WO2018157731A1 - 管壁厚度在线监测仪、系统及方法 - Google Patents

管壁厚度在线监测仪、系统及方法 Download PDF

Info

Publication number
WO2018157731A1
WO2018157731A1 PCT/CN2018/076246 CN2018076246W WO2018157731A1 WO 2018157731 A1 WO2018157731 A1 WO 2018157731A1 CN 2018076246 W CN2018076246 W CN 2018076246W WO 2018157731 A1 WO2018157731 A1 WO 2018157731A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
wall
tested
wave
tube
Prior art date
Application number
PCT/CN2018/076246
Other languages
English (en)
French (fr)
Inventor
谭易东
潘奕
李辰
丁庆
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 华讯方舟科技有限公司
Publication of WO2018157731A1 publication Critical patent/WO2018157731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Definitions

  • the invention relates to the field of wall thickness measurement, in particular to an on-line monitor, system and method for wall thickness.
  • the thickness of the pipe wall is the most important factor determining the quality of the pipe, directly determining the load bearing, connectivity, reliability, and aesthetics of the pipe.
  • the present invention provides an online monitor for wall thickness, the online monitor comprising:
  • Terahertz generating device for generating terahertz detecting waves and emitting to the wall to be tested
  • a terahertz receiving device configured to receive a terahertz detecting wave transmitted through the wall of the tube to be tested, to obtain the wall of the tube to be tested according to the attenuation occurring after the terahertz detecting wave passes through the wall of the tube to be tested thickness.
  • the above-mentioned wall thickness online monitor comprises a terahertz generating device and a terahertz receiving device, the terahertz generating device is configured to generate a terahertz detecting wave and emit to the wall to be tested, and the terahertz receiving device is configured to receive the through Detecting a terahertz wave of the wall of the tube to obtain the thickness of the wall to be tested according to the attenuation occurring after the terahertz detecting wave passes through the wall of the tube to be tested; when detecting the thickness of the tube wall, The terahertz generating device emits a terahertz detecting wave and is incident on the wall of the tube to be tested.
  • the terahertz detecting wave passes through the wall of the tube to be tested, attenuation occurs, and the terahertz receiving device detects the terahertz detecting wave.
  • the change can further obtain the thickness of the wall to be tested; the thickness of the tube wall monitor can realize the rapid and accurate detection of the wall thickness without contacting the tube wall.
  • the in-line monitor is provided with a cavity for the wall of the tube to be tested to penetrate.
  • the thickness of the wall to be tested satisfies:
  • ⁇ t is the delay time of the absorption peak corresponding to the attenuation generated by the terahertz detection wave received by the terahertz receiving device when passing through the wall of the tube to be tested
  • c is the speed of light
  • n is the refraction of the wall to be tested rate
  • the terahertz generating device includes a laser that generates a laser pulse, a DC biasing device that generates a bias voltage, and a photoconductive transmitting antenna, and the photoconductive transmitting antenna is subjected to the bias voltage
  • the laser pulse is converted into a terahertz wave to be emitted.
  • the terahertz receiving device is a photoconductive detecting antenna.
  • the first beam splitter splitting the laser pulse into probe light and pump light, and transmitting the probe light to the
  • the photoconductive transmitting antenna transmits the pump light to the terahertz receiving device after being processed by a delay device.
  • a first terahertz lens and a second beam splitter disposed on a transmission path of the terahertz probe wave, the first terahertz lens being used to detect the terahertz wave Focusing processing is performed, and the second beam splitter is configured to convert the focused terahertz detection wave into a parallel light output.
  • a second terahertz lens is further disposed on the emission path of the terahertz detection wave for performing focusing processing on the terahertz detection wave transmitted through the wall of the tube to be tested, and transmitting Giving the terahertz receiving device.
  • a phase locker is further disposed on the receiving path of the terahertz detecting wave for phase-locking and amplifying the terahertz detecting wave received by the terahertz receiving device, and The processed terahertz probe wave is sent to the computing terminal.
  • the present invention provides an on-line monitoring system for tube wall thickness, comprising the above-described tube wall thickness on-line monitor and a tube wall extruder for forming and conveying a tube to the tube wall
  • the thickness of the online monitor is in the cavity.
  • the invention provides an online monitoring method for wall thickness, comprising:
  • the thickness of the wall to be tested satisfies:
  • ⁇ t is the delay time of the absorption peak corresponding to the attenuation generated by the terahertz detection wave received by the terahertz receiving device when passing through the wall of the tube to be tested
  • c is the speed of light
  • n is the refraction of the wall to be tested rate
  • FIG. 1 is a schematic structural view of an on-line monitor for wall thickness in an embodiment
  • FIG. 2 is a waveform diagram of a terahertz detection wave received by a terahertz receiving device in an embodiment
  • FIG. 3 is a schematic structural view of an on-line monitoring system for pipe wall thickness in an embodiment.
  • Figure 1 is a structural view of an on-line monitor for wall thickness in an embodiment.
  • the tube wall thickness line monitor includes a sample holder 10, and a cavity 101 for penetrating the wall of the tube to be tested is opened on the sample holder 10, and the cavity 101 is a cylindrical through hole, not limited to the column. shape.
  • the terahertz generating means is for generating a terahertz detecting wave and emitting it to the wall 30 to be tested.
  • the terahertz generating device includes a laser 11 that generates a laser pulse, a DC biasing device 12 that generates a bias voltage, and a photoconductive transmitting antenna 13, the photoconductive transmitting antenna 13 at the bias voltage
  • the laser pulse is converted into a terahertz wave to be emitted.
  • the laser 11 is a titanium-sapphire laser.
  • the terahertz receiving device is configured to receive a terahertz detecting wave transmitted through the wall 30 to be tested.
  • the photoconductive transmitting antenna 13 emits a terahertz detecting wave and is vertically incident on the wall 30 to be tested.
  • the terahertz detecting wave will be partially absorbed by the wall 30 to be tested when passing through the wall 30 to be tested, and then occurs.
  • the attenuation, the terahertz receiving device receives the terahertz detecting wave passing through the wall 30 to be tested, and the change of the terahertz detecting wave when passing through the wall 30 to be tested can be obtained, thereby obtaining the wall thickness.
  • FIG. 2 is a waveform diagram of a terahertz detection wave received by a terahertz receiving device in an embodiment.
  • the abscissa represents time and the ordinate represents percentage of energy.
  • the thickness of the tube wall 30 to be tested satisfies:
  • ⁇ t is the delay time of the absorption peak generated when the terahertz detection wave received by the terahertz receiving device passes through the wall 30 to be tested
  • c is the speed of light
  • n is the refractive index of the wall 30 to be tested .
  • the terahertz detection wave will be partially attenuated by the absorption of the wall 30 to be tested, and the attenuation corresponds to the absorption peak of the terahertz detection wave received by the terahertz receiving device, and the delay time of the absorption peak is too long.
  • the time that the Hertz wave passes through the wall 30 to be tested that is, ⁇ t.
  • c is the speed of light
  • n is the refractive index of the wall 30 to be tested
  • c/n is the propagation speed of the terahertz wave as it passes through the wall 30 to be tested.
  • the terahertz receiving device is a photoconductive detecting antenna 14.
  • a first beam splitter 15 and a delayer 16 are further included, the first beam splitter 15 splitting the laser pulse into probe light and pump light, and transmitting the probe light
  • the photoconductive transmitting antenna 13 is sent to the terahertz receiving device by processing the pump light through the delayer 16.
  • a part of the laser pulse emitted by the laser 11, that is, the probe light is used to generate the terahertz detection wave
  • the other part, that is, the pump light is used to pump the terahertz receiving device, that is, the pump photoconductive detection antenna 14 receives the through-tube to be tested.
  • the delay processing is performed, so that the pump light and the terahertz detecting wave passing through the wall 30 to be tested simultaneously reach the photoconductive detecting antenna 14 to ensure the photoelectric
  • the effective detection of the signal by the probe antenna 14 does not require an additional pumping device, which simplifies the structure of the wall thickness gauge 100 and saves costs.
  • a first terahertz lens 17 is further disposed on the emission path of the terahertz detection wave for performing focusing processing on the terahertz detection wave.
  • a second beam splitter 18 is further disposed on the emission path of the terahertz detection wave for converting the focused terahertz detection wave into a parallel light output.
  • the photoconductive transmitting antenna 13 emits a terahertz detecting wave, and the dispersed terahertz detecting wave is subjected to focusing processing by the first terahertz lens 17, reducing the loss of the terahertz detecting wave, and then converting to parallel by the second beam splitter 18
  • the light output is vertically incident on the wall 30 to be tested, and the wall 30 to be tested is detected.
  • a second terahertz lens 19 is disposed on the emission path of the terahertz detection wave for focusing the terahertz detection wave transmitted through the wall 30 to be tested. And sent to the terahertz receiving device.
  • the terahertz probe wave is scattered light after passing through the wall 30 to be tested, is subjected to focusing processing by the second terahertz lens 19, and then sent to the terahertz receiving device, that is, the photoconductive detecting antenna 14 receives, and reduces the transmission through the wall of the tube to be tested.
  • the loss of 30 terahertz probe waves during propagation enhances the signal strength received by the photoconductive detection antenna 14 and enhances the detection effect.
  • a phase locker 20 is further disposed on the receiving path of the terahertz detecting wave for phase-locking and amplifying the terahertz detecting wave received by the terahertz receiving device.
  • the processed terahertz probe wave is sent to the computing terminal 40.
  • the photoconductive detection antenna 14 After receiving the terahertz detection wave passing through the wall 30 to be tested, the photoconductive detection antenna 14 sends it to the phase locker 20 for phase locking and amplification processing to achieve stable acquisition of the signal, and then sends it to the computing terminal 40, such as The computer performs data analysis and calculation, extracts relevant parameters, and further obtains the thickness of the tube wall 30 to be tested.
  • the refractive index n of the tube wall 30 to be tested corresponding to different materials is stored, and in the process of calculating the thickness of the tube wall, the characteristics of the tube wall 30 to be tested are automatically retrieved to realize on-line monitoring.
  • the pipe wall thickness on-line monitor 100 when detecting the wall thickness, the pipe wall 30 to be tested passes through the pipe wall thickness online monitor 100, and the photoconductive transmitting antenna 13 disposed therein emits a terahertz detecting wave. And incident on the wall 30 to be tested, when the terahertz probe wave passes through the wall 30 to be tested, it will attenuate, generating an absorption peak, and the photoconductive detecting antenna 14 detects the duration of the absorption peak, combined with the test to be tested.
  • the refractive index of the tube wall 30 obtains the propagation velocity of the terahertz probe wave as it passes through the wall 30 to be tested, thereby obtaining the thickness of the tube wall 30 to be tested.
  • the laser pulse emitted by the laser 11 is subjected to beam splitting processing, and a part is used to generate a terahertz detecting wave, and a part of the pumped photoconductive detecting antenna 14 receives the terahertz detecting wave transmitted through the wall 30 to be tested after the delay processing, without additional
  • the pumping device simplifies the structure of the wall thickness gauge 100, which saves costs.
  • the terahertz detection wave emitted by the photoconductive transmitting antenna 13 is subjected to corresponding beam processing before reaching the wall 30 to be tested, and before the photoconductive detecting antenna 14 receives the terahertz detecting wave transmitted through the wall 30 to be tested.
  • the loss of the terahertz detection wave during the propagation process is reduced, and the detection effect and accuracy are enhanced.
  • the wall thickness on-line monitor 100 can realize rapid and accurate detection of the wall thickness without contacting the pipe wall.
  • FIG. 3 is a schematic structural view of an online monitoring system for wall thickness in an embodiment.
  • the pipe wall thickness on-line monitoring system includes the above-mentioned pipe wall thickness on-line monitor 100 and the pipe wall extruder 200, and when the pipe wall of the pipe to be tested, that is, the pipe wall 30 to be tested, is subjected to thickness inspection, the pipe The wall extruder 200 shapes and delivers the conduit to the cylindrical through-hole of the wall thickness gauge 100 through which the wall to be tested 30 can pass. In the process of detecting the thickness of the pipe wall, it is not necessary to contact the pipe wall, and the wear on the pipe wall is avoided.
  • An online monitoring method for wall thickness comprising the following steps:
  • Step 1 Launch a terahertz detection wave to the wall of the tube to be tested.
  • the terahertz wave has a very high frequency and a very short pulse width, so its spatial resolution and time resolution are very high, and the photon energy is only 4 millielectron volts, which is highly safe and can achieve non-destructive and non-contact detection.
  • Step 2 Receiving a terahertz detection wave that passes through the wall of the tube to be tested.
  • Step 3 Obtain a thickness of the wall to be tested according to the attenuation occurring after the terahertz detecting wave passes through the wall of the tube to be tested.
  • the thickness of the wall to be tested obtained by using the wall thickness online monitoring method satisfies:
  • ⁇ t is the delay time of the absorption peak corresponding to the attenuation generated by the terahertz detection wave received by the terahertz receiving device when passing through the wall of the tube to be tested
  • c is the speed of light
  • n is the refraction of the wall to be tested rate
  • the above-mentioned on-line monitoring method of the wall thickness can realize safe, rapid and accurate detection of the wall thickness without contacting the pipe wall.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种管壁厚度在线监测仪、系统及方法,该管壁厚度在线监测仪包括太赫兹发生装置和太赫兹接收装置,太赫兹发生装置用于产生太赫兹探测波并向待测管壁(30)发射,太赫兹接收装置用于接收透过待测管壁(30)的太赫兹探测波,以根据太赫兹探测波透过待测管壁(30)后发生的衰减获取待测管壁(30)的厚度;在对管壁厚度(30)进行检测时,设置在其内的太赫兹发生装置发出太赫兹探测波,并入射到待测管壁(30)上,当该太赫兹探测波透过该待测管壁(30)时会发生衰减,太赫兹接收装置探测到太赫兹探测波的变化,进而可以得到待测管壁(30)的厚度;该管壁厚度在线监测仪无需接触管壁就可以实现管壁厚度快速、准确的检测。

Description

管壁厚度在线监测仪、系统及方法 技术领域
本发明涉及管壁厚度测量领域,特别是涉及一种管壁厚度在线监测仪、系统及方法。
背景技术
日常生产生活中,各种各样的水管、油管、输气管等管道运输十分常见,是国民经济中不可缺少的重要组成部分。其中,管壁的厚度则是决定管道质量的最重要因素,直接决定管道的承重,连接性,可靠性,以及美观等因素。
传统的管壁测厚仪大多数是接触式的,无法进行在线测量。目前,市场上常见的管壁厚度测量方法普遍采用超声波测量和X射线测量,超声波虽然能发现物体的轮廓和状态,但需要接触物体进行检测,此种检测手段也会对管壁造成一定程度的磨损。X射线测量是一种非接触型无损测厚技术,但装置昂贵,操作复杂,测量范围小,并且工作人员需要配备防辐射的装置,大大提高了成本和操作的难度。
发明内容
基于此,有必要提供一种管壁厚度在线监测仪、系统及方法,无需接触管壁就可以实现管壁厚度快速、准确的检测。
一方面,本发明提出一种管壁厚度在线监测仪,所述在线监测仪包括:
太赫兹发生装置,用于产生太赫兹探测波并向待测管壁发射;
太赫兹接收装置,用于接收透过所述待测管壁的太赫兹探测波,以根据所述太赫兹探测波透过所述待测管壁后发生的衰减获取所述待测管壁的厚度。
上述管壁厚度在线监测仪,包括太赫兹发生装置和太赫兹接收装置,太赫兹发生装置用于产生太赫兹探测波并向待测管壁发射,太赫兹接收装置用于接收透过所述待测管壁的太赫兹探测波,以根据所述太赫兹探测波透过所述待测 管壁后发生的衰减获取所述待测管壁的厚度;在对管壁厚度进行检测时,设置在其内的太赫兹发生装置发出太赫兹探测波,并入射到待测管壁上,当该太赫兹探测波透过该待测管壁时会发生衰减,太赫兹接收装置探测到太赫兹探测波的变化,进而可以得到待测管壁的厚度;该管壁厚度在线监测仪无需接触管壁就可以实现管壁厚度快速、准确的检测。
在其中一个实施例中,所述在线监测仪开设有用于供待测管壁穿入的空洞。
在其中一个实施例中,所述待测管壁的厚度满足:
d=(Δt×c)/n;
其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁时产生的衰减对应的吸收峰的延迟时间,c为光速,n为所述待测管壁的折射率。
在其中一个实施例中,所述太赫兹发生装置包括产生激光脉冲的激光器、产生偏置电压的直流偏置装置和光电导发射天线,所述光电导发射天线在所述偏置电压的作用下将所述激光脉冲转换为太赫兹波发射出去。
在其中一个实施例中,所述太赫兹接收装置为光电导探测天线。
在其中一个实施例中,还包括第一分束器和延时器,所述第一分束器将所述激光脉冲分为探测光和泵浦光,并将所述探测光发送给所述光电导发射天线,将所述泵浦光经延时器处理后发送给所述太赫兹接收装置。
在其中一个实施例中,还包括设置在所述太赫兹探测波的发射路径上的第一太赫兹透镜和第二分束器,所述第一太赫兹透镜用于对所述太赫兹探测波进行聚焦处理,所述第二分束器用于将经过聚焦处理后的太赫兹探测波转换为平行光输出。
在其中一个实施例中,还包括第二太赫兹透镜,设置在所述太赫兹探测波的发射路径上,用于对透过所述待测管壁的太赫兹探测波进行聚焦处理,并发送给所述太赫兹接收装置。
在其中一个实施例中,还包括锁相器,设置在所述太赫兹探测波的接收路径上,用于对所述太赫兹接收装置接收到的太赫兹探测波进行锁相和放大处理,并将处理后的太赫兹探测波发送到计算终端。
另一方面,本发明提出一种管壁厚度在线监测系统,包括上述管壁厚度在线监测仪和管壁挤出机,所述管壁挤出机用于将管道成型并输送至所述管壁厚度在线监测仪的空洞中。
再一方面,本发明提出一种管壁厚度在线监测方法,包括:
向待测管壁发射太赫兹探测波;
接收透过了所述待测管壁的太赫兹探测波;
根据所述太赫兹探测波透过所述待测管壁后发生的衰减获取所述待测管壁的厚度。
在其中一个实施例中,所述待测管壁的厚度满足:
d=(Δt×c)/n;
其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁时产生的衰减对应的吸收峰的延迟时间,c为光速,n为所述待测管壁的折射率。
附图说明
图1为一实施例中管壁厚度在线监测仪的结构示意图;
图2为一实施例中太赫兹接收装置接收到的太赫兹探测波的波形图;
图3为一实施例中管壁厚度在线监测系统的结构示意图。
具体实施方式
参见图1,图1为一实施例中管壁厚度在线监测仪的结构图。
在本实施例中,该管壁厚度线监测仪包括样品架10,在该样品架10上开设有用于供待测管壁穿入的空洞101,该空洞101为柱形通孔,不限于柱形。
太赫兹发生装置用于产生太赫兹探测波并向待测管壁30发射。
在其中一个实施例中,该太赫兹发生装置包括产生激光脉冲的激光器11、产生偏置电压的直流偏置装置12和光电导发射天线13,所述光电导发射天线13在所述偏置电压的作用下将所述激光脉冲转换为太赫兹波发射出去。进一步的,该激光器11为钛-蓝宝石激光器。
太赫兹接收装置用于接收透过所述待测管壁30的太赫兹探测波。
光电导发射天线13发射出太赫兹探测波,并垂直入射到待测管壁30上,该太赫兹探测波在透过待测管壁30时将会被待测管壁30部分吸收,进而发生衰减,太赫兹接收装置接收透过待测管壁30后的太赫兹探测波,可以得到该太赫兹探测波在透过待测管壁30时发生的变化,进而得到管壁厚度。
在其中一个实施例中,参见图2,图2为一实施例中太赫兹接收装置接收到的太赫兹探测波的波形图。其中,横坐标表示时间,纵坐标表示能量百分比。
待测管壁30的厚度满足:
d=(Δt×c)/n;
其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁30时产生的吸收峰的延迟时间,c为光速,n为所述待测管壁30的折射率。
太赫兹探测波在透过待测管壁30时将会被其部分吸收产生衰减,该衰减对应于太赫兹接收装置接收到的太赫兹探测波的吸收峰,该吸收峰持续的延迟时间为太赫兹波透过该待测管壁30经历的时间,即Δt。c为光速,n为所述待测管壁30的折射率,c/n即为太赫兹波在透过该待测管壁30时的传播速度。
由此,得到待测管壁30的厚度为太赫兹波透过待测管壁30的传播速度c/n与经历时间Δt的乘积,即d=(Δt×c)/n。通过该方式可以快速、准确的得到待测管壁30的管壁厚度。
在其中一个实施例中,该太赫兹接收装置为光电导探测天线14。
在其中一个实施例中,还包括第一分束器15和延时器16,所述第一分束器15将所述激光脉冲分为探测光和泵浦光,并将所述探测光发送给所述光电导发射天线13,将所述泵浦光经所述延时器16处理后发送给所述太赫兹接收装置。
激光器11发出的激光脉冲的一部分,即探测光用于产生太赫兹探测波,另一部分,即泵浦光用于泵浦太赫兹接收装置,即泵浦光电导探测天线14接收透过待测管壁30的太赫兹探测波。
其中,在泵浦光到达泵浦光电导探测天线14前先进行延时处理,使得该泵浦光与透过待测管壁30的太赫兹探测波同时到达光电导探测天线14,保障该光 电导探测天线14对信号的有效接收,不需要额外的泵浦装置,简化了该管壁厚度在线监测仪100的结构,节约了成本。
在其中一个实施例中,还包括第一太赫兹透镜17,设置在所述太赫兹探测波的发射路径上,用于对所述太赫兹探测波进行聚焦处理。
在其中一个实施例中,还包括第二分束器18,设置在所述太赫兹探测波的发射路径上,用于将经过聚焦处理后的太赫兹探测波转换为平行光输出。
光电导发射天线13发射出太赫兹探测波,分散的太赫兹探测波通过第一太赫兹透镜17进行聚焦处理,减少太赫兹探测波的损耗,然后通过第二分束器18处理后转换为平行光输出,垂直入射到待测管壁30上,对待测管壁30进行检测。
在其中一个实施例中,还包括第二太赫兹透镜19,设置在所述太赫兹探测波的发射路径上,用于对透过所述待测管壁30的太赫兹探测波进行聚焦处理,并发送给所述太赫兹接收装置。
太赫兹探测波透过待测管壁30后为分散光,由第二太赫兹透镜19进行聚焦处理后发送给太赫兹接收装置,即光电导探测天线14进行接收,减少透过待测管壁30的太赫兹探测波在传播过程中的损耗,增强光电导探测天线14接收到的信号强度,增强检测效果。
在其中一个实施例中,还包括锁相器20,设置在所述太赫兹探测波的接收路径上,用于对所述太赫兹接收装置接收到的太赫兹探测波进行锁相和放大处理,并将处理后的太赫兹探测波发送到计算终端40。
光电导探测天线14接收到透过待测管壁30的太赫兹探测波之后,将其发送给锁相器20进行锁相和放大处理,实现信号的稳定采集,然后发送给计算终端40,如计算机进行数据分析和计算,提取相关参数,进而得到待测管壁30的厚度。
在该计算终端40中存储有对应于不同材质的待测管壁30的折射率n,在进行管壁厚度的计算过程中,根据待测管壁30的特性自动调取,实现在线监测。
上述管壁厚度在线监测仪100,在对管壁厚度进行检测时,待测管壁30穿过该管壁厚度在线监测仪100,设置在其内的光电导发射天线13发出太赫兹探 测波,并入射到待测管壁30上,当该太赫兹探测波透过该待测管壁30时会发生衰减,产生吸收峰,光电导探测天线14探测到该吸收峰的持续时间,结合待测管壁30的折射率得到太赫兹探测波通过该待测管壁30时的传播速度,进而得到待测管壁30的厚度。将激光器11发出的激光脉冲进行分束处理后一部分用于产生太赫兹探测波,一部分经延时处理后泵浦光电导探测天线14接收透过待测管壁30的太赫兹探测波,无需额外的泵浦装置,简化了该管壁厚度在线监测仪100的结构,节约了成本。同时,光电导发射天线13发出的太赫兹探测波在到达待测管壁30之前,和光电导探测天线14在接收透过了待测管壁30的太赫兹探测波之前均进行相应的光束处理,减小了太赫兹探测波在传播过程中的损耗,增强了检测效果和精度。该管壁厚度在线监测仪100无需接触管壁就可以实现管壁厚度快速、准确的检测。
参见图3,图3为一实施例中管壁厚度在线监测系统的结构示意图。
在本实施例中,该管壁厚度在线监测系统包括上述管壁厚度在线监测仪100和管壁挤出机200,在对待测管道的管壁,即待测管壁30进行厚度检测时,管壁挤出机200将管道成型并输送至该管壁厚度在线监测仪100的柱形通孔,待测管壁30能够穿过该管壁厚度在线监测仪100。在对管壁厚度进行检测的过程中,无需接触管壁,避免了对管壁的磨损。
一种管壁厚度在线监测方法,在其中一个实施例中,包括如下步骤:
步骤一、向待测管壁发射太赫兹探测波。太赫兹波的频率非常高,脉冲宽度非常短,所以它的空间分辨率和时间分辨率都很高,且光子能量只有4毫电子伏特,安全性高,可以实现无损、非接触检测。
步骤二、接收透过了所述待测管壁的太赫兹探测波。
步骤三、根据所述太赫兹探测波透过所述待测管壁后发生的衰减获取所述待测管壁的厚度。
在其中一个实施例中,利用该管壁厚度在线监测方法得到的待测管壁的厚度满足:
d=(Δt×c)/n;
其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁时产生的衰减对应的吸收峰的延迟时间,c为光速,n为所述待测管壁的折射率。
上述管壁厚度在线监测方法,无需接触管壁就可以实现管壁厚度安全、快速、准确的检测。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种管壁厚度在线监测仪,其特征在于,所述在线监测仪包括:
    太赫兹发生装置,用于产生太赫兹探测波并向待测管壁发射;
    太赫兹接收装置,用于接收透过所述待测管壁的太赫兹探测波,以根据所述太赫兹探测波透过所述待测管壁后发生的衰减获取所述待测管壁的厚度。
  2. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,开设有用于供所述待测管壁穿入的空洞。
  3. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,所述待测管壁的厚度满足:
    d=(Δt×c)/n;
    其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁时产生的衰减对应的吸收峰的延迟时间,c为光速,n为所述待测管壁的折射率。
  4. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,所述太赫兹发生装置包括产生激光脉冲的激光器、产生偏置电压的直流偏置装置和光电导发射天线,所述光电导发射天线在所述偏置电压的作用下将所述激光脉冲转换为太赫兹波发射出去。
  5. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,所述太赫兹接收装置为光电导探测天线。
  6. 根据权利要求4所述的管壁厚度在线监测仪,其特征在于,还包括第一分束器和延时器,所述第一分束器将所述激光脉冲分为探测光和泵浦光,并将所述探测光发送给所述光电导发射天线,将所述泵浦光经延时器处理后发送给所述太赫兹接收装置。
  7. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,还包括设置在所述太赫兹探测波的发射路径上的第一太赫兹透镜和第二分束器,所述第一太赫兹透镜用于对所述太赫兹探测波进行聚焦处理,所述第二分束器用于将经过聚焦处理后的太赫兹探测波转换为平行光输出。
  8. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,还包括第二太 赫兹透镜,设置在所述太赫兹探测波的发射路径上,用于对透过所述待测管壁的太赫兹探测波进行聚焦处理,并发送给所述太赫兹接收装置。
  9. 根据权利要求1所述的管壁厚度在线监测仪,其特征在于,还包括锁相器,设置在所述太赫兹探测波的接收路径上,用于对所述太赫兹接收装置接收到的太赫兹探测波进行锁相和放大处理,并将处理后的太赫兹探测波发送到计算终端。
  10. 一种管壁厚度在线监测系统,其特征在于,包括权利要求2所述的管壁厚度在线监测仪和管壁挤出机,所述管壁挤出机用于将管道成型并输送至所述管壁厚度在线监测仪的空洞中。
  11. 一种管壁厚度在线监测方法,其特征在于,包括:
    向待测管壁发射太赫兹探测波;
    接收透过了所述待测管壁的太赫兹探测波;
    根据所述太赫兹探测波透过所述待测管壁后发生的衰减获取所述待测管壁的厚度。
  12. 根据权利要求11所述的管壁厚度在线监测方法,其特征在于,所述待测管壁的厚度满足:
    d=(Δt×c)/n;
    其中,Δt为所述太赫兹接收装置接收到的太赫兹探测波经过所述待测管壁时产生的衰减对应的吸收峰的延迟时间,c为光速,n为所述待测管壁的折射率。
PCT/CN2018/076246 2017-02-28 2018-02-11 管壁厚度在线监测仪、系统及方法 WO2018157731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710114658.9A CN106767462A (zh) 2017-02-28 2017-02-28 管壁厚度在线监测仪、系统及方法
CN201710114658.9 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018157731A1 true WO2018157731A1 (zh) 2018-09-07

Family

ID=58960751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076246 WO2018157731A1 (zh) 2017-02-28 2018-02-11 管壁厚度在线监测仪、系统及方法

Country Status (2)

Country Link
CN (1) CN106767462A (zh)
WO (1) WO2018157731A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767462A (zh) * 2017-02-28 2017-05-31 华讯方舟科技有限公司 管壁厚度在线监测仪、系统及方法
CN108106551A (zh) * 2017-12-30 2018-06-01 深圳市太赫兹科技创新研究院有限公司 一种基于电磁波的刀具的监测方法及监测系统
DE102019119491B4 (de) * 2019-07-18 2021-10-07 Sikora Ag Verfahren und Vorrichtung zum Vermessen eines rohrförmigen Strangs
CN113514418A (zh) * 2020-04-10 2021-10-19 华太极光光电技术有限公司 一种透反两用的太赫兹探头及其检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140061475A1 (en) * 2012-08-29 2014-03-06 Electronics And Telecommunications Research Institute Apparatus and method for contactless thickness measurement
CN104169677A (zh) * 2012-02-08 2014-11-26 霍尼韦尔阿斯卡公司 利用THz传感器对连续非均匀织物的卡尺度涂层测量
CN104864817A (zh) * 2015-05-06 2015-08-26 中国矿业大学 基于太赫兹时域光谱技术的塑料薄膜厚度检测装置及方法
US20170003116A1 (en) * 2015-06-30 2017-01-05 Korea Research Institute Of Standards And Science Apparatus for real-time non-contact non-destructive thickness measurement using terahertz wave
CN106441119A (zh) * 2016-06-30 2017-02-22 山东省科学院激光研究所 热态钢管厚度在线检测装置
CN106767462A (zh) * 2017-02-28 2017-05-31 华讯方舟科技有限公司 管壁厚度在线监测仪、系统及方法
CN206504707U (zh) * 2017-02-28 2017-09-19 华讯方舟科技有限公司 管壁厚度在线监测仪及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371293B2 (ja) * 2007-08-31 2013-12-18 キヤノン株式会社 テラヘルツ波に関する情報を取得するための装置及び方法
CN102620666A (zh) * 2012-03-29 2012-08-01 吴周令 一种半导体晶圆厚度检测系统及其检测方法
CN104180762A (zh) * 2014-09-09 2014-12-03 东莞理工学院 基于太赫兹时域光谱技术的厚度检测方法
CN105588516B (zh) * 2016-02-23 2018-04-03 天津大学 一种基于太赫兹脉冲光谱的漆膜厚度测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169677A (zh) * 2012-02-08 2014-11-26 霍尼韦尔阿斯卡公司 利用THz传感器对连续非均匀织物的卡尺度涂层测量
US20140061475A1 (en) * 2012-08-29 2014-03-06 Electronics And Telecommunications Research Institute Apparatus and method for contactless thickness measurement
CN104864817A (zh) * 2015-05-06 2015-08-26 中国矿业大学 基于太赫兹时域光谱技术的塑料薄膜厚度检测装置及方法
US20170003116A1 (en) * 2015-06-30 2017-01-05 Korea Research Institute Of Standards And Science Apparatus for real-time non-contact non-destructive thickness measurement using terahertz wave
CN106441119A (zh) * 2016-06-30 2017-02-22 山东省科学院激光研究所 热态钢管厚度在线检测装置
CN106767462A (zh) * 2017-02-28 2017-05-31 华讯方舟科技有限公司 管壁厚度在线监测仪、系统及方法
CN206504707U (zh) * 2017-02-28 2017-09-19 华讯方舟科技有限公司 管壁厚度在线监测仪及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J EN, CHIH YU^: "Sample Thickness Measurement with THz-TDS:Resolution and Implications", J. INFRARED MILLI TERAHZ WAVES, vol. 35, no. 10, 16 July 2014 (2014-07-16), pages 840 - 859, XP055537889 *

Also Published As

Publication number Publication date
CN106767462A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018157731A1 (zh) 管壁厚度在线监测仪、系统及方法
CN108871640B (zh) 基于瞬态光栅激光超声表面波的残余应力无损检测系统和方法
CN103674359B (zh) 一种复合材料残余应力的激光超声无损检测方法及设备
US7712955B2 (en) Non-contact method and apparatus for hardness case depth monitoring
CN104502409A (zh) 基于阵列激光源的结构表面裂纹红外无损检测及成像方法
CN110686771A (zh) 一种基于光声效应的宽光谱脉冲光探测器和探测方法
CN108801927A (zh) 一种利用光致超声法检测乙炔气体浓度的装置及方法
Zeng et al. High-resolution air-coupled laser ultrasound imaging of microstructure and defects in braided CFRP
CN106996962A (zh) 激光注入光纤与相干探测的激光超声无损检测系统
Xiaodan et al. Application of terahertz technology in nondestructive testing of ceramic matrix composite defects
Péronnet et al. Non destructive investigation of defects in composite structures by three infrared thermographic techniques
JP6682466B2 (ja) 光学検査装置
Zarei et al. Laser ultrasonics for nondestructive testing of composite materials and structures: a review
Song et al. Contactless inspection of CFRP artificial disbonds using combined laser thermography and laser ultrasonics with optical microphone
KR101351231B1 (ko) 레이저-초음파 시스템의 분광 특성화를 위한 방법 및 장치
Vangi et al. Optimal Rayleigh waves generation by continuous wave modulated laser
CN206504707U (zh) 管壁厚度在线监测仪及系统
CN114280156B (zh) 一种基于激光超声的亚表面裂纹长度和深度测量方法
Setiawan et al. Photoacoustic tomography system for roughly painted micro objects
CN104990521A (zh) 一种非接触式复合材料测厚装置及方法
CN110763766B (zh) 一种涡轮叶片表面微缺陷的激光超声锁相检测系统及方法
Xue et al. Nondestructive testing of internal defects by ring-laser-excited ultrasonic
Zhao et al. Hybrid laser ultrasonic inspection based on optical fiber technique
Wang et al. Detection of ultrasonic guided waves using fiber optical sensors toward nondestructive evaluation
Oe et al. Nondestructive internal defect detection using photoacoustic and self‐coupling effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760746

Country of ref document: EP

Kind code of ref document: A1