WO2018155722A1 - Transmission belt - Google Patents

Transmission belt Download PDF

Info

Publication number
WO2018155722A1
WO2018155722A1 PCT/JP2018/007368 JP2018007368W WO2018155722A1 WO 2018155722 A1 WO2018155722 A1 WO 2018155722A1 JP 2018007368 W JP2018007368 W JP 2018007368W WO 2018155722 A1 WO2018155722 A1 WO 2018155722A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
rubber
transmission belt
belt
Prior art date
Application number
PCT/JP2018/007368
Other languages
French (fr)
Japanese (ja)
Inventor
利樹 尾崎
日根野 順文
幹夫 景山
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018012694A external-priority patent/JP6616852B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to US16/489,143 priority Critical patent/US20190390047A1/en
Priority to CA3053901A priority patent/CA3053901C/en
Priority to RU2019126799A priority patent/RU2719606C9/en
Priority to EP18758077.4A priority patent/EP3587859A4/en
Publication of WO2018155722A1 publication Critical patent/WO2018155722A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber

Definitions

  • the present invention relates to a transmission belt including a cured product of a rubber composition including an ethylene- ⁇ -olefin elastomer capable of realizing high hardness and high modulus.
  • V-belts and V-ribbed belts are commonly used for driving automotive engine accessories, toothed belts for driving OHC (overhead camshaft), and low-edge cogged V-belts for driving CVT (continuously variable transmission).
  • OHC overhead camshaft
  • CVT continuously variable transmission
  • the low-edge cogged V-belt used for driving CVTs such as snowmobiles has a wide temperature range from a low temperature to a high temperature because it is exposed to the heat generated by the engine while driving at a low temperature while starting.
  • a rubber composition that can withstand the region is required.
  • high adhesiveness for suppressing separation between the rubber composition and a fiber member such as a core wire or a reinforcing cloth, and bending fatigue resistance that can be applied to a small-diameter pulley are required for compactness.
  • a high wear resistance that can withstand wear due to contact with the pulley and a high side pressure resistance that can withstand the side pressure from the pulley are also required.
  • a toothed belt is also required to have a small belt width for compactness, and in order to cope with this, high hardness and high modulus of tooth rubber are required.
  • the use of ethylene- ⁇ -olefin elastomers as elastomers constituting rubber compositions is increasing.
  • Ethylene- ⁇ -olefin elastomers have high heat resistance and weather resistance because they do not have an unsaturated bond in the main chain. Furthermore, since the ethylene- ⁇ -olefin elastomer does not have a polar group, it can be highly filled with reinforcing agents such as short fibers and carbon black, and it is relatively easy to achieve high hardness and high modulus. It also has features. However, when an ethylene- ⁇ -olefin elastomer is highly filled with a reinforcing agent, it has the following drawbacks. That is, when a large amount of carbon black is added, the heat generated due to the bending of the belt increases, and the durability tends to decrease. Further, when a large amount of short fibers is added, poor dispersion is likely to occur, and cracks are likely to occur. For this reason, various formulations have been studied that increase the hardness and modulus while relatively reducing the amount of reinforcing agent.
  • Patent Document 1 100 parts by weight of an ethylene- ⁇ -olefin elastomer having an ethylene content of 55 to 78% by weight and a metal salt 1 to 30 of an ⁇ , ⁇ -unsaturated organic acid are disclosed.
  • a belt (synchronous belt, V-belt, V-ribbed belt) comprising a crosslinked product obtained by crosslinking an elastomer composition containing parts by weight and a reinforcing agent of 0 to 250 parts by weight (preferably 25 to 100 parts by weight) with a free radical donor.
  • the reinforcing agent carbon black, calcium carbonate, talc, clay and hydrous silica are described.
  • Patent Document 2 discloses that ⁇ -ethylene-propylene-diene terpolymer (EPDM) having an ethylene content of 50 to 65% by weight and a diene content of less than 10% by weight is ⁇ , ⁇ -unsaturated carboxylic acid metal salt 32 to 100 parts by weight and filler 0 to 30 parts by weight, and a power transmission belt (V-ribbed belt, toothed belt) including a peroxide-crosslinked crosslinked product is disclosed. .
  • the filler a white filler such as silicate; aluminum, calcium or magnesium oxide or carbonate is described.
  • a composition containing 40 to 60 parts by weight of zinc diacrylate, 10 parts by weight of white filler, 25 parts by weight of carbon black, and 5 parts by weight of dicumyl hydroperoxide is prepared with respect to 100 parts by weight of EPDM.
  • Patent Document 3 100 parts by mass of an ethylene- ⁇ -olefin elastomer containing 5% by mass to less than 40% by mass of ethylene propylene diene monomer rubber having an ethylene content of 66 to 85% by mass,
  • a power transmission belt comprising a crosslinked product obtained by crosslinking a composition containing 32 to 100 parts by mass of an ⁇ , ⁇ -unsaturated carboxylic acid metal salt with an organic peroxide is disclosed.
  • transmission belts flat transmission belts, friction transmission belts such as V-belts and V-ribbed belts, and meshing transmission belts such as toothed belts are described.
  • Patent Documents 1 to 3 the ethylene content of the ethylene- ⁇ -olefin elastomer is regulated within a certain range, and the addition amount of the organic acid metal salt is adjusted to obtain a rubber composition having the required performance. Can be estimated.
  • these compositions only adjust the balance between the crystallinity due to the ethylene component and the crosslinking with the organic acid metal salt, and even if a belt is formed, cold resistance, heat resistance, adhesiveness, and bending resistance Various requirements required for a transmission belt such as fatigue and wear resistance cannot be satisfied at the same time.
  • Patent Document 4 describes 20 to 40 parts by weight of an organic acid metal salt monomer per 100 parts by weight of a rubber component composed of an ethylene- ⁇ -olefin elastomer and a hydrogenated nitrile rubber. And a high load transmission belt (cogged V belt, hybrid V belt) comprising a crosslinked product obtained by crosslinking a composition containing 5 to 35 parts by weight of short fibers with peroxide.
  • Patent Document 4 hydrogenated nitrile rubber is blended with ethylene- ⁇ -olefin elastomer to improve crack resistance, but the properties of ethylene- ⁇ -olefin elastomer such as cold resistance are reduced. The result is a moderate or good performance. Moreover, since it becomes an inhomogeneous composition of the sea-island structure, there is a concern about separation at the time of deterioration over time.
  • Patent Document 5 a composition containing chloroprene rubber as a main rubber and containing a metal oxide, an organic peroxide, and an ⁇ , ⁇ -unsaturated fatty acid metal salt is disclosed.
  • a power transmission belt (a V-ribbed belt, a V-belt, a cogged V-belt, a flat belt) including a crosslinked product crosslinked with an oxide is disclosed.
  • zinc oxide, magnesium oxide, and calcium oxide are exemplified as metal oxides, and the function of the metal oxide is described as a function as a cross-linking agent and a function as an acid acceptor (corrosion prevention of mold). ing.
  • a V-ribbed belt using a composition containing 5 to 20 parts by mass of aluminum acrylate, 4 parts by mass of magnesium oxide, 5 parts by mass of zinc oxide and an organic peroxide with respect to 100 parts by mass of chloroprene rubber is disclosed. Has been.
  • Patent Document 5 has a problem of improving adhesive wear of a transmission belt containing chloroprene rubber, and does not describe a problem of an ethylene- ⁇ -olefin elastomer having a structure and characteristics that are significantly different from those of chloroprene rubber. Furthermore, the cold resistance, heat resistance, and weather resistance of chloroprene rubber are not as good as those of ethylene- ⁇ -olefin elastomers, and are insufficient in the recent severe use environment such as low edge cogged V-belts.
  • the performance required for the recent transmission belt cannot be sufficiently satisfied.
  • the hardness and modulus of rubber, the adhesiveness, the bending fatigue resistance required for the belt, and the durability in a wide temperature range are in a trade-off relationship, It was difficult to achieve both.
  • the object of the present invention is to improve the hardness and modulus of a cured product of a rubber composition mainly composed of an ethylene- ⁇ -olefin elastomer without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance.
  • An object of the present invention is to provide a transmission belt including a cured product of a rubber composition that can be enhanced.
  • the present inventors have found that an ethylene- ⁇ -olefin elastomer, an ⁇ , ⁇ -unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler.
  • magnesium oxide an organic peroxide
  • an inorganic filler by adjusting the ratio of the magnesium oxide, transmission with ethylene- ⁇ -olefin elastomer as the main component without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance.
  • the present inventors have found that the hardness and modulus of the cured product of the rubber composition for belts can be increased.
  • the transmission belt of the present invention is a rubber containing a rubber component containing an ethylene- ⁇ -olefin elastomer, an ⁇ , ⁇ -unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler.
  • a transmission belt comprising a cured product of the composition, wherein the proportion of the magnesium oxide is 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and the ⁇ , ⁇ -unsaturated carboxylic acid metal salt 100 It is 5 mass parts or more with respect to a mass part.
  • the proportion of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt may be about 5 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • the ratio of the organic peroxide may be about 2 to 6 parts by mass with respect to 100 parts by mass of the rubber component.
  • the proportion of magnesium oxide may be about 5 to 300 parts by mass with respect to 100 parts by mass of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt.
  • the rubber component may contain 80% by mass or more of an ethylene- ⁇ -olefin elastomer.
  • the ethylene- ⁇ -olefin elastomer may contain 80% by mass or more of an ethylene-propylene-diene terpolymer.
  • the ⁇ , ⁇ -unsaturated carboxylic acid metal salt may be at least one selected from zinc methacrylate and zinc acrylate.
  • the inorganic filler may contain carbon black.
  • the proportion of the inorganic filler may be about 40 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the inorganic filler may further contain silica.
  • the rubber composition may further contain zinc oxide.
  • the cured product of the rubber composition may have a cured product having a rubber hardness (JIS-A) of about 91 to 98 degrees.
  • the rubber composition may further contain short fibers.
  • the proportion of the short fibers may be about 20 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • the short fiber may be an aramid short fiber.
  • the rubber composition may include short fibers, and the cured product of the rubber composition may have a bending stress of about 8 to 15 MPa in a direction perpendicular to the orientation direction of the short fibers.
  • the power transmission belt of the present invention may be a low edge cogged V belt used for CVT driving.
  • the “direction orthogonal to the orientation direction” does not have to be a completely orthogonal direction, and may be a direction in the range of the orthogonal direction ⁇ 5 °.
  • the ratio of the magnesium oxide is adjusted in a combination of an ethylene- ⁇ -olefin elastomer, an ⁇ , ⁇ -unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. Therefore, the hardness and modulus of the cured product of the rubber composition mainly composed of ethylene- ⁇ -olefin elastomer can be increased without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance. Can do.
  • a transmission belt such as a low-edge cogged V-belt or a toothed belt, which is required to increase transmission power and to make the layout compact, and particularly to a low-edge cogged V-belt used for CTV driving.
  • FIG. 1 is a schematic perspective view showing an example of a transmission belt (low edge cogged V belt) of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the transmission belt of FIG. 1 cut in the belt longitudinal direction.
  • FIG. 3 is a schematic diagram for explaining a method of measuring the bending stress of the transmission belt obtained in the example.
  • FIG. 4 is a schematic diagram for explaining a durability running test of the transmission belt obtained in the example.
  • FIG. 5 is a schematic perspective view of a double cogged V-belt manufactured in the example.
  • the transmission belt of the present invention is a rubber composition containing a rubber component containing an ethylene- ⁇ -olefin elastomer, an ⁇ , ⁇ -unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. It is sufficient if the cured product is included.
  • the rubber component preferably contains an ethylene- ⁇ -olefin elastomer from the viewpoint of excellent cold resistance, heat resistance, and weather resistance.
  • ethylene- ⁇ -olefin elastomer examples include ethylene- ⁇ -olefin rubber and ethylene- ⁇ -olefin-diene rubber.
  • Examples of the ⁇ -olefin constituting the elastomer include linear ⁇ -C 3-12 olefins such as propylene, butene, pentene, methylpentene, hexene and octene. These ⁇ -olefins can be used alone or in combination of two or more. Of these ⁇ -olefins, ⁇ -C 3-4 olefins (particularly propylene) such as propylene are preferred.
  • Examples of the diene monomer constituting the elastomer usually include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more. Of these diene monomers, ethylidene norbornene and 1,4-hexadiene (particularly ethylidene norbornene) are preferred.
  • ethylene- ⁇ -olefin elastomers include, for example, ethylene- ⁇ -olefin rubber [ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), ethylene-octene rubber (EOM), etc.], ethylene- ⁇ -olefin. -Diene rubber [ethylene-propylene-diene terpolymer (EPDM)] and the like. These ethylene- ⁇ -olefin elastomers can be used alone or in combination of two or more.
  • EPM ethylene-propylene rubber
  • EBM ethylene-butene rubber
  • EOM ethylene-octene rubber
  • EPDM ethylene-propylene-diene terpolymer
  • ethylene- ⁇ -olefin-dienes such as ethylene- ⁇ -C 3-4 olefin-diene terpolymer rubbers are excellent because of their excellent cold resistance, heat resistance, and weather resistance.
  • Ternary copolymer rubber is preferred, and EPDM is particularly preferred. Therefore, the proportion of EPDM may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more (particularly 95% by mass) with respect to the total ethylene- ⁇ -olefin elastomer. It may be mass% (EPDM only).
  • the proportion of the diene monomer can be selected from the range of about 1 to 15% by mass, for example, 1.5 to 12% by mass, preferably 2 to 10%, based on the whole elastomer. It may be about mass% (especially 2.5 to 5 mass%).
  • the iodine value of the ethylene- ⁇ -olefin elastomer containing a diene monomer may be, for example, about 3 to 40, preferably about 5 to 30, and more preferably about 10 to 20. If the iodine value is too small, vulcanization of the rubber composition will be insufficient and wear and adhesion will easily occur. Conversely, if the iodine value is too large, the scorch of the rubber composition will become short and difficult to handle and heat resistance Tend to decrease.
  • ethylene- ⁇ -olefin elastomer in addition to the ethylene- ⁇ -olefin elastomer, other rubber components such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene Butadiene rubber (SBR), vinylpyridine-styrene-butadiene copolymer rubber, acrylonitrile butadiene rubber (nitrile rubber); hydrogenated nitrile rubber (including mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc.
  • diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene Butadiene rubber (SBR), vinylpyridine-styrene-butadiene copolymer rubber, acrylonitrile butadiene rubber (nitrile rubber); hydrogenated nitrile rubber (including mixed polymer of hydrogenated nitrile rubber and unsaturated
  • olefin rubbers polyoctenylene rubber, ethylene-vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, etc.
  • epichlorohydrin rubber acrylic Rubber, silicone rubber, cormorant Tangomu
  • acrylic Rubber silicone rubber, cormorant Tangomu
  • fluorine rubber may contain a such as fluorine rubber.
  • the ratio of the ethylene- ⁇ -olefin elastomer may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more (particularly 95% by mass or more), and 100% by mass. It may be mass% (rubber component is ethylene- ⁇ -olefin elastomer only). If the proportion of the ethylene- ⁇ -olefin elastomer is too small, the cold resistance and heat resistance may be lowered.
  • the ⁇ , ⁇ -unsaturated carboxylic acid metal salt may be a compound in which an unsaturated carboxylic acid having one or more carboxyl groups and a metal are ionically bonded.
  • unsaturated carboxylic acid include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, and citraconic acid. These unsaturated carboxylic acids can be used alone or in combination of two or more. Of these unsaturated carboxylic acids, unsaturated monocarboxylic acids such as (meth) acrylic acid are preferred.
  • Examples of the metal include Group 2 metals (magnesium, calcium, etc.), Group 4 metals (titanium, zirconium, etc.), Group 8 metals (iron, etc.), Group 10 metals (nickel, etc.), Examples include Group metals (such as copper), Group 12 metals (such as zinc), Group 13 metals (such as aluminum), and Group 14 metals (such as lead). These metals can be used alone or in combination of two or more. Of these metals, polyvalent metals, for example, divalent metals such as magnesium, calcium and zinc, and trivalent metals such as aluminum (especially divalent metals such as zinc) are preferable.
  • bifunctional monocarboxylic acid divalent metal salts having two radical polymerizable groups in one molecule for example, zinc (meth) acrylate such as zinc methacrylate [zinc di (meth) acrylate or bis (Meth) acrylic acid zinc], magnesium (meth) acrylates such as magnesium methacrylate, and trifunctional monocarboxylic acid trivalent metal salts having three radical polymerizable groups in one molecule, such as (meth) acrylic Preferred are aluminum acrylate [aluminum tri (meth) acrylate], more preferably zinc (meth) acrylate and / or aluminum acrylate, selected from zinc (meth) acrylate (ie, zinc methacrylate and zinc acrylate). At least one) is particularly preferred. Furthermore, a bifunctional monocarboxylic acid divalent metal salt (particularly zinc methacrylate) is preferable from the viewpoint of excellent balance of various properties.
  • the proportion of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt is 1 to 50 parts by weight, preferably 5 to 40 parts by weight, more preferably 8 to 35 parts by weight (particularly 10 to 30 parts by weight) based on 100 parts by weight of the rubber component. Part) degree. If the proportion of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt is too small, the hardness and modulus of the cured product of the rubber composition may be reduced. On the other hand, if the proportion is too large, the adhesion and bending fatigue resistance will be reduced. There is a risk of doing.
  • Magneium oxide In the present invention, by combining magnesium oxide at a predetermined ratio with the ⁇ , ⁇ -unsaturated carboxylic acid metal salt, cold resistance, heat resistance, adhesiveness, and bending fatigue resistance of the cured product of the rubber composition The hardness and modulus can be improved while maintaining the wear resistance.
  • the proportion of magnesium oxide is 2 to 20 parts by weight, preferably 3 to 18 parts by weight, more preferably 5 to 15 parts by weight (particularly 8 to 13 parts by weight) with respect to 100 parts by weight of the rubber component. May be.
  • the proportion of magnesium oxide is 5 parts by mass or more (eg, 5 to 300 parts by mass) with respect to 100 parts by mass of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt, for example, 5 to 250 parts by mass (eg, 5 to 200 parts by mass). Part), preferably 10 to 150 parts by weight, more preferably about 15 to 100 parts by weight (particularly 20 to 80 parts by weight). If the proportion of magnesium oxide is too small, the hardness and modulus of the cured product of the rubber composition may be decreased. Conversely, if the proportion is too large, adhesiveness and bending fatigue resistance may be decreased.
  • organic peroxide organic peroxides usually used for crosslinking of rubber and resin, for example, diacyl peroxide, peroxy ester, dialkyl peroxide (for example, dicumyl peroxide, t-butyl cumyl peroxide) are used. Oxide, 1,1-di-butylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t- Butylperoxy-isopropyl) benzene, di-t-butyl peroxide, etc.). These organic peroxides can be used alone or in combination of two or more. Further, the organic peroxide is preferably a peroxide having a decomposition temperature of about 150 to 250 ° C. (for example, 175 to 225 ° C.) for obtaining a half-life of 1 minute by thermal decomposition.
  • the proportion of the organic peroxide is, for example, about 1 to 10 parts by weight, preferably 2 to 8 parts by weight, more preferably 2 to 6 parts by weight (eg 3 to 6 parts by weight) with respect to 100 parts by weight of the rubber component. It may be.
  • the cured product of the rubber composition has cold resistance, heat resistance, adhesion, and bending resistance. Wear resistance, hardness, and modulus can be improved while maintaining fatigue.
  • inorganic fillers examples include carbonaceous materials (carbon black, graphite, etc.), metal compounds or synthetic ceramics [metal oxides such as calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, and aluminum oxide. (Metal oxides other than magnesium oxide and zinc oxide), metal silicates such as calcium silicate and aluminum silicate, metal carbides such as silicon carbide and tungsten carbide, metal nitride such as titanium nitride, aluminum nitride and boron nitride , Metal carbonates such as magnesium carbonate and calcium carbonate, metal sulfates such as calcium sulfate and barium sulfate], mineral materials (zeolite, diatomaceous earth, calcined diatomaceous earth, activated clay, alumina, silica, talc, mica, kaolin , Sericite, bentonite, montmorillo Ito, smectite, such as clay), and the like.
  • metal compounds or synthetic ceramics metal oxides
  • carbon black and / or silica are preferable, and it is particularly preferable that at least carbon black is included in the cured product of the rubber composition from the viewpoint of improving the hardness, modulus, and wear resistance.
  • carbon black examples include SAF, ISAF, HAF, FEF, GPF, and HMF. These carbon blacks can be used alone or in combination of two or more. Among these, FEF is preferable because the balance between the reinforcing effect and the dispersibility is good and the heat generated when the belt is bent is small.
  • the average particle size of carbon black can be selected from the range of, for example, about 5 to 200 nm, and is, for example, about 10 to 150 nm, preferably 15 to 100 nm, and more preferably 20 to 80 nm (particularly 30 to 50 nm). If the average particle size of the carbon black is too small, uniform dispersion may be difficult, and if it is too large, the hardness, modulus, and wear resistance may be reduced.
  • the inorganic filler containing carbon black is combined with silica from the viewpoint that adhesion can be improved in addition to hardness, modulus and wear resistance.
  • Silica is a fine bulky white powder formed of silicic acid and / or silicate, and has a plurality of silanol groups on its surface, so it can be chemically bonded to the rubber component.
  • Silica includes dry silica, wet silica, surface-treated silica, and the like. Silica can also be classified into, for example, dry process white carbon, wet process white carbon, colloidal silica, precipitated silica, and the like according to the classification in the production method. These silicas can be used alone or in combination of two or more. Of these, wet-type white carbon containing hydrous silicic acid as a main component is preferable because it has many surface silanol groups and a strong chemical bonding force with a rubber component.
  • the average particle diameter of silica is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the silica is too large, the cured product of the rubber composition may have reduced mechanical properties. If it is too small, it may be difficult to uniformly disperse.
  • Silica may be non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, 50 to 400 m 2 / g, preferably 70 to 350 m 2 / g, more preferably 100. It may be about ⁇ 300 m 2 / g (especially 150 to 250 m 2 / g). If the specific surface area is too large, it may be difficult to uniformly disperse, and if the specific surface area is too small, the mechanical properties of the rubber layer may be deteriorated.
  • the proportion of the inorganic filler can be selected from the range of about 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component, for example, 40 to 100 parts by mass, preferably 50 to 80 parts by mass, and more preferably 60 to 70 parts by mass. About a part. If the proportion of the inorganic filler is too small, the hardness, modulus and wear resistance of the cured product of the rubber composition may be reduced, and conversely if too large, the bending fatigue resistance may be reduced.
  • the total ratio of carbon black and silica may be 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass with respect to the entire inorganic filler. % Or more (especially 80% by mass or more), or 90% by mass or more (particularly 100% by mass).
  • the rubber composition may further contain zinc oxide.
  • zinc oxide as the metal oxide in addition to the magnesium oxide, hardness and modulus can be improved and the balance of various properties can be improved in the cured product of the rubber composition.
  • the proportion of zinc oxide is, for example, about 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight (particularly 3 to 8 parts by weight) with respect to 100 parts by weight of the rubber component. It may be.
  • the proportion of zinc oxide is, for example, about 10 to 1000 parts by weight, preferably 20 to 500 parts by weight, more preferably 30 to 200 parts by weight (particularly 50 to 100 parts by weight) with respect to 100 parts by weight of magnesium oxide. Also good. If the proportion of zinc oxide is too small or too large, the balance of various properties may be lowered.
  • the rubber composition may further contain short fibers.
  • short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (polyethylene terephthalate (PET)).
  • Fibers poly C 2-4 alkylene C 6-14 arylate fibers such as polyethylene naphthalate (PEN) fibers, etc.], vinylon fibers, polyvinyl alcohol fibers, synthetic fibers such as polyparaphenylene benzobisoxazole (PBO) fibers; Natural fibers such as cotton, hemp and wool; inorganic fibers such as carbon fibers are widely used.
  • These short fibers can be used alone or in combination of two or more.
  • synthetic fibers and natural fibers, especially synthetic fibers are rigid and have high strength and modulus, and are at least easy to protrude from the surface of the compressed rubber layer.
  • Aramid short fibers are preferred. Aramid short fibers also have high wear resistance. Aramid fibers are commercially available, for example, under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron”, and the like.
  • the average fiber diameter of the short fibers is, for example, about 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, more preferably about 5 to 30 ⁇ m (particularly 10 to 20 ⁇ m). If the average fiber diameter is too large, the cured product of the rubber composition may have reduced mechanical properties. If it is too small, it may be difficult to disperse uniformly.
  • the average length of the short fibers may be, for example, about 1 to 20 mm, preferably about 1.2 to 15 mm (for example, 1.5 to 10 mm), and more preferably about 2 to 5 mm (especially 2.5 to 4 mm). If the average length of the short fibers is too short, when the cured product of the rubber composition is used for the belt, the mechanical properties (for example, the modulus) in the direction of preparation may not be sufficiently improved. In addition, the dispersibility of the short fibers in the rubber composition may be reduced, and the bending fatigue resistance may be reduced.
  • At least the short fibers are preferably subjected to an adhesion treatment (or surface treatment).
  • an adhesion treatment or surface treatment
  • various adhesion treatments for example, treatment solutions containing an initial condensate of phenols and formalin (such as a prepolymer of a novolak or resol type phenol resin), treatment solutions containing a rubber component (or latex).
  • treatment solutions containing an initial condensate of phenols and formalin such as a prepolymer of a novolak or resol type phenol resin
  • treatment solutions containing a rubber component or latex
  • Treatment with a treatment liquid containing the initial condensate and a rubber component (latex), a silane coupling agent, an epoxy compound (epoxy resin, etc.), a treatment liquid containing a reactive compound (adhesive compound) such as an isocyanate compound, etc. be able to.
  • the short fibers are treated with a treatment solution containing the precondensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) solution.
  • a treatment solution containing the precondensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) solution may be used in combination.
  • short fibers may be pre-treated with a conventional adhesive component such as an epoxy compound (epoxy resin or the like) or a reactive compound (adhesive compound) such as an isocyanate compound. After processing, you may process with RFL liquid.
  • the proportion of short fibers is, for example, about 5 to 100 parts by weight, preferably 10 to 50 parts by weight, more preferably 20 to 40 parts by weight (especially 25 to 35 parts by weight) with respect to 100 parts by weight of the rubber component. May be. If the proportion of short fibers is too small, the mechanical properties of the cured product of the rubber composition may be reduced. Conversely, if the proportion is too large, it may be difficult to uniformly disperse and the bending fatigue resistance may be reduced. There are (other additives)
  • the rubber composition may be prepared by using conventional additives, vulcanization aids, vulcanization accelerators, vulcanization retarders, and softeners (oils such as paraffinic oil, naphthenic oil, and process oil) as necessary.
  • Processing agents or processing aids stearic acid, stearic acid metal salts, wax, paraffin, fatty acid amide, etc.
  • anti-aging agents antioxidants, thermal anti-aging agents, anti-bending cracking agents, anti-ozone degradation agents, etc.
  • Colorants tackifiers
  • plasticizers coupling agents (such as silane coupling agents), stabilizers (such as UV absorbers and heat stabilizers), lubricants, flame retardants, antistatic agents, etc. Good.
  • coupling agents such as silane coupling agents
  • stabilizers such as UV absorbers and heat stabilizers
  • lubricants flame retardants, antistatic agents, etc. Good.
  • the total proportion of other additives may be about 1 to 100 parts by weight, preferably about 5 to 50 parts by weight, and more preferably about 10 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the ratio of the softening agent is 1 to 20 parts by mass (especially 5 to 15 parts by mass)
  • the ratio of the processing (auxiliary) agent is 0.1 to 5 parts by mass (particularly 0.5).
  • the proportion of the antioxidant may be about 0.5 to 20 parts by mass (particularly 1 to 10 parts by mass).
  • the cured product of the rubber composition has a large rubber hardness and modulus.
  • the rubber hardness (JIS-A) of the cured product of the rubber composition is, for example, 90 to 100 degrees, preferably 91 to 98 degrees (eg 93 to 97 degrees), more preferably 95 to 98 degrees (particularly 96). (About 97 degrees).
  • rubber hardness (JIS-A) is measured in accordance with JIS K6253 (2012) for a cured product obtained by press vulcanization at a temperature of 170 ° C. and a pressure of 2.0 MPa for 20 minutes. In detail, it measures by the method as described in the below-mentioned Example.
  • the cured product of the rubber composition has a bending stress of, for example, 8 to 15 MPa, preferably 10 to 15 MPa, more preferably 12 to 14.5 MPa (particularly 13 to 14.5 MPa) in a direction perpendicular to the orientation direction of the short fibers. It may be a degree. In the present specification and claims, the bending stress is measured by the method described in Examples described later.
  • the “direction orthogonal to the orientation direction” is not limited to a direction orthogonal to the orientation direction, but may be a direction in a range of ⁇ 5 ° in the orthogonal direction. Therefore, the “direction orthogonal to the alignment direction” can also be referred to as a “direction substantially orthogonal to the alignment direction”.
  • the short fibers are usually oriented in a predetermined direction.
  • the compression rubber layer of the transmission belt is formed with the rubber composition, in order to suppress the compression deformation of the belt against the pressure from the pulley, the short fibers are embedded in the compression rubber layer oriented in the belt width direction. It is preferable.
  • the rubber composition is used as a cured product vulcanized by a method according to the application.
  • the vulcanization temperature may be, for example, about 120 to 200 ° C. (especially 150 to 180 ° C.).
  • Examples of the transmission belt of the present invention include friction transmission belts such as flat belts, V-belts, V-ribbed belts, wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, resin block belts, and meshing transmission belts such as toothed belts. Etc. These power transmission belts only need to contain the rubber composition, but usually the belt body (particularly the compression rubber layer and / or the stretch rubber layer) is formed of a cured product of the rubber composition.
  • transmission belts such as cogged belts and toothed belts, which are required to increase transmission power and make the layout compact, are preferable, and cogged belts are particularly preferable.
  • the cogged belt of the present invention includes an adhesive rubber layer in contact with at least a part of a core wire extending in the longitudinal direction of the belt, an extended rubber layer formed on one surface of the adhesive rubber layer, and the other surface of the adhesive rubber layer.
  • a compression rubber layer having a plurality of convex portions (cog portions) formed at predetermined intervals along the longitudinal direction of the belt and frictionally engaging with the pulleys on the side surfaces As long as it has.
  • Such a cogged belt includes a cogged belt in which the cogged portion is formed only on the compressed rubber layer, and a double cogged belt in which a similar cogged portion is formed on the outer peripheral surface of the stretched rubber layer in addition to the compressed rubber layer.
  • the cogged belt is preferably a V-belt whose side surface of the compression rubber layer is in contact with the pulley (in particular, a transmission belt used in a transmission in which the transmission ratio changes steplessly while the belt is running).
  • Examples of the cogged V belt include a low edge cogged V belt in which a cog is formed on the inner peripheral side of the low edge belt, and a low edge double cogged V belt in which cogs are formed on both the inner peripheral side and the outer peripheral side of the low edge belt. Can be mentioned. Of these, the low-edge cogged V-belt used for CTV driving is particularly preferable.
  • FIG. 1 is a schematic perspective view showing an example of a transmission belt (low edge cogged V belt) of the present invention
  • FIG. 2 is a schematic sectional view of the transmission belt of FIG. 1 cut in the longitudinal direction of the belt.
  • the low edge cogged V-belt 1 has a plurality of cogs 1a formed at predetermined intervals along the longitudinal direction of the belt (A direction in the figure) on the inner peripheral surface of the belt body.
  • the cross-sectional shape in the longitudinal direction of the cog 1a is substantially semicircular (curved or corrugated), and the cross-sectional shape in the direction (width direction or B direction in the figure) perpendicular to the longitudinal direction. Is trapezoidal. That is, each cog 1a protrudes from the cog bottom 1b in a cross section in the A direction in a substantially semicircular shape in the belt thickness direction.
  • the low-edge cogged V-belt 1 has a laminated structure, and the reinforcing cloth 2, the stretch rubber layer 3, and the adhesive rubber layer 4 from the belt outer peripheral side toward the inner peripheral side (side where the cog portion 1a is formed).
  • the compressed rubber layer 5 and the reinforcing cloth 6 are sequentially laminated.
  • the cross-sectional shape in the belt width direction is a trapezoidal shape in which the belt width decreases from the belt outer peripheral side toward the inner peripheral side.
  • a core body 4a is embedded in the adhesive rubber layer 4, and the cog 1a is formed on the compressed rubber layer 5 by a cog-molding mold.
  • the height and pitch of the cog are the same as the conventional cogged V belt.
  • the height of the cog portion is about 50 to 95% (especially 60 to 80%) with respect to the thickness of the entire compressed rubber layer, and the pitch of the cog portion (between the central portions of adjacent cog portions).
  • the distance) is about 50 to 250% (especially 80 to 200%) with respect to the height of the cog portion. The same applies to the case where a cog portion is formed in the stretched rubber layer.
  • the stretch rubber layer 3 and the compression rubber layer 5 are formed of a cured product of the rubber composition of the present invention.
  • the adhesive rubber layer, the core, and the reinforcing cloth a conventional adhesive rubber layer, core, and reinforcing cloth can be used.
  • the following adhesive rubber layer, core, and reinforcing cloth may be used.
  • the rubber composition for forming the adhesive rubber layer is a rubber component, a vulcanizing agent or a cross-linking agent (such as a sulfur-based vulcanizing agent such as sulfur) in the same manner as the vulcanized rubber composition of the compressed rubber layer and the stretch rubber.
  • a vulcanizing agent or a cross-linking agent such as a sulfur-based vulcanizing agent such as sulfur
  • Co-crosslinking agent or crosslinking aid such as maleimide crosslinking agent such as N, N'-m-phenylene dimaleimide), vulcanization accelerator (such as TMTD, DPTT, CBS), inorganic filler (such as carbon black, silica) , Softeners (oils such as paraffinic oils), processing agents or processing aids, anti-aging agents, adhesion improvers [resorcin-formaldehyde cocondensates, amino resins (condensates of nitrogen-containing cyclic compounds and formaldehyde, For example, melamine resins such as hexamethylol melamine, hexaalkoxymethyl melamine (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), methyl Urea resins such as roll urea, benzoguanamine resins such as methylol benzoguanamine resin), co-condensates thereof (such as resorcin-mel
  • the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
  • the rubber component the same type or type of rubber as the rubber component of the rubber composition of the compressed rubber layer and the stretched rubber layer is often used. Further, the ratios of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, softening agent and anti-aging agent are the same ranges as the rubber composition of the compression rubber layer and the stretch rubber layer, respectively. You can choose from.
  • the proportion of the inorganic filler is 10 to 100 parts by weight, preferably 20 to 80 parts by weight, more preferably about 30 to 50 parts by weight with respect to 100 parts by weight of the rubber component. There may be.
  • the ratio of the adhesion improver is 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, more preferably 100 parts by weight of the rubber component. May be about 2 to 8 parts by mass.
  • the core wire (twisted cord) arranged at predetermined intervals in the belt width direction can be used.
  • the cores are arranged to extend in the longitudinal direction of the belt, and are usually arranged to extend in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt.
  • the core wire only needs to be at least partially in contact with the adhesive rubber layer.
  • the adhesive rubber layer embeds the core wire, the core wire embeds between the adhesive rubber layer and the stretch rubber layer, and the adhesive rubber. Any form of embedding a core wire between the layer and the compressed rubber layer may be employed. Among these, the form in which the adhesive rubber layer embeds the core wire is preferable from the viewpoint that durability can be improved.
  • Examples of the fibers constituting the core wire include the same fibers as the short fibers.
  • these fibers from the viewpoint of high modulus, synthesis of polyester fibers (polyalkylene arylate fibers) mainly composed of C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc.
  • Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (polyethylene terephthalate fibers, polyethylene naphthalate fibers) and polyamide fibers are preferable.
  • the fiber may be a multifilament yarn.
  • the fineness of the multifilament yarn may be, for example, about 2200 to 13500 dtex (particularly 6600 to 11000 dtex).
  • the multifilament yarn may contain, for example, 100 to 5,000, preferably 500 to 4,000, more preferably about 1,000 to 3,000 monofilament yarns.
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, more preferably about 0.7 to 1.5 mm. Good.
  • the core wire may be subjected to adhesion treatment (or surface treatment) in the same manner as the short fibers of the compression rubber layer and the stretch rubber layer in order to improve the adhesion with the rubber component.
  • adhesion treatment or surface treatment
  • the core wire is preferably subjected to adhesion treatment with at least the RFL solution.
  • the reinforcing cloth is not limited to a form in which the reinforcing cloth is laminated on the surface of the compressed rubber layer.
  • the reinforcing cloth is applied to the surface of the stretched rubber layer (the surface opposite to the adhesive rubber layer). It may be laminated, or may be a form in which a reinforcing layer is embedded in a compressed rubber layer and / or a stretched rubber layer (for example, a form described in Japanese Patent Application Laid-Open No. 2010-230146).
  • the reinforcing cloth can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth.
  • a cloth material preferably a woven cloth
  • the above-described adhesion treatment for example, treatment with an RFL solution (immersion treatment) Or the like, or after the adhesive rubber and the cloth material are laminated, they may be laminated on the surface of the compression rubber layer and / or the stretch rubber layer.
  • the method for producing the transmission belt of the present invention is not particularly limited, and a conventional method can be used.
  • a low-edge cogged V-belt for example, a laminated body composed of a reinforcing cloth (lower cloth) and a sheet for a compressed rubber layer (unvulcanized rubber sheet), and teeth and grooves are alternately arranged with the reinforcing cloth facing down.
  • both ends of the cog pad may be cut vertically from the top of the cog crest.
  • an inner mother mold formed of vulcanized rubber in which teeth and grooves are alternately arranged is placed on a cylindrical mold, and a cog pad is wound around the teeth and grooves so that a cog pad is wound.
  • the core wire (twisting cord) that forms the core body is joined Spinning in a spiral shape
  • a second adhesive rubber layer sheet (upper adhesive rubber: the same as the adhesive rubber layer sheet), a stretch rubber layer sheet (unvulcanized rubber sheet), a reinforcing cloth (upper cloth) ) May be sequentially wound to produce a molded body.
  • a jacket (jacket made of vulcanized rubber) is put on and the mold is placed in a vulcanizing can, and vulcanized at a temperature of about 120 to 200 ° C (especially 150 to 180 ° C) to prepare a belt sleeve.
  • a cutting process may be performed using a cutter or the like to form a compressed rubber layer by cutting so as to form a V-shaped cross section.
  • a conventional method for example, rubber between a pair of calendar rolls provided with a predetermined gap is used.
  • a method described in Japanese Patent Laid-Open No. 2003-14054 can be used. In this method, the unvulcanized sheet in which short fibers are oriented by such a method is placed and vulcanized so that the orientation direction of the short fibers is the width direction of the belt.
  • EPDM1 "EP93” manufactured by JSR Corporation, ethylene content 55 wt%, diene content 2.7 wt%
  • EPDM2 “EP24” manufactured by JSR Corporation, ethylene content 54% by weight, diene content 4.5% by weight
  • Para-type aramid short fiber Teijin Co., Ltd., Twaron cut yarn
  • Meta-type aramid short fiber Teijin Ltd., Cornex cut yarn Carbon black: “Cabot Japan Co., Ltd.”
  • N550 Silica: “Ultrasil VN3” manufactured by Evonik Degussa Japan, BET specific surface area of 175 m 2 / g Paraffin oil: “Diana Process Oil PW90” manufactured by Idemitsu Kosan Co., Ltd.
  • Anti-aging agent A “NOCRACK CD” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Anti-aging agent B “NOCRACK MB” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Anti-aging agent C “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
  • Zinc oxide “Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd.
  • Magnesium oxide “Kyowa Mug 150” manufactured by Kyowa Chemical Industry Co., Ltd.
  • Stearic acid Tsubaki stearic acid manufactured by NOF Corporation Zinc methacrylate: Sanshin Chemical Industry Co., Ltd., “Sunester SK-30” Bismaleimide: Ouchi Shinsei Chemical Co., Ltd., “Barnock PM” Organic peroxide: NOF "P-40MB (K)” Titanium oxide: DuPont “R960” Resorcinol resin: “Penacolite Resin (B-18-S)” manufactured by INDSPEC Chemical Corporation Hexamethoxymethylolmelamine: “PP-1890S” manufactured by Power Plast Vulcanization accelerator A: “Noxeller TT” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Vulcanization accelerator B “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Vulcanization accelerator C “Noxeller DM” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Made by Bigen Chemical Co., Ltd.
  • Core wire Total fineness of two aramid fiber bundles with a fineness of 1,680 dtex, twisted together and twisted together, and twisted in the opposite direction to the twist 10,080 dtex plied cords
  • Reinforcement fabric Nylon canvas with a 2/2 twill weave (thickness 0.50 mm).
  • the front end portion of the pressing member 23 has a semicircular shape with a diameter of 10 mm, and the vulcanized rubber molded body 21 can be smoothly pressed by the front end portion. Further, at the time of pressing, a frictional force acts between the lower surface of the vulcanized rubber molded body 21 and the rolls 22a and 22b along with the compression deformation of the vulcanized rubber molded body 21, but the rolls 22a and 22b can be rotated. This reduces the influence of friction.
  • a state where the tip of the pressing member 23 is in contact with the upper surface of the vulcanized rubber molded body 21 and is not pressed is set as an initial position. From this state, the vulcanized rubber molded body is moved downward at a speed of 100 mm / min.
  • the upper surface of 21 was pressed, and the stress when the bending strain was 8% was measured as the bending stress.
  • the measurement temperature was 120 ° C. assuming the belt temperature during running.
  • the endurance running test was performed using a two-axis running tester including a driving (Dr.) pulley 32 having a diameter of 110 mm and a driven (Dn.) Pulley 33 having a diameter of 240 mm.
  • Dr. driving
  • Dn. driven
  • a low-edge cogged V-belt 31 was hung on each pulley, a drive pulley rotation speed of 6000 rpm and a load of 25 kW was applied, and the belt was run at an ambient temperature of 80 ° C. for 70 hours.
  • the side of the belt after running (the surface in contact with the pulley) was visually observed, and the presence or absence of delamination between the compressed rubber layer and the core wire was examined and the presence or absence of cracks in the lower cog valley was evaluated.
  • Examples 1 to 9 and Comparative Examples 1 to 7 [Properties of rubber composition of compressed rubber layer and stretched rubber layer] (Formation of rubber layer)
  • the rubber compositions in Table 1 (compressed rubber layer, stretched rubber layer) and Table 2 (adhesive rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll.
  • Rolled rubber sheets (compressed rubber layer sheet, stretch rubber layer sheet, adhesive rubber layer sheet) were prepared. The rubber hardness and bending stress were measured for the compressed rubber layer sheet. Table 3 shows the measurement results. Furthermore, the following belts were manufactured using these sheets.
  • the temperature is 170 ° C., time 40 minutes, and vulcanized at 0.9 MPa.
  • vulcanization conditions conditions similar to vulcanization of unvulcanized adhesive rubber layer sheets, compressed rubber layer sheets and stretched rubber layer sheets were selected. This sleeve was cut into a V shape by a cutter to finish a transmission belt. That is, a double cogged V belt having the structure shown in FIG. 5 was produced.
  • Comparative Example 1 (corresponding to Patent Document 3) not containing magnesium oxide and Comparative Example 2 containing only 1 part by mass of magnesium oxide with respect to 100 parts by mass of the rubber component, the rubber hardness is as low as 90 degrees. Peeling occurred. When the proportion of magnesium oxide is small, the rubber hardness does not increase, and stress is concentrated on the adhesion interface due to buckling deformation, which is considered to cause peeling. Further, Comparative Example 6 and Comparative Example 7 are examples in which the amount of zinc oxide was increased and titanium oxide was added in Comparative Example 1. In these examples, the hardness and bending stress were low as in Comparative Example 1, and peeling occurred in the durability running test.
  • Comparative Example 5 is an example in which zinc methacrylate was not included and bismaleimide was blended as a co-crosslinking agent, but in this case also, the rubber hardness was low and peeling occurred.
  • Comparative Example 3 is an example containing a large amount of magnesium oxide
  • Comparative Example 4 is an example containing a large amount of zinc methacrylate.
  • both examples although the rubber hardness and bending stress increased greatly, cracks occurred in the durability running test. This is presumably because the dispersion was poor due to too much magnesium oxide, or the rubber composition became stiff due to too much zinc methacrylate and the bending fatigue resistance decreased. It can be seen that magnesium oxide and the ⁇ , ⁇ -unsaturated carboxylic acid metal salt need to be blended in a well-balanced manner.
  • Examples 1 and 2 are examples in which the types of short fibers were changed, but the configuration of the present invention was equally effective for both para-aramid short fibers and meta-aramid short fibers. .
  • Example 3 is an example in which the amount of magnesium oxide is increased with respect to Example 1, but the hardness and bending stress are increased, and it can be seen that the effect is enhanced.
  • Example 4 is an example in which the amount of zinc methacrylate is increased with respect to Example 3
  • Example 7 is an example in which the amount of zinc methacrylate is increased with respect to Example 1.
  • the hardness and bending stress are remarkably high, and the effect is particularly high.
  • Example 5 is an example in which the amount of magnesium oxide was increased with respect to Example 3.
  • the hardness and bending stress were also significantly increased, and particularly good results were obtained.
  • Example 6 is an example in which a large amount of magnesium oxide was blended and the mass ratio of magnesium oxide to zinc methacrylate was 2.86, but the increase in hardness and bending stress was small. However, in the durability running test, peeling and cracking did not occur, and the performance had no problem in practical use.
  • Example 8 is an example in which a part of carbon black was replaced with silica as an inorganic filler from the formulation of Example 3, but the hardness and bending stress were slightly increased, and particularly good results were obtained. Silica also has a function of improving the adhesiveness, and it is expected that the resistance to peeling will increase even when running for a longer time.
  • Example 9 is an example in which the amount of organic peroxide was reduced from the formulation of Example 4, but compared with Example 4, hardness and bending stress were slightly reduced. However, even when the amount of the organic peroxide (crosslinking agent) is small, the hardness and bending stress are high, and even in the durability running test, peeling or cracking does not occur, and the performance has no practical problem.
  • the transmission belt of the present invention has various transmission belts (flat belt, V-belt, V-ribbed belt, wrapped V-belt, low-edge V-belt) that are required to have cold resistance, heat resistance, adhesion, bending fatigue resistance, wear resistance, and the like.
  • Friction power transmission belts such as low edge cogged V belts and resin block belts; meshing power transmission belts such as toothed belts).
  • the transmission belt of the present invention has high hardness and modulus, it can be preferably used as a transmission belt such as a cogged belt or a toothed belt, which is required to increase transmission power and to make the layout compact.
  • a low-edge cogged V-belt used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

According to the present invention, the hardness and modulus of a cured product of a rubber composition for transmission belts, said rubber composition being mainly composed of an ethylene-α-olefin elastomer, are enhanced without deteriorating cold resistance, heat resistance, adhesiveness, flex fatigue resistance and wear resistance. According to the present invention, a transmission belt is formed from a cured product of a rubber composition which contains a rubber component that contains an ethylene-α-olefin elastomer, an α,β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide and an inorganic filler, and which is adjusted so that the ratio of the magnesium oxide is 2-20 parts by mass relative to 100 parts by mass of the rubber component, while being 5 parts by mass or more relative to 100 parts by mass of the α,β-unsaturated carboxylic acid metal salt. The ratio of the α,β-unsaturated carboxylic acid metal salt may be around 5-40 parts by mass relative to 100 parts by mass of the rubber component. This transmission belt is applicable as a transmission belt that is used for CVT driving, such as a raw edge cogged V-belt.

Description

伝動ベルトTransmission belt
 本発明は、高硬度及び高モジュラス化を実現できるエチレン-α-オレフィンエラストマーを含むゴム組成物の硬化物を含む伝動ベルトに関する。 The present invention relates to a transmission belt including a cured product of a rubber composition including an ethylene-α-olefin elastomer capable of realizing high hardness and high modulus.
 動力伝達手段として、摩擦伝動ベルトや歯付ベルトが古くから利用されている。例えば、自動車エンジンの補機駆動用としてVベルトやVリブドベルトが、OHC(オーバーヘッドカムシャフト)駆動用として歯付ベルトが、CVT(無段変速)駆動用としてローエッジコグドVベルトなどが汎用されている。これらの用途において、近年、伝達動力の増大やレイアウトのコンパクト化の要求が厳しくなっており、さらに高温や低温条件下での使用に耐えうる製品開発が望まれている。特に、スノーモービルなどのCVT駆動用として用いられるローエッジコグドVベルトにおいては、始動時は低温である一方で駆動時はエンジンの発熱に晒されて高温となるため、低温から高温までの幅広い温度領域に耐え得るゴム組成物が求められる。また、ゴム組成物と心線や補強布などの繊維部材との剥離を抑えるための接着性の高さや、コンパクト化のために小径プーリにも対応し得る耐屈曲疲労性が求められる。さらに、プーリとの接触による摩耗にも耐え得る耐摩耗性の高さや、プーリからの側圧に耐え得る耐側圧性の高さも求められる。また、歯付ベルトにおいても、コンパクト化のためにベルト幅を小さくすることが要求され、これに対応するために歯ゴムの高硬度、高モジュラス化が求められている。このような様々な要求に対応するため、ゴム組成物を構成するエラストマーとして、エチレン-α-オレフィンエラストマーの使用が増加している。 As a power transmission means, friction transmission belts and toothed belts have been used for a long time. For example, V-belts and V-ribbed belts are commonly used for driving automotive engine accessories, toothed belts for driving OHC (overhead camshaft), and low-edge cogged V-belts for driving CVT (continuously variable transmission). Yes. In these applications, in recent years, demands for increased transmission power and a compact layout have become strict, and further development of products that can withstand use under high and low temperature conditions is desired. In particular, the low-edge cogged V-belt used for driving CVTs such as snowmobiles has a wide temperature range from a low temperature to a high temperature because it is exposed to the heat generated by the engine while driving at a low temperature while starting. A rubber composition that can withstand the region is required. In addition, high adhesiveness for suppressing separation between the rubber composition and a fiber member such as a core wire or a reinforcing cloth, and bending fatigue resistance that can be applied to a small-diameter pulley are required for compactness. Further, a high wear resistance that can withstand wear due to contact with the pulley and a high side pressure resistance that can withstand the side pressure from the pulley are also required. In addition, a toothed belt is also required to have a small belt width for compactness, and in order to cope with this, high hardness and high modulus of tooth rubber are required. In order to meet such various demands, the use of ethylene-α-olefin elastomers as elastomers constituting rubber compositions is increasing.
 エチレン-α-オレフィンエラストマーは、主鎖に不飽和結合を有さないため、耐熱性や耐候性が高い特徴を有している。さらに、エチレン-α-オレフィンエラストマーは、極性基も有さないため、短繊維やカーボンブラックをはじめとする補強剤の高充填が可能であり、高硬度、高モジュラス化が比較的容易であるという特徴なども有している。しかし、エチレン-α-オレフィンエラストマーに補強剤を高充填すると、次のような欠点を有している。すなわち、カーボンブラックを多量に添加した場合、ベルトの屈曲に伴う発熱が大きくなり、耐久性が低下し易くなる。また、短繊維を多量に添加した場合には、分散不良が起き易く、亀裂発生の原因となり易い。そのため、補強剤の配合量を比較的少なくしながら、硬度やモジュラスを高める配合が種々検討されてきた。 Ethylene-α-olefin elastomers have high heat resistance and weather resistance because they do not have an unsaturated bond in the main chain. Furthermore, since the ethylene-α-olefin elastomer does not have a polar group, it can be highly filled with reinforcing agents such as short fibers and carbon black, and it is relatively easy to achieve high hardness and high modulus. It also has features. However, when an ethylene-α-olefin elastomer is highly filled with a reinforcing agent, it has the following drawbacks. That is, when a large amount of carbon black is added, the heat generated due to the bending of the belt increases, and the durability tends to decrease. Further, when a large amount of short fibers is added, poor dispersion is likely to occur, and cracks are likely to occur. For this reason, various formulations have been studied that increase the hardness and modulus while relatively reducing the amount of reinforcing agent.
 例えば、国際公開第1996/13544(特許文献1)には、エチレン含量が55~78重量%のエチレン-α-オレフィンエラストマー100重量部と、α,β-不飽和有機酸の金属塩1~30重量部と、補強剤0~250重量部(好ましくは25~100重量部)とを含むエラストマー組成物をフリーラジカル供与体によって架橋した架橋体を含むベルト(同期ベルト、Vベルト、Vリブドベルト)が開示されている。前記補強剤としては、カーボンブラック、炭酸カルシウム、タルク、クレイ、含水シリカが記載されている。 For example, in International Publication No. 1996/13544 (Patent Document 1), 100 parts by weight of an ethylene-α-olefin elastomer having an ethylene content of 55 to 78% by weight and a metal salt 1 to 30 of an α, β-unsaturated organic acid are disclosed. A belt (synchronous belt, V-belt, V-ribbed belt) comprising a crosslinked product obtained by crosslinking an elastomer composition containing parts by weight and a reinforcing agent of 0 to 250 parts by weight (preferably 25 to 100 parts by weight) with a free radical donor. It is disclosed. As the reinforcing agent, carbon black, calcium carbonate, talc, clay and hydrous silica are described.
 国際公開第1997/22662(特許文献2)には、エチレン含量50~65重量%及びジエン含量10重量%未満のエチレン-プロピレン-ジエン三元共重合体(EPDM)100重量部に対して、α,β-不飽和カルボン酸の金属塩32~100重量部及びフィラー0~30重量部を配合し、過酸化物架橋した架橋体を含む伝動ベルト(Vリブドベルト、歯付ベルト)が開示されている。この文献には、前記フィラーとして、ケイ酸塩;アルミニウム、カルシウム又はマグネシウムの酸化物又は炭酸塩などの白色フィラーが記載されている。実施例では、EPDM100重量部に対して、ジアクリル酸亜鉛40~60重量部、白色フィラー10重量部、カーボンブラック25重量部、ジクミルハイドロパーオキサイド5重量部を含む組成物が調製されている。 International Publication No. 1997/22662 (Patent Document 2) discloses that α-ethylene-propylene-diene terpolymer (EPDM) having an ethylene content of 50 to 65% by weight and a diene content of less than 10% by weight is α , Β-unsaturated carboxylic acid metal salt 32 to 100 parts by weight and filler 0 to 30 parts by weight, and a power transmission belt (V-ribbed belt, toothed belt) including a peroxide-crosslinked crosslinked product is disclosed. . In this document, as the filler, a white filler such as silicate; aluminum, calcium or magnesium oxide or carbonate is described. In the examples, a composition containing 40 to 60 parts by weight of zinc diacrylate, 10 parts by weight of white filler, 25 parts by weight of carbon black, and 5 parts by weight of dicumyl hydroperoxide is prepared with respect to 100 parts by weight of EPDM.
 国際公開第2010/047029(特許文献3)には、エチレン含量66~85質量%のエチレンプロピレンジエンモノマーゴム等を5質量%以上40質量%未満含むエチレン-α-オレフィンエラストマー100質量部に対し、α,β-不飽和カルボン酸金属塩32~100質量部を含む組成物を有機過酸化物で架橋した架橋体を含む伝動ベルトが開示されている。この文献には、伝動ベルトとして、平ベルト、VベルトやVリブドベルトなどの摩擦伝動ベルト、歯付ベルトなどの噛み合い伝動ベルトが記載されている。実施例では、エチレン-α-オレフィンエラストマー100質量部に対し、ジ(メタ)アクリル酸金属塩32.2~100質量部、カーボンブラック50質量部、酸化亜鉛5質量部、有機過酸化物6質量部を含む組成物が調製されている。 In WO2010 / 047029 (Patent Document 3), 100 parts by mass of an ethylene-α-olefin elastomer containing 5% by mass to less than 40% by mass of ethylene propylene diene monomer rubber having an ethylene content of 66 to 85% by mass, A power transmission belt comprising a crosslinked product obtained by crosslinking a composition containing 32 to 100 parts by mass of an α, β-unsaturated carboxylic acid metal salt with an organic peroxide is disclosed. In this document, as transmission belts, flat transmission belts, friction transmission belts such as V-belts and V-ribbed belts, and meshing transmission belts such as toothed belts are described. In Examples, based on 100 parts by mass of ethylene-α-olefin elastomer, 32.2 to 100 parts by mass of metal salt of di (meth) acrylic acid, 50 parts by mass of carbon black, 5 parts by mass of zinc oxide, 6 parts by mass of organic peroxide. A composition containing parts has been prepared.
 特許文献1~3では、エチレン-α-オレフィンエラストマーのエチレン含量を一定の範囲に規定した上で、求められる性能を有するゴム組成物となるように有機酸金属塩の添加量を調整していると推定できる。しかし、これらの組成物では、エチレン成分による結晶性と有機酸金属塩による架橋とのバランスを調整しているに過ぎず、ベルトを形成しても、耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性など伝動ベルトに要求される種々の要求を同時に満足することはできない。 In Patent Documents 1 to 3, the ethylene content of the ethylene-α-olefin elastomer is regulated within a certain range, and the addition amount of the organic acid metal salt is adjusted to obtain a rubber composition having the required performance. Can be estimated. However, these compositions only adjust the balance between the crystallinity due to the ethylene component and the crosslinking with the organic acid metal salt, and even if a belt is formed, cold resistance, heat resistance, adhesiveness, and bending resistance Various requirements required for a transmission belt such as fatigue and wear resistance cannot be satisfied at the same time.
 日本国特開2003-314616号公報(特許文献4)には、エチレン-α-オレフィンエラストマーと水素化ニトリルゴムとからなるゴム成分100重量部に対して、有機酸金属塩モノマー20~40重量部及び短繊維5~35重量部を含む組成物をパーオキサイドで架橋した架橋体を含む高負荷伝動ベルト(コグドVベルト、ハイブリッドVベルト)が開示されている。実施例では、EPDM及び水素化ニトリルゴム100重量部に対して、ジメタクリル酸亜鉛10~50重量部、短繊維20重量部、酸化亜鉛10重量部、シリカ20重量部、パーオキサイド7重量部を含む組成物が調製されている。 Japanese Patent Application Laid-Open No. 2003-314616 (Patent Document 4) describes 20 to 40 parts by weight of an organic acid metal salt monomer per 100 parts by weight of a rubber component composed of an ethylene-α-olefin elastomer and a hydrogenated nitrile rubber. And a high load transmission belt (cogged V belt, hybrid V belt) comprising a crosslinked product obtained by crosslinking a composition containing 5 to 35 parts by weight of short fibers with peroxide. In the examples, 10 to 50 parts by weight of zinc dimethacrylate, 20 parts by weight of short fibers, 10 parts by weight of zinc oxide, 20 parts by weight of silica, and 7 parts by weight of peroxide are added to 100 parts by weight of EPDM and hydrogenated nitrile rubber. A composition comprising is prepared.
 しかし、特許文献4の組成物では、耐クラック性を高めるために、エチレン-α-オレフィンエラストマーに水素化ニトリルゴムをブレンドしているが、耐寒性などのエチレン-α-オレフィンエラストマーの特性が低下してしまい、良くも悪くも中庸な性能となる。また、海島構造の不均質な組成物となるため、特に経時劣化時のセパレーションが懸念される。 However, in the composition of Patent Document 4, hydrogenated nitrile rubber is blended with ethylene-α-olefin elastomer to improve crack resistance, but the properties of ethylene-α-olefin elastomer such as cold resistance are reduced. The result is a moderate or good performance. Moreover, since it becomes an inhomogeneous composition of the sea-island structure, there is a concern about separation at the time of deterioration over time.
 日本国特開2002-257199号公報(特許文献5)には、クロロプレンゴムを主材ゴムとし、金属酸化物及び有機過酸化物並びにα,β-不飽和脂肪酸金属塩を含む組成物を有機過酸化物で架橋した架橋体を含む動力伝動用ベルト(Vリブドベルト、Vベルト、コグドVベルト、平ベルト)が開示されている。この文献には、金属酸化物として、酸化亜鉛、酸化マグネシウム、酸化カルシウムが例示され、金属酸化物の機能として、架橋剤としての機能、受酸剤として機能(金型の腐食防止)が記載されている。実施例では、クロロプレンゴム100質量部に対して、アクリル酸アルミニウム5~20質量部、酸化マグネシウム4質量部、酸化亜鉛5質量部及び有機過酸化物を含む組成物を用いた、Vリブドベルトが開示されている。 In Japanese Patent Application Laid-Open No. 2002-257199 (Patent Document 5), a composition containing chloroprene rubber as a main rubber and containing a metal oxide, an organic peroxide, and an α, β-unsaturated fatty acid metal salt is disclosed. A power transmission belt (a V-ribbed belt, a V-belt, a cogged V-belt, a flat belt) including a crosslinked product crosslinked with an oxide is disclosed. In this document, zinc oxide, magnesium oxide, and calcium oxide are exemplified as metal oxides, and the function of the metal oxide is described as a function as a cross-linking agent and a function as an acid acceptor (corrosion prevention of mold). ing. In Examples, a V-ribbed belt using a composition containing 5 to 20 parts by mass of aluminum acrylate, 4 parts by mass of magnesium oxide, 5 parts by mass of zinc oxide and an organic peroxide with respect to 100 parts by mass of chloroprene rubber is disclosed. Has been.
 しかし、特許文献5では、クロロプレンゴムを含む伝動ベルトの粘着摩耗改善を課題としており、クロロプレンゴムとは構造及び特性が大きく異なるエチレン-α-オレフィンエラストマーの課題については記載されていない。さらに、クロロプレンゴムの耐寒性、耐熱性、耐候性は、エチレン-α-オレフィンエラストマーには及ばず、ローエッジコグドVベルトなどにおける昨今の厳しい使用環境においては不十分である。 However, Patent Document 5 has a problem of improving adhesive wear of a transmission belt containing chloroprene rubber, and does not describe a problem of an ethylene-α-olefin elastomer having a structure and characteristics that are significantly different from those of chloroprene rubber. Furthermore, the cold resistance, heat resistance, and weather resistance of chloroprene rubber are not as good as those of ethylene-α-olefin elastomers, and are insufficient in the recent severe use environment such as low edge cogged V-belts.
 すなわち、前記特許文献では、昨今の伝動ベルトに求められる性能を十分に満足することはできない。特に、ゴムの硬度及びモジュラスと、接着性や、ベルトに要求される耐屈曲疲労性及び幅広い温度域での耐久性(特に接着性及び耐屈曲疲労性)とは、トレードオフの関係にあり、両立が困難であった。 That is, according to the above-mentioned patent document, the performance required for the recent transmission belt cannot be sufficiently satisfied. In particular, the hardness and modulus of rubber, the adhesiveness, the bending fatigue resistance required for the belt, and the durability in a wide temperature range (particularly adhesiveness and bending fatigue resistance) are in a trade-off relationship, It was difficult to achieve both.
国際公開第1996/13544(請求の範囲、第10頁21~25行、図1~3)International Publication No. 1996/13544 (Claims, page 10, lines 21 to 25, FIGS. 1 to 3) 国際公開第1997/22662(請求の範囲、第3頁14~17行、第3頁下から2行~第4頁1行、実施例)International Publication No. 1997/22662 (Claims, page 3, lines 14 to 17, line 3 from the bottom of page 3, line 1 to page 4, line 1) 国際公開第2010/047029(請求の範囲、段落[0039]、実施例)International Publication No. 2010/047029 (Claims, Paragraph [0039], Examples) 日本国特開2003-314616号公報(請求項1、図1及び3、実施例)Japanese Patent Application Laid-Open No. 2003-314616 (Claim 1, FIGS. 1 and 3, Examples) 日本国特開2002-257199号公報(請求項1、段落[0022]、実施例)Japanese Patent Laid-Open No. 2002-257199 (Claim 1, paragraph [0022], Example)
 本発明の目的は、耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性を損なうことなく、エチレン-α-オレフィンエラストマーを主成分とするゴム組成物の硬化物の硬度及びモジュラスを高めることができるゴム組成物の硬化物を含む伝動ベルトを提供することにある。 The object of the present invention is to improve the hardness and modulus of a cured product of a rubber composition mainly composed of an ethylene-α-olefin elastomer without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance. An object of the present invention is to provide a transmission belt including a cured product of a rubber composition that can be enhanced.
 本発明者らは、前記課題を達成するため鋭意検討した結果、エチレン-α-オレフィンエラストマーと、α,β-不飽和カルボン酸金属塩と、酸化マグネシウムと、有機過酸化物と、無機充填剤とを組み合わせ、さらに前記酸化マグネシウムの割合を調整することにより、耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性を損なうことなく、エチレン-α-オレフィンエラストマーを主成分とする伝動ベルト用ゴム組成物の硬化物の硬度及びモジュラスを高めることができることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that an ethylene-α-olefin elastomer, an α, β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. In addition, by adjusting the ratio of the magnesium oxide, transmission with ethylene-α-olefin elastomer as the main component without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance. The present inventors have found that the hardness and modulus of the cured product of the rubber composition for belts can be increased.
 すなわち、本発明の伝動ベルトは、エチレン-α-オレフィンエラストマーを含むゴム成分と、α,β-不飽和カルボン酸金属塩と、酸化マグネシウムと、有機過酸化物と、無機充填剤とを含むゴム組成物の硬化物を含む伝動ベルトであって、前記酸化マグネシウムの割合が、前記ゴム成分100質量部に対して2~20質量部であり、かつ前記α,β-不飽和カルボン酸金属塩100質量部に対して5質量部以上である。前記α,β-不飽和カルボン酸金属塩の割合は、ゴム成分100質量部に対して5~40質量部程度であってもよい。前記有機過酸化物の割合は、ゴム成分100質量部に対して2~6質量部程度であってもよい。前記酸化マグネシウムの割合は、α,β-不飽和カルボン酸金属塩100質量部に対して5~300質量部程度であってもよい。前記ゴム成分は、80質量%以上のエチレン-α-オレフィンエラストマーを含んでいてもよい。前記エチレン-α-オレフィンエラストマーは、80質量%以上のエチレン-プロピレン-ジエン三元共重合体を含んでいてもよい。前記α,β-不飽和カルボン酸金属塩は、メタクリル酸亜鉛及びアクリル酸亜鉛から選択される少なくとも一方であってもよい。前記無機充填剤は、カーボンブラックを含んでいてもよい。前記無機充填剤の割合は、ゴム成分100質量部に対して40~100質量部程度であってもよい。前記無機充填剤は、さらにシリカを含んでいてもよい。前記カーボンブラックと前記シリカとの質量比は、前者/後者=60/40~99/1程度であってもよい。前記ゴム組成物は、さらに酸化亜鉛を含んでいてもよい。前記ゴム組成物の硬化物は、硬化物のゴム硬度(JIS-A)が91~98度程度であってもよい。前記ゴム組成物は、さらに短繊維を含んでいてもよい。前記短繊維の割合は、ゴム成分100質量部に対して20~40質量部程度であってもよい。前記短繊維は、アラミド短繊維であってもよい。前記ゴム組成物は、短繊維を含み、ゴム組成物の硬化物において、前記短繊維の配向方向に直交する方向の曲げ応力が8~15MPa程度であってもよい。本発明の伝動ベルトは、CVT駆動用として使用されるローエッジコグドVベルトであってもよい。 That is, the transmission belt of the present invention is a rubber containing a rubber component containing an ethylene-α-olefin elastomer, an α, β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. A transmission belt comprising a cured product of the composition, wherein the proportion of the magnesium oxide is 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and the α, β-unsaturated carboxylic acid metal salt 100 It is 5 mass parts or more with respect to a mass part. The proportion of the α, β-unsaturated carboxylic acid metal salt may be about 5 to 40 parts by mass with respect to 100 parts by mass of the rubber component. The ratio of the organic peroxide may be about 2 to 6 parts by mass with respect to 100 parts by mass of the rubber component. The proportion of magnesium oxide may be about 5 to 300 parts by mass with respect to 100 parts by mass of the α, β-unsaturated carboxylic acid metal salt. The rubber component may contain 80% by mass or more of an ethylene-α-olefin elastomer. The ethylene-α-olefin elastomer may contain 80% by mass or more of an ethylene-propylene-diene terpolymer. The α, β-unsaturated carboxylic acid metal salt may be at least one selected from zinc methacrylate and zinc acrylate. The inorganic filler may contain carbon black. The proportion of the inorganic filler may be about 40 to 100 parts by mass with respect to 100 parts by mass of the rubber component. The inorganic filler may further contain silica. The mass ratio of the carbon black to the silica may be about the former / the latter = 60/40 to 99/1. The rubber composition may further contain zinc oxide. The cured product of the rubber composition may have a cured product having a rubber hardness (JIS-A) of about 91 to 98 degrees. The rubber composition may further contain short fibers. The proportion of the short fibers may be about 20 to 40 parts by mass with respect to 100 parts by mass of the rubber component. The short fiber may be an aramid short fiber. The rubber composition may include short fibers, and the cured product of the rubber composition may have a bending stress of about 8 to 15 MPa in a direction perpendicular to the orientation direction of the short fibers. The power transmission belt of the present invention may be a low edge cogged V belt used for CVT driving.
 なお、本明細書及び特許請求の範囲において、「配向方向に直交する方向」は、完全に直交する方向である必要はなく、直交方向±5°の範囲の方向であってもよい。 In the present specification and claims, the “direction orthogonal to the orientation direction” does not have to be a completely orthogonal direction, and may be a direction in the range of the orthogonal direction ± 5 °.
 本発明では、エチレン-α-オレフィンエラストマーと、α,β-不飽和カルボン酸金属塩と、酸化マグネシウムと、有機過酸化物と、無機充填剤との組み合わせにおいて、前記酸化マグネシウムの割合が調整されているため、耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性を損なうことなく、エチレン-α-オレフィンエラストマーを主成分とするゴム組成物の硬化物の硬度及びモジュラスを高めることができる。そのため、伝達動力の増大やレイアウトのコンパクト化の要求が厳しいローエッジコグドVベルトや歯付ベルトなどの伝動ベルト、特に、CTV駆動用として使用されるローエッジコグドVベルトに利用できる。 In the present invention, the ratio of the magnesium oxide is adjusted in a combination of an ethylene-α-olefin elastomer, an α, β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. Therefore, the hardness and modulus of the cured product of the rubber composition mainly composed of ethylene-α-olefin elastomer can be increased without impairing cold resistance, heat resistance, adhesion, bending fatigue resistance, and wear resistance. Can do. Therefore, it can be used for a transmission belt such as a low-edge cogged V-belt or a toothed belt, which is required to increase transmission power and to make the layout compact, and particularly to a low-edge cogged V-belt used for CTV driving.
図1は、本発明の伝動ベルト(ローエッジコグドVベルト)の一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of a transmission belt (low edge cogged V belt) of the present invention. 図2は、図1の伝動ベルトをベルト長手方向に切断した概略断面図である。FIG. 2 is a schematic cross-sectional view of the transmission belt of FIG. 1 cut in the belt longitudinal direction. 図3は、実施例で得られた伝動ベルトの曲げ応力の測定方法を説明するための概略図である。FIG. 3 is a schematic diagram for explaining a method of measuring the bending stress of the transmission belt obtained in the example. 図4は、実施例で得られた伝動ベルトの耐久走行試験を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a durability running test of the transmission belt obtained in the example. 図5は、実施例で作製されたダブルコグドVベルトの概略斜視図である。FIG. 5 is a schematic perspective view of a double cogged V-belt manufactured in the example.
 [ゴム組成物]
 本発明の伝動ベルトは、エチレン-α-オレフィンエラストマーを含むゴム成分と、α,β-不飽和カルボン酸金属塩と、酸化マグネシウムと、有機過酸化物と、無機充填剤とを含むゴム組成物の硬化物を含んでいればよい。
[Rubber composition]
The transmission belt of the present invention is a rubber composition containing a rubber component containing an ethylene-α-olefin elastomer, an α, β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler. It is sufficient if the cured product is included.
 (ゴム成分)
 ゴム成分は、耐寒性、耐熱性、耐候性に優れる点から、エチレン-α-オレフィンエラストマーを含むことが好ましい。
(Rubber component)
The rubber component preferably contains an ethylene-α-olefin elastomer from the viewpoint of excellent cold resistance, heat resistance, and weather resistance.
 エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)としては、例えば、エチレン-α-オレフィンゴム、エチレン-α-オレフィン-ジエンゴムなどが挙げられる。 Examples of the ethylene-α-olefin elastomer (ethylene-α-olefin rubber) include ethylene-α-olefin rubber and ethylene-α-olefin-diene rubber.
 エラストマーを構成するα-オレフィンとしては、例えば、プロピレン、ブテン、ペンテン、メチルペンテン、ヘキセン、オクテンなどの鎖状α-C3-12オレフィンなどが挙げられる。これらのα-オレフィンは、単独で又は二種以上組み合わせて使用できる。これらのα-オレフィンのうち、プロピレンなどのα-C3-4オレフィン(特にプロピレン)が好ましい。 Examples of the α-olefin constituting the elastomer include linear α-C 3-12 olefins such as propylene, butene, pentene, methylpentene, hexene and octene. These α-olefins can be used alone or in combination of two or more. Of these α-olefins, α-C 3-4 olefins (particularly propylene) such as propylene are preferred.
 エラストマーを構成するジエンモノマーとしては、通常、非共役ジエン系単量体、例えば、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエン、シクロオクタジエンなどが例示できる。これらのジエンモノマーは、単独で又は二種以上組み合わせて使用できる。これらのジエンモノマーのうち、エチリデンノルボルネン、1,4-ヘキサジエン(特に、エチリデンノルボルネン)が好ましい。 Examples of the diene monomer constituting the elastomer usually include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more. Of these diene monomers, ethylidene norbornene and 1,4-hexadiene (particularly ethylidene norbornene) are preferred.
 代表的なエチレン-α-オレフィンエラストマーとしては、例えば、エチレン-α-オレフィンゴム[エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)、エチレン-オクテンゴム(EOM)など]、エチレン-α-オレフィン-ジエンゴム[エチレン-プロピレン-ジエン三元共重合体(EPDM)]などが例示できる。これらのエチレン-α-オレフィンエラストマーは、単独で又は二種以上組み合わせて使用できる。 Representative ethylene-α-olefin elastomers include, for example, ethylene-α-olefin rubber [ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), ethylene-octene rubber (EOM), etc.], ethylene-α-olefin. -Diene rubber [ethylene-propylene-diene terpolymer (EPDM)] and the like. These ethylene-α-olefin elastomers can be used alone or in combination of two or more.
 これらのエチレン-α-オレフィンエラストマーのうち、耐寒性、耐熱性、耐候性に優れる点から、エチレン-α-C3-4オレフィン-ジエン三元共重合体ゴムなどのエチレン-α-オレフィン-ジエン三元共重合体ゴムが好ましく、EPDMが特に好ましい。そのため、EPDMの割合は、エチレン-α-オレフィンエラストマー全体に対して50質量%以上であってもよく、好ましくは80質量%以上、さらに好ましく90質量%以上(特に95質量%)であり、100質量%(EPDMのみ)であってもよい。 Among these ethylene-α-olefin elastomers, ethylene-α-olefin-dienes such as ethylene-α-C 3-4 olefin-diene terpolymer rubbers are excellent because of their excellent cold resistance, heat resistance, and weather resistance. Ternary copolymer rubber is preferred, and EPDM is particularly preferred. Therefore, the proportion of EPDM may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more (particularly 95% by mass) with respect to the total ethylene-α-olefin elastomer. It may be mass% (EPDM only).
 エチレン-α-オレフィンエラストマーにおいて、エチレンとα-オレフィンとの割合(質量比)は、前者/後者=40/60~90/10、好ましくは45/55~85/15(例えば50/50~80/20)、さらに好ましくは52/48~70/30(特に55/45~60/40)程度であってもよい。 In the ethylene-α-olefin elastomer, the ratio (mass ratio) of ethylene to α-olefin is the former / the latter = 40/60 to 90/10, preferably 45/55 to 85/15 (for example, 50/50 to 80). / 20), more preferably about 52/48 to 70/30 (particularly 55/45 to 60/40).
 エチレン-α-オレフィンエラストマーがジエンモノマーを含む場合、ジエンモノマーの割合は、エラストマー全体に対して1~15質量%程度の範囲から選択でき、例えば1.5~12質量%、好ましくは2~10質量%(特に2.5~5質量%)程度であってもよい。 When the ethylene-α-olefin elastomer contains a diene monomer, the proportion of the diene monomer can be selected from the range of about 1 to 15% by mass, for example, 1.5 to 12% by mass, preferably 2 to 10%, based on the whole elastomer. It may be about mass% (especially 2.5 to 5 mass%).
 なお、ジエンモノマーを含むエチレン-α-オレフィンエラストマーのヨウ素価は、例えば3~40、好ましくは5~30、さらに好ましくは10~20程度であってもよい。ヨウ素価が小さすぎると、ゴム組成物の加硫が不十分になって摩耗や粘着が発生し易く、逆にヨウ素価が大きすぎると、ゴム組成物のスコーチが短くなって扱い難くなると共に耐熱性が低下する傾向がある。 The iodine value of the ethylene-α-olefin elastomer containing a diene monomer may be, for example, about 3 to 40, preferably about 5 to 30, and more preferably about 10 to 20. If the iodine value is too small, vulcanization of the rubber composition will be insufficient and wear and adhesion will easily occur. Conversely, if the iodine value is too large, the scorch of the rubber composition will become short and difficult to handle and heat resistance Tend to decrease.
 ゴム成分は、本発明の効果を損なわない範囲であれば、エチレン-α-オレフィンエラストマーに加えて、他のゴム成分、例えば、ジエン系ゴム[天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、ビニルピリジン-スチレン-ブタジエン共重合体ゴム、アクリロニトリルブタジエンゴム(ニトリルゴム);水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)などの前記ジエン系ゴムの水添物など]、オレフィン系ゴム(ポリオクテニレンゴム、エチレン-酢酸ビニル共重合体ゴム、クロロスルホン化ポリエチレンゴム、アルキル化クロロスルホン化ポリエチレンゴムなど)、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどを含んでいてもよい。 As long as the rubber component does not impair the effects of the present invention, in addition to the ethylene-α-olefin elastomer, other rubber components such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene Butadiene rubber (SBR), vinylpyridine-styrene-butadiene copolymer rubber, acrylonitrile butadiene rubber (nitrile rubber); hydrogenated nitrile rubber (including mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc. Hydrogenated products of the diene rubbers, etc.], olefin rubbers (polyoctenylene rubber, ethylene-vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, etc.), epichlorohydrin rubber, acrylic Rubber, silicone rubber, cormorant Tangomu, may contain a such as fluorine rubber.
 エチレン-α-オレフィンエラストマーの割合は、ゴム成分全体に対して50質量%以上であればよく、好ましくは80質量%以上、さらに好ましくは90質量%以上(特に95質量%以上)であり、100質量%(ゴム成分がエチレン-α-オレフィンエラストマーのみ)であってもよい。エチレン-α-オレフィンエラストマーの割合が少なすぎると、耐寒性や耐熱性が低下する虞がある。 The ratio of the ethylene-α-olefin elastomer may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more (particularly 95% by mass or more), and 100% by mass. It may be mass% (rubber component is ethylene-α-olefin elastomer only). If the proportion of the ethylene-α-olefin elastomer is too small, the cold resistance and heat resistance may be lowered.
 (α,β-不飽和カルボン酸金属塩)
 α,β-不飽和カルボン酸金属塩とは、1又は2以上のカルボキシル基を有する不飽和カルボン酸と金属とがイオン結合した化合物であってもよい。不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸などの不飽和モノカルボン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸などの不飽和ジカルボン酸などが挙げられる。これらの不飽和カルボン酸は、単独で又は二種以上組み合わせて使用できる。これらの不飽和カルボン酸のうち、(メタ)アクリル酸などの不飽和モノカルボン酸が好ましい。
(Α, β-unsaturated carboxylic acid metal salt)
The α, β-unsaturated carboxylic acid metal salt may be a compound in which an unsaturated carboxylic acid having one or more carboxyl groups and a metal are ionically bonded. Examples of the unsaturated carboxylic acid include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, and citraconic acid. These unsaturated carboxylic acids can be used alone or in combination of two or more. Of these unsaturated carboxylic acids, unsaturated monocarboxylic acids such as (meth) acrylic acid are preferred.
 金属としては、例えば、周期表第2族金属(マグネシウム、カルシウムなど)、第4族金属(チタン、ジルコニウムなど)、第8族金属(鉄など)、第10族金属(ニッケルなど)、第11族金属(銅など)、第12族金属(亜鉛など)、第13族金属(アルミニウムなど)、第14族金属(鉛など)などの多価金属などが挙げられる。これらの金属は、単独で又は二種以上組み合わせて使用できる。これらの金属のうち、多価金属、例えば、マグネシウム、カルシウム、亜鉛などの二価金属、アルミニウムなどの三価金属(特に亜鉛などの二価金属)が好ましい。 Examples of the metal include Group 2 metals (magnesium, calcium, etc.), Group 4 metals (titanium, zirconium, etc.), Group 8 metals (iron, etc.), Group 10 metals (nickel, etc.), Examples include Group metals (such as copper), Group 12 metals (such as zinc), Group 13 metals (such as aluminum), and Group 14 metals (such as lead). These metals can be used alone or in combination of two or more. Of these metals, polyvalent metals, for example, divalent metals such as magnesium, calcium and zinc, and trivalent metals such as aluminum (especially divalent metals such as zinc) are preferable.
 これらのうち、1分子中に2つのラジカル重合性基を有する二官能性モノカルボン酸二価金属塩、例えば、メタクリル酸亜鉛などの(メタ)アクリル酸亜鉛[ジ(メタ)アクリル酸亜鉛又はビス(メタ)アクリル酸亜鉛]、メタクリル酸マグネシウムなどの(メタ)アクリル酸マグネシウムや、1分子中に3つのラジカル重合性基を有する三官能性モノカルボン酸三価金属塩、例えば、(メタ)アクリル酸アルミニウム[トリ(メタ)アクリル酸アルミニウム]などが好ましく、(メタ)アクリル酸亜鉛及び/又はアクリル酸アルミニウムがさらに好ましく、(メタ)アクリル酸亜鉛(すなわち、メタクリル酸亜鉛及びアクリル酸亜鉛から選択される少なくとも一方)が特に好ましい。さらに、諸特性のバランスに優れる点から、二官能性モノカルボン酸二価金属塩(特にメタクリル酸亜鉛)が好ましい。 Among these, bifunctional monocarboxylic acid divalent metal salts having two radical polymerizable groups in one molecule, for example, zinc (meth) acrylate such as zinc methacrylate [zinc di (meth) acrylate or bis (Meth) acrylic acid zinc], magnesium (meth) acrylates such as magnesium methacrylate, and trifunctional monocarboxylic acid trivalent metal salts having three radical polymerizable groups in one molecule, such as (meth) acrylic Preferred are aluminum acrylate [aluminum tri (meth) acrylate], more preferably zinc (meth) acrylate and / or aluminum acrylate, selected from zinc (meth) acrylate (ie, zinc methacrylate and zinc acrylate). At least one) is particularly preferred. Furthermore, a bifunctional monocarboxylic acid divalent metal salt (particularly zinc methacrylate) is preferable from the viewpoint of excellent balance of various properties.
 α,β-不飽和カルボン酸金属塩の割合は、ゴム成分100質量部に対して1~50質量部、好ましくは5~40質量部、さらに好ましくは8~35質量部(特に10~30質量部)程度であってもよい。α,β-不飽和カルボン酸金属塩の割合が少なすぎると、ゴム組成物の硬化物の硬度及びモジュラスが低下する虞があり、逆に多すぎると、接着性や耐屈曲疲労性などが低下する虞がある。 The proportion of the α, β-unsaturated carboxylic acid metal salt is 1 to 50 parts by weight, preferably 5 to 40 parts by weight, more preferably 8 to 35 parts by weight (particularly 10 to 30 parts by weight) based on 100 parts by weight of the rubber component. Part) degree. If the proportion of the α, β-unsaturated carboxylic acid metal salt is too small, the hardness and modulus of the cured product of the rubber composition may be reduced. On the other hand, if the proportion is too large, the adhesion and bending fatigue resistance will be reduced. There is a risk of doing.
 (酸化マグネシウム)
 本発明では、前記α,β-不飽和カルボン酸金属塩に対して、所定の割合で酸化マグネシウムを組み合わせることにより、ゴム組成物の硬化物の耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性を維持しつつ、硬度及びモジュラスを向上できる。
(Magnesium oxide)
In the present invention, by combining magnesium oxide at a predetermined ratio with the α, β-unsaturated carboxylic acid metal salt, cold resistance, heat resistance, adhesiveness, and bending fatigue resistance of the cured product of the rubber composition The hardness and modulus can be improved while maintaining the wear resistance.
 酸化マグネシウムの割合は、前記ゴム成分100質量部に対して2~20質量部であり、好ましくは3~18質量部、さらに好ましくは5~15質量部(特に8~13質量部)程度であってもよい。酸化マグネシウムの割合は、α,β-不飽和カルボン酸金属塩100質量部に対して5質量部以上(例えば5~300質量部)であり、例えば5~250質量部(例えば、5~200質量部)、好ましくは10~150質量部、さらに好ましくは15~100質量部(特に20~80質量部)程度である。酸化マグネシウムの割合が少なすぎると、ゴム組成物の硬化物において、硬度及びモジュラスが低下する虞があり、逆に多すぎると、接着性や耐屈曲疲労性などが低下する虞がある。 The proportion of magnesium oxide is 2 to 20 parts by weight, preferably 3 to 18 parts by weight, more preferably 5 to 15 parts by weight (particularly 8 to 13 parts by weight) with respect to 100 parts by weight of the rubber component. May be. The proportion of magnesium oxide is 5 parts by mass or more (eg, 5 to 300 parts by mass) with respect to 100 parts by mass of the α, β-unsaturated carboxylic acid metal salt, for example, 5 to 250 parts by mass (eg, 5 to 200 parts by mass). Part), preferably 10 to 150 parts by weight, more preferably about 15 to 100 parts by weight (particularly 20 to 80 parts by weight). If the proportion of magnesium oxide is too small, the hardness and modulus of the cured product of the rubber composition may be decreased. Conversely, if the proportion is too large, adhesiveness and bending fatigue resistance may be decreased.
 (有機過酸化物)
 有機過酸化物としては、通常、ゴム、樹脂の架橋に使用されている有機過酸化物、例えば、ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイド(例えば、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-ジ-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキサン、1,3-ビス(t-ブチルパーオキシ-イソプロピル)ベンゼン、ジ-t-ブチルパーオキサイドなど)などが挙げられる。これらの有機過酸化物は、単独で又は二種以上組み合わせて使用できる。さらに、有機過酸化物は、熱分解による1分間の半減期を得る分解温度が150~250℃(例えば、175~225℃)程度の過酸化物が好ましい。
(Organic peroxide)
As the organic peroxide, organic peroxides usually used for crosslinking of rubber and resin, for example, diacyl peroxide, peroxy ester, dialkyl peroxide (for example, dicumyl peroxide, t-butyl cumyl peroxide) are used. Oxide, 1,1-di-butylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane, 1,3-bis (t- Butylperoxy-isopropyl) benzene, di-t-butyl peroxide, etc.). These organic peroxides can be used alone or in combination of two or more. Further, the organic peroxide is preferably a peroxide having a decomposition temperature of about 150 to 250 ° C. (for example, 175 to 225 ° C.) for obtaining a half-life of 1 minute by thermal decomposition.
 有機過酸化物の割合は、ゴム成分100質量部に対して、例えば1~10質量部、好ましくは2~8質量部、さらに好ましくは2~6質量部(例えば、3~6質量部)程度であってもよい。 The proportion of the organic peroxide is, for example, about 1 to 10 parts by weight, preferably 2 to 8 parts by weight, more preferably 2 to 6 parts by weight (eg 3 to 6 parts by weight) with respect to 100 parts by weight of the rubber component. It may be.
 (無機充填剤)
 本発明では、前記α,β-不飽和カルボン酸金属塩及び酸化マグネシウムの組み合わせに対して無機充填剤を配合することにより、ゴム組成物の硬化物の耐寒性、耐熱性、接着性、耐屈曲疲労性を維持しつつ、耐摩耗性、硬度及びモジュラスを向上できる。
(Inorganic filler)
In the present invention, by adding an inorganic filler to the combination of the α, β-unsaturated carboxylic acid metal salt and magnesium oxide, the cured product of the rubber composition has cold resistance, heat resistance, adhesion, and bending resistance. Wear resistance, hardness, and modulus can be improved while maintaining fatigue.
 無機充填剤(無機フィラー)としては、例えば、炭素質材料(カーボンブラック、グラファイトなど)、金属化合物又は合成セラミックス[酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなどの金属酸化物(酸化マグネシウム及び酸化亜鉛以外の金属酸化物)、ケイ酸カルシウムやケイ酸アルミニウムなどの金属ケイ酸塩、炭化ケイ素や炭化タングステンなどの金属炭化物、窒化チタン、窒化アルミニウム、窒化ホウ素などの金属窒化物、炭酸マグネシウムや炭酸カルシウムなどの金属炭酸塩、硫酸カルシウムや硫酸バリウムなどの金属硫酸塩など]、鉱物質材料(ゼオライト、ケイソウ土、焼成珪藻土、活性白土、アルミナ、シリカ、タルク、マイカ、カオリン、セリサイト、ベントナイト、モンモリロナイト、スメクタイト、クレイなど)などが挙げられる。これらの無機充填剤は、単独で又は二種以上組み合わせて使用できる。 Examples of inorganic fillers (inorganic fillers) include carbonaceous materials (carbon black, graphite, etc.), metal compounds or synthetic ceramics [metal oxides such as calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, and aluminum oxide. (Metal oxides other than magnesium oxide and zinc oxide), metal silicates such as calcium silicate and aluminum silicate, metal carbides such as silicon carbide and tungsten carbide, metal nitride such as titanium nitride, aluminum nitride and boron nitride , Metal carbonates such as magnesium carbonate and calcium carbonate, metal sulfates such as calcium sulfate and barium sulfate], mineral materials (zeolite, diatomaceous earth, calcined diatomaceous earth, activated clay, alumina, silica, talc, mica, kaolin , Sericite, bentonite, montmorillo Ito, smectite, such as clay), and the like. These inorganic fillers can be used alone or in combination of two or more.
 これらの無機充填剤のうち、カーボンブラック及び/又はシリカが好ましく、ゴム組成物の硬化物において、硬度、モジュラス及び耐摩耗性を向上できる点から、カーボンブラックを少なくとも含むことが特に好ましい。 Of these inorganic fillers, carbon black and / or silica are preferable, and it is particularly preferable that at least carbon black is included in the cured product of the rubber composition from the viewpoint of improving the hardness, modulus, and wear resistance.
 カーボンブラックとしては、例えば、SAF、ISAF、HAF、FEF、GPF、HMFなどが挙げられる。これらのカーボンブラックは、単独で又は二種以上組み合わせて使用できる。これらのうち、補強効果と分散性のバランスがよく、ベルト屈曲時の発熱も小さい点から、FEFが好ましい。 Examples of carbon black include SAF, ISAF, HAF, FEF, GPF, and HMF. These carbon blacks can be used alone or in combination of two or more. Among these, FEF is preferable because the balance between the reinforcing effect and the dispersibility is good and the heat generated when the belt is bent is small.
 カーボンブラックの平均粒径は、例えば5~200nm程度の範囲から選択でき、例えば10~150nm、好ましくは15~100nm、さらに好ましくは20~80nm(特に30~50nm)程度である。カーボンブラックの平均粒径が小さすぎると、均一な分散が困難となる虞があり、大きすぎると、硬度、モジュラス及び耐摩耗性が低下する虞がある。 The average particle size of carbon black can be selected from the range of, for example, about 5 to 200 nm, and is, for example, about 10 to 150 nm, preferably 15 to 100 nm, and more preferably 20 to 80 nm (particularly 30 to 50 nm). If the average particle size of the carbon black is too small, uniform dispersion may be difficult, and if it is too large, the hardness, modulus, and wear resistance may be reduced.
 カーボンブラックを含む無機充填剤は、硬度、モジュラス及び耐摩耗性に加えて、接着性も向上できる点から、カーボンブラックをシリカと組み合わせることが特に好ましい。 It is particularly preferable that the inorganic filler containing carbon black is combined with silica from the viewpoint that adhesion can be improved in addition to hardness, modulus and wear resistance.
 シリカは、珪酸及び/又は珪酸塩で形成された微細な嵩高い白色粉末であり、その表面には複数のシラノール基が存在するため、ゴム成分と化学的に接着できる。 Silica is a fine bulky white powder formed of silicic acid and / or silicate, and has a plurality of silanol groups on its surface, so it can be chemically bonded to the rubber component.
 シリカには、乾式シリカ、湿式シリカ、表面処理したシリカなどが含まれる。また、シリカは、製法での分類によって、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどにも分類できる。これらのシリカは、単独で又は二種以上組み合わせて使用できる。これらのうち、表面シラノール基が多く、ゴム成分との化学的結合力が強い点から、含水珪酸を主成分とする湿式法ホワイトカーボンが好ましい。 Silica includes dry silica, wet silica, surface-treated silica, and the like. Silica can also be classified into, for example, dry process white carbon, wet process white carbon, colloidal silica, precipitated silica, and the like according to the classification in the production method. These silicas can be used alone or in combination of two or more. Of these, wet-type white carbon containing hydrous silicic acid as a main component is preferable because it has many surface silanol groups and a strong chemical bonding force with a rubber component.
 シリカの平均粒径は、例えば1~1000nm、好ましくは3~300nm、さらに好ましくは5~100nm(特に10~50nm)程度である。シリカの粒径が大きすぎると、ゴム組成物の硬化物において、機械的特性が低下する虞があり、小さすぎると、均一に分散するのが困難となる虞がある。 The average particle diameter of silica is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the silica is too large, the cured product of the rubber composition may have reduced mechanical properties. If it is too small, it may be difficult to uniformly disperse.
 また、シリカは、非多孔質又は多孔質のいずれであってもよいが、BET法による窒素吸着比表面積は、例えば50~400m/g、好ましくは70~350m/g、さらに好ましくは100~300m/g(特に150~250m/g)程度であってもよい。比表面積が大きすぎると、均一に分散するのが困難となる虞があり、比表面積が小さすぎると、ゴム層の機械的特性が低下する虞がある。 Silica may be non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, 50 to 400 m 2 / g, preferably 70 to 350 m 2 / g, more preferably 100. It may be about ˜300 m 2 / g (especially 150 to 250 m 2 / g). If the specific surface area is too large, it may be difficult to uniformly disperse, and if the specific surface area is too small, the mechanical properties of the rubber layer may be deteriorated.
 無機充填剤の割合は、前記ゴム成分100質量部に対して10~150質量部程度の範囲から選択でき、例えば40~100質量部、好ましくは50~80質量部、さらに好ましくは60~70質量部程度である。無機充填剤の割合が少なすぎると、ゴム組成物の硬化物において、硬度、モジュラス及び耐摩耗性が低下する虞があり、逆に多すぎると、耐屈曲疲労性が低下する虞がある。 The proportion of the inorganic filler can be selected from the range of about 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component, for example, 40 to 100 parts by mass, preferably 50 to 80 parts by mass, and more preferably 60 to 70 parts by mass. About a part. If the proportion of the inorganic filler is too small, the hardness, modulus and wear resistance of the cured product of the rubber composition may be reduced, and conversely if too large, the bending fatigue resistance may be reduced.
 無機充填剤がカーボンブラックとシリカとを含む場合、カーボンブラックとシリカとの質量比は、前者/後者=50/50~99.9/0.1の範囲から選択でき、例えば60/40~99/1、好ましくは70/30~95/5、さらに好ましくは80/20~90/10程度である。カーボンブラックの割合が少なすぎると、ゴム組成物の硬化物において、硬度、モジュラス及び耐摩耗性が低下する虞があり、逆に多すぎると、接着性が低下する虞がある。 When the inorganic filler contains carbon black and silica, the mass ratio of carbon black to silica can be selected from the range of the former / the latter = 50/50 to 99.9 / 0.1, for example, 60/40 to 99 / 1, preferably 70/30 to 95/5, more preferably about 80/20 to 90/10. If the proportion of carbon black is too small, the hardness, modulus and wear resistance of the cured product of the rubber composition may be reduced, and conversely if too high, the adhesion may be reduced.
 カーボンブラック及びシリカの合計割合(カーボンブラックのみの場合、カーボンブラックの割合)は、無機充填剤全体に対して50質量%以上であってもよく、好ましくは60質量%以上、さらに好ましくは70質量%以上(特に80質量%以上)であってもよく、90質量%以上(特に100質量%)であってもよい。 The total ratio of carbon black and silica (in the case of carbon black alone, the ratio of carbon black) may be 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass with respect to the entire inorganic filler. % Or more (especially 80% by mass or more), or 90% by mass or more (particularly 100% by mass).
 (酸化亜鉛)
 前記ゴム組成物は、さらに酸化亜鉛を含んでいてもよい。金属酸化物として、前記酸化マグネシウムに加えて、酸化亜鉛を組み合わせることにより、ゴム組成物の硬化物において、硬度及びモジュラスを向上でき、諸特性のバランスを向上できる。
(Zinc oxide)
The rubber composition may further contain zinc oxide. By combining zinc oxide as the metal oxide in addition to the magnesium oxide, hardness and modulus can be improved and the balance of various properties can be improved in the cured product of the rubber composition.
 酸化亜鉛の割合は、前記ゴム成分100質量部に対して、例えば0.5~20質量部、好ましくは1~15質量部、さらに好ましくは2~10質量部(特に3~8質量部)程度であってもよい。酸化亜鉛の割合は、酸化マグネシウム100質量部に対して、例えば10~1000質量部、好ましくは20~500質量部、さらに好ましくは30~200質量部(特に50~100質量部)程度であってもよい。酸化亜鉛の割合が少なすぎても、多すぎても、諸特性のバランスが低下する虞がある。 The proportion of zinc oxide is, for example, about 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight (particularly 3 to 8 parts by weight) with respect to 100 parts by weight of the rubber component. It may be. The proportion of zinc oxide is, for example, about 10 to 1000 parts by weight, preferably 20 to 500 parts by weight, more preferably 30 to 200 parts by weight (particularly 50 to 100 parts by weight) with respect to 100 parts by weight of magnesium oxide. Also good. If the proportion of zinc oxide is too small or too large, the balance of various properties may be lowered.
 (短繊維)
 前記ゴム組成物は、さらに短繊維を含んでいてもよい。短繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリアルキレンアリレート系繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのポリC2-4アルキレンC6-14アリレート系繊維など]、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が汎用される。これらの短繊維は、単独でまたは二種以上組み合わせて使用できる。これらの短繊維のうち、合成繊維や天然繊維、特に合成繊維(ポリアミド繊維、ポリアルキレンアリレート系繊維など)、中でも剛直で高い強度、モジュラスを有し、圧縮ゴム層表面で突出し易い点から、少なくともアラミド繊維を含む短繊維が好ましい。アラミド短繊維は、高い耐摩耗性をも有している。アラミド繊維は、例えば、商品名「コーネックス」、「ノーメックス」、「ケブラー」、「テクノーラ」、「トワロン」などとして市販されている。
(Short fiber)
The rubber composition may further contain short fibers. Examples of short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (polyethylene terephthalate (PET)). Fibers, poly C 2-4 alkylene C 6-14 arylate fibers such as polyethylene naphthalate (PEN) fibers, etc.], vinylon fibers, polyvinyl alcohol fibers, synthetic fibers such as polyparaphenylene benzobisoxazole (PBO) fibers; Natural fibers such as cotton, hemp and wool; inorganic fibers such as carbon fibers are widely used. These short fibers can be used alone or in combination of two or more. Among these short fibers, synthetic fibers and natural fibers, especially synthetic fibers (polyamide fibers, polyalkylene arylate fibers, etc.), among others, are rigid and have high strength and modulus, and are at least easy to protrude from the surface of the compressed rubber layer. Short fibers including aramid fibers are preferred. Aramid short fibers also have high wear resistance. Aramid fibers are commercially available, for example, under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron”, and the like.
 短繊維の平均繊維径は、例えば1~100μm、好ましくは3~50μm、さらに好ましくは5~30μm(特に10~20μm)程度である。平均繊維径が大きすぎると、ゴム組成物の硬化物において、機械的特性が低下する虞があり、小さすぎると、均一に分散させるのが困難となる虞がある。 The average fiber diameter of the short fibers is, for example, about 1 to 100 μm, preferably 3 to 50 μm, more preferably about 5 to 30 μm (particularly 10 to 20 μm). If the average fiber diameter is too large, the cured product of the rubber composition may have reduced mechanical properties. If it is too small, it may be difficult to disperse uniformly.
 短繊維の平均長さは、例えば1~20mm、好ましくは1.2~15mm(例えば1.5~10mm)、さらに好ましくは2~5mm(特に2.5~4mm)程度であってもよい。短繊維の平均長さが短すぎると、ゴム組成物の硬化物をベルトに利用した場合、列理方向の力学特性(例えばモジュラスなど)を十分に高めることができない虞があり、逆に長すぎると、ゴム組成物中の短繊維の分散性が低下し、耐屈曲疲労性が低下する虞がある。 The average length of the short fibers may be, for example, about 1 to 20 mm, preferably about 1.2 to 15 mm (for example, 1.5 to 10 mm), and more preferably about 2 to 5 mm (especially 2.5 to 4 mm). If the average length of the short fibers is too short, when the cured product of the rubber composition is used for the belt, the mechanical properties (for example, the modulus) in the direction of preparation may not be sufficiently improved. In addition, the dispersibility of the short fibers in the rubber composition may be reduced, and the bending fatigue resistance may be reduced.
 ゴム組成物中の短繊維の分散性や接着性の観点から、少なくとも短繊維は接着処理(又は表面処理)することが好ましい。なお、全ての短繊維が接着処理されている必要はなく、接着処理した短繊維と、接着処理されていない短繊維(未処理短繊維)とが混在し又は併用されていてもよい。 From the viewpoint of dispersibility and adhesiveness of the short fibers in the rubber composition, at least the short fibers are preferably subjected to an adhesion treatment (or surface treatment). In addition, it is not necessary for all the short fibers to be subjected to the adhesion treatment, and the short fibers subjected to the adhesion treatment and the short fibers not subjected to the adhesion treatment (untreated short fibers) may be mixed or used together.
 短繊維の接着処理では、種々の接着処理、例えば、フェノール類とホルマリンとの初期縮合物(ノボラック又はレゾール型フェノール樹脂のプレポリマーなど)を含む処理液、ゴム成分(又はラテックス)を含む処理液、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、シランカップリング剤、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)を含む処理液などで処理することができる。好ましい接着処理では、短繊維は、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、特に少なくともレゾルシン-ホルマリン-ラテックス(RFL)液で処理する。このような処理液は組み合わせて使用してもよく、例えば、短繊維を、慣用の接着性成分、例えば、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)で前処理した後、RFL液で処理してもよい。 In the short fiber adhesion treatment, various adhesion treatments, for example, treatment solutions containing an initial condensate of phenols and formalin (such as a prepolymer of a novolak or resol type phenol resin), treatment solutions containing a rubber component (or latex). , Treatment with a treatment liquid containing the initial condensate and a rubber component (latex), a silane coupling agent, an epoxy compound (epoxy resin, etc.), a treatment liquid containing a reactive compound (adhesive compound) such as an isocyanate compound, etc. be able to. In a preferred adhesion treatment, the short fibers are treated with a treatment solution containing the precondensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) solution. Such treatment liquids may be used in combination. For example, short fibers may be pre-treated with a conventional adhesive component such as an epoxy compound (epoxy resin or the like) or a reactive compound (adhesive compound) such as an isocyanate compound. After processing, you may process with RFL liquid.
 短繊維の割合は、前記ゴム成分100質量部に対して、例えば5~100質量部、好ましくは10~50質量部、さらに好ましくは20~40質量部(特に25~35質量部)程度であってもよい。短繊維の割合が少なすぎると、ゴム組成物の硬化物の機械的特性が低下する虞があり、逆に多すぎると、均一に分散させるのが困難となり、耐屈曲疲労性などが低下する虞がある
 (他の添加剤)
 前記ゴム組成物は、必要に応じて、慣用の添加剤、加硫助剤、加硫促進剤、加硫遅延剤、軟化剤(パラフィン系オイル、ナフテン系オイル、プロセスオイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
The proportion of short fibers is, for example, about 5 to 100 parts by weight, preferably 10 to 50 parts by weight, more preferably 20 to 40 parts by weight (especially 25 to 35 parts by weight) with respect to 100 parts by weight of the rubber component. May be. If the proportion of short fibers is too small, the mechanical properties of the cured product of the rubber composition may be reduced. Conversely, if the proportion is too large, it may be difficult to uniformly disperse and the bending fatigue resistance may be reduced. There are (other additives)
The rubber composition may be prepared by using conventional additives, vulcanization aids, vulcanization accelerators, vulcanization retarders, and softeners (oils such as paraffinic oil, naphthenic oil, and process oil) as necessary. , Processing agents or processing aids (stearic acid, stearic acid metal salts, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending cracking agents, anti-ozone degradation agents, etc.) , Colorants, tackifiers, plasticizers, coupling agents (such as silane coupling agents), stabilizers (such as UV absorbers and heat stabilizers), lubricants, flame retardants, antistatic agents, etc. Good. These additives can be used alone or in combination of two or more.
 他の添加剤の合計割合は、ゴム成分100質量部に対して1~100質量部、好ましくは5~50質量部、さらに好ましくは10~20質量部程度であってもよい。例えば、ゴム成分100質量部に対して、軟化剤の割合が1~20質量部(特に5~15質量部)、加工(助)剤の割合が0.1~5質量部(特に0.5~3質量部)、老化防止剤の割合が0.5~20質量部(特に1~10質量部)程度であってもよい。 The total proportion of other additives may be about 1 to 100 parts by weight, preferably about 5 to 50 parts by weight, and more preferably about 10 to 20 parts by weight with respect to 100 parts by weight of the rubber component. For example, with respect to 100 parts by mass of the rubber component, the ratio of the softening agent is 1 to 20 parts by mass (especially 5 to 15 parts by mass), and the ratio of the processing (auxiliary) agent is 0.1 to 5 parts by mass (particularly 0.5). To 3 parts by mass), and the proportion of the antioxidant may be about 0.5 to 20 parts by mass (particularly 1 to 10 parts by mass).
 (ゴム組成物の硬化物の特性)
 前記ゴム組成物の硬化物は、ゴム硬度及びモジュラスが大きい。具体的に、ゴム組成物の硬化物のゴム硬度(JIS-A)は、例えば90~100度、好ましくは91~98度(例えば93~97度)、さらに好ましくは95~98度(特に96~97度)程度であってもよい。本明細書及び特許請求の範囲において、ゴム硬度(JIS-A)は、温度170℃、圧力2.0MPaで20分間プレス加硫した硬化物について、JIS K6253(2012)に準拠して測定され、詳細には、後述の実施例に記載の方法で測定される。
(Characteristics of cured product of rubber composition)
The cured product of the rubber composition has a large rubber hardness and modulus. Specifically, the rubber hardness (JIS-A) of the cured product of the rubber composition is, for example, 90 to 100 degrees, preferably 91 to 98 degrees (eg 93 to 97 degrees), more preferably 95 to 98 degrees (particularly 96). (About 97 degrees). In the present specification and claims, rubber hardness (JIS-A) is measured in accordance with JIS K6253 (2012) for a cured product obtained by press vulcanization at a temperature of 170 ° C. and a pressure of 2.0 MPa for 20 minutes. In detail, it measures by the method as described in the below-mentioned Example.
 前記ゴム組成物の硬化物は、短繊維の配向方向に直交する方向の曲げ応力は、例えば8~15MPa、好ましくは10~15MPa、さらに好ましくは12~14.5MPa(特に13~14.5MPa)程度であってもよい。本明細書及び特許請求の範囲において、曲げ応力は、後述の実施例に記載の方法で測定される。なお、「配向方向に直交する方向」は、完全に直交する方向のみならず、直交方向±5°の範囲の方向であってもよい。そのため、「配向方向に直交する方向」とは、「配向方向に略直交する方向」ということもできる。 The cured product of the rubber composition has a bending stress of, for example, 8 to 15 MPa, preferably 10 to 15 MPa, more preferably 12 to 14.5 MPa (particularly 13 to 14.5 MPa) in a direction perpendicular to the orientation direction of the short fibers. It may be a degree. In the present specification and claims, the bending stress is measured by the method described in Examples described later. The “direction orthogonal to the orientation direction” is not limited to a direction orthogonal to the orientation direction, but may be a direction in a range of ± 5 ° in the orthogonal direction. Therefore, the “direction orthogonal to the alignment direction” can also be referred to as a “direction substantially orthogonal to the alignment direction”.
 前記ゴム組成物が短繊維を含む場合、通常、短繊維は所定の方向に配向している。例えば、前記ゴム組成物で伝動ベルトの圧縮ゴム層を形成する場合、プーリからの押圧に対するベルトの圧縮変形を抑制するため、ベルト幅方向に配向して圧縮ゴム層中に短繊維が埋設されることが好ましい。 When the rubber composition contains short fibers, the short fibers are usually oriented in a predetermined direction. For example, when the compression rubber layer of the transmission belt is formed with the rubber composition, in order to suppress the compression deformation of the belt against the pressure from the pulley, the short fibers are embedded in the compression rubber layer oriented in the belt width direction. It is preferable.
 前記ゴム組成物は、用途に応じた方法で加硫した硬化物として利用される。加硫温度は、例えば120~200℃(特に150~180℃)程度であってもよい。 The rubber composition is used as a cured product vulcanized by a method according to the application. The vulcanization temperature may be, for example, about 120 to 200 ° C. (especially 150 to 180 ° C.).
 [伝動ベルト]
 本発明の伝動ベルトとしては、例えば、平ベルト、Vベルト、Vリブドベルト、ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト、樹脂ブロックベルトなどの摩擦伝動ベルト;歯付ベルトなどの噛み合い伝動ベルトなどが挙げられる。これらの伝動ベルトは、前記ゴム組成物を含んでいればよいが、通常、ベルト本体(特に圧縮ゴム層及び/又は伸張ゴム層)が前記ゴム組成物の硬化物で形成されている。
[Power transmission belt]
Examples of the transmission belt of the present invention include friction transmission belts such as flat belts, V-belts, V-ribbed belts, wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, resin block belts, and meshing transmission belts such as toothed belts. Etc. These power transmission belts only need to contain the rubber composition, but usually the belt body (particularly the compression rubber layer and / or the stretch rubber layer) is formed of a cured product of the rubber composition.
 これらのベルトのうち、伝達動力の増大やレイアウトのコンパクト化の要求が厳しいコグドベルトや歯付ベルトなどの伝動ベルトが好ましく、コグドベルトが特に好ましい。 Of these belts, transmission belts such as cogged belts and toothed belts, which are required to increase transmission power and make the layout compact, are preferable, and cogged belts are particularly preferable.
 本発明のコグドベルトは、ベルトの長手方向に延びる心線の少なくとも一部と接する接着ゴム層と、この接着ゴム層の一方の面に形成された伸張ゴム層と、前記接着ゴム層の他方の面に形成され、その内周面にベルトの長手方向に沿って所定の間隔をおいて形成された複数の凸部(コグ部)を有し、かつその側面でプーリに摩擦係合する圧縮ゴム層とを備えていればよい。このようなコグドベルトには、圧縮ゴム層にのみ前記コグ部が形成されたコグドベルト、圧縮ゴム層に加えて、伸張ゴム層の外周面にも同様のコグ部が形成されたダブルコグドベルトが含まれる。コグドベルトは、圧縮ゴム層の側面がプーリと接するVベルト(特に、ベルト走行中に変速比が無段階で変わる変速機に使用される変速ベルト)が好ましい。コグドVベルトとしては、例えば、ローエッジベルトの内周側にコグが形成されたローエッジコグドVベルト、ローエッジベルトの内周側及び外周側の双方にコグが形成されたローエッジダブルコグドVベルトなどが挙げられる。これらのうち、CTV駆動用として使用されるローエッジコグドVベルトが特に好ましい。 The cogged belt of the present invention includes an adhesive rubber layer in contact with at least a part of a core wire extending in the longitudinal direction of the belt, an extended rubber layer formed on one surface of the adhesive rubber layer, and the other surface of the adhesive rubber layer. A compression rubber layer having a plurality of convex portions (cog portions) formed at predetermined intervals along the longitudinal direction of the belt and frictionally engaging with the pulleys on the side surfaces As long as it has. Such a cogged belt includes a cogged belt in which the cogged portion is formed only on the compressed rubber layer, and a double cogged belt in which a similar cogged portion is formed on the outer peripheral surface of the stretched rubber layer in addition to the compressed rubber layer. The cogged belt is preferably a V-belt whose side surface of the compression rubber layer is in contact with the pulley (in particular, a transmission belt used in a transmission in which the transmission ratio changes steplessly while the belt is running). Examples of the cogged V belt include a low edge cogged V belt in which a cog is formed on the inner peripheral side of the low edge belt, and a low edge double cogged V belt in which cogs are formed on both the inner peripheral side and the outer peripheral side of the low edge belt. Can be mentioned. Of these, the low-edge cogged V-belt used for CTV driving is particularly preferable.
 図1は、本発明の伝動ベルト(ローエッジコグドVベルト)の一例を示す概略斜視図であり、図2は、図1の伝動ベルトをベルト長手方向に切断した概略断面図である。 FIG. 1 is a schematic perspective view showing an example of a transmission belt (low edge cogged V belt) of the present invention, and FIG. 2 is a schematic sectional view of the transmission belt of FIG. 1 cut in the longitudinal direction of the belt.
 この例では、ローエッジコグドVベルト1は、ベルト本体の内周面に、ベルトの長手方向(図中のA方向)に沿って所定の間隔をおいて形成された複数のコグ部1aを有しており、このコグ部1aの長手方向における断面形状は略半円状(湾曲状又は波形状)であり、長手方向に対して直交する方向(幅方向又は図中のB方向)における断面形状は台形状である。すなわち、各コグ部1aは、ベルト厚み方向において、コグ底部1bからA方向の断面において略半円状に突出している。ローエッジコグドVベルト1は、積層構造を有しており、ベルト外周側から内周側(コグ部1aが形成された側)に向かって、補強布2、伸張ゴム層3、接着ゴム層4、圧縮ゴム層5、補強布6が順次積層されている。ベルト幅方向における断面形状は、ベルト外周側から内周側に向かってベルト幅が小さくなる台形状である。さらに、接着ゴム層4内には、芯体4aが埋設されており、前記コグ部1aは、コグ付き成形型により圧縮ゴム層5に形成されている。 In this example, the low edge cogged V-belt 1 has a plurality of cogs 1a formed at predetermined intervals along the longitudinal direction of the belt (A direction in the figure) on the inner peripheral surface of the belt body. The cross-sectional shape in the longitudinal direction of the cog 1a is substantially semicircular (curved or corrugated), and the cross-sectional shape in the direction (width direction or B direction in the figure) perpendicular to the longitudinal direction. Is trapezoidal. That is, each cog 1a protrudes from the cog bottom 1b in a cross section in the A direction in a substantially semicircular shape in the belt thickness direction. The low-edge cogged V-belt 1 has a laminated structure, and the reinforcing cloth 2, the stretch rubber layer 3, and the adhesive rubber layer 4 from the belt outer peripheral side toward the inner peripheral side (side where the cog portion 1a is formed). The compressed rubber layer 5 and the reinforcing cloth 6 are sequentially laminated. The cross-sectional shape in the belt width direction is a trapezoidal shape in which the belt width decreases from the belt outer peripheral side toward the inner peripheral side. Furthermore, a core body 4a is embedded in the adhesive rubber layer 4, and the cog 1a is formed on the compressed rubber layer 5 by a cog-molding mold.
 コグ部の高さやピッチは、慣用のコグドVベルトと同様である。圧縮ゴム層では、コグ部の高さは、圧縮ゴム層全体の厚みに対して50~95%(特に60~80%)程度であり、コグ部のピッチ(隣接するコグ部の中央部同士の距離)は、コグ部の高さに対して50~250%(特に80~200%)程度である。伸張ゴム層にコグ部を形成する場合も同様である。 The height and pitch of the cog are the same as the conventional cogged V belt. In the compressed rubber layer, the height of the cog portion is about 50 to 95% (especially 60 to 80%) with respect to the thickness of the entire compressed rubber layer, and the pitch of the cog portion (between the central portions of adjacent cog portions). The distance) is about 50 to 250% (especially 80 to 200%) with respect to the height of the cog portion. The same applies to the case where a cog portion is formed in the stretched rubber layer.
 この例では、伸張ゴム層3及び圧縮ゴム層5が、本発明のゴム組成物の硬化物で形成されている。接着ゴム層、芯体、補強布については、慣用の接着ゴム層、芯体、補強布を利用でき、例えば、以下の接着ゴム層、芯体、補強布であってもよい。 In this example, the stretch rubber layer 3 and the compression rubber layer 5 are formed of a cured product of the rubber composition of the present invention. As the adhesive rubber layer, the core, and the reinforcing cloth, a conventional adhesive rubber layer, core, and reinforcing cloth can be used. For example, the following adhesive rubber layer, core, and reinforcing cloth may be used.
 (接着ゴム層)
 接着ゴム層を形成するためのゴム組成物は、圧縮ゴム層及び伸張ゴムの加硫ゴム組成物と同様に、ゴム成分、加硫剤又は架橋剤(硫黄などの硫黄系加硫剤など)、共架橋剤又は架橋助剤(N,N’-m-フェニレンジマレイミドなどのマレイミド系架橋剤など)、加硫促進剤(TMTD、DPTT、CBSなど)、無機充填剤(カーボンブラック、シリカなど)、軟化剤(パラフィン系オイルなどのオイル類)、加工剤又は加工助剤、老化防止剤、接着性改善剤[レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂(窒素含有環状化合物とホルムアルデヒドとの縮合物、例えば、ヘキサメチロールメラミン、ヘキサアルコキシメチルメラミン(ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミンなど)などのメラミン樹脂、メチロール尿素などの尿素樹脂、メチロールベンゾグアナミン樹脂などのベンゾグアナミン樹脂など)、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など]、着色剤、粘着付与剤、可塑剤、カップリング剤、安定剤、難燃剤、帯電防止剤などを含んでいてもよい。なお、接着性改善剤において、レゾルシン-ホルムアルデヒド共縮合物及びアミノ樹脂は、レゾルシン及び/又はメラミンなどの窒素含有環状化合物とホルムアルデヒドとの初期縮合物(プレポリマー)であってもよい。
(Adhesive rubber layer)
The rubber composition for forming the adhesive rubber layer is a rubber component, a vulcanizing agent or a cross-linking agent (such as a sulfur-based vulcanizing agent such as sulfur) in the same manner as the vulcanized rubber composition of the compressed rubber layer and the stretch rubber. Co-crosslinking agent or crosslinking aid (such as maleimide crosslinking agent such as N, N'-m-phenylene dimaleimide), vulcanization accelerator (such as TMTD, DPTT, CBS), inorganic filler (such as carbon black, silica) , Softeners (oils such as paraffinic oils), processing agents or processing aids, anti-aging agents, adhesion improvers [resorcin-formaldehyde cocondensates, amino resins (condensates of nitrogen-containing cyclic compounds and formaldehyde, For example, melamine resins such as hexamethylol melamine, hexaalkoxymethyl melamine (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), methyl Urea resins such as roll urea, benzoguanamine resins such as methylol benzoguanamine resin), co-condensates thereof (such as resorcin-melamine-formaldehyde co-condensate)], colorants, tackifiers, plasticizers, coupling agents, It may contain a stabilizer, a flame retardant, an antistatic agent, and the like. In the adhesion improver, the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
 なお、このゴム組成物において、ゴム成分としては、前記圧縮ゴム層及び伸張ゴム層のゴム組成物のゴム成分と同系統又は同種のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤、軟化剤及び老化防止剤の割合は、それぞれ、前記圧縮ゴム層及び伸張ゴム層のゴム組成物と同様の範囲から選択できる。また、接着ゴム層のゴム組成物において、無機充填剤の割合は、ゴム成分100質量部に対して10~100質量部、好ましくは20~80質量部、さらに好ましくは30~50質量部程度であってもよい。また、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなど)の割合は、ゴム成分100質量部に対して0.1~20質量部、好ましくは1~10質量部、さらに好ましくは2~8質量部程度であってもよい。 In this rubber composition, as the rubber component, the same type or type of rubber as the rubber component of the rubber composition of the compressed rubber layer and the stretched rubber layer is often used. Further, the ratios of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, softening agent and anti-aging agent are the same ranges as the rubber composition of the compression rubber layer and the stretch rubber layer, respectively. You can choose from. In the rubber composition of the adhesive rubber layer, the proportion of the inorganic filler is 10 to 100 parts by weight, preferably 20 to 80 parts by weight, more preferably about 30 to 50 parts by weight with respect to 100 parts by weight of the rubber component. There may be. The ratio of the adhesion improver (resorcin-formaldehyde cocondensate, hexamethoxymethylmelamine, etc.) is 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, more preferably 100 parts by weight of the rubber component. May be about 2 to 8 parts by mass.
 (芯体)
 芯体としては、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、ベルトの長手方向に延びて配設され、通常、ベルトの長手方向に平行に所定のピッチで並列的に延びて配設されている。心線は、少なくともその一部が接着ゴム層と接していればよく、接着ゴム層が心線を埋設する形態、接着ゴム層と伸張ゴム層との間に心線を埋設する形態、接着ゴム層と圧縮ゴム層との間に心線を埋設する形態のいずれの形態であってもよい。これらのうち、耐久性を向上できる点から、接着ゴム層が心線を埋設する形態が好ましい。
(Core)
Although it does not specifically limit as a core, Usually, the core wire (twisted cord) arranged at predetermined intervals in the belt width direction can be used. The cores are arranged to extend in the longitudinal direction of the belt, and are usually arranged to extend in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt. The core wire only needs to be at least partially in contact with the adhesive rubber layer. The adhesive rubber layer embeds the core wire, the core wire embeds between the adhesive rubber layer and the stretch rubber layer, and the adhesive rubber. Any form of embedding a core wire between the layer and the compressed rubber layer may be employed. Among these, the form in which the adhesive rubber layer embeds the core wire is preferable from the viewpoint that durability can be improved.
 心線を構成する繊維としては、前記短繊維と同様の繊維が例示できる。前記繊維のうち、高モジュラスの点から、エチレンテレフタレート、エチレン-2,6-ナフタレートなどのC2-4アルキレンアリレートを主たる構成単位とするポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、ポリエチレンナフタレート系繊維)、ポリアミド繊維が好ましい。繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸の繊度は、例えば2200~13500dtex(特に6600~11000dtex)程度であってもよい。マルチフィラメント糸は、例えば100~5,000本であってもよく、好ましくは500~4,000本、さらに好ましくは1,000~3,000本程度のモノフィラメント糸を含んでいてもよい。 Examples of the fibers constituting the core wire include the same fibers as the short fibers. Among these fibers, from the viewpoint of high modulus, synthesis of polyester fibers (polyalkylene arylate fibers) mainly composed of C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc. Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (polyethylene terephthalate fibers, polyethylene naphthalate fibers) and polyamide fibers are preferable. The fiber may be a multifilament yarn. The fineness of the multifilament yarn may be, for example, about 2200 to 13500 dtex (particularly 6600 to 11000 dtex). The multifilament yarn may contain, for example, 100 to 5,000, preferably 500 to 4,000, more preferably about 1,000 to 3,000 monofilament yarns.
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5~3mmであってもよく、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。 As the core wire, usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, more preferably about 0.7 to 1.5 mm. Good.
 心線は、ゴム成分との接着性を改善するため、圧縮ゴム層及び伸張ゴム層の短繊維と同様の方法で接着処理(又は表面処理)されていてもよい。心線も短繊維と同様に、少なくともRFL液で接着処理するのが好ましい。 The core wire may be subjected to adhesion treatment (or surface treatment) in the same manner as the short fibers of the compression rubber layer and the stretch rubber layer in order to improve the adhesion with the rubber component. Similarly to the short fiber, the core wire is preferably subjected to adhesion treatment with at least the RFL solution.
 (補強布)
 摩擦伝動ベルトにおいて、補強布を使用する場合、圧縮ゴム層の表面に補強布を積層する形態に限定されず、例えば、伸張ゴム層の表面(接着ゴム層と反対側の面)に補強布を積層してもよく、圧縮ゴム層及び/又は伸張ゴム層に補強層を埋設する形態(例えば、日本国特開2010-230146号公報に記載の形態など)であってもよい。補強布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)などで形成でき、必要であれば、前記接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材とを積層した後、圧縮ゴム層及び/又は伸張ゴム層の表面に積層してもよい。
(Reinforcing cloth)
When a reinforcing cloth is used in the friction transmission belt, the reinforcing cloth is not limited to a form in which the reinforcing cloth is laminated on the surface of the compressed rubber layer. For example, the reinforcing cloth is applied to the surface of the stretched rubber layer (the surface opposite to the adhesive rubber layer). It may be laminated, or may be a form in which a reinforcing layer is embedded in a compressed rubber layer and / or a stretched rubber layer (for example, a form described in Japanese Patent Application Laid-Open No. 2010-230146). The reinforcing cloth can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth. If necessary, the above-described adhesion treatment, for example, treatment with an RFL solution (immersion treatment) Or the like, or after the adhesive rubber and the cloth material are laminated, they may be laminated on the surface of the compression rubber layer and / or the stretch rubber layer.
 [伝動ベルトの製造方法]
 本発明の伝動ベルトの製造方法は、特に限定されず、慣用の方法を利用できる。ローエッジコグドVベルトの場合、例えば、補強布(下布)と圧縮ゴム層用シート(未加硫ゴムシート)からなる積層体を、前記補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、温度60~100℃(特に70~80℃)程度でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にあるパッド)を作製した後、このコグパッドの両端をコグ山部の頂部から垂直に切断してもよい。さらに、円筒状の金型に歯部と溝部とを交互に配した内母型(加硫ゴムで形成された型)を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に第1の接着ゴム層用シート(下接着ゴム:未加硫ゴムシート)を積層した後、芯体を形成する心線(撚りコード)を螺旋状にスピニングし、この上に第2の接着ゴム層用シート(上接着ゴム:前記接着ゴム層用シートと同じ)、伸張ゴム層用シート(未加硫ゴムシート)、補強布(上布)を順次巻き付けて成形体を作製してもよい。その後、ジャケット(加硫ゴムで形成されたジャケット)を被せて金型を加硫缶に設置し、温度120~200℃(特に150~180℃)程度で加硫してベルトスリーブを調製する加硫工程を経た後、カッターなどを用いて、V字状断面となるように切断加工して圧縮ゴム層を形成するカット工程を経てもよい。
[Production method of transmission belt]
The method for producing the transmission belt of the present invention is not particularly limited, and a conventional method can be used. In the case of a low-edge cogged V-belt, for example, a laminated body composed of a reinforcing cloth (lower cloth) and a sheet for a compressed rubber layer (unvulcanized rubber sheet), and teeth and grooves are alternately arranged with the reinforcing cloth facing down. Installed on a flat cogged mold and cogged with a cog pad by press-pressing at a temperature of 60-100 ° C (especially 70-80 ° C) (not fully vulcanized, semi-vulcanized) After producing the pad in the state, both ends of the cog pad may be cut vertically from the top of the cog crest. Furthermore, an inner mother mold (mold formed of vulcanized rubber) in which teeth and grooves are alternately arranged is placed on a cylindrical mold, and a cog pad is wound around the teeth and grooves so that a cog pad is wound. After the first adhesive rubber layer sheet (lower adhesive rubber: unvulcanized rubber sheet) is laminated on this wound cog pad, the core wire (twisting cord) that forms the core body is joined Spinning in a spiral shape, a second adhesive rubber layer sheet (upper adhesive rubber: the same as the adhesive rubber layer sheet), a stretch rubber layer sheet (unvulcanized rubber sheet), a reinforcing cloth (upper cloth) ) May be sequentially wound to produce a molded body. Then, a jacket (jacket made of vulcanized rubber) is put on and the mold is placed in a vulcanizing can, and vulcanized at a temperature of about 120 to 200 ° C (especially 150 to 180 ° C) to prepare a belt sleeve. After passing through the sulfur process, a cutting process may be performed using a cutter or the like to form a compressed rubber layer by cutting so as to form a V-shaped cross section.
 なお、伸張ゴム層用シート及び圧縮ゴム層用シートにおいて、短繊維の配向方向をベルト幅方向に配向させる方法としては、慣用の方法、例えば、所定の間隙を設けた一対のカレンダーロール間にゴムを通してシート状に圧延し、圧延方向に短繊維が配向した圧延シートの両側面を圧延方向と平行方向に切断するとともに、ベルト成形幅(ベルト幅方向の長さ)となるように圧延シートを圧延方向と直角方向に切断し、圧延方向と平行方向に切断した側面同士をジョイントする方法などが挙げられる。例えば、日本国特開2003-14054号公報に記載の方法などを利用できる。このような方法で短繊維を配向させた未加硫シートは、前記方法において、短繊維の配向方向がベルトの幅方向となるように配置して加硫される。 In the stretched rubber layer sheet and the compressed rubber layer sheet, as a method of aligning the orientation direction of the short fibers in the belt width direction, a conventional method, for example, rubber between a pair of calendar rolls provided with a predetermined gap is used. Rolled into a sheet shape, cut both sides of the rolled sheet with short fibers oriented in the rolling direction in a direction parallel to the rolling direction, and rolled the rolled sheet to have a belt forming width (length in the belt width direction) Examples include a method in which side surfaces cut in a direction perpendicular to the direction and in a direction parallel to the rolling direction are joined together. For example, a method described in Japanese Patent Laid-Open No. 2003-14054 can be used. In this method, the unvulcanized sheet in which short fibers are oriented by such a method is placed and vulcanized so that the orientation direction of the short fibers is the width direction of the belt.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、実施例に用いた原料、各物性における測定方法又は評価方法を以下に示す。なお、特にことわりのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, the raw materials used in the examples and the measurement methods or evaluation methods for each physical property are shown below. Unless otherwise specified, “part” and “%” are based on mass.
 [原料]
 EPDM1:JSR(株)製「EP93」、エチレン含量55重量%、ジエン含量2.7重量%
 EPDM2:JSR(株)製「EP24」、エチレン含量54重量%、ジエン含量4.5重量%
 パラ系アラミド短繊維:帝人(株)製、トワロンカット糸
 メタ系アラミド短繊維:帝人(株)製、コーネックスカット糸
 カーボンブラック:キャボット・ジャパン(株)製「N550」
 シリカ:エボニック・デグサ・ジャパン(株)製「ウルトラジルVN3」、BET比表面積175m/g
 パラフィン系オイル:出光興産(株)製、「ダイアナプロセスオイルPW90」
 老化防止剤A:大内新興化学工業(株)製、「ノクラックCD」
 老化防止剤B:大内新興化学工業(株)製、「ノクラックMB」
 老化防止剤C:精工化学(株)製「ノンフレックスOD3」
 酸化亜鉛:堺化学工業(株)製「酸化亜鉛2種」
 酸化マグネシウム:協和化学工業(株)製「キョーワマグ150」
 ステアリン酸:日油(株)製「ステアリン酸つばき」
 メタクリル酸亜鉛:三新化学工業(株)製、「サンエステルSK-30」
 ビスマレイミド:大内新興化学工業(株)製、「バルノックPM」
 有機過酸化物:日油(株)製「P-40MB(K)]
 酸化チタン:デュポン社製「R960」
 レゾルシノール樹脂:INDSPEC Chemical Corporation社製「Penacolite Resin(B-18-S)」
 ヘキサメトキシメチロールメラミン:Power Plast社製「PP-1890S」
 加硫促進剤A:大内新興化学工業(株)製「ノクセラーTT」
 加硫促進剤B:大内新興化学工業(株)製「ノクセラーCZ」
 加硫促進剤C:大内新興化学工業(株)製「ノクセラーDM」
 硫黄:美源化学社製
 心線:繊度1,680dtexのアラミド繊維のマルチフィラメントの束2本を引き揃えて下撚りし、これを3本合わせて下撚りとは反対方向に上撚りした総繊度10,080dtexの諸撚りコード
 補強布:構成2/2綾織りのナイロン帆布(厚み0.50mm)。
[material]
EPDM1: "EP93" manufactured by JSR Corporation, ethylene content 55 wt%, diene content 2.7 wt%
EPDM2: “EP24” manufactured by JSR Corporation, ethylene content 54% by weight, diene content 4.5% by weight
Para-type aramid short fiber: Teijin Co., Ltd., Twaron cut yarn Meta-type aramid short fiber: Teijin Ltd., Cornex cut yarn Carbon black: “Cabot Japan Co., Ltd.” “N550”
Silica: “Ultrasil VN3” manufactured by Evonik Degussa Japan, BET specific surface area of 175 m 2 / g
Paraffin oil: “Diana Process Oil PW90” manufactured by Idemitsu Kosan Co., Ltd.
Anti-aging agent A: “NOCRACK CD” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Anti-aging agent B: “NOCRACK MB” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Anti-aging agent C: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
Zinc oxide: “Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd.
Magnesium oxide: “Kyowa Mug 150” manufactured by Kyowa Chemical Industry Co., Ltd.
Stearic acid: Tsubaki stearic acid manufactured by NOF Corporation
Zinc methacrylate: Sanshin Chemical Industry Co., Ltd., “Sunester SK-30”
Bismaleimide: Ouchi Shinsei Chemical Co., Ltd., “Barnock PM”
Organic peroxide: NOF "P-40MB (K)"
Titanium oxide: DuPont "R960"
Resorcinol resin: “Penacolite Resin (B-18-S)” manufactured by INDSPEC Chemical Corporation
Hexamethoxymethylolmelamine: “PP-1890S” manufactured by Power Plast
Vulcanization accelerator A: “Noxeller TT” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator B: “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator C: “Noxeller DM” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Sulfur: Made by Bigen Chemical Co., Ltd. Core wire: Total fineness of two aramid fiber bundles with a fineness of 1,680 dtex, twisted together and twisted together, and twisted in the opposite direction to the twist 10,080 dtex plied cords Reinforcement fabric: Nylon canvas with a 2/2 twill weave (thickness 0.50 mm).
 [加硫ゴム組成物の物性]
 (1)硬度
 表1に示すゴム組成物を用いて得られた未加硫のゴムシートを、温度170℃、時間20分でプレス加硫(圧力2.0MPa)を行い、加硫ゴムシート(長さ100mm、幅100mm、厚み2mm)を作製した。JIS K6253(2012)に準じ、厚み2mmの加硫ゴムシートを3枚重ね合わせて厚み6mmの試料とし、デュロメータA形硬さ試験機を用いて硬度を測定した。
[Physical properties of vulcanized rubber composition]
(1) Hardness An unvulcanized rubber sheet obtained using the rubber composition shown in Table 1 was subjected to press vulcanization (pressure 2.0 MPa) at a temperature of 170 ° C. for 20 minutes to obtain a vulcanized rubber sheet ( 100 mm in length, 100 mm in width, and 2 mm in thickness). In accordance with JIS K6253 (2012), three vulcanized rubber sheets with a thickness of 2 mm were superposed to form a sample with a thickness of 6 mm, and the hardness was measured using a durometer A type hardness tester.
 (2)曲げ応力
 表1に示すゴム組成物を温度170℃、時間20分でプレス加硫し、加硫ゴム成形体(60mm×25mm×6.5mm厚み)を作製した。短繊維は加硫ゴム成形体の長手方向と平行に配向させた。図3に示すように、この加硫ゴム成形体21を、20mmの間隔を空けて回転可能な一対のロール(直径6mm)22a,22b上に置いて支持し、加硫ゴム成形体の上面中央部において幅方向(短繊維の配向方向と直交する方向)に金属製の押さえ部材23を載せた。押さえ部材23の先端部は、直径10mmの半円状の形状を有しており、その先端部で加硫ゴム成形体21をスムーズに押圧可能である。また、押圧時には加硫ゴム成形体21の圧縮変形に伴って、加硫ゴム成形体21の下面とロール22a,22bとの間に摩擦力が作用するが、ロール22a,22bを回転可能とすることにより、摩擦による影響を小さくしている。押さえ部材23の先端部が加硫ゴム成形体21の上面に接触し、かつ押圧していない状態を初期位置とし、この状態から押さえ部材23を下方に100mm/分の速度で加硫ゴム成形体21の上面を押圧し、曲げ歪が8%となったときの応力を曲げ応力として測定した。短繊維の配向方向に対して直交する方向の曲げ応力を測定することで、曲げ応力が高くなるとベルト走行中のディッシングと呼ばれる座屈変形に対する抵抗力が高いと判断でき、高負荷伝動及び高耐久性の指標とすることができる。なお、測定温度は走行中のベルト温度を想定し、120℃とした。
(2) Bending stress The rubber composition shown in Table 1 was press vulcanized at a temperature of 170 ° C. for 20 minutes to prepare a vulcanized rubber molded body (60 mm × 25 mm × 6.5 mm thickness). The short fibers were oriented parallel to the longitudinal direction of the vulcanized rubber molding. As shown in FIG. 3, this vulcanized rubber molded body 21 is placed on and supported on a pair of rolls (diameter 6 mm) 22a and 22b that can be rotated with an interval of 20 mm, and is centered on the upper surface of the vulcanized rubber molded body. The metal pressing member 23 was placed in the width direction (direction perpendicular to the orientation direction of the short fibers) in the portion. The front end portion of the pressing member 23 has a semicircular shape with a diameter of 10 mm, and the vulcanized rubber molded body 21 can be smoothly pressed by the front end portion. Further, at the time of pressing, a frictional force acts between the lower surface of the vulcanized rubber molded body 21 and the rolls 22a and 22b along with the compression deformation of the vulcanized rubber molded body 21, but the rolls 22a and 22b can be rotated. This reduces the influence of friction. A state where the tip of the pressing member 23 is in contact with the upper surface of the vulcanized rubber molded body 21 and is not pressed is set as an initial position. From this state, the vulcanized rubber molded body is moved downward at a speed of 100 mm / min. The upper surface of 21 was pressed, and the stress when the bending strain was 8% was measured as the bending stress. By measuring the bending stress in the direction perpendicular to the orientation direction of the short fibers, it can be judged that if the bending stress is high, the resistance to buckling deformation called dishing during belt running is high, and high load transmission and high durability It can be an index of sex. The measurement temperature was 120 ° C. assuming the belt temperature during running.
 [耐久走行試験]
 耐久走行試験は、図4に示すように、直径110mmの駆動(Dr.)プーリ32と、直径240mmの従動(Dn.)プーリ33とを含む2軸走行試験機を用いて行った。各プーリにローエッジコグドVベルト31を掛架し、駆動プーリの回転数6000rpm、25kWの負荷を付与し、雰囲気温度80℃にてベルトを70時間走行させた。走行後のベルト側面(プーリと接触する面)を目視観察し、圧縮ゴム層と心線間の剥離の有無を、また下コグ谷部の亀裂の有無を調べ、以下の基準で評価した。
[Durability test]
As shown in FIG. 4, the endurance running test was performed using a two-axis running tester including a driving (Dr.) pulley 32 having a diameter of 110 mm and a driven (Dn.) Pulley 33 having a diameter of 240 mm. A low-edge cogged V-belt 31 was hung on each pulley, a drive pulley rotation speed of 6000 rpm and a load of 25 kW was applied, and the belt was run at an ambient temperature of 80 ° C. for 70 hours. The side of the belt after running (the surface in contact with the pulley) was visually observed, and the presence or absence of delamination between the compressed rubber layer and the core wire was examined and the presence or absence of cracks in the lower cog valley was evaluated.
  ○:剥離や亀裂が発生していない(耐久性が高く、実用上問題なし)
  ×:剥離や亀裂が発生している(耐久性が低く、実用上問題あり)。
○: No peeling or cracking occurred (high durability, no problem in practical use)
X: Peeling or cracking occurs (durability is low and has practical problems).
 なお、総合判定は以下の基準で評価した。 The overall judgment was evaluated according to the following criteria.
  ◎:耐久走行試験で剥離及び亀裂が発生せず、かつゴム硬度が96度以上
  ○:耐久走行試験で剥離及び亀裂が発生せず、かつゴム硬度が96度未満
  ×:耐久走行試験で剥離又は亀裂が発生した。
A: No peeling or cracking occurred in the durability running test and the rubber hardness was 96 degrees or more. ○: No peeling or cracking occurred in the durability running test and the rubber hardness was less than 96 degrees. A crack occurred.
 実施例1~9及び比較例1~7
 [圧縮ゴム層及び伸張ゴム層のゴム組成物の特性]
 (ゴム層の形成)
 表1(圧縮ゴム層、伸張ゴム層)及び表2(接着ゴム層)のゴム組成物は、それぞれ、バンバリーミキサーなど公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して圧延ゴムシート(圧縮ゴム層用シート、伸張ゴム層用シート、接着ゴム層用シート)を作製した。圧縮ゴム層用シートについて、ゴム硬度及び曲げ応力を測定した。測定結果を表3に示す。さらに、これらのシートを用いて、以下のベルトを製造した。
Examples 1 to 9 and Comparative Examples 1 to 7
[Properties of rubber composition of compressed rubber layer and stretched rubber layer]
(Formation of rubber layer)
The rubber compositions in Table 1 (compressed rubber layer, stretched rubber layer) and Table 2 (adhesive rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll. Rolled rubber sheets (compressed rubber layer sheet, stretch rubber layer sheet, adhesive rubber layer sheet) were prepared. The rubber hardness and bending stress were measured for the compressed rubber layer sheet. Table 3 shows the measurement results. Furthermore, the following belts were manufactured using these sheets.
 [ベルトの製造]
 モールドに装着したコグ形状のついた加硫ゴム製の内母型の表面に、予め所定厚みの圧縮ゴム層用シートと補強布を積層した積層体にコグ部を型付け成形したシート状のコグパッドを巻き付けてジョイントした後、下部接着ゴム用シート、心線、上部接着ゴム用シート、そして平坦な伸張ゴム層を順次巻き付けて成形体を作製した。続いて、成形体の表面に、コグ形状のついた加硫ゴム製の外母型とジャケットを被せてモールドを加硫缶に設置し、温度170℃、時間40分、0.9MPaで加硫してベルトスリーブを得た。尚、加硫条件は未加硫の接着ゴム層用シート、圧縮ゴム層用シート及び伸張ゴム層用シートの加硫に類似する条件を選択した。このスリーブをカッターによってV状に切断して変速ベルトに仕上げた。すなわち、図5に示す構造のダブルコグドVベルトを作製した。詳しくは、心線12を埋設した接着ゴム層11の両面に、それぞれ圧縮ゴム層13及び伸張ゴム層14が形成されたローエッジコグドVベルトにおいて、圧縮ゴム層13及び伸張ゴム層14のいずれにも、それぞれコグ部16,17が形成されているベルト(サイズ:上幅35mm、厚さ15mm、外周長1100mm)を作製した。得られたベルトの走行試験の評価結果を表3に示す。
 
[Manufacture of belts]
A sheet-like cog pad in which the cog portion is molded by molding a laminated body in which a sheet for a compressed rubber layer and a reinforcing cloth with a predetermined thickness is laminated in advance on the surface of a cog-shaped vulcanized rubber inner mold attached to the mold. After being wound and jointed, a lower adhesive rubber sheet, a core wire, an upper adhesive rubber sheet, and a flat stretched rubber layer were sequentially wound to prepare a molded body. Subsequently, the outer surface of the molded body is covered with a cog-shaped outer rubber mold and jacket, and the mold is placed in a vulcanizing can. The temperature is 170 ° C., time 40 minutes, and vulcanized at 0.9 MPa. To obtain a belt sleeve. As vulcanization conditions, conditions similar to vulcanization of unvulcanized adhesive rubber layer sheets, compressed rubber layer sheets and stretched rubber layer sheets were selected. This sleeve was cut into a V shape by a cutter to finish a transmission belt. That is, a double cogged V belt having the structure shown in FIG. 5 was produced. Specifically, in the low-edge cogged V belt in which the compression rubber layer 13 and the stretch rubber layer 14 are formed on both surfaces of the adhesive rubber layer 11 in which the core wire 12 is embedded, respectively, the compression rubber layer 13 and the stretch rubber layer 14 In addition, a belt (size: upper width 35 mm, thickness 15 mm, outer peripheral length 1100 mm) in which the cog portions 16 and 17 are respectively formed was produced. Table 3 shows the evaluation results of the obtained belt running test.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、酸化マグネシウムの割合が2~20質量部であり、メタクリル酸亜鉛100質量部に対する酸化マグネシウムの割合が5質量部以上である実施例1~9において、総合判定が◎及び○となり、良好な結果となった。 As is apparent from Table 3, in Examples 1 to 9, in which the ratio of magnesium oxide is 2 to 20 parts by mass, and the ratio of magnesium oxide to 100 parts by mass of zinc methacrylate is 5 parts by mass or more, the comprehensive judgment is ◎ And it became (circle) and was a favorable result.
 酸化マグネシウムを含まない比較例1(特許文献3に相当)及び酸化マグネシウムをゴム成分100質量部に対して1質量部しか含まない比較例2では、ゴム硬度が90度と低く、耐久走行試験において剥離が発生した。酸化マグネシウムの割合が少ないと、ゴム硬度が上がらず、座屈変形により接着界面に応力が集中し、剥離が生じたと考えられる。また、比較例6及び比較例7は、比較例1において、酸化亜鉛を増量した例、酸化チタンを添加した例である。これらの例でも、比較例1と同様に硬度及び曲げ応力が低く、耐久走行試験において剥離が発生した。これらの結果から、酸化マグネシウムの代わりに、酸化亜鉛を増量したり、又は酸化チタンを添加しても効果は低く、耐久性を維持して、硬度及び曲げ応力を向上させるには、酸化マグネシウムが重要であることが分かる。一方、比較例5はメタクリル酸亜鉛を含まず、共架橋剤としてビスマレイミドを配合した例であるが、この場合もゴム硬度が低く、剥離が発生した。このように、本発明の課題に対して、汎用の金属酸化物や共架橋剤の中から何でも選択できるわけではなく、酸化マグネシウムとα,β-不飽和カルボン酸金属塩の組み合わせが特に有効であることが分かる。 In Comparative Example 1 (corresponding to Patent Document 3) not containing magnesium oxide and Comparative Example 2 containing only 1 part by mass of magnesium oxide with respect to 100 parts by mass of the rubber component, the rubber hardness is as low as 90 degrees. Peeling occurred. When the proportion of magnesium oxide is small, the rubber hardness does not increase, and stress is concentrated on the adhesion interface due to buckling deformation, which is considered to cause peeling. Further, Comparative Example 6 and Comparative Example 7 are examples in which the amount of zinc oxide was increased and titanium oxide was added in Comparative Example 1. In these examples, the hardness and bending stress were low as in Comparative Example 1, and peeling occurred in the durability running test. From these results, it can be seen that magnesium oxide is not effective in increasing the amount of zinc oxide or adding titanium oxide in place of magnesium oxide, and in order to maintain durability and improve hardness and bending stress, It turns out to be important. On the other hand, Comparative Example 5 is an example in which zinc methacrylate was not included and bismaleimide was blended as a co-crosslinking agent, but in this case also, the rubber hardness was low and peeling occurred. Thus, for the problem of the present invention, it is not possible to select anything from general-purpose metal oxides and co-crosslinking agents, and the combination of magnesium oxide and α, β-unsaturated carboxylic acid metal salt is particularly effective. I understand that there is.
 比較例3は酸化マグネシウムを多く配合した例、比較例4はメタクリル酸亜鉛を多く配合した例である。どちらの例もゴム硬度や曲げ応力は大きく上昇したものの、耐久走行試験において亀裂が発生した。これは、酸化マグネシウムが多すぎることで分散不良となったり、メタクリル酸亜鉛が多すぎることでゴム組成物が剛直となり、耐屈曲疲労性が低下したりしたためと考えられる。酸化マグネシウムとα,β-不飽和カルボン酸金属塩はバランスよく配合する必要があることが分かる。 Comparative Example 3 is an example containing a large amount of magnesium oxide, and Comparative Example 4 is an example containing a large amount of zinc methacrylate. In both examples, although the rubber hardness and bending stress increased greatly, cracks occurred in the durability running test. This is presumably because the dispersion was poor due to too much magnesium oxide, or the rubber composition became stiff due to too much zinc methacrylate and the bending fatigue resistance decreased. It can be seen that magnesium oxide and the α, β-unsaturated carboxylic acid metal salt need to be blended in a well-balanced manner.
 一方、酸化マグネシウムとメタクリル酸亜鉛の両方を含み、その量を適切に調整した実施例1~9では、ゴム硬度や曲げ応力が上昇するとともに、耐久走行試験において亀裂や剥離は発生せず、耐久性が高かった。 On the other hand, in Examples 1 to 9 containing both magnesium oxide and zinc methacrylate and appropriately adjusting the amounts, the rubber hardness and bending stress increased, and no cracks or peeling occurred in the durability running test. The nature was high.
 実施例1及び実施例2は短繊維の種類を変更した例であるが、本願発明の構成はパラ系アラミド短繊維及びメタ系アラミド短繊維のどちらに対しても同じように効果的であった。 Examples 1 and 2 are examples in which the types of short fibers were changed, but the configuration of the present invention was equally effective for both para-aramid short fibers and meta-aramid short fibers. .
 実施例3は実施例1に対して酸化マグネシウムを増量した例であるが、硬度や曲げ応力が上昇しており、効果が高まったことが分かる。 Example 3 is an example in which the amount of magnesium oxide is increased with respect to Example 1, but the hardness and bending stress are increased, and it can be seen that the effect is enhanced.
 実施例4は実施例3に対して、実施例7は実施例1に対してメタクリル酸亜鉛を増量した例であるが、硬度や曲げ応力が格段に高くなっており、特に効果が高かった。 Example 4 is an example in which the amount of zinc methacrylate is increased with respect to Example 3, and Example 7 is an example in which the amount of zinc methacrylate is increased with respect to Example 1. The hardness and bending stress are remarkably high, and the effect is particularly high.
 同じように、実施例5は実施例3に対して酸化マグネシウムを増量した例であるが、こちらも硬度や曲げ応力が格段に高くなっており、特によい結果となった。 Similarly, Example 5 is an example in which the amount of magnesium oxide was increased with respect to Example 3. However, the hardness and bending stress were also significantly increased, and particularly good results were obtained.
 実施例6は酸化マグネシウムを多く配合し、メタクリル酸亜鉛に対する酸化マグネシウムの質量比を2.86とした例であるが、硬度や曲げ応力の上昇は小さかった。しかしながら、耐久走行試験では剥離や亀裂は発生せず、実用上問題のない性能を有していた。 Example 6 is an example in which a large amount of magnesium oxide was blended and the mass ratio of magnesium oxide to zinc methacrylate was 2.86, but the increase in hardness and bending stress was small. However, in the durability running test, peeling and cracking did not occur, and the performance had no problem in practical use.
 実施例8は実施例3の配合から、無機充填剤としてカーボンブラックの一部をシリカに置き換えた例であるが、硬度や曲げ応力は若干上昇しており、特によい結果となった。シリカは接着性を向上させる働きもあり、より長時間の耐久走行を行った場合にも、剥離に対して抵抗力があがると期待される。 Example 8 is an example in which a part of carbon black was replaced with silica as an inorganic filler from the formulation of Example 3, but the hardness and bending stress were slightly increased, and particularly good results were obtained. Silica also has a function of improving the adhesiveness, and it is expected that the resistance to peeling will increase even when running for a longer time.
 実施例9は、実施例4の配合から、有機過酸化物を減量した例であるが、実施例4と比較すると、硬度や曲げ応力がやや低下した。しかし、有機過酸化物(架橋剤)が少ない場合でも、硬度や曲げ応力が高く、耐久走行試験でも、剥離や亀裂は発生せず、実用上問題のない性能であった。 Example 9 is an example in which the amount of organic peroxide was reduced from the formulation of Example 4, but compared with Example 4, hardness and bending stress were slightly reduced. However, even when the amount of the organic peroxide (crosslinking agent) is small, the hardness and bending stress are high, and even in the durability running test, peeling or cracking does not occur, and the performance has no practical problem.
 本発明の伝動ベルトは、耐寒性、耐熱性、接着性、耐屈曲疲労性、耐摩耗性などを要求される各種の伝動ベルト(平ベルト、Vベルト、Vリブドベルト、ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト、樹脂ブロックベルトなどの摩擦伝動ベルト;歯付ベルトなどの噛み合い伝動ベルトなど)に利用できる。特に、本発明の伝動ベルトは、高い硬度及びモジュラスを有しているため、伝達動力の増大やレイアウトのコンパクト化の要求が厳しいコグドベルトや歯付ベルトなどの伝動ベルトとして好ましく利用でき、CTV駆動用として使用されるローエッジコグドVベルトとして特に有効に利用できる。 The transmission belt of the present invention has various transmission belts (flat belt, V-belt, V-ribbed belt, wrapped V-belt, low-edge V-belt) that are required to have cold resistance, heat resistance, adhesion, bending fatigue resistance, wear resistance, and the like. Friction power transmission belts such as low edge cogged V belts and resin block belts; meshing power transmission belts such as toothed belts). In particular, since the transmission belt of the present invention has high hardness and modulus, it can be preferably used as a transmission belt such as a cogged belt or a toothed belt, which is required to increase transmission power and to make the layout compact. As a low-edge cogged V-belt used as
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2017年2月27日付出願の日本特許出願2017-035198および2018年1月29日付出願の日本特許出願2018-012694に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2017-035198 filed on Feb. 27, 2017 and Japanese Patent Application No. 2018-012694 filed on Jan. 29, 2018, the contents of which are incorporated herein by reference.
 1…伝動ベルト
 2,6…補強布
 3…伸張ゴム層
 4…接着ゴム層
 4a…芯体
 5…圧縮ゴム層
DESCRIPTION OF SYMBOLS 1 ... Power transmission belt 2, 6 ... Reinforcement cloth 3 ... Stretch rubber layer 4 ... Adhesive rubber layer 4a ... Core body 5 ... Compression rubber layer

Claims (14)

  1.  エチレン-α-オレフィンエラストマーを含むゴム成分と、α,β-不飽和カルボン酸金属塩と、酸化マグネシウムと、有機過酸化物と、無機充填剤とを含むゴム組成物の硬化物を含む伝動ベルトであって、前記酸化マグネシウムの割合が、前記ゴム成分100質量部に対して2~20質量部であり、かつ前記α,β-不飽和カルボン酸金属塩100質量部に対して5質量部以上である伝動ベルト。 Transmission belt comprising a cured product of a rubber composition comprising an ethylene-α-olefin elastomer-containing rubber component, an α, β-unsaturated carboxylic acid metal salt, magnesium oxide, an organic peroxide, and an inorganic filler The ratio of magnesium oxide is 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and 5 parts by mass or more with respect to 100 parts by mass of the α, β-unsaturated carboxylic acid metal salt. Is a transmission belt.
  2.  α,β-不飽和カルボン酸金属塩の割合が、ゴム成分100質量部に対して5~40質量部である請求項1記載の伝動ベルト。 The transmission belt according to claim 1, wherein the ratio of the α, β-unsaturated carboxylic acid metal salt is 5 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  3.  有機過酸化物の割合が、ゴム成分100質量部に対して2~6質量部である請求項1又は2記載の伝動ベルト。 The transmission belt according to claim 1 or 2, wherein the ratio of the organic peroxide is 2 to 6 parts by mass with respect to 100 parts by mass of the rubber component.
  4.  酸化マグネシウムの割合が、α,β-不飽和カルボン酸金属塩100質量部に対して5~300質量部である請求項1~3のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 3, wherein the proportion of magnesium oxide is 5 to 300 parts by mass with respect to 100 parts by mass of the α, β-unsaturated carboxylic acid metal salt.
  5.  ゴム成分が、80質量%以上のエチレン-α-オレフィンエラストマーを含み、かつ前記エチレン-α-オレフィンエラストマーが、80質量%以上のエチレン-プロピレン-ジエン三元共重合体を含む請求項1~4のいずれか一項に記載の伝動ベルト。 The rubber component contains 80% by mass or more of an ethylene-α-olefin elastomer, and the ethylene-α-olefin elastomer contains 80% by mass or more of an ethylene-propylene-diene terpolymer. The power transmission belt according to any one of the above.
  6.  α,β-不飽和カルボン酸金属塩が、メタクリル酸亜鉛及びアクリル酸亜鉛から選択される少なくとも一方である請求項1~5のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 5, wherein the α, β-unsaturated carboxylic acid metal salt is at least one selected from zinc methacrylate and zinc acrylate.
  7.  無機充填剤が、カーボンブラックを含み、かつ前記無機充填剤の割合が、ゴム成分100質量部に対して40~100質量部である請求項1~6のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 6, wherein the inorganic filler contains carbon black, and the proportion of the inorganic filler is 40 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  8.  無機充填剤が、さらにシリカを含み、かつカーボンブラックと前記シリカとの質量比が、前者/後者=60/40~99/1である請求項7記載の伝動ベルト。 The transmission belt according to claim 7, wherein the inorganic filler further contains silica, and the mass ratio of carbon black to the silica is the former / the latter = 60/40 to 99/1.
  9.  ゴム組成物が、さらに酸化亜鉛を含む請求項1~8のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 8, wherein the rubber composition further contains zinc oxide.
  10.  ゴム組成物の硬化物において、ゴム硬度(JIS-A)が91~98度である請求項1~9のいずれか一項に記載の伝動ベルト。 The power transmission belt according to any one of claims 1 to 9, wherein the cured product of the rubber composition has a rubber hardness (JIS-A) of 91 to 98 degrees.
  11.  ゴム組成物が、さらに短繊維を含み、前記短繊維の割合が、ゴム成分100質量部に対して20~40質量部である請求項1~10のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 10, wherein the rubber composition further comprises short fibers, and the proportion of the short fibers is 20 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  12.  短繊維が、アラミド短繊維である請求項11記載の伝動ベルト。 The power transmission belt according to claim 11, wherein the short fibers are aramid short fibers.
  13.  ゴム組成物が短繊維を含み、ゴム組成物の硬化物において、短繊維の配向方向に直交する方向の曲げ応力が8~15MPaである請求項1~12のいずれか一項に記載の伝動ベルト。 The transmission belt according to any one of claims 1 to 12, wherein the rubber composition includes short fibers, and the cured product of the rubber composition has a bending stress of 8 to 15 MPa in a direction perpendicular to the orientation direction of the short fibers. .
  14.  CVT駆動用として使用されるローエッジコグドVベルトである請求項1~13のいずれか一項に記載の伝動ベルト。
     
    The power transmission belt according to any one of claims 1 to 13, which is a low edge cogged V belt used for CVT driving.
PCT/JP2018/007368 2017-02-27 2018-02-27 Transmission belt WO2018155722A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/489,143 US20190390047A1 (en) 2017-02-27 2018-02-27 Transmission Belt
CA3053901A CA3053901C (en) 2017-02-27 2018-02-27 Transmission belt
RU2019126799A RU2719606C9 (en) 2017-02-27 2018-02-27 Drive belt
EP18758077.4A EP3587859A4 (en) 2017-02-27 2018-02-27 Transmission belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-035198 2017-02-27
JP2017035198 2017-02-27
JP2018-012694 2018-01-29
JP2018012694A JP6616852B2 (en) 2017-02-27 2018-01-29 Transmission belt

Publications (1)

Publication Number Publication Date
WO2018155722A1 true WO2018155722A1 (en) 2018-08-30

Family

ID=63253917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007368 WO2018155722A1 (en) 2017-02-27 2018-02-27 Transmission belt

Country Status (2)

Country Link
CA (1) CA3053901C (en)
WO (1) WO2018155722A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
WO2023054413A1 (en) * 2021-09-29 2023-04-06 三ツ星ベルト株式会社 Toothed belt and manufacturing method therefor
JP7255006B1 (en) 2021-09-29 2023-04-10 三ツ星ベルト株式会社 Toothed belt and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200006695A1 (en) * 2022-04-05 2023-10-05 Dayco Europe Srl CVT BELT

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013544A1 (en) 1994-10-31 1996-05-09 The Gates Rubber Company Ethylene-alpha-olefin belting
WO1997022662A1 (en) 1995-12-15 1997-06-26 Contitech Antriebssysteme Gmbh Drive belt
JP2002257199A (en) 2001-02-28 2002-09-11 Mitsuboshi Belting Ltd Power drive belt
JP2003014054A (en) 2001-06-28 2003-01-15 Mitsuboshi Belting Ltd Manufacturing method for double v-ribbed belt, and molding press device
JP2003314616A (en) 2002-04-19 2003-11-06 Nok Corp Dynamic damper
WO2010047029A1 (en) 2008-10-24 2010-04-29 バンドー化学株式会社 Rubber composition for transmission belt and transmission belt using the rubber composition
JP2010230146A (en) 2009-03-30 2010-10-14 Mitsuboshi Belting Ltd Transmission belt
WO2014006916A1 (en) * 2012-07-06 2014-01-09 バンドー化学株式会社 Transmission belt
JP2014209026A (en) * 2013-03-29 2014-11-06 三ツ星ベルト株式会社 Transmission belt
JP2017035198A (en) 2015-08-07 2017-02-16 日本電気株式会社 Information processing system, information processing method, information processing equipment, and information processing program
JP2018012694A (en) 2016-07-12 2018-01-25 日本化薬株式会社 Rapamycin-bonded block copolymer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013544A1 (en) 1994-10-31 1996-05-09 The Gates Rubber Company Ethylene-alpha-olefin belting
WO1997022662A1 (en) 1995-12-15 1997-06-26 Contitech Antriebssysteme Gmbh Drive belt
JP2002257199A (en) 2001-02-28 2002-09-11 Mitsuboshi Belting Ltd Power drive belt
JP2003014054A (en) 2001-06-28 2003-01-15 Mitsuboshi Belting Ltd Manufacturing method for double v-ribbed belt, and molding press device
JP2003314616A (en) 2002-04-19 2003-11-06 Nok Corp Dynamic damper
WO2010047029A1 (en) 2008-10-24 2010-04-29 バンドー化学株式会社 Rubber composition for transmission belt and transmission belt using the rubber composition
JP2010230146A (en) 2009-03-30 2010-10-14 Mitsuboshi Belting Ltd Transmission belt
WO2014006916A1 (en) * 2012-07-06 2014-01-09 バンドー化学株式会社 Transmission belt
JP2014209026A (en) * 2013-03-29 2014-11-06 三ツ星ベルト株式会社 Transmission belt
JP2017035198A (en) 2015-08-07 2017-02-16 日本電気株式会社 Information processing system, information processing method, information processing equipment, and information processing program
JP2018012694A (en) 2016-07-12 2018-01-25 日本化薬株式会社 Rapamycin-bonded block copolymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11904097B2 (en) 2015-03-31 2024-02-20 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
WO2023054413A1 (en) * 2021-09-29 2023-04-06 三ツ星ベルト株式会社 Toothed belt and manufacturing method therefor
JP7255006B1 (en) 2021-09-29 2023-04-10 三ツ星ベルト株式会社 Toothed belt and manufacturing method thereof
JP2023055641A (en) * 2021-09-29 2023-04-18 三ツ星ベルト株式会社 Toothed belt and manufacturing method for the same

Also Published As

Publication number Publication date
CA3053901A1 (en) 2018-08-30
CA3053901C (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6616852B2 (en) Transmission belt
WO2018155722A1 (en) Transmission belt
JP6055430B2 (en) Transmission belt
JP5945562B2 (en) Transmission belt and belt transmission
CN109477548B (en) V-belt for transmission
JP6809985B2 (en) Friction transmission belt
US11300178B2 (en) Friction drive belt
CN109073040B (en) Friction transmission belt
JP6650388B2 (en) Friction transmission belt
WO2018016557A1 (en) Transmission v-belt
CN108884907B (en) Friction transmission belt
JP7189381B2 (en) V-belt for power transmission
WO2022176577A1 (en) Transmission v-belt
JP7293486B1 (en) Rubber composition for power transmission belt and power transmission belt
JP7520803B2 (en) Transmission belt
JP7500829B2 (en) Rubber composition for power transmission belt, power transmission belt, and method for producing power transmission belt
WO2024004769A1 (en) Rubber composition for transmission belt, transmission belt, and method for manufacturing transmission belt
JP6849850B1 (en) Rubber composition and friction transmission belt
JP2024022495A (en) Rubber composition for transmission belt, and transmission belt
JP2022003268A (en) Transmission v-belt
JP2021008603A (en) Rubber composition and method for producing the same and transmission belt
CN116867986A (en) V-belt for transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3053901

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019126799

Country of ref document: RU

Ref document number: 2018758077

Country of ref document: EP