WO2018159055A1 - Fluorescence assay multi-well plate and multi-well plate set, and method for producing fluorescence assay multi-well plate - Google Patents

Fluorescence assay multi-well plate and multi-well plate set, and method for producing fluorescence assay multi-well plate Download PDF

Info

Publication number
WO2018159055A1
WO2018159055A1 PCT/JP2017/044154 JP2017044154W WO2018159055A1 WO 2018159055 A1 WO2018159055 A1 WO 2018159055A1 JP 2017044154 W JP2017044154 W JP 2017044154W WO 2018159055 A1 WO2018159055 A1 WO 2018159055A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
well
fluorescence measurement
hole
film
Prior art date
Application number
PCT/JP2017/044154
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 内田
岩渕 康男
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Publication of WO2018159055A1 publication Critical patent/WO2018159055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present invention relates to a fluorescence measurement multiwell plate for fluorescence measurement of a large number of samples, a multiwell plate set that can be used in combination with a pair, and a method for producing a fluorescence measurement multiwell plate.
  • simultaneous fluorescence measurement of a large number of samples using a multiwell plate is known as a technique representative of the initial screening of a drug discovery process.
  • the conventional multiwell plate has a large capacity for each well, and is suitable for performing a sample sorting operation using a manual or automatic multiple pipette or the like.
  • multi-well plates Multi Micro Vessel: MMV
  • MMV Multi Micro Vessel
  • a method in which a sample filled in the well of the first MMV is transferred to the second MMV at a time so that the sorting operation of the first MMV can be performed easily and in a short time. More specifically, the opening side of the well of the first MMV and the opening side of the well of the second MMV face each other, and an isolation sheet (with a flow hole) is sandwiched between them, and the second MMV to the second A centrifugal force is applied in the direction of the MMV of the first MMV, and the sample in the well of the first MMV is transferred into the well of the second MMV through the flow hole of the isolation sheet (see Patent Document 1). According to such a method, it is possible to transfer from one MMV containing a large number of samples to another MMV all at once, and liquid leakage hardly occurs during the transfer.
  • the conventional MMV is made of a thermoplastic resin, and in many cases, a black filler is dispersed in the resin in order to prevent light leakage between adjacent wells.
  • a black filler is dispersed in the resin in order to prevent light leakage between adjacent wells.
  • it has become difficult for thermoplastic resins to cope with the reduction in the well capacity.
  • some users desire a method that does not use an isolation sheet when transferring a sample between two MMVs at once.
  • the present invention has been made in view of the above situation, and it is an object of the present invention to easily cope with a reduction in the volume of a well and to easily transfer a sample from one multiwell plate to another multiwell plate.
  • a fluorescence measurement multi-well plate is a fluorescence measurement multi-well plate having a plurality of wells for use in fluorescence measurement of a sample.
  • a multi-hole plate having a plurality of through holes corresponding to the plate along the thickness direction of the plate, and a transparent film that closes one opening surface side of the through hole in the multi-hole plate.
  • a filler is dispersed in a rubber-like elastic body, and the film and the multi-hole plate are fixed via a transparent adhesive layer.
  • the adhesive layer may be on one side of the film and exposed at the bottom of the well.
  • the rubber-like elastic body may be silicone rubber.
  • the film may be a cycloolefin polymer film.
  • the material of the adhesive layer may be a material mainly composed of a curable silicone composition.
  • the light-shielding filler may be a black filler.
  • a multi-well plate set according to an embodiment is a multi-well plate set that includes two of the above-described multi-well plates for fluorescence measurement and can have the openings of the wells facing each other.
  • a method for producing a fluorescence measurement multiwell plate is a method for producing any one of the above fluorescence measurement multiwell plates, wherein a light-shielding filler is dispersed in a rubber-like elastic body.
  • a multi-hole plate manufacturing process for manufacturing a multi-hole plate having a plurality of through-holes corresponding to a plurality of wells along the thickness direction of the plate, and closing one opening surface side of the through-hole in the multi-hole plate
  • the adhesive may be an adhesive mainly comprising a curable silicone composition.
  • the present invention it is easy to cope with a reduction in the volume of a well, and a sample can be easily transferred from one multiwell plate to another multiwell plate.
  • FIG. 1 is a perspective view of a fluorescence measurement multi-well plate according to an embodiment of the present invention, an enlarged view (1A) of a part A thereof, and a line BB when cut along the line BB of the perspective view. Sectional drawing and the enlarged view (1B) of the part C are each shown.
  • FIG. 2 shows a manufacturing method of the fluorescence measurement multiwell plate of FIG. 1 using a longitudinal sectional view and a flowchart.
  • FIG. 3 is a longitudinal sectional view of the fluorescence measurement multiwell plate of FIG.
  • FIG. 4 is a perspective view (4A) showing a situation where a microwell plate set including two sets of multiwell plates for fluorescence measurement of FIG.
  • FIG. 1 is a perspective view of a fluorescence measurement multiwell plate according to an embodiment of the present invention, an enlarged view (1A) of a part A thereof, and a section taken along line BB of the perspective view. A sectional view taken along line BB and an enlarged view (1B) of a part C are respectively shown.
  • a multi-well plate for fluorescence measurement (hereinafter simply referred to as “multi-well plate”) 1 according to an embodiment of the present invention includes a plurality of wells 15 for use in fluorescence measurement of a liquid sample (one form of sample).
  • the multiwell plate 1 is preferably composed of two members.
  • One is a multi-hole plate 10 provided with a plurality of through holes 16 corresponding to a plurality of wells 15 along the thickness direction of the plate.
  • the other is a transparent film 20 that closes one opening surface side of the through hole 16 in the multi-hole plate 10.
  • the multi-hole plate 10 is formed by dispersing the light-shielding filler 6 in the rubber-like elastic body 5.
  • the film 20 and the multi-hole plate 10 are fixed via a transparent adhesive layer 30.
  • the adhesive layer 30 is preferably on one side of the film 20 (the surface on the multi-hole plate 10 side) and exposed at the bottom of the well 15.
  • each detail of the multi-hole plate 10, the film 20, and the adhesion layer 30 is demonstrated.
  • the multi-hole plate 10 is a thin plate that is substantially rectangular or substantially square in plan view.
  • the multi-hole plate 10 is provided with a total of 1024 through-holes 16 that are 32 ⁇ 32 in length, penetrating in the thickness direction of the plate in a substantially central region in plan view.
  • the diameter of the well 15 is not particularly limited, but for example, is preferably in the range of 0.2 to 1.0 mm, more preferably in the range of 0.3 to 0.8 mm, and even more preferably in the range of 0.4 to It can be set in the range of 0.7 mm.
  • the length of the through hole 16 (corresponding to the thickness of the multi-hole plate 10) is not particularly limited, but is preferably in the range of 0.8 to 5.0 mm, more preferably 1.0 to 3.0 mm. In the range of 1.5 to 2.5 mm.
  • the multi-hole plate 10 includes one protrusion 11 on each diagonal line and one through-hole 12 on each other diagonal line. When these two convex portions 11 and two through-holes 12 overlap two identical multi-hole plates 1, 1, the convex portion 11 of one multi-hole plate 1 is replaced with the through-hole of the other multi-hole plate 1. 12 is a portion that can be fixed in the in-plane parallel direction by the method of inserting into Twelve.
  • the multi-hole plate 10 has a structure in which a black filler which is an example of the light-shielding filler 6 is dispersed in the rubber-like elastic body 5.
  • the multi-hole plate 10 is a structural body mainly composed of a rubber-like elastic body 5 including a rubber-like elastic body 5 and a light-shielding filler 6 having a lower mass ratio. The reason why the light-shielding filler 6 is dispersed in the rubber-like elastic body 5 is to prevent light leakage between adjacent wells 15 and light interference accompanying therewith.
  • the rubber-like elastic body 5 examples include thermosetting elastomers such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR), and styrene butadiene rubber (SBR); Examples thereof include thermoplastic elastomers such as urethane, ester, styrene, olefin, butadiene, and fluorine, or composites thereof.
  • a suitable example of the rubber-like elastic body 5 is silicone rubber.
  • the light-shielding filler 6 is not particularly limited as long as light transmission between the wells 15 can be prevented.
  • the mass ratio of the light-shielding filler 6 to the rubber-like elastic body 5 is appropriately determined according to the type and size of the light-shielding filler 6 (average particle diameter, etc. for particles, fiber diameter, fiber length, etc. for fibers). It can be changed.
  • the mass ratio of the light-shielding filler 6 is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0 with respect to 100 parts by mass of the rubber-like elastic body 5. 2 to 5 parts by mass.
  • an organic dye may be mixed in the rubber-like elastic body 5.
  • the multi-hole plate 10 in this embodiment is a plate in which particulate graphite filler is dispersed in silicone rubber.
  • the film 20 is a member that covers a region in which a large number of through holes 15 are gathered in the multi-hole plate 10. However, the film 20 may be large enough to cover the entire one surface of the multi-hole plate 10.
  • the film 20 is excellent in translucency in the thickness direction.
  • examples of the film 20 include cycloolefin polymer (COP), polymethyl methacrylate (PMMA), silicone rubber, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and the like. More preferable examples include COP and silicone rubber. COP and silicone rubber are particularly preferable because autofluorescence, which is noise during fluorescence observation, can be kept low.
  • the preferred range of the thickness of the film 20 is 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and even more preferably 0.3 to 0.00. 6 mm.
  • Adhesive layer The adhesive layer 30 is a layer having a function of interposing between the multi-hole plate 10 and the film 20 and fixing the both 10 and 20. Similar to the film 20, the adhesive layer 30 is a layer having excellent translucency. In this embodiment, the adhesive layer 30 is exposed on one opening surface of the well 15. That is, the adhesive layer 30 exists not only between the multi-hole plate 10 and the film 20 but also at the bottom of the well 15. However, the adhesive layer 30 may not be exposed at the bottom of the well 15.
  • the adhesive layer 30 is preferably a transparent silicone rubber layer.
  • the material of the adhesive layer 30 is preferably a material mainly composed of a curable silicone composition.
  • the adhesive layer 30 is made of silicone rubber, autofluorescence is suppressed, and when the multi-hole plate 10 is made of silicone rubber, the adhesiveness with the COP or silicone rubber film 20 is excellent.
  • the thickness of the adhesion layer 30 Since the loss of the light quantity which reaches the inside of the well 15 needs to be reduced, the thinner one is desirable. However, it is not preferable that the thickness is too small and the adhesiveness is inferior. From the viewpoint of such balance, the preferable range of the thickness of the adhesive layer 30 is 0.05 to 0.50 mm, more preferably 0.08 to 0.30 mm, and still more preferably 0.10 to 0. .25 mm.
  • the film 20 and the adhesive layer 30 have extremely low thickness variations in each plane. For this reason, when excitation light having the same intensity is applied, the intensity variation of light reaching the well 15 is small. That is, the thickness of the bottom of the well 15 is formed more uniformly between the wells 15 than when the well 15 that is recessed from one surface of the rubber-like elastic body 5 in which the light-shielding filler 6 is dispersed is formed. Because it can.
  • FIG. 2 shows a method for manufacturing the fluorescence measurement multiwell plate of FIG. 1 using a longitudinal sectional view and a flowchart.
  • the multiwell plate 1 can be suitably manufactured through a multi-hole plate manufacturing process (step S100), an adhesive application process (step S200), and a fixing process (step S300).
  • step S100 multi-hole plate manufacturing process
  • step S200 adhesive application process
  • step S300 fixing process
  • the multi-hole plate manufacturing step is formed by dispersing the light-shielding filler 6 in the rubber-like elastic body 5 and includes a plurality of through holes 16 corresponding to the plurality of wells 15 along the thickness direction of the plate. It is a process of producing. More specifically, a fluid obtained by kneading the light-shielding filler 6 in the curable rubber composition is supplied to a mold that can be molded into the form of the multi-hole plate 10, and the mold is clamped and heated. Perform pressure molding. A more preferable method of this molding is an injection molding method.
  • the through-hole 16 is preferably formed at the time of molding, but may be formed by mechanical means or laser processing after molding.
  • the pressure-sensitive adhesive application step is a step of applying the pressure-sensitive adhesive 31 to one side of the transparent film 20 that closes one opening surface side of the through hole 16 in the multi-hole plate 10.
  • the pressure-sensitive adhesive 31 is cured to form the pressure-sensitive adhesive layer 30, and is preferably a pressure-sensitive adhesive mainly composed of a curable silicone composition.
  • the pressure-sensitive adhesive 31 is coated on the entire surface of one side of the film 20 using a roll coater or the like. Instead of the roll coater, any type of substrate for transferring the adhesive 31 to the film 20 may be used.
  • the fixing step is a step of pressing the multi-hole plate 10 on the adhesive 31 and fixing the film 20 and the multi-hole plate 10 through the transparent adhesive layer 30.
  • a method of fixing the multi-hole plate 10 to a surface of the film 20 coated with the pressure-sensitive adhesive 31 mainly composed of a curable silicone composition is used, sufficient adhesive strength can be obtained only by pressure-contacting the both 10 and 20. There is a merit.
  • the adhesive unlike the application of the adhesive, there is no need for a drying step, and further, no step for modifying the surface of the multi-hole plate 10 serving as the adherend is required. Therefore, it is possible to realize the manufacture of the multiwell plate 1 at a low cost by a simple process with few management items.
  • the adhesive 31 can be easily bonded by using the pressure-sensitive adhesive 31 mainly composed of the curable silicone composition.
  • a transparent curable silicone rubber adhesive (product number: X-40-3340 manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to a film made by COP (ZeonorFilm manufactured by Nippon Zeon Co., Ltd., product number: ZF16). A film with an adhesive was formed.
  • the curable silicone rubber pressure-sensitive adhesive product number: X-40-3340 manufactured by Shin-Etsu Chemical Co., Ltd.
  • product number: X-40-3331-2 manufactured by the same company may be used.
  • the curable silicone rubber adhesive was applied using a roll coater. Next, the multi-well plate after molding was pressed on the film with the adhesive to complete a multi-well plate.
  • FIG. 3 shows a longitudinal sectional view of the fluorescence measurement multiwell plate of FIG.
  • the liquid sample D When the liquid sample D is subjected to fluorescence measurement, the liquid sample D is put into each well 15 of the multi-well plate 1 and the excitation light P is incident so as to pass through the film 20 from the bottom of the well 15 containing the liquid sample D. .
  • the excitation light P can be emitted using, for example, a laser oscillator 40.
  • an ELISA method is applied and an antigen-antibody reaction and an enzyme-substrate reaction occur in the liquid sample D in the specific well 15
  • the excitation light P when the excitation light P is applied to the liquid sample D, the enzyme -The fluorescence of the fluorescent substance produced by the substrate reaction can be measured.
  • the measurement object contained in the liquid sample D which is an example of the sample is not particularly limited as long as fluorescence measurement is possible.
  • peptides or proteins, or DNA or RNA encoding such information for example, peptides or proteins, or DNA or RNA encoding such information, bacteria, One or more selected from the group consisting of fungi, yeast, living cells in a single cell suspension, and hybridoma cells.
  • FIG. 4 is a perspective view of a situation in which a microwell plate set including two sets of multiwell plates for fluorescence measurement in FIG. 1 is used, and the two fluorescence measurement multiwell plates are stacked.
  • FIG. (4A) and two fluorescence measurement multiwell plates are stacked, and the liquid sample D in the well of one fluorescence measurement multiwell plate is transferred into the well of the other fluorescence measurement multiwell plate.
  • Sectional drawing (4B) is shown, respectively.
  • the openings of the wells 15 face each other, and the convex portions 11 of one multi-well plate 1 are inserted into the through holes 12 of the other multi-well plate 1.
  • the liquid sample D can be transferred from one multiwell plate 1 to the other multiwell plate 1.
  • the liquid sample D placed in each well 15 of one multi-well plate 1 can be transferred to an empty well 15 of the other multi-well plate 1 and each well of one multi-well plate 1 can be transferred. It is also possible to transfer the liquid sample D placed in 15 to the well 15 containing another sample in the other multi-well plate 1 to be mixed or reacted.
  • FIG. 4 (4B) is an example in which the liquid sample D placed in each well 15 of one multiwell plate 1 is transferred to an empty well 15 of the other multiwell plate 1.
  • Two multiwell plates 1 and 1 are overlapped so that the openings of the opposing wells 15 are aligned (a), and force is applied from one multiwell plate 1 to the other multiwell plate 1 by a method such as centrifugation. Effect.
  • the liquid sample D put in each well 15 of one multi-well plate 1 can be transferred simultaneously to the empty wells 15 of the other multi-well plate 1.
  • the multi-hole plate 10 constituting the multi-well plate 1 is mainly composed of the rubber-like elastic body 5, and thus is a structural body having the flexibility of the rubber-like elastic body 5. For this reason, when the two multi-well plates 1 and 1 are overlapped so that the openings of the wells 15 face each other, the peripheral area of the openings is likely to be in close contact. For this reason, compared with the conventional method which transfers the liquid sample D using the multiwell plate which consists of hard resin etc., the liquid sample D can be transferred easily and safely, without using an isolation sheet.
  • the multiwell plate set 2 has two multiwell plates 1 and 1 as described above, and the openings of the wells 15 can face each other.
  • the microwell plate set 2 can be used as follows, for example. A DNA having a desired promoter sequence or the like is placed in one microwell plate 1 and amplified. After the amplification is completed, a replica is prepared in the same manner as described above using the microwell plate 1 as an original. A buffer for performing in vitro translation can be put in each original well 15 to obtain a peptide as a translation product.
  • a protein capable of binding a peptide for example, a magnetic particle immobilized with streptavidin and a target protein immobilized on biotin is amplified, and a DNA containing a target substance and a coding sequence bound to the target substance is amplified. It can be observed by their combination.
  • a fluorescent label can be further bound, the complex containing the target protein can be cleaved with an enzyme, and the supernatant can be collected to measure fluorescence.
  • clustering and sequencing of genomic profiles can be performed by collecting the contents of the wells 15 emitting fluorescence and performing micro temperature gradient gel electrophoresis. At this time, various amplified peptides are contained in the well 15 on the receiving side. For this reason, the peptide couple
  • a rubber-like elastic body 5 other than silicone rubber may be used as a main material constituting the multi-hole plate 10.
  • a film mainly composed of a material other than the cycloolefin polymer may be used as the film 20.
  • materials other than the material mainly composed of the curable silicone composition may be used.
  • the present invention can be used for fluorescence analysis on a sample in a well.

Abstract

[Problem] To make it easy to handle smaller well capacities and easy to transfer samples from one multi-well plate to another multi-well plate. [Solution] A fluorescence assay multi-well plate 1 provided with a plurality of wells 15 for use in a fluorescence assay on a sample D, wherein: the fluorescence assay multi-well plate is provided with a multi-hole plate 10 provided, along the thickness direction of the plate, with a plurality of through holes 16 corresponding to the plurality of wells 15, and a transparent film 20 for closing off one opening surface side of the through holes 16 in the multi-hole plate 10; the multi-hole plate 10 is formed by dispersing a light-blocking filler 6 into a rubber-made elastic body 5; and the film 20 and the multi-hole plate 10 are fixed via a transparent pressure-sensitive adhesive layer 30. The invention also pertains to a multi-well plate set 2 and a method for producing a fluorescence assay multi-well plate.

Description

蛍光測定用マルチウェルプレートおよびマルチウェルプレートセット、ならびに蛍光測定用マルチウェルプレートの製造方法Multiwell plate and multiwell plate set for fluorescence measurement, and manufacturing method of multiwell plate for fluorescence measurement クロスリファレンスCross reference
 本出願は、2017年2月28日に日本国において出願された特願2017-035694に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。 This application claims priority based on Japanese Patent Application No. 2017-035694 filed in Japan on February 28, 2017, the contents of which are incorporated herein by reference. Moreover, the content described in the patent quoted in this application, a patent application, and literature is used for this specification.
 本発明は、多数のサンプルを蛍光測定するための蛍光測定用マルチウェルプレート、およびそれをペアで組み合わせて使用可能なマルチウェルプレートセット、ならびに蛍光測定用マルチウェルプレートの製造方法に関する。 The present invention relates to a fluorescence measurement multiwell plate for fluorescence measurement of a large number of samples, a multiwell plate set that can be used in combination with a pair, and a method for producing a fluorescence measurement multiwell plate.
 従来から、創薬プロセスの初期スクリーニングを代表する手法として、マルチウェルプレートを用いた多数サンプルの同時蛍光測定が知られている。従来のマルチウェルプレートは、各ウェルの容量が大きく、試料の分取操作を手動式あるいは自動式の多連ピペット等を用いて行うのには適したものである。しかし、試料の少量化、測定の効率化が益々進むなか、最近では、より微小容量のウェルを多数配列させたマルチウェルプレート(Multi Micro Vessel: MMV)も開発されている。 Conventionally, simultaneous fluorescence measurement of a large number of samples using a multiwell plate is known as a technique representative of the initial screening of a drug discovery process. The conventional multiwell plate has a large capacity for each well, and is suitable for performing a sample sorting operation using a manual or automatic multiple pipette or the like. However, multi-well plates (Multi Micro Vessel: MMV) in which a larger number of wells with smaller capacities are arranged have been developed recently as the amount of samples is reduced and the efficiency of measurement increases.
 ところで、第1のMMVのウェル内に充填された試料を第2のMMVに一度に移送することによって、第1のMMVの分取操作を簡便にかつ短時間で行う方法が知られている。より具体的には、第1のMMVのウェルの開口側と、第2のMMVのウェルの開口側とを向かい合わせ、その間に隔離シート(流通孔付き)を挟み、第1のMMVから第2のMMVの方向に遠心力を及ぼしめ、第1のMMVのウェル内の試料を、隔離シートの流通孔を通じて第2のMMVのウェル内に移送する(特許文献1を参照)。かかる方法によれば、多数の試料を入れたMMVから別のMMVへと一挙に移送でき、かつ移送時に液漏れが生じ難い。 By the way, a method is known in which a sample filled in the well of the first MMV is transferred to the second MMV at a time so that the sorting operation of the first MMV can be performed easily and in a short time. More specifically, the opening side of the well of the first MMV and the opening side of the well of the second MMV face each other, and an isolation sheet (with a flow hole) is sandwiched between them, and the second MMV to the second A centrifugal force is applied in the direction of the MMV of the first MMV, and the sample in the well of the first MMV is transferred into the well of the second MMV through the flow hole of the isolation sheet (see Patent Document 1). According to such a method, it is possible to transfer from one MMV containing a large number of samples to another MMV all at once, and liquid leakage hardly occurs during the transfer.
特開2013-195370号公報JP 2013-195370 A
 上記従来のMMVとしては、熱可塑性樹脂によって構成され、隣り合うウェル間の漏光を防止するため、当該樹脂中に黒色のフィラーを分散させたものが多い。しかし、熱可塑性樹脂では、ウェルの小容量化に対応することが難しくなってきている。また、ユーザの中には、2つのMMV間で試料を一挙に移送操作する際に、隔離シートを用いない方法を望む声もある。 The conventional MMV is made of a thermoplastic resin, and in many cases, a black filler is dispersed in the resin in order to prevent light leakage between adjacent wells. However, it has become difficult for thermoplastic resins to cope with the reduction in the well capacity. In addition, some users desire a method that does not use an isolation sheet when transferring a sample between two MMVs at once.
 本発明は、上記状況に鑑みてなされたものであり、ウェルの小容量化に対応しやすく、かつ1つのマルチウェルプレートから別のマルチウェルプレートに試料を容易に移送できるようにすることを目的とする。 The present invention has been made in view of the above situation, and it is an object of the present invention to easily cope with a reduction in the volume of a well and to easily transfer a sample from one multiwell plate to another multiwell plate. And
(1)上記目的を達成するための一実施形態に係る蛍光測定用マルチウェルプレートは、試料の蛍光測定に用いるための複数のウェルを備えた蛍光測定用マルチウェルプレートであって、複数のウェルに対応する複数の貫通孔をプレートの厚さ方向に沿って備える多穴プレートと、多穴プレートにおける貫通孔の一方の開口面側を閉鎖する透明なフィルムとを備え、多穴プレートは遮光性フィラーをゴム状弾性体中に分散して成り、フィルムと多穴プレートとは透明な粘着層を介して固定されている。 (1) A fluorescence measurement multi-well plate according to an embodiment for achieving the above object is a fluorescence measurement multi-well plate having a plurality of wells for use in fluorescence measurement of a sample. A multi-hole plate having a plurality of through holes corresponding to the plate along the thickness direction of the plate, and a transparent film that closes one opening surface side of the through hole in the multi-hole plate. A filler is dispersed in a rubber-like elastic body, and the film and the multi-hole plate are fixed via a transparent adhesive layer.
(2)別の実施形態に係る蛍光測定用マルチウェルプレートでは、さらに、粘着層は、フィルムの片面にあって、ウェルの底部に露出していても良い。 (2) In the multi-well plate for fluorescence measurement according to another embodiment, the adhesive layer may be on one side of the film and exposed at the bottom of the well.
(3)別の実施形態に係る蛍光測定用マルチウェルプレートでは、また、ゴム状弾性体はシリコーンゴムであっても良い。 (3) In the multi-well plate for fluorescence measurement according to another embodiment, the rubber-like elastic body may be silicone rubber.
(4)別の実施形態に係る蛍光測定用マルチウェルプレートでは、また、フィルムは、シクロオレフィンポリマーのフィルムであっても良い。 (4) In the multiwell plate for fluorescence measurement according to another embodiment, the film may be a cycloolefin polymer film.
(5)別の実施形態に係る蛍光測定用マルチウェルプレートでは、また、粘着層の材料は硬化性シリコーン組成物を主とする材料であっても良い。 (5) In the multi-well plate for fluorescence measurement according to another embodiment, the material of the adhesive layer may be a material mainly composed of a curable silicone composition.
(6)別の実施形態に係る蛍光測定用マルチウェルプレートでは、また、遮光性フィラーは、黒色のフィラーであっても良い。 (6) In the multiwell plate for fluorescence measurement according to another embodiment, the light-shielding filler may be a black filler.
(7)一実施形態に係るマルチウェルプレートセットは、上述のいずれかの蛍光測定用マルチウェルプレートを2つ有し、互いのウェルの開口部を向かい合わせることのできるマルチウェルプレートセットである。 (7) A multi-well plate set according to an embodiment is a multi-well plate set that includes two of the above-described multi-well plates for fluorescence measurement and can have the openings of the wells facing each other.
(8)一実施形態に係る蛍光測定用マルチウェルプレートの製造方法は、上述のいずれかの蛍光測定用マルチウェルプレートを製造する方法であって、遮光性フィラーをゴム状弾性体中に分散して成り、複数のウェルに対応する複数の貫通孔をプレートの厚さ方向に沿って備える多穴プレートを作製する多穴プレート作製工程と、多穴プレートにおける貫通孔の一方の開口面側を閉鎖する透明なフィルムの片面に粘着剤を塗布する粘着剤塗布工程と、粘着剤の上から多穴プレートを圧接せしめて、フィルムと多穴プレートとを透明な粘着層を介して固定する固定工程と、を含む。 (8) A method for producing a fluorescence measurement multiwell plate according to an embodiment is a method for producing any one of the above fluorescence measurement multiwell plates, wherein a light-shielding filler is dispersed in a rubber-like elastic body. A multi-hole plate manufacturing process for manufacturing a multi-hole plate having a plurality of through-holes corresponding to a plurality of wells along the thickness direction of the plate, and closing one opening surface side of the through-hole in the multi-hole plate A pressure-sensitive adhesive application step of applying a pressure-sensitive adhesive to one side of a transparent film, a fixing step of pressing the multi-hole plate from above the pressure-sensitive adhesive, and fixing the film and the multi-hole plate through a transparent pressure-sensitive adhesive layer; ,including.
(9)別の実施形態に係る蛍光測定用マルチウェルプレートの製造方法では、さらに、粘着剤は硬化性シリコーン組成物を主とする粘着剤であっても良い。 (9) In the method for producing a fluorescence measurement multiwell plate according to another embodiment, the adhesive may be an adhesive mainly comprising a curable silicone composition.
 本発明によれば、ウェルの小容量化に対応しやすく、かつ1つのマルチウェルプレートから別のマルチウェルプレートに試料を容易に移送できるようにする。 According to the present invention, it is easy to cope with a reduction in the volume of a well, and a sample can be easily transferred from one multiwell plate to another multiwell plate.
図1は、本発明の実施形態に係る蛍光測定用マルチウェルプレートの斜視図およびその一部Aの拡大図(1A)と、当該斜視図のB-B線で切ったときのB-B線断面図およびその一部Cの拡大図(1B)と、をそれぞれ示す。FIG. 1 is a perspective view of a fluorescence measurement multi-well plate according to an embodiment of the present invention, an enlarged view (1A) of a part A thereof, and a line BB when cut along the line BB of the perspective view. Sectional drawing and the enlarged view (1B) of the part C are each shown. 図2は、図1の蛍光測定用マルチウェルプレートの製造方法を縦断面視とフローチャートを用いて示す。FIG. 2 shows a manufacturing method of the fluorescence measurement multiwell plate of FIG. 1 using a longitudinal sectional view and a flowchart. 図3は、図1の蛍光測定用マルチウェルプレートの使用状況下の縦断面図を示す。FIG. 3 is a longitudinal sectional view of the fluorescence measurement multiwell plate of FIG. 図4は、図1の蛍光測定用マルチウェルプレートを2組備えるマイクロウェルプレートセットを使用する状況であって、それら2枚の蛍光測定用マルチウェルプレートを重ねる前の状況の斜視図(4A)および2枚の蛍光測定用マルチウェルプレートを重ねて、一方の蛍光測定用マルチウェルプレートのウェル内の試料Dを他方の蛍光測定用マルチウェルプレートのウェル内に移送する状況の断面図(4B)をそれぞれ示す。FIG. 4 is a perspective view (4A) showing a situation where a microwell plate set including two sets of multiwell plates for fluorescence measurement of FIG. 1 is used, and before the two multiwell plates for fluorescence measurement are stacked. Sectional view (4B) of the situation where the sample D in the well of one fluorescence measurement multiwell plate is transferred into the well of the other fluorescence measurement multiwell plate by superimposing two fluorescence measurement multiwell plates Respectively.
1・・・蛍光測定用マルチウェルプレート
2・・・マルチウェルプレートセット
5・・・ゴム状弾性体
6・・・遮光性フィラー
10・・・多穴プレート
15・・・ウェル
16・・・貫通孔
20・・・フィルム
30・・・粘着層
31・・・粘着剤
D・・・液体試料(試料の一形態)
DESCRIPTION OF SYMBOLS 1 ... Fluorescence measurement multiwell plate 2 ... Multiwell plate set 5 ... Rubber-like elastic body 6 ... Light-shielding filler 10 ... Multi-hole plate 15 ... Well 16 ... Through Hole 20 ... Film 30 ... Adhesive layer 31 ... Adhesive D ... Liquid sample (one form of sample)
 以下、本発明の実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below do not limit the invention according to the scope of claims, and all the elements and combinations thereof described in the embodiments are essential to the solution means of the present invention. Not necessarily.
1.蛍光測定用マルチウェルプレート
 図1は、本発明の実施形態に係る蛍光測定用マルチウェルプレートの斜視図およびその一部Aの拡大図(1A)と、当該斜視図のB-B線で切ったときのB-B線断面図およびその一部Cの拡大図(1B)と、をそれぞれ示す。
1. FIG. 1 is a perspective view of a fluorescence measurement multiwell plate according to an embodiment of the present invention, an enlarged view (1A) of a part A thereof, and a section taken along line BB of the perspective view. A sectional view taken along line BB and an enlarged view (1B) of a part C are respectively shown.
 本発明の実施形態に係る蛍光測定用マルチウェルプレート(以後、単に「マルチウェルプレート」と称する)1は、液体試料(試料の一形態)の蛍光測定に用いるための複数のウェル15を備える。マルチウェルプレート1は、好適には、2つの部材から構成される。1つは、複数のウェル15に対応する複数の貫通孔16をプレートの厚さ方向に沿って備える多穴プレート10である。もう1つは、多穴プレート10における貫通孔16の一方の開口面側を閉鎖する透明なフィルム20である。一部Aの拡大図に示すように、多穴プレート10は、遮光性フィラー6をゴム状弾性体5中に分散して成る。フィルム20と多穴プレート10とは、透明な粘着層30を介して固定されている。粘着層30は、好ましくは、フィルム20の片面(多穴プレート10側の面)にあって、ウェル15の底部に露出している。以下、多穴プレート10、フィルム20および粘着層30の各詳細について説明する。 A multi-well plate for fluorescence measurement (hereinafter simply referred to as “multi-well plate”) 1 according to an embodiment of the present invention includes a plurality of wells 15 for use in fluorescence measurement of a liquid sample (one form of sample). The multiwell plate 1 is preferably composed of two members. One is a multi-hole plate 10 provided with a plurality of through holes 16 corresponding to a plurality of wells 15 along the thickness direction of the plate. The other is a transparent film 20 that closes one opening surface side of the through hole 16 in the multi-hole plate 10. As shown in the enlarged view of part A, the multi-hole plate 10 is formed by dispersing the light-shielding filler 6 in the rubber-like elastic body 5. The film 20 and the multi-hole plate 10 are fixed via a transparent adhesive layer 30. The adhesive layer 30 is preferably on one side of the film 20 (the surface on the multi-hole plate 10 side) and exposed at the bottom of the well 15. Hereinafter, each detail of the multi-hole plate 10, the film 20, and the adhesion layer 30 is demonstrated.
(1)多穴プレート
 多穴プレート10は、平面視に略長方形若しくは略正方形の薄いプレートである。多穴プレート10は、その平面視略中央領域に、プレートの厚さ方向に貫通する貫通孔16を縦32×横32の合計1024個備える。ウェル15の直径については、特に制約されないが、例えば、好適には0.2~1.0mmの範囲、より好適には0.3~0.8mmの範囲、さらにより好適には0.4~0.7mmの範囲に設定可能である。貫通孔16の長さ(多穴プレート10の厚さに相当)は、特に制約されないが、例えば、好適には0.8~5.0mmの範囲、より好適には1.0~3.0mmの範囲、さらにより好適には1.5~2.5mmの範囲に設定可能である。多穴プレート10は、1つの対角線上両角に1個ずつの凸部11およびもう1本の対角線上の両角に1個ずつの貫通孔12を備える。これら2つの凸部11と2つの貫通孔12は、2つの同形の多穴プレート1,1を重ね合わせる際に、一方の多穴プレート1の凸部11を他方の多穴プレート1の貫通孔12に挿入する方法にて面内平行方向に固定できるようにする部分である。
(1) Multi-hole plate The multi-hole plate 10 is a thin plate that is substantially rectangular or substantially square in plan view. The multi-hole plate 10 is provided with a total of 1024 through-holes 16 that are 32 × 32 in length, penetrating in the thickness direction of the plate in a substantially central region in plan view. The diameter of the well 15 is not particularly limited, but for example, is preferably in the range of 0.2 to 1.0 mm, more preferably in the range of 0.3 to 0.8 mm, and even more preferably in the range of 0.4 to It can be set in the range of 0.7 mm. The length of the through hole 16 (corresponding to the thickness of the multi-hole plate 10) is not particularly limited, but is preferably in the range of 0.8 to 5.0 mm, more preferably 1.0 to 3.0 mm. In the range of 1.5 to 2.5 mm. The multi-hole plate 10 includes one protrusion 11 on each diagonal line and one through-hole 12 on each other diagonal line. When these two convex portions 11 and two through-holes 12 overlap two identical multi-hole plates 1, 1, the convex portion 11 of one multi-hole plate 1 is replaced with the through-hole of the other multi-hole plate 1. 12 is a portion that can be fixed in the in-plane parallel direction by the method of inserting into Twelve.
 多穴プレート10は、ゴム状弾性体5中に、遮光性フィラー6の一例である黒色フィラーを分散させた構造を有する。多穴プレート10は、ゴム状弾性体5と、それより質量比率の低い遮光性フィラー6とを含む主にゴム状弾性体5から成る構成体である。遮光性フィラー6をゴム状弾性体5中に分散させるのは、隣り合うウェル15間での漏光およびそれに伴う光の干渉を防止するためである。ゴム状弾性体5としては、例えば、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー;ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を例示できる。ゴム状弾性体5として好適な例は、シリコーンゴムである。遮光性フィラー6としては、ウェル15間での透光を防止できれば、特に制約なく、例えば、炭素(グラファイト等)、銅―クロム系複合酸化物、銅-クロム-亜鉛系複合酸化物、硫化亜鉛、酸化チタン、酸化鉄等に代表される有色顔料を例示できる。ゴム状弾性体5に対する遮光性フィラー6の質量比率は、遮光性フィラー6の種類および大きさ(粒子であれば平均粒子径等、繊維であれば、繊維径および繊維長等)に応じて適宜変更可能である。例えば、遮光性フィラー6の質量比率は、100質量部のゴム状弾性体5に対して、好ましくは0.01~20質量部、より好ましくは0.1~10質量部、さらにより好ましくは0.2~5質量部である。これら有色顔料に代えて、有機染料をゴム状弾性体5に混ぜても良い。この実施形態における多穴プレート10は、シリコーンゴムに粒子状のグラファイトフィラーを分散させたプレートである。 The multi-hole plate 10 has a structure in which a black filler which is an example of the light-shielding filler 6 is dispersed in the rubber-like elastic body 5. The multi-hole plate 10 is a structural body mainly composed of a rubber-like elastic body 5 including a rubber-like elastic body 5 and a light-shielding filler 6 having a lower mass ratio. The reason why the light-shielding filler 6 is dispersed in the rubber-like elastic body 5 is to prevent light leakage between adjacent wells 15 and light interference accompanying therewith. Examples of the rubber-like elastic body 5 include thermosetting elastomers such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR), and styrene butadiene rubber (SBR); Examples thereof include thermoplastic elastomers such as urethane, ester, styrene, olefin, butadiene, and fluorine, or composites thereof. A suitable example of the rubber-like elastic body 5 is silicone rubber. The light-shielding filler 6 is not particularly limited as long as light transmission between the wells 15 can be prevented. For example, carbon (graphite, etc.), copper-chromium composite oxide, copper-chromium-zinc composite oxide, zinc sulfide Examples thereof include colored pigments typified by titanium oxide and iron oxide. The mass ratio of the light-shielding filler 6 to the rubber-like elastic body 5 is appropriately determined according to the type and size of the light-shielding filler 6 (average particle diameter, etc. for particles, fiber diameter, fiber length, etc. for fibers). It can be changed. For example, the mass ratio of the light-shielding filler 6 is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0 with respect to 100 parts by mass of the rubber-like elastic body 5. 2 to 5 parts by mass. Instead of these colored pigments, an organic dye may be mixed in the rubber-like elastic body 5. The multi-hole plate 10 in this embodiment is a plate in which particulate graphite filler is dispersed in silicone rubber.
(2)フィルム
 フィルム20は、多穴プレート10において多数の貫通孔15を集合させた領域を覆う部材である。ただし、フィルム20は、多穴プレート10の一方の面全体を覆う大きさでも良い。フィルム20は、その厚さ方向に透光性に優れる。フィルム20としては、シクロオレフィンポリマー(COP)、ポリメタクリル酸メチル(PMMA)、シリコーンゴム、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)等を例示でき、その中でもより好ましくはCOPやシリコーンゴムを挙げることができる。COPやシリコーンゴムが特に好ましいのは、蛍光観察の際のノイズとなる自家蛍光が低く抑えられるからである。フィルム20の厚さについては、特に制約はないが、ウェル15の底部に届く光量の損失を少なくする必要から、厚さが小さい方が望ましい。ただし、厚さが小さすぎて容易に穴が開くのは好ましくない。このようなバランスの観点から、フィルム20の厚さの好適な範囲は、0.1~1.0mm、より好適には0.2~0.8mm、さらにより好適には0.3~0.6mmである。
(2) Film The film 20 is a member that covers a region in which a large number of through holes 15 are gathered in the multi-hole plate 10. However, the film 20 may be large enough to cover the entire one surface of the multi-hole plate 10. The film 20 is excellent in translucency in the thickness direction. Examples of the film 20 include cycloolefin polymer (COP), polymethyl methacrylate (PMMA), silicone rubber, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and the like. More preferable examples include COP and silicone rubber. COP and silicone rubber are particularly preferable because autofluorescence, which is noise during fluorescence observation, can be kept low. Although there is no restriction | limiting in particular about the thickness of the film 20, The smaller one is desirable from the need of reducing the loss of the light quantity which reaches the bottom part of the well 15. FIG. However, it is not preferable that the hole is easily opened because the thickness is too small. From the viewpoint of such balance, the preferred range of the thickness of the film 20 is 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and even more preferably 0.3 to 0.00. 6 mm.
(3)粘着層
 粘着層30は、多穴プレート10とフィルム20との間に介在して、両者10,20を固定する機能を有する層である。粘着層30は、フィルム20と同様に、透光性に優れる層である。この実施形態では、粘着層30は、ウェル15の一方の開口面に露出している。すなわち、粘着層30は、多穴プレート10とフィルム20との間に存在するのみならず、ウェル15の底部にも存在する。ただし、粘着層30をウェル15の底部に露出させないようにしても良い。
(3) Adhesive layer The adhesive layer 30 is a layer having a function of interposing between the multi-hole plate 10 and the film 20 and fixing the both 10 and 20. Similar to the film 20, the adhesive layer 30 is a layer having excellent translucency. In this embodiment, the adhesive layer 30 is exposed on one opening surface of the well 15. That is, the adhesive layer 30 exists not only between the multi-hole plate 10 and the film 20 but also at the bottom of the well 15. However, the adhesive layer 30 may not be exposed at the bottom of the well 15.
 この実施形態では、粘着層30は、好ましくは、透明なシリコーンゴム層である。その場合、粘着層30の材料は、好ましくは、硬化性シリコーン組成物を主とする材料である。粘着層30をシリコーンゴムにて構成すると、自家蛍光が抑えられ、また、多穴プレート10をシリコーンゴムで構成した場合にCOPあるいはシリコーンゴム製のフィルム20との接着性にも優れる。粘着層30の厚さについては、特に制約はないが、ウェル15の内部に届く光量の損失を少なくする必要から、薄い方が望ましい。ただし、厚さが小さすぎて粘着性に劣るのは好ましくない。このようなバランスの観点から、粘着層30の厚さの好適な範囲は、0.05~0.50mm、より好適には0.08~0.30mm、さらにより好適には0.10~0.25mmである。 In this embodiment, the adhesive layer 30 is preferably a transparent silicone rubber layer. In that case, the material of the adhesive layer 30 is preferably a material mainly composed of a curable silicone composition. When the adhesive layer 30 is made of silicone rubber, autofluorescence is suppressed, and when the multi-hole plate 10 is made of silicone rubber, the adhesiveness with the COP or silicone rubber film 20 is excellent. Although there is no restriction | limiting in particular about the thickness of the adhesion layer 30, Since the loss of the light quantity which reaches the inside of the well 15 needs to be reduced, the thinner one is desirable. However, it is not preferable that the thickness is too small and the adhesiveness is inferior. From the viewpoint of such balance, the preferable range of the thickness of the adhesive layer 30 is 0.05 to 0.50 mm, more preferably 0.08 to 0.30 mm, and still more preferably 0.10 to 0. .25 mm.
 フィルム20および粘着層30は、各面内における厚さのバラツキが極めて低い。このため、同じ強度の励起光をあてた際に、ウェル15に届く光の強度バラツキが小さい。それは、遮光性フィラー6を分散させたゴム状弾性体5の一方の面から窪むウェル15を形成するのに比べて、ウェル15の底部の厚さを、ウェル15間にてより均一に形成できるからである。 The film 20 and the adhesive layer 30 have extremely low thickness variations in each plane. For this reason, when excitation light having the same intensity is applied, the intensity variation of light reaching the well 15 is small. That is, the thickness of the bottom of the well 15 is formed more uniformly between the wells 15 than when the well 15 that is recessed from one surface of the rubber-like elastic body 5 in which the light-shielding filler 6 is dispersed is formed. Because it can.
2.蛍光測定用マルチウェルプレートの製造方法
 図2は、図1の蛍光測定用マルチウェルプレートの製造方法を縦断面視とフローチャートを用いて示す。
2. 2. Method for Manufacturing Fluorescence Measurement Multiwell Plate FIG. 2 shows a method for manufacturing the fluorescence measurement multiwell plate of FIG. 1 using a longitudinal sectional view and a flowchart.
 マルチウェルプレート1は、多穴プレート作製工程(ステップS100)と、粘着剤塗布工程(ステップS200)と、固定工程(ステップS300)とを経て、好適に製造可能である。以下、各工程の詳細を説明する。 The multiwell plate 1 can be suitably manufactured through a multi-hole plate manufacturing process (step S100), an adhesive application process (step S200), and a fixing process (step S300). Hereinafter, details of each process will be described.
(1)多穴プレート作製工程(ステップS100)
 多穴プレート作製工程は、遮光性フィラー6をゴム状弾性体5中に分散して成り、複数のウェル15に対応する複数の貫通孔16をプレートの厚さ方向に沿って備える多穴プレート10を作製する工程である。より具体的には、遮光性フィラー6を硬化性ゴム組成物中に練り込んだ流動物を、多穴プレート10の形態に成形可能な金型に供給し、金型を型締めして加熱・加圧成形を行う。この成形のより好適な方法は、射出成形法である。ただし、一次加硫化後の板状成形物を金型内に入れて二次加硫を行うプレス成型法を用いても良い。また、貫通孔16は、成形時に形成する方が好ましいが、成形後に機械的な手段若しくはレーザー加工によって形成されても良い。
(1) Multi-hole plate manufacturing process (step S100)
The multi-hole plate manufacturing step is formed by dispersing the light-shielding filler 6 in the rubber-like elastic body 5 and includes a plurality of through holes 16 corresponding to the plurality of wells 15 along the thickness direction of the plate. It is a process of producing. More specifically, a fluid obtained by kneading the light-shielding filler 6 in the curable rubber composition is supplied to a mold that can be molded into the form of the multi-hole plate 10, and the mold is clamped and heated. Perform pressure molding. A more preferable method of this molding is an injection molding method. However, you may use the press molding method which puts the plate-shaped molding after primary vulcanization in a metal mold | die, and performs secondary vulcanization. The through-hole 16 is preferably formed at the time of molding, but may be formed by mechanical means or laser processing after molding.
(2)粘着剤塗布工程(ステップS200)
 粘着剤塗布工程は、多穴プレート10における貫通孔16の一方の開口面側を閉鎖する透明なフィルム20の片面に粘着剤31を塗布する工程である。粘着剤31は、硬化して粘着層30を形成するものであり、好適には硬化性シリコーン組成物を主とする粘着剤である。この工程では、好ましくは、ロールコーター等を利用して、フィルム20の片側全面に粘着剤31をコーティングする工程である。なお、ロールコーターに代えて、粘着剤31をフィルム20に転写するための如何なる種類の基材を用いても良い。その場合、粘着剤31を基材に塗布して、当該基材の粘着剤31をフィルム20へと転写すれば良い。これによって、粘着剤31をフィルム20の面内均一に載せることができる。
(2) Adhesive application process (step S200)
The pressure-sensitive adhesive application step is a step of applying the pressure-sensitive adhesive 31 to one side of the transparent film 20 that closes one opening surface side of the through hole 16 in the multi-hole plate 10. The pressure-sensitive adhesive 31 is cured to form the pressure-sensitive adhesive layer 30, and is preferably a pressure-sensitive adhesive mainly composed of a curable silicone composition. In this step, preferably, the pressure-sensitive adhesive 31 is coated on the entire surface of one side of the film 20 using a roll coater or the like. Instead of the roll coater, any type of substrate for transferring the adhesive 31 to the film 20 may be used. In that case, what is necessary is just to apply | coat the adhesive 31 to a base material and to transcribe | transfer the adhesive 31 of the said base material to the film 20. FIG. As a result, the pressure-sensitive adhesive 31 can be uniformly placed within the surface of the film 20.
(3)固定工程(ステップS300)
 固定工程は、粘着剤31の上から多穴プレート10を圧接せしめて、フィルム20と多穴プレート10とを透明な粘着層30を介して固定する工程である。硬化性シリコーン組成物を主とする粘着剤31をフィルム20の片面にコートしたものに多穴プレート10を固定する方法を用いると、両者10,20を圧接するだけで十分な接着強度が得られるというメリットがある。また、接着剤の塗布のように、乾燥工程も必要なく、さらに被着材となる多穴プレート10の表面改質の工程も不要である。したがって、簡素な工程で、管理項目も少なく、低コストにてマルチウェルプレート1の製造を実現できる。加えて、多穴プレート10とフィルム20の両素材が異なる場合でも、硬化性シリコーン組成物を主とする粘着剤31を用いることにより容易に接着できるというメリットもある。
(3) Fixing process (step S300)
The fixing step is a step of pressing the multi-hole plate 10 on the adhesive 31 and fixing the film 20 and the multi-hole plate 10 through the transparent adhesive layer 30. When a method of fixing the multi-hole plate 10 to a surface of the film 20 coated with the pressure-sensitive adhesive 31 mainly composed of a curable silicone composition is used, sufficient adhesive strength can be obtained only by pressure-contacting the both 10 and 20. There is a merit. Moreover, unlike the application of the adhesive, there is no need for a drying step, and further, no step for modifying the surface of the multi-hole plate 10 serving as the adherend is required. Therefore, it is possible to realize the manufacture of the multiwell plate 1 at a low cost by a simple process with few management items. In addition, even when both materials of the multi-hole plate 10 and the film 20 are different, there is an advantage that the adhesive 31 can be easily bonded by using the pressure-sensitive adhesive 31 mainly composed of the curable silicone composition.
3.製造例
 硬化性シリコーンゴム組成物(信越化学工業株式会社製の品番:KE-961T-U)100質量部に、黒色顔料(信越化学工業株式会社製の品番:KE-COLOR-BL)0.5質量部および架橋剤(信越化学工業株式会社製の品番:C-8A)0.5質量部を添加し、均一に混合して、加熱加圧成形を行い、多穴プレートを製造した。また、COP製のフィルム(日本ゼオン株式会社製のZeonorFilm、品番:ZF16)に、透明な硬化性シリコーンゴム粘着剤(信越化学工業株式会社製の品番:X-40-3340)を塗布して、粘着剤付きのフィルムを形成した。硬化性シリコーンゴム粘着剤(信越化学工業株式会社製の品番:X-40-3340)に代えて、同社製の品番:X-40-3331-2を用いることもできる。硬化性シリコーンゴム粘着剤の塗布は、ロールコーターを用いて行った。次に、粘着剤付きのフィルム上に、成形後の多穴プレートを圧接して、マルチウェルプレートを完成した。
3. Production Example 100 parts by mass of curable silicone rubber composition (Shin-Etsu Chemical Co., Ltd. product number: KE-961T-U) and black pigment (Shin-Etsu Chemical Co., Ltd. product number: KE-COLOR-BL) 0.5 Mass parts and 0.5 parts by mass of a crosslinking agent (Shin-Etsu Chemical Co., Ltd. product number: C-8A) were added, mixed uniformly, and subjected to heat and pressure molding to produce a multi-hole plate. Further, a transparent curable silicone rubber adhesive (product number: X-40-3340 manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to a film made by COP (ZeonorFilm manufactured by Nippon Zeon Co., Ltd., product number: ZF16). A film with an adhesive was formed. In place of the curable silicone rubber pressure-sensitive adhesive (product number: X-40-3340 manufactured by Shin-Etsu Chemical Co., Ltd.), product number: X-40-3331-2 manufactured by the same company may be used. The curable silicone rubber adhesive was applied using a roll coater. Next, the multi-well plate after molding was pressed on the film with the adhesive to complete a multi-well plate.
4.使用例
 図3は、図1の蛍光測定用マルチウェルプレートの使用状況下の縦断面図を示す。
4). Usage Example FIG. 3 shows a longitudinal sectional view of the fluorescence measurement multiwell plate of FIG.
 液体試料Dを蛍光測定に供するときには、マルチウェルプレート1の各ウェル15に液体試料Dを入れ、液体試料Dを入れたウェル15の底部からフィルム20を透過させるように励起光Pを入光させる。励起光Pは、例えば、レーザー発振機40を用いて出射可能である。また、例えば、ELISA法を適用し、特定のウェル15内の液体試料Dにおいて抗原-抗体反応および酵素-基質反応が生じていれば、当該液体試料Dに励起光Pを当てた際に、酵素-基質反応により生成した蛍光物質の蛍光を計測することができる。試料の一例である液体試料Dに含まれる計測対象物としては、蛍光計測可能であれば特に制約は無いが、例えば、ペプチド又はタンパク質、あるいはそれらの情報をコードしているDNA又はRNA、細菌、真菌、酵母、単細胞浮遊液とした生体細胞、及びハイブリドーマ細胞からなる群から選ばれるいずれか1または2以上である。 When the liquid sample D is subjected to fluorescence measurement, the liquid sample D is put into each well 15 of the multi-well plate 1 and the excitation light P is incident so as to pass through the film 20 from the bottom of the well 15 containing the liquid sample D. . The excitation light P can be emitted using, for example, a laser oscillator 40. In addition, for example, when an ELISA method is applied and an antigen-antibody reaction and an enzyme-substrate reaction occur in the liquid sample D in the specific well 15, when the excitation light P is applied to the liquid sample D, the enzyme -The fluorescence of the fluorescent substance produced by the substrate reaction can be measured. The measurement object contained in the liquid sample D which is an example of the sample is not particularly limited as long as fluorescence measurement is possible. For example, peptides or proteins, or DNA or RNA encoding such information, bacteria, One or more selected from the group consisting of fungi, yeast, living cells in a single cell suspension, and hybridoma cells.
5.マイクロウェルプレートセット
 図4は、図1の蛍光測定用マルチウェルプレートを2組備えるマイクロウェルプレートセットを使用する状況であって、それら2枚の蛍光測定用マルチウェルプレートを重ねる前の状況の斜視図(4A)および2枚の蛍光測定用マルチウェルプレートを重ねて、一方の蛍光測定用マルチウェルプレートのウェル内の液体試料Dを他方の蛍光測定用マルチウェルプレートのウェル内に移送する状況の断面図(4B)をそれぞれ示す。
5). FIG. 4 is a perspective view of a situation in which a microwell plate set including two sets of multiwell plates for fluorescence measurement in FIG. 1 is used, and the two fluorescence measurement multiwell plates are stacked. FIG. (4A) and two fluorescence measurement multiwell plates are stacked, and the liquid sample D in the well of one fluorescence measurement multiwell plate is transferred into the well of the other fluorescence measurement multiwell plate. Sectional drawing (4B) is shown, respectively.
 2枚の同形のマルチウェルプレート1を重ねる場合、互いのウェル15の開口部同士を向かい合わせ、一方のマルチウェルプレート1の凸部11を他方のマルチウェルプレート1の貫通孔12に挿入する。このような同形のマルチウェルプレート1を2つ備えたマイクロウェルプレートセット2を用いると、一方のマルチウェルプレート1から他方のマルチウェルプレート1への液体試料Dの移送が可能となる。例えば、一方のマルチウェルプレート1の各ウェル15に入れられた液体試料Dを他方のマルチウェルプレート1の空のウェル15に移送することが可能であると共に、一方のマルチウェルプレート1の各ウェル15に入れられた液体試料Dを他方のマルチウェルプレート1の別の試料を入れたウェル15に移送して混合若しくは反応させることも可能である。 When two identical multi-well plates 1 are stacked, the openings of the wells 15 face each other, and the convex portions 11 of one multi-well plate 1 are inserted into the through holes 12 of the other multi-well plate 1. When the microwell plate set 2 having two such multi-shaped multiwell plates 1 is used, the liquid sample D can be transferred from one multiwell plate 1 to the other multiwell plate 1. For example, the liquid sample D placed in each well 15 of one multi-well plate 1 can be transferred to an empty well 15 of the other multi-well plate 1 and each well of one multi-well plate 1 can be transferred. It is also possible to transfer the liquid sample D placed in 15 to the well 15 containing another sample in the other multi-well plate 1 to be mixed or reacted.
 図4(4B)に示す例は、一方のマルチウェルプレート1の各ウェル15に入れられた液体試料Dを他方のマルチウェルプレート1の空のウェル15に移送する例である。対向するウェル15同士の開口部を合わせるように、2つのマルチウェルプレート1,1を重ね(a)、遠心等の手法によって一方のマルチウェルプレート1から他方のマルチウェルプレート1の方向に力を及ぼす。この結果、一方のマルチウェルプレート1の各ウェル15に入れられた液体試料Dを他方のマルチウェルプレート1の空のウェル15に一斉に移送することができる。 The example shown in FIG. 4 (4B) is an example in which the liquid sample D placed in each well 15 of one multiwell plate 1 is transferred to an empty well 15 of the other multiwell plate 1. Two multiwell plates 1 and 1 are overlapped so that the openings of the opposing wells 15 are aligned (a), and force is applied from one multiwell plate 1 to the other multiwell plate 1 by a method such as centrifugation. Effect. As a result, the liquid sample D put in each well 15 of one multi-well plate 1 can be transferred simultaneously to the empty wells 15 of the other multi-well plate 1.
 マルチウェルプレート1を構成する多穴プレート10は、主にゴム状弾性体5から成るため、ゴム状弾性体5の有する柔軟性を持った構成体である。このため、2つのマルチウェルプレート1,1を互いのウェル15の開口部同士を向かい合わせるように重ね合わせたときに、開口部の周辺領域が密着しやすい。このため、硬質樹脂等からなるマルチウェルプレートを用いて液体試料Dを移送する従来法に比べて、隔離シートを用いることなく、容易かつ安全に液体試料Dの移送が可能である。 The multi-hole plate 10 constituting the multi-well plate 1 is mainly composed of the rubber-like elastic body 5, and thus is a structural body having the flexibility of the rubber-like elastic body 5. For this reason, when the two multi-well plates 1 and 1 are overlapped so that the openings of the wells 15 face each other, the peripheral area of the openings is likely to be in close contact. For this reason, compared with the conventional method which transfers the liquid sample D using the multiwell plate which consists of hard resin etc., the liquid sample D can be transferred easily and safely, without using an isolation sheet.
 マルチウェルプレートセット2は、上記のように、マルチウェルプレート1,1を2つ有し、互いのウェル15の開口部を向かい合わせることのできるものである。かかるマイクロウェルプレートセット2は、例えば、次のような使用を可能とする。1つのマイクロウェルプレート1中に所望のプロモーター配列等を有するDNAを入れて増幅させる。増幅終了後、このマイクロウェルプレート1をオリジナルとしてレプリカを上記と同様にして作成する。オリジナルの各ウェル15に、インビトロ翻訳を行うためのバッファーを入れ、翻訳物であるペプチドを得ることができる。このオリジナル中に、ペプチドを結合させることができるタンパク質、例えば、ストレプトアビジンを固定した磁性粒子と、ビオチンに固定した標的タンパク質とを入れ、標的物質と、これに結合するコード配列を含むDNAが増幅されたか否かを、それらの結合によって観察することができる。結合していた場合には、例えば、さらに、蛍光標識を結合させ、標的タンパク質を含む複合体を酵素で切断し、上清を集めて蛍光を測定することができる。 The multiwell plate set 2 has two multiwell plates 1 and 1 as described above, and the openings of the wells 15 can face each other. The microwell plate set 2 can be used as follows, for example. A DNA having a desired promoter sequence or the like is placed in one microwell plate 1 and amplified. After the amplification is completed, a replica is prepared in the same manner as described above using the microwell plate 1 as an original. A buffer for performing in vitro translation can be put in each original well 15 to obtain a peptide as a translation product. In this original, a protein capable of binding a peptide, for example, a magnetic particle immobilized with streptavidin and a target protein immobilized on biotin is amplified, and a DNA containing a target substance and a coding sequence bound to the target substance is amplified. It can be observed by their combination. In the case of binding, for example, a fluorescent label can be further bound, the complex containing the target protein can be cleaved with an enzyme, and the supernatant can be collected to measure fluorescence.
 また、蛍光を発しているウェル15の内容物を回収し、マイクロ温度勾配ゲル電気泳動を行うことによって、ゲノムプロファイルのクラスタリングや、シーケンシングを行うこともできる。このときに、受容側のウェル15中には、種々の増幅されたペプチドが含まれている。このため、各ウェル15中に、例えば、標的タンパク質と結合したビオチンとストレプトアビジンを結合させた磁性粒子を入れることによって、標的タンパク質と結合するペプチドを選択することができる。 Also, clustering and sequencing of genomic profiles can be performed by collecting the contents of the wells 15 emitting fluorescence and performing micro temperature gradient gel electrophoresis. At this time, various amplified peptides are contained in the well 15 on the receiving side. For this reason, the peptide couple | bonded with a target protein can be selected by putting the magnetic particle which couple | bonded the biotin and the streptavidin couple | bonded with the target protein in each well 15, for example.
6.その他の実施形態
 以上、本発明の好適な実施形態について説明してきたが、本発明は、上記実施形態に限定されることなく、種々の変形を施した形態で実施可能である。
6). Other Embodiments Although preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in various modified forms.
 例えば、多穴プレート10を構成する主材として、シリコーンゴム以外のゴム状弾性体5を用いても良い。さらに、フィルム20として、シクロオレフィンポリマー以外の材料から主に構成されるフィルムを用いても良い。また、粘着層30の材料として、硬化性シリコーン組成物を主とする材料以外を用いても良い。 For example, a rubber-like elastic body 5 other than silicone rubber may be used as a main material constituting the multi-hole plate 10. Furthermore, a film mainly composed of a material other than the cycloolefin polymer may be used as the film 20. Further, as the material of the adhesive layer 30, materials other than the material mainly composed of the curable silicone composition may be used.
 本発明は、ウェル内の試料に対する蛍光分析に用いることができる。
 
The present invention can be used for fluorescence analysis on a sample in a well.

Claims (9)

  1.  試料の蛍光測定に用いるための複数のウェルを備えた蛍光測定用マルチウェルプレートであって、
     前記複数のウェルに対応する複数の貫通孔をプレートの厚さ方向に沿って備える多穴プレートと、
     前記多穴プレートにおける前記貫通孔の一方の開口面側を閉鎖する透明なフィルムと、
    を備え、
     前記多穴プレートは、遮光性フィラーをゴム状弾性体中に分散して成り、
     前記フィルムと前記多穴プレートとは透明な粘着層を介して固定されている蛍光測定用マルチウェルプレート。
    A multi-well plate for fluorescence measurement comprising a plurality of wells for use in fluorescence measurement of a sample,
    A multi-hole plate comprising a plurality of through holes corresponding to the plurality of wells along the thickness direction of the plate;
    A transparent film for closing one opening surface side of the through hole in the multi-hole plate;
    With
    The multi-hole plate is formed by dispersing a light-shielding filler in a rubber-like elastic body,
    The multiwell plate for fluorescence measurement, wherein the film and the multi-hole plate are fixed via a transparent adhesive layer.
  2.  前記粘着層は、前記フィルムの片面にあって、前記ウェルの底部に露出している請求項1に記載の蛍光測定用マルチウェルプレート。 The multi-well plate for fluorescence measurement according to claim 1, wherein the adhesive layer is on one side of the film and exposed at the bottom of the well.
  3.  前記ゴム状弾性体は、シリコーンゴムである請求項1または2に記載の蛍光測定用マルチウェルプレート。 The multiwell plate for fluorescence measurement according to claim 1 or 2, wherein the rubber-like elastic body is silicone rubber.
  4.  前記フィルムは、シクロオレフィンポリマーのフィルムである請求項1から3のいずれか1項に記載の蛍光測定用マルチウェルプレート。 The multi-well plate for fluorescence measurement according to any one of claims 1 to 3, wherein the film is a film of a cycloolefin polymer.
  5.  前記粘着層の材料は、硬化性シリコーン組成物を主とする材料である請求項1から4のいずれか1項に記載の蛍光測定用マルチウェルプレート。 The multi-well plate for fluorescence measurement according to any one of claims 1 to 4, wherein the material of the adhesive layer is a material mainly composed of a curable silicone composition.
  6.  前記遮光性フィラーは、黒色のフィラーである請求項1から5のいずれか1項に記載の蛍光測定用マルチウェルプレート。 The multi-well plate for fluorescence measurement according to any one of claims 1 to 5, wherein the light-shielding filler is a black filler.
  7.  請求項1から6のいずれか1項に記載の蛍光測定用マルチウェルプレートを2つ有し、互いのウェルの開口部を向かい合わせることのできるマルチウェルプレートセット。 A multi-well plate set having two multi-well plates for fluorescence measurement according to any one of claims 1 to 6 and capable of facing each other's openings.
  8.  請求項1から6のいずれか1項に記載の蛍光測定用マルチウェルプレートを製造する方法であって、
     遮光性フィラーをゴム状弾性体中に分散して成り、複数のウェルに対応する複数の貫通孔をプレートの厚さ方向に沿って備える多穴プレートを作製する多穴プレート作製工程と、
     前記多穴プレートにおける前記貫通孔の一方の開口面側を閉鎖する透明なフィルムの片面に粘着剤を塗布する粘着剤塗布工程と、
     前記粘着剤の上から前記多穴プレートを圧接せしめて、前記フィルムと前記多穴プレートとを透明な粘着層を介して固定する固定工程と、
    を含む蛍光測定用マルチウェルプレートの製造方法。
    A method for producing a multiwell plate for fluorescence measurement according to any one of claims 1 to 6,
    A multi-hole plate production step for producing a multi-hole plate comprising a plurality of through holes corresponding to a plurality of wells along the thickness direction of the light-shielding filler dispersed in a rubber-like elastic body,
    An adhesive application step of applying an adhesive to one side of a transparent film that closes one opening surface side of the through hole in the multi-hole plate;
    A fixing step of pressing the multi-hole plate from above the adhesive and fixing the film and the multi-hole plate through a transparent adhesive layer;
    A method for producing a multiwell plate for fluorescence measurement, comprising:
  9.  前記粘着剤は、硬化性シリコーン組成物を主とする粘着剤である請求項8に記載の蛍光測定用マルチウェルプレートの製造方法。
     
    The method for producing a multiwell plate for fluorescence measurement according to claim 8, wherein the pressure-sensitive adhesive is a pressure-sensitive adhesive mainly composed of a curable silicone composition.
PCT/JP2017/044154 2017-02-28 2017-12-08 Fluorescence assay multi-well plate and multi-well plate set, and method for producing fluorescence assay multi-well plate WO2018159055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035694 2017-02-28
JP2017035694A JP2018141693A (en) 2017-02-28 2017-02-28 Fluorescence measuring multi-well plate, multi-well plate set, and manufacturing method for fluorescence measuring multi-well plate

Publications (1)

Publication Number Publication Date
WO2018159055A1 true WO2018159055A1 (en) 2018-09-07

Family

ID=63370690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044154 WO2018159055A1 (en) 2017-02-28 2017-12-08 Fluorescence assay multi-well plate and multi-well plate set, and method for producing fluorescence assay multi-well plate

Country Status (3)

Country Link
JP (1) JP2018141693A (en)
TW (1) TW201833556A (en)
WO (1) WO2018159055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066723A (en) * 2019-05-05 2019-07-30 京东方科技集团股份有限公司 Gene sequencing chip, equipment, manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022219A1 (en) * 2000-04-19 2002-02-21 Clements James G. Multi-well plate and method of manufacture
JP2007163410A (en) * 2005-12-16 2007-06-28 Toyo Tire & Rubber Co Ltd Frame material for optical microarray technique and its manufacturing method
JP2007525647A (en) * 2003-04-30 2007-09-06 オーロラ ディスカバリー インコーポレイティッド Multiwell plate providing high density storage and assay platform
JP2008203193A (en) * 2007-02-22 2008-09-04 Apic Yamada Corp Microplate manufacturing method and the microplate
JP2012103019A (en) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp Reaction plate assembly, reaction plate, and nucleic acid analyzer
JP2015045585A (en) * 2013-08-28 2015-03-12 国立大学法人埼玉大学 Creation method of replica microarray and object substance-containing original microarray created by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022219A1 (en) * 2000-04-19 2002-02-21 Clements James G. Multi-well plate and method of manufacture
JP2007525647A (en) * 2003-04-30 2007-09-06 オーロラ ディスカバリー インコーポレイティッド Multiwell plate providing high density storage and assay platform
JP2007163410A (en) * 2005-12-16 2007-06-28 Toyo Tire & Rubber Co Ltd Frame material for optical microarray technique and its manufacturing method
JP2008203193A (en) * 2007-02-22 2008-09-04 Apic Yamada Corp Microplate manufacturing method and the microplate
JP2012103019A (en) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp Reaction plate assembly, reaction plate, and nucleic acid analyzer
JP2015045585A (en) * 2013-08-28 2015-03-12 国立大学法人埼玉大学 Creation method of replica microarray and object substance-containing original microarray created by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066723A (en) * 2019-05-05 2019-07-30 京东方科技集团股份有限公司 Gene sequencing chip, equipment, manufacturing method

Also Published As

Publication number Publication date
JP2018141693A (en) 2018-09-13
TW201833556A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
US6037168A (en) Microbiological assembly comprising resealable closure means
AU2009299892B2 (en) Exchangeable carriers pre-loaded with reagent depots for digital microfluidics
Tomazelli Coltro et al. Recent advances in low‐cost microfluidic platforms for diagnostic applications
Rissin et al. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics
Decrop et al. Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection
CN105517710B (en) Flow battery with the dry matter integrated
US20090220948A1 (en) Methods and Device for Transmitting, Enclosing and Analysing Fluid Samples
US20070141805A1 (en) Method for bonding plastic micro chip
AU2003294455B2 (en) Integrated sample processing devices
US10646873B2 (en) Multi-well plate lid and multi-well plate
Roy et al. Overview of materials for microfluidic applications
CN113275044B (en) Detection chip, use method thereof and detection device
KR101952503B1 (en) Pillar structure for bio chip
WO2018159055A1 (en) Fluorescence assay multi-well plate and multi-well plate set, and method for producing fluorescence assay multi-well plate
JP2008249707A (en) Device and method used for analysis
CN111748466A (en) Detection device based on digital microfluidic and application and detection method thereof
US20200086314A1 (en) Chip for sample detection and packaging method thereof
US20210394185A1 (en) Microfluidic device and sample analysis method
JP2008249708A (en) Method for preparing and performing analysis
JP2003185664A (en) Flow-through reaction chamber for sensor chip
JP3863893B2 (en) Patch for microarray reaction chamber having adhesive support and two or more adhesive materials
JP2018099109A (en) Lid member for multi-well plate and multi-well plate
WO2024067254A1 (en) Parallelized circularly-arrayed plaftform for high-speed cell imaging
CN218811723U (en) PCR tube cover and PCR assembly comprising same
Cheng et al. Low-cost in vitro diagnostic technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899033

Country of ref document: EP

Kind code of ref document: A1