WO2018155788A1 - Method for measuring turbidity through bathymetric lidar waveform analysis - Google Patents

Method for measuring turbidity through bathymetric lidar waveform analysis Download PDF

Info

Publication number
WO2018155788A1
WO2018155788A1 PCT/KR2017/013155 KR2017013155W WO2018155788A1 WO 2018155788 A1 WO2018155788 A1 WO 2018155788A1 KR 2017013155 W KR2017013155 W KR 2017013155W WO 2018155788 A1 WO2018155788 A1 WO 2018155788A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
scattering
wavelength
theoretical
turbidity
Prior art date
Application number
PCT/KR2017/013155
Other languages
French (fr)
Korean (ko)
Inventor
우제흔
김재완
이재용
김종안
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2018155788A1 publication Critical patent/WO2018155788A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light

Definitions

  • the present invention relates to a method of obtaining turbidity of seawater by processing a signal of a depth lidar mounted on an aircraft and measuring a seabed topography.
  • LIDAR light detection and Ranging
  • the Airbone Bathymetry LIDAR is a lidar that can be mounted on an airplane and is a technology that can efficiently extract the topography and depth information of coastal areas.
  • Other techniques for depth surveying include Sound Navigation And Ranging (SONAR) and Synthetic Aperture Radar (SAR).
  • SONAR is the most widely used depth gauge, but it is difficult to access shallow coastal depths and is slow because it is mounted on board to measure seabed topography. SAR has a problem with resolution.
  • depth survey aerial riders have the advantage of being able to measure large terrain quickly because they survey the seabed terrain at high altitudes.
  • the intensity of the reflected beam reaching the receiver of the LiDAR system is converted into a waveform over time, which is then analyzed to extract depth information.
  • Receiving waveform is distorted by environmental variables such as surface wave height, turbidity of water, and seabed topography.
  • LIDAR analyzes the wave shape of light reflected from the sea floor.
  • the signal strength is weakened. Therefore, the turbidity of the seawater limits the depth at which it can be measured. Since coastal turbidity changes continuously depending on the condition of the water flowing from the stream, it is necessary to know the turbidity information of the seawater currently measured when the terrain is measured by aerial lidar.
  • Turbidity in seawater has a turbidity sensor that directly immerses in seawater to measure turbidity, but it is difficult to measure the field with these sensors during flight. Therefore, there is a need for a method for obtaining turbidity directly from an optical signal of a lidar.
  • One technical problem to be solved by the present invention is to provide a stable method for extracting the turbidity of seawater from the optical signal of the water depth lidar signal.
  • a laser pulse beam of the first wavelength reflecting only at the sea surface and a laser pulse beam of the second wavelength passing through the sea surface to reach and reflect to the sea floor at the same time ;
  • the laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering.
  • the first wavelength may be 1064 nm
  • the second wavelength may be 532 nm.
  • the relationship between the normalized theoretical integrated signal according to the turbidity predicted by using the theoretical value, the first theoretical signal is determined by the first sleep scattering signal at the first wavelength according to the predicted turbidity
  • a second theoretical signal is calculated by a surface scattering signal, an underwater scattering signal, and a bottom scattering signal at the second wavelength according to the predicted turbidity
  • a first theoretical integral signal is used to convert the first theoretical signal to the first Integrating and calculating the predetermined time domain in which the first sleep scattering signal exists, calculating a second theoretical integral signal by integrating the second theoretical signal in the predetermined time domain in which the first sleep scattering signal exists
  • the normalized theoretical integrated signal is calculated by dividing the second theoretical integrated signal by the first theoretical integrated signal according to the predicted turbidity, and the predicted turbidity is normalized. To a linear function of the integral signal Ron can be fitted.
  • Turbidity measuring device a laser pulse beam of the first wavelength that reflects only from the sea surface and a laser pulse beam of the second wavelength passing through the sea surface to reach and reflect to the sea bottom at the same time at the same time Pulsed light source;
  • the laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering.
  • a first photodetector and a second photodetector which collect through the optical system and detect the first optical signal and the second optical signal over time according to the wavelength, respectively;
  • An analog-digital converter for converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively; Integrating the first digital electrical signal over a predetermined time interval during which a sleep scattering signal is generated to generate a first integrated signal, and integrating the second digital electrical signal over a predetermined time interval during which the sleep scattering signal is generated.
  • Generate a second integrated signal divide the second integrated signal into the first integrated signal to generate a normalized measurement integrated signal, and use the relationship between the normalized theoretical integrated signal according to the turbidity predicted using the theoretical value. And extracting a measurement turbidity corresponding to the normalized measurement integrated signal.
  • the turbidity measurement method may provide stable turbidity information by analyzing a conventional rider signal.
  • FIG. 1 is a view illustrating a turbidity measurement system according to an embodiment of the present invention.
  • Figure 2 is a form according to the time (t) of the surface scattering signal, the underwater scattering signal, the bottom surface scattering signal and the sum of the general LIDAR signal obtained from Equations 1 to 4 according to the pulse laser beam of 532nm wavelength that passes through the sea surface Indicates.
  • Figure 3 shows the shape of the LIDAR signal based on the time (t) of the LIDAR signal based on the surface scattering signal obtained from Equation 1, 4 according to the pulsed laser beam of 1064nm wavelength reflected from the sea surface.
  • FIG. 4 shows the relationship between the decay time and the turbidity K d of the exponential function calculated through curve fitting in a section in which the scattering signal is generated through the simulation and attenuated by the exponential function.
  • FIG. 5 illustrates the relationship between the decay time of the exponential function and the turbidity K d when noise is considered in the result of FIG. 4.
  • FIG. 6 is a conceptual diagram illustrating an apparatus for measuring turbidity according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a turbidity measurement method using the turbidity measurement device of FIG. 6.
  • 8A and 8B show correlations between turbidity according to the presence or absence of noise and standardized integrated signals and turbidity between predetermined integral sections.
  • FIG. 1 is a view illustrating a turbidity measurement system according to an embodiment of the present invention.
  • LIDAR LIght Detection And Ranging
  • LIDAR which is mounted on an aircraft and measures underwater terrain, emits short pulsed light from the plane 1 to the sea level, and then measures the time difference between the reflected light and the depth of the sea bottom. It is a technique to measure.
  • the sea Since the sea is always wave and blue due to various influences, the height of the surface of the water is constantly changing, so the measurement of the seabed topography requires the sea level height information at that time. Therefore, by sending two wavelengths of light at 532 nm and 1064 nm at the same time, information on the sea level and the sea floor can be obtained simultaneously.
  • the light reflected from the sea floor contains a combination of surface reflections, absorption and scattering in sea water, and reflections from the sea floor.
  • the surface scattering signal P s due to scattering and reflection at sea level, the underwater scattering signal P c due to underwater scattering, and the sea bottom scattering signal P b due to scattering and reflection at sea bottom are Is given together.
  • P t is the transmitted peak power
  • is the pulse duration
  • c is the speed of light
  • L is the aircraft altitude
  • H is the water depth
  • l is the path length in air
  • h is the path length in water
  • k is the air attenuation coefficient
  • R s is the reflectance at the air-water interface.
  • air-water interface A r is the aperture area of the receiver optics
  • is the receiver efficiency.
  • n w is the refractive index of water
  • is the off-nadir transmit angle
  • ⁇ ⁇ is the back scattering coefficient
  • a is the absorption coefficient
  • b b is the back scattering coefficient
  • is the bottom reflectance
  • is the refracted beam angle in water
  • F is the FOV loss factor
  • Scattering signal (P signal ) can be obtained by the convolution of the response function (P response ) of the equation (1) to 3 and the pulse signal (I pulse ) incident on the sea water and is given as follows.
  • FIG. 2 is a time (t) of a general LIDAR signal consisting of the surface scattering signal, the underwater scattering signal, the bottom scattering signal, and the sum thereof obtained from Equations 1 to 4 according to a pulse laser beam of 532 nm wavelength passing through the sea surface. According to the form.
  • H cos ( ⁇ ) ct / (2n w ).
  • Equation 2 the term related to turbidity in water is represented by the sum K d of the absorption coefficient and the rearward scattering coefficient b b .
  • Figure 3 shows the shape of the LIDAR signal based on the time (t) of the LIDAR signal based on the surface scattering signal obtained from Equation 1,4 according to the pulsed laser beam of 1064nm wavelength reflected from the sea surface.
  • a 1064 nm sleep scattering signal is generated in a time domain in which the 532 nm sleep scattering signal of FIG. 3 occurs.
  • the inter-station where the sleep scattering signal is generated may be set as an integral section.
  • FIG. 4 shows the relationship between the decay time and the turbidity K d of the exponential function calculated through curve fitting in the section in which the scattering signal is generated through the simulation and attenuated by the exponential function.
  • FIG. 5 illustrates the relationship between the decay time of the exponential function and the turbidity K d when noise is considered in the result of FIG. 4.
  • the underwater backscattering coefficient b b which is expressed as a coefficient of the exponential function, can be obtained by curve fitting the exponential function by the least-square method in a section where the signal is attenuated.
  • the signal may be distorted by various causes such as seaweed or fish, and thus it may not be possible to obtain a signal that is attenuated by an exponential function.
  • the higher the turbidity the faster the attenuation, the shorter the signal range for curve fitting and the greater the error.
  • the K d value is an index indicating turbidity as the sum of the absorption coefficient and the rearward scattering coefficient b b .
  • the integrated signal near the sleep is insensitive to noise because it integrates the signals of the greatest intensity among the total signals as the sum of the signal strengths near the sleep. It also contains information about suspended solids near the surface of the water, making it easy to analyze turbidity.
  • FIG. 6 is a conceptual diagram illustrating an apparatus for measuring turbidity according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a turbidity measurement method using the turbidity measurement device of FIG. 6.
  • the turbidity measuring device 100 includes a laser pulse light source 110, a scanner 120, a reception optical system 130, a first photodetector 144, a second photodetector 146, and an analog.
  • the digital converter 148, a signal processor 150, and a timing unit 149 may be included.
  • the laser pulse light source 110 underwater receives a first laser pulse beam D1 having a first wavelength reflecting only at sea level and a second laser pulse beam D2 having a second wavelength passing through the sea level and reaching and reflecting to the sea bottom. Provide at the same time.
  • the laser pulse light source 110 may simultaneously output a first wavelength of 1064 nm and a second wavelength of 532 nm.
  • the laser pulse light source 110 may include a second-harmonic generator to simultaneously generate a first wavelength and a second wavelength.
  • the second-harmonic generator may use a crystal, an optical fiber, or a cavity structure such as KDP.
  • the scanner 120 may scan the laser pulse beam of the first wavelength and the laser pulse beam of the second wavelength on the surface of the water.
  • the scanner 120 may include a reflection mirror and a rotating motor.
  • the receiving optical system 130 may include a telescope system.
  • the receiving optical system may be a Gregorian or casearian reflective telescope.
  • the receiving optical system 130 may include a primary mirror having a through hole at a center thereof, and a secondary mirror having a convex mirror or a concave mirror structure.
  • the reception optical system 130 is a laser pulse beam of the first wavelength due to the surface scattering at the sea level, the first optical signal and the laser pulse beam of the second wavelength is due to the surface scattering, underwater scattering, and bottom scattering A second optical signal is collected through the receiving optical system.
  • the first optical signal and the second optical signal collected by the reception optical system 130 are spatially separated according to wavelengths through the dichroic mirror 142.
  • the first photodetector 144 detects the first optical signal separated by the dichroic mirror 142 over time.
  • the first photodetector may be a photodiode.
  • the second photodetector 146 detects the second optical signal separated by the dichroic mirror 142 over time.
  • the second photodetector 146 may be a photo multiplier tube.
  • the analog-to-digital converter 148 converts the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively.
  • the signal converted into a digital signal is stored in the memory.
  • the analog-to-digital converter 148 is synchronized with the laser pulse light source 110 by the timing unit 149.
  • the timing unit 149 may provide a synchronization signal to the analog to digital converter and the laser pulse light source.
  • the signal processor 150 generates the first integrated signal by integrating the first digital electrical signal over a predetermined time interval during which the surface scattering signal is generated. In addition, the signal processor 150 generates a second integrated signal by integrating the second digital electrical signal over a predetermined time interval during which the sleep scattering signal is generated. The signal processor generates the normalized measurement integrated signal by dividing the second integrated signal into the first integrated optical signal. The signal processor 150 extracts the measurement turbidity corresponding to the standardized measurement integrated signal using the relationship of the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value.
  • the turbidity measuring method may include: simultaneously providing a laser pulse beam of a first wavelength reflecting only at sea level and a laser pulse beam of second wavelength passing through the sea level and reaching and reflecting to the sea bottom (S110);
  • the laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering.
  • the first photodetector 144 detects the first 1064 nm optical signal returned from the sea level through scattering and reflection.
  • the second photodetector 146 detects a second light signal of 532 nm returned from the sea level and the sea bottom through scattering and reflection.
  • the first optical signal is converted into a first digital electrical signal
  • the second optical signal is converted into a second digital electrical signal.
  • the first 1064 nm optical signal is analyzed beforehand, and the integral section is set so that the signal is larger than the noise.
  • the second digital electrical signal of 532 nm and the first digital electrical signal of 1064 nm are integrated for a predetermined integration period.
  • the signal integration value of 532 nm is divided by the signal integration value of 1064 nm to generate a normalized measurement integral signal.
  • the turbidity corresponding to the standardized measured integrated signal is determined by comparing the relationship between a predetermined turbidity and a standardized theoretical integrated signal through simulation.
  • the signal shape in the integration section is made up of the sum of the sleep scattering signal and the underwater scattering signal.
  • the signal of the integral section is influenced by the state of the surface as well as the underwater float. That is, the signal strength may vary depending on the sleep state (tilt, surface state, etc.).
  • the amount of light incident on the water is the total incident light intensity minus the intensity of the signal scattered at sea level. If the intensity of light incident on the water is different, the intensity of the scattering signal is different.
  • the integral value of the near-surface signal type may vary.
  • the output fluctuations or other environmental factors of the laser pulsed light source can change the integral value irrespective of turbidity. It is difficult to find the relationship between turbidity and signal type when the integral value is changed by a variable that is not related to turbidity. Therefore, to reduce this effect, integral value information that is not related to turbidity is needed.
  • the integrated value of the first optical signal is influenced by environmental factors such as the output change of laser light, the influence of wind or waves, and is hardly affected by turbidity. Therefore, if the integration value of the first optical signal of 1064 nm is normalized to the integral value of the second optical signal of 532 nm, the influence of environmental factors such as the output change of laser light, the influence of wind or waves can be reduced. Accordingly, the normalized integral signal can be represented as a function of turbidity only.
  • the first theoretical signal is calculated by the first sleep scattering signal at the first wavelength according to the turbidity K d estimated using Equations 1 and 4.
  • the second theoretical signal is calculated by the surface scattering signal, the underwater scattering signal, and the bottom scattering signal at the second wavelength according to the turbidity K d predicted using Equations 1 to 4.
  • the first theoretical integrated signal is calculated by integrating the first theoretical signal over a predetermined time region (integral section) in which the first sleep scattering signal is present.
  • the second theoretical integrated signal is calculated by integrating the second theoretical signal over a predetermined time domain (integral period) in which the first sleep scattering signal is present.
  • the normalized theoretical integrated signal is calculated by dividing the second theoretical integrated signal by the first theoretical integrated signal according to the predicted turbidity K d .
  • the predicted haze K d is fitted as a linear function of the normalized theoretical integral signal.
  • 8A and 8B show correlations between turbidity according to the presence or absence of noise and standardized integrated signals and turbidity between predetermined integral sections.
  • a first theoretical integrated signal integrated over an integral section is calculated for a signal of 1064 nm.
  • the second theoretical integrated signal is divided by the first integrated signal, and a normalized theoretical integrated signal is calculated.
  • the turbidity can be obtained by substituting the equation (5).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A method for measuring turbidity, according to one embodiment of the present invention, comprises the steps of: providing, underwater and simultaneously, a laser pulsed beam having a first wavelength, which is reflected only from the sea surface, and a laser pulsed beam having a second wavelength, which transmits through the sea surface, reaches the seafloor and is reflected therefrom; collecting, via an optical receiving system, a first optical signal attributable to the water surface-scattering at the sea surface of the laser pulsed beam having the first wavelength, and a second optical signal attributable to the water surface-scattering, the underwater-scattering and the seafloor-scattering of the laser pulsed beam having the second wavelength, and detecting the first optical signal and the second optical signal, respectively, by time according to wavelength; transforming the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively; generating a first integrated signal by integrating the first digital electrical signal with respect to a predetermined time interval in which a water surface-scattering signal is generated; generating a second integrated signal by integrating the second digital electrical signal with respect to the predetermined time interval in which the water surface-scattering signal is generated; generating a standardized measured integrated signal by dividing the second integrated signal by the first integrated signal; and extracting a measured turbidity corresponding to the standardized measured integrated signal by using a relationship of a standardized theoretical integrated signal based on turbidity predicted using a theoretical value.

Description

수심 라이다 파형 분석을 통한 탁도 측정 방법Turbidity measurement method through depth lidar waveform analysis
본 발명은 항공기에 싣고 해저 지형을 측정하는 수심 라이다의 신호를 처리하여 해수의 탁도를 구하는 방법에 대한 것이다. The present invention relates to a method of obtaining turbidity of seawater by processing a signal of a depth lidar mounted on an aircraft and measuring a seabed topography.
라이다(LIDAR: light Detection and Ranging)는 목표에 레이저 광을 조사하여 목표 까지의 거리를 측정하는 기술이다. 항공 수심 라이다 시스템(Airbone Bathymetry LIDAR)은 비행기에 탑재가 가능한 라이다로써 연안 지역의 지형 및 수심정보를 효율적으로 추출할 수 있는 기술이다. 수심측량을 위한 다른 기술로는 수중음파탐지기(Sound Navigation And Ranging; SONAR)와 합성 개구 레이더( Synthetic Aperture Radar; SAR) 등이 있다. SONAR는 가장 널리 사용되는 수심측정기 이지만, 배에 탑재되어 해저지형을 측정하기 때문에 얕은 연안 수심 지역 접근이 힘들며 측정 속도가 느리다. SAR는 해상도의 문제가 있다. 이에 반해, 수심측량 항공 라이다는 높은 고도의 비행기에서 해저 지형을 측량하기 때문에 넓은 지형을 빠르게 측정할 수 있는 장점이 있다. LIDAR (light detection and Ranging) is a technique for measuring the distance to the target by irradiating the laser light on the target. The Airbone Bathymetry LIDAR is a lidar that can be mounted on an airplane and is a technology that can efficiently extract the topography and depth information of coastal areas. Other techniques for depth surveying include Sound Navigation And Ranging (SONAR) and Synthetic Aperture Radar (SAR). SONAR is the most widely used depth gauge, but it is difficult to access shallow coastal depths and is slow because it is mounted on board to measure seabed topography. SAR has a problem with resolution. On the other hand, depth survey aerial riders have the advantage of being able to measure large terrain quickly because they survey the seabed terrain at high altitudes.
라이다 시스템의 수신부에 도달한 반사 빔의 세기는 시간에 따른 파형으로 변환되며, 이 파형을 분석해 수심 정보를 추출해낸다. 수신파형은 수면의 파고, 물의 탁도, 해저 지형 등의 환경 변수에 의해 왜곡되며, 현재까지 다양한 변수들이 라이다 신호에 미치는 영향에 관한 연구가 진행되었다. The intensity of the reflected beam reaching the receiver of the LiDAR system is converted into a waveform over time, which is then analyzed to extract depth information. Receiving waveform is distorted by environmental variables such as surface wave height, turbidity of water, and seabed topography. Until now, research has been conducted on the effect of various variables on the Lidar signal.
LIDAR는 해저에서 반사된 빛의 파형을 분석하는데 해수에 포함된 부유물 등에 의해 물이 탁해지면 신호의 세기가 약해진다. 그러므로 해수의 탁도에 따라 측정이 가능한 깊이가 제한된다. 연안은 하천에서 흘러온 물의 상태에 따라 해수의 탁도가 계속 변하기 때문에 항공 라이다로 지형을 측정할 때 현재 측정하는 해수의 탁도 정보를 아는 것이 필요하다. 해수의 탁도는 직접 해수에 담가 탁도를 측정하는 탁도 센서가 있지만 비행 중에 이런 센서로 현장을 측정하기는 어렵다. 그러므로 라이다의 광신호로부터 직접 탁도를 구하는 방법이 필요하다. LIDAR analyzes the wave shape of light reflected from the sea floor. When the water becomes cloudy by suspended matter in the sea, the signal strength is weakened. Therefore, the turbidity of the seawater limits the depth at which it can be measured. Since coastal turbidity changes continuously depending on the condition of the water flowing from the stream, it is necessary to know the turbidity information of the seawater currently measured when the terrain is measured by aerial lidar. Turbidity in seawater has a turbidity sensor that directly immerses in seawater to measure turbidity, but it is difficult to measure the field with these sensors during flight. Therefore, there is a need for a method for obtaining turbidity directly from an optical signal of a lidar.
본 발명의 해결하고자 하는 일 기술적 과제는 수심 라이다 신호의 광 신호로부터 해수의 탁도를 추출하는 안정적인 방법을 제공하는 것이다.One technical problem to be solved by the present invention is to provide a stable method for extracting the turbidity of seawater from the optical signal of the water depth lidar signal.
본 발명의 일 실시예에 따른 탁도 측정 방법은, 해수면에서만 반사하는 제1 파장의 레이저 펄스 빔과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 레이저 펄스 빔을 수중에 동시에 제공하는 단계; 상기 제1 파장의 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집하고, 파장에 따라 제1 광신호 및 제2 광신호를 각각 시간에 따라 검출하는 단계; 상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호로 변환하는 단계; 상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성하는 단계; 상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성하는 단계; 상기 제2 적분신호를 상기 제1 적분 신호로 나누어 규격화된 측정 적분 신호를 생성하는 단계; 및 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출하는 단계를 포함한다.In the turbidity measurement method according to an embodiment of the present invention, providing a laser pulse beam of the first wavelength reflecting only at the sea surface and a laser pulse beam of the second wavelength passing through the sea surface to reach and reflect to the sea floor at the same time ; The laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering. Collecting through the optical system and detecting the first optical signal and the second optical signal over time according to the wavelength; Converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively; Generating a first integrated signal by integrating the first digital electrical signal over a predetermined time interval at which a sleep scattering signal is generated; Generating a second integrated signal by integrating the second digital electrical signal over a predetermined time interval at which the sleep scattering signal is generated; Generating a normalized measurement integrated signal by dividing the second integrated signal into the first integrated signal; And extracting measurement turbidity corresponding to the normalized measurement integrated signal using the relationship of the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value.
본 발명의 일 실시예에 있어서, 상기 제1 파장은 1064 nm이고, 상기 제2 파장은 532 nm일 수 있다.In one embodiment of the present invention, the first wavelength may be 1064 nm, the second wavelength may be 532 nm.
본 발명의 일 실시예에 있어서, 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계는, 제1 이론 신호는 예측된 탁도에 따라 상기 제1 파장에서 제1 수면 산란 신호에 의하여 계산되고, 제2 이론 신호는 예측된 탁도에 따른 상기 제2 파장에서 수면 산란 신호, 수중 산란 신호 , 그리고 해저면 산란 신호에 의하여 계산되고, 제1 이론 적분 신호는 상기 제1 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역에 대하여 적분하여 계산하고, 제2 이론 적분 신호는 상기 제2 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역에 대하여 적분하여 계산하고, 예측된 탁도에 따라 상기 제2 이론 적분 신호를 상기 제1 이론 적분 신호로 나누어 상기 규격화된 이론 적분 신호를 산출하고, 예측된 탁도를 상기 규격화된 이론 적분 신호의 선형 함수로 피팅할 수 있다.In one embodiment of the present invention, the relationship between the normalized theoretical integrated signal according to the turbidity predicted by using the theoretical value, the first theoretical signal is determined by the first sleep scattering signal at the first wavelength according to the predicted turbidity And a second theoretical signal is calculated by a surface scattering signal, an underwater scattering signal, and a bottom scattering signal at the second wavelength according to the predicted turbidity, and a first theoretical integral signal is used to convert the first theoretical signal to the first Integrating and calculating the predetermined time domain in which the first sleep scattering signal exists, calculating a second theoretical integral signal by integrating the second theoretical signal in the predetermined time domain in which the first sleep scattering signal exists, The normalized theoretical integrated signal is calculated by dividing the second theoretical integrated signal by the first theoretical integrated signal according to the predicted turbidity, and the predicted turbidity is normalized. To a linear function of the integral signal Ron can be fitted.
본 발명의 일 실시예에 따른 탁도 측정 장치는, 해수면에서만 반사하는 제1 파장의 레이저 펄스 빔과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 레이저 펄스 빔을 수중에 동시에 제공하는 레이저 펄스 광원; 상기 제1 파장의 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집하고, 파장에 따라 제1 광신호 및 제2 광신호를 각각 시간에 따라 검출하는 제1 광검출기 및 제2 광검출기; 상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호로 변환하는 아날로그디지털 변환기; 상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성하고, 상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성하고, 상기 제2 적분신호를 상기 제1 적분 신호로 나누어 규격화된 측정 적분 신호를 생성하고, 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출하는 신호 처리부를 포함한다.Turbidity measuring device according to an embodiment of the present invention, a laser pulse beam of the first wavelength that reflects only from the sea surface and a laser pulse beam of the second wavelength passing through the sea surface to reach and reflect to the sea bottom at the same time at the same time Pulsed light source; The laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering. A first photodetector and a second photodetector, which collect through the optical system and detect the first optical signal and the second optical signal over time according to the wavelength, respectively; An analog-digital converter for converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively; Integrating the first digital electrical signal over a predetermined time interval during which a sleep scattering signal is generated to generate a first integrated signal, and integrating the second digital electrical signal over a predetermined time interval during which the sleep scattering signal is generated. Generate a second integrated signal, divide the second integrated signal into the first integrated signal to generate a normalized measurement integrated signal, and use the relationship between the normalized theoretical integrated signal according to the turbidity predicted using the theoretical value. And extracting a measurement turbidity corresponding to the normalized measurement integrated signal.
본 발명의 일 실시예에 따르면, 탁도 측정 방법은 종래의 라이더 신호를 분석하여 안정적인 탁도 정보를 제공할 수 있다.According to an embodiment of the present invention, the turbidity measurement method may provide stable turbidity information by analyzing a conventional rider signal.
도 1은 본 발명의 일 실시예에 따른 탁도 측정 시스템을 설명하는 도면이다.1 is a view illustrating a turbidity measurement system according to an embodiment of the present invention.
도 2는 해수면을 투과하는 532nm 파장의 펄스 레이저 빔에 따른 수학식 1 내지 4로부터 얻은 수면 산란 신호, 수중산란 신호, 해저면 산란 신호와 그들의 합으로 이루어진 일반적인 LIDAR 신호의 시간(t)에 따른 형태를 나타낸다. Figure 2 is a form according to the time (t) of the surface scattering signal, the underwater scattering signal, the bottom surface scattering signal and the sum of the general LIDAR signal obtained from Equations 1 to 4 according to the pulse laser beam of 532nm wavelength that passes through the sea surface Indicates.
도 3은 해수면에서 반사된 1064nm 파장의 펄스 레이저 빔에 따른 수학식 1,4로부터 얻은 수면 산란 신호에 기초한 LIDAR 신호의 시간(t)에 따른 형태를 나타낸다. Figure 3 shows the shape of the LIDAR signal based on the time (t) of the LIDAR signal based on the surface scattering signal obtained from Equation 1, 4 according to the pulsed laser beam of 1064nm wavelength reflected from the sea surface.
도 4는 시뮬레이션을 통해 수중 산란신호를 생성하고 지수함수로 감쇠하는 구간에서 곡선 맞춤을 통하여 계산된 지수함수의 감쇠시간과 탁도(Kd)와 관계를 나타내는 결과이다.FIG. 4 shows the relationship between the decay time and the turbidity K d of the exponential function calculated through curve fitting in a section in which the scattering signal is generated through the simulation and attenuated by the exponential function.
도 5는 도 4의 결과에 잡음을 고려한 경우 지수함수의 감쇠시간과 탁도(Kd)와 관계를 나타내는 결과이다.FIG. 5 illustrates the relationship between the decay time of the exponential function and the turbidity K d when noise is considered in the result of FIG. 4.
도 6은 본 발명의 일 실시예에 따른 탁도 측정 장치를 설명하는 개념도이다.6 is a conceptual diagram illustrating an apparatus for measuring turbidity according to an embodiment of the present invention.
도 7은 도 6의 탁도 측정 장치를 사용한 탁도 측정 방법을 설명하는 흐름도이다. FIG. 7 is a flowchart illustrating a turbidity measurement method using the turbidity measurement device of FIG. 6.
도 8a 및 도 8b는 잡음의 유무에 따른 탁도와 정해진 적분구간의 규격화된 적분 신호와 탁도와의 상관관계를 나타낸다.8A and 8B show correlations between turbidity according to the presence or absence of noise and standardized integrated signals and turbidity between predetermined integral sections.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 실험 조건, 물질 종류 등에 의하여 본 발명이 제한되거나 한정되지는 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다. 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 구성요소는 명확성을 기하기 위하여 과장되어진 것이다. 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention. Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the present invention is not limited or limited by experimental conditions, material types, and the like. The invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the invention to those skilled in the art. In the drawings, the components are exaggerated for clarity. Portions denoted by like reference numerals denote like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 탁도 측정 시스템을 설명하는 도면이다.1 is a view illustrating a turbidity measurement system according to an embodiment of the present invention.
도 1을 참조하면, 항공기에 탑재하여 수중 지형을 측정하는 LIDAR(LIght Detection And Ranging)는 비행기(1)에서 짧은 펄스광을 해수면에 쏘아 보낸 후 반사되어 돌아온 빛의 시간차이를 측정하여 해저면 깊이를 측정하는 기술이다. Referring to FIG. 1, LIDAR (LIght Detection And Ranging), which is mounted on an aircraft and measures underwater terrain, emits short pulsed light from the plane 1 to the sea level, and then measures the time difference between the reflected light and the depth of the sea bottom. It is a technique to measure.
해저 지형을 측정하기 위해서는 물을 투과하여 해저까지 도달하여야 하므로 물에서의 흡수가 작은 532 nm의 파장이 많이 사용된다. 1064 nm의 빛은 물에서 대부분 흡수되므로 해수면에서만 반사를 한다고 해석할 수 있다. In order to measure the seabed topography, it is necessary to penetrate the water and reach the bottom of the sea. Therefore, a wavelength of 532 nm with low absorption in the water is used. Since 1064 nm of light is mostly absorbed by water, it can be interpreted to reflect only at sea level.
바다는 여러 영향으로 항상 파도와 파랑이 일고 있어서 물의 표면의 높이는 계속적으로 변하기 때문에 해저 지형의 측정에는 당시의 해수면 높이 정보가 함께 필요하다. 그러므로 532 nm와 1064 nm 두 개의 파장의 빛을 동시에 해면으로 보내면 해면과 해저의 정보를 동시에 얻을 수 있다.Since the sea is always wave and blue due to various influences, the height of the surface of the water is constantly changing, so the measurement of the seabed topography requires the sea level height information at that time. Therefore, by sending two wavelengths of light at 532 nm and 1064 nm at the same time, information on the sea level and the sea floor can be obtained simultaneously.
해저에서 반사된 빛에는 수면 반사와 해수에서의 흡수와 산란 그리고 해저에서의 반사등의 정보가 복합적으로 포함되어 있다. 해수면에서 산란 및 반사에 기인한 수면 산란 신호(Ps), 수중 산란에 기인한 수중 산란신호(Pc), 해저면에서 산란 및 반사에 기인한 해저면 산란 신호(Pb)는 각각 다음과 같이 주어진다.The light reflected from the sea floor contains a combination of surface reflections, absorption and scattering in sea water, and reflections from the sea floor. The surface scattering signal P s due to scattering and reflection at sea level, the underwater scattering signal P c due to underwater scattering, and the sea bottom scattering signal P b due to scattering and reflection at sea bottom are Is given together.
[수학식 1][Equation 1]
Figure PCTKR2017013155-appb-I000001
Figure PCTKR2017013155-appb-I000001
[수학식 2][Equation 2]
Figure PCTKR2017013155-appb-I000002
Figure PCTKR2017013155-appb-I000002
[수학식 3][Equation 3]
Figure PCTKR2017013155-appb-I000003
Figure PCTKR2017013155-appb-I000003
여기서, Pt는 투과 피크 파워(transmitted peak power), τ는 펄스 지속시간(pulse duration), c는 빛의 속도(speed of light), L은 비행기의 고도(aircraft altitude), H는 수심(water depth)이다. Where P t is the transmitted peak power, τ is the pulse duration, c is the speed of light, L is the aircraft altitude, and H is the water depth).
l은 공기중의 경로 길이(path length in air), h는 물에서 경로 길이(path length in water), k는 공기 감쇠 계수(air attenuation coefficient), Rs는 공기-물 경계면에서 반사율(reflectance at air-water interface), Ar는 수신 광학계의 개구 면적(aperture area of receiver optics), η:는 수신기의 효율(receiver efficiency)이다.l is the path length in air, h is the path length in water, k is the air attenuation coefficient, and R s is the reflectance at the air-water interface. air-water interface, A r is the aperture area of the receiver optics, and η is the receiver efficiency.
nw는 물의 굴절 계수(refractive index of water), θ는 off-nadir transmit angle, βπ는 후방 산란 계수(back scattering coefficient), a는 흡수 계수(absorption coefficient), bb는 수중 후방 산란 계수(backward-scattering coefficient of water), ρ는 바닥 반사율(bottom reflectance), φ는 물에서 굴절 빔 각(refracted beam angle in water), F는 FOV 손실 상수(loss factor)이다.n w is the refractive index of water, θ is the off-nadir transmit angle , β π is the back scattering coefficient, a is the absorption coefficient, and b b is the back scattering coefficient The backward-scattering coefficient of water, ρ is the bottom reflectance, φ is the refracted beam angle in water, and F is the FOV loss factor.
산란 신호(Psignal)는 [수학식] 1 내지 3의 반응함수(Presponse)와 해수에 입사하는 펄스 신호(Ipulse)의 합성곱(convolution)으로 구할 수 있으며 다음과 같이 주어진다.Scattering signal (P signal ) can be obtained by the convolution of the response function (P response ) of the equation (1) to 3 and the pulse signal (I pulse ) incident on the sea water and is given as follows.
[수학식 4][Equation 4]
Figure PCTKR2017013155-appb-I000004
Figure PCTKR2017013155-appb-I000004
도 2는 해수면을 투과하는 532nm 파장의 펄스 레이저 빔에 따른 [수학식] 1 내지 4로부터 얻은 수면 산란 신호, 수중산란 신호, 해저면 산란 신호와 그들의 합으로 이루어진 일반적인 LIDAR 신호의 시간(t)에 따른 형태를 나타낸다. FIG. 2 is a time (t) of a general LIDAR signal consisting of the surface scattering signal, the underwater scattering signal, the bottom scattering signal, and the sum thereof obtained from Equations 1 to 4 according to a pulse laser beam of 532 nm wavelength passing through the sea surface. According to the form.
도 2 및 [수학식] 2를 참조하면, 수심(water depth)을 나타내는 변수(H)가 시간에 대한 함수이며, H=cos(φ)ct/(2nw)의 관계를 가진다. Referring to FIG. 2 and Equation 2, the variable H representing the water depth is a function of time and has a relationship of H = cos (φ) ct / (2n w ).
[수학식] 2에서, 수중의 탁도(Turbidity)와 관계되는 항은 흡수 계수(absorption coefficient)와 수중후방산란계수(bb)의 합(Kd)으로 표시된다. In Equation 2, the term related to turbidity in water is represented by the sum K d of the absorption coefficient and the rearward scattering coefficient b b .
도 3은 해수면에서 반사된 1064nm 파장의 펄스 레이저 빔에 따른 [수학식] 1,4로부터 얻은 수면 산란 신호에 기초한 LIDAR 신호의 시간(t)에 따른 형태를 나타낸다. Figure 3 shows the shape of the LIDAR signal based on the time (t) of the LIDAR signal based on the surface scattering signal obtained from Equation 1,4 according to the pulsed laser beam of 1064nm wavelength reflected from the sea surface.
도 3을 참조하면, 도 3의 532 nm의 수면 산란 신호가 발생하는 시간 영역에서 1064nm의 수면 산란 신호가 발생한다. 상기 수면 산란 신호가 발생하는 국간을 적분 구간으로 설정할 수 있다.Referring to FIG. 3, a 1064 nm sleep scattering signal is generated in a time domain in which the 532 nm sleep scattering signal of FIG. 3 occurs. The inter-station where the sleep scattering signal is generated may be set as an integral section.
도 4는 시뮬레이션을 통해 수중 산란신호를 생성하고 지수함수로 감쇠하는 구간에서 곡선 맞춤을 통하여 계산된 지수함수의 감쇠 시간과 탁도(Kd)와 관계를 나타내는 결과이다.FIG. 4 shows the relationship between the decay time and the turbidity K d of the exponential function calculated through curve fitting in the section in which the scattering signal is generated through the simulation and attenuated by the exponential function.
도 5는 도 4의 결과에 잡음을 고려한 경우 지수함수의 감쇠 시간과 탁도(Kd)와 관계를 나타내는 결과이다.FIG. 5 illustrates the relationship between the decay time of the exponential function and the turbidity K d when noise is considered in the result of FIG. 4.
도 4 및 도 5를 참조하면, 통상적으로, 지수함수의 계수로 표현되는 수중후방산란계수(bb)는 신호가 감쇠하는 구간에서 최소자승법으로 지수함수에 곡선맞춤을 하면 값을 구할 수 있다. 그러나 해저에서는 해초나 물고기 등 다양한 원인으로 신호가 왜곡될 수 있어서 지수함수로 감쇠하는 신호를 얻지 못할 수 있다. 또한 탁도가 높을수록 감쇠가 빨라지기 때문에 곡선맞춤을 할 수 있는 신호 구간도 짧아지고 오차가 급격히 커지게 된다. Referring to FIGS. 4 and 5, in general, the underwater backscattering coefficient b b , which is expressed as a coefficient of the exponential function, can be obtained by curve fitting the exponential function by the least-square method in a section where the signal is attenuated. However, in the seabed, the signal may be distorted by various causes such as seaweed or fish, and thus it may not be possible to obtain a signal that is attenuated by an exponential function. In addition, the higher the turbidity, the faster the attenuation, the shorter the signal range for curve fitting and the greater the error.
Kd 값은 흡수 계수(absorption coefficient)와 수중후방산란계수(bb)의 합으로 탁도를 나타내는 지표이다.The K d value is an index indicating turbidity as the sum of the absorption coefficient and the rearward scattering coefficient b b .
도 4를 참조하면, 주어진 감쇠시간에 대해 잡음이 없는 조건으로 계산한 신호는 감쇠구간을 곡선맞춤하여 구한 Kd값이 이론값과 잘 일치한다. Referring to FIG. 4, for a signal calculated under a noise-free condition for a given decay time, the K d value obtained by curve fitting the decay section agrees well with the theoretical value.
도 5를 참조하면, 수중산란 신호가 지수함수로 감쇠하는 시간 영역에서 곡선맞춤을 해서 감쇠계수를 구하는 방법이 잡음에 취약하다는 것을 보여주고 있다. Referring to FIG. 5, it is shown that a method of calculating attenuation coefficients by curve fitting in a time domain where an underwater scattering signal is attenuated by an exponential function is vulnerable to noise.
잡음을 고려하여 산란신호를 생성하면 곡선맞춤으로 얻은 Kd값이 이론값과 차이가 크다. 그러므로 보다 신뢰성 있게 탁도를 구하는 방법이 필요하다.When the scattering signal is generated by considering the noise, the K d value obtained by the curve fitting differs from the theoretical value. Therefore, a more reliable method of obtaining turbidity is needed.
수면근처의 적분신호는 수면 부근 신호 세기의 총 합으로 전체 신호 중에서 가장 세기가 큰 부분의 신호들을 적분하기 때문에 잡음에 둔감하다. 또한 수면 부근의 부유물에 대한 정보를 포함하고 있어 탁도 분석에 용이하다.The integrated signal near the sleep is insensitive to noise because it integrates the signals of the greatest intensity among the total signals as the sum of the signal strengths near the sleep. It also contains information about suspended solids near the surface of the water, making it easy to analyze turbidity.
도 6은 본 발명의 일 실시예에 따른 탁도 측정 장치를 설명하는 개념도이다.6 is a conceptual diagram illustrating an apparatus for measuring turbidity according to an embodiment of the present invention.
도 7은 도 6의 탁도 측정 장치를 사용한 탁도 측정 방법을 설명하는 흐름도이다. FIG. 7 is a flowchart illustrating a turbidity measurement method using the turbidity measurement device of FIG. 6.
도 6 및 7을 참조하면, 탁도 측정 장치(100)는 레이저 펄스 광원(110), 스캐너(120), 수신 광학계(130), 제1 광검출기(144), 제2 광검출기(146), 아날로그디지털 변환기(148), 신호 처리부(150), 및 타이밍부(149)를 포함할 수 있다.6 and 7, the turbidity measuring device 100 includes a laser pulse light source 110, a scanner 120, a reception optical system 130, a first photodetector 144, a second photodetector 146, and an analog. The digital converter 148, a signal processor 150, and a timing unit 149 may be included.
상기 레이저 펄스 광원(110)은 해수면에서만 반사하는 제1 파장의 제1 레이저 펄스 빔(D1)과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 제2 레이저 펄스 빔(D2)을 수중에 동시에 제공한다. 상기 레이저 펄스 광원(110)은, 1064nm의 제1 파장과 532nm의 제2 파장을 동시에 출력할 수 있다. 상기 레이저 펄스 광원(110)은 제1 파장과 제2 파장을 동시에 발생시키기 위하여 2차-고조파 발생기(second-harmonic generator)를 포함할 수 있다. 상기 2차-고조파 발생기는 KDP와 같은 결정, 광섬유, 또는 케비티 구조를 사용할 수 있다.The laser pulse light source 110 underwater receives a first laser pulse beam D1 having a first wavelength reflecting only at sea level and a second laser pulse beam D2 having a second wavelength passing through the sea level and reaching and reflecting to the sea bottom. Provide at the same time. The laser pulse light source 110 may simultaneously output a first wavelength of 1064 nm and a second wavelength of 532 nm. The laser pulse light source 110 may include a second-harmonic generator to simultaneously generate a first wavelength and a second wavelength. The second-harmonic generator may use a crystal, an optical fiber, or a cavity structure such as KDP.
상기 스캐너(120)는 상기 제1 파장의 레이저 펄스 빔과 상기 제2 파장의 레이저 펄스 빔을 수면 상에 스캐닝할 수 있다. 상기 스캐너(120)는 반사 거울과 회전용 모터를 포함할 수 있다.The scanner 120 may scan the laser pulse beam of the first wavelength and the laser pulse beam of the second wavelength on the surface of the water. The scanner 120 may include a reflection mirror and a rotating motor.
상기 수신 광학계(130)는 망원경 시스템을 포함할 수 있다. 상기 수신 광학계는 그레고리식 또는 카세그리안식 반사 망원경일 수 있다. 상기 수신 광학계(130)는 그 중심에 관통홀을 구비한 주경(primary mirror)과 볼록 거울 또는 오목 거울 구조의 부경(secondary mirror)을 포함할 수 있다.The receiving optical system 130 may include a telescope system. The receiving optical system may be a Gregorian or casearian reflective telescope. The receiving optical system 130 may include a primary mirror having a through hole at a center thereof, and a secondary mirror having a convex mirror or a concave mirror structure.
상기 수신 광학계(130)는 상기 제1 파장의 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집한다. The reception optical system 130 is a laser pulse beam of the first wavelength due to the surface scattering at the sea level, the first optical signal and the laser pulse beam of the second wavelength is due to the surface scattering, underwater scattering, and bottom scattering A second optical signal is collected through the receiving optical system.
상기 수신 광학계(130)에서 수집된 제1 광신호와 상기 제2 광신호는 이색성 미러(142)를 통하여 파장별에 따라 공간적으로 분리된다. The first optical signal and the second optical signal collected by the reception optical system 130 are spatially separated according to wavelengths through the dichroic mirror 142.
제1 광검출기(144)는 상기 이색성 미러(142)에 의하여 분리된 상기 제1 광신호를 시간에 따라 검출한다. 상기 제1 광검출기는 포토다이오드일 수 있다.The first photodetector 144 detects the first optical signal separated by the dichroic mirror 142 over time. The first photodetector may be a photodiode.
제2 광검출기(146)은 상기 이색성 미러(142)에 의하여 분리된 상기 제2 광신호를 시간에 따라 검출한다. 상기 제2 광검출기(146)는 광전 증폭관(Photo Multiplier Tube)일 수 있다.The second photodetector 146 detects the second optical signal separated by the dichroic mirror 142 over time. The second photodetector 146 may be a photo multiplier tube.
아날로그디지털 변환기(148)는 상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호로 변환한다. 디지털 신호로 변환된 신호는 메모리에 저장된다. 상기 아날로그디지털 변환기(148)는 타이밍부(149)에 의하여 상기 레이저 펄스 광원(110)과 동기화된다. The analog-to-digital converter 148 converts the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively. The signal converted into a digital signal is stored in the memory. The analog-to-digital converter 148 is synchronized with the laser pulse light source 110 by the timing unit 149.
상기 타이밍부(149)는 상기 아날로그디지털 변환기 및 상기 레이저 펄스 광원에 동기 신호를 제공할 수 있다.The timing unit 149 may provide a synchronization signal to the analog to digital converter and the laser pulse light source.
신호 처리부(150)는 상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성한다. 또한, 상기 신호 처리부(150)는 상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성한다. 상기 신호 처리부는 상기 제2 적분신호를 상기 제1 적분 광신호로 나누어 규격화된 측정 적분 신호를 생성한다. 상기 신호 처리부(150)는 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출한다. The signal processor 150 generates the first integrated signal by integrating the first digital electrical signal over a predetermined time interval during which the surface scattering signal is generated. In addition, the signal processor 150 generates a second integrated signal by integrating the second digital electrical signal over a predetermined time interval during which the sleep scattering signal is generated. The signal processor generates the normalized measurement integrated signal by dividing the second integrated signal into the first integrated optical signal. The signal processor 150 extracts the measurement turbidity corresponding to the standardized measurement integrated signal using the relationship of the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value.
탁도 측정 방법은, 해수면에서만 반사하는 제1 파장의 레이저 펄스 빔과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 레이저 펄스 빔을 수중에 동시에 제공하는 단계(S110); 상기 제1 파장의 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집하고, 파장에 따라 제1 광신호 및 제2 광신호를 각각 시간에 따라 검출하는 단계(S112); 상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호로 변환하는 단계(S114); 상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성하는 단계(S116); 상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성하는 단계(S118); 상기 제2 적분신호를 상기 제1 적분 신호로 나누어 규격화된 측정 적분 신호를 생성하는 단계(S120); 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출하는 단계(S122)를 포함한다.The turbidity measuring method may include: simultaneously providing a laser pulse beam of a first wavelength reflecting only at sea level and a laser pulse beam of second wavelength passing through the sea level and reaching and reflecting to the sea bottom (S110); The laser pulse beam of the first wavelength receives a first optical signal due to surface scattering at the sea level and the laser pulse beam of the second wavelength receives a second optical signal due to surface scattering, underwater scattering, and bottom scattering. Collecting through the optical system and detecting a first optical signal and a second optical signal according to wavelengths, respectively (S112); Converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively (S114); Generating a first integrated signal by integrating the first digital electrical signal over a predetermined time interval at which a sleep scattering signal is generated; Generating a second integrated signal by integrating the second digital electrical signal over a predetermined time interval at which the sleep scattering signal is generated; Generating a normalized measurement integrated signal by dividing the second integrated signal into the first integrated signal (S120); And extracting measurement turbidity corresponding to the normalized measurement integrated signal using the relationship of the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value (S122).
제1 광 검출기(144)는 해수면에서 산란과 반사과정을 통하여 되돌아온 1064 nm의 제1 광신호를 검출한다. 상기 제2 광 검출기(146)는 해수면과 해저에서 산란과 반사과정을 통해 되돌아온 532 nm의 제2 광신호를 검출한다. 상기 제1 광신호는 제1 디지털 전기 신호로 변환되고, 상기 제2 광신호는 제2 디지털 전기 신호로 변환된다.The first photodetector 144 detects the first 1064 nm optical signal returned from the sea level through scattering and reflection. The second photodetector 146 detects a second light signal of 532 nm returned from the sea level and the sea bottom through scattering and reflection. The first optical signal is converted into a first digital electrical signal, and the second optical signal is converted into a second digital electrical signal.
사전에 1064 nm의 제1 광신호를 분석하여 신호가 잡음보다 크도록 적분구간을 설정해 놓는다. 정해진 적분구간에 대해 532 nm의 제2 디지털 전기 신호와 1064 nm의 제1 디지털 전기 신호를 적분한다. 532 nm의 신호 적분값을 1064 nm의 신호 적분값으로 나눠 규격화된 측정 적분 신호를 생성한다. 이 후 시뮬레이션을 통해 미리 정해놓은 탁도와 규격화된 이론 적분 신호의 관계식과 비교하여 상기 규격화된 측정 적분 신호에 대응하는 탁도를 결정한다.The first 1064 nm optical signal is analyzed beforehand, and the integral section is set so that the signal is larger than the noise. The second digital electrical signal of 532 nm and the first digital electrical signal of 1064 nm are integrated for a predetermined integration period. The signal integration value of 532 nm is divided by the signal integration value of 1064 nm to generate a normalized measurement integral signal. Thereafter, the turbidity corresponding to the standardized measured integrated signal is determined by comparing the relationship between a predetermined turbidity and a standardized theoretical integrated signal through simulation.
다시, 도 2를 참조하면, 제2 광신호에서, 적분 구간에서의 신호 형태는 수면 산란 신호와 수중 산란 신호의 합으로 이루어진다. 따라서, 적분 구간의 신호는 수중 부유물 뿐만 아니라 수면의 상태에 영향을 받는다. 즉 수면 상태 (기울기, 표면 상태 등)에 따라 신호 세기가 달라질 수 있다. 수중에 입사하는 빛의 양은 총 입사한 빛의 세기에서 해수면에서 산란된 신호의 세기를 제외한 나머지이다. 수중에 입사하는 빛의 세기가 달라지면 산란 신호의 세기가 달라진다. 수면 부근 신호 형태의 적분값이 달라질 수 있다. 또한 레이저 펄스 광원의 출력 요동 또는 기타 환경적인 요인은 탁도와 상관없이 적분값을 변경할 수 있다. 탁도와 상관없는 변수에 의해 적분값이 변할 경우 탁도와 신호 형태의 관계를 알아내기 어렵다. 따라서 이런 효과를 줄이기 위해서는 탁도와 관계가 없는 적분값 정보가 필요하다. Referring back to FIG. 2, in the second optical signal, the signal shape in the integration section is made up of the sum of the sleep scattering signal and the underwater scattering signal. Thus, the signal of the integral section is influenced by the state of the surface as well as the underwater float. That is, the signal strength may vary depending on the sleep state (tilt, surface state, etc.). The amount of light incident on the water is the total incident light intensity minus the intensity of the signal scattered at sea level. If the intensity of light incident on the water is different, the intensity of the scattering signal is different. The integral value of the near-surface signal type may vary. In addition, the output fluctuations or other environmental factors of the laser pulsed light source can change the integral value irrespective of turbidity. It is difficult to find the relationship between turbidity and signal type when the integral value is changed by a variable that is not related to turbidity. Therefore, to reduce this effect, integral value information that is not related to turbidity is needed.
1064 nm의 제1 광 신호는 수중에서 흡수가 크기 때문에 대부분 수면에서의 산란 신호만 존재한다. 그러므로, 제1 광 신호의 적분값은 레이저 광의 출력변화, 바람이나 파도의 영향 등 환경요인에 영향을 받고, 탁도에는 영향을 거의 받지 않는다. 따라서, 1064 nm의 제1 광신호의 적분값으로 532 nm의 제2 광신호의 적분값으로 규격화하면, 레이저 광의 출력변화, 바람이나 파도의 영향 등 환경요인의 영향을 줄일 수 있다. 이에 따라, 규격화된 적분 신호는 탁도만의 함수로 표시될 수 있다.Since the first optical signal of 1064 nm has a large absorption in water, only a scattering signal exists in the surface of the water. Therefore, the integrated value of the first optical signal is influenced by environmental factors such as the output change of laser light, the influence of wind or waves, and is hardly affected by turbidity. Therefore, if the integration value of the first optical signal of 1064 nm is normalized to the integral value of the second optical signal of 532 nm, the influence of environmental factors such as the output change of laser light, the influence of wind or waves can be reduced. Accordingly, the normalized integral signal can be represented as a function of turbidity only.
이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계는 다음과 같이 계산될 수 있다.The relation of the normalized theoretical integrated signal according to the turbidity predicted using the theoretical value can be calculated as follows.
제1 이론 신호는 수학식 1,4를 이용하여 예측된 탁도(Kd)에 따라 상기 제1 파장에서 제1 수면 산란 신호에 의하여 계산된다. The first theoretical signal is calculated by the first sleep scattering signal at the first wavelength according to the turbidity K d estimated using Equations 1 and 4.
제2 이론 신호는 수학식 1 내지 4를 이용하여 예측된 탁도(Kd)에 따른 상기 제2 파장에서 수면 산란 신호, 수중 산란 신호 , 그리고 해저면 산란 신호에 의하여 계산된다.The second theoretical signal is calculated by the surface scattering signal, the underwater scattering signal, and the bottom scattering signal at the second wavelength according to the turbidity K d predicted using Equations 1 to 4.
제1 이론 적분 신호는 상기 제1 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역(적분구간)에 대하여 적분하여 계산된다.The first theoretical integrated signal is calculated by integrating the first theoretical signal over a predetermined time region (integral section) in which the first sleep scattering signal is present.
제2 이론 적분 신호는 상기 제2 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역(적분 구간)에 대하여 적분하여 계산된다.The second theoretical integrated signal is calculated by integrating the second theoretical signal over a predetermined time domain (integral period) in which the first sleep scattering signal is present.
예측된 탁도(Kd)에 따라 상기 제2 이론 적분 신호를 상기 제1 이론 적분 신호로 나누어 상기 규격화된 이론 적분 신호를 산출한다. The normalized theoretical integrated signal is calculated by dividing the second theoretical integrated signal by the first theoretical integrated signal according to the predicted turbidity K d .
예측된 탁도(Kd)를 상기 규격화된 이론 적분 신호의 선형 함수로 피팅한다.The predicted haze K d is fitted as a linear function of the normalized theoretical integral signal.
규격화된 적분 신호로부터 탁도를 알기 위해서는 탁도와 규격화된 적분 신호의 관계를 미리 찾아야한다. In order to know the turbidity from the standardized integral signal, the relationship between the turbidity and the standardized integral signal must be found in advance.
도 8a 및 도 8b는 잡음의 유무에 따른 탁도와 정해진 적분구간의 규격화된 적분 신호와 탁도와의 상관관계를 나타낸다.8A and 8B show correlations between turbidity according to the presence or absence of noise and standardized integrated signals and turbidity between predetermined integral sections.
이론적으로 유도된 수학식 1 내지 4를 활용하여 각각의 탁도값(Kd)에 대해 신호를 생성한 후, 1064 nm의 신호에 대해 적분 구간에 대하여 적분한 제1 이론 적분 신호를 계산한다. 532 nm의 신호에 대해 동일한 적분 구간에 대하여 적분한 제2 이론 적분 신호를 생성한다. 상기 제2 이론 적분 신호는 상기 제1 적분 신호에 의하여 나뉘어, 규격화된 이론 적분 신호가 계산된다.After generating signals for each turbidity value K d using the theoretically derived equations 1 to 4, a first theoretical integrated signal integrated over an integral section is calculated for a signal of 1064 nm. Generate a second theoretical integral signal that is integrated over the same integral section for the 532 nm signal. The second theoretical integrated signal is divided by the first integrated signal, and a normalized theoretical integrated signal is calculated.
신호의 계산에서 잡음이 없는 경우(a)와 잡음을 넣은 경우(b)를 비교하고 있다. 적분면적과 탁도는 선형비례관계를 가정하고 곡선맞춤을 하면, (a)의 경우, 탁도(y)는 규격화된 이론 적분 신호(x)의 함수로 다음과 같이 표시된다.In the calculation of the signal, the noise-free (a) and the noise-added (b) are compared. Integrating area and turbidity assume a linear proportionality, and then curve fit. For (a), turbidity y is expressed as a function of normalized theoretical integral signal x as follows.
[수학식 5][Equation 5]
Figure PCTKR2017013155-appb-I000005
Figure PCTKR2017013155-appb-I000005
실험으로 시뮬레이션과 유사하게 신호의 규격화된 측정 적분 신호를 구하면, 수학식 5에 대입하여 탁도를 얻을 수 있다.As an experiment, if the standardized measurement integrated signal of the signal is obtained, the turbidity can be obtained by substituting the equation (5).
이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be implemented without departing from the spirit.

Claims (4)

  1. 해수면에서만 반사하는 제1 파장의 제1 레이저 펄스 빔과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 제2 레이저 펄스 빔을 수중에 동시에 제공하는 단계;Simultaneously providing a first laser pulse beam of a first wavelength reflecting only at sea level and a second laser pulse beam of second wavelength passing through the sea level and reaching and reflecting to the seabed;
    상기 제1 파장의 제1 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 제2 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집하고, 파장에 따라 제1 광신호 및 제2 광신호를 각각 시간에 따라 검출하는 단계;The first optical pulse beam of the first wavelength is due to the surface scattering at the sea level and the second laser pulse beam of the second wavelength is due to the surface scattering, underwater scattering, and bottom scattering Collecting an optical signal through a receiving optical system and detecting a first optical signal and a second optical signal according to a wavelength according to time, respectively;
    상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호로 변환하는 단계;Converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively;
    상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성하는 단계;Generating a first integrated signal by integrating the first digital electrical signal over a predetermined time interval at which a sleep scattering signal is generated;
    상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성하는 단계;Generating a second integrated signal by integrating the second digital electrical signal over a predetermined time interval at which the sleep scattering signal is generated;
    상기 제2 적분신호를 상기 제1 적분 신호로 나누어 규격화된 측정 적분 신호를 생성하는 단계; 및Generating a normalized measurement integrated signal by dividing the second integrated signal into the first integrated signal; And
    이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출하는 단계를 포함하는 것을 특징으로 하는 탁도 측정 방법.And extracting a measurement turbidity corresponding to the normalized measurement integrated signal using the relationship of the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 파장은 1064 nm이고,The first wavelength is 1064 nm,
    상기 제2 파장은 532 nm인 것을 특징으로 하는 탁도 측정 방법.The second wavelength is turbidity measuring method, characterized in that 532 nm.
  3. 제1 항에 있어서,According to claim 1,
    이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계는,The relationship between the standardized theoretical integrated signal according to the turbidity predicted using the theoretical value is
    제1 이론 신호는 예측된 탁도에 따라 상기 제1 파장에서 제1 수면 산란 신호에 의하여 계산되고,A first theoretical signal is calculated by the first sleep scattering signal at the first wavelength according to the predicted turbidity,
    제2 이론 신호는 예측된 탁도에 따른 상기 제2 파장에서 수면 산란 신호, 수중 산란 신호 , 그리고 해저면 산란 신호에 의하여 계산되고,A second theoretical signal is calculated by the surface scattering signal, the underwater scattering signal, and the bottom scattering signal at the second wavelength according to the predicted turbidity;
    제1 이론 적분 신호는 상기 제1 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역에 대하여 적분하여 계산하고,A first theoretical integrated signal is calculated by integrating the first theoretical signal with respect to a predetermined time domain in which the first sleep scattering signal exists;
    제2 이론 적분 신호는 상기 제2 이론 신호를 상기 제1 수면 산란 신호가 존재하는 소정의 시간 영역에 대하여 적분하여 계산하고,A second theoretical integrated signal is calculated by integrating the second theoretical signal over a predetermined time domain in which the first sleep scattering signal is present;
    예측된 탁도에 따라 상기 제2 이론 적분 신호를 상기 제1 이론 적분 신호로 나누어 상기 규격화된 이론 적분 신호를 산출하고,Calculating the normalized theoretical integrated signal by dividing the second theoretical integrated signal by the first theoretical integrated signal according to a predicted turbidity;
    예측된 탁도를 상기 규격화된 이론 적분 신호의 선형 함수로 피팅하는 것을 포함하는 것을 특징으로 하는 탁도 측정 방법.And fitting a predicted haze to a linear function of the normalized theoretical integral signal.
  4. 해수면에서만 반사하는 제1 파장의 제1 레이저 펄스 빔과 상기 해수면을 투과하여 해저까지 도달하고 반사하는 제2 파장의 제2 레이저 펄스 빔을 수중에 동시에 제공하는 레이저 펄스 광원;A laser pulse light source for simultaneously providing underwater a first laser pulse beam having a first wavelength reflecting only at sea level and a second laser pulse beam having a second wavelength passing through the sea level and reaching and reflecting to the seabed;
    상기 제1 파장의 제1 레이저 펄스 빔이 상기 해수면에서 수면 산란에 기인한 제1 광신호 및 상기 제2 파장의 제2 레이저 펄스 빔이 수면 산란, 수중 산란 , 그리고 해저면 산란에 기인한 제2 광신호를 수신 광학계를 통하여 수집하고, 파장에 따라 제1 광신호 및 제2 광신호를 각각 시간에 따라 검출하는 제1 광검출기 및 제2 광검출기;The first optical pulse beam of the first wavelength is due to the surface scattering at the sea level and the second laser pulse beam of the second wavelength is due to the surface scattering, underwater scattering, and bottom scattering A first photodetector and a second photodetector for collecting an optical signal through a receiving optical system and detecting a first optical signal and a second optical signal according to wavelengths, respectively;
    상기 제1 광신호 및 제2 광신호를 각각 제1 디지털 전기 신호 및 제2 디지털 전기 신호를 변환하는 아날로그디지털 변환기; 및An analog-digital converter for converting the first optical signal and the second optical signal into a first digital electrical signal and a second digital electrical signal, respectively; And
    상기 제1 디지털 전기 신호를 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제1 적분 신호를 생성하고, 상기 제2 디지털 전기 신호를 상기 수면 산란 신호가 발생하는 소정의 시간 구간에 대하여 적분하여 제2 적분 신호를 생성하고, 상기 제2 적분신호를 상기 제1 적분 신호로 나누어 규격화된 측정 적분 신호를 생성하고, 이론값을 이용하여 예측된 탁도에 따른 규격화된 이론 적분 신호의 관계를 이용하여 상기 규격화된 측정 적분 신호에 대응하는 측정 탁도를 추출하는 신호 처리부를 포함하는 것을 특징으로 하는 탁도 측정 장치.Integrating the first digital electrical signal over a predetermined time interval during which a sleep scattering signal is generated to generate a first integrated signal, and integrating the second digital electrical signal over a predetermined time interval during which the sleep scattering signal is generated. Generate a second integrated signal, divide the second integrated signal into the first integrated signal to generate a normalized measurement integrated signal, and use the relationship between the normalized theoretical integrated signal according to the turbidity predicted using the theoretical value. And a signal processor for extracting measurement turbidity corresponding to the normalized measurement integrated signal.
PCT/KR2017/013155 2017-02-21 2017-11-20 Method for measuring turbidity through bathymetric lidar waveform analysis WO2018155788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0022860 2017-02-21
KR1020170022860A KR101879641B1 (en) 2017-02-21 2017-02-21 Turbidity Measuring Method By Using Airbone Bathymetry LIDAR Wave Form Analysis

Publications (1)

Publication Number Publication Date
WO2018155788A1 true WO2018155788A1 (en) 2018-08-30

Family

ID=63058216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013155 WO2018155788A1 (en) 2017-02-21 2017-11-20 Method for measuring turbidity through bathymetric lidar waveform analysis

Country Status (2)

Country Link
KR (1) KR101879641B1 (en)
WO (1) WO2018155788A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295585A (en) * 2022-01-04 2022-04-08 浙江大学 Multi-view-field ocean laser radar data regularization inversion method based on analytical model
CN114689546A (en) * 2022-03-14 2022-07-01 厦门大学 Water body all-angle volume scattering function measuring device and method based on laser radar

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031856B (en) * 2019-04-04 2022-03-04 山东科技大学 Method for extracting diffuse attenuation coefficient of airborne LiDAR depth measurement data
CN115266509B (en) * 2022-09-26 2023-02-24 水利部交通运输部国家能源局南京水利科学研究院 Underwater vertical suspended matter concentration detection method and system based on laser radar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986655A (en) * 1989-11-30 1991-01-22 Gte Government Systems Corporation Apparatus for measuring diffuse attenuation coefficient of sea water
JP2003083895A (en) * 2001-09-10 2003-03-19 National Maritime Research Institute Fluorescent image measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588535B2 (en) * 1997-06-30 2004-11-10 ホーチキ株式会社 Smoke detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986655A (en) * 1989-11-30 1991-01-22 Gte Government Systems Corporation Apparatus for measuring diffuse attenuation coefficient of sea water
JP2003083895A (en) * 2001-09-10 2003-03-19 National Maritime Research Institute Fluorescent image measuring device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVIES-COLLEY, R. J.: "TURBIDITY SUSPENDED SEDIMENT, AND WATER CLARITY: A REVIEW", JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, vol. 3 7, no. 5, October 2001 (2001-10-01), pages 1085 - 1101, XP055537172 *
PAN, Z.: "Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 54, no. 7, 5 July 2016 (2016-07-05), pages 4165 - 4177, XP055537176 *
PAN, Z.: "Water turbidity estimation from airborne hyperspectral imagery and full waveform bathymetric LiDAR", AMERICAN GEOPHYSICAL UNION, FALL MEETING 2015 , SAN FRANCISCO, 14 December 2015 (2015-12-14) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295585A (en) * 2022-01-04 2022-04-08 浙江大学 Multi-view-field ocean laser radar data regularization inversion method based on analytical model
CN114295585B (en) * 2022-01-04 2024-03-22 浙江大学 Multi-view-field ocean laser radar data regularization inversion method based on analytical model
CN114689546A (en) * 2022-03-14 2022-07-01 厦门大学 Water body all-angle volume scattering function measuring device and method based on laser radar
CN114689546B (en) * 2022-03-14 2024-06-11 厦门大学 Laser radar-based device and method for measuring water body full-angle body scattering function

Also Published As

Publication number Publication date
KR101879641B1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2018155788A1 (en) Method for measuring turbidity through bathymetric lidar waveform analysis
US8184276B2 (en) Continuous index of refraction compensation method for measurements in a medium
Churnside et al. Airborne lidar for fisheries applications
CN109298410A (en) A kind of marine oil spill detecting laser radar
US4717252A (en) Method and apparatus for detecting distance and forming image of object in turbid medium using laser
Moore et al. Development of a new underwater bathymetric laser imaging system: L-bath
Walsh et al. Photographic measurements of bubble populations from breaking wind waves at sea
JPS57128810A (en) Distance measuring device
US4988885A (en) Remote optical wave measurement sensor
AU654124B2 (en) Electrooptical sensor system for marine seismic data acquisition
CN114167437B (en) Water surveying laser radar multichannel design method
CN107272023B (en) A kind of device measuring the non-homogeneous horizontal air Aerosol Extinction in sea level
US20040251405A1 (en) Methods and devices for optically recording and imaging representations of interactions of an object with its environment
FR2864249A1 (en) Submerged or floating obstacle avoiding device for e.g. catamaran type high speed boat, has signal processing unit that determines obstacle position and utilizes Doppler differences consecutive to emission from sonar emitters
JPH04297888A (en) Underwater laser radar
CN113776642A (en) Digital hydrophone based on laser Doppler vibration measurement and vibration measurement method
CN207280384U (en) Long detection device in a kind of workpiece
Tao et al. Precise detection of water surface through the analysis of a single green waveform from bathymetry LiDAR
Keller et al. Comparison of optically‐derived spectral densities and microwave cross sections in a wind‐wave tank
RU2708526C1 (en) Laser ship speed meter
CN108918472B (en) Laser seawater transmittance calibration system based on seawater pool
Anderson et al. Detection Of Shallow Submerged Obstacles By Two-Color Lidar At Angles Of Incidence Approaching 90 Degrees
Fu et al. Underwater target laser polarization suppression scattering detection technology and verification
Spitzer et al. Multispectral remote-sensing of fluorescent tracers-theory and experiments
Seshamani et al. An airborne sensor for primary productivity and related parameters of coastal waters and large water bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897794

Country of ref document: EP

Kind code of ref document: A1