloses an electric oil pump having a structure in which a pump cover portion in which an inverter circuit is accommodated is part of a transmission case.
- the electric oil pump disclosed in Patent Document 1 has a pump cover that also serves as a part of the transmission case, the structure of the electric oil pump is limited by the structure of the transmission. For this reason, in various transmissions, an electric oil pump having a structure having an inverter circuit, a motor, and a pump cannot be used for general purposes. Further, in the electric oil pump, when higher output is demanded from the viewpoint of responsiveness and the like, the amount of heat generated by the elements used in the inverter circuit increases, so that the inverter circuit needs to be cooled efficiently.
- An object of the present invention is to provide an electric oil pump that can efficiently cool an inverter circuit and can be used for various purposes in various transmissions.
- An electric oil pump includes a motor unit having a shaft rotatably supported around a central axis extending in an axial direction, and the motor unit located on one axial side of the motor unit.
- a pump part that is driven by the shaft extending from the part and discharges oil; and a motor drive part that is located on one side in the axial direction of the motor part and drives the motor part via the pump part.
- the motor unit includes a rotor that is rotatable around the shaft, a stator that is disposed radially outside the rotor, and a housing that houses the rotor and the stator
- the pump unit includes: A pump rotor attached to the shaft; a recess containing the pump rotor and including a side wall surface and a bottom surface located on the other axial side of the motor portion; A pump body having an opening on the one axial side of the motor unit, and a pump cover for closing the opening, and the motor driving unit is an inverter circuit for controlling the driving of the motor unit; An inverter cover covering the inverter circuit, and the inverter circuit is in thermal contact with the pump cover.
- an electric oil pump that can efficiently cool an inverter circuit and can be used for various purposes in various transmissions.
- an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
- the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG.
- the X-axis direction is a direction parallel to the direction in which the top plate portion 63a of the inverter cover 63 shown in FIG. 1 extends, that is, the left-right direction in FIG.
- the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
- the positive side (+ Z side) in the Z-axis direction is referred to as “front side”
- the negative side ( ⁇ Z side) in the Z-axis direction is referred to as “rear side”.
- the rear side and the front side are names used for explanation only, and do not limit the actual positional relationship and direction.
- a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”
- a radial direction around the central axis J is simply referred to as a “radial direction”.
- the circumferential direction centered at, that is, around the central axis J ( ⁇ direction) is simply referred to as “circumferential direction”.
- thermalally contacting includes not only a case where target members are in direct contact with each other but also a case where a member involved in heat conduction is interposed between the members.
- extending in the axial direction means not only extending in the axial direction (Z-axis direction) but also extending in a direction inclined by less than 45 ° with respect to the axial direction. Including. Further, in this specification, “extending in the radial direction” means that 45% with respect to the radial direction, in addition to the case where it extends strictly in the radial direction, that is, the direction perpendicular to the axial direction (Z-axis direction). This includes cases extending in a tilted direction within a range of less than °.
- FIG. 1 is a cross-sectional view showing the electric oil pump of the present embodiment.
- the electric oil pump 10 of this embodiment includes a motor unit 20, a pump unit 30, and a motor driving unit 60.
- the motor unit 20, the pump unit 30, and the motor driving unit 60 are provided side by side along the axial direction.
- the motor unit 20 has a shaft 41 supported so as to be rotatable about a central axis J extending in the axial direction, and drives the pump by rotating the shaft 41.
- the pump unit 30 is located on the front side (+ Z side) of the motor unit 20 and is driven by the motor unit 20 via the shaft 41 to discharge oil.
- the motor driving unit 60 is located on the front side (+ Z side) of the pump unit 30 and controls driving of the motor unit 20.
- each constituent member will be described in detail.
- the motor unit 20 includes a housing 21, a rotor 40, a shaft 41, a stator 50, and a bearing 55.
- the motor unit 20 is, for example, an inner rotor type motor, in which the rotor 40 is fixed to the outer peripheral surface of the shaft 41 and the stator 50 is positioned on the radially outer side of the rotor 40.
- the bearing 55 is disposed at the axial rear end ( ⁇ Z side) end portion of the shaft 41 and supports the shaft 41 rotatably.
- the housing 21 has a bottomed thin cylindrical shape, and includes a bottom surface portion 21a, a stator holding portion 21b, a pump body holding portion 21c, a side wall portion 21d, flange portions 24 and 25,
- the bottom surface portion 21a forms a bottomed portion
- the stator holding portion 21b, the pump body holding portion 21c, and the side wall portion 21d form a cylindrical side wall surface centered on the central axis J.
- the inner diameter of the stator holding portion 21b is larger than the inner diameter of the pump body holding portion 21c.
- the outer surface of the stator 50 that is, the outer surface of the core back portion 51 described later is fitted to the inner surface of the stator holding portion 21 b. Thereby, the stator 50 is accommodated in the housing 21.
- the flange portion 24 extends radially outward from the front side (+ Z side) end portion of the side wall portion 21d.
- the flange portion 25 extends radially outward from the rear side ( ⁇ Z side) end portion of the stator holding portion 21b.
- the flange portion 24 and the flange portion 25 face each other and are fastened by fastening means (not shown). Thereby, the motor unit 20 and the pump unit 30 are sealed and fixed in the housing 21.
- the material of the housing 21 for example, a zinc-aluminum-magnesium alloy or the like can be used, and specifically, a hot-dip zinc-aluminum-magnesium alloy plated steel plate and a steel strip can be used. Further, the bottom surface portion 21 a is provided with a bearing holding portion 56 for holding the bearing 55.
- the rotor 40 includes a rotor core 43 and a rotor magnet 44.
- the rotor core 43 is fixed to the shaft 41 so as to surround the shaft 41 around the axis ( ⁇ direction).
- the rotor magnet 44 is fixed to the outer surface along the axis of the rotor core 43 ( ⁇ direction). The rotor core 43 and the rotor magnet 44 rotate together with the shaft 41.
- the stator 50 surrounds the rotor 40 around the axis ( ⁇ direction), and rotates the rotor 40 around the central axis J.
- the stator 50 includes a core back part 51, a tooth part 52, a coil 53, and a bobbin (insulator) 54.
- the shape of the core back portion 51 is a cylindrical shape concentric with the shaft 41.
- the teeth part 52 extends from the inner surface of the core back part 51 toward the shaft 41.
- a plurality of teeth portions 52 are provided, and are arranged at equal intervals in the circumferential direction of the inner side surface of the core back portion 51.
- the coil 53 is provided around a bobbin (insulator) 54 and is formed by winding a conductive wire 53a.
- a bobbin (insulator) 54 is attached to each tooth portion 52.
- the bearing 55 is disposed on the rear side ( ⁇ Z side) of the rotor 40 and the stator 50 and is held by the bearing holding portion 56.
- the bearing 55 supports the shaft 41.
- the shape, structure, and the like of the bearing 55 are not particularly limited, and any known bearing can be used.
- the pump unit 30 is provided on one side in the axial direction of the motor unit 20, specifically on the front side (+ Z axis side).
- the pump unit 30 has the same rotating shaft as the motor unit 20 and is driven by the motor unit 20 via the shaft 41.
- the pump unit 30 includes a positive displacement pump that pumps oil by expanding and reducing the volume of a sealed space (oil chamber).
- a trochoid pump is used as the positive displacement pump.
- the pump unit 30 includes a pump body 31, a pump cover 32, and a pump rotor 35.
- the pump body 31 and the pump cover 32 are also referred to as a pump case.
- the pump body 31 is located on the front side (+ Z axis side) of the motor unit 20.
- the pump body 31 has a cylindrical shape from the pump body main body 31b, a through hole 31a penetrating the inside of the pump body main body 31b along the axial direction of the central axis J, and from the pump body main body 31b to the front side (+ Z axis side). And a protruding portion 31c that protrudes.
- the inner diameter of the protrusion 31c is larger than the inner diameter of the through hole 31a.
- the protrusion 31c and the pump body main body 31b form a recess 33 that opens to the pump cover 32 side.
- the through hole 31a opens to the motor unit 20 side on the rear side ( ⁇ Z side), and opens to the recess 33 on the front side (+ Z axis side).
- the through hole 31a functions as a bearing member into which the shaft 41 is inserted and rotatably supports the shaft 41.
- the recess 33 accommodates the pump rotor 35 and functions as a pump chamber (hereinafter also referred to as the pump chamber 33).
- the pump body 31 is fixed in the pump body holding part 21c on the front side (+ Z axis side) of the motor part 20.
- An O-ring 71 is provided between the outer peripheral surface of the pump body main body 31b and the inner peripheral surface of the pump body holding portion 21c. Thereby, a gap between the outer peripheral surface of the pump body 31 and the inner peripheral surface of the housing 21 is sealed.
- the material of the pump body 31 for example, cast iron or the like can be used.
- the pump rotor 35 is attached to the front side (+ Z axis side) end of the shaft 41 and is accommodated in the pump chamber 33.
- the pump rotor 35 includes an inner rotor 37 attached to the shaft 41 and an outer rotor 38 surrounding the radially outer side of the inner rotor 37.
- the inner rotor 37 is an annular gear having teeth on the radially outer surface.
- the inner rotor 37 is fixed to the shaft 41 by press-fitting the front side (+ Z axis side) end portion of the shaft 41 into the inner rotor 37.
- the inner rotor 37 rotates around the axis ( ⁇ direction) together with the shaft 41.
- the outer rotor 38 is an annular gear that surrounds the radially outer side of the inner rotor 37 and has teeth on the radially inner side surface.
- the outer rotor 38 is rotatably accommodated in the pump chamber 33.
- an inner housing chamber (not shown) for housing the inner rotor 37 is formed in a star shape, for example.
- the number of inner teeth of the outer rotor 38 is larger than the number of outer teeth of the inner rotor 37.
- the inner rotor 37 and the outer rotor 38 mesh with each other, and when the inner rotor 37 is rotated by the shaft 41, the outer rotor 38 is rotated with the rotation of the inner rotor 37.
- the pump rotor 35 uses the volume change to suck oil from a suction port 32c described later, pressurizes the sucked oil, and discharges it from the discharge port 32d.
- a region where the volume increases that is, oil is sucked
- a negative pressure region is defined as a negative pressure region.
- the pump cover 32 is attached to the front side (+ Z axis side) of the pump body 31.
- the pump cover 32 includes a pump cover body 32a, a flange portion 32b, a suction port 32c, a discharge port 32d, a suction port 32e, and a discharge port 32f.
- the pump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect. Moreover, since the oil below a fixed temperature (for example, 120 degreeC) flows through the inside of the pump cover 32, the temperature rise of the pump cover 32 is suppressed.
- the pump cover main body 32a has a disk shape extending in the radial direction.
- the pump cover main body 32a closes the opening on the front side (+ Z axis side) of the recess 33.
- the flange portion 32b extends in the radial direction at the outer edge of the front side (+ Z axis side) of the pump cover main body 32a.
- the outer diameter of the pump cover 32 is larger than the outer diameter of the protruding portion 31c of the pump body 31 due to the flange portion 32b.
- the suction port 32c is a crescent-shaped groove when viewed from the pump rotor 35 to the front side (+ Z-axis side). As the volume of the space formed between the inner rotor 37 and the outer rotor 38 increases, the suction port 32c communicates with the pump rotor 35 to the extent that the volume increases.
- the discharge port 32d is a crescent-shaped groove when viewed from the pump rotor 35 on the front side (+ Z axis side). As the volume of the space formed between the inner rotor 37 and the outer rotor 38 decreases, the discharge port 32d communicates with the pump rotor 35 to the extent that the volume decreases.
- the suction port 32e extends from the suction port 32c in the pump cover main body 32a toward the -X side (left side in the figure) and communicates with the outside.
- the discharge port 32f extends from the discharge port 32d in the pump cover main body 32a toward the X side (right side in the figure) and communicates with the outside.
- the suction port 32e and the discharge port 32f are connected to the pump rotor 35 via the suction port 32c and the discharge port 32d, respectively. As a result, oil can be sucked into the pump rotor 35 and discharged from the pump rotor 35.
- the motor driving unit 60 is provided on the front side (+ Z side) of the pump cover 32 and controls driving of the motor unit 20.
- the motor drive unit 60 includes an inverter cover 63 and an inverter circuit 65 including a circuit board 61 and a heating element 62.
- the inverter circuit 65 has a heating element 62 mounted on a circuit board 61, supplies power for driving to the coil 53 of the stator 50 of the motor unit 20, and drives, rotates and stops the motor unit 20. Control the behavior. In addition, power supply between the motor driving unit 60 and the coil 53 of the stator 50 and communication by an electric signal are performed between the motor driving unit 60 and the coil 53 using a wiring member such as a coated cable (not shown). Done by connecting to.
- the circuit board 61 outputs a motor drive signal.
- the circuit board 61 is disposed directly on the surface of the pump cover 32 while ensuring insulation.
- a printed wiring (not shown) is provided on the surface of the circuit board 61. Further, by using a copper inlay substrate as the circuit substrate 61, the heat generated by the heating element 62 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
- the heating element 62 is mounted on the front side (+ Z side) surface of the circuit board 61.
- the heating element 62 is, for example, a capacitor, a microcomputer, a power IC, a field effect transistor (FET), or the like. Further, the number of heating elements 62 is not limited to two, and may be one or three or more.
- the inverter cover 63 is provided on the front side (+ Z side) of the pump cover 32 and covers the circuit board 61 and the heating element 62.
- the inverter cover 63 has a top plate portion 63a and a flange portion 63b.
- the top plate 63a extends in the radial direction in contact with the front side (+ Z side) surface of the heating element 62.
- the flange portion 63b extends from the outer edge of the top plate portion 63a to the rear side ( ⁇ Z side).
- the rear end surface ( ⁇ Z side) of the flange portion 63b is in contact with the front side (+ Z side) surface of the flange portion 32b of the pump cover 32.
- the inverter cover 63 is fixed to the pump cover 32 by fastening the flange portion 63b of the inverter cover 63 and the flange portion 32b of the pump cover 32 with fastening means 64 such as bolts and nuts.
- the electric oil pump 10 of the present embodiment first, power is supplied to the motor driving unit 60 from an external power source connected via a connector unit (not shown). As a result, a drive current is supplied from the motor drive unit 60 to the coil 53 of the stator 50 via a wiring member such as a covered cable (not shown). When a drive current is supplied to the coil 53, a magnetic field is generated, and the rotor core 43 and the rotor magnet 44 of the rotor 40 are rotated together with the shaft 41 by the magnetic field. In this way, the electric oil pump 10 obtains a rotational driving force.
- the drive current supplied to the coil 53 of the stator 50 is controlled by a power IC and circuit components that are the heating elements 62 of the inverter circuit 65 in the motor drive unit 60.
- the motor drive unit 60 detects the rotational position of the rotor 40 by detecting a change in magnetic flux of a sensor magnet (not shown) by a rotation sensor (not shown).
- the inverter circuit 65 of the motor drive unit 60 outputs a motor drive signal corresponding to the rotational position of the rotor 40 and controls the drive current supplied to the coil 53 of the stator 50. In this way, the drive of the electric oil pump 10 of this embodiment is controlled.
- the suction port 32e of the electric oil pump 10 is connected to an oil pan (not shown) in which oil is stored by a flow pipe (not shown), and the oil pan side tip of the flow pipe is immersed in the oil. Due to the negative pressure generated by the rotation of the inner rotor 37 of the electric oil pump 10, the oil stored in the oil pan enters the electric oil pump 10 through the suction port 32e and reaches the suction port 32c. The oil sucked into the pump chamber 33 from the suction port 32c is pumped to the discharge port 32d and discharged from the discharge port 32d to the discharge port 32f. The discharged oil is supplied into a transmission (not shown). The supplied oil generates hydraulic pressure at the relevant location, and then it is refluxed and stored again in the oil pan.
- the pump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect.
- the inverter circuit 65 is disposed on the front side (+ Z side) of the pump cover 32, and the circuit board 61 is in direct contact with the pump cover main body 32a having a high heat dissipation effect while ensuring insulation.
- an oil flow path is formed in the pump unit 30 from the suction port 32e to the discharge port 32f, and oil having a constant temperature (for example, 120 ° C.) or less flows through the pump cover 32.
- the heat generated in the circuit board 61 is effectively cooled via the pump cover 32, and the temperature rise is suppressed. That is, the pump cover 32 that comes into contact with the oil flowing in the pump unit 30 directly cools the circuit board 61 of the inverter circuit 65 and also serves as a heat sink, so that cooling can be effectively realized.
- the heating element 62 of the inverter circuit 65 is in direct contact with the top plate portion 63 a of the inverter cover 63. For this reason, the heat generated by the heat generating element 62 can be dissipated from the inverter cover 63. Moreover, by using a copper inlay board for the circuit board 61, the heat generated in the inverter circuit 65 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
- the motor unit 20, the pump unit 30, and the motor drive unit 60 are provided side by side along the axial direction, and since they have a cylindrical compact shape, they are used for various transmissions as well. can do.
- the through hole 31a functions as a sliding bearing member that rotatably supports the shaft 41 by oil that flows into the gap with the shaft 41.
- a sliding bearing is used by using a sucked oil while arranging a seal material or the like at a predetermined position to prevent the oil from entering the motor unit 20.
- the shaft 41 has a double bearing structure constituted by the sliding bearing member of the pump unit 30 and the bearing 55 of the motor unit 20.
- the tilt of the shaft 41 can be suppressed by the double bearing structure, so that the inner rotor 37 is mounted on the wall surface of the pump case (that is, the pump body 31 and the pump cover 32). It is possible to suppress the sliding resistance from increasing.
- thermosetting resin having a high thermal conductivity such as silicone rubber, a heat radiating sheet, a heat radiating gel, or the like can be used.
- thermosetting resin for example, after applying the resin to the pump cover main body 32a, the circuit board 61 is assembled to the pump cover main body 32a so as to be in pressure contact with the resin, and the resin is cured, so that the inverter circuit can be easily 65 can be formed.
- the circuit board 61 of the inverter circuit 65 can be reliably brought into contact with the pump cover main body 32a, so that the cooling efficiency of the circuit board 61 can be improved.
- the positions of the circuit board 61 and the heat generating element 62 are reversed in the axial direction, and the heat generating element 62 is arranged on the rear side ( ⁇ Z side) from the circuit board 61.
- the circuit board 61 may be in direct contact with the top plate portion 63a of the inverter cover 63 while ensuring insulation (second modification).
- the heat generating element 62 of the inverter circuit 65 can be reliably brought into contact with the pump cover main body 32a via the heat radiating member 66, so that the cooling efficiency of the heat generating element 62 can be improved.
- the circuit board 61 is in direct contact with the top plate portion 63 a of the inverter cover 63 while ensuring insulation, heat generated in the circuit board 61 can be radiated from the inverter cover 63.
- a heat radiation member 66 can be provided on the rear side ( ⁇ Z side) of the top plate portion 63a of the inverter cover 63 to be brought into contact with the heat generating element 62 ( Third modification).
- the heat generating element 62 is reliably brought into contact with the top plate portion 63a by interposing a heat radiating member 66 involved in heat conduction between the heat generating element 62 of the inverter circuit 65 and the top plate portion 63a. Therefore, the heat of the heating element 62 is effectively radiated from the inverter cover 63 to the outside, and the temperature rise is suppressed.
- FIG. 1 An example of the inverter circuit 65 in which two heating elements 62 of the same type are mounted on one circuit board 61 is shown.
- the present invention is not limited to the inverter circuit 65 having this structure.
- an inverter circuit 65 in which the heating elements 62 are mounted on the two circuit boards 61a and 61b can be used (the first circuit). 4 modification).
- the number of circuit boards 61 is not limited to two but may be three or more.
- a plurality of heat generating elements 62 mounted on one circuit board 61 may be used, or different types of heat generating elements (for example, any of capacitors, microcomputers, power ICs, field effect transistors (FETs), etc.). good.
- the use of the plurality of circuit boards 61 for the inverter circuit 65 increases the degree of freedom in the position when the inverter circuit 65 is disposed on the motor driving unit 60.
- the circuit board 61 on which the heat generating element 62 having a large heat generation amount is mounted only the heat generating element 62 can be arranged on the pump cover main body 32a side as shown in FIG.
- the arrangement can be changed to a place where there is a sufficient space.
- the inverter circuit 65 is arranged with respect to the central axis J in the motor drive unit 60.
- the present invention is not limited to this structure.
- the circuit board 61 a and the heating element 62 included in the inverter circuit 65 are arranged on the ⁇ X side (left side in the figure) in the radial direction from the central axis J. (5th modification).
- the suction port 32 e is disposed on the ⁇ X side (left side in the drawing) in the radial direction from the central axis J, whereas the discharge port 32 f has a diameter from the central axis J. It is arranged on the X side (right side in the figure) of the direction.
- the low-temperature (for example, 120 ° C.) oil sucked from the suction port 32e is gradually heated by the heat from the inverter circuit 65 until reaching the discharge port 32f, and the temperature rises. For this reason, the cooling efficiency as a heat sink decreases as it approaches the discharge port 32f.
- the circuit board 61a and the heating element 62 of the inverter circuit 65 are arranged on the ⁇ X side (left side in the drawing) in the radial direction from the central axis J.
- the inverter circuit 65 can be cooled by the oil of low temperature (for example, 120 degreeC) by the side of the inlet 32e before temperature rises by heat radiation, and cooling efficiency improves. Therefore, for example, by arranging the inverter circuit 65 including a field effect transistor (FET) that generates a large amount of heat at this position, cooling can be effectively realized.
- FET field effect transistor
- FIG. 1 An example of the inverter circuit 65 in which two heating elements 62 of the same type are mounted on one circuit board 61 is shown.
- the present invention is not limited to the inverter circuit 65 having this structure.
- a part of the heating elements 68 not mounted on the circuit board 61c is connected to the circuit board 61c by the wiring 69.
- An inverter circuit 65 having a structure can also be used (sixth modification).
- the heating element 68 is an element that generates a large amount of heat
- the heating element 68 is arranged directly on the pump cover main body 32a on the ⁇ X side (left side in the drawing) in the radial direction from the central axis J.
- cooling can be performed with oil at a low temperature (for example, 120 ° C.) on the suction port 32e side, cooling can be effectively realized.
- the heat generating element 68 and the circuit board 61c may be disposed on the pump cover main body 32a with a heat dissipation member 66 involved in heat conduction interposed therebetween.
- the above sixth modification shows an example in which some of the heating elements 68 that are not mounted on the circuit board 61c are directly arranged on the pump cover body 32a on the ⁇ X side (left side in the drawing) in the radial direction from the central axis J. It was. However, as shown in FIG. 8, for example, a recess 32g is provided in a part of the pump cover main body 32a on the ⁇ X side (left side in the drawing) in the radial direction from the central axis J, and a heat dissipation member 74 is interposed in the recess 32g.
- the heat generating element 68 may be disposed and connected to the circuit board 61c by the wiring 75 (seventh modified example).
- the heating element 68 By disposing the heating element 68 in the recess 32g, the surface area of the pump cover main body 32a facing the heating element 68 is increased, and the heat dissipation effect is further increased. Further, the height of the heating element 68 in the axial direction can be reduced by the amount of the recess 32g, and the motor drive unit 60 as a whole can be made compact.
- the heat generating element 68 can be directly accommodated in the concave portion 32g, it is preferable to dispose the heat generating element 68 in the concave portion 32g via the heat dissipating member 74.
- thermosetting resin having a high thermal conductivity such as silicone rubber, a heat dissipation sheet, a heat dissipation gel, or the like can be used.
- a thermosetting resin for example, after applying an appropriate amount of the heat radiation member 74 in the recess 32g, the heat generating element 68 is fixed to the pump cover body 32a, and the heat generation element 68 is placed in the recess 32g. 74.
- the heat radiating member 74 can be easily filled in the recess 32g.
- the surface area can be increased to further enhance the heat dissipation effect.
- Examples of the heating element 68 accommodated in the recess 32g formed on the pump cover main body 32a side include a tall and low heat resistant component such as a capacitor, but may be other components. .
- the suction port 32e is provided on the ⁇ X side (left side in the drawing) of the pump cover 32 in the radial direction from the central axis J
- the discharge port 32f is on the X side (right side in the drawing) in the radial direction from the central axis J. ) Is shown.
- the discharge port is formed at a position different from the pump cover 32.
- the difference from the first embodiment will be mainly described.
- the same components as those of the electric oil pump according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- FIG. 9 is a cross-sectional view showing an electric oil pump according to the second embodiment.
- the radial direction extends from the central axis J to the X side (right side in the figure), and extends from the bottom surface of the recess 33 to the rear side ( ⁇ Z side).
- a delivery port 31d communicating with the motor unit 20 is provided.
- a discharge port 73 for discharging oil is provided on a part of the bottom surface 21 a of the housing 21 on the X side (right side in the drawing) in the radial direction from the central axis J.
- an oil circulation filter 76 is provided on the rear side ( ⁇ Z side) of the discharge port 73 as necessary.
- the discharge port 73 may be provided not on the bottom surface portion 21 a of the housing 21 but on a part of the stator holding portion 21 b on the X side (right side in the drawing) in the radial direction from the central axis J.
- the suction port 32e of the electric oil pump 10 is connected to an oil pan (not shown) in which oil is stored by a flow pipe (not shown), and the oil pan side tip of the flow pipe is immersed in the oil. Due to the negative pressure generated by the rotation of the inner rotor 37 of the electric oil pump 100, the oil stored in the oil pan enters the electric oil pump 100 through the suction port 32e and reaches the suction port 32c. The oil is sucked into the pump chamber 33 from the suction port 32 c, is then pumped to the delivery port 31 d, passes through the pump unit 30, and flows into the motor unit 20.
- the oil flows from the front side (+ Z side) to the rear side ( ⁇ Z side) between the inner peripheral surface of the stator 50 and the outer peripheral surface of the rotor 40 and is discharged to the discharge port 73.
- the coil 53 of the stator 50 can be cooled more efficiently and the rotor 40 can be cooled.
- the discharged oil is supplied into a transmission (not shown). The supplied oil generates hydraulic pressure at the relevant location, and then it is refluxed and stored again in the oil pan.
- the pump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect.
- the inverter circuit 65 is disposed on the front side (+ Z side) of the pump cover 32, and the circuit board 61 is in direct contact with the pump cover main body 32a having a high heat dissipation effect while ensuring insulation.
- an oil flow path is formed in the pump unit 30 from the suction port 32 e to the delivery port 31 d, and oil having a certain temperature (for example, 120 ° C.) or less flows through the pump cover 32.
- the heat generated in the circuit board 61 is effectively cooled via the pump cover 32, and the temperature rise is suppressed. That is, the pump cover 32 that comes into contact with the oil flowing in the pump unit 30 directly cools the circuit board 61 of the inverter circuit 65 and also serves as a heat sink, so that cooling can be effectively realized.
- the heating element 62 of the inverter circuit 65 is in direct contact with the top plate portion 63 a of the inverter cover 63. For this reason, the heat generated by the heat generating element 62 can be radiated from the inverter cover 63. Moreover, by using a copper inlay board for the circuit board 61, the heat generated in the inverter circuit 65 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
- the motor unit 20, the pump unit 30, and the motor driving unit 60 are superposed in the axial direction, and have a cylindrical compact shape. Can be used.
- a coil generates the most heat in a motor.
- the heat generated by the coil is transmitted to the stator core. That is, since the motor unit 20 generates a large amount of heat from the stator 50, increasing the cooling efficiency of the stator 50 leads to an improvement in the cooling efficiency of the entire motor unit 20.
- oil supplied from the outside is sucked into the pump unit 30 from the suction port 32e by the pump rotor 35 and flows through the motor unit 20 via the delivery port 31d. And the stator 50 can be cooled at the same time. Since the oil absorbs heat generated by the motor due to the internal circulation of the motor unit 20, the motor does not become excessively high in temperature, and a reduction in the rotational efficiency of the motor can be suppressed. That is, the electric oil pump device 100 having a structure with a high cooling effect can be provided.
- the rotor 40 and the stator 50 of the motor unit 20 can be simultaneously cooled by sending oil into the motor unit 20 via the delivery port 31d.
- an axial gap between the shaft 41 and the pump body 31 is used. That is, the axial gap between the shaft 41 and the pump body 31 serves as an outlet for sending oil from the pump unit 30 to the motor unit 20.
- the through hole 31a functions as a sliding bearing member that rotatably supports the shaft 41.
- the oil flowing from the pump unit 30 can be used as the lubricating oil, and the oil can be efficiently sent into the motor unit 20.
- a cutout portion may be provided on at least one of the outer peripheral surface of the shaft 41 or the inner peripheral surface of the pump body 31.
- a bearing can also be used.
- the oil may pass through the inside of the bearing or may pass between the shaft 41 and the bearing.
- FIG. 10 is a cross-sectional view showing an electric oil pump according to the third embodiment.
- the suction port 32e extends from the pump chamber 33 in the protrusion 31c of the pump body 31 toward the -X side (left side in the drawing) and reaches the outer surface of the protrusion 31c.
- the discharge port 32f extends from the pump chamber 33 to the X side (right side in the drawing) in the protruding portion 31c in the pump body 31, and reaches the outer surface of the protruding portion 31c.
- the suction port 32e and the discharge port 32f are connected to the pump rotor 35 via the suction port 32c and the discharge port 32d, respectively.
- oil can be sucked into the pump rotor 35 and discharged from the pump rotor 35.
- oil stored in an oil pan (not shown) is sucked into the pump chamber from the suction port 32e via the suction port 32c.
- the sucked oil is discharged from the pressurizing region to the discharge port 32f via the discharge port 32d.
- the electric oil pump 110 according to the present embodiment also has the same operations and effects as the electric oil pump 10 according to the first embodiment.
- the pump body 31 is provided with the suction port 32e and the discharge port 32f, it is more effective when the heat transferred to the pump body 31 is cooled.
- an electric oil pump according to a fourth embodiment of the present invention will be described.
- the pump body 31 is provided with a bearing portion.
- the difference from the first embodiment will be mainly described.
- the same components as those of the electric oil pump according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- FIG. 11 is a cross-sectional view showing an electric oil pump according to the fourth embodiment.
- the electric oil pump 120 according to the present embodiment includes a ball bearing 31f as a bearing portion that supports the shaft 41 on the rear side ( ⁇ Z side) of the pump body main body 31b.
- the ball bearing 31f is fitted in a recess 31g provided in the pump body main body 31b, and is fixed by the pump body main body 31b from the circumferential direction of the ball bearing 31f. That is, in the present embodiment, the pump body main body 31b also serves as a bearing holder.
- the shaft 41 has a double bearing structure including the ball bearing 31 f and the bearing 55 of the motor unit 20. For this reason, even if the inner rotor 37 receives pressure from the oil, the tilt of the shaft 41 can be suppressed by the double bearing structure, so that the inner rotor 37 is mounted on the wall surface of the pump case (that is, the pump body 31 and the pump cover 32). It is possible to suppress the sliding resistance from increasing.
- the pump cover 32 is provided with the suction port 32e and the discharge port 32f
- the pump body 31 is provided with the suction port 32e and the discharge port 32f.
- oil flows closer to the inverter circuit 65 since oil flows closer to the inverter circuit 65, the heat generated in the inverter circuit 65 can be effectively cooled.
- the ball bearing 31f is provided as the bearing portion, but other structures that function as the bearing portion may be used.
- a sliding bearing member as described in the modification of the first embodiment and the second embodiment can be used instead of the ball bearing 31f or together with the ball bearing 31f.
- the suction port 32e is provided on the ⁇ X side (left side in the figure) in the radial direction from the central axis J, and the discharge port 32f is disposed on the X side in the radial direction from the central axis J (see FIG.
- the arrangement of the suction port 32e and the arrangement of the discharge port 32f can be reversed.
- the inverter circuit 65 according to the modified example of the first embodiment may be disposed in the opposite direction with respect to the central axis J in the case where the inverter circuit 65 is asymmetrical with respect to the central axis J (FIGS. 6 to 8).
- the inlet 32e provided in the pump cover 32 can also be provided in the pump body 31 like 3rd Embodiment.
- the length, shape, inner diameter and the like of the delivery port 31d can be appropriately changed as necessary.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
This electric oil pump 10 comprises a motor unit 20, a pump unit 30, and a motor drive unit 60. The pump unit 30 comprises a pump rotor 35 attached to a shaft 41, a pump body 31, and a pump cover 32. The motor drive unit 60 comprises an inverter circuit 65 which controls driving of the motor, and an inverter cover 63. The inverter circuit 65 is in thermal contact with the pump cover 32.
Description
本発明は、電動オイルポンプに関する。
The present invention relates to an electric oil pump.
近年、自動車等のトランスミッションとして、CVT(無段変速機:Continuously Variable Transmission)、DCT(デュアルクラッチトランスミッション:Dual Clutch Transmission)等が知られている。これらの変速機は燃費向上の目的として様々な形状が検討されている。
また、変速機においては、アイドリングストップ時等にモータを使用してオイルを供給できる機能が求められており、この機能を実現すべく、インバータ回路、モータ及びポンプを有する電動オイルポンプが要望されている。
例えば、特許文献1は、インバータ回路が収容されるポンプカバーの部分がトランスミッションケースの一部となった構造の電動オイルポンプを開示する。 In recent years, CVT (Continuously Variable Transmission), DCT (Dual Clutch Transmission), etc. are known as transmissions for automobiles and the like. These transmissions have been studied in various shapes for the purpose of improving fuel efficiency.
In addition, a transmission is required to have a function of supplying oil using a motor when idling is stopped, and an electric oil pump having an inverter circuit, a motor and a pump is required to realize this function. Yes.
For example,Patent Literature 1 discloses an electric oil pump having a structure in which a pump cover portion in which an inverter circuit is accommodated is part of a transmission case.
また、変速機においては、アイドリングストップ時等にモータを使用してオイルを供給できる機能が求められており、この機能を実現すべく、インバータ回路、モータ及びポンプを有する電動オイルポンプが要望されている。
例えば、特許文献1は、インバータ回路が収容されるポンプカバーの部分がトランスミッションケースの一部となった構造の電動オイルポンプを開示する。 In recent years, CVT (Continuously Variable Transmission), DCT (Dual Clutch Transmission), etc. are known as transmissions for automobiles and the like. These transmissions have been studied in various shapes for the purpose of improving fuel efficiency.
In addition, a transmission is required to have a function of supplying oil using a motor when idling is stopped, and an electric oil pump having an inverter circuit, a motor and a pump is required to realize this function. Yes.
For example,
しかしながら、特許文献1に開示の電動オイルポンプは、ポンプカバーがトランスミッションケースの一部を兼ねているため、電動オイルポンプの構造が上記トランスミッションの構造による制限を受けてしまう。このため、様々なトランスミッションにおいて、インバータ回路、モータ及びポンプを有する構造の電動オイルポンプを汎用的に使用することが出来ない。
また、電動オイルポンプにおいて、応答性等の関連からさらに高出力化が求められた場合、インバータ回路に使用する素子の発熱量が多くなるため、インバータ回路を効率良く冷却する必要がある。 However, since the electric oil pump disclosed inPatent Document 1 has a pump cover that also serves as a part of the transmission case, the structure of the electric oil pump is limited by the structure of the transmission. For this reason, in various transmissions, an electric oil pump having a structure having an inverter circuit, a motor, and a pump cannot be used for general purposes.
Further, in the electric oil pump, when higher output is demanded from the viewpoint of responsiveness and the like, the amount of heat generated by the elements used in the inverter circuit increases, so that the inverter circuit needs to be cooled efficiently.
また、電動オイルポンプにおいて、応答性等の関連からさらに高出力化が求められた場合、インバータ回路に使用する素子の発熱量が多くなるため、インバータ回路を効率良く冷却する必要がある。 However, since the electric oil pump disclosed in
Further, in the electric oil pump, when higher output is demanded from the viewpoint of responsiveness and the like, the amount of heat generated by the elements used in the inverter circuit increases, so that the inverter circuit needs to be cooled efficiently.
本発明の目的は、インバータ回路を効率良く冷却できるとともに、様々なトランスミッションにおいて汎用的に使用できる電動オイルポンプを提供することにある。
An object of the present invention is to provide an electric oil pump that can efficiently cool an inverter circuit and can be used for various purposes in various transmissions.
本願の例示的な第1発明の電動オイルポンプは、軸方向に延びる中心軸を中心として回転可能に支持されたシャフトを有するモータ部と、前記モータ部の軸方向一方側に位置し、前記モータ部から延びる前記シャフトによって駆動され、オイルを吐出するポンプ部と、前記ポンプ部を介して前記モータ部の前記軸方向一方側に位置し、前記モータ部を駆動させるモータ駆動部と、を有し、前記モータ部は、前記シャフトの周囲において回転可能なロータと、前記ロータの径方向外側に配置されたステータと、前記ロータ及び前記ステータを収容するハウジングと、を有し、前記ポンプ部は、前記シャフトに取り付けられるポンプロータと、前記ポンプロータを収容し、側壁面及び前記モータ部の軸方向他方側に位置する底面を含む凹部及び前記モータ部の前記軸方向一方側に開口部を有するポンプボディと、前記開口部を閉塞するポンプカバーと、を有し、前記モータ駆動部は、前記モータ部の駆動を制御するインバータ回路と、前記インバータ回路を被覆するインバータカバーと、を有し、前記インバータ回路は、前記ポンプカバーと熱的に接触する。
An electric oil pump according to an exemplary first invention of the present application includes a motor unit having a shaft rotatably supported around a central axis extending in an axial direction, and the motor unit located on one axial side of the motor unit. A pump part that is driven by the shaft extending from the part and discharges oil; and a motor drive part that is located on one side in the axial direction of the motor part and drives the motor part via the pump part. The motor unit includes a rotor that is rotatable around the shaft, a stator that is disposed radially outside the rotor, and a housing that houses the rotor and the stator, and the pump unit includes: A pump rotor attached to the shaft; a recess containing the pump rotor and including a side wall surface and a bottom surface located on the other axial side of the motor portion; A pump body having an opening on the one axial side of the motor unit, and a pump cover for closing the opening, and the motor driving unit is an inverter circuit for controlling the driving of the motor unit; An inverter cover covering the inverter circuit, and the inverter circuit is in thermal contact with the pump cover.
本願の例示的な第1発明によれば、インバータ回路を効率良く冷却できるとともに、様々なトランスミッションにおいて汎用的に使用できる電動オイルポンプを提供することができる。
According to the first exemplary invention of the present application, it is possible to provide an electric oil pump that can efficiently cool an inverter circuit and can be used for various purposes in various transmissions.
以下、図面を参照しながら、本発明の実施形態に係る電動オイルポンプについて説明する。また、以下の図面においては、各構成をわかり易くするために、実際の構造と各構造における縮尺及び数等を異ならせる場合がある。
Hereinafter, an electric oil pump according to an embodiment of the present invention will be described with reference to the drawings. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale and number in each structure.
また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。X軸方向は、図1に示すインバータカバー63の天板部63aの延びる方向と平行な方向、すなわち、図1の左右方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。
In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG. The X-axis direction is a direction parallel to the direction in which the top plate portion 63a of the inverter cover 63 shown in FIG. 1 extends, that is, the left-right direction in FIG. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction.
また、以下の説明においては、Z軸方向の正の側(+Z側)を「フロント側」と呼び、Z軸方向の負の側(-Z側)を「リア側」と呼ぶ。なお、リア側及びフロント側とは、単に説明のために用いられる名称であって、実際の位置関係及び方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周り(θ方向)を単に「周方向」と呼ぶ。
In the following description, the positive side (+ Z side) in the Z-axis direction is referred to as “front side”, and the negative side (−Z side) in the Z-axis direction is referred to as “rear side”. The rear side and the front side are names used for explanation only, and do not limit the actual positional relationship and direction. Unless otherwise specified, a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”, and a radial direction around the central axis J is simply referred to as a “radial direction”. The circumferential direction centered at, that is, around the central axis J (θ direction) is simply referred to as “circumferential direction”.
なお、本明細書において、「熱的に接触する」とは、対象となる部材同士が直接接触する場合だけでなく、上記部材間に熱伝導に関与する部材を介在させた場合も含む。また、本明細書において、「軸方向に延びる」とは、厳密に軸方向(Z軸方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向(Z軸方向)に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
In addition, in this specification, “thermally contacting” includes not only a case where target members are in direct contact with each other but also a case where a member involved in heat conduction is interposed between the members. Further, in this specification, “extending in the axial direction” means not only extending in the axial direction (Z-axis direction) but also extending in a direction inclined by less than 45 ° with respect to the axial direction. Including. Further, in this specification, “extending in the radial direction” means that 45% with respect to the radial direction, in addition to the case where it extends strictly in the radial direction, that is, the direction perpendicular to the axial direction (Z-axis direction). This includes cases extending in a tilted direction within a range of less than °.
[第1実施形態]
<全体構成>
図1は、本実施形態の電動オイルポンプを示す断面図である。
本実施形態の電動オイルポンプ10は、モータ部20と、ポンプ部30と、モータ駆動部60とを有する。モータ部20とポンプ部30とモータ駆動部60とは、軸方向に沿って並べて設けられる。
モータ部20は、軸方向に延びる中心軸Jを中心として回転可能に支持されたシャフト41を有し、シャフト41を回転させてポンプを駆動する。ポンプ部30は、モータ部20のフロント側(+Z側)に位置し、モータ部20によってシャフト41を介して駆動され、オイルを吐出する。モータ駆動部60は、ポンプ部30のフロント側(+Z側)に位置し、モータ部20の駆動を制御する。
以下、構成部材毎に詳細に説明する。 [First Embodiment]
<Overall configuration>
FIG. 1 is a cross-sectional view showing the electric oil pump of the present embodiment.
Theelectric oil pump 10 of this embodiment includes a motor unit 20, a pump unit 30, and a motor driving unit 60. The motor unit 20, the pump unit 30, and the motor driving unit 60 are provided side by side along the axial direction.
Themotor unit 20 has a shaft 41 supported so as to be rotatable about a central axis J extending in the axial direction, and drives the pump by rotating the shaft 41. The pump unit 30 is located on the front side (+ Z side) of the motor unit 20 and is driven by the motor unit 20 via the shaft 41 to discharge oil. The motor driving unit 60 is located on the front side (+ Z side) of the pump unit 30 and controls driving of the motor unit 20.
Hereinafter, each constituent member will be described in detail.
<全体構成>
図1は、本実施形態の電動オイルポンプを示す断面図である。
本実施形態の電動オイルポンプ10は、モータ部20と、ポンプ部30と、モータ駆動部60とを有する。モータ部20とポンプ部30とモータ駆動部60とは、軸方向に沿って並べて設けられる。
モータ部20は、軸方向に延びる中心軸Jを中心として回転可能に支持されたシャフト41を有し、シャフト41を回転させてポンプを駆動する。ポンプ部30は、モータ部20のフロント側(+Z側)に位置し、モータ部20によってシャフト41を介して駆動され、オイルを吐出する。モータ駆動部60は、ポンプ部30のフロント側(+Z側)に位置し、モータ部20の駆動を制御する。
以下、構成部材毎に詳細に説明する。 [First Embodiment]
<Overall configuration>
FIG. 1 is a cross-sectional view showing the electric oil pump of the present embodiment.
The
The
Hereinafter, each constituent member will be described in detail.
<モータ部20>
モータ部20は、図1に示すように、ハウジング21と、ロータ40と、シャフト41と、ステータ50と、ベアリング55と、を有する。 <Motor unit 20>
As shown in FIG. 1, themotor unit 20 includes a housing 21, a rotor 40, a shaft 41, a stator 50, and a bearing 55.
モータ部20は、図1に示すように、ハウジング21と、ロータ40と、シャフト41と、ステータ50と、ベアリング55と、を有する。 <
As shown in FIG. 1, the
モータ部20は、例えば、インナーロータ型のモータであり、ロータ40がシャフト41の外周面に固定され、ステータ50がロータ40の径方向外側に位置する。また、ベアリング55は、シャフト41の軸方向リア側(-Z側)端部に配置され、シャフト41を回転可能に支持する。
The motor unit 20 is, for example, an inner rotor type motor, in which the rotor 40 is fixed to the outer peripheral surface of the shaft 41 and the stator 50 is positioned on the radially outer side of the rotor 40. The bearing 55 is disposed at the axial rear end (−Z side) end portion of the shaft 41 and supports the shaft 41 rotatably.
(ハウジング21)
ハウジング21は、図1に示すように、有底の薄肉円筒状であり、底面部21aと、ステータ保持部21bと、ポンプボディ保持部21cと、側壁部21dと、フランジ部24,25と、を有する。底面部21aは、有底部分をなし、ステータ保持部21b、ポンプボディ保持部21c及び側壁部21dは、中心軸Jを中心とする円筒形状の側壁面をなす。本実施形態においては、ステータ保持部21bの内径は、ポンプボディ保持部21cの内径よりも大きい。ステータ保持部21bの内側面には、ステータ50の外側面、すなわち、後述するコアバック部51の外側面が嵌め合わされる。これにより、ハウジング21にステータ50が収容される。フランジ部24は、側壁部21dのフロント側(+Z側)の端部から径方向外側に拡がる。一方、フランジ部25は、ステータ保持部21bのリア側(-Z側)の端部から径方向外側に拡がる。フランジ部24及びフランジ部25は、互いに対向され、図示しない締結手段によって締結される。これにより、ハウジング21内にモータ部20及びポンプ部30がシールして固定される。
ハウジング21の材質としては、例えば、亜鉛-アルミニウム-マグネシウム系合金等を用いることができ、具体的には、溶融亜鉛-アルミニウム-マグネシウム合金めっき鋼板及び鋼帯を用いることができる。また、底面部21aには、ベアリング55を保持するためのベアリング保持部56が設けられる。 (Housing 21)
As shown in FIG. 1, thehousing 21 has a bottomed thin cylindrical shape, and includes a bottom surface portion 21a, a stator holding portion 21b, a pump body holding portion 21c, a side wall portion 21d, flange portions 24 and 25, Have The bottom surface portion 21a forms a bottomed portion, and the stator holding portion 21b, the pump body holding portion 21c, and the side wall portion 21d form a cylindrical side wall surface centered on the central axis J. In the present embodiment, the inner diameter of the stator holding portion 21b is larger than the inner diameter of the pump body holding portion 21c. The outer surface of the stator 50, that is, the outer surface of the core back portion 51 described later is fitted to the inner surface of the stator holding portion 21 b. Thereby, the stator 50 is accommodated in the housing 21. The flange portion 24 extends radially outward from the front side (+ Z side) end portion of the side wall portion 21d. On the other hand, the flange portion 25 extends radially outward from the rear side (−Z side) end portion of the stator holding portion 21b. The flange portion 24 and the flange portion 25 face each other and are fastened by fastening means (not shown). Thereby, the motor unit 20 and the pump unit 30 are sealed and fixed in the housing 21.
As the material of thehousing 21, for example, a zinc-aluminum-magnesium alloy or the like can be used, and specifically, a hot-dip zinc-aluminum-magnesium alloy plated steel plate and a steel strip can be used. Further, the bottom surface portion 21 a is provided with a bearing holding portion 56 for holding the bearing 55.
ハウジング21は、図1に示すように、有底の薄肉円筒状であり、底面部21aと、ステータ保持部21bと、ポンプボディ保持部21cと、側壁部21dと、フランジ部24,25と、を有する。底面部21aは、有底部分をなし、ステータ保持部21b、ポンプボディ保持部21c及び側壁部21dは、中心軸Jを中心とする円筒形状の側壁面をなす。本実施形態においては、ステータ保持部21bの内径は、ポンプボディ保持部21cの内径よりも大きい。ステータ保持部21bの内側面には、ステータ50の外側面、すなわち、後述するコアバック部51の外側面が嵌め合わされる。これにより、ハウジング21にステータ50が収容される。フランジ部24は、側壁部21dのフロント側(+Z側)の端部から径方向外側に拡がる。一方、フランジ部25は、ステータ保持部21bのリア側(-Z側)の端部から径方向外側に拡がる。フランジ部24及びフランジ部25は、互いに対向され、図示しない締結手段によって締結される。これにより、ハウジング21内にモータ部20及びポンプ部30がシールして固定される。
ハウジング21の材質としては、例えば、亜鉛-アルミニウム-マグネシウム系合金等を用いることができ、具体的には、溶融亜鉛-アルミニウム-マグネシウム合金めっき鋼板及び鋼帯を用いることができる。また、底面部21aには、ベアリング55を保持するためのベアリング保持部56が設けられる。 (Housing 21)
As shown in FIG. 1, the
As the material of the
(ロ―タ40)
ロータ40は、ロータコア43と、ロータマグネット44と、を有する。ロータコア43は、シャフト41を軸周り(θ方向)に囲んで、シャフト41に固定される。ロータマグネット44は、ロータコア43の軸周り(θ方向)に沿った外側面に固定される。ロータコア43及びロータマグネット44は、シャフト41と共に回転する。 (Rotor 40)
Therotor 40 includes a rotor core 43 and a rotor magnet 44. The rotor core 43 is fixed to the shaft 41 so as to surround the shaft 41 around the axis (θ direction). The rotor magnet 44 is fixed to the outer surface along the axis of the rotor core 43 (θ direction). The rotor core 43 and the rotor magnet 44 rotate together with the shaft 41.
ロータ40は、ロータコア43と、ロータマグネット44と、を有する。ロータコア43は、シャフト41を軸周り(θ方向)に囲んで、シャフト41に固定される。ロータマグネット44は、ロータコア43の軸周り(θ方向)に沿った外側面に固定される。ロータコア43及びロータマグネット44は、シャフト41と共に回転する。 (Rotor 40)
The
(ステータ50)
ステータ50は、ロータ40を軸周り(θ方向)に囲み、ロータ40を中心軸J周りに回転させる。ステータ50は、コアバック部51と、ティース部52と、コイル53と、ボビン(インシュレータ)54と、を有する。 (Stator 50)
Thestator 50 surrounds the rotor 40 around the axis (θ direction), and rotates the rotor 40 around the central axis J. The stator 50 includes a core back part 51, a tooth part 52, a coil 53, and a bobbin (insulator) 54.
ステータ50は、ロータ40を軸周り(θ方向)に囲み、ロータ40を中心軸J周りに回転させる。ステータ50は、コアバック部51と、ティース部52と、コイル53と、ボビン(インシュレータ)54と、を有する。 (Stator 50)
The
コアバック部51の形状は、シャフト41と同心の円筒状である。ティース部52は、コアバック部51の内側面からシャフト41に向かって延びる。ティース部52は、複数設けられ、コアバック部51の内側面の周方向に均等な間隔で配置される。コイル53は、ボビン(インシュレータ)54の周囲に設けられ、導電線53aが巻回されてなる。ボビン(インシュレータ)54は、各ティース部52に装着される。
The shape of the core back portion 51 is a cylindrical shape concentric with the shaft 41. The teeth part 52 extends from the inner surface of the core back part 51 toward the shaft 41. A plurality of teeth portions 52 are provided, and are arranged at equal intervals in the circumferential direction of the inner side surface of the core back portion 51. The coil 53 is provided around a bobbin (insulator) 54 and is formed by winding a conductive wire 53a. A bobbin (insulator) 54 is attached to each tooth portion 52.
(ベアリング55)
ベアリング55は、ロ―タ40及びステータ50のリア側(-Z側)に配置され、ベアリング保持部56に保持される。ベアリング55は、シャフト41を支持する。ベアリング55の形状、構造等は、特に限定されず、いかなる公知のベアリングも用いることができる。 (Bearing 55)
Thebearing 55 is disposed on the rear side (−Z side) of the rotor 40 and the stator 50 and is held by the bearing holding portion 56. The bearing 55 supports the shaft 41. The shape, structure, and the like of the bearing 55 are not particularly limited, and any known bearing can be used.
ベアリング55は、ロ―タ40及びステータ50のリア側(-Z側)に配置され、ベアリング保持部56に保持される。ベアリング55は、シャフト41を支持する。ベアリング55の形状、構造等は、特に限定されず、いかなる公知のベアリングも用いることができる。 (Bearing 55)
The
<ポンプ部30>
ポンプ部30は、モータ部20の軸方向一方側、詳細にはフロント側(+Z軸側)に設けられる。ポンプ部30は、モータ部20と同一の回転軸を有し、モータ部20によってシャフト41を介して駆動される。ポンプ部30は、密閉された空間(油室)の容積が拡大および縮小されることでオイルを圧送する容積型ポンプを有する。容積型ポンプとしては、例えば、トロコイドポンプが用いられる。ポンプ部30は、ポンプボディ31と、ポンプカバー32と、ポンプロータ35とを有する。なお、以下では、ポンプボディ31及びポンプカバー32をポンプケースとも記載する。 <Pump unit 30>
Thepump unit 30 is provided on one side in the axial direction of the motor unit 20, specifically on the front side (+ Z axis side). The pump unit 30 has the same rotating shaft as the motor unit 20 and is driven by the motor unit 20 via the shaft 41. The pump unit 30 includes a positive displacement pump that pumps oil by expanding and reducing the volume of a sealed space (oil chamber). As the positive displacement pump, for example, a trochoid pump is used. The pump unit 30 includes a pump body 31, a pump cover 32, and a pump rotor 35. Hereinafter, the pump body 31 and the pump cover 32 are also referred to as a pump case.
ポンプ部30は、モータ部20の軸方向一方側、詳細にはフロント側(+Z軸側)に設けられる。ポンプ部30は、モータ部20と同一の回転軸を有し、モータ部20によってシャフト41を介して駆動される。ポンプ部30は、密閉された空間(油室)の容積が拡大および縮小されることでオイルを圧送する容積型ポンプを有する。容積型ポンプとしては、例えば、トロコイドポンプが用いられる。ポンプ部30は、ポンプボディ31と、ポンプカバー32と、ポンプロータ35とを有する。なお、以下では、ポンプボディ31及びポンプカバー32をポンプケースとも記載する。 <
The
(ポンプボディ31)
ポンプボディ31は、モータ部20のフロント側(+Z軸側)に位置する。ポンプボディ31は、ポンプボディ本体31bと、ポンプボディ本体31bの内部を中心軸Jの軸方向に沿って貫通する貫通孔31aと、ポンプボディ本体31bからフロント側(+Z軸側)に円筒状に突出する突出部31cと、を有する。突出部31cの内径は、貫通孔31aの内径よりも大きい。突出部31cとポンプボディ本体31bとによって、ポンプカバー32側に開口する凹部33をなす。貫通孔31aは、リア側(-Z側)では、モータ部20側に開口し、フロント側(+Z軸側)では凹部33に開口する。貫通孔31aは、シャフト41が挿入され、シャフト41を回転可能に支持する軸受部材として機能する。凹部33は、ポンプロータ35が収容され、ポンプ室として機能する(以下、ポンプ室33とも記載する)。 (Pump body 31)
Thepump body 31 is located on the front side (+ Z axis side) of the motor unit 20. The pump body 31 has a cylindrical shape from the pump body main body 31b, a through hole 31a penetrating the inside of the pump body main body 31b along the axial direction of the central axis J, and from the pump body main body 31b to the front side (+ Z axis side). And a protruding portion 31c that protrudes. The inner diameter of the protrusion 31c is larger than the inner diameter of the through hole 31a. The protrusion 31c and the pump body main body 31b form a recess 33 that opens to the pump cover 32 side. The through hole 31a opens to the motor unit 20 side on the rear side (−Z side), and opens to the recess 33 on the front side (+ Z axis side). The through hole 31a functions as a bearing member into which the shaft 41 is inserted and rotatably supports the shaft 41. The recess 33 accommodates the pump rotor 35 and functions as a pump chamber (hereinafter also referred to as the pump chamber 33).
ポンプボディ31は、モータ部20のフロント側(+Z軸側)に位置する。ポンプボディ31は、ポンプボディ本体31bと、ポンプボディ本体31bの内部を中心軸Jの軸方向に沿って貫通する貫通孔31aと、ポンプボディ本体31bからフロント側(+Z軸側)に円筒状に突出する突出部31cと、を有する。突出部31cの内径は、貫通孔31aの内径よりも大きい。突出部31cとポンプボディ本体31bとによって、ポンプカバー32側に開口する凹部33をなす。貫通孔31aは、リア側(-Z側)では、モータ部20側に開口し、フロント側(+Z軸側)では凹部33に開口する。貫通孔31aは、シャフト41が挿入され、シャフト41を回転可能に支持する軸受部材として機能する。凹部33は、ポンプロータ35が収容され、ポンプ室として機能する(以下、ポンプ室33とも記載する)。 (Pump body 31)
The
ポンプボディ31は、モータ部20のフロント側(+Z軸側)において、ポンプボディ保持部21c内に固定される。ポンプボディ本体31bの外周面とポンプボディ保持部21cの内周面との径方向の間にはOリング71が設けられる。これにより、ポンプボディ31の外周面とハウジング21の内周面との径方向の間がシールされる。
The pump body 31 is fixed in the pump body holding part 21c on the front side (+ Z axis side) of the motor part 20. An O-ring 71 is provided between the outer peripheral surface of the pump body main body 31b and the inner peripheral surface of the pump body holding portion 21c. Thereby, a gap between the outer peripheral surface of the pump body 31 and the inner peripheral surface of the housing 21 is sealed.
ポンプボディ31の材質としては、例えば、鋳鉄等を用いることができる。
As the material of the pump body 31, for example, cast iron or the like can be used.
(ポンプロータ35)
ポンプロータ35は、シャフト41のフロント側(+Z軸側)の端部に取り付けられ、ポンプ室33に収容される。ポンプロータ35は、シャフト41に取り付けられるインナーロータ37と、インナーロータ37の径方向外側を囲むアウターロータ38と、を有する。 (Pump rotor 35)
Thepump rotor 35 is attached to the front side (+ Z axis side) end of the shaft 41 and is accommodated in the pump chamber 33. The pump rotor 35 includes an inner rotor 37 attached to the shaft 41 and an outer rotor 38 surrounding the radially outer side of the inner rotor 37.
ポンプロータ35は、シャフト41のフロント側(+Z軸側)の端部に取り付けられ、ポンプ室33に収容される。ポンプロータ35は、シャフト41に取り付けられるインナーロータ37と、インナーロータ37の径方向外側を囲むアウターロータ38と、を有する。 (Pump rotor 35)
The
インナーロータ37は、径方向外側面に歯を有する円環状の歯車である。インナーロータ37は、その内側にシャフト41のフロント側(+Z軸側)の端部が圧入されることによって、シャフト41に固定される。インナーロータ37は、シャフト41と共に軸周り(θ方向)に回転する。
The inner rotor 37 is an annular gear having teeth on the radially outer surface. The inner rotor 37 is fixed to the shaft 41 by press-fitting the front side (+ Z axis side) end portion of the shaft 41 into the inner rotor 37. The inner rotor 37 rotates around the axis (θ direction) together with the shaft 41.
アウターロータ38は、インナーロータ37の径方向外側を囲み、径方向内側面に歯を有する円環状の歯車である。アウターロータ38は、ポンプ室33に回転自在に収容される。アウターロータ38には、インナーロータ37を収容するインナー収容室(不図示)が、例えば、星形状に形成される。アウターロータ38の内歯数は、インナーロータ37の外歯数より多い。
The outer rotor 38 is an annular gear that surrounds the radially outer side of the inner rotor 37 and has teeth on the radially inner side surface. The outer rotor 38 is rotatably accommodated in the pump chamber 33. In the outer rotor 38, an inner housing chamber (not shown) for housing the inner rotor 37 is formed in a star shape, for example. The number of inner teeth of the outer rotor 38 is larger than the number of outer teeth of the inner rotor 37.
インナーロータ37とアウターロータ38とは互いに噛み合い、シャフト41によりインナーロータ37が回転すると、インナーロータ37の回転に伴いアウターロータ38が回転する。インナーロータ37とアウターロータ38とが回転することで、インナーロータ37とアウターロータ38との間に形成された空間の容積が、その回転位置に応じて変化する。ポンプロータ35は、容積変化を利用することで、後述する吸入ポート32cからオイルを吸入し、吸入したオイルを加圧して吐出ポート32dから吐出する。本実施形態では、インナーロータ37とアウターロータ38との間に形成された空間において、容積が増加する(即ち、オイルが吸入される)領域を負圧領域とする。
The inner rotor 37 and the outer rotor 38 mesh with each other, and when the inner rotor 37 is rotated by the shaft 41, the outer rotor 38 is rotated with the rotation of the inner rotor 37. As the inner rotor 37 and the outer rotor 38 rotate, the volume of the space formed between the inner rotor 37 and the outer rotor 38 changes according to the rotational position. The pump rotor 35 uses the volume change to suck oil from a suction port 32c described later, pressurizes the sucked oil, and discharges it from the discharge port 32d. In the present embodiment, in a space formed between the inner rotor 37 and the outer rotor 38, a region where the volume increases (that is, oil is sucked) is defined as a negative pressure region.
(ポンプカバー32)
ポンプカバー32は、ポンプボディ31のフロント側(+Z軸側)に取り付けられる。ポンプカバー32は、ポンプカバー本体32aと、フランジ部32bと、吸入ポート32cと、吐出ポート32dと、吸入口32eと、吐出口32fと、を有する。
ポンプカバー32は、通常、アルミニウム合金などの金属が用いられ、熱容量が大きく、表面積が大きいため、放熱効果が高い。また、ポンプカバー32の内部を一定温度(例えば、120℃)以下の油が流れるため、ポンプカバー32の温度上昇が抑えられる。 (Pump cover 32)
Thepump cover 32 is attached to the front side (+ Z axis side) of the pump body 31. The pump cover 32 includes a pump cover body 32a, a flange portion 32b, a suction port 32c, a discharge port 32d, a suction port 32e, and a discharge port 32f.
Thepump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect. Moreover, since the oil below a fixed temperature (for example, 120 degreeC) flows through the inside of the pump cover 32, the temperature rise of the pump cover 32 is suppressed.
ポンプカバー32は、ポンプボディ31のフロント側(+Z軸側)に取り付けられる。ポンプカバー32は、ポンプカバー本体32aと、フランジ部32bと、吸入ポート32cと、吐出ポート32dと、吸入口32eと、吐出口32fと、を有する。
ポンプカバー32は、通常、アルミニウム合金などの金属が用いられ、熱容量が大きく、表面積が大きいため、放熱効果が高い。また、ポンプカバー32の内部を一定温度(例えば、120℃)以下の油が流れるため、ポンプカバー32の温度上昇が抑えられる。 (Pump cover 32)
The
The
ポンプカバー本体32aは、径方向に延びる円板型の形状を有する。ポンプカバー本体32aは、凹部33のフロント側(+Z軸側)の開口を閉塞する。フランジ部32bは、ポンプカバー本体32aのフロント側(+Z軸側)の外縁において径方向に延びる。ポンプカバー32の外径は、フランジ部32bを有することにより、ポンプボディ31の突出部31cの外径よりも大きい。
The pump cover main body 32a has a disk shape extending in the radial direction. The pump cover main body 32a closes the opening on the front side (+ Z axis side) of the recess 33. The flange portion 32b extends in the radial direction at the outer edge of the front side (+ Z axis side) of the pump cover main body 32a. The outer diameter of the pump cover 32 is larger than the outer diameter of the protruding portion 31c of the pump body 31 due to the flange portion 32b.
吸入ポート32cは、ポンプロータ35からフロント側(+Z軸側)に見た場合、三日月形状の溝である。吸入ポート32cは、インナーロータ37とアウターロータ38との間に形成された空間の容積が増大するに従い、容積の増大に連動した程度でポンプロータ35と連通する。同様に、吐出ポート32dもポンプロータ35からフロント側(+Z軸側)に見た場合、三日月形状の溝である。吐出ポート32dは、インナーロータ37とアウターロータ38との間に形成された空間の容積が減少するに従い、容積の減少に連動した程度でポンプロータ35と連通する。
The suction port 32c is a crescent-shaped groove when viewed from the pump rotor 35 to the front side (+ Z-axis side). As the volume of the space formed between the inner rotor 37 and the outer rotor 38 increases, the suction port 32c communicates with the pump rotor 35 to the extent that the volume increases. Similarly, the discharge port 32d is a crescent-shaped groove when viewed from the pump rotor 35 on the front side (+ Z axis side). As the volume of the space formed between the inner rotor 37 and the outer rotor 38 decreases, the discharge port 32d communicates with the pump rotor 35 to the extent that the volume decreases.
吸入口32eは、吸入ポート32cからポンプカバー本体32a内を-X側(図中左側)に向かって延び、外部と連通する。他方、吐出口32fは、吐出ポート32dからポンプカバー本体32a内をX側(図中右側)に向かって延び、外部と連通する。吸入口32e及び吐出口32fは、それぞれ吸入ポート32c、吐出ポート32dを経由してポンプロータ35と繋がる。これにより、ポンプロータ35へのオイルの吸入およびポンプロータ35からのオイルの吐出が可能である。詳細には、ポンプロータ35の回転によりポンプ室に発生する負圧により、オイルパン(不図示)に貯留されたオイルが吸入口32eから吸入ポート32cを経由して、ポンプ室の内部に吸入される。吸入したオイルは、加圧領域から吐出ポート32dを経由して吐出口32fへ吐出される。
The suction port 32e extends from the suction port 32c in the pump cover main body 32a toward the -X side (left side in the figure) and communicates with the outside. On the other hand, the discharge port 32f extends from the discharge port 32d in the pump cover main body 32a toward the X side (right side in the figure) and communicates with the outside. The suction port 32e and the discharge port 32f are connected to the pump rotor 35 via the suction port 32c and the discharge port 32d, respectively. As a result, oil can be sucked into the pump rotor 35 and discharged from the pump rotor 35. Specifically, due to the negative pressure generated in the pump chamber by the rotation of the pump rotor 35, oil stored in an oil pan (not shown) is sucked into the pump chamber from the suction port 32e via the suction port 32c. The The sucked oil is discharged from the pressurizing region to the discharge port 32f via the discharge port 32d.
<モータ駆動部60>
モータ駆動部60は、ポンプカバー32のフロント側(+Z側)に設けられ、モータ部20の駆動を制御する。モータ駆動部60は、インバータカバー63と、回路基板61及び発熱素子62を含むインバータ回路65と、を有する。 <Motor drive unit 60>
Themotor driving unit 60 is provided on the front side (+ Z side) of the pump cover 32 and controls driving of the motor unit 20. The motor drive unit 60 includes an inverter cover 63 and an inverter circuit 65 including a circuit board 61 and a heating element 62.
モータ駆動部60は、ポンプカバー32のフロント側(+Z側)に設けられ、モータ部20の駆動を制御する。モータ駆動部60は、インバータカバー63と、回路基板61及び発熱素子62を含むインバータ回路65と、を有する。 <
The
(インバータ回路65)
インバータ回路65は、回路基板61に発熱素子62を実装したものであり、モータ部20のステータ50のコイル53に駆動のための電力を供給すると共に、モータ部20の駆動、回転、停止等の動作を制御する。なお、モータ駆動部60とステータ50のコイル53との間の電力供給及び電気信号による通信は、図示しない被覆ケーブル等の配線部材を用いて、モータ駆動部60とコイル53との間を電気的に接続することによって行われる。 (Inverter circuit 65)
Theinverter circuit 65 has a heating element 62 mounted on a circuit board 61, supplies power for driving to the coil 53 of the stator 50 of the motor unit 20, and drives, rotates and stops the motor unit 20. Control the behavior. In addition, power supply between the motor driving unit 60 and the coil 53 of the stator 50 and communication by an electric signal are performed between the motor driving unit 60 and the coil 53 using a wiring member such as a coated cable (not shown). Done by connecting to.
インバータ回路65は、回路基板61に発熱素子62を実装したものであり、モータ部20のステータ50のコイル53に駆動のための電力を供給すると共に、モータ部20の駆動、回転、停止等の動作を制御する。なお、モータ駆動部60とステータ50のコイル53との間の電力供給及び電気信号による通信は、図示しない被覆ケーブル等の配線部材を用いて、モータ駆動部60とコイル53との間を電気的に接続することによって行われる。 (Inverter circuit 65)
The
回路基板61は、モータ駆動信号を出力する。本実施形態では、回路基板61は、ポンプカバー32の表面に絶縁を確保した上で直接配置される。回路基板61の表面には、図示しないプリント配線が設けられている。また、回路基板61として、銅インレイ基板を用いることにより、発熱素子62で発生した熱をポンプカバー32により伝え易くなり、冷却効率が向上する。
The circuit board 61 outputs a motor drive signal. In the present embodiment, the circuit board 61 is disposed directly on the surface of the pump cover 32 while ensuring insulation. A printed wiring (not shown) is provided on the surface of the circuit board 61. Further, by using a copper inlay substrate as the circuit substrate 61, the heat generated by the heating element 62 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
発熱素子62は、回路基板61のフロント側(+Z側)の面に実装される。発熱素子62は、例えば、コンデンサ、マイコン、パワーIC、電界効果トランジスタ(FET)等である。また、発熱素子62は2つに限られず、1つであっても、3つ以上であっても良い。
The heating element 62 is mounted on the front side (+ Z side) surface of the circuit board 61. The heating element 62 is, for example, a capacitor, a microcomputer, a power IC, a field effect transistor (FET), or the like. Further, the number of heating elements 62 is not limited to two, and may be one or three or more.
(インバータカバー63)
インバータカバー63は、ポンプカバー32のフロント側(+Z側)に設けられ、回路基板61及び発熱素子62を被覆する。インバータカバー63は、天板部63aと、鍔部63bと、を有する。 (Inverter cover 63)
Theinverter cover 63 is provided on the front side (+ Z side) of the pump cover 32 and covers the circuit board 61 and the heating element 62. The inverter cover 63 has a top plate portion 63a and a flange portion 63b.
インバータカバー63は、ポンプカバー32のフロント側(+Z側)に設けられ、回路基板61及び発熱素子62を被覆する。インバータカバー63は、天板部63aと、鍔部63bと、を有する。 (Inverter cover 63)
The
天板部63aは、発熱素子62のフロント側(+Z側)の面に接して径方向に延びる。鍔部63bは、天板部63aの外縁からリア側(-Z側)に延びる。鍔部63bのリア側(-Z側)の端面は、ポンプカバー32のフランジ部32bのフロント側(+Z側)の面と接触する。インバータ回路65の発熱素子62がインバータカバー63の天板部63aと直接接触することにより、発熱素子62で生じた発熱をインバータカバー63から放熱することができる。
The top plate 63a extends in the radial direction in contact with the front side (+ Z side) surface of the heating element 62. The flange portion 63b extends from the outer edge of the top plate portion 63a to the rear side (−Z side). The rear end surface (−Z side) of the flange portion 63b is in contact with the front side (+ Z side) surface of the flange portion 32b of the pump cover 32. When the heating element 62 of the inverter circuit 65 is in direct contact with the top plate portion 63 a of the inverter cover 63, the heat generated by the heating element 62 can be radiated from the inverter cover 63.
インバータカバー63の鍔部63bとポンプカバー32のフランジ部32bとをボルト及びナット等の締結手段64によって締結することによって、インバータカバー63がポンプカバー32に固定される。
The inverter cover 63 is fixed to the pump cover 32 by fastening the flange portion 63b of the inverter cover 63 and the flange portion 32b of the pump cover 32 with fastening means 64 such as bolts and nuts.
<本実施形態の作用>
(電動オイルポンプの動作)
まず、電動オイルポンプ10を作動させたときの動作について説明する。 <Operation of this embodiment>
(Operation of electric oil pump)
First, an operation when theelectric oil pump 10 is operated will be described.
(電動オイルポンプの動作)
まず、電動オイルポンプ10を作動させたときの動作について説明する。 <Operation of this embodiment>
(Operation of electric oil pump)
First, an operation when the
本実施形態の電動オイルポンプ10においては、まず、図示しないコネクタ部を介して接続される外部電源からモータ駆動部60に電源が供給される。これにより、モータ駆動部60から図示しない被覆ケーブル等の配線部材を介してステータ50のコイル53に駆動電流が供給される。コイル53に駆動電流が供給されると、磁場が発生し、この磁場によってロータ40のうち、ロータコア43及びロータマグネット44がシャフト41と共に回転する。このようにして、電動オイルポンプ10は、回転駆動力を得る。
In the electric oil pump 10 of the present embodiment, first, power is supplied to the motor driving unit 60 from an external power source connected via a connector unit (not shown). As a result, a drive current is supplied from the motor drive unit 60 to the coil 53 of the stator 50 via a wiring member such as a covered cable (not shown). When a drive current is supplied to the coil 53, a magnetic field is generated, and the rotor core 43 and the rotor magnet 44 of the rotor 40 are rotated together with the shaft 41 by the magnetic field. In this way, the electric oil pump 10 obtains a rotational driving force.
ステータ50のコイル53に供給される駆動電流は、モータ駆動部60におけるインバータ回路65の発熱素子62であるパワーIC及び回路部品等によって制御される。具体的には、モータ駆動部60は、図示しない回転センサによってセンサマグネット(不図示)の磁束の変化を検出することで、ロータ40の回転位置を検出する。モータ駆動部60のインバータ回路65は、ロータ40の回転位置に応じたモータ駆動信号を出力し、ステータ50のコイル53に供給される駆動電流を制御する。このようにして、本実施形態の電動オイルポンプ10の駆動が制御される。
The drive current supplied to the coil 53 of the stator 50 is controlled by a power IC and circuit components that are the heating elements 62 of the inverter circuit 65 in the motor drive unit 60. Specifically, the motor drive unit 60 detects the rotational position of the rotor 40 by detecting a change in magnetic flux of a sensor magnet (not shown) by a rotation sensor (not shown). The inverter circuit 65 of the motor drive unit 60 outputs a motor drive signal corresponding to the rotational position of the rotor 40 and controls the drive current supplied to the coil 53 of the stator 50. In this way, the drive of the electric oil pump 10 of this embodiment is controlled.
モータ駆動部60からコイル53に電力が供給されると、コイル53に印加されて回転磁界が生じることによりロータコア43及びロータマグネット44が回転する。ロータ40の回転はシャフト41を介してポンプロータ35のインナーロータ37に伝達され、インナーロータ37が回転する。これにより、吸入ポート32cに対向するポンプ室33においては負圧が発生する。
When electric power is supplied from the motor drive unit 60 to the coil 53, the rotor core 43 and the rotor magnet 44 are rotated by being applied to the coil 53 and generating a rotating magnetic field. The rotation of the rotor 40 is transmitted to the inner rotor 37 of the pump rotor 35 via the shaft 41, and the inner rotor 37 rotates. Thereby, a negative pressure is generated in the pump chamber 33 facing the suction port 32c.
(オイルの流れ)
次に、オイルの流れについて説明する。電動オイルポンプ10の吸入口32eは、オイルが貯留されているオイルパン(不図示)と流通管(不図示)で繋がっており、流通管のオイルパン側先端はオイルの中に浸漬される。電動オイルポンプ10のインナーロータ37が回転することで発生する負圧により、オイルパンに貯留されたオイルが吸入口32eを通って電動オイルポンプ10の内部に入り、吸入ポート32cに到達する。吸入ポート32cからポンプ室33内に吸入されたオイルは吐出ポート32dに圧送され、吐出ポート32dから吐出口32fへと吐出される。吐出されたオイルは、不図示のトランスミッションの内部に供給される。供給されたオイルで当該箇所に油圧を発生させ、その後、還流されて再びオイルパンに貯留される。 (Oil flow)
Next, the flow of oil will be described. Thesuction port 32e of the electric oil pump 10 is connected to an oil pan (not shown) in which oil is stored by a flow pipe (not shown), and the oil pan side tip of the flow pipe is immersed in the oil. Due to the negative pressure generated by the rotation of the inner rotor 37 of the electric oil pump 10, the oil stored in the oil pan enters the electric oil pump 10 through the suction port 32e and reaches the suction port 32c. The oil sucked into the pump chamber 33 from the suction port 32c is pumped to the discharge port 32d and discharged from the discharge port 32d to the discharge port 32f. The discharged oil is supplied into a transmission (not shown). The supplied oil generates hydraulic pressure at the relevant location, and then it is refluxed and stored again in the oil pan.
次に、オイルの流れについて説明する。電動オイルポンプ10の吸入口32eは、オイルが貯留されているオイルパン(不図示)と流通管(不図示)で繋がっており、流通管のオイルパン側先端はオイルの中に浸漬される。電動オイルポンプ10のインナーロータ37が回転することで発生する負圧により、オイルパンに貯留されたオイルが吸入口32eを通って電動オイルポンプ10の内部に入り、吸入ポート32cに到達する。吸入ポート32cからポンプ室33内に吸入されたオイルは吐出ポート32dに圧送され、吐出ポート32dから吐出口32fへと吐出される。吐出されたオイルは、不図示のトランスミッションの内部に供給される。供給されたオイルで当該箇所に油圧を発生させ、その後、還流されて再びオイルパンに貯留される。 (Oil flow)
Next, the flow of oil will be described. The
<本実施形態の効果>
(1)ポンプカバー32は、通常、アルミニウム合金などの金属製であり、熱容量が大きく、表面積が大きいため、放熱効果が高い。本実施形態では、インバータ回路65をポンプカバー32のフロント側(+Z側)に配置し、回路基板61を放熱効果が高いポンプカバー本体32aに絶縁を確保した上で直接接触させている。さらに、ポンプ部30において吸入口32eから吐出口32fへとオイルの流動経路を作り、ポンプカバー32内を一定温度(例えば、120℃)以下の油が流される。
このため、回路基板61で発生した熱がポンプカバー32を介して効果的に冷却され、昇温が抑制される。即ち、ポンプ部30内を流動するオイルと接触するポンプカバー32が直接、インバータ回路65の回路基板61を冷却してヒートシンクの役割を兼ねることにより、冷却を効果的に実現できる。 <Effect of this embodiment>
(1) Thepump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect. In the present embodiment, the inverter circuit 65 is disposed on the front side (+ Z side) of the pump cover 32, and the circuit board 61 is in direct contact with the pump cover main body 32a having a high heat dissipation effect while ensuring insulation. Further, an oil flow path is formed in the pump unit 30 from the suction port 32e to the discharge port 32f, and oil having a constant temperature (for example, 120 ° C.) or less flows through the pump cover 32.
For this reason, the heat generated in thecircuit board 61 is effectively cooled via the pump cover 32, and the temperature rise is suppressed. That is, the pump cover 32 that comes into contact with the oil flowing in the pump unit 30 directly cools the circuit board 61 of the inverter circuit 65 and also serves as a heat sink, so that cooling can be effectively realized.
(1)ポンプカバー32は、通常、アルミニウム合金などの金属製であり、熱容量が大きく、表面積が大きいため、放熱効果が高い。本実施形態では、インバータ回路65をポンプカバー32のフロント側(+Z側)に配置し、回路基板61を放熱効果が高いポンプカバー本体32aに絶縁を確保した上で直接接触させている。さらに、ポンプ部30において吸入口32eから吐出口32fへとオイルの流動経路を作り、ポンプカバー32内を一定温度(例えば、120℃)以下の油が流される。
このため、回路基板61で発生した熱がポンプカバー32を介して効果的に冷却され、昇温が抑制される。即ち、ポンプ部30内を流動するオイルと接触するポンプカバー32が直接、インバータ回路65の回路基板61を冷却してヒートシンクの役割を兼ねることにより、冷却を効果的に実現できる。 <Effect of this embodiment>
(1) The
For this reason, the heat generated in the
(2)本実施形態では、インバータ回路65の発熱素子62をインバータカバー63の天板部63aに直接接触させている。このため、発熱素子62で生じた発熱をインバータカバー63からも放熱することができる。また、回路基板61に銅インレイ基板を使用することにより、インバータ回路65で発生した熱をポンプカバー32により伝え易くなり、冷却効率が向上する。
(2) In the present embodiment, the heating element 62 of the inverter circuit 65 is in direct contact with the top plate portion 63 a of the inverter cover 63. For this reason, the heat generated by the heat generating element 62 can be dissipated from the inverter cover 63. Moreover, by using a copper inlay board for the circuit board 61, the heat generated in the inverter circuit 65 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
(3)本実施形態では、モータ部20、ポンプ部30及びモータ駆動部60を軸方向に沿って並べて設けており、円筒状のコンパクトな形状を有するため、様々なトランスミッションにおいても汎用的に使用することができる。
(3) In this embodiment, the motor unit 20, the pump unit 30, and the motor drive unit 60 are provided side by side along the axial direction, and since they have a cylindrical compact shape, they are used for various transmissions as well. can do.
(4)本実施形態では、吸入口32eから吸入されたオイルの一部は、ポンプボディ31の貫通孔31aとシャフト41との隙間に入り、軸支部の潤滑を行う。即ち、貫通孔31aは、シャフト41との隙間に流入したオイルによりシャフト41を回転可能に支持するすべり軸受部材として機能する。だだし、モータ部20へのオイルの侵入を防ぐため、所定の箇所にシール材等を配置してモータ部20の内部へのオイルの侵入を防ぎつつ、吸入したオイルを使用して、すべり軸受けを実現することができる。
従って、シャフト41は、ポンプ部30の上記すべり軸受部材とモータ部20のベアリング55とによる両軸受け構造となる。このため、仮にインナーロータ37がオイルによる圧力を受けても、両軸受け構造によりシャフト41の傾きを抑えることができるので、インナーロータ37がポンプケース(即ち、ポンプボディ31及びポンプカバー32)の壁面に押し付けられることがなく、摺動抵抗が増大することを抑制できる。 (4) In the present embodiment, part of the oil sucked from thesuction port 32e enters the gap between the through hole 31a of the pump body 31 and the shaft 41, and lubricates the shaft support portion. That is, the through hole 31a functions as a sliding bearing member that rotatably supports the shaft 41 by oil that flows into the gap with the shaft 41. However, in order to prevent the intrusion of oil into the motor unit 20, a sliding bearing is used by using a sucked oil while arranging a seal material or the like at a predetermined position to prevent the oil from entering the motor unit 20. Can be realized.
Therefore, theshaft 41 has a double bearing structure constituted by the sliding bearing member of the pump unit 30 and the bearing 55 of the motor unit 20. For this reason, even if the inner rotor 37 receives pressure from the oil, the tilt of the shaft 41 can be suppressed by the double bearing structure, so that the inner rotor 37 is mounted on the wall surface of the pump case (that is, the pump body 31 and the pump cover 32). It is possible to suppress the sliding resistance from increasing.
従って、シャフト41は、ポンプ部30の上記すべり軸受部材とモータ部20のベアリング55とによる両軸受け構造となる。このため、仮にインナーロータ37がオイルによる圧力を受けても、両軸受け構造によりシャフト41の傾きを抑えることができるので、インナーロータ37がポンプケース(即ち、ポンプボディ31及びポンプカバー32)の壁面に押し付けられることがなく、摺動抵抗が増大することを抑制できる。 (4) In the present embodiment, part of the oil sucked from the
Therefore, the
(5)本実施形態では、ポンプカバー32に吸入口32eと吐出口32fが設けられているので、インバータ回路65に近い位置で冷却することができ、インバータ回路65の冷却効率が高くなる。
(5) In the present embodiment, since the suction port 32e and the discharge port 32f are provided in the pump cover 32, cooling can be performed at a position close to the inverter circuit 65, and the cooling efficiency of the inverter circuit 65 is increased.
[第1実施形態の変形例]
(放熱部材を設けた変形例)
図1に示した第1実施形態に係る電動オイルポンプ10では、インバータ回路65の回路基板61をポンプカバー本体32aに絶縁を確保した上で直接接触させている。しかし、この構造に限定されるものではなく、例えば、図2に示すように、回路基板61とポンプカバー本体32aとの間に、熱伝導に関与する放熱部材66を介在させることもできる(第1変形例)。 [Modification of First Embodiment]
(Modification with heat dissipation member)
In theelectric oil pump 10 according to the first embodiment shown in FIG. 1, the circuit board 61 of the inverter circuit 65 is in direct contact with the pump cover main body 32a while ensuring insulation. However, the present invention is not limited to this structure. For example, as shown in FIG. 2, a heat radiating member 66 involved in heat conduction can be interposed between the circuit board 61 and the pump cover main body 32a. 1 modification).
(放熱部材を設けた変形例)
図1に示した第1実施形態に係る電動オイルポンプ10では、インバータ回路65の回路基板61をポンプカバー本体32aに絶縁を確保した上で直接接触させている。しかし、この構造に限定されるものではなく、例えば、図2に示すように、回路基板61とポンプカバー本体32aとの間に、熱伝導に関与する放熱部材66を介在させることもできる(第1変形例)。 [Modification of First Embodiment]
(Modification with heat dissipation member)
In the
放熱部材66としては、例えば、シリコーンゴム等の熱伝導率の高い熱硬化性樹脂、放熱シート、放熱ゲル等を使用できる。熱硬化性樹脂を使用する場合、例えば、ポンプカバー本体32aに樹脂を塗布した後、回路基板61を樹脂に圧接するようにポンプカバー本体32aに組み付け、樹脂を硬化させることにより、容易にインバータ回路65を形成することができる。
As the heat radiating member 66, for example, a thermosetting resin having a high thermal conductivity such as silicone rubber, a heat radiating sheet, a heat radiating gel, or the like can be used. When using a thermosetting resin, for example, after applying the resin to the pump cover main body 32a, the circuit board 61 is assembled to the pump cover main body 32a so as to be in pressure contact with the resin, and the resin is cured, so that the inverter circuit can be easily 65 can be formed.
この変形例では、放熱部材66を用いることにより、インバータ回路65の回路基板61をポンプカバー本体32aにより確実に接触させることができるため、回路基板61の冷却効率を向上させることができる。
In this modified example, by using the heat radiation member 66, the circuit board 61 of the inverter circuit 65 can be reliably brought into contact with the pump cover main body 32a, so that the cooling efficiency of the circuit board 61 can be improved.
また、例えば、図3に示すように、軸方向において、回路基板61及び発熱素子62の位置を反転させ、発熱素子62を回路基板61よりもリア側(-Z側)に配置させて放熱部材66と接触させ、他方、回路基板61をインバータカバー63の天板部63aに絶縁を確保した上で直接接触させでも良い(第2変形例)。
この変形例では、放熱部材66を介してインバータ回路65の発熱素子62をポンプカバー本体32aにより確実に接触させることができるため、発熱素子62の冷却効率を向上させることができる。また、回路基板61をインバータカバー63の天板部63aに絶縁を確保した上で直接接触させているため、回路基板61で生じた発熱をインバータカバー63からも放熱することができる。 Further, for example, as shown in FIG. 3, the positions of thecircuit board 61 and the heat generating element 62 are reversed in the axial direction, and the heat generating element 62 is arranged on the rear side (−Z side) from the circuit board 61. On the other hand, the circuit board 61 may be in direct contact with the top plate portion 63a of the inverter cover 63 while ensuring insulation (second modification).
In this modification, theheat generating element 62 of the inverter circuit 65 can be reliably brought into contact with the pump cover main body 32a via the heat radiating member 66, so that the cooling efficiency of the heat generating element 62 can be improved. Further, since the circuit board 61 is in direct contact with the top plate portion 63 a of the inverter cover 63 while ensuring insulation, heat generated in the circuit board 61 can be radiated from the inverter cover 63.
この変形例では、放熱部材66を介してインバータ回路65の発熱素子62をポンプカバー本体32aにより確実に接触させることができるため、発熱素子62の冷却効率を向上させることができる。また、回路基板61をインバータカバー63の天板部63aに絶縁を確保した上で直接接触させているため、回路基板61で生じた発熱をインバータカバー63からも放熱することができる。 Further, for example, as shown in FIG. 3, the positions of the
In this modification, the
さらに、例えば、図4に示すように、モータ駆動部60において、インバータカバー63の天板部63aのリア側(-Z側)に放熱部材66を設け、発熱素子62と接触させることもできる(第3変形例)。
この変形例では、インバータ回路65の発熱素子62と天板部63aとの間に、熱伝導に関与する放熱部材66を介在させることにより、発熱素子62を天板部63aにより確実に接触させることができるため、発熱素子62の熱が効果的にインバータカバー63から外部へ放熱され、昇温が抑制される。 Further, for example, as shown in FIG. 4, in themotor drive unit 60, a heat radiation member 66 can be provided on the rear side (−Z side) of the top plate portion 63a of the inverter cover 63 to be brought into contact with the heat generating element 62 ( Third modification).
In this modification, theheat generating element 62 is reliably brought into contact with the top plate portion 63a by interposing a heat radiating member 66 involved in heat conduction between the heat generating element 62 of the inverter circuit 65 and the top plate portion 63a. Therefore, the heat of the heating element 62 is effectively radiated from the inverter cover 63 to the outside, and the temperature rise is suppressed.
この変形例では、インバータ回路65の発熱素子62と天板部63aとの間に、熱伝導に関与する放熱部材66を介在させることにより、発熱素子62を天板部63aにより確実に接触させることができるため、発熱素子62の熱が効果的にインバータカバー63から外部へ放熱され、昇温が抑制される。 Further, for example, as shown in FIG. 4, in the
In this modification, the
(複数の回路基板を設けた変形例)
図1に示した第1実施形態では、一枚の回路基板61に同一種類の2個の発熱素子62を実装したインバータ回路65の例を示した。しかし、この構造のインバータ回路65に限定されるものではなく、例えば、図5に示すように、2つの回路基板61a,61bにそれぞれ発熱素子62を実装したインバータ回路65を用いることもできる(第4変形例)。また、回路基板61の個数は2つのみならず、3つ以上でも良い。さらに、1つの回路基板61に実装される発熱素子62は複数個でも良く、異なる種類の発熱素子(例えば、コンデンサ、マイコン、パワーIC、電界効果トランジスタ(FET)等のいずれか)であっても良い。 (Modification with multiple circuit boards)
In the first embodiment shown in FIG. 1, an example of theinverter circuit 65 in which two heating elements 62 of the same type are mounted on one circuit board 61 is shown. However, the present invention is not limited to the inverter circuit 65 having this structure. For example, as shown in FIG. 5, an inverter circuit 65 in which the heating elements 62 are mounted on the two circuit boards 61a and 61b can be used (the first circuit). 4 modification). Further, the number of circuit boards 61 is not limited to two but may be three or more. Further, a plurality of heat generating elements 62 mounted on one circuit board 61 may be used, or different types of heat generating elements (for example, any of capacitors, microcomputers, power ICs, field effect transistors (FETs), etc.). good.
図1に示した第1実施形態では、一枚の回路基板61に同一種類の2個の発熱素子62を実装したインバータ回路65の例を示した。しかし、この構造のインバータ回路65に限定されるものではなく、例えば、図5に示すように、2つの回路基板61a,61bにそれぞれ発熱素子62を実装したインバータ回路65を用いることもできる(第4変形例)。また、回路基板61の個数は2つのみならず、3つ以上でも良い。さらに、1つの回路基板61に実装される発熱素子62は複数個でも良く、異なる種類の発熱素子(例えば、コンデンサ、マイコン、パワーIC、電界効果トランジスタ(FET)等のいずれか)であっても良い。 (Modification with multiple circuit boards)
In the first embodiment shown in FIG. 1, an example of the
この変形例によれば、インバータ回路65に複数の回路基板61を用いることによって、モータ駆動部60に配置する場合の位置の自由度が増大する。例えば、発熱量の多い発熱素子62が実装された回路基板61では、この発熱素子62のみを図3に示すように、ポンプカバー本体32a側に配置することもできる。また、素子の寸法の大きな発熱素子62が実装された回路基板61では、スペースに余裕がある場所に配置を変更できる。このように、特徴に応じてモータ駆動部60内での回路基板61の配置を変更することにより、放熱及びスペース配置を効果的に実現することができる。
According to this modification, the use of the plurality of circuit boards 61 for the inverter circuit 65 increases the degree of freedom in the position when the inverter circuit 65 is disposed on the motor driving unit 60. For example, in the circuit board 61 on which the heat generating element 62 having a large heat generation amount is mounted, only the heat generating element 62 can be arranged on the pump cover main body 32a side as shown in FIG. Further, in the circuit board 61 on which the heating element 62 having a large element size is mounted, the arrangement can be changed to a place where there is a sufficient space. Thus, by changing the arrangement of the circuit board 61 in the motor drive unit 60 according to the characteristics, heat dissipation and space arrangement can be effectively realized.
(インバータ回路の配置を変更した変形例)
図1に示した第1実施形態に係る電動オイルポンプ10では、モータ駆動部60内においてインバータ回路65を中心軸Jに対して対象に配置した。しかし、この構造に限定されるものではなく、例えば、図6に示すように、インバータ回路65に含まれる回路基板61a及び発熱素子62が、中心軸Jより径方向の-X側(図中左側)に配置することもできる(第5変形例)。 (Modified example in which the arrangement of the inverter circuit is changed)
In theelectric oil pump 10 according to the first embodiment shown in FIG. 1, the inverter circuit 65 is arranged with respect to the central axis J in the motor drive unit 60. However, the present invention is not limited to this structure. For example, as shown in FIG. 6, the circuit board 61 a and the heating element 62 included in the inverter circuit 65 are arranged on the −X side (left side in the figure) in the radial direction from the central axis J. (5th modification).
図1に示した第1実施形態に係る電動オイルポンプ10では、モータ駆動部60内においてインバータ回路65を中心軸Jに対して対象に配置した。しかし、この構造に限定されるものではなく、例えば、図6に示すように、インバータ回路65に含まれる回路基板61a及び発熱素子62が、中心軸Jより径方向の-X側(図中左側)に配置することもできる(第5変形例)。 (Modified example in which the arrangement of the inverter circuit is changed)
In the
図1に示すように、ポンプ部30においては、吸入口32eが中心軸Jより径方向の-X側(図中左側)に配置されるのに対して、吐出口32fは中心軸Jより径方向のX側(図中右側)に配置される。吸入口32eから吸入された低温(例えば、120℃)のオイルは、吐出口32fに至るまで、インバータ回路65からの熱によって徐々に加熱され、温度が上昇する。このため、吐出口32fに近づく程、ヒートシンクとしての冷却効率は低下することになる。
As shown in FIG. 1, in the pump unit 30, the suction port 32 e is disposed on the −X side (left side in the drawing) in the radial direction from the central axis J, whereas the discharge port 32 f has a diameter from the central axis J. It is arranged on the X side (right side in the figure) of the direction. The low-temperature (for example, 120 ° C.) oil sucked from the suction port 32e is gradually heated by the heat from the inverter circuit 65 until reaching the discharge port 32f, and the temperature rises. For this reason, the cooling efficiency as a heat sink decreases as it approaches the discharge port 32f.
この変形例では、インバータ回路65の回路基板61a及び発熱素子62を中心軸Jより径方向の-X側(図中左側)に配置する。このため、放熱により温度が上昇する前の吸入口32e側の低い温度(例えば、120℃)のオイルにてインバータ回路65を冷却でき、冷却効率が向上する。よって、例えば、発熱量の多い電界効果トランジスタ(FET)を含むインバータ回路65をこの位置に配置することにより、冷却を効果的に実現することができる。
In this modification, the circuit board 61a and the heating element 62 of the inverter circuit 65 are arranged on the −X side (left side in the drawing) in the radial direction from the central axis J. For this reason, the inverter circuit 65 can be cooled by the oil of low temperature (for example, 120 degreeC) by the side of the inlet 32e before temperature rises by heat radiation, and cooling efficiency improves. Therefore, for example, by arranging the inverter circuit 65 including a field effect transistor (FET) that generates a large amount of heat at this position, cooling can be effectively realized.
(発熱素子の配置を変更した変形例)
図1に示した第1実施形態では、一枚の回路基板61に同一種類の2個の発熱素子62を実装したインバータ回路65の例を示した。しかし、この構造のインバータ回路65に限定されるものではなく、例えば、図7に示すように、回路基板61cに実装されていない一部の発熱素子68が配線69により回路基板61cと接続された構造のインバータ回路65を用いることもできる(第6変形例)。 (Modified example in which the arrangement of the heating elements is changed)
In the first embodiment shown in FIG. 1, an example of theinverter circuit 65 in which two heating elements 62 of the same type are mounted on one circuit board 61 is shown. However, the present invention is not limited to the inverter circuit 65 having this structure. For example, as shown in FIG. 7, a part of the heating elements 68 not mounted on the circuit board 61c is connected to the circuit board 61c by the wiring 69. An inverter circuit 65 having a structure can also be used (sixth modification).
図1に示した第1実施形態では、一枚の回路基板61に同一種類の2個の発熱素子62を実装したインバータ回路65の例を示した。しかし、この構造のインバータ回路65に限定されるものではなく、例えば、図7に示すように、回路基板61cに実装されていない一部の発熱素子68が配線69により回路基板61cと接続された構造のインバータ回路65を用いることもできる(第6変形例)。 (Modified example in which the arrangement of the heating elements is changed)
In the first embodiment shown in FIG. 1, an example of the
この変形例では、例えば、発熱素子68が発熱量の多い素子の場合、この発熱素子68を中心軸Jより径方向の-X側(図中左側)のポンプカバー本体32aに直接配置することによって、吸入口32e側の低い温度(例えば、120℃)のオイルにて冷却することができるため、冷却を効果的に実現することができる。
なお、発熱素子68、回路基板61cのいずれか、または双方に対して、熱伝導に関与する放熱部材66を介在させてポンプカバー本体32aに配置させても良い。 In this modification, for example, when theheating element 68 is an element that generates a large amount of heat, the heating element 68 is arranged directly on the pump cover main body 32a on the −X side (left side in the drawing) in the radial direction from the central axis J. Further, since cooling can be performed with oil at a low temperature (for example, 120 ° C.) on the suction port 32e side, cooling can be effectively realized.
Note that either or both of theheat generating element 68 and the circuit board 61c may be disposed on the pump cover main body 32a with a heat dissipation member 66 involved in heat conduction interposed therebetween.
なお、発熱素子68、回路基板61cのいずれか、または双方に対して、熱伝導に関与する放熱部材66を介在させてポンプカバー本体32aに配置させても良い。 In this modification, for example, when the
Note that either or both of the
上記の第6変形例では、回路基板61cに実装されていない一部の発熱素子68を中心軸Jより径方向の-X側(図中左側)のポンプカバー本体32aに直接配置した例を示した。しかし、例えば図8に示すように、中心軸Jより径方向の-X側(図中左側)のポンプカバー本体32aの一部に凹部32gを設けて、この凹部32g内に放熱部材74を介して発熱素子68を配置し、配線75により回路基板61cと接続しても良い(第7変形例)。
The above sixth modification shows an example in which some of the heating elements 68 that are not mounted on the circuit board 61c are directly arranged on the pump cover body 32a on the −X side (left side in the drawing) in the radial direction from the central axis J. It was. However, as shown in FIG. 8, for example, a recess 32g is provided in a part of the pump cover main body 32a on the −X side (left side in the drawing) in the radial direction from the central axis J, and a heat dissipation member 74 is interposed in the recess 32g. Alternatively, the heat generating element 68 may be disposed and connected to the circuit board 61c by the wiring 75 (seventh modified example).
発熱素子68を凹部32g内に配置することにより、発熱素子68に対向するポンプカバー本体32aの表面積が大きくなり、より放熱効果が高くなる。また、凹部32gの分だけ発熱素子68の軸方向の高さを小さくすることができ、モータ駆動部60全体としてのコンパクト化が可能である。発熱素子68を凹部32g内に直接収容することもできるが、放熱部材74を介して凹部32g内に発熱素子68を配置することが好ましい。
By disposing the heating element 68 in the recess 32g, the surface area of the pump cover main body 32a facing the heating element 68 is increased, and the heat dissipation effect is further increased. Further, the height of the heating element 68 in the axial direction can be reduced by the amount of the recess 32g, and the motor drive unit 60 as a whole can be made compact. Although the heat generating element 68 can be directly accommodated in the concave portion 32g, it is preferable to dispose the heat generating element 68 in the concave portion 32g via the heat dissipating member 74.
放熱部材74としては、例えば、シリコーンゴム等の熱伝導率の高い熱硬化性樹脂、放熱シート、放熱ゲル等を使用できる。熱硬化性樹脂を使用する場合、例えば、凹部32g内に適量の放熱部材74を塗布した後に、発熱素子68をポンプカバー本体32aに固定して、発熱素子68を凹部32gに入れるとともに、放熱部材74に圧接させる。その状態で放熱部材74を硬化させることにより、放熱部材74を凹部32g内に容易に充填することができる。また、ポンプカバー本体32aの表面に凹凸を形成することなどにより、その表面積を増大させて、放熱効果をより高めることもできる。
As the heat dissipation member 74, for example, a thermosetting resin having a high thermal conductivity such as silicone rubber, a heat dissipation sheet, a heat dissipation gel, or the like can be used. When using a thermosetting resin, for example, after applying an appropriate amount of the heat radiation member 74 in the recess 32g, the heat generating element 68 is fixed to the pump cover body 32a, and the heat generation element 68 is placed in the recess 32g. 74. By curing the heat radiating member 74 in this state, the heat radiating member 74 can be easily filled in the recess 32g. In addition, by forming irregularities on the surface of the pump cover main body 32a, the surface area can be increased to further enhance the heat dissipation effect.
ポンプカバー本体32a側に形成された凹部32g内に収容される発熱素子68としては、例えば、コンデンサなど、背の高く耐熱性の低い部品を挙げることができるが、他の部品であっても良い。
Examples of the heating element 68 accommodated in the recess 32g formed on the pump cover main body 32a side include a tall and low heat resistant component such as a capacitor, but may be other components. .
[第2実施形態]
次に、本発明の第2実施形態に係る電動オイルポンプについて説明する。第1実施形態では、吸入口32eがポンプカバー32における中心軸Jより径方向の-X側(図中左側)に設けられ、吐出口32fが中心軸Jより径方向のX側(図中右側)に設けられている例を示した。他方、本実施形態における電動オイルポンプでは、吐出口がポンプカバー32とは異なる位置に形成される。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Second Embodiment]
Next, an electric oil pump according to a second embodiment of the present invention will be described. In the first embodiment, thesuction port 32e is provided on the −X side (left side in the drawing) of the pump cover 32 in the radial direction from the central axis J, and the discharge port 32f is on the X side (right side in the drawing) in the radial direction from the central axis J. ) Is shown. On the other hand, in the electric oil pump in the present embodiment, the discharge port is formed at a position different from the pump cover 32. Hereinafter, the difference from the first embodiment will be mainly described. In the electric oil pump according to the present embodiment, the same components as those of the electric oil pump according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
次に、本発明の第2実施形態に係る電動オイルポンプについて説明する。第1実施形態では、吸入口32eがポンプカバー32における中心軸Jより径方向の-X側(図中左側)に設けられ、吐出口32fが中心軸Jより径方向のX側(図中右側)に設けられている例を示した。他方、本実施形態における電動オイルポンプでは、吐出口がポンプカバー32とは異なる位置に形成される。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Second Embodiment]
Next, an electric oil pump according to a second embodiment of the present invention will be described. In the first embodiment, the
図9は、第2実施形態に係る電動オイルポンプを示す断面図である。
本実施形態に係る電動オイルポンプ100では、ポンプ部30のポンプボディ31において、中心軸Jより径方向のX側(図中右側)に、凹部33の底面からリア側(-Z側)に延び、かつモータ部20に連通する送出口31dが設けられる。また、ハウジング21の底面部21aにおいて、中心軸Jより径方向のX側(図中右側)の一部にオイルを吐出する吐出口73が設けられる。さらに、吐出口73のリア側(-Z側)には、必要に応じてオイル循環用のフィルタ76が設けられる。なお、吐出口73は、ハウジング21の底面部21aではなく、中心軸Jより径方向のX側(図中右側)のステータ保持部21bの一部に設けても良い。 FIG. 9 is a cross-sectional view showing an electric oil pump according to the second embodiment.
In theelectric oil pump 100 according to the present embodiment, in the pump body 31 of the pump unit 30, the radial direction extends from the central axis J to the X side (right side in the figure), and extends from the bottom surface of the recess 33 to the rear side (−Z side). In addition, a delivery port 31d communicating with the motor unit 20 is provided. In addition, a discharge port 73 for discharging oil is provided on a part of the bottom surface 21 a of the housing 21 on the X side (right side in the drawing) in the radial direction from the central axis J. Further, an oil circulation filter 76 is provided on the rear side (−Z side) of the discharge port 73 as necessary. The discharge port 73 may be provided not on the bottom surface portion 21 a of the housing 21 but on a part of the stator holding portion 21 b on the X side (right side in the drawing) in the radial direction from the central axis J.
本実施形態に係る電動オイルポンプ100では、ポンプ部30のポンプボディ31において、中心軸Jより径方向のX側(図中右側)に、凹部33の底面からリア側(-Z側)に延び、かつモータ部20に連通する送出口31dが設けられる。また、ハウジング21の底面部21aにおいて、中心軸Jより径方向のX側(図中右側)の一部にオイルを吐出する吐出口73が設けられる。さらに、吐出口73のリア側(-Z側)には、必要に応じてオイル循環用のフィルタ76が設けられる。なお、吐出口73は、ハウジング21の底面部21aではなく、中心軸Jより径方向のX側(図中右側)のステータ保持部21bの一部に設けても良い。 FIG. 9 is a cross-sectional view showing an electric oil pump according to the second embodiment.
In the
<本実施形態の作用>
本実施形態に係る電動オイルポンプ装置100を作動させたときの動作については、第1実施形態と同じであるので説明を省略し、オイルの流れについて説明する。 <Operation of this embodiment>
Since the operation when the electricoil pump device 100 according to the present embodiment is operated is the same as that of the first embodiment, the description thereof will be omitted and the flow of oil will be described.
本実施形態に係る電動オイルポンプ装置100を作動させたときの動作については、第1実施形態と同じであるので説明を省略し、オイルの流れについて説明する。 <Operation of this embodiment>
Since the operation when the electric
電動オイルポンプ10の吸入口32eは、オイルが貯留されているオイルパン(不図示)と流通管(不図示)で繋がっており、流通管のオイルパン側先端はオイルの中に浸漬される。電動オイルポンプ100のインナーロータ37が回転することで発生する負圧により、オイルパンに貯留されたオイルが吸入口32eを通って電動オイルポンプ100の内部に入り、吸入ポート32cに到達する。オイルは、吸入ポート32cからポンプ室33内に吸入された後、送出口31dへ圧送され、さらにポンプ部30を通過してモータ部20へ流入される。モータ部20において、オイルは、ステータ50の内周面とロータ40の外周面の間をフロント側(+Z側)からリア側(-Z側)へ流れ、吐出口73へと吐出される。これにより、ステータ50のコイル53をより効率よく冷却するとともに、ロータ40を冷却することができる。吐出されたオイルは、不図示のトランスミッションの内部に供給される。供給されたオイルで当該箇所に油圧を発生させ、その後、還流されて再びオイルパンに貯留される。
The suction port 32e of the electric oil pump 10 is connected to an oil pan (not shown) in which oil is stored by a flow pipe (not shown), and the oil pan side tip of the flow pipe is immersed in the oil. Due to the negative pressure generated by the rotation of the inner rotor 37 of the electric oil pump 100, the oil stored in the oil pan enters the electric oil pump 100 through the suction port 32e and reaches the suction port 32c. The oil is sucked into the pump chamber 33 from the suction port 32 c, is then pumped to the delivery port 31 d, passes through the pump unit 30, and flows into the motor unit 20. In the motor unit 20, the oil flows from the front side (+ Z side) to the rear side (−Z side) between the inner peripheral surface of the stator 50 and the outer peripheral surface of the rotor 40 and is discharged to the discharge port 73. Thereby, the coil 53 of the stator 50 can be cooled more efficiently and the rotor 40 can be cooled. The discharged oil is supplied into a transmission (not shown). The supplied oil generates hydraulic pressure at the relevant location, and then it is refluxed and stored again in the oil pan.
<本実施形態の効果>
(1)ポンプカバー32は、通常、アルミニウム合金などの金属製であり、熱容量が大きく、表面積が大きいため、放熱効果が高い。本実施形態では、インバータ回路65をポンプカバー32のフロント側(+Z側)に配置し、回路基板61を放熱効果が高いポンプカバー本体32aに絶縁を確保した上で直接接触させている。さらに、ポンプ部30において吸入口32eから送出口31dへとオイルの流動経路を作り、ポンプカバー32内に一定温度(例えば、120℃)以下の油が流される。
このため、回路基板61で発生した熱がポンプカバー32を介して効果的に冷却され、昇温が抑制される。即ち、ポンプ部30内を流動するオイルと接触するポンプカバー32が直接インバータ回路65の回路基板61を冷却してヒートシンクの役割を兼ねることにより、冷却を効果的に実現できる。 <Effect of this embodiment>
(1) Thepump cover 32 is usually made of a metal such as an aluminum alloy, has a large heat capacity and a large surface area, and therefore has a high heat dissipation effect. In the present embodiment, the inverter circuit 65 is disposed on the front side (+ Z side) of the pump cover 32, and the circuit board 61 is in direct contact with the pump cover main body 32a having a high heat dissipation effect while ensuring insulation. Further, an oil flow path is formed in the pump unit 30 from the suction port 32 e to the delivery port 31 d, and oil having a certain temperature (for example, 120 ° C.) or less flows through the pump cover 32.
For this reason, the heat generated in thecircuit board 61 is effectively cooled via the pump cover 32, and the temperature rise is suppressed. That is, the pump cover 32 that comes into contact with the oil flowing in the pump unit 30 directly cools the circuit board 61 of the inverter circuit 65 and also serves as a heat sink, so that cooling can be effectively realized.
(1)ポンプカバー32は、通常、アルミニウム合金などの金属製であり、熱容量が大きく、表面積が大きいため、放熱効果が高い。本実施形態では、インバータ回路65をポンプカバー32のフロント側(+Z側)に配置し、回路基板61を放熱効果が高いポンプカバー本体32aに絶縁を確保した上で直接接触させている。さらに、ポンプ部30において吸入口32eから送出口31dへとオイルの流動経路を作り、ポンプカバー32内に一定温度(例えば、120℃)以下の油が流される。
このため、回路基板61で発生した熱がポンプカバー32を介して効果的に冷却され、昇温が抑制される。即ち、ポンプ部30内を流動するオイルと接触するポンプカバー32が直接インバータ回路65の回路基板61を冷却してヒートシンクの役割を兼ねることにより、冷却を効果的に実現できる。 <Effect of this embodiment>
(1) The
For this reason, the heat generated in the
(2)本実施形態では、インバータ回路65の発熱素子62をインバータカバー63の天板部63aに直接接触させている。このため、発熱素子62で生じた発熱をインバータカバー63からも放熱することができる。また、回路基板61に銅インレイ基板を使用することにより、インバータ回路65で発生した熱をポンプカバー32により伝え易くなり、冷却効率が向上する。
(2) In the present embodiment, the heating element 62 of the inverter circuit 65 is in direct contact with the top plate portion 63 a of the inverter cover 63. For this reason, the heat generated by the heat generating element 62 can be radiated from the inverter cover 63. Moreover, by using a copper inlay board for the circuit board 61, the heat generated in the inverter circuit 65 can be easily transmitted to the pump cover 32, and the cooling efficiency is improved.
(3)本実施形態では、モータ部20、ポンプ部30及びモータ駆動部60をそれぞれ軸方向に重ね合わせた構造であり、円筒状のコンパクトな形状を有するため、様々なトランスミッションにおいても汎用的に使用することができる。
(3) In the present embodiment, the motor unit 20, the pump unit 30, and the motor driving unit 60 are superposed in the axial direction, and have a cylindrical compact shape. Can be used.
(4)一般的に、モータにおいてはコイルが最も発熱する。コイルで発熱した熱は、ステータコアに伝達される。つまり、モータ部20においてはステータ50の発熱量が多いため、ステータ50の冷却効率を上げることがモータ部20全体の冷却効率向上につながる。本実施形態では、外部から供給されたオイルがポンプロータ35によって吸入口32eからポンプ部30内に吸入され、送出口31dを経由してモータ部20内を流れることによって、モータ部20のロータ40及びステータ50を同時に冷却することができる。このモータ部20の内部流通によりモータが発する熱をオイルが吸収するので、モータが過度に高温になることがなく、モータの回転効率の低下を抑制できる。すなわち、冷却効果の高い構造を有する電動オイルポンプ装置100を提供することができる。
(4) Generally, a coil generates the most heat in a motor. The heat generated by the coil is transmitted to the stator core. That is, since the motor unit 20 generates a large amount of heat from the stator 50, increasing the cooling efficiency of the stator 50 leads to an improvement in the cooling efficiency of the entire motor unit 20. In the present embodiment, oil supplied from the outside is sucked into the pump unit 30 from the suction port 32e by the pump rotor 35 and flows through the motor unit 20 via the delivery port 31d. And the stator 50 can be cooled at the same time. Since the oil absorbs heat generated by the motor due to the internal circulation of the motor unit 20, the motor does not become excessively high in temperature, and a reduction in the rotational efficiency of the motor can be suppressed. That is, the electric oil pump device 100 having a structure with a high cooling effect can be provided.
[第2実施形態の変形例]
上記実施形態では、送出口31dを経由してオイルをモータ部20内へ送出することによって、モータ部20のロータ40及びステータ50を同時に冷却することができる。しかし、送出口31dが無い構成を採ることも可能である。この場合、シャフト41とポンプボディ31との軸方向間隙を用いる。すなわち、シャフト41とポンプボディ31との軸方向間隙がポンプ部30からモータ部20へとオイルを送出する送出口としての役割を果たす。
この場合、貫通孔31aは、シャフト41を回転可能に支持するすべり軸受部材として機能する。 [Modification of Second Embodiment]
In the above embodiment, therotor 40 and the stator 50 of the motor unit 20 can be simultaneously cooled by sending oil into the motor unit 20 via the delivery port 31d. However, it is also possible to adopt a configuration without the delivery port 31d. In this case, an axial gap between the shaft 41 and the pump body 31 is used. That is, the axial gap between the shaft 41 and the pump body 31 serves as an outlet for sending oil from the pump unit 30 to the motor unit 20.
In this case, the throughhole 31a functions as a sliding bearing member that rotatably supports the shaft 41.
上記実施形態では、送出口31dを経由してオイルをモータ部20内へ送出することによって、モータ部20のロータ40及びステータ50を同時に冷却することができる。しかし、送出口31dが無い構成を採ることも可能である。この場合、シャフト41とポンプボディ31との軸方向間隙を用いる。すなわち、シャフト41とポンプボディ31との軸方向間隙がポンプ部30からモータ部20へとオイルを送出する送出口としての役割を果たす。
この場合、貫通孔31aは、シャフト41を回転可能に支持するすべり軸受部材として機能する。 [Modification of Second Embodiment]
In the above embodiment, the
In this case, the through
このような変形例によれば、送出口32dを別途設ける必要がなく、加工が容易となる。また、ポンプ部30から流入するオイルを潤滑油として使用することが可能となり、オイルを効率よくモータ部20内へ送出できる。
According to such a modification, it is not necessary to separately provide the delivery port 32d, and the processing becomes easy. Further, the oil flowing from the pump unit 30 can be used as the lubricating oil, and the oil can be efficiently sent into the motor unit 20.
なお、シャフト41の外周面またはポンプボディ31の内周面の少なくとも一方に切り欠き部を設けてもよい。これにより、オイルがシャフト41とポンプボディ31の間を通る場合に、流路抵抗が小さくなり、ポンプ部30からモータ部20へより効率的にオイルを送出することができる。
Note that a cutout portion may be provided on at least one of the outer peripheral surface of the shaft 41 or the inner peripheral surface of the pump body 31. Thereby, when oil passes between the shaft 41 and the pump body 31, the flow path resistance is reduced, and the oil can be more efficiently sent from the pump unit 30 to the motor unit 20.
また、ポンプボディ31において、上記のすべり軸受部材に加えて、さらにベアリングを用いることもできる。この場合、オイルは、ベアリングの内部を通過しても良く、シャフト41とベアリングとの間を通過しても良い。
Further, in the pump body 31, in addition to the above-mentioned sliding bearing member, a bearing can also be used. In this case, the oil may pass through the inside of the bearing or may pass between the shaft 41 and the bearing.
[第3実施形態]
次に、本発明の第3実施形態に係る電動オイルポンプについて説明する。第1実施形態では、吸入口32e及び吐出口32fがポンプカバー32に設けられている例を示した。他方、本実施形態における電動オイルポンプでは、吸入口32e及び吐出口32fがポンプボディ31に設けられている。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Third Embodiment]
Next, an electric oil pump according to a third embodiment of the present invention will be described. In the first embodiment, an example in which thesuction port 32e and the discharge port 32f are provided in the pump cover 32 is shown. On the other hand, in the electric oil pump in the present embodiment, the suction port 32 e and the discharge port 32 f are provided in the pump body 31. Hereinafter, the difference from the first embodiment will be mainly described. In the electric oil pump according to the present embodiment, the same components as those of the electric oil pump according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
次に、本発明の第3実施形態に係る電動オイルポンプについて説明する。第1実施形態では、吸入口32e及び吐出口32fがポンプカバー32に設けられている例を示した。他方、本実施形態における電動オイルポンプでは、吸入口32e及び吐出口32fがポンプボディ31に設けられている。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Third Embodiment]
Next, an electric oil pump according to a third embodiment of the present invention will be described. In the first embodiment, an example in which the
図10は、第3実施形態に係る電動オイルポンプを示す断面図である。
本実施形態に係る電動オイルポンプ110では、吸入口32eは、ポンプ室33からポンプボディ31の突出部31c内を-X側(図中左側)に向かって延び、突出部31cの外表面に達する。他方、吐出口32fは、ポンプ室33からポンプボディ31内の突出部31c内をX側(図中右側)に向かって延び、突出部31cの外表面に達する。
吸入口32e及び吐出口32fは、それぞれ吸入ポート32c、吐出ポート32dを経由してポンプロータ35と繋がる。これにより、ポンプロータ35へのオイルの吸入およびポンプロータ35からのオイルの吐出が可能である。詳細には、ポンプロータ35の回転によりポンプ室に発生する負圧により、オイルパン(不図示)に貯留されたオイルが吸入口32eから吸入ポート32cを経由して、ポンプ室の内部に吸入される。吸入したオイルは、加圧領域から吐出ポート32dを経由して吐出口32fへ吐出される。 FIG. 10 is a cross-sectional view showing an electric oil pump according to the third embodiment.
In theelectric oil pump 110 according to the present embodiment, the suction port 32e extends from the pump chamber 33 in the protrusion 31c of the pump body 31 toward the -X side (left side in the drawing) and reaches the outer surface of the protrusion 31c. . On the other hand, the discharge port 32f extends from the pump chamber 33 to the X side (right side in the drawing) in the protruding portion 31c in the pump body 31, and reaches the outer surface of the protruding portion 31c.
Thesuction port 32e and the discharge port 32f are connected to the pump rotor 35 via the suction port 32c and the discharge port 32d, respectively. As a result, oil can be sucked into the pump rotor 35 and discharged from the pump rotor 35. Specifically, due to the negative pressure generated in the pump chamber by the rotation of the pump rotor 35, oil stored in an oil pan (not shown) is sucked into the pump chamber from the suction port 32e via the suction port 32c. The The sucked oil is discharged from the pressurizing region to the discharge port 32f via the discharge port 32d.
本実施形態に係る電動オイルポンプ110では、吸入口32eは、ポンプ室33からポンプボディ31の突出部31c内を-X側(図中左側)に向かって延び、突出部31cの外表面に達する。他方、吐出口32fは、ポンプ室33からポンプボディ31内の突出部31c内をX側(図中右側)に向かって延び、突出部31cの外表面に達する。
吸入口32e及び吐出口32fは、それぞれ吸入ポート32c、吐出ポート32dを経由してポンプロータ35と繋がる。これにより、ポンプロータ35へのオイルの吸入およびポンプロータ35からのオイルの吐出が可能である。詳細には、ポンプロータ35の回転によりポンプ室に発生する負圧により、オイルパン(不図示)に貯留されたオイルが吸入口32eから吸入ポート32cを経由して、ポンプ室の内部に吸入される。吸入したオイルは、加圧領域から吐出ポート32dを経由して吐出口32fへ吐出される。 FIG. 10 is a cross-sectional view showing an electric oil pump according to the third embodiment.
In the
The
本実施形態に係る電動オイルポンプ110においても、第1実施形態に係る電動オイルポンプ10と同様の作用・効果を奏する。また、本実施形態では、ポンプボディ31に吸入口32eと吐出口32fが設けられているので、ポンプボディ31に移動した熱を冷却する際により効果を発揮する。
The electric oil pump 110 according to the present embodiment also has the same operations and effects as the electric oil pump 10 according to the first embodiment. In the present embodiment, since the pump body 31 is provided with the suction port 32e and the discharge port 32f, it is more effective when the heat transferred to the pump body 31 is cooled.
[第4実施形態]
次に、本発明の第4実施形態に係る電動オイルポンプについて説明する。本実施形態では、ポンプボディ31に軸受部が設けられている。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Fourth Embodiment]
Next, an electric oil pump according to a fourth embodiment of the present invention will be described. In the present embodiment, thepump body 31 is provided with a bearing portion. Hereinafter, the difference from the first embodiment will be mainly described. In the electric oil pump according to the present embodiment, the same components as those of the electric oil pump according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
次に、本発明の第4実施形態に係る電動オイルポンプについて説明する。本実施形態では、ポンプボディ31に軸受部が設けられている。以下、第1実施形態との差異を中心に説明する。本実施形態に係る電動オイルポンプでは、第1実施形態に係る電動オイルポンプと同一構成のものには同一の符号を付し、説明を省略する。 [Fourth Embodiment]
Next, an electric oil pump according to a fourth embodiment of the present invention will be described. In the present embodiment, the
図11は、第4実施形態に係る電動オイルポンプを示す断面図である。
本実施形態に係る電動オイルポンプ120は、ポンプボディ本体31bのリア側(-Z側)に、シャフト41を支持する軸受部としてのボールベアリング31fを備えている。
ボールベアリング31fは、ポンプボディ本体31bに設けられた凹部31gに嵌め込まれており、ボールベアリング31fの周方向からポンプボディ本体31bによって固定されている。すなわち、本実施形態では、ポンプボディ本体31bがベアリングホルダを兼ねている。 FIG. 11 is a cross-sectional view showing an electric oil pump according to the fourth embodiment.
Theelectric oil pump 120 according to the present embodiment includes a ball bearing 31f as a bearing portion that supports the shaft 41 on the rear side (−Z side) of the pump body main body 31b.
Theball bearing 31f is fitted in a recess 31g provided in the pump body main body 31b, and is fixed by the pump body main body 31b from the circumferential direction of the ball bearing 31f. That is, in the present embodiment, the pump body main body 31b also serves as a bearing holder.
本実施形態に係る電動オイルポンプ120は、ポンプボディ本体31bのリア側(-Z側)に、シャフト41を支持する軸受部としてのボールベアリング31fを備えている。
ボールベアリング31fは、ポンプボディ本体31bに設けられた凹部31gに嵌め込まれており、ボールベアリング31fの周方向からポンプボディ本体31bによって固定されている。すなわち、本実施形態では、ポンプボディ本体31bがベアリングホルダを兼ねている。 FIG. 11 is a cross-sectional view showing an electric oil pump according to the fourth embodiment.
The
The
従って、ポンプボディ本体31b内にベアリングホルダを設置する領域を新たに設ける必要がないため、ポンプボディの実効体積を大きくすることができる。このため、熱容量を大きくすることができ、インバータ回路の放熱がしやすくなる。
Therefore, it is not necessary to newly provide a region for installing the bearing holder in the pump body main body 31b, so that the effective volume of the pump body can be increased. For this reason, it is possible to increase the heat capacity and to easily dissipate the inverter circuit.
また、本実施形態では、シャフト41は、ボールベアリング31fとモータ部20のベアリング55とによる両軸受け構造となる。このため、仮にインナーロータ37がオイルによる圧力を受けても、両軸受け構造によりシャフト41の傾きを抑えることができるので、インナーロータ37がポンプケース(即ち、ポンプボディ31及びポンプカバー32)の壁面に押し付けられることがなく、摺動抵抗が増大することを抑制できる。
Further, in the present embodiment, the shaft 41 has a double bearing structure including the ball bearing 31 f and the bearing 55 of the motor unit 20. For this reason, even if the inner rotor 37 receives pressure from the oil, the tilt of the shaft 41 can be suppressed by the double bearing structure, so that the inner rotor 37 is mounted on the wall surface of the pump case (that is, the pump body 31 and the pump cover 32). It is possible to suppress the sliding resistance from increasing.
さらに、本実施形態では、第1実施形態と同様に、ポンプカバー32に吸入口32e及び吐出口32fが設けられているので、ポンプボディ31に吸入口32e及び吐出口32fが設けられている第3実施形態と比較して、オイルがインバータ回路65のより近くを流れるため、インバータ回路65で発生した熱を効果的に冷却することができる。
Further, in the present embodiment, as in the first embodiment, since the pump cover 32 is provided with the suction port 32e and the discharge port 32f, the pump body 31 is provided with the suction port 32e and the discharge port 32f. Compared with the third embodiment, since oil flows closer to the inverter circuit 65, the heat generated in the inverter circuit 65 can be effectively cooled.
なお、本実施形態では、軸受部としてボールベアリング31fを設けた例を示したが、軸受部として機能する他の構造であっても良い。例えば、第1実施形態、第2実施形態の変形例で記載したようなすべり軸受部材をボールベアリング31fに代えて、あるいはボールベアリング31fとともに用いることもできる。
In the present embodiment, an example in which the ball bearing 31f is provided as the bearing portion is shown, but other structures that function as the bearing portion may be used. For example, a sliding bearing member as described in the modification of the first embodiment and the second embodiment can be used instead of the ball bearing 31f or together with the ball bearing 31f.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲及び要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and gist of the invention.
例えば、第1実施形態では、ポンプ部30において、吸入口32eを中心軸Jより径方向の-X側(図中左側)に設け、吐出口32fを中心軸Jより径方向のX側(図中右側)に設けたが、吸入口32eの配置と吐出口32fの配置を逆にすることもできる。この場合、第1実施形態の変形例のインバータ回路65の配置が中心軸Jに対して非対称な例(図6~図8)については中心軸Jに対して逆向きに配置することができる。また、第2実施形態及び第4実施形態においても、第1実施形態の変形例のインバータ回路65の配置を適用することも可能である。さらに、第2実施形態において、ポンプカバー32に設けられた吸入口32eを第3実施形態のようにポンプボディ31に設けることもできる。また、第1実施形態及び第4実施形態における吸入口32e及び吐出口32fの長さ、形状、内径等、吸入ポート32c及び吐出ポート32dの形状、幅及び高さ寸法等、第2実施形態における送出口31dの長さ、形状、内径等は必要に応じて適宜変更可能である。
For example, in the first embodiment, in the pump unit 30, the suction port 32e is provided on the −X side (left side in the figure) in the radial direction from the central axis J, and the discharge port 32f is disposed on the X side in the radial direction from the central axis J (see FIG. However, the arrangement of the suction port 32e and the arrangement of the discharge port 32f can be reversed. In this case, the inverter circuit 65 according to the modified example of the first embodiment may be disposed in the opposite direction with respect to the central axis J in the case where the inverter circuit 65 is asymmetrical with respect to the central axis J (FIGS. 6 to 8). Also in the second embodiment and the fourth embodiment, it is also possible to apply the arrangement of the inverter circuit 65 according to the modification of the first embodiment. Furthermore, in 2nd Embodiment, the inlet 32e provided in the pump cover 32 can also be provided in the pump body 31 like 3rd Embodiment. Further, the length, shape, inner diameter, etc. of the suction port 32e and the discharge port 32f in the first embodiment and the fourth embodiment, the shape, width, height height, etc. of the suction port 32c and the discharge port 32d, etc. in the second embodiment. The length, shape, inner diameter and the like of the delivery port 31d can be appropriately changed as necessary.
本出願は、2017年3月3日に出願された日本出願特願2017-040629号に基づく優先権を主張し、当該日本出願に記載された全ての記載内容を援用するものである。
This application claims priority based on Japanese Patent Application No. 2017-040629 filed on March 3, 2017, and uses all the contents described in the Japanese application.
10 電動オイルポンプ
12 ハウジング
20 モータ部
21 ハウジング
30 ポンプ部
31 ポンプボディ
31d 送出口
32 ポンプカバー
32e 吸入口
32f 吐出口
33 ポンプ室(凹部)
35 ポンプロータ
37 インナーロータ
38 アウターロータ
40 ロータ
41 シャフト
50 ステータ
55 ベアリング
60 モータ駆動部
61 回路基板
62 発熱素子
63 インバータカバー
65 インバータ回路
73 吐出口 DESCRIPTION OFSYMBOLS 10 Electric oil pump 12 Housing 20 Motor part 21 Housing 30 Pump part 31 Pump body 31d Outlet 32 Pump cover 32e Suction port 32f Discharge port 33 Pump chamber (concave part)
35Pump Rotor 37 Inner Rotor 38 Outer Rotor 40 Rotor 41 Shaft 50 Stator 55 Bearing 60 Motor Drive 61 Circuit Board 62 Heating Element 63 Inverter Cover 65 Inverter Circuit 73 Discharge Port
12 ハウジング
20 モータ部
21 ハウジング
30 ポンプ部
31 ポンプボディ
31d 送出口
32 ポンプカバー
32e 吸入口
32f 吐出口
33 ポンプ室(凹部)
35 ポンプロータ
37 インナーロータ
38 アウターロータ
40 ロータ
41 シャフト
50 ステータ
55 ベアリング
60 モータ駆動部
61 回路基板
62 発熱素子
63 インバータカバー
65 インバータ回路
73 吐出口 DESCRIPTION OF
35
Claims (15)
- 軸方向に延びる中心軸を中心として回転可能に支持されたシャフトを有するモータ部と、
前記モータ部の軸方向一方側に位置し、前記モータ部から延びる前記シャフトによって駆動され、オイルを吐出するポンプ部と、
前記ポンプ部を介して前記モータ部の前記軸方向一方側に位置し、前記モータ部を駆動させるモータ駆動部と、を有し、
前記モータ部は、
前記シャフトの周囲において回転可能なロータと、
前記ロータの径方向外側に配置されたステータと、
前記ロータ及び前記ステータを収容するハウジングと、を有し、
前記ポンプ部は、
前記シャフトに取り付けられるポンプロータと、
前記ポンプロータを収容し、側壁面及び前記モータ部の軸方向他方側に位置する底面を含む凹部及び前記モータ部の前記軸方向一方側に開口部を有するポンプボディと、
前記開口部を閉塞するポンプカバーと、を有し、
前記モータ駆動部は、
前記モータ部の駆動を制御するインバータ回路と、
前記インバータ回路を被覆するインバータカバーと、を有し、
前記インバータ回路は、前記ポンプカバーと熱的に接触する電動オイルポンプ。 A motor unit having a shaft supported rotatably about a central axis extending in the axial direction;
A pump unit located on one axial side of the motor unit, driven by the shaft extending from the motor unit, and discharging oil;
A motor drive unit that is located on one axial side of the motor unit via the pump unit and drives the motor unit;
The motor part is
A rotor rotatable around the shaft;
A stator disposed radially outside the rotor;
A housing for housing the rotor and the stator,
The pump part is
A pump rotor attached to the shaft;
A pump body that houses the pump rotor, and includes a recess including a side wall surface and a bottom surface located on the other axial side of the motor unit, and an opening on the one axial side of the motor unit;
A pump cover that closes the opening,
The motor drive unit is
An inverter circuit for controlling the driving of the motor unit;
An inverter cover that covers the inverter circuit;
The inverter circuit is an electric oil pump that is in thermal contact with the pump cover. - 前記ポンプカバーの任意の位置に前記オイルを吸入する吸入口が設けられ、前記ポンプカバーにおける前記中心軸に対して前記吸入口の位置とは反対側に前記オイルを吐出する吐出口が設けられる請求項1に記載の電動オイルポンプ。 A suction port for sucking the oil is provided at an arbitrary position of the pump cover, and a discharge port for discharging the oil is provided on a side opposite to the position of the suction port with respect to the central axis of the pump cover. Item 4. The electric oil pump according to Item 1.
- 前記ポンプカバーの任意の位置に前記オイルを吸入する吸入口が設けられ、前記凹部の前記底面における前記中心軸に対して前記吸入口の位置とは反対側に前記モータ部に連通する送出口が設けられ、かつ前記ハウジングにおいて、その底面もしくは、側面に前記オイルを吐出する吐出口が設けられる請求項1に記載の電動オイルポンプ。 A suction port for sucking the oil is provided at an arbitrary position of the pump cover, and a delivery port communicating with the motor unit on a side opposite to the position of the suction port with respect to the central axis on the bottom surface of the recess. The electric oil pump according to claim 1, wherein a discharge port for discharging the oil is provided on a bottom surface or a side surface of the housing.
- 前記ポンプボディの任意の位置に前記オイルを吸入する吸入口が設けられ、前記ポンプボディにおける前記中心軸に対して前記吸入口の位置とは反対側に前記オイルを吐出する吐出口が設けられる請求項1に記載の電動オイルポンプ。 A suction port for sucking the oil is provided at an arbitrary position of the pump body, and a discharge port for discharging the oil is provided on a side opposite to the position of the suction port with respect to the central axis of the pump body. Item 4. The electric oil pump according to Item 1.
- 前記ポンプカバーは、放熱部材を介して前記インバータ回路と熱的に接触する請求項1乃至4のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 1 to 4, wherein the pump cover is in thermal contact with the inverter circuit via a heat dissipation member.
- 前記インバータ回路は、前記中心軸より前記吸入口側に配置される請求項2乃至5のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 2 to 5, wherein the inverter circuit is arranged closer to the suction port than the central axis.
- 前記インバータ回路は、回路基板及び発熱素子を含み、前記発熱素子は、前記インバータカバーと熱的に接触する請求項1乃至6のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 1 to 6, wherein the inverter circuit includes a circuit board and a heating element, and the heating element is in thermal contact with the inverter cover.
- 前記インバータ回路の前記発熱素子は、前記放熱部材を介して前記インバータカバーと熱的に接触する請求項7に記載の電動オイルポンプ。 The electric oil pump according to claim 7, wherein the heating element of the inverter circuit is in thermal contact with the inverter cover via the heat radiating member.
- 前記インバータ回路の前記発熱素子が、前記中心軸より前記吸入口側に配置される請求項7又は8に記載の電動オイルポンプ。 The electric oil pump according to claim 7 or 8, wherein the heating element of the inverter circuit is disposed closer to the suction port than the central axis.
- 前記インバータ回路における前記発熱素子は、電界効果トランジスタを含む請求項7乃至9のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 7 to 9, wherein the heating element in the inverter circuit includes a field effect transistor.
- 前記インバータ回路の前記回路基板は、銅インレイ基板である請求項7乃至10のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 7 to 10, wherein the circuit board of the inverter circuit is a copper inlay board.
- 前記インバータ回路の前記回路基板は、複数の基板である請求項7乃至11のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 7 to 11, wherein the circuit board of the inverter circuit is a plurality of boards.
- 前記ポンプボディは、軸受部を有する請求項1乃至12のいずれか1項に記載の電動オイルポンプ。 The electric oil pump according to any one of claims 1 to 12, wherein the pump body has a bearing portion.
- 前記軸受部は、ボールベアリングを有する請求項13に記載の電動オイルポンプ。 The electric oil pump according to claim 13, wherein the bearing portion includes a ball bearing.
- 前記軸受部は、すべり軸受を有する請求項13又は14に記載の電動オイルポンプ。
The electric oil pump according to claim 13 or 14, wherein the bearing portion includes a sliding bearing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019502955A JPWO2018159480A1 (en) | 2017-03-03 | 2018-02-23 | Electric oil pump |
CN201890000574.0U CN211082246U (en) | 2017-03-03 | 2018-02-23 | Electric oil pump |
US16/486,175 US20190376511A1 (en) | 2017-03-03 | 2018-02-23 | Electric oil pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040629 | 2017-03-03 | ||
JP2017-040629 | 2017-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159480A1 true WO2018159480A1 (en) | 2018-09-07 |
Family
ID=63370088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006647 WO2018159480A1 (en) | 2017-03-03 | 2018-02-23 | Electric oil pump |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190376511A1 (en) |
JP (1) | JPWO2018159480A1 (en) |
CN (1) | CN211082246U (en) |
WO (1) | WO2018159480A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021048689A (en) * | 2019-09-18 | 2021-03-25 | 日本電産トーソク株式会社 | Motor mechanical device |
WO2021145022A1 (en) * | 2020-01-16 | 2021-07-22 | 株式会社明電舎 | Rotary machine system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018001857T5 (en) * | 2017-04-04 | 2019-12-12 | Regal Beloit America, Inc. | Driver circuit for electric motors |
DE102017218648A1 (en) * | 2017-10-19 | 2019-04-25 | Robert Bosch Gmbh | Drive unit, in particular hydraulic unit of an electronically slip-controllable vehicle brake system |
US11637484B2 (en) | 2020-12-28 | 2023-04-25 | Hanon Systems | Cover retention |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180151A (en) * | 2008-01-30 | 2009-08-13 | Shimadzu Corp | High-speed rotating equipment |
JP2015175291A (en) * | 2014-03-14 | 2015-10-05 | アイシン精機株式会社 | electric oil pump |
JP2016039672A (en) * | 2014-08-06 | 2016-03-22 | 株式会社ジェイテクト | Electrically-driven oil pump device |
JP2016129172A (en) * | 2015-01-09 | 2016-07-14 | スタンレー電気株式会社 | Semiconductor light emitting element bulb and lighting system including the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4900683B2 (en) * | 2006-09-13 | 2012-03-21 | アイシン精機株式会社 | Hydraulic supply device |
CN104769221B (en) * | 2012-10-29 | 2019-06-04 | 皮尔伯格泵技术有限责任公司 | Vehicle electric liquid pump |
-
2018
- 2018-02-23 JP JP2019502955A patent/JPWO2018159480A1/en active Pending
- 2018-02-23 CN CN201890000574.0U patent/CN211082246U/en active Active
- 2018-02-23 WO PCT/JP2018/006647 patent/WO2018159480A1/en active Application Filing
- 2018-02-23 US US16/486,175 patent/US20190376511A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180151A (en) * | 2008-01-30 | 2009-08-13 | Shimadzu Corp | High-speed rotating equipment |
JP2015175291A (en) * | 2014-03-14 | 2015-10-05 | アイシン精機株式会社 | electric oil pump |
JP2016039672A (en) * | 2014-08-06 | 2016-03-22 | 株式会社ジェイテクト | Electrically-driven oil pump device |
JP2016129172A (en) * | 2015-01-09 | 2016-07-14 | スタンレー電気株式会社 | Semiconductor light emitting element bulb and lighting system including the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021048689A (en) * | 2019-09-18 | 2021-03-25 | 日本電産トーソク株式会社 | Motor mechanical device |
JP7363257B2 (en) | 2019-09-18 | 2023-10-18 | ニデックパワートレインシステムズ株式会社 | motor machinery |
WO2021145022A1 (en) * | 2020-01-16 | 2021-07-22 | 株式会社明電舎 | Rotary machine system |
CN114982106A (en) * | 2020-01-16 | 2022-08-30 | 株式会社明电舍 | Rotary machine system |
US11750067B2 (en) | 2020-01-16 | 2023-09-05 | Meidensha Corporation | Rotary machine system |
Also Published As
Publication number | Publication date |
---|---|
CN211082246U (en) | 2020-07-24 |
US20190376511A1 (en) | 2019-12-12 |
JPWO2018159480A1 (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6855845B2 (en) | Motor and electric oil pump | |
WO2018159480A1 (en) | Electric oil pump | |
US7036892B2 (en) | Electric powered pump | |
JP5927766B2 (en) | Electric pump unit | |
US11129271B2 (en) | Motor, circuit board, and engine cooling module including the motor | |
US20170058915A1 (en) | Electric Coolant Pump | |
JP2008128076A (en) | Fluid pump | |
WO2018159471A1 (en) | Pump device | |
CN101312640B (en) | Heat radiating device | |
JP7022265B2 (en) | Vacuum pump | |
JP2013113272A (en) | Electric pump | |
JP2015533200A (en) | Electric liquid pump for automobiles | |
JP2016039672A (en) | Electrically-driven oil pump device | |
JP2021120542A (en) | Electric compressor | |
US20190195348A1 (en) | Electric oil pump | |
JP2004183595A (en) | Electric brushless water pump | |
JP2019527790A (en) | Controller with internal active cooling function and pump assembly with built-in motor | |
JP2005337095A (en) | Electric pump | |
US11121606B2 (en) | Motor, circuit board, and engine cooling module including the motor | |
US20210396233A1 (en) | Glanded pump with ring capacitor | |
JP6207650B2 (en) | Rotating electric machine | |
US20240318648A1 (en) | Fluid drive device | |
WO2018159472A1 (en) | Pump device | |
US20220170457A1 (en) | Electric pump | |
US20230374993A1 (en) | Electric oil pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760895 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502955 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760895 Country of ref document: EP Kind code of ref document: A1 |