WO2018158015A1 - Reacteur comprenant des lits catalytiques de faible epaisseur - Google Patents

Reacteur comprenant des lits catalytiques de faible epaisseur Download PDF

Info

Publication number
WO2018158015A1
WO2018158015A1 PCT/EP2018/051968 EP2018051968W WO2018158015A1 WO 2018158015 A1 WO2018158015 A1 WO 2018158015A1 EP 2018051968 W EP2018051968 W EP 2018051968W WO 2018158015 A1 WO2018158015 A1 WO 2018158015A1
Authority
WO
WIPO (PCT)
Prior art keywords
treated
catalytic
catalyst
charge
reactor
Prior art date
Application number
PCT/EP2018/051968
Other languages
English (en)
Inventor
Ludovic NOEL
Cecile Plais
Fabian Lambert
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020197025264A priority Critical patent/KR102497094B1/ko
Priority to CN201880015130.9A priority patent/CN110536745A/zh
Publication of WO2018158015A1 publication Critical patent/WO2018158015A1/fr
Priority to SA519402574A priority patent/SA519402574B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • B01J2208/00814Details of the particulate material the particulate material being provides in prefilled containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/021Processes carried out in the presence of solid particles; Reactors therefor with stationary particles comprising a plurality of beds with flow of reactants in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/2471Feeding means for the catalyst
    • B01J2219/2472Feeding means for the catalyst the catalyst being exchangeable on inserts other than plates, e.g. in bags

Definitions

  • the present invention relates to the field of reactors with radial flow of the hydrocarbon feedstock to be treated. It applies more particularly to the catalytic reforming of gasolines.
  • the invention makes it possible to use very small amounts of catalyst and thus to control residence times of low value.
  • Catalytic bed reactors with a radial circulation of the hydrocarbon feedstock to be treated are known in the field of refining.
  • such reactors are used to carry out catalytic reforming reactions which aims to convert C7-C10 paraffinic and C7-C10 naphthenic compounds to aromatic compounds with the associated production of hydrogen.
  • the catalytic conversion is generally carried out at high temperature, of the order of 500 ° C., at a mean pressure of between 0.1 and 4.0 MPa and in the presence of a specific reforming catalyst so as to produce a high-index reformate.
  • octane rich in aromatic compounds that can serve as a fuel base.
  • the constraints related to mobile radial bed technology are multiple.
  • the speeds of the hydrocarbon feedstock to be treated during the crossing of the catalytic bed are limited to prevent cavitation at the entrance of the bed (when the latter is a moving bed), to avoid blockage of the catalyst at its outlet against the internal grid , and to reduce the pressure drops (function of the speed and the thickness of the bed).
  • a too high charge rate will lead to the catalyst blocking phenomenon against the central collector (or "pinning" in the English terminology).
  • the force exerted by the load flowing radially from the outer periphery of the catalyst bed towards the center of the reactor deposits the catalyst grains against the wall of the central collector, which increases the frictional stress which then opposes the slippage of the grains. along the wall.
  • the resulting frictional force is sufficient to support the weight of the catalyst bed so that the gravitational flow of the catalyst grains ceases, at least in some regions adjacent to the collector wall. central. In these regions, the catalyst grains are then "pinned"("pinned” in the English terminology) by the flow of the load and are held stationary against the wall of the collector.
  • the phenomenon of immobilization of the catalyst particles is strongly avoided in catalytic reforming reactors of hydrocarbon feedstocks in that it promotes catalytic deactivation reactions, for example by coking, thus preventing the continued operation of the reactor. . Indeed, when the cake of catalyst becomes too thick along the pipe, it is then necessary to reduce the load flow to be treated or even completely stop the unit for unclogging said pipe.
  • the object of the present invention is to propose a new type of catalytic reactor whose design makes it possible to work at high PPH.
  • the Applicant has developed a catalytic reactor whose reaction zone comprises a plurality of catalytic modules mounted in parallel and each comprising a thin catalyst bed to control the pressure losses and thus to increase the PPH (ie the ratio between the flow rate of the charge to be treated on the mass of the catalyst) beyond 40 h "1 , or even beyond 50 h " 1 , which is much higher than the ranges of PPH possible in the reactors to conventional radial bed (between 20 and 35 h -1 )
  • PPH ie the ratio between the flow rate of the charge to be treated on the mass of the catalyst
  • the present invention firstly relates to a radial flow catalytic reactor of a hydrocarbon feedstock comprising:
  • a means for distributing the charge to be treated situated downstream of said collection zone in the direction of flow of the charge to be treated and in communication with said collection zone; a catalyst bed, located downstream of said distribution means, in the direction of flow of said charge to be treated and in communication with said dispensing means, said catalyst bed being enclosed between a first wall and a second permeable wall; respectively to the feedstock to be treated and to the effluent resulting from the catalytic reaction;
  • a means for collecting the effluent from the catalytic reaction located downstream of said catalyst bed and in communication with said catalyst bed.
  • the thickness of said catalyst bed is less than or equal to 500 mm.
  • said first wall and said second wall consist of Johnson type grids.
  • said distribution means of the charge to be treated is in the form of a perforated plate or a grid, possibly comprising means for controlling the trajectory of the charge to be treated, such as valves or covers .
  • said reactor comprises between 2 and 20 catalytic modules.
  • said reactor further comprises:
  • At least one catalyst inlet means located in the upper part of each catalyst bed
  • At least one catalyst outlet means located in the lower part of each catalyst bed.
  • the dispensing means is an integral part of the first wall.
  • two catalytic modules mounted in parallel comprise a common collection zone.
  • two catalytic modules mounted in parallel comprise a common collection means.
  • a second subject of the invention relates to a process for the catalytic reforming of a hydrocarbon feedstock to be treated using the catalytic reactor according to the invention, in which:
  • the hydrocarbon feedstock, in gaseous form, is continuously fed into said collection zone with at least one catalytic module;
  • the said charge to be treated is passed through the said distribution means distributed on either side of the said collection zone of the said catalytic module;
  • the charge to be treated passing radially through said catalytic beds is brought into contact with the catalyst so as to produce a gaseous effluent
  • the ratio between the flow rate of the hydrocarbon feedstock to be treated and the mass of the catalyst is greater than or equal to 20 h -1 .
  • said process is carried out at a temperature of between 400 ° C. and 600 ° C., at a pressure of between 0.1 MPa and 4 MPa, and with a hydrogen / hydrocarbon molar ratio of the feed to be treated of between 0.degree. 1 and 10.
  • Figure 1 is an exploded perspective view of a reactor 1 radial flow according to the prior art.
  • FIG. 2 represents a sectional view of a radial flow reactor 10 according to one embodiment of the invention in a plane parallel to the main axis of the reactor.
  • the reactor 10 here comprises four catalytic modules 15 operating in parallel.
  • two juxtaposed catalytic modules 15 comprise a collection zone 14 of the charge to be treated in common.
  • two juxtaposed catalytic modules 15 comprise a collection means 18 in common.
  • FIG. 3 is a detailed perspective view of two catalytic modules used in the context of the reactor according to the invention.
  • a radial flow reactor 1 is externally in the form of a cylinder forming a substantially cylindrical outer casing 2 extending along an axis of symmetry AX.
  • the enclosure 2 comprises in its upper part a means 3 for introducing the feedstock to be treated and in its lower part a means 4 for evacuating the effluent resulting from the catalytic reaction.
  • a catalyst bed 7 having the shape of a vertical cylindrical ring limited on the inside by a central cylindrical tube 8 formed by a so-called “inner” grid retaining the catalyst and the outer side by another so-called “outer” gate 5 either of the same type as the inner gate, or by a device consisting of an assembly of longitudinally extending shell-shaped gate members 6, as shown in FIG.
  • These duct-shaped grid elements 6 forming ducts are also known by the English name of "scallops".
  • These ducts 6 are held by the reservoir and clad to the inner face of the enclosure, parallel to the axis AX, to form an envelope substantially cylindrical internal.
  • the shell-shaped grid elements 6 are in direct communication with the feed introduction means 3 of the feedstock to be treated via their upper end, to receive the feed stream to be treated.
  • the charge stream in gaseous form, diffuses through the perforated wall of the ducts 6, to pass through the bed of solid particles of catalyst 7 while converging radially towards the center of the reactor 1.
  • the filler is thus contacted with the catalyst to undergo chemical transformations, for example a catalytic reforming reaction, and to produce a reaction effluent.
  • the effluent of the reaction is then collected by the central cylinder tube 8 (or collection duct) extending along the axis AX and also having a perforated wall.
  • This central cylinder 8 (or collection duct) is here in communication with the discharge means 4 of the reactor via its lower end.
  • the charge to be treated introduced into the introduction means 3 passes radially through the "outer" gate 5, then crosses the bed of catalyst particles 7 radially where it is brought into contact with the catalyst in order to produce an effluent which is subsequently collected by the central cylinder 8 and discharged by the evacuation means 4.
  • Such a reactor can also operate with a continuous gravity flow of catalyst in the annular catalytic bed 7.
  • the reactor 1 further comprises means 9a for introducing the catalyst into the annular bed, arranged in a upper part of the reactor and 9b withdrawal means of the catalyst which are arranged in a lower part of the reactor.
  • FIG. 2 A catalytic reactor 10 according to the invention is shown in FIG. 2.
  • the catalytic reactor 10 having a radial flow of a hydrocarbon feedstock comprises at least one means 11 for introducing said feedstock to be treated, a means for introducing exhaust system 12 of the effluent from the catalytic reaction and a plurality of catalytic modules 15, mounted in parallel, enclosed in the casing 13 of the catalytic reactor 10. More particularly, each catalytic module 15 comprises at least:
  • a distribution means 16 for the charge to be treated located downstream of said collection zone 14 in the direction of circulation of the charge to be treated and in communication with said collection zone 14;
  • a catalyst bed 17 located downstream of said distribution means 16 in the direction of flow of said charge to be treated, and in communication with said dispensing means 16, said catalyst bed 17 (also called catalytic bed) being enclosed between a first wall 19 and a second wall 20 permeable respectively to the feedstock to be treated and to the effluent resulting from the catalytic reaction, and impervious to the catalyst contained in the catalytic bed 17; a means 18 for collecting the effluent resulting from the catalytic reaction, located downstream of said catalyst bed 17 and in communication with said catalyst bed 17.
  • the small thickness of the catalyst bed 17 thus makes it possible to better control the pressure losses and thus makes it possible to increase the PPH to a value greater than or equal to 20 h -1 , preferably greater than or equal to 50 h -1 , more preferably greater than or equal to 100 hr "1, is even more preferably greater than or equal to 200 hr" 1.
  • first wall 19 and the second wall 20 retaining the catalytic beds 17 consist of Johnson type grids.
  • the distribution means 16 is in the form of a perforated grid or plate, making it possible to distribute the charge to be treated, in gaseous form, over the entire available surface area.
  • catalyst bed 17 located downstream of said dispensing means.
  • the dispensing means is in the form of a grid or a perforated plate which may include means for controlling the trajectory of the load to be treated, such as valves or covers, in order to optimize the circulation. of the charge to be treated, through the catalyst 17.
  • the distribution means 16 is an integral part of the first wall 19.
  • the catalytic reactor 10 comprises at least two catalytic modules 15, operating in parallel.
  • the presence of several catalytic modules 15 also makes it possible to consider condemning one in case of failure, while continuing to operate the system on the other catalytic modules.
  • the catalytic reactor 10 may comprise between 2 and 20 catalytic modules 15, all operating in parallel, preferably between 2 and 10 catalytic modules 15.
  • two juxtaposed catalytic modules 15 may comprise a common collection zone. input of the load to be treated. Thus, the charge can be distributed across the collection zone 14.
  • two juxtaposed catalytic modules 15 can comprise, as common element, the means 18 for collecting the effluent resulting from the catalytic reaction.
  • These two embodiments, ie common collection area and common collection means, can be combinable with each other. Such an arrangement makes it possible to reduce the bulk of the catalytic modules 15 in the reactor 10.
  • the catalyst may be a fixed catalytic bed reactor or a mobile catalytic bed reactor, that is to say that the catalyst is introduced into the reactor and withdrawn from said reactor continuously.
  • the catalyst can be introduced into each catalytic bed 17 via an inlet pipe 21 located in the upper part 22 of each catalytic module. It can be evacuated from the catalytic bed 17 via an outlet pipe 23 located in the lower part 24 of each catalyst bed 17.
  • each catalytic bed 17 may be any, identical or different for each catalyst bed 17, such as circular, elliptical, polygonal or any other shape;
  • the catalytic module 15 may comprise a plurality of inlet pipe 21 and / or a plurality of outlet pipes 23, as described above;
  • the catalytic module may comprise an internal catalyst distribution device or internal baffles to promote flow.
  • Each catalyst bed 17 is preferably of identical shape and size, but it is possible to envisage variations in shape or size from one bed to another.
  • the catalytic reactor according to the invention makes it possible to achieve high PPH objectives in order to optimize the reaction performance of the process, while at the same time offering a realistic, modular, easy maintenance mechanical concept, and comprising small amounts of catalyst.
  • the reactor also makes it possible to inspect visually through a manhole, the reactor once assembled.
  • the reactor according to the invention can be used in reactions with radial circulation of gaseous fluid such as, for example, a catalytic reforming reaction of a hydrocarbon feedstock, a skeletal isomerization of olefins, metathesis for the production of propylene, a reaction of oligocracking.
  • gaseous fluid such as, for example, a catalytic reforming reaction of a hydrocarbon feedstock, a skeletal isomerization of olefins, metathesis for the production of propylene, a reaction of oligocracking.
  • the invention also relates to a process for the catalytic reforming of a hydrocarbon feedstock using the reactor according to the invention.
  • the reactor according to the invention can indeed be used in processes for reforming gasolines and producing aromatic compounds.
  • the reforming processes make it possible to increase the octane number of the gasoline fractions originating from the distillation of crude oil and / or from other refining processes such as, for example, catalytic cracking or thermal cracking.
  • the aromatics production processes provide the basic products (benzene, toluene, xylenes) that can be used in petrochemicals. These processes are of additional interest in contributing to the production of large quantities of hydrogen essential for the hydrogenation and hydrotreatment processes of the refinery.
  • the feedstock to be treated generally contains paraffinic, naphthenic and aromatic hydrocarbons containing from 5 to 12 carbon atoms per molecule. This load is defined, among other things, by its density and its weight composition. These fillers may have an initial boiling point of between 40 ° C. and 70 ° C. and a final boiling point of between 160 ° C. and 220 ° C. They may also consist of a fraction or a mixture of gasoline fractions having initial and final boiling points between 40 ° C and 220 ° C.
  • the feedstock to be treated can thus also be constituted by a heavy naphtha having a boiling point of between 160.degree. C. and 200.degree.
  • the feed is introduced into the reactor in the presence of hydrogen and with a hydrogen / hydrocarbon molar ratio of the feedstock generally between 0.1 and 10, preferably between 1 and 8.
  • the operating conditions of the reforming are generally as follows: a temperature preferably between 400 ° C and 600 ° C, more preferably between 450 ° C and 540 ° C, and a pressure preferably between 0.1 MPa and 4 MPa and more preferably between 0, 25 MPa and 3.0 MPa. Any or all of the hydrogen produced can be recycled at the inlet of the reforming reactor.
  • the ratio between the flow rate of the hydrocarbon feedstock to be treated and the mass of the catalyst is greater than or equal to 20 h -1 , preferably greater than or equal to 50 h -1 , more preferably greater than or equal to 100 h -1 , and even more preferably greater than or equal to 200 h -1 .
  • the hydrocarbon feedstock to be treated circulates in updraft.
  • the hydrocarbon feedstock, in gaseous form is injected through the bottom of the reactor via an introduction means 11 in the form of an inlet manifold, and is sent into the collection zone 14 of the catalytic module. 15.
  • the charge to be treated then passes into the distribution means 16.
  • the charge to be treated then passes through the catalytic bed 17 and is brought into contact with a catalyst so as to produce a gaseous effluent.
  • the gaseous effluent is then withdrawn via an evacuation means 12 (in the form of an outlet pipe) after passing through the collection means 18.
  • the hydrocarbon feedstock to be treated circulates in a downward flow.
  • the hydrocarbon feedstock in gaseous form, is injected from the top of the reactor via an introduction means in the form of an inlet manifold, and is sent into the common collection zone of the catalytic module.
  • the charge to be treated then passes into the distribution means.
  • the feed to be treated then passes through the catalyst bed and is contacted with a catalyst to produce a gaseous effluent.
  • the gaseous effluent is then withdrawn via an evacuation means (in the form of an outlet pipe) after passing through the collection means.
  • hydrocarbon feedstock to be treated can also be injected laterally into the reactor 10 via the introduction means 11.
  • effluent resulting from the catalytic reaction can be recovered laterally in the reactor 10, via the evacuation means 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Réacteur catalytique (10) à écoulement radial d'une charge hydrocarbonée comprenant : - un moyen d'introduction (11) de ladite charge à traiter; - un moyen d'évacuation (12) de l'effluent issu de la réaction catalytique; - une pluralité de modules catalytiques (15), montées en parallèles, comprenant chacun au moins : - une zone de collecte (14) d'entrée de ladite charge à traiter; - un moyen de distribution (16) de la charge à traiter, situé en aval de ladite zone de collecte (14) dans le sens de l'écoulement de la charge à traiter; - un lit de catalyseur (17), situé en aval dudit moyen de distribution (16), dans le sens de l'écoulement de ladite charge à traiter, ledit lit de catalyseur (17) étant enfermé entre une paroi interne (19) et une paroi externe (20) perméables respectivement à la charge à traiter et à l'effluent issu de la réaction catalytique; - un moyen de collecte (18) de l'effluent issu de la réaction catalytique, situé en aval dudit lit de catalyseur (17).

Description

REACTEUR COMPRENANT DES LITS CATALYTIQUES DE FAIBLE EPAISSEUR
Domaine technique
La présente invention concerne le domaine des réacteurs avec écoulement radial de la charge hydrocarbonée à traiter. Elle s'applique plus particulièrement au reformage catalytique des essences. L'invention permet de mettre en œuvre de très faibles quantités de catalyseur et donc de contrôler des temps de séjour de faible valeur.
Etat de la technique
Les réacteurs à lit catalytique avec une circulation radiale de la charge hydrocarbonée à traiter sont connus dans le domaine du raffinage. En particulier de tels réacteurs sont employés pour réaliser des réactions de reformage catalytique qui vise la conversion des composés paraffiniques en C7-C10 et naphtèniques en C7-C10, en composés aromatiques avec la production associée d'hydrogène. La conversion catalytique est généralement opérée à haute température, de l'ordre de 500°C, à pression moyenne entre 0,1 et 4,0 MPa et en présence d'un catalyseur spécifique de reformage de manière à produire un reformat à haut indice d'octane riche en composés aromatiques qui peut servir de base carburant.
Les contraintes liées à la technologie en lit radial mobile sont multiples. En particulier, les vitesses de la charge hydrocarbonée à traiter lors la traversée du lit catalytique sont limitées pour éviter la cavitation en entrée du lit (lorsque ce dernier est un lit mobile), pour éviter le blocage du catalyseur à sa sortie contre la grille interne, et pour réduire les pertes de charge (fonction de la vitesse et de l'épaisseur du lit). En effet, un débit de charge trop élevé va conduire au phénomène de blocage de catalyseur contre le collecteur central (ou « pinning » selon la terminologie anglo-saxonne). La force exercée par la charge circulant radialement depuis la périphérie extérieure du lit de catalyseur vers le centre du réacteur plaque les grains de catalyseur contre la paroi du collecteur central, ce qui augmente la contrainte de frottement qui s'oppose alors au glissement des grains le long de la paroi. Si le courant de la charge est suffisamment élevé alors la force de friction qui en résulte est suffisante pour supporter le poids du lit catalytique de sorte que l'écoulement gravitaire des grains de catalyseur cesse, au moins dans certaines régions adjacentes à la paroi du collecteur central. Dans ces régions, les grains de catalyseur sont alors « bloqués » (« pinned » selon la terminologie anglo-saxonne) par le débit de la charge et sont maintenus immobiles contre la paroi du collecteur. Le phénomène d'immobilisation des grains de catalyseur est à éviter fortement dans les réacteurs de reformage catalytique de charges hydrocarbonées dans la mesure où il favorise les réactions de désactivation du catalyseur, par exemple par cokage, empêchant ainsi la poursuite de l'exploitation du réacteur. En effet, lorsque le gâteau de catalyseur devient trop épais le long de la conduite, il est alors nécessaire de réduire le débit de charge à traiter ou voire arrêter complètement l'unité en vue du décolmatage de ladite conduite.
Le document US 6,221 ,320 divulgue un réacteur catalytique à écoulement de la charge et à écoulement gravitaire du catalyseur comprenant une zone réactionnelle comportant une pluralité des modules catalytiques juxtaposés les uns aux autres et régulièrement répartis à l'intérieur de la zone réactionnelle sous la forme d'un cercle. Les contraintes liées à la technologie en lit radial, telles que décrits ci-avant, i.e. éviter la cavitation en entrée du lit, éviter le blocage du catalyseur à sa sortie contre la grille interne, réduire les pertes de charge, et les contraintes de construction d'un tel réacteur (il est nécessaire de laisser un espace suffisant entre la grille interne et la grille externe) imposent un volume minimal de catalyseur. Par conséquent, ce type de réacteur n'est pas optimal pour des P. P. H. élevées, car cela conduirait au phénomène de blocage de catalyseur contre le collecteur central, étant donné que toute la section de la zone réactionnelle comprend un lit de catalyseur. La P. P. H. maximale dans ce type de réacteur est de l'ordre de 20 h"1.
La présente invention a pour but de proposer un nouveau type de réacteur catalytique dont la conception permet de travailler à des P. P. H. élevées. La Demanderesse a mis au point un réacteur catalytique dont la zone réactionnelle comporte une pluralité de modules catalytiques montées en parallèle et comprenant chacun un lit catalytique de faible épaisseur permettant de maîtriser les pertes de charges et donc permettant d'augmenter la P. P. H. (i.e. le rapport entre le débit de la charge à traiter sur la masse du catalyseur) au-delà de 40 h"1 , voire même au-delà de 50 h"1 , ce qui est bien plus élevé que les gammes de P. P. H. possibles dans les réacteurs à lit radial conventionnel (entre 20 et 35 h"1). Objets de l'invention
La présente invention a pour premier objet un réacteur catalytique à écoulement radial d'une charge hydrocarbonée comprenant :
- un moyen d'introduction de ladite charge à traiter ;
- un moyen d'évacuation de l'effluent issu de la réaction catalytique ;
- une pluralité de modules catalytiques, montées en parallèles, comprenant chacun au moins
- une zone de collecte d'entrée de ladite charge à traiter ;
- un moyen de distribution de la charge à traiter, situé en aval de ladite zone de collecte dans le sens de l'écoulement de la charge à traiter et en communication avec ladite zone de collecte ; - un lit de catalyseur, situé en aval dudit moyen de distribution, dans le sens de l'écoulement de ladite charge à traiter et en communication avec ledit moyen de distribution, ledit lit de catalyseur étant enfermé entre une première paroi et une seconde paroi perméables respectivement à la charge à traiter et à l'effluent issu de la réaction catalytique ;
- un moyen de collecte de l'effluent issu de la réaction catalytique, situé en aval dudit lit de catalyseur et en communication avec ledit lit de catalyseur.
Avantageusement, l'épaisseur dudit lit de catalyseur est inférieure ou égale à 500 mm.
De préférence, ladite première paroi et ladite seconde paroi sont constituées de grilles de type Johnson.
De préférence, ledit moyen de distribution de la charge à traiter se présente sous la forme d'une plaque perforée ou d'une grille, comprenant éventuellement des moyens de contrôle de la trajectoire de la charge à traiter, tels que des clapets ou des caches.
Avantageusement, ledit réacteur comprend entre 2 et 20 modules catalytiques.
Avantageusement, ledit réacteur comprend en outre :
- au moins un moyen d'entrée de catalyseur situé dans la partie supérieure de chaque lit de catalyseur ;
- au moins un moyen de sortie de catalyseur situé dans la partie inférieure de chaque lit de catalyseur.
Dans un mode de réalisation particulier selon l'invention, le moyen de distribution fait partie intégrante de la première paroi.
Dans un mode de réalisation selon l'invention, deux modules catalytiques montés en parallèles comprennent une zone de collecte commune.
Dans un mode de réalisation selon l'invention, deux modules catalytiques montés en parallèles comprennent un moyen de collecte commun.
Un deuxième objet de l'invention concerne un procédé de reformage catalytique d'une charge hydrocarbonée à traiter mettant en œuvre le réacteur catalytique selon l'invention, dans lequel :
- on envoie en continu la charge hydrocarbonée, sous forme gazeuse, dans ladite zone de collecte d'au moins un module catalytique ;
- on fait passer la dite charge à traiter dans lesdits moyens de distribution répartis de part et d'autre de ladite zone de collecte dudit module catalytique ;
- on met en contact la charge à traiter traversant radialement lesdits lits catalytiques avec le catalyseur de manière à produire un effluent gazeux ;
- on soutire ledit effluent gazeux après son passage à travers lesdits moyens de collecte. Avantageusement, le ratio entre le débit de la charge hydrocarbonée à traiter et la masse du catalyseur est supérieur ou égal à 20 h"1. De préférence, ledit procédé est réalisé à une température comprise entre 400°C et 600°C, à une pression comprise entre 0,1 MPa et 4 MPa, et avec un rapport molaire hydrogène/hydrocarbures de la charge à traiter compris entre 0,1 et 10. Description des figures
Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexées :
La figure 1 est une vue en perspective et éclatée d'un réacteur 1 à écoulement radial selon l'art antérieur.
La figure 2 représente une vue en coupe d'un réacteur 10 à écoulement radial selon un mode de réalisation de l'invention selon un plan parallèle par rapport à l'axe principal du réacteur. Le réacteur 10 comprend ici quatre modules catalytiques 15 fonctionnant en parallèle. Dans le mode de réalisation illustré sur cette figure, deux modules catalytiques 15 juxtaposés comprennent une zone de collecte 14 de la charge à traiter en commun. De même deux modules catalytiques 15 juxtaposés comprennent un moyen de collecte 18 en commun.
La figure 3 est une vue en perspective détaillée de deux modules catalytiques 15 utilisés dans le cadre du réacteur selon l'invention.
Description détaillée de l'invention
Réacteur
En référence à la figure 1 , un réacteur à flux radial 1 selon l'art antérieur se présente extérieurement sous la forme d'une bonbonne formant une enveloppe externe sensiblement cylindrique 2 s'étendant selon un axe de symétrie AX. L'enceinte 2 comprend dans sa partie supérieure un moyen d'introduction 3 de la charge à traiter et dans sa partie inférieure un moyen d'évacuation 4 de l'effluent issu de la réaction catalytique. A l'intérieur de l'enceinte 2 est agencée un lit de catalyseur 7 ayant la forme d'un anneau cylindrique vertical limité du côté intérieur par un tube cylindrique central 8 formé par une grille dite "intérieure" retenant le catalyseur et du côté extérieur, par une autre grille dite "externe" 5 soit du même type que la grille intérieure, soit par un dispositif consistant en un assemblage d'éléments de grille en forme de coquilles 6 s'étendant longitudinalement, comme représenté sur la figure 1 . Ces éléments de grille en forme de coquilles 6 formant des conduits sont également connus sous l'appellation anglo-saxonne de "scallops". Ces conduits 6 sont maintenus par le réservoir et plaqués à la face interne de l'enceinte, parallèlement à l'axe AX, pour former une enveloppe interne sensiblement cylindrique. Les éléments de grille en forme de coquilles 6 sont en communication directe avec le moyen d'introduction 3 de la charge à traiter via leur extrémité supérieure, pour recevoir le flux de charge à traiter. Le flux de charge, sous forme gazeuse, diffuse à travers la paroi ajourée des conduits 6, pour traverser le lit de particules solides de catalyseur 7 en convergeant radialement vers le centre du réacteur 1 . La charge est ainsi mise en contact avec le catalyseur afin de subir des transformations chimiques, par exemple une réaction de reformage catalytique, et produire un effluent de la réaction. L'effluent de la réaction est ensuite collecté par le tube cylindre central 8 (ou conduit de collecte) s'étendant le long de l'axe AX et ayant également une paroi ajourée. Ce cylindre central 8 (ou conduit de collecte) est ici en communication avec le moyen d'évacuation 4 du réacteur via son extrémité inférieure.
En fonctionnement, la charge à traiter introduit dans le moyen d'introduction 3 traverse radialement la grille "externe" 5 , puis traverse radialement le lit de particules de catalyseur 7 où il est mis en contact avec le catalyseur afin de produire un effluent qui est par la suite collecté par le cylindre central 8 et évacué par le moyen d'évacuation 4.
Un tel réacteur peut également fonctionner avec un écoulement gravitaire continu de catalyseur dans le lit catalytique annulaire 7. Dans le cas de la figure 1 , le réacteur 1 comprend en outre des moyens d'introduction 9a du catalyseur dans le lit annulaire, disposés dans une partie supérieure du réacteur et des moyens de soutirage 9b du catalyseur qui sont agencés dans une partie inférieure du réacteur.
Un réacteur catalytique 10 selon l'invention est représenté à la figure 2. Dans ce mode de réalisation, le réacteur catalytique 10 à écoulement radial d'une charge hydrocarbonée comprend au moins un moyen d'introduction 11 de ladite charge à traiter, un moyen d'évacuation 12 de l'effluent issu de la réaction catalytique et une pluralité de modules catalytiques 15, montées en parallèles, enfermés dans l'enveloppe 13 du réacteur catalytique 10. Plus particulièrement, chaque module catalytique 15 comprend au moins :
- une zone de collecte 14 d'entrée de ladite charge à traiter ;
- un moyen de distribution 16 de la charge à traiter, situé en aval de ladite zone de collecte 14 dans le sens de la circulation de la charge à traiter et en communication avec ladite zone de collecte 14;
- un lit de catalyseur 17, situé en aval dudit moyen de distribution 16 dans le sens de la circulation de ladite charge à traiter, et en communication avec ledit moyen de distribution 16, ledit lit de catalyseur 17 (appelé aussi lit catalytique) étant enfermé entre une première paroi 19 et une seconde paroi 20 perméables respectivement à la charge à traiter et à l'effluent issu de la réaction catalytique, et imperméables au catalyseur contenu dans le lit catalytique 17 ; - un moyen de collecte 18 de l'effluent issu de la réaction catalytique, situé en aval dudit lit de catalyseur 17 et en communication avec ledit lit de catalyseur 17.
Un tel agencement du réacteur catalytique permet de réduire de manière significative l'épaisseur « e » de chaque lit de catalyseur 17 enfermée entre la première paroi 19 et la seconde paroi 20 perméables à la charge à traiter et à l'effluent issu de la réaction catalytique. Plus particulièrement, l'épaisseur « e » du lit de catalyseur 17, mesurée entre la première paroi 19 et la seconde paroi 20 retenant chaque lit catalytique 17, est inférieure ou égale à 500 mm, de préférence inférieure ou égale à 400 mm, plus préférentiellement inférieure ou égale à 300 mm et encore plus préférentiellement inférieure ou égale à 200 mm. La faible épaisseur du lit de catalyseur 17 permet ainsi de mieux contrôler les pertes de charge et donc permet d'augmenter le P. P. H. à une valeur supérieure ou égale à 20 h"1 , de préférence supérieure ou égale à 50 h"1 , plus préférentiellement supérieure ou égale à 100 h" 1 , est encore plus préférentiellement supérieure ou égale à 200 h"1.
Avantageusement, la première paroi 19 et la seconde paroi 20 retenant les lits catalytiques 17 sont constituées de grilles de type Johnson.
Dans un mode de réalisation selon l'invention, le moyen de distribution 16 se présente sous la forme d'une grille ou d'une plaque perforée, permettant de distribuer la charge à traiter, sous forme gazeuse, sur la totalité de la surface disponible du lit de catalyseur 17 situé en aval dudit moyen de distribution. Eventuellement, le moyen de distribution se présente sous la forme d'une grille ou d'une plaque perforée pouvant comprendre des moyens de contrôle de la trajectoire de la charge à traiter, tels que des clapets ou des caches, afin d'optimiser la circulation de la charge à traiter, à travers le de catalyseur 17. Dans un autre mode de réalisation particulier selon l'invention, le moyen de distribution 16 fait partie intégrante de la première paroi 19.
Selon l'invention, le réacteur catalytique 10 comprend au moins deux modules catalytiques 15, fonctionnant en parallèle. La présence de plusieurs modules catalytiques 15 permet également d'envisager d'en condamner un en cas de défaillance, tout en continuant à faire fonctionner le système sur les autres modules catalytiques. Plus généralement, le réacteur catalytique 10 peut comprendre entre 2 et 20 modules catalytiques 15, fonctionnant tous en parallèle, de préférence entre 2 et 10 modules catalytiques 15.
Dans un mode de réalisation selon l'invention, tel que représenté aux figures 2 et 3, deux modules catalytiques 15 juxtaposés peuvent comprendre une zone de collecte commune 14 d'entrée de la charge à traiter. Ainsi, la charge peut être répartie de part et de la zone de collecte 14. De la même manière, deux modules catalytiques 15 juxtaposés peuvent comprendre comme élément commun le moyen de collecte 18 de l'effluent issu de la réaction catalytique. Ces deux modes de réalisation, i.e. zone de collecte commune et moyen de collecte commun, peuvent être combinables entre eux. Un tel agencement permet de réduire l'encombrement des modules catalytiques 15 dans le réacteur 10.
Il est à noter que le catalyseur peut être un réacteur à lit catalytique fixe ou un réacteur à lit catalytique mobile, c'est-à-dire que le catalyseur est introduit dans le réacteur et soutiré dudit réacteur en continu. Dans le mode de réalisation particulier dans lequel le réacteur est à lit catalytique mobile, le catalyseur peut être introduit dans chaque lit catalytique 17 via une tubulure d'entrée 21 située dans la partie supérieure 22 de chaque module catalytique. Il peut être évacué du lit catalytique 17 via une tubulure de sortie 23 située dans la partie inférieure 24 de chaque lit de catalyseur 17.
Afin de permettre un écoulement optimisé du catalyseur dans chaque lit catalytique 17, différentes solutions peuvent être envisagées :
- la forme de la section de chaque lit catalytique 17 peut être quelconque, identique ou différente pour chaque lit de catalyseur 17, telle que circulaire, elliptique, polygonale ou toute autre forme ;
- le module catalytique 15 peut comprendre plusieurs tubulure d'entrée 21 et/ou plusieurs tubulures de sortie 23, telles que décrites ci-avant ;
- le module catalytique 15 peut comprendre un dispositif interne de distribution du catalyseur ou encore déflecteurs internes pour favoriser l'écoulement.
En fonction de la forme de la section de chaque lit catalytique 17, il est possible de restreindre l'espace perforé à l'aide de caches afin d'optimiser la circulation des gaz au travers du lit et éviter les passages préférentiels.
Chaque lit de catalyseur 17 est de préférence de forme et de taille identiques, mais il est possible d'envisager des variations de forme ou de taille d'un lit à l'autre. Ainsi le réacteur catalytique selon l'invention permet d'atteindre des objectifs de P. P. H. élevées pour optimiser les performances réactionnelles du procédé, tout en proposant un concept mécanique réaliste, modulable, de maintenance aisée, et comprenant de faibles quantités de catalyseur. Le réacteur permet également d'inspecter visuellement par un trou d'homme, le réacteur une fois assemblé. Procédé
Le réacteur selon l'invention peut être utilisé dans des réactions à circulation radiale de fluide gazeux comme par exemple une réaction de reformage catalytique d'une charge hydrocarbonée, une isomérisation squelettale des oléfines, la métathèse pour la production de propylène, une réaction d'oligocraquage.
Plus particulièrement, l'invention concerne également un procédé de reformage catalytique d'une charge hydrocarbonée utilisant le réacteur selon l'invention. Le réacteur selon l'invention peut en effet être mis en œuvre dans des procédés de reformage des essences et de production de composés aromatiques. Les procédés de reformage permettent d'augmenter l'indice d'octane des fractions essences provenant de la distillation du pétrole brut et/ou d'autres procédés de raffinage telles que par exemple le craquage catalytique ou le craquage thermique. Les procédés de production d'aromatiques fournissent les produits de base (benzène, toluène, xylènes) utilisables en pétrochimie. Ces procédés revêtent un intérêt supplémentaire en contribuant à la production de quantités importantes d'hydrogène indispensable pour les procédés d'hydrogénation et d'hydrotraitement de la raffinerie.
La charge à traiter contient généralement des hydrocarbures paraffiniques, naphténiques et aromatiques contenant de 5 à 12 atomes de carbone par molécule. Cette charge est définie, entre autres, par sa densité et sa composition pondérale. Ces charges peuvent avoir un point initial d'ébullition compris entre 40°C et 70°C et un point final d'ébullition compris entre 160°C et 220°C. Elles peuvent également être constituées par une fraction ou un mélange de fractions essences ayant des points d'ébullition initiaux et finaux compris entre 40°C et 220°C. La charge à traiter peut ainsi également être constituée par un naphta lourd ayant de point d'ébullition compris entre 160°C à 200°C.
Typiquement, la charge est introduite dans le réacteur en présence d'hydrogène et avec un rapport molaire hydrogène/hydrocarbures de la charge généralement compris entre 0,1 et 10, de préférence entre 1 et 8. Les conditions opératoires du reformage sont généralement les suivantes: une température de préférence comprise entre 400°C et 600°C, de manière plus préférée entre 450°C et 540°C, et une pression de préférence comprise entre 0,1 MPa et 4 MPa et de manière plus préférée entre 0,25 MPa et 3,0 MPa. Tout où partie de l'hydrogène produit peut être recyclé à l'entrée du réacteur de reformage. Le ratio entre le débit de la charge hydrocarbonée à traiter et la masse du catalyseur est supérieur ou égal à 20 h"1 , de préférence supérieure ou égal à 50 h"1 , plus préférentiellement supérieur ou égal à 100 h"1 , et encore plus préférentiellement supérieur ou égal à 200 h"1. Dans un premier mode de mise en œuvre du réacteur, tel que représenté en figures 2 et 3, la charge hydrocarbonée à traiter circule en courant ascendant. En fonctionnement, la charge hydrocarbonée, sous forme gazeuse, est injectée par le fond du réacteur via un moyen d'introduction 11 se présentant sous la forme d'une tubulure d'entrée, et est envoyée dans la zone de collecte 14 du module catalytique 15. La charge à traiter passe ensuite dans les moyens de distribution 16. La charge à traiter traverse ensuite le lit catalytique 17 et elle est mise en contact avec un catalyseur de manière à produire un effluent gazeux. L'effluent gazeux est ensuite soutiré via un moyen d'évacuation 12 (se présentant sous la forme d'une tubulure de sortie) après son passage à travers le moyens de collecte 18.
Dans un second mode de mise en œuvre du réacteur (non représenté) la charge hydrocarbonée à traiter circule en courant descendant. En fonctionnement, la charge hydrocarbonée, sous forme gazeuse, est injectée par le haut du réacteur via un moyen d'introduction se présentant sous la forme d'une tubulure d'entrée, et est envoyée dans la zone de collecte commune du module catalytique. La charge à traiter passe ensuite dans le moyen de distribution. La charge à traiter traverse ensuite le lit catalytique et elle est mise en contact avec un catalyseur de manière à produire un effluent gazeux. L'effluent gazeux est ensuite soutiré via un moyen d'évacuation (se présentant sous la forme d'une tubulure de sortie) après son passage à travers le moyen de collecte.
Il est à noter que la charge hydrocarbonée à traiter peut également être injectée latéralement dans le réacteur 10 via le moyen d'introduction 11 . De même l'effluent issu de la réaction catalytique peut être récupéré latéralement dans le réacteur 10, via le moyen d'évacuation 12.

Claims

REVENDICATIONS
1 . Réacteur catalytique (10) à écoulement radial d'une charge hydrocarbonée comprenant :
- un moyen d'introduction (1 1 ) de ladite charge à traiter ;
- un moyen d'évacuation (12) de l'effluent issu de la réaction catalytique ;
- une pluralité de modules catalytiques (15), montées en parallèles, comprenant chacun au moins :
- une zone de collecte (14) d'entrée de ladite charge à traiter ;
- un moyen de distribution (16) de la charge à traiter, situé en aval de ladite zone de collecte (14) dans le sens de l'écoulement de la charge à traiter et en communication avec ladite zone de collecte (14) ;
- un lit de catalyseur (17), situé en aval dudit moyen de distribution (16), dans le sens de l'écoulement de ladite charge à traiter et en communication avec ledit moyen de distribution (16), ledit lit de catalyseur (17) étant enfermé entre une première paroi (19) et une seconde paroi (20) perméables respectivement à la charge à traiter et à l'effluent issu de la réaction catalytique ;
- un moyen de collecte (18) de l'effluent issu de la réaction catalytique, situé en aval dudit lit de catalyseur (17) et en communication avec ledit lit de catalyseur (17).
2. Réacteur selon la revendication 1 , caractérisé en ce que l'épaisseur dudit lit de catalyseur (17) est inférieure ou égale à 500 mm.
3. Réacteur selon les revendications 1 ou 2, caractérisé en ce que ladite première paroi (19) et ladite seconde paroi (20) sont constituées de grilles de type Johnson.
4. Réacteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit moyen de distribution (16) de la charge à traiter se présentent sous la forme d'une plaque perforée ou d'une grille, comprenant éventuellement des moyens de contrôle de la trajectoire de la charge à traiter, tels que des clapets ou des caches.
5. Réacteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend entre 2 et 20 modules catalytiques (15).
6. Réacteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend en outre : - au moins un moyen d'entrée de catalyseur (21 ) situé dans la partie supérieure (22) de chaque lit de catalyseur (17) ;
- au moins un moyen de sortie de catalyseur (23) situé dans la partie inférieure (24) de chaque lit de catalyseur (17).
7. Réacteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le moyen de distribution (16) fait partie intégrante de la première paroi (19).
8. Réacteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que deux modules catalytiques (15) montées en parallèles comprennent une zone de collecte (14) commune.
9. Réacteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que deux modules catalytiques (15) montées en parallèles comprennent un moyen de collecte (18) commun.
10. Procédé de reformage catalytique d'une charge hydrocarbonée à traiter mettant en œuvre le réacteur catalytique selon l'une quelconque des revendications 1 à 9, dans lequel :
- on envoie en continu la charge hydrocarbonée, sous forme gazeuse, dans ladite zone de collecte (14) d'au moins un module catalytique (15) ;
- on fait passer la dite charge à traiter dans lesdits moyens de distribution (16) répartis de part et d'autre de ladite zone de collecte (14) dudit module catalytique (15) ;
- on met en contact la charge à traiter traversant radialement lesdits lits catalytiques (17) avec le catalyseur de manière à produire un effluent gazeux ;
- on soutire ledit effluent gazeux après son passage à travers lesdits moyens de collecte (18).
1 1 . Procédé selon la revendication 10, caractérisé en ce que le ratio entre le débit de la charge hydrocarbonée à traiter et la masse du catalyseur est supérieur ou égal à 20 h"1.
12. Procédé selon les revendications 10 ou 1 1 , caractérisé en ce que ledit procédé est réalisé à une température comprise entre 400°C et 600°C, à une pression comprise entre 0,1 MPa et 4 MPa, et avec un rapport molaire hydrogène/hydrocarbures de la charge à traiter compris entre 0,1 et 10.
PCT/EP2018/051968 2017-03-01 2018-01-26 Reacteur comprenant des lits catalytiques de faible epaisseur WO2018158015A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197025264A KR102497094B1 (ko) 2017-03-01 2018-01-26 감소된 두께의 촉매 베드들을 포함하는 반응기
CN201880015130.9A CN110536745A (zh) 2017-03-01 2018-01-26 包括低厚度的催化床的反应器
SA519402574A SA519402574B1 (ar) 2017-03-01 2019-08-29 مفاعل يشمل قيعان حفزية ذات سمك منخفض

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751658 2017-03-01
FR1751658A FR3063441B1 (fr) 2017-03-01 2017-03-01 Reacteur comprenant des lits catalytiques de faible epaisseur.

Publications (1)

Publication Number Publication Date
WO2018158015A1 true WO2018158015A1 (fr) 2018-09-07

Family

ID=58501745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/051968 WO2018158015A1 (fr) 2017-03-01 2018-01-26 Reacteur comprenant des lits catalytiques de faible epaisseur

Country Status (5)

Country Link
KR (1) KR102497094B1 (fr)
CN (1) CN110536745A (fr)
FR (1) FR3063441B1 (fr)
SA (1) SA519402574B1 (fr)
WO (1) WO2018158015A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1297766A (fr) * 1961-04-28 1962-07-06 Houilleres Bassin Du Nord Perfectionnement aux réacteurs à rétrodiffusion thermique
EP0438349A1 (fr) * 1990-01-19 1991-07-24 Institut Francais Du Petrole Enceinte réactionnelle comprenant un réacteur calandre et des moyens de stratification du courant d'un fluide caloporteur
US6221320B1 (en) 1990-10-03 2001-04-24 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
FR2922124A1 (fr) * 2007-10-10 2009-04-17 Inst Francais Du Petrole Reacteur en lit fixe a couches minces pour le traitement chimique de solide catalytique finement divise

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948580B1 (fr) * 2009-07-29 2011-07-22 Inst Francais Du Petrole Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial
CN102626600B (zh) * 2012-03-26 2014-05-21 北京化工大学 一种调变费托合成产物分布的反应器及应用
FR3020968B1 (fr) * 2014-05-16 2016-05-13 Ifp Energies Now Reacteur a lit radial multitubulaire
CN203990548U (zh) * 2014-05-30 2014-12-10 张淮海 径向并联催化反应器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1297766A (fr) * 1961-04-28 1962-07-06 Houilleres Bassin Du Nord Perfectionnement aux réacteurs à rétrodiffusion thermique
EP0438349A1 (fr) * 1990-01-19 1991-07-24 Institut Francais Du Petrole Enceinte réactionnelle comprenant un réacteur calandre et des moyens de stratification du courant d'un fluide caloporteur
US6221320B1 (en) 1990-10-03 2001-04-24 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
FR2922124A1 (fr) * 2007-10-10 2009-04-17 Inst Francais Du Petrole Reacteur en lit fixe a couches minces pour le traitement chimique de solide catalytique finement divise

Also Published As

Publication number Publication date
CN110536745A (zh) 2019-12-03
SA519402574B1 (ar) 2024-05-30
FR3063441B1 (fr) 2021-10-01
KR20190120762A (ko) 2019-10-24
FR3063441A1 (fr) 2018-09-07
KR102497094B1 (ko) 2023-02-06

Similar Documents

Publication Publication Date Title
FR3051375A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique.
CA2925656C (fr) Dispositif de melange et de distribution avec zones de melange et d'echange
CA1209790A (fr) Procede et dispositif pour soutirer des particules solides et introduire une charge liquide a la partie inferieure d'une zone de contact
EP2151277B1 (fr) Réacteur gaz-liquide à écoulement co-courant ascendant avec plateau distributeur
FR2948580A1 (fr) Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial
WO2009071758A1 (fr) Reacteur en lit fixe a couches minces pour le traitement chimique de solide catalytique finement divise
FR3020968A1 (fr) Reacteur a lit radial multitubulaire
EP3578253A1 (fr) Dispositif de distribution de melange polyphasique dans une enceinte comportant un milieu fluidise
FR2980720A1 (fr) Plateau distributeur pour la distribution d'un melange polyphasique avec cheminees inclinees en peripherie.
EP3064268B1 (fr) Ensemble de collecte d'un fluide gazeux pour reacteur radial
WO2018158015A1 (fr) Reacteur comprenant des lits catalytiques de faible epaisseur
EP3589396B1 (fr) Reacteur compartimente a faible capacite
EP3473335A1 (fr) Panier amovible pour reacteur catalytique
FR2980719A1 (fr) Plateau distributeur pour la distribution d'un melange polyphasique avec cheminees tronquees en peripherie.
EP2078558B1 (fr) Dispositif pour réduire l'effet de la vitesse d'impact d'un fluide sur un lit fixe de particules solides, réacteur équipé d'un tel dispositif et leurs utilisations
EP3820601A1 (fr) Dispositif de distribution d'un fluide, apte a etre dispose dans un reacteur comprenant un lit catalytique fixe
FR3028426A1 (fr) Conduit de collecte pour un reacteur radial comprenant des filets pleins.
FR3066410B1 (fr) Dispositif de melange et de distribution avec zone de retournement
EP3536398B1 (fr) Dispositif de melange d'un fluide pour un lit catalytique
EP3694639B1 (fr) Dispositif de melange et de distribution avec ouverture longitudinale
FR3043575A1 (fr) Ensemble de regeneration de catalyseurs
FR3060413A1 (fr) Procede d'hydrotraitement de charges lourdes en reacteur radial multitubulaire
FR3066411B1 (fr) Dispositif de melange et de distribution avec systeme d'equilibrage des fluides
FR2790764A1 (fr) Procede ameliore et installation pour la production d'aromatiques en lit fixe
WO2017211498A1 (fr) Reacteur catalytique radial multitubulaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18703715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025264

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18703715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 519402574

Country of ref document: SA