WO2018156768A9 - Procédé et appareil pour fournir une visualisation et une manipulation accrues d'une paroi latérale de corps - Google Patents

Procédé et appareil pour fournir une visualisation et une manipulation accrues d'une paroi latérale de corps Download PDF

Info

Publication number
WO2018156768A9
WO2018156768A9 PCT/US2018/019235 US2018019235W WO2018156768A9 WO 2018156768 A9 WO2018156768 A9 WO 2018156768A9 US 2018019235 W US2018019235 W US 2018019235W WO 2018156768 A9 WO2018156768 A9 WO 2018156768A9
Authority
WO
WIPO (PCT)
Prior art keywords
snare
distal
push
balloon
tissue
Prior art date
Application number
PCT/US2018/019235
Other languages
English (en)
Other versions
WO2018156768A1 (fr
Inventor
Jeffrey Milsom
Sameer Sharma
Peter Johann
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2018/013894 external-priority patent/WO2018132836A2/fr
Application filed by Cornell University filed Critical Cornell University
Priority to US16/487,333 priority Critical patent/US20200022562A1/en
Publication of WO2018156768A1 publication Critical patent/WO2018156768A1/fr
Publication of WO2018156768A9 publication Critical patent/WO2018156768A9/fr
Priority to US17/842,456 priority patent/US20230075294A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32056Surgical snare instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00148Holding or positioning arrangements using anchoring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00151Holding or positioning arrangements using everted tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • A61B17/12045Type of occlusion temporary occlusion double occlusion, e.g. during anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/083Clips, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00269Type of minimally invasive operation endoscopic mucosal resection EMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00287Bags for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00296Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means mounted on an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00358Snares for grasping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00853Material properties low friction, hydrophobic and corrosion-resistant fluorocarbon resin coating (ptf, ptfe, polytetrafluoroethylene)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00907Material properties transparent or translucent for light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B2017/0287Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with elastic retracting members connectable to a frame, e.g. hooked elastic wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B2017/12004Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for haemostasis, for prevention of bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • A61B2018/141Snare
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system

Definitions

  • This invention relates to surgical and endoscopic methods and apparatus in general, and more particularly to surgical and endoscopic methods and apparatus for manipulating the side wall of a body lumen and/or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same.
  • the human body comprises many different body lumens and body cavities.
  • the human body comprises body lumens such as the gastrointestinal (GI) tract, blood vessels, lymphatic vessels, the urinary tract, fallopian tubes, bronchi, bile ducts, etc.
  • the human body comprises body cavities such as the head, chest, abdomen, nasal sinuses, bladder, cavities within organs, etc.
  • a disease process or abnormality which is located within, or on the side wall of, a body lumen and/or body cavity.
  • the endoscopic examination and/or treatment of the side wall of a body lumen and/or body cavity can be complicated by the anatomic configuration (both regional and local) of the side wall of the body lumen and/or body cavity, and/or by the consistency of the tissue making up the side wall of the body lumen and/or body cavity, and/or by the tethering of the side wall of the body lumen and/or body cavity to other anatomical structures.
  • the intestine is an elongated tubular organ having an inner lumen and is characterized by frequent turns (i.e., the regional anatomic configuration of the intestine) and a side wall characterized by numerous folds (i.e., the local anatomic configuration of the intestine), with the side wall tissue having a relatively soft, pliable consistency, and with the colon in particular being tethered to the abdomen and/or other abdominal structures via soft tissue.
  • some body lumens and/or body cavities can spasm and/or contract spontaneously but especially when an endoscope or other instrument is inserted into the body lumen and/or body cavity.
  • This spasming and/or contraction can cause the body lumen and/or body cavity to constrict and/or otherwise move and/or change its configuration, which can further complicate and/or compromise endoscopic visualization of the anatomy, and/or further complicate and/or compromise access to the anatomy using instruments introduced through conventional, flexible endoscopes.
  • the endoscope may grip and/or otherwise gather the colon during insertion and withdrawal and then suddenly slip and release the colon. This results in the endoscope moving quickly past significant lengths of the colon, thereby making accurate
  • the present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
  • the present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
  • instruments e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.).
  • the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
  • instruments such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the present invention comprises the provision and use of novel apparatus capable of straightening bends,“ironing out” folds and creating a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention.
  • apparatus comprising: a sleeve adapted to be slid over the exterior of an endoscope;
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid
  • a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube, wherein said distal balloon is capable of assuming a deflated condition and an inflated condition, and further wherein when said distal balloon is in its deflated condition, an axial opening extends therethrough, said axial opening being sized to receive the endoscope therein, and when said distal balloon is in its inflated condition, said axial opening is closed down.
  • a method for performing a procedure in a body lumen and/or body cavity comprising:
  • providing apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid communication with the interior of said proximal balloon
  • a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube, wherein said distal balloon is capable of assuming a deflated condition and an inflated condition, and further wherein when said distal balloon is in its deflated condition, an axial opening extends therethrough, said axial opening being sized to receive the endoscope therein, and when said distal balloon is in its inflated condition, said axial opening is closed down; positioning said apparatus in the body lumen and/or body cavity;
  • apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope, said sleeve comprising a passageway formed integral with said sleeve and a lumen formed integral with said sleeve for receiving an instrument;
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid
  • a push tube slidably mounted in said passageway of said sleeve; and a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube.
  • a method for performing a procedure in a body lumen and/or body cavity comprising:
  • providing apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope, said sleeve comprising a passageway formed integral with said sleeve and a lumen formed integral with said sleeve for receiving an instrument;
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid communication with the interior of said proximal balloon
  • a push tube slidably mounted in said passageway of said sleeve; and a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube; positioning said apparatus in the body lumen and/or body cavity;
  • apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope so as to substantially cover the endoscope from a point adjacent to the distal end of the endoscope to a point adjacent to the handle of the endoscope;
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid
  • a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube.
  • a method for performing a procedure in a body lumen and/or body cavity comprising:
  • providing apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope so as to substantially cover the endoscope from a point adjacent to the distal end of the endoscope to a point adjacent to the handle of the endoscope;
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid communication with the interior of said proximal balloon; a push tube slidably mounted to said sleeve; and
  • a distal balloon secured to the distal end of said push tube, the interior of said distal balloon being in fluid communication with said push tube; positioning said apparatus in the body lumen and/or body cavity;
  • apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope
  • a proximal balloon secured to said sleeve
  • an inflation/deflation tube carried by said sleeve and in fluid
  • a distal balloon secured to the distal ends of said pair of push tubes, the interior of said distal balloon being in fluid communication with said pair of push tubes.
  • a method for performing a procedure in a body lumen and/or body cavity comprising:
  • providing apparatus comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope; a proximal balloon secured to said sleeve;
  • an inflation/deflation tube carried by said sleeve and in fluid communication with the interior of said proximal balloon
  • a pair of push tubes slidably mounted to said sleeve; and a distal balloon secured to the distal ends of said pair of push tubes, the interior of said distal balloon being in fluid communication with said pair of push tubes;
  • an endoscopic tissue retraction system comprising:
  • an element configured to be movably mounted to an endoscope; and a connector configured to be secured to the element and to the tissue which is to be retracted.
  • a method for endoscopic ally retracting tissue comprising:
  • apparatus for endoscopic tissue retrieval comprising:
  • a balloon configured to be movably mounted to an endoscope; and an eyelet formed on the balloon.
  • a method for endoscopic ally retracting tissue comprising: positioning an endoscope and an element movably mounted to the endoscope adjacent to tissue which is to be retracted, wherein a connector is secured to the element;
  • a method for endoscopic ally retracting tissue comprising:
  • apparatus for endoscopic tissue retrieval comprising:
  • a balloon configured to be movably mounted to an endoscope, wherein the balloon is capable of assuming a deflated condition and an inflated condition, and further wherein when the balloon is in its deflated condition, an axial opening extends therethrough, and when the balloon is in its inflated condition, the axial opening is closed down;
  • a flap mounted in the axial opening of the balloon so as to form, in conjunction with the surrounding portions of the balloon, a concave pouch for receiving dissected tissue.
  • a method for retrieving endoscopic tissue comprising:
  • the balloon assembly distal to the tissue which is to be retrieved, the balloon assembly being movably mounted to an endoscope and the balloon assembly comprising (i) a balloon capable of assuming a deflated condition and an inflated condition, wherein when the balloon is in its deflated condition, an axial opening extends therethrough, and when the balloon is in its inflated condition, the axial opening is closed down, and (ii) a flap mounted in the axial opening of the balloon so as to form, in conjunction with the surrounding portions of the balloon, a concave pouch for receiving the tissue which is to be retrieved; positioning the tissue which is to be retrieved into the concave pouch; and withdrawing the balloon assembly proximally so as to retrieve the tissue received within the concave pouch.
  • an endoscopic tissue snare system comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope
  • each of the push tubes comprising a distal opening and a proximal opening
  • a distal balloon secured to the distal ends of the pair of push tubes; and a snare comprising a pair of free ends and an intermediate portion disposed between the pair of free ends, wherein the snare extends into the proximal opening of one push tube, up the length of the push tube, out the distal opening of that push tube, across the face of the distal balloon, into the distal opening of the other push tube, down the length of that push tube, and out the proximal opening of that push tube.
  • a method for endoscopic ally snaring tissue comprising:
  • an endoscopic tissue snare system comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope; a pair of push tubes slidably mounted to the sleeve, each of the push tubes comprising a distal opening and a proximal opening;
  • a snare comprising a pair of free ends and an intermediate portion disposed between the pair of free ends, wherein the snare extends into the proximal opening of one push tube, up the length of the push tube, out the distal opening of that push tube, across the face of the distal balloon, into the distal opening of the other push tube, down the length of that push tube, and out the proximal opening of that push tube;
  • an endoscopic tissue snare system comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope
  • a push tube slidably mounted to the sleeve, the push tube comprising a distal opening and a proximal opening;
  • a snare comprising a pair of free ends and an intermediate portion disposed between the pair of free ends, wherein the snare extends into the proximal opening of the push tube, up the length of the push tube, out the distal opening of the push tube, back into the distal opening of the push tube, down the length of the push tube, and out the proximal opening of the push tube.
  • a method for endoscopic ally snaring tissue comprising:
  • an endoscopic tissue snare system comprising:
  • a sleeve adapted to be slid over the exterior of an endoscope; a push tube slidably mounted to the sleeve, the push tube comprising a distal opening and a proximal opening;
  • a distal balloon secured to the distal end of the push tube; and a snare comprising a pair of free ends and an intermediate portion disposed between the pair of free ends, wherein the snare extends into the proximal opening of the push tube, up the length of the push tube, out the distal opening of the push tube, back into the distal opening of the push tube, down the length of the push tube, and out the proximal opening of the push tube;
  • Fig. 1 is a schematic view showing novel apparatus formed in accordance with the present invention, wherein the novel apparatus comprises, among other things, a sleeve for disposition over the end of an endoscope, an aft balloon mounted to the sleeve, a pair of push tubes slidably mounted to the sleeve, a fore balloon mounted to the distal end of the push tubes, and a push tube handle mounted to the proximal ends of the push tubes;
  • Figs. 2-4 are schematic views showing various dispositions of the fore balloon relative to the aft balloon
  • Fig. 5 is a schematic view showing further details of the distal end of the apparatus shown in Fig. 1;
  • Fig. 6 is a section view taken along line 6-6 of Fig. 5;
  • Figs. 7 and 8 are schematic views showing further details of the fore balloon
  • Fig. 8A is a schematic view showing the push tube handle
  • Figs. 9 and 10 are schematic views showing construction details of the fore balloon
  • Fig. 11 is a schematic view showing one form of inflation mechanism provided in accordance with the present invention.
  • Fig. 11 A is a schematic view showing another form of inflation mechanism provided in accordance with the present invention.
  • Figs. 12 and 13 are schematic views showing another form of inflation mechanism provided in accordance with the present invention.
  • Fig. 14 is a schematic view showing relief valves which may be used to ensure that the pressure within the fore balloon and/or aft balloon does not exceed a predetermined level;
  • Fig. 15 is a schematic view showing a retraction system which may be used to take up slack in a flexible tube of the apparatus shown in Fig. 1;
  • FIGS. 16-30 are schematic views showing preferred ways of using the apparatus of Fig. 1 ;
  • Fig. 30A is a schematic view showing an alternative construction for the push tubes and push tube handle of the present invention
  • Fig. 31 is a schematic view showing another form of the sleeve, wherein the sleeve comprises additional lumens for receiving instruments;
  • Figs. 32-35 are schematic views showing how instruments may be advanced through the additional lumens of the sleeve
  • Fig. 36 is a schematic view showing instrument guide tubes which may be disposed in the additional lumens of the sleeve, wherein instruments may be advanced through the instrument guide tubes;
  • Figs. 37-42 are schematic views showing an endoscopic tissue retraction system formed in accordance with the present invention.
  • Figs. 43-45 are schematic views showing another endoscopic tissue retraction system formed in accordance with the present invention.
  • Fig. 46 is a schematic view showing still another endoscopic tissue retraction system formed in accordance with the present invention.
  • Fig. 47 is a schematic view showing yet another endoscopic tissue retraction system formed in accordance with the present invention.
  • Fig. 48 is a schematic view showing another endoscopic tissue retraction system formed in accordance with the present invention.
  • Fig. 49 is a schematic view showing still another endoscopic tissue retraction system formed in accordance with the present invention.
  • Fig. 50 is a schematic view showing yet another endoscopic tissue retraction system formed in accordance with the present invention.
  • Figs. 51 and 52 are schematic views showing another endoscopic tissue retraction system formed in accordance with the present invention.
  • Figs. 52A and 52B are schematic views showing still another endoscopic tissue retraction system formed in accordance with the present invention.
  • Figs. 53-60 are schematic views showing an endoscopic tissue retrieval system formed in accordance with the present invention
  • Figs. 61 and 62 are schematic views showing an endoscopic tissue snare system formed in accordance with the present invention
  • Fig. 62A is an enlarged schematic view showing a portion of the endoscopic tissue snare system of Figs. 61 and 62;
  • Figs. 63-70 are schematic views showing operation of the endoscopic tissue snare system of Figs. 61 and 62 (note that in Figs. 63, 65, 67 and 69, the distal balloon and a portion of the snare have been rotated 90 degrees from their normal disposition in order to show additional information about the elements; and
  • Fig. 71 is a schematic view showing another endoscopic tissue snare system formed in accordance with the present invention.
  • the present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
  • endoscopic procedure is intended to mean substantially any minimally-invasive or limited access procedure, diagnostic and/or therapeutic and/or surgical, for accessing,
  • the present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
  • instruments e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes (and hence also steadying and/or stabilizing the distal tips and/or working ends of other instruments inserted through the working channels of those endoscopes, such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.).
  • the present invention comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
  • instruments such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the present invention comprises the provision and use of novel apparatus capable of straightening bends,“ironing out” folds and creating a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual examination (including visualization of areas initially hidden or outside the field of view) and/or therapeutic intervention.
  • novel apparatus 5 which is capable of manipulating (e.g., stabilizing, straightening, expanding and/or flattening, etc.) the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure using an endoscope 10 (e.g., an articulating endoscope), and/or for stabilizing the distal end of endoscope 10 and/or the distal tips and/or working ends of other instruments (e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc., not shown in Fig. 1).
  • endoscope 10 e.g., an articulating endoscope
  • other instruments e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc., not shown in Fig.
  • apparatus 5 generally comprises a sleeve 15 adapted to be slid over the exterior of the shaft of endoscope 10, a proximal (or“aft”) balloon 20 (the terms“proximal” and“aft” will hereinafter be used
  • Apparatus 5 also comprises a pair of push tubes 30 slidably mounted to sleeve 15 as will hereinafter be discussed, and a distal (or“fore”) balloon 35 (the terms“distal” and
  • Apparatus 5 also comprises an associated inflation mechanism 40 (Fig. 1) for enabling selective inflation/deflation of one or both of aft balloon 20 and fore balloon 35 by the physician or (or other operator or user).
  • sleeve 15 generally comprises an elongated, thin-walled tube configured to be slid over the exterior of the shaft of endoscope
  • the sleeve 10 e.g., retrograde from the distal tip of the endoscope
  • the sleeve being sized and constructed so that it will slide easily back over the endoscope during mounting thereon (preferably with the scope “dry”) but will have sufficient residual friction (when gripped by the hand of the physician or other operator or user) with the outer surface of the endoscope such that the sleeve will remain in place to allow torqueing (i.e., rotational turning) and pushing/pulling of the endoscope during use (e.g., within the colon of a patient).
  • sleeve 15 can move circumferentially to some extent about endoscope 10 (and when gripped securely by the hand of the physician or other operator or user, can rotate in conjunction with the shaft of the endoscope); but sleeve 15 can only move nominally in an axial direction relative to endoscope 10.
  • Sleeve 15 is sized so that when its distal end is substantially aligned with the distal end of endoscope 10, sleeve 15 (in conjunction with base
  • sleeve 15 is sized so that when it is mounted to endoscope 10 and endoscope 10 is inserted into a patient, sleeve 15 extends out of the body of the patient.
  • apparatus 5 is provided according to the particular endoscope with which it is intended to be used, with apparatus 5 being sized so that when base 25 is in engagement with the handle of the endoscope, the distal end of sleeve 15 will be appropriately positioned at the distal end of the endoscope, i.e., substantially aligned with the distal end of the endoscope or slightly proximal to the distal end of the endoscope.
  • the distal end of sleeve 15 may be provided with a radially- inwardly-extending stop (not shown) to positively engage the distal end surface of endoscope 10, whereby to prevent the distal end of sleeve 15 from moving proximally beyond the distal end surface of endoscope 10.
  • a radially- inwardly-extending stop can also assist in preventing“torque slip” of sleeve 15 relative to endoscope 10 during torqueing (i.e., rotational turning) of the endoscope while within the colon, and/or“thrust slip” of sleeve 15 relative to endoscope 10 during forward pushing of the endoscope while within the colon.
  • Sleeve 15 preferably has a smooth outer surface so as to be non-traumatic to tissue, and is preferably made of a highly flexible material such that the sleeve will not inhibit bending of the endoscope during use.
  • sleeve 15 comprises polyurethane, polyethylene, poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), etc., and is preferably transparent (or at least translucent) so as to allow distance markings on endoscope 10 to be visualized through sleeve 15.
  • sleeve 15 preferably has nominal hoop strength, so that the physician (or other operator or user) can grip endoscope 10 through sleeve 15, e.g., so as to torque the scope.
  • sleeve 15 can include a lubricious coating (e.g., a liquid such as perfluoropolyether synthetic oil, a powder, etc.) on some or all of its interior and/or exterior surfaces, so as to facilitate disposition of the sleeve over the endoscope and/or movement of apparatus 5 through a body lumen and/or body cavity.
  • a lubricious coating e.g., a liquid such as perfluoropolyether synthetic oil, a powder, etc.
  • sleeve 15 may be formed of a material which is itself lubricious, e.g., polytetrafluoroethylene (PTFE), etc.
  • PTFE polytetrafluoroethylene
  • the inside surface of sleeve 15 may include features (e.g., ribs) to prevent the sleeve from rotating relative to the endoscope during use.
  • a vacuum may be“pulled” between sleeve 15 and endoscope 10, whereby to secure sleeve 15 to endoscope 10 and minimize the profile of sleeve 15.
  • a vacuum may be introduced at the proximal end of sleeve 15 (i.e., at base 25) or a vacuum may be introduced at a point intermediate sleeve 15.
  • removal of sleeve 15 from endoscope 10 may be facilitated by introducing a fluid (e.g., air or a liquid lubricant) into the space between sleeve 15 and endoscope 10, e.g., at the proximal end of sleeve 15 (i.e., at base 25) or intermediate sleeve 15.
  • a fluid e.g., air or a liquid lubricant
  • aft balloon 20 is secured to sleeve 15 just proximal to the articulating joint of the endoscope near to, but spaced from, the distal end of the sleeve.
  • Aft balloon 20 is disposed concentrically about sleeve 15, and hence concentrically about an endoscope 10 disposed within sleeve 15.
  • aft balloon 20 has a generally toroidal shape.
  • Aft balloon 20 may be selectively inflated/deflated by means of a proximal inflation/deflation tube 45 which has its distal end in fluid communication with the interior of aft balloon 20, and which has its proximal end in fluid communication with a fitting 46 mounted to base 25.
  • Fitting 46 is configured for connection to the aforementioned associated inflation mechanism 40.
  • Fitting 46 is preferably a luer-activated valve, allowing inflation mechanism 40 to be disconnected from fitting 46 without losing pressure in aft balloon 20.
  • Inflation/deflation tube 45 may be secured to the exterior surface of sleeve 15 or, more preferably, inflation/deflation tube 45 may be contained within a lumen 47 formed within sleeve 15.
  • aft balloon 20 is disposed a short distance back from the distal end of sleeve 15, i.e., by a distance which is approximately the same as the length of the articulating portion of a steerable endoscope 10, such that the articulating portion of the steerable endoscope will be disposed distal to aft balloon 20 when the steerable endoscope is disposed in sleeve 15.
  • This construction allows the flexible portion of the steerable endoscope to be articulated even when aft balloon 20 has been inflated in the anatomy so as to stabilize the adjacent non-articulating portion of the endoscope relative to the anatomy, as will hereinafter be discussed in further detail.
  • aft balloon 20 when inflated, aft balloon 20 provides a secure platform for maintaining endoscope 10 in a stable position within a body lumen or body cavity, with endoscope 10 centered within the body lumen or body cavity.
  • endoscope 10 can provide improved visualization of the anatomy.
  • endoscope 10 is securely maintained within the body lumen or body cavity by the inflated aft balloon 20
  • instruments advanced through the internal lumens (sometimes referred to as the“working channel” or“working channels”) of endoscope 10 will also be provided with a secure platform for supporting those instruments within the body lumen or body cavity.
  • aft balloon 20 When aft balloon 20 is appropriately inflated, the aft balloon can atraumatically engage and form a sealing relationship with the side wall of a body lumen within which apparatus 5 is disposed.
  • aft balloon 20 is formed out of polyurethane.
  • Base 25 is secured to the proximal end of sleeve 15.
  • Base 25 engages endoscope 10 and helps secure the entire assembly (i.e., apparatus 5) to endoscope 10.
  • Base 25 preferably comprises a substantially rigid or semi-rigid structure which may be gripped by the physician (or other operator or user) and pulled proximally, whereby to allow the physician (or other operator or user) to pull sleeve 15 over the distal end of endoscope 10 and then proximally back along the length of endoscope 10, whereby to mount sleeve 15 to the outer surface of the shaft of the endoscope.
  • base 25 is pulled proximally along the endoscope until base 25 seats against the handle of the endoscope, thereby prohibiting further proximal movement of base 25 (and hence thereby prohibiting further proximal movement of sleeve 15).
  • base 25 makes a sealing engagement with endoscope 10.
  • Push tubes 30 are slidably mounted to sleeve 15, whereby the distal ends of the push tubes can be extended and/or retracted relative to sleeve 15 (e.g., by advancing or withdrawing the push tubes via push tube handle 37, see below), and hence extended and/or retracted relative to the distal end of endoscope 10 which is disposed in sleeve 15.
  • push tubes 30 are slidably disposed in support tubes 50 which are secured to the outer surface of sleeve 15 or, more preferably, are contained within lumens 52 formed within sleeve 15.
  • Support tubes 50 are preferably formed out of a low friction material (e.g.,
  • support tubes 50 are flexible (so as to permit endoscope 10, and particularly the articulating portion of steerable endoscope 10, to flex as needed during the procedure); however, support tubes 50 also provide some column strength.
  • sleeve 15 when support tubes 50 are mounted within lumens 52 formed in sleeve 15, the assembly of sleeve 15 and support tubes 50 is flexible yet has a degree of column strength (whereas sleeve 15 alone is flexible but has substantially no column strength).
  • lumens 52 are preferably lubricated so as to minimize friction between push tubes 30 and lumens 52.
  • push tubes 30 are connected to push tube handle 37.
  • pushing distally on push tube handle 37 causes the distal ends of push tubes 30 to move distally (at the same rate) relative to sleeve 15 (whereby to move fore balloon 35 distally relative to aft balloon 20) and pulling proximally on push tube handle 37 causes the distal ends of push tubes 30 to retract proximally (at the same rate) relative to sleeve 15 (whereby to move fore balloon 35 proximally relative to aft balloon 20).
  • a clamp 53 (Figs. 12 and 15) is provided at base 25 for holding push tubes 30 in a selected disposition relative to base 25 (and hence in a selected disposition relative to sleeve 15).
  • Push tubes 30 are preferably formed out of a relatively flexible material which provides good column strength, e.g., a thermoplastic polyethylene resin such as IsoplastTM (available from The Lubrizol Corporation of Wickliffe, Ohio), polyethylene, polypropylene, nylon, etc. It should be appreciated that push tubes 30 can comprise a single material or a plurality of materials, and that the stiffness of push tubes 30 can vary along their length. By way of example but not limitation, the distal-most portion of push tubes 30 can be formed of the same material as the remainder of the push tubes but have a lower modulus so as to be more flexible than the remainder of the push tubes, or the distal-most portion of push tubes 30 can comprise a different, more resilient flexible material.
  • a relatively flexible material which provides good column strength
  • a thermoplastic polyethylene resin such as IsoplastTM (available from The Lubrizol Corporation of Wickliffe, Ohio)
  • the stiffness of push tubes 30 can vary along their length.
  • the distal-most portion of push tubes 30 can be formed
  • the distal-most portion of push tubes 30 can comprise Nitinol.
  • the distal-most portion of push tubes 30 can comprise a stainless steel coil covered with an outer jacket of polytetrafluoroethylene (PTFE), with the distal-most jacket/more- proximal tubing together providing a sealed lumen for inflating/deflating fore balloon 35.
  • PTFE polytetrafluoroethylene
  • push tubes 30 are configured to maintain a parallel disposition when they are in an unbiased state, i.e., when no force is being applied to push tubes 30. This is true regardless of the state of inflation or deflation of fore balloon 35.
  • the distal-most portion of push tubes 30 can be configured to bend inwardly or outwardly if desired. With such a configuration, when the distal tips of push tubes 30 are maintained stationary (e.g., by an inflated fore balloon, as will hereinafter be discussed) and a sufficient distally-directed force is applied to push tubes 30, the middle portions of push tubes 30 (i.e., the portions between the inflated fore balloon 35 and sleeve 15) can bend or bow outwardly, whereby to push outwardly on the side wall of the body lumen which apparatus 5 is disposed in, thereby providing a“tenting” effect on the side wall of the body lumen and/or body cavity in the space between aft balloon 20 and fore balloon 35.
  • the middle portions of push tubes 30 i.e., the portions between the inflated fore balloon 35 and sleeve 15
  • This “tenting” effect can significantly enhance visibility and/or tissue stability in the area distal to endoscope 10, by pushing outwardly on the side wall of the body lumen and/or body cavity in which apparatus 5 is disposed. It should also be appreciated that by forming push tubes 30 out of a flexible material, it is possible to manually adjust their position during use (e.g., by using a separate tool, by torqueing the apparatus, etc.) so as to prevent the push tubes from interfering with visualization of the patient’ s anatomy and/or interfering with diagnostic or therapeutic tools introduced into the space between the fore and aft balloons.
  • the flexible push tube 30 may be moved out of the way by using a separate tool or instrument, or by rotating the apparatus with a torqueing motion so as to move the flexible push tube 30 out of the way, etc.
  • push tubes 30 by constructing push tubes 30 so that they are circular and flexible and of a diameter significantly smaller than the round circumference of endoscope 10, the movement of the round endoscope, when articulated, can simply push the push tubes out of the way and provides a unobstructed visual path to the tissue of interest.
  • push tubes 30 can be marked with an indicator including distance markers (not shown in the figures), e.g., colored indicators or radiopaque indicators, so that a physician (or other operator or user) observing the surgical site via endoscope 10 or by radiological guidance (e.g.. X-ray fluoroscopy) can ascertain the relative disposition of push tubes 30 at the surgical site both longitudinally and/or circumferentially with respect to the side wall of the body lumen and/or other body cavity.
  • distance markers e.g., colored indicators or radiopaque indicators
  • push tubes 30 are hollow, and have their distal ends in fluid communication with the interior of fore balloon 35 (Figs. 1-5, 7 and 8) and their internal lumens in fluid communication with a fitting 56 mounted to base 25.
  • Fitting 56 is configured for connection to the aforementioned associated inflation mechanism 40, in order that fore balloon 35 may be selectively inflated/deflated with air or other fluids (including liquids).
  • Fitting 56 is preferably a luer-activated valve, allowing inflation mechanism 40 to be disconnected from fitting 56 without losing pressure in fore balloon 35.
  • push tube handle 37 comprises a hollow interior 57.
  • Push tubes 30 are mounted to push tube handle 37 so that push tubes 30 will move in conjunction with push tube handle 37, and so that the hollow interiors of push tubes 30 are in fluid communication with the hollow interior 57 of push tube handle 37.
  • Push tube handle 37 also comprises a fitting 58 which is in fluid communication with hollow interior 57 of push tube handle 37.
  • a flexible tube 59 connects fitting 58 with an internal chamber (not shown) in base 25, with this internal chamber in base 25 being in fluid communication with the
  • dual push tubes provides numerous advantages.
  • the provision of dual push tubes provides a symmetric force to fore balloon 35 when the fore balloon is advanced distally into a body lumen, as will hereinafter be discussed.
  • the provision of dual push tubes 30 provides equal outward forces against the adjacent anatomy when the push tubes are employed to straighten out the anatomy in the area proximate the distal end of endoscope 10, thereby enhancing visualization of, and/or access to, the anatomy, as will hereinafter be discussed.
  • dual push tubes ensures that fore balloon 35 remains centered on endoscope 10, thereby facilitating un-docking of fore balloon 35 from endoscope 10 and re-docking of fore balloon 35 over endoscope 10, as will hereinafter be discussed.
  • the provision of dual push tubes 30 helps ensure that fore balloon 35 is stable relative to the tip of the endoscope, minimizing rotational movement of the fore balloon when inflated.
  • the provision of dual hollow push tubes provides a redundant air transfer system for inflating or deflating fore balloon 35.
  • Fore balloon 35 is secured to the distal ends of push tubes 30, whereby the spacing between aft balloon 20 and fore balloon 35 can be adjusted by moving push tubes 30 relative to sleeve 15, i.e., by moving push tube handle 37 relative to sleeve 15.
  • hollow push tubes 30 provide a conduit between the interior of fore balloon 35 and fitting 56, whereby to permit selective
  • balloon 35 is configured so that (i) when it is deflated (or partially deflated) and it is in its“retracted” position relative to sleeve 15 (Fig.
  • fore balloon 35 provides an axial opening 63 (Figs. 7, 8 and 10) sufficient to accommodate sleeve 15 and the shaft of endoscope 10 therein, whereby fore balloon 35 can be“docked” over sleeve 15 and endoscope 10, and (ii) when fore balloon 35 is in its“extended” position relative to sleeve 15 and is appropriately inflated (Fig. 4), axial opening 63 is closed down (and preferably completely closed off).
  • the fore balloon can atraumatically engage and form a sealing relationship with the side wall of a body lumen and/or body cavity within which apparatus 5 is disposed.
  • the fore balloon can effectively seal the body lumen and/or body cavity distal to fore balloon 35, by closing down axial opening
  • the two balloons will create a sealed zone therebetween (sometimes hereinafter referred to as“the therapeutic zone”).
  • balloon 35 has a“torus” shape when deflated (to allow it to seat over the distal end of the endoscope) and a substantially“solid” shape when inflated (to allow it to close off a body lumen or body cavity).
  • balloon 35 is preferably manufactured as a single construct comprising a body 67 having a proximal opening 69 and a distal opening 71, a proximal extension 73 having a “key-shaped” cross-section comprising lobes 74, and a distal extension 76 having a circular cross-section.
  • lobes 74 are disposed on proximal extension 73 with a configuration which matches the configuration of push tubes 30 (i.e., where apparatus 5 comprises two push tubes 30 diametrically opposed to one another, proximal extension 73 will comprise two lobes 74 diametrically opposed to one another; where apparatus 5 comprises three push tubes 30 equally- circumferentially-spaced about the perimeter of sleeve 15, proximal extension 73 will comprise three lobes 74 equally-circumferentially-spaced about the perimeter of proximal extension 73; where apparatus 5 comprises one push tube 30, proximal extension 73 will comprise one lobe 74, etc. - for the purposes of the present invention, proximal extension 73 and lobe(s) 74 may be collectively referred to as having a“key-shaped” cross-section).
  • proximal extension 73 is everted into the interior of body 67 (with the interiors of hollow push tubes 30 being in fluid communication with the interior of body 67), and then distal extension 76 is everted into the interior of proximal extension 73, whereby to provide a fore balloon 35 having axial opening 63 extending therethrough, with push tubes 30 being secured to fore balloon 35 and communicating with the interior of fore balloon 35.
  • axial opening 63 is sized to receive the distal end of endoscope 10 therein.
  • fore balloon 35 by the aforementioned process of everting proximal extension 73 into the interior of body 67, and then everting distal extension 76 into the interior of proximal extension 73, provides multiple layers of balloon material around push tubes 30, thereby providing a more robust balloon construction.
  • providing multiple layers of balloon material around push tubes 30 adds cushioning to the distal ends of push tubes 30, thereby providing an even more atraumatic distal tip to push tubes 30 and further ensuring that the distal tips of push tubes 30 do not damage the adjacent tissue.
  • fore balloon 35 is formed out of polyurethane.
  • fore balloon 35 when fore balloon 35 is in its deflated condition, the material of fore balloon 35 substantially encompasses the distal ends of push tubes 30 (while still allowing push tubes 30 to be in fluid communication with the interior of fore balloon 35), thereby providing an atraumatic tip for advancing fore balloon 35 distally through a body lumen.
  • push tubes 30 and the deflated fore balloon 35 can, together, essentially function as a soft-tipped lead for apparatus 5 and endoscope 10, as discussed further below (Fig. 20).
  • aft balloon 20 and fore balloon 35 can be marked with an indicator (e.g., a color indicator or a radiopaque indicator) so that a physician (or other operator or user) observing the surgical site via endoscope 10 or radiological guidance (e.g., X-ray fluoroscopy) can ascertain the disposition of one or both of the balloons at the surgical site.
  • Inflation mechanism 40 provides a means to selectively inflate aft balloon 20 and/or fore balloon 35.
  • inflation mechanism 40 comprises a single-line syringe inserter 140 comprising a body 145 and a plunger 150.
  • a spring 153 is provided in body 145 to automatically return plunger 150 at the end of its stroke.
  • Syringe inserter 140 is connected to one or the other of fittings 46, 56 via a line 155.
  • syringe inserter 140 when single-line syringe inserter 140 is to be used to inflate fore balloon 35, syringe inserter 140 is connected to fitting 56 via line 155 so that the output of single-line syringe inserter 140 is directed to fore balloon 35 (i.e., via flexible tube 59 and the hollow interiors of push tubes 30).
  • inflation mechanism 40 comprises an elastic bulb 156 having a first port 157 and a second port 158.
  • a one-way valve 159 e.g., a check valve
  • Another one-way valve 159 is disposed in second port 158 so that air can only pass through second port 158 when traveling in an inward direction.
  • elastic bulb 156 is compressed (e.g., by hand), air within the interior of elastic bulb 156 is forced out first port 157; and when elastic bulb 156 is thereafter released, air is drawn back into the interior of elastic bulb 156 through second port 158.
  • first port 157 is connected to fitting 46 via line 155 so that the positive pressure output of elastic bulb 156 is directed to aft balloon 20.
  • Elastic bulb 156 may thereafter be used to deflate aft balloon 20, i.e., by connecting second port 158 to fitting 46 via line 155 so that the suction of elastic bulb 156 is directed to aft balloon 20.
  • first port 157 is connected to fitting 56 via line 155 so that the positive pressure output of elastic bulb 156 is directed to fore balloon 35.
  • Elastic bulb 156 may thereafter be used to deflate fore balloon 35, i.e., by connecting second port 158 to fitting 56 via line 155 so that the suction of elastic bulb 156 is directed to fore balloon 35.
  • a syringe 160 may be used to inflate aft balloon 20 and/or fore balloon 35.
  • Inflation mechanism 160 comprises a body 161 and a plunger 162.
  • a spring (not shown) is provided in body 161 to automatically return plunger 162 at the end of its power stroke.
  • Syringe 160 is connected to fittings 46, 56 via a line 163.
  • syringe 160 comprises a valve 165 for connecting syringe 160 to fore balloon 35 or aft balloon 20, and a valve 170 for selecting inflation or deflation of the connected-to balloon.
  • valve 165 (a two-position valve that connects valve 170 to either the fore balloon or the aft balloon) is set so that the syringe 160 is connected through fitting 46 to aft balloon 20, and valve 170 (a 2-way crossover valve which allows the one-way valves to be arranged to inflate in one configuration and deflate in the other configuration) is set so that syringe 160 is providing inflation pressure. Thereafter, when aft balloon 20 is to be deflated, valve 170 is set to its deflate position.
  • valve 165 is set so that syringe 160 is connected through fitting 56 to fore balloon 35
  • valve 170 is set so that syringe 160 is providing inflation pressure.
  • valve 170 is set to its deflate position.
  • inflation mechanism 40 may comprise an automated source of fluid pressure (either positive or negative), e.g., an electric pump.
  • a relief valve 175 can be connected to the inflation/deflation line which connects to fore balloon 35 so as to ensure that the pressure within fore balloon 35 does not exceed a predetermined level.
  • a relief valve 180 can be connected to the inflation/deflation line which connects to aft balloon 20 so as to ensure that the pressure within aft balloon 20 does not exceed a predetermined level.
  • one or more pressure gauges 182 may be incorporated into the fluid line connected to aft balloon 20, and/or the fluid line connected to fore balloon 35, whereby to provide the physician (or other operator or user) with information relating to the pressure inside aft balloon 20 and/or fore balloon 35 so as to avoid over inflation and/or to help the physician (or other operator or user) ascertain the inflation state of a balloon during a procedure.
  • a flexible tube retraction system 185 may be provided (e.g., within base 25) to take up slack in flexible tube 59 when fore balloon 35 is extended.
  • the Novel Apparatus Apparatus 5 may be used to manipulate, (e.g., stabilize, straighten, expand and/or flatten, etc.) the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure using endoscope 10, and/or to stabilize the distal tips and/or working ends of instruments (e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.), e.g., advanced into the therapeutic zone.
  • instruments e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • sleeve 15 is first mounted to endoscope 10 (Fig. 1). This may be accomplished by pulling base 25 proximally over the distal end of endoscope 10 and then pulling proximally along the length of endoscope 10 until the distal end of sleeve 15 is substantially aligned with the distal tip of endoscope 10. At this point, aft balloon 20 is deflated, fore balloon 35 is deflated, and fore balloon 35 is docked over the distal end of endoscope 10. Endoscope 10 and apparatus 5 are ready to be inserted as a unit into the patient.
  • endoscope 10 and apparatus 5 are inserted as a unit into a body lumen and/or body cavity of the patient.
  • endoscope 10 and apparatus 5 are inserted as a unit into the gastrointestinal (GI) tract of the patient.
  • Endoscope 10 and apparatus 5 are advanced along the body lumen and/or body cavity to a desired location within the patient (Figs. 17 and 18).
  • aft balloon 20 is inflated so as to stabilize apparatus 5 (and hence endoscope 10) within the body lumen and/or body cavity. See Fig. 19. This may be done using the aforementioned associated inflation mechanism 40.
  • the endoscope inasmuch as the articulating portion of the endoscope resides distal to aft balloon 20, the endoscope will be able to articulate distal to aft balloon 20 so as to facilitate visualization of the anatomy even after aft balloon 20 is inflated.
  • aft balloon 20 stabilizes endoscope 10 within the gastrointestinal tract and distends the colon and increases the colon to a fixed diameter directly adjacent to aft balloon 20.
  • push tubes 30 are advanced distally in the body lumen and/or body cavity (i.e., so as to move fore balloon 35 further ahead of aft balloon 20) by pushing distally on push tube handle 37.
  • push tubes 30, and hence fore balloon 35 move distally relative to endoscope 10 (which is stabilized in position within the gastrointestinal tract by the inflated aft balloon 20).
  • the deflated fore balloon 35 covers the distal ends of push tubes 30 during such distal advancement of fore balloon 35, thereby ensuring atraumatic advancement of fore balloon 35.
  • atraumatic advancement of fore balloon 35 may be further enhanced by forming the distal ends of push tubes 30 out of a more resilient material.
  • fore balloon 35 is inflated (Fig. 20) so as to secure fore balloon 35 to the anatomy. Again, this may be done using the aforementioned associated inflation mechanism 40. As fore balloon 35 is inflated, the inflated fore balloon 35, the inflated aft balloon 20, and push tubes 30 will all complement one another so as to stabilize, straighten, expand and/or flatten the side wall of the body lumen and/or body cavity so as to better present the side wall tissue
  • the inflated fore balloon 35 and the inflated aft balloon 20 will together expand and tension the side wall of the body lumen and/or body cavity, and push tubes 30 will tend to straighten the anatomy between the two inflated balloons when the fore balloon is extended distally from the aft balloon.
  • fore balloon 35 will create a substantially full-diameter seal across the body lumen and/or body cavity
  • aft balloon 20 will cooperate with sleeve 15 and endoscope 10 to create another substantially full-diameter barrier across the body lumen and/or body cavity.
  • the inflated fore balloon 35 and the inflated aft balloon 20 will together define a substantially closed region along the body lumen and/or body cavity (i.e., an isolated therapeutic zone which prevents the passage of fluid and/or other liquids by virtue of the air-tight seals established by the inflated fore balloon 35 and aft balloon 20).
  • the side wall of the body lumen and/or body cavity will be tensioned by inflation of fore balloon 35 and aft balloon 20, whereby to better present the side wall of the body lumen and/or body cavity for viewing through endoscope 10.
  • the expansion and tensioning of the side wall of the body lumen and/or body cavity effected by the inflated fore balloon 35, the inflated aft balloon 20, and push tubes 30, can be further enhanced by advancing the fore balloon when it is inflated and gripping the side wall of the body lumen and/or body cavity, whereby to tension the side wall of the body lumen and/or body cavity.
  • this region can then be inflated (Fig. 21) with a fluid (e.g., air, C0 2 , etc.) so as to further tension the side wall of the body lumen and/or body cavity, whereby to better present the side wall of the body lumen and/or body cavity for viewing through endoscope 10 and stabilize the side wall so as to facilitate more precise therapeutic interventions.
  • a fluid e.g., air, C0 2 , etc.
  • fore balloon 35 can be retracted toward aft balloon 20 (i.e., by pulling push tube handle 37 proximally), while remaining inflated (and hence maintaining a grip on the side wall of the body lumen and/or body cavity), so as to move the visible mucosa and further improve visualization and access (see Fig. 22), e.g., so as to position a particular target area on the side wall of the body lumen and/or body cavity at a convenient angle relative to the endoscope and endoscopic tools.
  • push tubes 30 may be advanced distally a portion - but only a portion - of their full distal stroke, then fore balloon 35 may be inflated so as to grip the side wall of the body lumen and/or body cavity, and then push tubes 30 may be further advanced distally.
  • This action will cause flexible push tubes 30 to bow outwardly (see Figs. 22A-22D), contacting the side wall of the body lumen and/or body cavity and pushing the side wall of the body lumen and/or body cavity outwardly, e.g., in a “tenting” fashion, whereby to further enhance visualization of the side wall of the body lumen and/or body cavity by endoscope 10.
  • instruments 190 may be advanced through working channels of endoscope 10 so as to biopsy and/or treat pathologic conditions (e.g., excise pathological anatomy). It will be appreciated that such instruments will extend through the distal end of the endoscope, which is effectively stabilized relative to the anatomy via aft balloon 20, so that the working ends of instruments 190 will also be highly stabilized relative to the anatomy. This is a significant advantage over the prior art practice of advancing instruments out of the non- stabilized end of an endoscope.
  • instruments 190 include articulating instruments having a full range of motion, whereby to better access target anatomy.
  • the isolated therapeutic zone permits rapid flushing of the anatomic segment in which the therapeutic zone lies (e.g., with a liquid such as saline) with rapid subsequent removal of the flushing liquid (see Figs. 24-26).
  • fore balloon 35 can be directed with high precision to a bleeding site, whereupon fore balloon 35 may be used (e.g., inflated) to apply local pressure to the bleeding site in order to enhance bleeding control (see Fig. 27). This can be done under the visualization provided by endoscope 10.
  • fore balloon 35 is returned to its torus configuration (i.e., partially deflated), the fore balloon is retracted proximally and
  • aft balloon 20 is deflated, and then endoscope 10 (with apparatus 5 carried thereon) is repositioned within the anatomy.
  • endoscope 10 (with apparatus 5 carried thereon) is repositioned within the anatomy.
  • fore balloon 35 is to be re-docked on the distal end of endoscope 10
  • fore balloon 35 is preferably only partially deflated until fore balloon 35 is re-docked on the distal end of the endoscope, since partial inflation of fore balloon 35 can leave fore balloon 35 with enough“body” to facilitate the re-docking process. Thereafter, fore balloon 35 may be fully deflated if desired, e.g., so as to positively grip the distal end of endoscope 10.
  • fore balloon 35 may be used as a drag brake to control retrograde motion of the endoscope. More particularly, in this form of the invention, endoscope 10 and apparatus 5 are first advanced as a unit into the body lumen and/or body cavity until the tip of the endoscope is at the proper location. Next, aft balloon 20 is inflated, push tubes 30 are advanced distally, and then fore balloon 35 is inflated (Fig. 28). Visualization and, optionally, therapeutic treatment may then be effected at that location.
  • aft balloon 20 When the apparatus is to be moved retrograde, aft balloon 20 is deflated, fore balloon 35 is partially deflated, and then the endoscope is withdrawn proximally, dragging the semi-inflated fore balloon 35 along the body lumen and/or body cavity (Fig. 29), with fore balloon 35 acting as something of a brake as the endoscope is pulled proximally, thereby enabling more controlled retrograde movement of the endoscope and hence better visualization of the anatomy.
  • aft balloon 20 and fore balloon 35 can be re-inflated, as shown in Fig. 30, with or without introduction of a fluid into the“isolated therapeutic zone” established between the two balloons, so as to stabilize, straighten, expand and/or flatten the anatomy.
  • aft balloon 20 as a brake when withdrawing the endoscope (and hence apparatus 5) from the anatomy, either alone or in combination with the aforementioned braking action from fore balloon 35.
  • endoscope 10 and apparatus 5 are withdrawn from the anatomy.
  • this is done by deflating (or partially deflating) fore balloon 35, retracting push tubes 30 so that fore balloon 35 is“re docked” onto the distal end of endoscope 10, fully deflating fore balloon 35 so that it grips the distal end of the endoscope, deflating aft balloon 20 (if it is not yet deflated), and then withdrawing endoscope 10 and apparatus 5 as a unit from the anatomy.
  • apparatus 5 may also be used advantageously in various ways other than those disclosed above.
  • endoscope 10 and apparatus 5
  • the fore balloon and flexible push tubes 30 may act as an atraumatic lead (guiding structure) for the endoscope as the endoscope advances through the colon.
  • the flexible push tubes 30 can deflect so that the fore balloon tracks the path of the colon, thereby aiding atraumatic advancement of the endoscope along the colon.
  • apparatus 5 may also be used advantageously in other ways to facilitate further examinations of the luminal surface otherwise difficult to be performed currently. Such an example is endoscopic ultrasound examination of the lumen which would be facilitated by the fluid-filled inflated fore balloon and ultrasound probe examination.
  • apparatus 5 may be constructed so that push tubes 30 may be advanced or retracted independently of one another, as well as in conjunction with one another - such independent advancement or retraction of push tubes 30 can aid in steering the partially- or fully-deflated fore balloon 35 through the body lumen and/or body cavity, whereby to facilitate advancement or retraction of endoscope 10 through the body lumen and/or body cavity, and/or such
  • push tubes 30 are each independently slidably mounted to push tube handle 37 so that push tubes 30 can move independently of push tube handle 37 and each other. Stops 191 limit distal movement of push tubes 30 relative to push tube handle 37 so that a push tube cannot be moved completely out of push tube handle 37.
  • push tubes 30 are moved distally, either together or independently of one another.
  • push tubes 30 are moved proximally, either together or independently of one another.
  • push tubes 30 can be moved independently of one another so as to“turn” the fore balloon, e.g., such as when fore balloon 35 is inflated and engaging the anatomy, whereby to apply a“turning force” to the anatomy, or where fore balloon 35 is partially inflated and is being used as an atraumatic tip for the advancing assembly, whereby to help“steer” the assembly through the anatomy.
  • push tubes 30 may be held in a particular disposition by mounting push tubes 30 in the aforementioned clamp 53 (Figs. 12 and 15).
  • sleeve 15 so as to support instruments (or hollow instrument guide tubes) external to endoscope 10. More particularly, looking again at Figs. 5 and 6, it will be seen that in the construction shown in Figs. 5 and 6, sleeve 15 comprises a lumen 47 for receiving inflation/deflation tube 45 for inflating/deflating aft balloon 20, and a pair of lumens 52 for receiving support tubes 50 which receive push tubes 30 for manipulating and inflating/deflating fore balloon 35. However, if desired, sleeve 15 may include additional lumens for supporting instruments (or hollow instrument guide tubes) external to endoscope 10.
  • sleeve 15 which includes a plurality of lumens 195 for slidably receiving instruments 190 therein.
  • aft balloon 20 when inflated, aft balloon 20 provides a secure platform for maintaining endoscope 10 and sleeve 15 within a body lumen or body cavity, with endoscope 10 and sleeve 15 centered within the body lumen or body cavity.
  • lumens 195 will also be securely maintained within the body lumen or body cavity so as to provide a secure support for instruments advanced through lumens 195 of sleeve 15.
  • the proximal ends of lumens 195 may extend to, and through, base 25, in which case instruments may be inserted into lumens 195 at base 25, or the proximal ends of lumens 195 may terminate proximal to base 25 (but still outside the body of the patient), in which case instruments may be inserted into lumens 195 intermediate sleeve 15.
  • endoscope 10 is 180 cm in length and instruments 190 are 60 cm in length, it can be advantageous to insert instruments 190 into lumens 195 at a point closer to balloons 20, 35 (rather than at base 25).
  • Fig. 31 the lumen 47 for receiving inflation/deflation tube 45 and inflation/deflation tube 45 for inflating/deflating aft balloon 20 are not visible, since the view is distal-facing and is taken at a location distal to where lumen 47 and inflation/deflation tube 45 terminate on sleeve 15.
  • Figs. 32-35 show various instruments 190 extending out of lumens 195.
  • instruments 190 preferably comprise articulating instruments, e.g., graspers 190A in Figs 32-35, a cauterizing device 190B in Figs. 32-33, scissors
  • sleeve 15 comprises its central passageway for receiving endoscope 10, lumen 47 for receiving inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 therein, sleeve 15 is preferably formed by an extrusion process.
  • inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 may have a fixed configuration (i.e., a fixed diameter), so that sleeve 15 has a fixed outer profile.
  • lumen 47 for receiving inflation/deflation tube 45, lumens 52 for receiving support tubes 50 which receive push tubes 30, and/or lumens 195 for slidably receiving instruments 190 may have an expandable configuration (i.e., they may have a minimal profile when empty and expand diametrically as needed when filled), so that the overall profile of sleeve 15 is minimized.
  • sleeve 15 comprises a plurality of lumens 195 for slidably receiving instruments 190 therein, it can be desirable to provide greater structural integrity to the distal ends of lumens 195 so as to provide improved support for the instruments 190 received within lumens 195.
  • a support ring may be provided at the distal end of sleeve 15, wherein the support ring provides openings for the passage of push tubes 30 and openings for the passage of instruments 190.
  • the openings in such a support ring for the passage of instruments 190 preferably make a close fit with the instruments so as to provide excellent instrument support at the distal end of sleeve 15.
  • lumens 195 may accommodate hollow instrument guide tubes which themselves accommodate instruments therein.
  • hollow instrument guide tubes can provide greater structural integrity to the distal ends of lumens 195 so as to provide improved support for the instruments 190 received within lumens 195.
  • hollow instrument guide tubes may be of fixed geometry or of bendable or articulating geometry. See, for example, Fig.
  • hollow instrument guide tubes 200 extending out of lumens 195 and receiving instruments 190 therein.
  • hollow instrument guide tubes 200 may be independently movable relative to one another (and independently movable relative to sleeve 15).
  • instruments 190 preferably make a close fit with hollow instrument guide tubes 200 so as to provide excellent instrument support at the distal end of sleeve 15.
  • the two push tubes 30 may be replaced by a single push tube 30 or by more than two push tubes 30, e.g., by three push tubes 30. It will be appreciated that, where a plurality of push tubes 30 are provided, it will generally be desirable to equally-circumferentially-space the push tubes from one another, e.g., where two push tubes 30 are provided, it is generally desirable that the two push tubes 30 be spaced 180 degrees apart, where three push tubes 30 are provided, it is generally desirable that the push tubes be spaced 120 degrees apart, etc.
  • Endoscopic Submucosal Dissection is an endoscopic dissection procedure for removing intestinal lesions in one piece, even if the intestinal lesions are quite large.
  • the lesions are dissected directly along the submucosal layer of the intestine using a cutting tool (e.g., an electrocautery knife equipped with an energy source) passed through the endoscope, resulting in safer en-bloc dissection of even large lesions.
  • a cutting tool e.g., an electrocautery knife equipped with an energy source
  • this technique involves pushing the endoscope tip into the tissue, using a clear plastic cap placed over the tip of the endoscope, which stretches the submucosal fibers and aids in tissue dissection.
  • this technique partially obstructs the surgeon’s view.
  • fluid, debris, and smoke typically accumulate within the clear plastic cap placed over the tip of the endoscope, further obscuring the surgeon’s view.
  • ESD procedures are generally time- consuming and frequently take several hours. The majority of this time is frequently spent dissecting the lesion along the submucosal layer of the intestine. Similar problems can occur with other endoluminal tissue dissection procedures.
  • An endoscopic tissue retraction system compatible with ESD procedures and other endoluminal tissue dissection procedures would provide the surgeon with better visualization of the surgical field and speed up the dissection process.
  • the lesion can be difficult to retrieve due to the technical challenges of (i) locating the dissected lesion (or other dissected tissue) within the intestine, and (ii) grasping the dissected tissue (or other dissected tissue) with a retrieval tool.
  • dissected lesions or other dissected tissue which comprise early cancers may contaminate (e.g., potentially seed with cancerous cells) disease-free areas of the intestine if they migrate within the intestine.
  • An endoscopic tissue retrieval system compatible with ESD procedures and other endoluminal tissue dissection procedures would provide the surgeon with better control and securement of the dissected lesion within the intestine.
  • a connector 305 is secured to (i) fore balloon 35 (or to a push tube 30) and (ii) a lesion 315. This may be done by clipping connector 305 to fore balloon 35 (or to a push tube 30) with a surgical clip 320, and by clipping connector 305 to lesion 315 with another surgical clip 320.
  • connector 305 and surgical clips 320 may be delivered to the surgical site through a working channel of endoscope 10 (or through an instrument lumen 95 of apparatus 5). With connector 305 secured to both fore balloon 35 (or to a push tube 30) and to lesion 315, fore balloon 35 may be advanced distally so as to tension connector 305, whereby to urge (i.e., to apply a force to) lesion 315 in a distal direction. A cutting tool 325 may then be advanced out the distal end of endoscope 10 (or through an instrument lumen 95 of apparatus 5) and used to dissect lesion 315 along the submucosal layer 330 of the intestine 335. It will be appreciated that after lesion 315 has been cut free from the submucosal layer of the intestine, lesion 315 will remain tethered to fore balloon 35 by means of connector 305 and surgical clips 320.
  • connector 305 comprises a loop of material (e.g., a loop made out of an extruded filament, a loop made out of a braid, etc.).
  • connector 305 may comprise a single strand of material (e.g., a single strand made out of an extruded filament, a single strand made out of a braid, etc.).
  • connector 305 is formed out of an elastomeric material (e.g., an elastomeric filament or an elastomeric braid, etc.) so that connector 305 automatically takes up any slack in connector 305 as lesion
  • connector 305 may be formed out of an inelastic flexible material. In still another form of the invention, connector 305 may be formed out of an inelastic rigid material.
  • fore balloon 35 is advanced distally so as to tension connector 305, whereby to urge (i.e., to apply a force to) lesion 315 in a distal direction.
  • connector 305 comprises an elastomeric material
  • connector 305 may be secured to one or the other of fore balloon 35 and lesion 315, stretched, secured to the other of fore balloon 35 and lesion 315, and then released, whereby to urge (i.e., to apply a force to) lesion 315 in a distal direction without requiring any movement of fore balloon 35 in a distal direction.
  • connector 305 may be stretched, secured (in its stretched condition) to fore balloon 35 and to lesion 315, and then released, whereby to urge (i.e., to apply a force to) lesion 315 in a distal direction without requiring any movement of fore balloon 35 in a distal direction.
  • connector 305 may comprise a loop 340 having a variable length, e.g., loop 340 may comprise a slipknot 345 having a tensioning end 350.
  • connector 305 is clipped to fore balloon 35 (or to a push tube 30) with a surgical clip 320, and connector 305 is clipped to lesion 315 with another surgical clip 320.
  • connector 305 is tensioned (e.g., by pulling on tensioning end 350 of slipknot 345 using a tool advanced through a working channel of endoscope 10 or through an instrument lumen 95 of apparatus 5), whereby to urge (i.e., to apply a force to) lesion 315 in a distal direction.
  • cutting tool 325 may be advanced out the distal end of endoscope 10 (or through an instrument lumen 95 of apparatus 5) and used to dissect lesion 315 along submucosal layer 330 of intestine 335.
  • connector 305 may comprise a loop 340 having a variable length, but with slipknot 345 and tensioning end 350 being replaced by a length adjustment clip 355 and one or more tensioning ends 360.
  • loop 340 is tensioned by pulling on the one or more tensioning ends 360 using a tool advanced through a working channel of endoscope 10 (or through an instrument lumen 95 of apparatus 5).
  • connector 305 with a substantially rigid ring 365 at its proximal (i.e., lesion-side) end.
  • the loop of connector 305 may pass through the center of substantially rigid ring 365.
  • Substantially rigid ring 365 can facilitate securing connector 305 to lesion 315, e.g., by making it easier to clip connector 305 to lesion 315 using a surgical clip 320.
  • lesion 315 can be tensioned distally with multiple direction vectors and with multiple attachment points, which can assist in dissection of lesion 315 from submucosal layer 330 of intestine 335. See Fig. 49.
  • Fig. 50 where connector 305 is in the form of a loop, multiple substantially rigid rings 365 may be mounted to a single connector 305 and the multiple substantially rigid rings 365 may be secured to different locations on lesion 315, whereby to allow lesion 315 to be tensioned distally with multiple direction vectors and with multiple attachment points.
  • different segments of the loop may be secured to different locations on lesion 315 using a plurality of surgical clips 320, whereby to allow lesion 315 to be tensioned distally with multiple direction vectors and with multiple attachment points.
  • connectors 305 are attached to fore balloon 35 (or to a push tube 30) in situ using surgical clips 320.
  • connectors 305 may be pre-attached to fore balloon 35 (or to one or more of push tubes 30) at the time of manufacture (or at some other time prior to insertion of fore balloon 35 into the body).
  • connectors 305 may be pre-attached to fore balloon 35 using eyelets or grommet-lined eyelets 370.
  • one or more surgical clips 320 may be used to secure fore balloon 35 (or one of push tubes 30) directly to lesion 315. See, for example, Fig. 52A which shows a surgical clip 320 securing fore balloon 35 directly to lesion 315 without using a connector 305. See also, for example, Fig. 52B which shows a surgical clip 320 securing a push tube 30 directly to lesion 315 without using a connector 305.
  • lesion 315 has been dissected from submucosal layer 330 of intestine 335 (or other tissue has been dissected from its site within a body lumen)
  • the dissected tissue must generally be removed from the body of the patient.
  • the dissected tissue is secured to fore balloon 35 (or to a push rod 30) by means of one or more connectors 305 and/or surgical clips 320
  • the dissected tissue can be removed from the body by simply removing novel apparatus 5 from the body of the patient, which will withdraw the dissected tissue from the body of the patient as fore balloon 35 is withdrawn from the body of the patient.
  • fore balloon 35 may include a flap 375 disposed within the central bore 380 of fore balloon 35. Flap 375 is constructed so that (i) when fore balloon 35 is docked over endoscope 10, flap 375 is captured between endoscope 10 and fore balloon 35; (ii) when fore balloon
  • flap 375 is captured within the closed-down central bore 380 of fore balloon 35 (Figs. 53 and 54); and (iii) when fore balloon 35 is projected distally away from endoscope 10, and then partially deflated, so that central bore 380 of fore balloon 35 is re-opened, exposing flap 375 (Figs. 53 and 54); and (iii) when fore balloon 35 is projected distally away from endoscope 10, and then partially deflated, so that central bore 380 of fore balloon 35 is re-opened, exposing flap 375 (Figs.
  • flap 375 may be“pulled down” across central bore 380 of fore balloon 35 (e.g., with a tool advanced through endoscope 10 or an instrument lumen 95 of apparatus 5) so as to form, in conjunction with the surrounding portions of fore balloon 35 defining central bore 380, a concave pouch 385 within central bore 380 of fore balloon 35 (Figs. 57 and 58).
  • This concave pouch 385 is configured to receive dissected tissue (Figs. 59 and 60).
  • the dissected tissue is manipulated into concave pouch 385 (e.g., using tools advanced through working channels of endoscope 10 or through instrument lumens 95 of apparatus 5) and then the dissected tissue can be easily and safely removed from the body by simply removing novel apparatus 5 from the body of the patient, which will withdraw the dissected tissue from the body of the patient as fore balloon 35 is withdrawn from the body of the patient.
  • this may be done while the dissected tissue is still connected to fore balloon 35 (or to a push tube 30) via connector(s) 305 and/or surgical clip(s) 320.
  • this approach effectively eliminates the risk of the dissected tissue tearing free from fore balloon 35 (or a push tube 30), e.g., by failure of the surgical clip mounted to the dissected tissue, or by failure of the surgical clip mounted to the fore balloon (or to a push tube), etc., and reduces the risk of early cancer lesions contaminating (e.g., potentially seeding with cancerous cells) disease-free areas of the intestine (or other body lumen) since the dissected tissue is shielded within concave pouch 385 as the dissected tissue is withdrawn from the body of the patient.
  • apparatus 5 may be modified so as to provide an endoscopic tissue snare system 400. More particularly, and looking now at Figs. 61 and 62, in this form of the invention, push tubes 30 are modified so as to provide distal openings 405 adjacent to fore (distal) balloon 35, and so as to provide proximal openings 410 adjacent to push tube handle 37. In one preferred form of the invention, distal openings 405 face towards one another.
  • endoscopic tissue snare system 400 also comprises a snare 415.
  • Snare 415 comprises an elongated element 417 having two free ends 420 and an intermediate portion (or bridge portion) 425.
  • Elongated element 417 may comprise a filament, a cable, etc.
  • elongated element 417 may comprise a wire formed out of a superelastic shape memory material, e.g., a wire formed out of Nitinol.
  • elongated element 417 may comprise a Nitinol wire which has been pre-configured so that intermediate portion (bridge portion) 425 will assume a loop configuration when the intermediate portion (bridge portion) 425 of the Nitinol wire is not constrained and/or held under tension.
  • Snare 415 extends into the proximal opening 410 of one push tube 30, up the length of that push tube, out the distal opening 405 of that push tube, across the face of fore balloon 35, into the distal opening 405 of the other push tube 30, down the length of that push tube, and out the proximal opening 410 of that push tube. Note that as snare 415 passes from one distal opening 405 to the other distal opening 405, snare 415 passes around (i.e., to one side of) central bore 380 of fore balloon 35 (and so as to pass around any endoscope 10 which may be disposed in central bore 380 of fore balloon 35).
  • Snare 415 is sized, relative to the lumens of push tubes 30, so that the snare can slide easily within the push tubes and so as to permit air to pass between the snare and the side walls of the push tubes in order to enable fore balloon 35 to be inflated or deflated via push tubes 30.
  • Snare 415 is preferably also sized, relative to distal openings 405 and proximal openings 410, so as to make a close sliding fit in distal openings 405 and proximal openings 410, so that snare 415 can move in and out of distal openings 405 and proximal openings 410, but with the fit being close enough that only a relatively small amount of air is able to escape through the gap between the snare and perimeter of distal openings 405 and proximal openings 410, whereby to enable fore balloon 35 to be inflated by push tubes 30 and to remain inflated until they are to be deflated.
  • distal openings 405 and/or proximal openings 410 can include a sealing element 427 (Fig. 62A) so as to provide the close sliding fit between snare 415 and distal openings 405 and/or proximal openings 410.
  • sealing elements 427 may comprise Teflon liners which extend along some or all of the perimeter of distal openings 405 and/or proximal openings 410 so as to minimize air escape through the gap between the snare and perimeter of distal openings 405 and/or proximal openings 410 while facilitating smooth movement of the snare through distal openings 405 and/or proximal openings 410.
  • distal openings 405 and proximal openings 410 preferably have smaller diameters than the lumens of push tubes 30.
  • handles 430 may be set on the two free ends 420 of snare 415 so that the two free ends of snare 415 may be easily grasped by a user.
  • an endoscope 10 carrying apparatus 5 with aft (proximal) balloon 20 and fore balloon 35 in their deflated conditions, is advanced to a position adjacent to a lesion 315 formed on the submucosal layer 330 of an intestine 335.
  • push tubes 30 are oriented so that the plane of the push tubes is parallel to the top surface of lesion 315.
  • aft (proximal) balloon 20 is inflated so as to stabilize the endoscope within intestine 335, and fore balloon 35 is advanced past lesion 335 (see Figs. 63 and
  • a grasper (not shown) is advanced out of the distal end of endoscope 10 and is used to grasp intermediate portion (bridge portion) 425 of snare 415 and draw the intermediate portion (bridge portion) 425 of snare 415 back around lesion 315 (see Figs. 67 and 68).
  • snare 415 extends into proximal opening 410 of one of the push tubes 30, up the length of that push tube, out the distal opening 405 of that push tube, back around lesion 315 so that intermediate portion (bridge portion) 425 engages the proximal side of lesion 315, back up to the distal opening 405 of the other push tube 30, into the distal opening 405 of that push tube, then down the length of that push tube and out the proximal opening 410 of that push tube.
  • Snare 415 may then be tensioned (e.g., by pulling proximally on handles 430 at free ends 420 of snare 415) so as to pull lesion 315 distally towards fore (distal) balloon 35 (see Figs. 69 and 70). Then a cutting tool 325 may be advanced out the distal end of a working channel of endoscope 10 (or through an instrument lumen 95 of apparatus 5) and used to dissect lesion 315 along submucosal layer 330 of intestine 335.
  • the lesion may be removed from the body of the patient (e.g., by positioning the dissected lesion 315 within concave pouch 385 of fore balloon 35, such as is described above).
  • lesion 315 may have a low profile, or may be otherwise formed or configured, so as to make it difficult to securely engage the lesion with intermediate portion (bridge portion) 425 of snare 415. In this case, it can be helpful to provide a small incision at the proximal side of lesion 315 (e.g., with a cutting tool extended out the distal end of a working channel of endoscope
  • intermediate portion (bridge portion) 425 of snare 415 into the incision so that the intermediate portion (bridge portion) 425 will remain securely engaged with the lesion when tension is applied to snare 415 (e.g., by pulling proximally on handles 430 at the free ends of snare 415).
  • a surgical clip e.g., such as the surgical clip 320 discussed above may be used to clip intermediate portion (bridge portion) 425 of snare 415 to lesion 315.
  • snare 415 can be formed with sufficient column strength such that pushing on handles 430 of free ends 420 of snare 415 can push the snare out of distal openings 405 of push tubes 30, whereby to push intermediate portion
  • bridge portion 425 away from the fore balloon 35 and around to the proximal side of the lesion. In this case, it may not be necessary to use a grasper to pull intermediate portion (bridge portion) 425 around to the proximal side of the lesion.
  • only one of the push tubes 30 may be used to carry snare 415. More particularly, in this form of the invention, and looking now at Fig. 71, snare 415 extends into the proximal opening 410 of one push tube 30, up the length of that push tube, out the distal opening 405 of that push tube, loops in front of the face of fore balloon 35, back into the distal opening 405 of the same push tube 30, down the length of that push tube, and out the proximal opening 410 of that push tube.
  • snare 415 may comprise an
  • snare 415 may comprise a conductive wire (insulated, as appropriate, but exposed at intermediate portion (bridge portion) 425 of the snare and at other points for connection to an electrical power source).
  • conductive wire insulated, as appropriate, but exposed at intermediate portion (bridge portion) 425 of the snare and at other points for connection to an electrical power source.
  • the present invention comprises the provision and use of novel apparatus for manipulating the side wall of a body lumen and/or body cavity so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure, e.g., to straighten bends,“iron out” inner luminal surface folds and create a substantially static or stable side wall of the body lumen and/or body cavity which enables more precise visual
  • the novel apparatus can be used to stabilize, straighten, expand and/or flatten bends and/or curves and/or folds in the side wall of the intestine so as to better present the side wall tissue (including visualization of areas initially hidden or outside the field of view) for examination and/or treatment during an endoscopic procedure.
  • the present invention also comprises the provision and use of novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) inserted into a body lumen and/or body cavity during an endoscopic procedure with respect to the side wall of the body lumen and/or body cavity, whereby to facilitate the precision use of those instruments.
  • instruments e.g., endoscopes, articulating and/or non-articulating devices such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the present apparatus can provide a stable platform (i.e., a stable endoscope, stable therapeutic tools and a stable colon wall, all stable with respect to one another) for the performance of numerous minimally-invasive procedures within a body lumen and/or body cavity, including the stabilization of an endoscope and/or other surgical instruments (e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) within the body lumen and/or body cavity, e.g., during a lesion biopsy and/or lesion removal procedure, an organ resection procedure, endoscopic submucosal dissection
  • a stable platform i.e., a stable endoscope, stable therapeutic tools and a stable colon wall, all stable with respect to one another
  • an endoscope and/or other surgical instruments e.g., graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • ESD endoscopic mucosal resection
  • EMR endoscopic mucosal resection
  • the present invention provides novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of endoscopes
  • the present invention provides novel apparatus capable of steadying and/or stabilizing the distal tips and/or working ends of instruments (such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.) advanced to the surgical site by means other than through the working channels of endoscopes.
  • instruments such as graspers, cutters or dissectors, cauterizing tools, ultrasound probes, etc.
  • the novel apparatus of the present invention can be used in substantially any endoscopic procedure to facilitate the alignment and presentation of tissue during an endoscopic procedure and/or to stabilize the working end of an endoscope (and/or other instruments advanced through the endoscope) relative to tissue or to assist in the advancement of the endoscope during such a procedure.
  • the present invention is believed to have widest applications with respect to the gastrointestinal (GI) tract (e.g., large and small intestines, esophagus, stomach, etc.), which is generally characterized by frequent turns and which has a side wall characterized by numerous folds and disease processes located on and between these folds.
  • GI gastrointestinal
  • the methods and apparatus of the present invention may also be used inside other body lumens (e.g., blood vessels, lymphatic vessels, the urinary tract, fallopian tubes, bronchi, bile ducts, etc.) and/or inside other body cavities (e.g., the head, chest, abdomen, nasal sinuses, bladder, cavities within organs, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

L'invention concerne un système d'anse de tissu endoscopique comprenant : un manchon conçu pour être glissé sur l'extérieur d'un endoscope ; une paire de tubes de poussée montés coulissants sur le manchon, chacun des tubes de poussée comprenant une ouverture distale et une ouverture proximale ; un ballonnet distal fixé aux extrémités distales de la paire de tubes de poussée ; et une anse comprenant une paire d'extrémités libres et une partie intermédiaire disposée entre la paire d'extrémités libres, l'anse s'étendant dans l'ouverture proximale d'un tube de poussée, vers le haut sur la longueur du tube de poussée, hors de l'ouverture distale de ce tube de poussée, à travers la face du ballonnet distal, dans l'ouverture distale de l'autre tube de poussée, vers le bas sur la longueur de ce tube de poussée, et hors de l'ouverture proximale de ce tube de poussée.
PCT/US2018/019235 2014-02-11 2018-02-22 Procédé et appareil pour fournir une visualisation et une manipulation accrues d'une paroi latérale de corps WO2018156768A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/487,333 US20200022562A1 (en) 2014-02-11 2018-02-22 Method and apparatus for providing increased visualization and manipulation of a body side wall
US17/842,456 US20230075294A1 (en) 2014-02-11 2022-06-16 Method and apparatus for providing increased visualization and manipulation of a body side wall

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762462237P 2017-02-22 2017-02-22
US62/462,237 2017-02-22
PCT/US2018/013894 WO2018132836A2 (fr) 2017-01-13 2018-01-16 Méthode et appareil de manipulation de la paroi latérale d'une lumière corporelle ou d'une cavité corporelle en vue de fournir une meilleure visualisation de celle-ci, et/ou un meilleur accès à celle-ci, et/ou une stabilisation d'instruments par rapport à celle-ci
USPCT/US2018/013894 2018-01-16

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US16/477,789 Continuation-In-Part US11877722B2 (en) 2009-12-15 2018-01-16 Method and apparatus for manipulating the side wall of a body lumen or body cavity
PCT/US2018/013894 Continuation-In-Part WO2018132836A2 (fr) 2009-12-15 2018-01-16 Méthode et appareil de manipulation de la paroi latérale d'une lumière corporelle ou d'une cavité corporelle en vue de fournir une meilleure visualisation de celle-ci, et/ou un meilleur accès à celle-ci, et/ou une stabilisation d'instruments par rapport à celle-ci
US16/000,104 Continuation-In-Part US10874286B2 (en) 2009-12-15 2018-06-05 Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/487,333 A-371-Of-International US20200022562A1 (en) 2014-02-11 2018-02-22 Method and apparatus for providing increased visualization and manipulation of a body side wall
US17/842,456 Continuation US20230075294A1 (en) 2014-02-11 2022-06-16 Method and apparatus for providing increased visualization and manipulation of a body side wall

Publications (2)

Publication Number Publication Date
WO2018156768A1 WO2018156768A1 (fr) 2018-08-30
WO2018156768A9 true WO2018156768A9 (fr) 2019-08-29

Family

ID=63253048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/019235 WO2018156768A1 (fr) 2014-02-11 2018-02-22 Procédé et appareil pour fournir une visualisation et une manipulation accrues d'une paroi latérale de corps

Country Status (1)

Country Link
WO (1) WO2018156768A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952717B2 (en) 2019-05-16 2021-03-23 Boston Scientific Scimed, Inc. Tissue retraction bands and methods of use thereof
WO2023236056A1 (fr) * 2022-06-07 2023-12-14 上海诺英医疗器械有限公司 Système et procédé de traction auxiliaire de chirurgie endoscopique
CN117357225B (zh) * 2023-12-07 2024-03-15 成都新澳冠医疗器械有限公司 一种穿刺器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505450A (ja) * 2006-10-02 2010-02-25 株式会社メディコスヒラタ 内視鏡用スネア
WO2011084490A1 (fr) * 2009-12-15 2011-07-14 Cornell University Procédé et appareil pour stabiliser, redresser ou dilater la paroi d'une lumière ou d'une cavité
CN111248840B (zh) * 2015-06-03 2022-12-13 卢门迪公司 用于操纵体管腔或体腔的侧壁的设备

Also Published As

Publication number Publication date
WO2018156768A1 (fr) 2018-08-30

Similar Documents

Publication Publication Date Title
US10874286B2 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
AU2020202360B2 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US20210338056A1 (en) Method and apparatus for performing lavage and suction at a surgical site in a body lumen or body cavity
US20210361272A1 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US20210338920A1 (en) Method and apparatus for performing lavage and suction at a surgical site in a body lumen or body cavity
WO2020018566A1 (fr) Méthode et appareil de manipulation de la paroi latérale d'une lumière corporelle ou d'une cavité corporelle en vue de fournir une meilleure visualisation de celle-ci, et/ou un meilleur accès à celle-ci, et/ou une stabilisation d'instruments par rapport à celle-ci
JP2022180608A (ja) 体腔または身体空洞の側壁を操作するための方法及び装置
US11986150B2 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
WO2018156768A9 (fr) Procédé et appareil pour fournir une visualisation et une manipulation accrues d'une paroi latérale de corps
US20210282626A1 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US11877722B2 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity
US20200022562A1 (en) Method and apparatus for providing increased visualization and manipulation of a body side wall
US20230075294A1 (en) Method and apparatus for providing increased visualization and manipulation of a body side wall
US11998169B2 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US20230277046A1 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
US20210393114A1 (en) Method and apparatus for manipulating the side wall of a body lumen or body cavity so as to provide increased visualization of the same and/or increased access to the same, and/or for stabilizing instruments relative to the same
WO2023215640A1 (fr) Procédé et appareil pour manipuler une paroi latérale d'une lumière corporelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757395

Country of ref document: EP

Kind code of ref document: A1