WO2018159106A1 - Boiler, ship comprising boiler, and inert gas generation method - Google Patents

Boiler, ship comprising boiler, and inert gas generation method Download PDF

Info

Publication number
WO2018159106A1
WO2018159106A1 PCT/JP2018/000374 JP2018000374W WO2018159106A1 WO 2018159106 A1 WO2018159106 A1 WO 2018159106A1 JP 2018000374 W JP2018000374 W JP 2018000374W WO 2018159106 A1 WO2018159106 A1 WO 2018159106A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
furnace
boiler
inert gas
gas
Prior art date
Application number
PCT/JP2018/000374
Other languages
French (fr)
Japanese (ja)
Inventor
貴澄 寺原
健太 高本
英輝 天野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201880013933.0A priority Critical patent/CN110337567B/en
Priority to DK18761294.0T priority patent/DK3591291T3/en
Priority to KR1020197024445A priority patent/KR102286089B1/en
Priority to EP18761294.0A priority patent/EP3591291B1/en
Publication of WO2018159106A1 publication Critical patent/WO2018159106A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/04Controlling at two or more different localities

Definitions

  • the present invention relates to a boiler and a ship equipped with the boiler, and a method of generating inert gas.
  • the fuel gas in the tank is removed so that the operator can work in the tank, and the atmosphere in the tank is aired. It is necessary to work to the same extent. Inert gas is used to equalize the environment in the tank to the atmosphere. This is because if the air is supplied directly into the tank to eliminate the fuel gas, the fuel gas and the air may undergo a combustion reaction, so the tank is once filled with the inert gas to eliminate the fuel gas. , To supply air into the tank. For this reason, some LNG carriers are equipped with a dedicated device (IGG (Inert gas generator) or the like) for generating inert gas. Further, some crude oil tankers and the like use combustion exhaust gas such as a boiler as inert gas.
  • ISG Inert gas generator
  • Patent Document 1 discloses a VOC gas processing system that uses, as an inert gas, an exhaust gas from a scrubber-cleaned boiler (a gas from which a sulfur component or the like has been removed).
  • a scrubber-cleaned boiler a gas from which a sulfur component or the like has been removed.
  • the inert gas to be used in the LNG carrier must have a severe oxygen content of about 1%, the LNG carrier can not normally use the flue gas from the boiler or the like as the inert gas, and generates the inert gas. It has a dedicated device.
  • Patent No. 5916777 gazette
  • the burner for marine boilers has a large capacity for the purpose of generating predetermined steam, and there is a possibility that more combustion gas may be generated if the purpose is to generate inert gas. Therefore, it is necessary to install a small-capacity burner additionally.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a boiler capable of generating steam by energy at the time of generating inert gas, a ship equipped with a boiler, and a method of generating inert gas. To aim.
  • a boiler according to an aspect of the present invention is provided separately from a furnace, a first burner that burns a fuel in the furnace, and the first burner, and burns the fuel in the furnace to generate an inert gas. And a burner.
  • the second burner that generates the inert gas in the furnace is provided. Therefore, an inert gas having an oxygen content that does not react with the combustible gas can be generated without providing a dedicated device (IGG (Inert gas generator) or the like) for generating the inert gas.
  • IMG Inert gas generator
  • energy can be used to generate steam when generating inert gas.
  • Inert gas is a gas with an oxygen content that does not react with the flammable gas.
  • the oxygen content which does not react with the flammable gas means an oxygen content which does not ignite in air (for example, atmospheric pressure or the like), and is, for example, 1% or less.
  • the first burner may be disposed in the upper part of the furnace and form a flame downward
  • the second burner may be disposed in the lower part of the furnace.
  • the first burner is disposed in the upper part of the furnace, and the second burner is disposed in the lower part of the furnace.
  • the first burner and the second burner can be disposed at separate positions. Therefore, damage to the first burner by radiation heat of the flame of the second burner can be suppressed, and at the same time, damage to the second burner from radiation heat of the flame of the first burner can be suppressed.
  • the first burner forms a flame downward, the heat flux of the flame of the first burner decreases at the lower part of the furnace. Therefore, by disposing the second burner at the lower part of the furnace, it is possible to further suppress damage to the second burner by the flame of the first burner. Also, since the second burner is disposed away from the first burner, it does not affect the arrangement space of the first burner. Therefore, a sufficient installation space for the first burner can be secured.
  • a boiler according to an aspect of the present invention is provided between a water-cooled wall provided along a furnace bottom of the furnace and a lower side wall of the furnace, and a flame formed by the water-cooled wall and the second burner. And a refractory material.
  • the refractory is provided between the water-cooled wall and the flame formed by the second burner.
  • heat exchange between the flame and the water-cooled wall can be suppressed, so that the flame formed by the second burner is less likely to be cooled by the water-cooled wall. Therefore, since the combustion temperature of the flame formed by the second burner can be maintained high, the combustion of fuel by the second burner is promoted. Therefore, since the oxygen content of the exhaust gas generated by the combustion of the second burner is reduced, the inert gas having a lower oxygen content can be generated by the second burner.
  • the water-cooled wall and the flame do not directly contact, it is possible to suppress the generation of carbon monoxide caused by quenching of the flame.
  • the 2nd burner is arrange
  • a boiler according to an aspect of the present invention includes a wind box for supplying combustion air to the second burner, and a seal inside the wind box during operation of the first burner and when the second burner is stopped. And a fan for supplying gas.
  • the seal air is supplied to the inside of the air box that encloses the second burner while the first burner is in operation and the second burner is stopped.
  • the flame formed by the first burner causes the furnace to be filled with high-temperature combustion gas.
  • the seal gas since the seal gas is supplied to the inside of the air box surrounding the second burner, the high temperature combustion gas which is going to flow from the furnace into the air box is blocked by the seal gas. Therefore, while the second burner is stopped, the high temperature combustion gas does not flow into the air box surrounding the second burner, and the second burner is not exposed to the high temperature combustion gas.
  • a ship includes the boiler described in any of the above and a fuel tank to which the inert gas generated by the boiler is supplied.
  • the inert gas generated by the boiler is supplied to the fuel tank. That is, the exhaust gas of the boiler can be used as the inert gas. Therefore, since there is no need to provide a separate device for generating inert gas, space in the ship can be saved.
  • the boiler since the boiler generates inert gas having an oxygen content rate that does not react with the flammable gas, the fuel tank is not subjected to a process for further reducing the oxygen content rate with respect to the inert gas discharged from the boiler. Can be supplied. Therefore, it is not necessary to separately provide a device for reducing the oxygen content rate, so the structure of the ship can be simplified, and the space in the ship can be saved.
  • the ship according to an aspect of the present invention may be provided with another boiler that is provided separately from the boiler and to which the fuel gas is supplied from the fuel tank.
  • another boiler to which the fuel gas is supplied from the fuel tank is provided separately from the boiler that generates the inert gas.
  • the fuel gas containing the inert gas discharged from the fuel tank can be burned and oxidized in another boiler.
  • a gas fuel unit for example, a GCU (Gas combustion unit)
  • the fuel gas discharged from the fuel tank can be burned and processed by another boiler, and steam can be generated, the generated steam can be used on board, or the generator can be used to generate steam.
  • the turbine is driven to generate power, the energy efficiency of the entire ship can be improved.
  • a method of producing inert gas is provided separately from a furnace, a first burner that burns a fuel in the furnace, and the first burner, and burns a fuel in the furnace to burn combustible gas.
  • a boiler having a second burner that generates an inert gas having an oxygen content rate that does not react with oxygen, and a steam generation unit that generates steam from the combustion exhaust gas generated in the furnace; and burning fuel with only the second burner And a steam generation step of generating steam in the steam generation unit.
  • the inert gas can be generated without providing a dedicated device (IGG (Inert gas generator) or the like) for generating the inert gas.
  • IFG Inert gas generator
  • the energy of the generated inert gas can generate steam.
  • the ship according to the present embodiment is, for example, an LNG carrier 1 that carries LNG.
  • the LNG carrier 1 is equipped with an LNG tank (fuel tank) 2 for storing LNG at the time of transportation, and a boiler 3 for generating inert gas to be supplied into the LNG tank 2 at the time of inspection / repair of the LNG tank 2.
  • the boiler 3 is connected to the LNG tank 2 via an inert gas supply pipe 4.
  • the inert gas flows through the interior of the inert gas supply pipe 4, and the combustion gas generated by the boiler 3 is supplied to the LNG tank 2 through the inert gas supply pipe 4.
  • the inert gas supply pipe 4 is provided with a scrubber 5, a cooler 6, a dryer 7, and a booster fan 8 in this order from the upstream side of the combustion gas flow.
  • the combustion gas flowing in the inert gas supply pipe 4 is subjected to cleaning processing after removing sulfur components, soot and the like by the scrubber 5.
  • the cleaned combustion gas is cooled by the cooler 6 and then dried by the dryer 7.
  • the dried combustion gas is supplied as the inert gas into the LNG tank 2 by the booster 8.
  • a combustion gas discharge pipe 9 branches from between the boiler 3 and the scrubber 5 of the inert gas supply pipe 4. Part of the combustion gas generated by the boiler 3 is discharged from a chimney (not shown) via the inside of the combustion discharge pipe 9.
  • a vent pipe 10 is connected to the LNG tank 2.
  • the fuel gas discharged by supplying the inert gas into the LNG tank 2 is discharged to the atmosphere through the vent pipe 10. Further, when the air is supplied into the LNG tank 2 after the inert gas filling, the inert gas is discharged to the atmosphere through the vent pipe 10.
  • the boiler 3 has the furnace 16 which burns a combustion gas, and the steam production
  • the furnace 16 is a space surrounded by the side water cooling wall 32, the ceiling water cooling wall 22, and the bottom water cooling wall 33.
  • the side water cooling wall 32 is provided along the side wall forming the side of the furnace, the bottom water cooling wall 33 is provided along the furnace bottom forming the lower part of the furnace 16, and the ceiling water cooling wall 22 is , And is provided along the ceiling that constitutes the upper part of the furnace 16.
  • the side water-cooling walls 32 are a front water-cooling wall 23 that constitutes the front of the furnace 16 (a surface facing upward in the drawing in FIG.
  • Each of the side water cooling walls 32 includes a plurality of water cooling pipes 34 extending in the vertical direction and arranged in parallel with a predetermined interval, and water or steam is circulated in the water cooling pipes 34.
  • the ceiling water cooling wall 22 and the bottom water cooling wall 33 are also configured substantially the same as the side water cooling wall 32.
  • the plurality of water cooling pipes 34 constituting the ceiling water cooling wall 22 and the bottom water cooling wall 33 extend in the horizontal direction. In FIG. 2, the water cooling pipe 34 is omitted for the sake of illustration.
  • the furnace 16 is installed in the upper burner (first burner) 18 installed in the upper part of the furnace 16, the upper air box 19 surrounding the upper burner 18, and the lower part of the furnace 16.
  • the upper burner 18 is provided on the ceiling water cooling wall 22 and forms a flame below.
  • the upper burner 18 burns using the LNG in the LNG tank 2 or the oil supplied from the oil supply device as a fuel.
  • the lower burner 20 is provided on the front water-cooling wall 23, and forms a flame in the horizontal direction and in the direction in which the steam generation unit 17 is not provided. That is, the lower burner 20 forms a flame from the front to the rear of the furnace 16. By forming the flame in this manner, the flame does not directly touch the parts and the like that constitute the steam generation unit 17, so that it is possible to prevent damage to the parts that constitute the steam generation unit 17.
  • the lower burner 20 burns using the oil supplied from the oil supply device as a fuel.
  • the lower burner 20 is a small volume burner capable of forming a flame with less combustion air per unit fuel than the upper burner 18.
  • the lower burner 20 is disposed so as to secure the flame length.
  • FIG. 2 and FIG. 3 illustrate an example in which one upper burner 18 and one lower burner 20 are provided, a plurality of upper burners 18 and lower burners 20 may be provided.
  • the steam generating unit 17 includes a front bank tube 28 disposed at the boundary with the furnace 16, an evaporation tube group 29 disposed on the downstream side of the combustion gas flow of the front bank tube 28 and extending in the vertical direction, and an evaporation tube group 29.
  • the partition plate 41 is provided at a substantially central position in the vertical direction, the water drum 30 provided below the evaporation pipe group 29, the steam drum 31 provided above the evaporation pipe group 29, and the inert gas supply pipe 4 And a combustion gas exhaust duct 38 connected thereto.
  • a bottom refractory material (refractory material) 35 is provided so as to cover the bottom water-cooling wall from above.
  • a side refractory 36 (refractory) is provided to cover the wall 44 from the center direction of the furnace 16. That is, the bottom refractory material 35 and the side refractory material 36 are provided between the bottom water-cooling wall 33 and the side water-cooling wall 32 and the flame formed by the lower burner 20.
  • a ceiling refractory 37 is provided between the front bank tube 28 and the ceiling 22.
  • an FD fan 24 for supplying combustion air to the upper burner 18 and the lower burner 20 and an air for combustion from the FD fan 24 are supplied to the upper burner 18 via the upper air box 19 outside the boiler 3.
  • the lower burner air supply passage 26 is provided with a flow control valve 27 for adjusting the flow rate of the circulating combustion air.
  • a plurality of FD fans may be provided, and the FD fan supplying combustion air to the upper burner 18 and the FD fan supplying combustion air to the lower burner 20 may be separated.
  • a steam supply pipe 39 see FIG.
  • a fuel supply pipe 40 for supplying fuel such as light oil to the lower burner 20 and a fuel gas supply pipe 11 for supplying fuel from the inside of the LNG tank 2 to the upper burner 18 and the lower burner 20 are provided. ing.
  • the lower burner 20 burns the fuel supplied via the fuel supply pipe 40 using the combustion air supplied via the lower burner air supply passage 26 to form a flame (second burner combustion step) ).
  • the lower burner 20 is a small volume burner that forms a flame with a small amount of combustion air per unit fuel, and is disposed so as to secure the flame length, so the space in the furnace is effectively used.
  • the combustion gas produced by the combustion of the lower burner 20 has a low oxygen content. Therefore, the oxygen content of the combustion gas introduced into the steam generation unit 17 is low. Specifically, the combustion gas introduced into the steam generation unit 17 has an oxygen content of 1% or less.
  • the combustion gas introduced into the steam generation unit 17 passes through the front bank tube 28 and the evaporation tube group 29 in order and flows through the inside of the front bank tube 28 and the evaporation tube group 29 as shown by the arrow in FIG. Alternatively, it exchanges heat with steam to produce steam (steam generation step).
  • steam generation step When passing through the evaporation tube group 29, it flows so as to turn the partition plate 41 back.
  • the combustion gas which has completed the heat exchange flows from the combustion gas discharge hole 38 into the inert gas supply pipe 4 as the inert gas.
  • the inert gas flowing into the inert gas supply pipe 4 is supplied into the LNG tank 2 by the booster 8 through the scrubber 5, the cooler 6 and the dryer 7.
  • the fuel is supplied only to the upper burner 18 and the fuel is not supplied to the lower burner 20. That is, combustion is performed only by the upper burner 18, and combustion is not performed by the lower burner 20. Even when combustion is not performed by the lower burner 20, when combustion is performed by the upper burner 18, the opening degree of the flow control valve 27 provided in the lower burner air supply path 26 is adjusted to lower a small amount of air.
  • the air is supplied into the wind box 21. Since the air supplied into the lower air box 21 flows into the furnace 16 through the lower air box 21, seal air prevents high temperature combustion gas and the like of the furnace 16 from flowing into the lower air box 21. And play the role of cooling air.
  • the air flowing through the lower burner air supply passage 26 plays the role of combustion air when the lower burner 20 is burned (that is, when the inert gas is generated), and the upper burner 18 burns only.
  • the burner 20 does not burn (i.e., only steam is generated), it plays the role of seal air and cooling air.
  • the lower burner 20 which is a burner for generating the inert gas in the furnace 16 is provided. Therefore, without providing a dedicated device (IGG (Inert gas generator) or the like) for generating inert gas, the boiler 3 generates inert gas having an oxygen content of 1% or less, which is regarded as an oxygen content that does not react with flammable gas. be able to. In addition, energy can be used to generate steam when generating inert gas.
  • IMG Inert gas generator
  • the upper burner 18 is disposed at the upper portion of the furnace 16 and the lower burner 20 is disposed at the lower portion of the furnace 16.
  • the upper burner 18 and the lower burner 20 can be disposed at separate positions. Therefore, damage to the upper burner 18 due to the radiation heat of the flame of the lower burner 20 can be suppressed, and at the same time, damage to the lower burner 20 due to the radiation heat of the flame of the upper burner 18 can be suppressed.
  • the upper burner 18 forms a flame downward, the heat flux of the flame of the upper burner 18 is lowered at the lower part of the furnace 16. Therefore, arranging the lower burner 20 at the lower part of the furnace 16 can further suppress the lower burner 20 from being damaged by the flame of the upper burner 18.
  • the lower burner 20 since the lower burner 20 is disposed apart from the upper burner 18, the lower burner 20 does not affect the arrangement space of the upper burner 18. Therefore, a sufficient installation space for the upper burner 18 can be secured.
  • the side refractory material 36 and the bottom refractory material 35 are provided between the side water cooling wall 32 and the bottom water cooling wall 33 and the flame formed by the lower burner 20.
  • the flame formed by the lower burner 20 is the side water cooling wall 32 and the bottom It becomes difficult to be cooled by the water cooling wall 33. Therefore, since the combustion temperature of the flame formed by the lower burner 20 can be maintained high, the combustion of fuel by the lower burner 20 is promoted. Therefore, since the oxygen content of the combustion gas generated by the combustion of the lower burner 20 is reduced, an inert gas having a lower oxygen content can be generated in the furnace 16.
  • the flame formed by the lower burner 20 does not directly contact the side water cooling wall 32 and the bottom water cooling wall 33, it is possible to suppress the generation of carbon monoxide caused by rapid cooling of the flame.
  • the refractory material is not provided so as to cover the entire surface of the side water-cooling wall 32 of the furnace 16.
  • the front water-cooling wall 23 provided with the lower burner 20 is not provided with a refractory material. With such a configuration, heat absorption in the furnace 16 can be secured.
  • the lower burner 20 is disposed at the lower part of the furnace 16. As a result, the range of the flame formed by the lower burner 20 can be limited, so the range in which the refractory material is provided can be reduced. Moreover, since the refractory material is provided in the bottom part of the furnace 16 and the lower part of the furnace 16, the operation
  • the seal gas is supplied to the inside of the lower air box 21 surrounding the lower burner 20 while the upper burner 18 is in operation and the lower burner 20 is stopped.
  • the flame formed by the upper burner 18 causes the furnace 16 to be filled with high temperature combustion gas.
  • the seal gas is supplied to the inside of the lower air box 21 surrounding the lower burner 20, the high temperature combustion gas which is going to flow from the furnace 16 into the lower air box 21 is blocked by the seal gas. Be Therefore, while the lower burner 20 is stopped, the high temperature combustion gas does not flow into the lower air box 21 and the lower burner 20 is not exposed to the high temperature combustion gas.
  • the inert gas generated by the boiler 3 is supplied to the fuel tank. That is, the combustion exhaust gas of the boiler 3 can be used as the inert gas. Therefore, since there is no need to provide a separate device for generating inert gas, space in the LNG carrier 1 can be saved. Further, since the inert gas having an oxygen content rate of 1% or less, which is determined to have an oxygen content rate that does not react with the flammable gas, is generated in the boiler 3, the oxygen content rate is further reduced with respect to the inert gas discharged from the boiler 3
  • the LNG tank 2 can be supplied without performing the treatment.
  • the present embodiment is basically the same as the first embodiment in that it has basically the same structure as that of the first embodiment, and the LNG carrier 60 is provided with two boilers having different characteristics. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the LNG carrier 60 has a flammable gas supply pipe 51 branched from the vent pipe 10.
  • the first combustible gas supply pipe 51 is connected to the boiler 50, and the flammable fuel gas in the LNG tank 2 is supplied to the boiler 50 by the supply compressor 52 provided at an intermediate position.
  • a second combustible gas supply pipe 54 for supplying the combustible gas from the LNG tank 2 to the boiler 56 is branched from an intermediate position of the first combustible gas supply pipe 51.
  • the second combustible gas supply pipe 54 may be provided so as to directly connect the LNG tank 2 and the boiler 56 without branching from the middle position of the combustible gas supply pipe 51.
  • the boiler 56 has substantially the same configuration as the boiler 3 described in the first embodiment, but the provided burner is different from the boiler 3. Specifically, the boiler 56 is provided with only a burner 55 that generates inert gas with a low oxygen content, and the burner 55 is provided at the top of the boiler 56.
  • the boiler 50 has substantially the same configuration as the boiler 3 described in the first embodiment, but generates the inert gas having a low oxygen content, the lower burner 20, the lower air box 21, the side refractory 36 and the bottom fireproof It differs from the boiler 3 in that the material 35 is not provided.
  • a boiler 50 to which flammable fuel gas is supplied from the LNG tank 2 is provided separately from the boiler 56 that generates the inert gas.
  • the inert gas is supplied from the boiler 56 that generates the inert gas to the LNG tank 2
  • the combustible fuel gas and the inert gas discharged from the inside of the LNG tank 2 can be burned and processed by the boiler 50. Therefore, the combustible fuel gas and the inert gas discharged from the inside of the LNG tank 2 can be burned and processed by the boiler 50 and steam can be generated, and this steam can be used by the equipment in the LNG carrier 1,
  • the energy efficiency of the entire LNG carrier 1 can be improved.
  • the boiler 56 and the boiler 50 are the boilers having a structure different from that of the boiler 3 described in the first embodiment, but the boilers 56 and 50 have the same structure as the boiler 3 It is also good.
  • the refractory material is not provided on the entire surface of the furnace 16 and the refractory material is not provided on the surface on which the lower burner 20 is provided. May be provided.
  • heat exchange between the flame formed by the lower burner 20 and the side water cooling wall 32 can be further suppressed, and the combustion temperature of the flame formed by the lower burner 20 can be maintained higher.
  • direct contact between the flame formed by the lower burner 20 and the side water cooling wall 32 can be further suppressed, and the generation of carbon monoxide can be further suppressed.

Abstract

The purpose of the present invention is to generate steam using energy produced when an inert gas is generated. A boiler (3) comprises: a furnace (16); a steam generation unit (17); an upper burner (18) that is provided in an upper part within the furnace (16) to burn fuel; and a lower burner (20) that is provided in a lower part within the furnace (16) to burn fuel, and that generates an inert gas having an oxygen content, which is regarded as the content of oxygen that does not react with a flammable gas, of no more than 1%. A water-cooled side wall (32) and a water-cooled bottom wall (33) are provided along the furnace bottom of the furnace (16) and along a side wall of the lower part of the furnace (16), and a bottom refractory material (35) and a side refractory material (36) are provided between the water-cooled side wall (32)/ water-cooled bottom wall (33) and a flame formed by the lower burner (20).

Description

ボイラ及びボイラを備えた船舶並びにイナートガスの生成方法Boiler and ship equipped with a boiler and method of generating inert gas
 本発明は、ボイラ及びボイラを備えた船舶並びにイナートガスの生成方法に関するものである。 The present invention relates to a boiler and a ship equipped with the boiler, and a method of generating inert gas.
 LNG(Liquefied Natural Gas)運搬船に搭載されるLNGタンクの点検や修理を行う前には、タンク内で作業者が作業を行えるように、タンク内の燃料ガスを排除し、タンク内の環境を大気と同程度にする作業が必要である。タンク内の環境を大気と同程度にする際には、イナートガスが利用される。これは、燃料ガスを排除するために空気を直接タンク内に供給すると、燃料ガスと空気とが燃焼反応する可能性があるので、タンク内に一度イナートガスを充満させて燃料ガスを排除してから、タンク内に空気を供給するためである。このため、LNG運搬船には、イナートガスを生成する専用の装置(IGG(Inert gas generator)等)を搭載するものがある。また、原油タンカーなどでは、ボイラ等の燃焼排ガスをイナートガスとして利用するものがある。 Before inspecting or repairing the LNG tank mounted on the LNG (Liquefied Natural Gas) carrier, the fuel gas in the tank is removed so that the operator can work in the tank, and the atmosphere in the tank is aired. It is necessary to work to the same extent. Inert gas is used to equalize the environment in the tank to the atmosphere. This is because if the air is supplied directly into the tank to eliminate the fuel gas, the fuel gas and the air may undergo a combustion reaction, so the tank is once filled with the inert gas to eliminate the fuel gas. , To supply air into the tank. For this reason, some LNG carriers are equipped with a dedicated device (IGG (Inert gas generator) or the like) for generating inert gas. Further, some crude oil tankers and the like use combustion exhaust gas such as a boiler as inert gas.
 ボイラ等の燃焼排ガスをイナートガスとして利用するものには、例えば、特許文献1のものがある。特許文献1には、スクラバで洗浄したボイラからの排ガス(硫黄成分等を除去したガス)をイナートガスとして利用するVOCガス処理システムが開示されている。
 また、LNG運搬船で利用されるイナートガスは、酸素含有率が1%程度と厳しい条件でなければならないため、通常LNG運搬船ではボイラ等の燃焼排ガスをイナートガスとして利用することはできず、イナートガスを生成する専用の装置を搭載している。
For example, the thing of patent document 1 exists in what utilizes combustion waste gas, such as a boiler, as inert gas. Patent Document 1 discloses a VOC gas processing system that uses, as an inert gas, an exhaust gas from a scrubber-cleaned boiler (a gas from which a sulfur component or the like has been removed).
In addition, since the inert gas to be used in the LNG carrier must have a severe oxygen content of about 1%, the LNG carrier can not normally use the flue gas from the boiler or the like as the inert gas, and generates the inert gas. It has a dedicated device.
特許第5916777号公報Patent No. 5916777 gazette
 しかしながら、イナートガスを生成する専用の装置を搭載した場合には、専用の装置で軽油等を燃焼するだけなので、イナートガスを生成する際に生じるエネルギーを有効に利用できていなかった。
 また、特許文献1の構成では、ボイラにバーナが一つしか設けられていないので、ボイラで蒸気を生成する機能と、イナートガスを生成する機能とを、一つのバーナで賄うことになる。通常の舶用ボイラに設けられたバーナは、蒸気を生成する機能を満たさなければならないという制約から、燃焼排ガスの酸素含有率を十分に低下させることができず、生成したイナートガスが燃料タンク内の可燃性ガスと反応してしまう可能性があった。
 また、舶用ボイラ用のバーナでは所定の蒸気を発生させる目的で大容量であり、イナートガス生成を目的とした場合、必要以上の燃焼ガスを生成してしまう可能性があった。その為、小容量のバーナを追加設置する必要がある。
However, when a dedicated device for producing inert gas is mounted, only the light oil and the like are burned by the dedicated device, so that the energy generated when producing the inert gas can not be effectively used.
Further, in the configuration of Patent Document 1, since only one burner is provided in the boiler, the function of generating steam in the boiler and the function of generating inert gas are covered by one burner. The burner provided in a normal marine boiler can not sufficiently reduce the oxygen content of the flue gas due to the restriction that it has to satisfy the function of generating steam, and the generated inert gas burns in the fuel tank. There is a possibility of reacting with sexual gases.
Further, the burner for marine boilers has a large capacity for the purpose of generating predetermined steam, and there is a possibility that more combustion gas may be generated if the purpose is to generate inert gas. Therefore, it is necessary to install a small-capacity burner additionally.
 本発明は、このような事情に鑑みてなされたものであって、イナートガスを生成する際のエネルギーによって蒸気を生成することができるボイラ及びボイラを備えた船舶並びにイナートガスの生成方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a boiler capable of generating steam by energy at the time of generating inert gas, a ship equipped with a boiler, and a method of generating inert gas. To aim.
 上記課題を解決するために、本発明のボイラ及びボイラを備えた船舶並びにイナートガスの生成方法は以下の手段を採用する。
 本発明の一態様に係るボイラは、火炉と、前記火炉内で燃料を燃焼する第1バーナと、前記第1バーナと別に設けられ、前記火炉内で燃料を燃焼してイナートガスを生成する第2バーナと、を備える。
In order to solve the said subject, the ship provided with the boiler of this invention and a boiler, and the production | generation method of inert gas employ | adopt the following means.
A boiler according to an aspect of the present invention is provided separately from a furnace, a first burner that burns a fuel in the furnace, and the first burner, and burns the fuel in the furnace to generate an inert gas. And a burner.
 上記構成では、第1バーナに加えて、火炉内でイナートガスを生成する第2バーナを備えている。したがって、イナートガスを生成する専用の装置(IGG(Inert gas generator)等)を設けることなく、可燃性ガスと反応しない酸素含有率とされたイナートガスを生成することができる。また、イナートガスを生成する際のエネルギーによって蒸気を生成することができる。
 イナートガスとは、可燃性ガスと反応しない酸素含有率のガスである。可燃性ガスと反応しない酸素含有率としては、空気中(例えば、大気圧等)において着火しない酸素含有率を意味し、例えば1%以下とされる。
In the above configuration, in addition to the first burner, the second burner that generates the inert gas in the furnace is provided. Therefore, an inert gas having an oxygen content that does not react with the combustible gas can be generated without providing a dedicated device (IGG (Inert gas generator) or the like) for generating the inert gas. In addition, energy can be used to generate steam when generating inert gas.
Inert gas is a gas with an oxygen content that does not react with the flammable gas. The oxygen content which does not react with the flammable gas means an oxygen content which does not ignite in air (for example, atmospheric pressure or the like), and is, for example, 1% or less.
 本発明の一態様に係るボイラでは、前記第1バーナは、前記火炉の上部に配置され、下方に向けて火炎を形成し、前記第2バーナは、前記火炉の下部に配置されてもよい。 In the boiler according to one aspect of the present invention, the first burner may be disposed in the upper part of the furnace and form a flame downward, and the second burner may be disposed in the lower part of the furnace.
 上記構成では、第1バーナが火炉の上部に配置され、第2バーナが火炉の下部に配置されている。これにより、第1バーナと第2バーナとを離れた位置に配置することができる。したがって、第1バーナが第2バーナの火炎の輻射熱で損傷することを抑制することができ、同時に、第2バーナが第1バーナの火炎の輻射熱で損傷することを抑制することができる。また、第1バーナは、下方に向けて火炎を形成しているので、火炉の下部では、第1バーナの火炎の熱流束が低下する。したがって、第2バーナを火炉の下部に配置することで、第2バーナが第1バーナの火炎により損傷することをさらに抑制することができる。
 また、第2バーナは、第1バーナから離れて配置されているので、第1バーナの配置スペースに影響を与えない。したがって、第1バーナの設置スペースを十分に確保することができる。
In the above configuration, the first burner is disposed in the upper part of the furnace, and the second burner is disposed in the lower part of the furnace. Thereby, the first burner and the second burner can be disposed at separate positions. Therefore, damage to the first burner by radiation heat of the flame of the second burner can be suppressed, and at the same time, damage to the second burner from radiation heat of the flame of the first burner can be suppressed. In addition, since the first burner forms a flame downward, the heat flux of the flame of the first burner decreases at the lower part of the furnace. Therefore, by disposing the second burner at the lower part of the furnace, it is possible to further suppress damage to the second burner by the flame of the first burner.
Also, since the second burner is disposed away from the first burner, it does not affect the arrangement space of the first burner. Therefore, a sufficient installation space for the first burner can be secured.
 本発明の一態様に係るボイラは、前記火炉の炉底及び前記火炉の下部の側壁に沿うように設けられる水冷壁と、前記水冷壁と前記第2バーナが形成する火炎との間に設けられる耐火材と、を備えてもよい。 A boiler according to an aspect of the present invention is provided between a water-cooled wall provided along a furnace bottom of the furnace and a lower side wall of the furnace, and a flame formed by the water-cooled wall and the second burner. And a refractory material.
 上記構成では、水冷壁と第2バーナが形成する火炎との間に耐火材が設けられている。これにより、火炎と水冷壁との熱交換を抑制することができるので、第2バーナが形成する火炎が水冷壁によって冷却されにくくなる。よって、第2バーナが形成する火炎の燃焼温度を高く維持することができるので、第2バーナによる燃料の燃焼が促進される。したがって、第2バーナの燃焼によって生じる排ガスの酸素含有率が低下するので、第2バーナによって、より酸素含有率が低いイナートガスを生成することができる。また、水冷壁と火炎とが直接接触しないので、火炎の急冷に起因した一酸化炭素の発生を抑制することができる。
 また、第2バーナを火炉の下部に配置している。これにより、第2バーナが形成する火炎の範囲を限定的にすることができるので、耐火材を設ける範囲を少なくすることができる。また、火炉の底部と、火炉の下部周囲に耐火材を設けているので、耐火材を設置する作業を容易にすることができる。
In the above configuration, the refractory is provided between the water-cooled wall and the flame formed by the second burner. As a result, heat exchange between the flame and the water-cooled wall can be suppressed, so that the flame formed by the second burner is less likely to be cooled by the water-cooled wall. Therefore, since the combustion temperature of the flame formed by the second burner can be maintained high, the combustion of fuel by the second burner is promoted. Therefore, since the oxygen content of the exhaust gas generated by the combustion of the second burner is reduced, the inert gas having a lower oxygen content can be generated by the second burner. In addition, since the water-cooled wall and the flame do not directly contact, it is possible to suppress the generation of carbon monoxide caused by quenching of the flame.
Moreover, the 2nd burner is arrange | positioned at the lower part of the furnace. Thereby, since the range of the flame which a 2nd burner forms can be made limited, the range which provides a refractory material can be decreased. Further, since the refractory is provided around the bottom of the furnace and the lower part of the furnace, the work of installing the refractory can be facilitated.
 本発明の一態様に係るボイラは、前記第2バーナに燃焼空気を供給する風箱と、前記第1バーナの運転中であって前記第2バーナの停止中に、前記風箱の内部にシールガスを供給するファンと、を備えてもよい。 A boiler according to an aspect of the present invention includes a wind box for supplying combustion air to the second burner, and a seal inside the wind box during operation of the first burner and when the second burner is stopped. And a fan for supplying gas.
 上記構成では、第1バーナの運転中であって第2バーナの停止中に、第2バーナを囲う風箱の内部にシール空気を供給している。第1バーナの運転中は、第1バーナが形成する火炎によって、火炉内に高温の燃焼ガスが充満する。このとき、第2バーナを囲う風箱の内部には、シールガスが供給されているので、火炉から風箱の内部に流入しようとする高温の燃焼ガスが、シールガスによって妨げられる。したがって、第2バーナの停止中に、第2バーナを囲う風箱内に高温の燃焼ガスが流入せず、第2バーナが高温の燃焼ガスに曝されない。この結果、第1バーナの運転中であって第2バーナの停止中に、第1バーナが形成する火炎の熱によって、第2バーナが損傷するのを防止することができる。 In the above configuration, the seal air is supplied to the inside of the air box that encloses the second burner while the first burner is in operation and the second burner is stopped. During operation of the first burner, the flame formed by the first burner causes the furnace to be filled with high-temperature combustion gas. At this time, since the seal gas is supplied to the inside of the air box surrounding the second burner, the high temperature combustion gas which is going to flow from the furnace into the air box is blocked by the seal gas. Therefore, while the second burner is stopped, the high temperature combustion gas does not flow into the air box surrounding the second burner, and the second burner is not exposed to the high temperature combustion gas. As a result, it is possible to prevent the second burner from being damaged by the heat of the flame formed by the first burner during the operation of the first burner and the stop of the second burner.
 本発明の一態様に係る船舶は、上述のいずれかに記載のボイラと、前記ボイラで生成した前記イナートガスが供給される燃料タンクと、を備える。 A ship according to an aspect of the present invention includes the boiler described in any of the above and a fuel tank to which the inert gas generated by the boiler is supplied.
 上記構成では、ボイラで生成したイナートガスを燃料タンクに供給している。すなわち、ボイラの排ガスをイナートガスとして使用することができる。したがって、別途イナートガスを生成する装置を設ける必要がないので、船内のスペースを省スペース化することができる。また、ボイラにおいて、可燃性ガスと反応しない酸素含有率とされたイナートガスを生成しているので、ボイラから排出されたイナートガスに対して、さらに酸素含有率を低下させる処理を行うことなく、燃料タンクに供給することができる。したがって、別途酸素含有率を低下させる装置を設ける必要がないので、船舶の構造を簡素化することができ、船内スペースを省スペース化することができる。 In the above configuration, the inert gas generated by the boiler is supplied to the fuel tank. That is, the exhaust gas of the boiler can be used as the inert gas. Therefore, since there is no need to provide a separate device for generating inert gas, space in the ship can be saved. In addition, since the boiler generates inert gas having an oxygen content rate that does not react with the flammable gas, the fuel tank is not subjected to a process for further reducing the oxygen content rate with respect to the inert gas discharged from the boiler. Can be supplied. Therefore, it is not necessary to separately provide a device for reducing the oxygen content rate, so the structure of the ship can be simplified, and the space in the ship can be saved.
 本発明の一態様に係る船舶は、前記ボイラとは別に設けられ、前記燃料タンクから燃料ガスが供給される他のボイラを備えていてもよい。 The ship according to an aspect of the present invention may be provided with another boiler that is provided separately from the boiler and to which the fuel gas is supplied from the fuel tank.
 上記構成では、イナートガスを生成するボイラとは別に、燃料タンクから燃料ガスが供給される他のボイラが設けられている。これにより、イナートガスを生成するボイラから燃料タンクにイナートガスを供給した際に、燃料タンク内から排出されるイナートガスを含む燃料ガスを、他のボイラで燃焼・酸化処理することができる。イナートガスを含む燃料ガスを燃焼・酸化処理することで、燃料ガスを大気放出することなく、かつガス燃料器(例えばGCU(Gas combustion unit))などの機器を設置する必要が無くなる。また、燃料タンク内から排出される燃料ガスを、他のボイラで燃焼処理するとともに、蒸気を生成することができるので、生成された蒸気を船内で利用した場合や、生成された蒸気で発電機タービンを駆動して発電した場合には、船舶全体のエネルギー効率を向上させることができる。 In the above-mentioned configuration, another boiler to which the fuel gas is supplied from the fuel tank is provided separately from the boiler that generates the inert gas. Thus, when the inert gas is supplied from the boiler generating the inert gas to the fuel tank, the fuel gas containing the inert gas discharged from the fuel tank can be burned and oxidized in another boiler. By burning and oxidizing the fuel gas containing the inert gas, it is not necessary to release the fuel gas to the atmosphere and to install equipment such as a gas fuel unit (for example, a GCU (Gas combustion unit)). In addition, since the fuel gas discharged from the fuel tank can be burned and processed by another boiler, and steam can be generated, the generated steam can be used on board, or the generator can be used to generate steam. When the turbine is driven to generate power, the energy efficiency of the entire ship can be improved.
 本発明の一態様に係るイナートガスの生成方法は、火炉と、前記火炉内で燃料を燃焼する第1バーナと、前記第1バーナと別に設けられ、前記火炉内で燃料を燃焼して可燃性ガスと反応しない酸素含有率とされたイナートガスを生成する第2バーナと、前記火炉で発生した燃焼排ガスによって蒸気を生成する蒸気生成部と、を有するボイラを備え、前記第2バーナのみで燃料を燃焼する第2バーナ燃焼工程と、前記蒸気生成部で蒸気を生成する蒸気生成工程と、を備える。 According to one aspect of the present invention, a method of producing inert gas is provided separately from a furnace, a first burner that burns a fuel in the furnace, and the first burner, and burns a fuel in the furnace to burn combustible gas. A boiler having a second burner that generates an inert gas having an oxygen content rate that does not react with oxygen, and a steam generation unit that generates steam from the combustion exhaust gas generated in the furnace; and burning fuel with only the second burner And a steam generation step of generating steam in the steam generation unit.
 上記構成では、イナートガスを生成する専用の装置(IGG(Inert gas generator)等)を設けることなく、イナートガスを生成することができる。また、生成したイナートガスのエネルギーによって蒸気を生成することができる。 In the above configuration, the inert gas can be generated without providing a dedicated device (IGG (Inert gas generator) or the like) for generating the inert gas. In addition, the energy of the generated inert gas can generate steam.
 本発明によれば、イナートガスを生成する際のエネルギーによって蒸気を生成することができる。 According to the present invention, it is possible to generate steam by the energy in generating the inert gas.
本発明の第1実施形態に係るボイラを搭載した船舶を示す概略構成図である。It is a schematic block diagram which shows the ship carrying the boiler concerning a 1st embodiment of the present invention. 図1の船舶に搭載されるボイラの模式的な側面図である。It is a schematic side view of the boiler mounted in the ship of FIG. 図2のボイラの模式的な平面図である。It is a schematic plan view of the boiler of FIG. 本発明の第2実施形態に係る船舶を示す概略構成図である。It is a schematic block diagram which shows the ship which concerns on 2nd Embodiment of this invention.
 以下に、本発明に係るボイラ及びボイラを備えた船舶並びにイナートガスの生成方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a boiler and a ship provided with the boiler according to the present invention and a method of generating inert gas will be described with reference to the drawings.
〔第1実施形態〕
 以下、本発明の第1実施形態について、図1から図3を用いて説明する。
 図1に示すように、本実施形態に係る船舶は、例えば、LNGを運搬するLNG運搬船1である。LNG運搬船1は、運搬時にLNGを貯留するLNGタンク(燃料タンク)2と、LNGタンク2の点検・修理時等にLNGタンク2内に供給するイナートガスを生成するボイラ3とを搭載している。
First Embodiment
Hereinafter, a first embodiment of the present invention will be described using FIGS. 1 to 3.
As shown in FIG. 1, the ship according to the present embodiment is, for example, an LNG carrier 1 that carries LNG. The LNG carrier 1 is equipped with an LNG tank (fuel tank) 2 for storing LNG at the time of transportation, and a boiler 3 for generating inert gas to be supplied into the LNG tank 2 at the time of inspection / repair of the LNG tank 2.
 ボイラ3は、LNGタンク2に、イナートガス供給管4を介して接続されている。イナートガス供給管4の内部にはイナートガスが流通し、ボイラ3で生成された燃焼ガスは、イナートガス供給管4を介してLNGタンク2に供給される。イナートガス供給管4には、燃焼ガス流れの上流側から順番に、スクラバー5、クーラー6、ドライヤ7及びブースターファン8が設けられている。イナートガス供給管4内を流通する燃焼ガスは、スクラバー5によって硫黄成分や、すす等を除去し、洗浄処理される。洗浄処理された燃焼ガスは、クーラー6によって冷却処理され、さらにその後、ドライヤ7によって、乾燥処理される。乾燥処理をされた燃焼ガスは、イナートガスとして、ブースター8によりLNGタンク2内に供給される。また、イナートガス供給管4のボイラ3とスクラバー5との間からは、燃焼ガス排出管9が分岐している。ボイラ3で生成された燃焼ガスの一部は、燃焼排出管9内を介して、煙突(図示省略)から排出される。 The boiler 3 is connected to the LNG tank 2 via an inert gas supply pipe 4. The inert gas flows through the interior of the inert gas supply pipe 4, and the combustion gas generated by the boiler 3 is supplied to the LNG tank 2 through the inert gas supply pipe 4. The inert gas supply pipe 4 is provided with a scrubber 5, a cooler 6, a dryer 7, and a booster fan 8 in this order from the upstream side of the combustion gas flow. The combustion gas flowing in the inert gas supply pipe 4 is subjected to cleaning processing after removing sulfur components, soot and the like by the scrubber 5. The cleaned combustion gas is cooled by the cooler 6 and then dried by the dryer 7. The dried combustion gas is supplied as the inert gas into the LNG tank 2 by the booster 8. A combustion gas discharge pipe 9 branches from between the boiler 3 and the scrubber 5 of the inert gas supply pipe 4. Part of the combustion gas generated by the boiler 3 is discharged from a chimney (not shown) via the inside of the combustion discharge pipe 9.
 LNGタンク2には、ベント管10が接続される。LNGタンク2内にイナートガスが供給されることで排出される燃料ガスは、ベント管10を介して大気へ排出される。また、イナートガス充填後に、LNGタンク2内に空気を供給する際には、ベント管10を介してイナートガスが大気に排出される。 A vent pipe 10 is connected to the LNG tank 2. The fuel gas discharged by supplying the inert gas into the LNG tank 2 is discharged to the atmosphere through the vent pipe 10. Further, when the air is supplied into the LNG tank 2 after the inert gas filling, the inert gas is discharged to the atmosphere through the vent pipe 10.
 ボイラ3は、図2に示すように、燃焼ガスを燃焼する火炉16と、火炉16で発生した燃焼ガスによって蒸気を生成する蒸気生成部17とを有する。火炉16は、側部水冷壁32、天井部水冷壁22、底部水冷壁33に囲まれた空間である。側部水冷壁32は、火炉の側方を構成する側壁に沿うように設けられ、底部水冷壁33は、火炉16の下方を構成する炉底に沿うように設けられ、天井部水冷壁22は、火炉16の上方を構成する天井部に沿うように設けれている。また、側部水冷壁32は、火炉16の前面(図3でいう紙面上方向の面)を構成する前面水冷壁23と、火炉16の後面を構成する後面水冷壁43と、火炉16の前面及び後面以外の面を構成する側面水冷壁44とを含んでいる。側部水冷壁32は、それぞれ、上下方向に延びて所定の間隔を存して並列に配置された複数の水冷管34を備え、水冷管34の内部には水または蒸気が流通している。天井部水冷壁22及び底部水冷壁33も、側部水冷壁32と略同一の構成とされている。ただし、天井部水冷壁22及び底部水冷壁33を構成する複数の水冷管34は、水平方向に延びている。なお、図2では、図示の関係上、水冷管34を省略して図示している。 The boiler 3 has the furnace 16 which burns a combustion gas, and the steam production | generation part 17 which produces | generates a steam by the combustion gas which generate | occur | produced in the furnace 16, as shown in FIG. The furnace 16 is a space surrounded by the side water cooling wall 32, the ceiling water cooling wall 22, and the bottom water cooling wall 33. The side water cooling wall 32 is provided along the side wall forming the side of the furnace, the bottom water cooling wall 33 is provided along the furnace bottom forming the lower part of the furnace 16, and the ceiling water cooling wall 22 is , And is provided along the ceiling that constitutes the upper part of the furnace 16. Further, the side water-cooling walls 32 are a front water-cooling wall 23 that constitutes the front of the furnace 16 (a surface facing upward in the drawing in FIG. 3), a rear water-cooling wall 43 that constitutes the rear of the furnace 16, and a front surface of the furnace 16 And a side water cooling wall 44 constituting a surface other than the rear surface. Each of the side water cooling walls 32 includes a plurality of water cooling pipes 34 extending in the vertical direction and arranged in parallel with a predetermined interval, and water or steam is circulated in the water cooling pipes 34. The ceiling water cooling wall 22 and the bottom water cooling wall 33 are also configured substantially the same as the side water cooling wall 32. However, the plurality of water cooling pipes 34 constituting the ceiling water cooling wall 22 and the bottom water cooling wall 33 extend in the horizontal direction. In FIG. 2, the water cooling pipe 34 is omitted for the sake of illustration.
 図2及び図3に示すように、火炉16は、火炉16の上部に設置される上部バーナ(第1バーナ)18と、上部バーナ18を囲う上部風箱19と、火炉16の下部に設置される下部バーナ(第2バーナ)20と、下部バーナ20を囲うよう下部風箱21とを有する。上部バーナ18は、天井部水冷壁22に設けられ、下方に火炎を形成する。上部バーナ18は、LNGタンク2内のLNGまたは油供給装置から供給される油を燃料として、燃焼を行う。 As shown in FIG. 2 and FIG. 3, the furnace 16 is installed in the upper burner (first burner) 18 installed in the upper part of the furnace 16, the upper air box 19 surrounding the upper burner 18, and the lower part of the furnace 16. A lower burner (second burner) 20 and a lower air box 21 surrounding the lower burner 20. The upper burner 18 is provided on the ceiling water cooling wall 22 and forms a flame below. The upper burner 18 burns using the LNG in the LNG tank 2 or the oil supplied from the oil supply device as a fuel.
 下部バーナ20は、前面水冷壁23に設けられ、水平方向であって、且つ、蒸気生成部17が設けられていない方向に火炎を形成する。すなわち、下部バーナ20は、火炉16の前面から後面に向かって火炎を形成している。このように火炎を形成することで、火炎が蒸気生成部17を構成する部品等に直接触れないため、蒸気生成部17を構成する部品の破損を防止することができる。下部バーナ20は、油供給装置から供給される油を燃料として、燃焼を行う。下部バーナ20は、上部バーナ18よりも単位燃料あたりより少ない燃焼用空気によって火炎を形成することができる小容量のバーナである。また、下部バーナ20は、火炎の長さを確保できるように配置されている。なお、図2及び図3では、上部バーナ18及び下部バーナ20を1つずつ設けた例を図示しているが、上部バーナ18及び下部バーナ20は、複数個ずつ設けられてもよい。 The lower burner 20 is provided on the front water-cooling wall 23, and forms a flame in the horizontal direction and in the direction in which the steam generation unit 17 is not provided. That is, the lower burner 20 forms a flame from the front to the rear of the furnace 16. By forming the flame in this manner, the flame does not directly touch the parts and the like that constitute the steam generation unit 17, so that it is possible to prevent damage to the parts that constitute the steam generation unit 17. The lower burner 20 burns using the oil supplied from the oil supply device as a fuel. The lower burner 20 is a small volume burner capable of forming a flame with less combustion air per unit fuel than the upper burner 18. In addition, the lower burner 20 is disposed so as to secure the flame length. Although FIG. 2 and FIG. 3 illustrate an example in which one upper burner 18 and one lower burner 20 are provided, a plurality of upper burners 18 and lower burners 20 may be provided.
 蒸気生成部17は、火炉16との境界に配置されるフロントバンクチューブ28と、フロントバンクチューブ28の燃焼ガス流れの下流側に配置され、上下方向に延びる蒸発管群29と、蒸発管群29の上下方向の略中心位置に設けられる仕切板41と、蒸発管群29の下方に設けられた水ドラム30と、蒸発管群29の上方に設けられた蒸気ドラム31と、イナートガス供給管4に接続する燃焼ガス排出ダクト38とを有する。 The steam generating unit 17 includes a front bank tube 28 disposed at the boundary with the furnace 16, an evaporation tube group 29 disposed on the downstream side of the combustion gas flow of the front bank tube 28 and extending in the vertical direction, and an evaporation tube group 29. The partition plate 41 is provided at a substantially central position in the vertical direction, the water drum 30 provided below the evaporation pipe group 29, the steam drum 31 provided above the evaporation pipe group 29, and the inert gas supply pipe 4 And a combustion gas exhaust duct 38 connected thereto.
 さらに、火炉16内には、底部水冷壁を上方から覆うように底部耐火材(耐火材)35が設けられている。また、火炉16の下部に位置する側部水冷壁32のうち、下部バーナ20が設けられている前面水冷壁23以外の後面水冷壁43及び側面水冷壁44には、後面水冷壁43及び側面水冷壁44を火炉16中心方向から覆うように側部耐火材36(耐火材)が設けられている。すなわち、底部耐火材35及び側部耐火材36は、底部水冷壁33及び側部水冷壁32と下部バーナ20が形成する火炎との間に設けられている。また、燃焼ガス流れを確保するために、フロントバンクチューブ28と天井部22との間に天井部耐火材37が設けられている。 Furthermore, in the furnace 16, a bottom refractory material (refractory material) 35 is provided so as to cover the bottom water-cooling wall from above. Further, among the side water cooling walls 32 located at the lower part of the furnace 16, the rear water cooling wall 43 and the side water cooling wall 44 other than the front water cooling wall 23 where the lower burner 20 is provided A side refractory 36 (refractory) is provided to cover the wall 44 from the center direction of the furnace 16. That is, the bottom refractory material 35 and the side refractory material 36 are provided between the bottom water-cooling wall 33 and the side water-cooling wall 32 and the flame formed by the lower burner 20. Also, in order to ensure the combustion gas flow, a ceiling refractory 37 is provided between the front bank tube 28 and the ceiling 22.
 また、ボイラ3の外部には、上部バーナ18及び下部バーナ20に燃焼用空気を供給するFDファン24と、FDファン24からの燃焼用空気を上部風箱19を介して上部バーナ18に供給するための上部バーナ空気供給路25と、上部バーナ空気供給路25から分岐してFDファン24からの燃焼用空気を下部風箱21を介して下部バーナ20に供給するための下部バーナ空気供給路26とを有する。下部バーナ空気供給路26には、流通する燃焼用空気の流量を調整する流量調整弁27が設けられている。なお、FDファンを複数設けて、上部バーナ18に燃焼用空気を供給するFDファンと、下部バーナ20に燃焼用空気を供給するFDファンとを別としてもよい。ボイラ3の外部には、ボイラ3で生成された蒸気を蒸気タービン(図示省略)や蒸気使用機器類に供給する蒸気供給管39(図1参照)と、燃料供給装置(図示省略)から上部バーナ18及び下部バーナ20に軽油等の燃料を供給する燃料供給管40(図1参照)と、上部バーナ18及び下部バーナ20にLNGタンク2内から燃料を供給する燃料ガス供給管11とが設けられている。 Further, an FD fan 24 for supplying combustion air to the upper burner 18 and the lower burner 20 and an air for combustion from the FD fan 24 are supplied to the upper burner 18 via the upper air box 19 outside the boiler 3. And a lower burner air supply passage 26 for supplying combustion air from the FD fan 24 to the lower burner 20 through the lower air box 21 by branching from the upper burner air supply passage 25. And. The lower burner air supply passage 26 is provided with a flow control valve 27 for adjusting the flow rate of the circulating combustion air. A plurality of FD fans may be provided, and the FD fan supplying combustion air to the upper burner 18 and the FD fan supplying combustion air to the lower burner 20 may be separated. Outside the boiler 3, a steam supply pipe 39 (see FIG. 1) for supplying steam generated by the boiler 3 to a steam turbine (not shown) or steam-using equipment, and a fuel supply device (not shown) A fuel supply pipe 40 (see FIG. 1) for supplying fuel such as light oil to the lower burner 20 and a fuel gas supply pipe 11 for supplying fuel from the inside of the LNG tank 2 to the upper burner 18 and the lower burner 20 are provided. ing.
 次に、本実施形態のイナートガスの生成方法等について説明する。
 下部バーナ20が、下部バーナ空気供給路26を介して供給される燃焼用空気を用いて、燃料供給管40を介して供給された燃料を燃焼して、火炎を形成する(第2バーナ燃焼工程)。下部バーナ20は、単位燃料あたり少ない燃焼用空気によって火炎を形成する小容量のバーナであって、かつ、火炎の長さを確保できるように配置されているので、火炉内のスペースを有効に使用でき、下部バーナ20の燃焼によって生成される燃焼ガスは、酸素含有率が低い。したがって、蒸気生成部17に導入される燃焼ガスの酸素含有率は低い状態となる。具体的には、蒸気生成部17に導入される燃焼ガスは、酸素含有率が1%以下となっている。なお、下部バーナ20で燃焼を行い酸素含有率の低い燃焼ガスを生成する際には、上部バーナ18では燃焼を行わない。
Next, a method of generating an inert gas and the like according to the present embodiment will be described.
The lower burner 20 burns the fuel supplied via the fuel supply pipe 40 using the combustion air supplied via the lower burner air supply passage 26 to form a flame (second burner combustion step) ). The lower burner 20 is a small volume burner that forms a flame with a small amount of combustion air per unit fuel, and is disposed so as to secure the flame length, so the space in the furnace is effectively used. The combustion gas produced by the combustion of the lower burner 20 has a low oxygen content. Therefore, the oxygen content of the combustion gas introduced into the steam generation unit 17 is low. Specifically, the combustion gas introduced into the steam generation unit 17 has an oxygen content of 1% or less. When the lower burner 20 burns to generate a combustion gas having a low oxygen content, the upper burner 18 does not burn.
 蒸気生成部17に導入された燃焼ガスは、図2矢印で示されるように、フロントバンクチューブ28及び蒸発管群29を順番に通過してフロントバンクチューブ28及び蒸発管群29の内部を流れる水または水蒸気と熱交換して蒸気を生成する(蒸気生成工程)。蒸発管群29を通過する際には、仕切板41を折り返すように流れる。熱交換を終えた燃焼ガスは、燃焼ガス排出孔38から、イナートガスとしてイナートガス供給管4に流入する。イナートガス供給管4に流入したイナートガスは、スクラバー5、クーラー6及びドライヤ7を介して、ブースター8によってLNGタンク2内に供給される。 The combustion gas introduced into the steam generation unit 17 passes through the front bank tube 28 and the evaporation tube group 29 in order and flows through the inside of the front bank tube 28 and the evaporation tube group 29 as shown by the arrow in FIG. Alternatively, it exchanges heat with steam to produce steam (steam generation step). When passing through the evaporation tube group 29, it flows so as to turn the partition plate 41 back. The combustion gas which has completed the heat exchange flows from the combustion gas discharge hole 38 into the inert gas supply pipe 4 as the inert gas. The inert gas flowing into the inert gas supply pipe 4 is supplied into the LNG tank 2 by the booster 8 through the scrubber 5, the cooler 6 and the dryer 7.
 ボイラ3で、イナートガスを生成せずに、蒸気のみを生成する場合には、上部バーナ18のみに燃料を供給し、下部バーナ20には燃料を供給しない。すなわち、上部バーナ18のみで燃焼を行い、下部バーナ20では燃焼を行わない。なお、下部バーナ20で燃焼を行わない場合でも、上部バーナ18で燃焼を行う場合には、下部バーナ空気供給路26に設けられた流量調整弁27の開度を調整し、少量の空気を下部風箱21内に供給する。下部風箱21内に供給された空気は、下部風箱21内を介して火炉16内に流入するので、火炉16の高温の燃焼ガス等が下部風箱21内に流入するのを防止するシールエアおよび冷却エアの役割を果たす。すなわち、下部バーナ空気供給路26を流通する空気は、下部バーナ20の燃焼を行う場合(すなわち、イナートガスを生成する場合)には燃焼用空気の役割を果たし、上部バーナ18のみで燃焼を行い下部バーナ20では燃焼を行わない場合(すなわち、蒸気のみを生成する場合)にはシールエア及び冷却エアの役割を果たす。 When only steam is generated without generating inert gas in the boiler 3, the fuel is supplied only to the upper burner 18 and the fuel is not supplied to the lower burner 20. That is, combustion is performed only by the upper burner 18, and combustion is not performed by the lower burner 20. Even when combustion is not performed by the lower burner 20, when combustion is performed by the upper burner 18, the opening degree of the flow control valve 27 provided in the lower burner air supply path 26 is adjusted to lower a small amount of air. The air is supplied into the wind box 21. Since the air supplied into the lower air box 21 flows into the furnace 16 through the lower air box 21, seal air prevents high temperature combustion gas and the like of the furnace 16 from flowing into the lower air box 21. And play the role of cooling air. That is, the air flowing through the lower burner air supply passage 26 plays the role of combustion air when the lower burner 20 is burned (that is, when the inert gas is generated), and the upper burner 18 burns only. When the burner 20 does not burn (i.e., only steam is generated), it plays the role of seal air and cooling air.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、上部バーナ18に加えて、火炉16内でイナートガスを生成するためのバーナである下部バーナ20を備えている。したがって、イナートガスを生成する専用の装置(IGG(Inert gas generator)等)を設けることなく、ボイラ3において、可燃性ガスと反応しない酸素含有率とされた酸素含有率1%以下のイナートガスを生成することができる。また、イナートガスを生成する際のエネルギーによって蒸気を生成することができる。
According to the present embodiment, the following effects are achieved.
In the present embodiment, in addition to the upper burner 18, the lower burner 20 which is a burner for generating the inert gas in the furnace 16 is provided. Therefore, without providing a dedicated device (IGG (Inert gas generator) or the like) for generating inert gas, the boiler 3 generates inert gas having an oxygen content of 1% or less, which is regarded as an oxygen content that does not react with flammable gas. be able to. In addition, energy can be used to generate steam when generating inert gas.
 また、上部バーナ18が火炉16の上部に配置され、下部バーナ20が火炉16の下部に配置されている。これにより、上部バーナ18と下部バーナ20とを離れた位置に配置することができる。したがって、上部バーナ18が下部バーナ20の火炎の輻射熱で損傷することを抑制することができ、同時に、下部バーナ20が上部バーナ18の火炎の輻射熱で損傷することを抑制することができる。また、上部バーナ18は、下方に向けて火炎を形成しているので、火炉16の下部では、上部バーナ18の火炎の熱流束が低下する。したがって、下部バーナ20を火炉16の下部に配置することで、下部バーナ20が上部バーナ18の火炎により損傷することをさらに抑制することができる。 Further, the upper burner 18 is disposed at the upper portion of the furnace 16 and the lower burner 20 is disposed at the lower portion of the furnace 16. As a result, the upper burner 18 and the lower burner 20 can be disposed at separate positions. Therefore, damage to the upper burner 18 due to the radiation heat of the flame of the lower burner 20 can be suppressed, and at the same time, damage to the lower burner 20 due to the radiation heat of the flame of the upper burner 18 can be suppressed. Further, since the upper burner 18 forms a flame downward, the heat flux of the flame of the upper burner 18 is lowered at the lower part of the furnace 16. Therefore, arranging the lower burner 20 at the lower part of the furnace 16 can further suppress the lower burner 20 from being damaged by the flame of the upper burner 18.
 また、下部バーナ20は、上部バーナ18から離れて配置されているので、上部バーナ18の配置スペースに影響を与えない。したがって、上部バーナ18の設置スペースを十分に確保することができる。 Further, since the lower burner 20 is disposed apart from the upper burner 18, the lower burner 20 does not affect the arrangement space of the upper burner 18. Therefore, a sufficient installation space for the upper burner 18 can be secured.
 また、側部水冷壁32及び底部水冷壁33と、下部バーナ20が形成する火炎との間に側部耐火材36及び底部耐火材35が設けられている。これにより、下部バーナ20が形成する火炎と、側部水冷壁32及び底部水冷壁33との熱交換を抑制することができるので、下部バーナ20が形成する火炎が、側部水冷壁32及び底部水冷壁33によって冷却されにくくなる。よって、下部バーナ20が形成する火炎の燃焼温度を高く維持することができるので、下部バーナ20による燃料の燃焼が促進される。したがって、下部バーナ20の燃焼によって生じる燃焼ガスの酸素含有率が低下するので、火炉16内で、より酸素含有率が低いイナートガスを生成することができる。また、下部バーナ20が形成する火炎と、側部水冷壁32及び底部水冷壁33とが直接接触しないので、火炎の急冷に起因した一酸化炭素の発生を抑制することができる。また、火炉16の側部水冷壁32の全面を覆うように耐火材を設けていない。詳細には、下部バーナ20が設けられている前面水冷壁23には耐火材を設けていない。このような構成とすることで、火炉16での吸熱を確保することができる。 Further, the side refractory material 36 and the bottom refractory material 35 are provided between the side water cooling wall 32 and the bottom water cooling wall 33 and the flame formed by the lower burner 20. Thereby, heat exchange between the flame formed by the lower burner 20 and the side water cooling wall 32 and the bottom water cooling wall 33 can be suppressed, so the flame formed by the lower burner 20 is the side water cooling wall 32 and the bottom It becomes difficult to be cooled by the water cooling wall 33. Therefore, since the combustion temperature of the flame formed by the lower burner 20 can be maintained high, the combustion of fuel by the lower burner 20 is promoted. Therefore, since the oxygen content of the combustion gas generated by the combustion of the lower burner 20 is reduced, an inert gas having a lower oxygen content can be generated in the furnace 16. Further, since the flame formed by the lower burner 20 does not directly contact the side water cooling wall 32 and the bottom water cooling wall 33, it is possible to suppress the generation of carbon monoxide caused by rapid cooling of the flame. Further, the refractory material is not provided so as to cover the entire surface of the side water-cooling wall 32 of the furnace 16. In detail, the front water-cooling wall 23 provided with the lower burner 20 is not provided with a refractory material. With such a configuration, heat absorption in the furnace 16 can be secured.
 また、下部バーナ20を火炉16の下部に配置している。これにより、下部バーナ20が形成する火炎の範囲を限定的にすることができるので、耐火材を設ける範囲を少なくすることができる。また、火炉16の底部と、火炉16の下部に耐火材を設けているので、耐火材を設置する作業を容易にすることができる。 Further, the lower burner 20 is disposed at the lower part of the furnace 16. As a result, the range of the flame formed by the lower burner 20 can be limited, so the range in which the refractory material is provided can be reduced. Moreover, since the refractory material is provided in the bottom part of the furnace 16 and the lower part of the furnace 16, the operation | work which installs a refractory material can be made easy.
 また、上部バーナ18の運転中であって下部バーナ20の停止中に、下部バーナ20を囲う下部風箱21の内部にシールガスを供給している。上部バーナ18の運転中は、上部バーナ18が形成する火炎によって、火炉16内に高温の燃焼ガスが充満する。このとき、下部バーナ20を囲う下部風箱21の内部には、シールガスが供給されているので、火炉16から下部風箱21の内部に流入しようとする高温の燃焼ガスが、シールガスによって妨げられる。したがって、下部バーナ20の停止中に、下部風箱21内に高温の燃焼ガスが流入せず、下部バーナ20が高温の燃焼ガスに曝されない。この結果、上部バーナ18の運転中であって下部バーナ20の停止中に、上部バーナ18が形成する火炎の熱によって、下部バーナ20が損傷するのを防止することができる。また、シールガスは低温であるので、下部バーナ20を冷却することができ、これによっても下部バーナ20が損傷するのを防止することができる。 Further, the seal gas is supplied to the inside of the lower air box 21 surrounding the lower burner 20 while the upper burner 18 is in operation and the lower burner 20 is stopped. During operation of the upper burner 18, the flame formed by the upper burner 18 causes the furnace 16 to be filled with high temperature combustion gas. At this time, since the seal gas is supplied to the inside of the lower air box 21 surrounding the lower burner 20, the high temperature combustion gas which is going to flow from the furnace 16 into the lower air box 21 is blocked by the seal gas. Be Therefore, while the lower burner 20 is stopped, the high temperature combustion gas does not flow into the lower air box 21 and the lower burner 20 is not exposed to the high temperature combustion gas. As a result, it is possible to prevent the lower burner 20 from being damaged by the heat of the flame formed by the upper burner 18 during the operation of the upper burner 18 and the stop of the lower burner 20. In addition, since the seal gas is at a low temperature, the lower burner 20 can be cooled, which can also prevent the lower burner 20 from being damaged.
 ボイラ3で生成したイナートガスを燃料タンクに供給している。すなわち、ボイラ3の燃焼排ガスをイナートガスとして使用することができる。したがって、別途イナートガスを生成する装置を設ける必要がないので、LNG運搬船1内のスペースを省スペース化することができる。また、ボイラ3において、可燃性ガスと反応しない酸素含有率とされた酸素含有率1%以下のイナートガスを生成しているので、ボイラ3から排出されたイナートガスに対して、さらに酸素含有率を低下させる処理を行うことなく、LNGタンク2に供給することができる。 The inert gas generated by the boiler 3 is supplied to the fuel tank. That is, the combustion exhaust gas of the boiler 3 can be used as the inert gas. Therefore, since there is no need to provide a separate device for generating inert gas, space in the LNG carrier 1 can be saved. Further, since the inert gas having an oxygen content rate of 1% or less, which is determined to have an oxygen content rate that does not react with the flammable gas, is generated in the boiler 3, the oxygen content rate is further reduced with respect to the inert gas discharged from the boiler 3 The LNG tank 2 can be supplied without performing the treatment.
〔第2実施形態〕
 次に、本発明の第2実施形態について、図4を用いて説明する。
 本実施形態では、基本的に第1実施形態と同様の構造を有し、主に、LNG運搬船60が、特徴の異なるボイラを2台設けている点が第1実施形態と相違している。したがって、第1実施形態と同一の構成については同一符号を付しその説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described using FIG.
The present embodiment is basically the same as the first embodiment in that it has basically the same structure as that of the first embodiment, and the LNG carrier 60 is provided with two boilers having different characteristics. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 本実施形態に係るLNG運搬船60は、ベント管10から分岐する可燃性ガス供給管51を有する。第1可燃性ガス供給管51は、ボイラ50に接続され、途中位置に設けられた供給用コンプレッサ52によって、LNGタンク2内の可燃性の燃料ガスがボイラ50に供給される。また、第1可燃性ガス供給管51の途中位置からは、LNGタンク2からボイラ56へと可燃性ガスを供給する第2可燃性ガス供給管54が分岐している。なお、第2可燃性ガス供給管54は、可燃性ガス供給管51の途中位置から分岐させずに、LNGタンク2とボイラ56とを直接結ぶように設けられてもよい。 The LNG carrier 60 according to the present embodiment has a flammable gas supply pipe 51 branched from the vent pipe 10. The first combustible gas supply pipe 51 is connected to the boiler 50, and the flammable fuel gas in the LNG tank 2 is supplied to the boiler 50 by the supply compressor 52 provided at an intermediate position. In addition, a second combustible gas supply pipe 54 for supplying the combustible gas from the LNG tank 2 to the boiler 56 is branched from an intermediate position of the first combustible gas supply pipe 51. The second combustible gas supply pipe 54 may be provided so as to directly connect the LNG tank 2 and the boiler 56 without branching from the middle position of the combustible gas supply pipe 51.
 ボイラ56は、第1実施形態で説明したボイラ3とほぼ同一の構成を有するが、備えられるバーナがボイラ3とは異なっている。具体的には、ボイラ56は、酸素含有率の低いイナートガスを生成するバーナ55のみが設けられていて、このバーナ55がボイラ56の上部に設けられている。 The boiler 56 has substantially the same configuration as the boiler 3 described in the first embodiment, but the provided burner is different from the boiler 3. Specifically, the boiler 56 is provided with only a burner 55 that generates inert gas with a low oxygen content, and the burner 55 is provided at the top of the boiler 56.
 また、ボイラ50は、第1実施形態で説明したボイラ3とほぼ同一の構成を有するが、酸素含有率の低いイナートガスを生成する下部バーナ20、下部風箱21、側部耐火材36及び底部耐火材35を備えていない点がボイラ3と相違する。 The boiler 50 has substantially the same configuration as the boiler 3 described in the first embodiment, but generates the inert gas having a low oxygen content, the lower burner 20, the lower air box 21, the side refractory 36 and the bottom fireproof It differs from the boiler 3 in that the material 35 is not provided.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、イナートガスを生成するボイラ56とは別に、LNGタンク2から可燃性の燃料ガスが供給されるボイラ50が設けられている。これにより、イナートガスを生成するボイラ56からLNGタンク2にイナートガスを供給した際に、LNGタンク2内から排出される可燃性の燃料ガス及びイナートガスを、ボイラ50で燃焼処理することができる。したがって、LNGタンク2内から排出される可燃性の燃料ガス及びイナートガスを、ボイラ50で燃焼処理するとともに、蒸気を生成することができ、この蒸気をLNG運搬船1内の機器で利用することで、LNG運搬船1全体のエネルギー効率を向上させることができる。
According to the present embodiment, the following effects are achieved.
In the present embodiment, a boiler 50 to which flammable fuel gas is supplied from the LNG tank 2 is provided separately from the boiler 56 that generates the inert gas. As a result, when the inert gas is supplied from the boiler 56 that generates the inert gas to the LNG tank 2, the combustible fuel gas and the inert gas discharged from the inside of the LNG tank 2 can be burned and processed by the boiler 50. Therefore, the combustible fuel gas and the inert gas discharged from the inside of the LNG tank 2 can be burned and processed by the boiler 50 and steam can be generated, and this steam can be used by the equipment in the LNG carrier 1, The energy efficiency of the entire LNG carrier 1 can be improved.
 なお、本発明は、上記各実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、第2実施形態では、ボイラ56とボイラ50とを第1実施形態で説明したボイラ3とは別の構造のボイラとしたが、ボイラ56及びボイラ50は、ボイラ3と同じ構造であってもよい。 The present invention is not limited to the invention according to the above-described embodiments, and appropriate modifications can be made without departing from the scope of the invention. For example, in the second embodiment, the boiler 56 and the boiler 50 are the boilers having a structure different from that of the boiler 3 described in the first embodiment, but the boilers 56 and 50 have the same structure as the boiler 3 It is also good.
 また、上記各実施形態では、火炉16の全面には耐火材を設けずに、下部バーナ20が設けられている面には耐火材を設けていないが、火炉16の側壁23の全面に耐火材を設けてもよい。このような構成とすることで、下部バーナ20が形成する火炎と側部水冷壁32との熱交換をより抑制し、下部バーナ20が形成する火炎の燃焼温度をより高く維持することができる。また、下部バーナ20が形成する火炎と側部水冷壁32とが直接接触することをより抑制し、一酸化炭素の発生をより抑制することができる。 In each of the above embodiments, the refractory material is not provided on the entire surface of the furnace 16 and the refractory material is not provided on the surface on which the lower burner 20 is provided. May be provided. With such a configuration, heat exchange between the flame formed by the lower burner 20 and the side water cooling wall 32 can be further suppressed, and the combustion temperature of the flame formed by the lower burner 20 can be maintained higher. Further, direct contact between the flame formed by the lower burner 20 and the side water cooling wall 32 can be further suppressed, and the generation of carbon monoxide can be further suppressed.
1   LNG運搬船
2   LNGタンク(燃料タンク)
3   ボイラ
4   イナートガス供給管
16  火炉
17  蒸気生成部
18  上部バーナ(第1バーナ)
19  上部風箱
20  下部バーナ(第2バーナ)
21  下部風箱
22  天井部水冷壁
23  前面水冷壁
25  上部バーナ空気供給路
26  下部バーナ空気供給路
27  流量調整弁
29  蒸発管群
32  側部水冷壁(水冷壁)
33  底部水冷壁(水冷壁)
34  水冷管
35  底部耐火材(耐火材)
36  側部耐火材(耐火材)
50  ボイラ
1 LNG carrier 2 LNG tank (fuel tank)
3 boiler 4 inert gas supply pipe 16 furnace 17 steam generation unit 18 upper burner (first burner)
19 upper wind box 20 lower burner (second burner)
21 lower air box 22 ceiling water cooled wall 23 front water cooled wall 25 upper burner air supply passage 26 lower burner air supply passage 27 flow control valve 29 evaporation tube group 32 side water cooled wall (water cooled wall)
33 Bottom Water Cooling Wall (Water Cooling Wall)
34 Water-cooled tube 35 Bottom fire-resistant material
36 side refractory material (refractory material)
50 boilers

Claims (7)

  1.  火炉と、
     前記火炉内で燃料を燃焼する第1バーナと、
     前記第1バーナと別に設けられ、前記火炉内で燃料を燃焼してイナートガスを生成する第2バーナと、を備えたボイラ。
    A furnace and
    A first burner for burning fuel in the furnace;
    A second burner provided separately from the first burner and burning fuel in the furnace to generate inert gas;
  2.  前記第1バーナは、前記火炉の上部に配置され、下方に向けて火炎を形成し、
     前記第2バーナは、前記火炉の下部に配置される請求項1に記載のボイラ。
    The first burner is disposed at the top of the furnace and forms a flame downward.
    The boiler according to claim 1, wherein the second burner is disposed at a lower portion of the furnace.
  3.  前記火炉の炉底及び前記火炉の下部の側壁に沿うように設けられる水冷壁と、
     前記水冷壁と前記第2バーナが形成する火炎との間に設けられる耐火材と、を備えた請求項2に記載のボイラ。
    A water cooling wall provided along a furnace bottom of the furnace and a lower side wall of the furnace;
    The boiler according to claim 2, further comprising: a refractory material provided between the water-cooled wall and a flame formed by the second burner.
  4.  前記第2バーナを囲う風箱と、
     前記第1バーナの運転中であって前記第2バーナの停止中に、前記風箱の内部にシールガスを供給するファンと、を備える請求項1から請求項3のいずれかに記載のボイラ。
    A wind box enclosing the second burner,
    The boiler according to any one of claims 1 to 3, further comprising: a fan for supplying a seal gas to the inside of the air box during the operation of the first burner and the stop of the second burner.
  5.  請求項1から請求項4のいずれかに記載のボイラと、
     前記ボイラで生成した前記イナートガスが供給される燃料タンクと、を備えた船舶。
    The boiler according to any one of claims 1 to 4;
    A fuel tank to which the inert gas generated by the boiler is supplied.
  6.  前記ボイラとは別に設けられ、前記燃料タンクから燃料ガスが供給される他のボイラを備えた請求項5に記載の船舶。 The ship according to claim 5, further comprising another boiler provided separately from the boiler and supplied with fuel gas from the fuel tank.
  7.  火炉と、前記火炉内で燃料を燃焼する第1バーナと、前記第1バーナと別に設けられて前記火炉内で燃料を燃焼してイナートガスを生成する第2バーナと、前記火炉で発生した燃焼排ガスによって蒸気を生成する蒸気生成部と、を有するボイラを備え、
     前記第2バーナのみで燃料を燃焼する第2バーナ燃焼工程と、
     前記蒸気生成部で蒸気を生成する蒸気生成工程と、を備えたイナートガス生成方法。
    A furnace, a first burner for burning fuel in the furnace, a second burner provided separately from the first burner for burning fuel in the furnace to generate inert gas, and combustion exhaust gas generated in the furnace And a steam generation unit that generates steam by
    A second burner combustion step of burning fuel only with the second burner;
    A vapor generation step of generating a vapor in the vapor generation unit.
PCT/JP2018/000374 2017-02-28 2018-01-10 Boiler, ship comprising boiler, and inert gas generation method WO2018159106A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880013933.0A CN110337567B (en) 2017-02-28 2018-01-10 Boiler, ship provided with boiler, and method for generating inert gas
DK18761294.0T DK3591291T3 (en) 2017-02-28 2018-01-10 BOILER, SHIP COMPREHENS BOILER AND METHOD FOR GENERATING INERT GAS
KR1020197024445A KR102286089B1 (en) 2017-02-28 2018-01-10 Boiler and vessel equipped with boiler, and method of generating inert gas
EP18761294.0A EP3591291B1 (en) 2017-02-28 2018-01-10 Boiler, ship comprising boiler, and inert gas generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035870A JP6879778B2 (en) 2017-02-28 2017-02-28 Boilers and ships equipped with boilers and methods for producing inert gas
JP2017-035870 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159106A1 true WO2018159106A1 (en) 2018-09-07

Family

ID=63371138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000374 WO2018159106A1 (en) 2017-02-28 2018-01-10 Boiler, ship comprising boiler, and inert gas generation method

Country Status (6)

Country Link
EP (1) EP3591291B1 (en)
JP (1) JP6879778B2 (en)
KR (1) KR102286089B1 (en)
CN (1) CN110337567B (en)
DK (1) DK3591291T3 (en)
WO (1) WO2018159106A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292898B2 (en) * 2019-02-22 2023-06-19 三菱重工マリンマシナリ株式会社 boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54183739U (en) * 1978-06-16 1979-12-26
JPS5781999U (en) * 1980-11-07 1982-05-20
JPS5916777B2 (en) 1978-03-22 1984-04-17 株式会社日立メデイコ Ultrasound diagnostic equipment
JPS6124400U (en) * 1984-07-19 1986-02-13 石川島播磨重工業株式会社 Inert gas generator for ships, etc.
JP2001315693A (en) * 2000-05-09 2001-11-13 Kawasaki Heavy Ind Ltd Method for controlling boiler for propelling device of lng(liquefied natural gas) carrier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB376618A (en) * 1930-11-26 1932-07-14 Babcock & Wilcox Co Improvements in fire protection systems for oil tanks
JPS629103A (en) * 1985-07-03 1987-01-17 大谷開発株式会社 Flame conduit structure of boiler
CN101270873B (en) * 2007-03-23 2011-06-15 宝山钢铁股份有限公司 Method and device for blowing breeze to pure oxygen smelting mobile filling bed smelting furnace
JP5022204B2 (en) * 2007-12-17 2012-09-12 三菱重工業株式会社 Marine boiler structure
US8123150B2 (en) * 2010-03-30 2012-02-28 General Electric Company Variable area fuel nozzle
JP5812844B2 (en) * 2011-12-15 2015-11-17 三菱重工業株式会社 Marine boiler
CN102997276A (en) * 2012-12-26 2013-03-27 北京国电蓝天节能科技开发有限公司 Radiation enhanced combustion boiler cavity
JP5901671B2 (en) * 2014-02-25 2016-04-13 三菱重工業株式会社 Exhaust gas recirculation system, ship boiler equipped with the same, and exhaust gas recirculation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916777B2 (en) 1978-03-22 1984-04-17 株式会社日立メデイコ Ultrasound diagnostic equipment
JPS54183739U (en) * 1978-06-16 1979-12-26
JPS5781999U (en) * 1980-11-07 1982-05-20
JPS6124400U (en) * 1984-07-19 1986-02-13 石川島播磨重工業株式会社 Inert gas generator for ships, etc.
JP2001315693A (en) * 2000-05-09 2001-11-13 Kawasaki Heavy Ind Ltd Method for controlling boiler for propelling device of lng(liquefied natural gas) carrier

Also Published As

Publication number Publication date
EP3591291A1 (en) 2020-01-08
DK3591291T3 (en) 2021-03-22
EP3591291A4 (en) 2020-02-19
CN110337567A (en) 2019-10-15
CN110337567B (en) 2021-11-09
JP6879778B2 (en) 2021-06-02
EP3591291B1 (en) 2021-02-24
JP2018141585A (en) 2018-09-13
KR20190110113A (en) 2019-09-27
KR102286089B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP2013536396A (en) Rough gas bleeder / flare with variable opening cross section for bleed-off / flaring of flammable gas and process for flaming gas combustion
KR101805700B1 (en) Combustion improvement method for incinerator in complex facility, and complex facility
US10871285B2 (en) Pyrolysis boiler
WO2018159106A1 (en) Boiler, ship comprising boiler, and inert gas generation method
JP5473098B1 (en) Stoker-type incinerator
JP2018141585A5 (en)
KR101842772B1 (en) Hybrid power unit
JP2016089039A (en) Circulation gas combustion equipment of coke dry quenching facility
JP4833774B2 (en) An atmospheric combustion turbine system for industrial heat treatment furnaces.
US405717A (en) Portable apparatus for extinguishing fires
JP2004092985A (en) Exhaust gas treatment apparatus
US9587827B2 (en) Water cooled CO boiler floor with screen gas distribution inlet
KR101634731B1 (en) Exhaust gas treatment apparatus and the method thereof
JP7207618B1 (en) dissipative breeder
RU185159U1 (en) STEAM BOILER WITH A HEAVY WEIGHTED LAYER (FA)
JP7229796B2 (en) BFG burner device, boiler provided with same, and method of operating BFG burner device
CN106987278A (en) A kind of biomass gasifying furnace
JP2022035618A (en) Combustion facility
CN201373391Y (en) Gas boiler
JP2949311B2 (en) Operating method of boiler furnace
JP6209846B2 (en) Gas engine cogeneration system
JP2022089410A (en) Fire grade combustion system and fire grade combustion method
RU1774125C (en) Boiler
RU23188U1 (en) BOILER WITH A BOILER
JP2005170737A (en) Hydrogen generator and fuel cell power generation system utilizing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024445

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761294

Country of ref document: EP

Effective date: 20190930