WO2018155640A1 - Axial-flow rotating machine, stator blade, and rotor blade - Google Patents

Axial-flow rotating machine, stator blade, and rotor blade Download PDF

Info

Publication number
WO2018155640A1
WO2018155640A1 PCT/JP2018/006750 JP2018006750W WO2018155640A1 WO 2018155640 A1 WO2018155640 A1 WO 2018155640A1 JP 2018006750 W JP2018006750 W JP 2018006750W WO 2018155640 A1 WO2018155640 A1 WO 2018155640A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
stationary blade
stationary
moving
moving blade
Prior art date
Application number
PCT/JP2018/006750
Other languages
French (fr)
Japanese (ja)
Inventor
伸次 深尾
椙下 秀昭
松本 和幸
祥弘 桑村
豊治 西川
英治 小西
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018155640A1 publication Critical patent/WO2018155640A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals

Definitions

  • the present invention relates to an axial-flow rotating machine, a stationary blade, and a moving blade.
  • a casing, a rotating shaft that is rotatably provided inside the casing, and an inner peripheral portion of the casing are fixedly disposed.
  • a moving blade provided radially on a rotating shaft on the downstream side of the stationary blade is known.
  • steam pressure energy is converted into velocity energy by a stationary blade, and this velocity energy is converted into rotational energy (mechanical energy) by a moving blade.
  • pressure energy is converted into velocity energy in the moving blade, and converted into rotational energy (mechanical energy) by reaction force from which steam is ejected.
  • a radial gap is formed between the tip of the rotor blade and a casing that surrounds the rotor blade and forms a steam flow path.
  • a radial gap is also formed between the tip of the stationary blade and the rotating shaft.
  • a working fluid such as steam may pass (leak) through these gaps.
  • the leakage flow of the working fluid that passes through the gap between the tip of the rotor blade and the casing flows radially inward from the gap between the tip of the rotor blade and the casing on the downstream side of the rotor blade. It joins the main flow of working fluid flowing in the direction.
  • the leakage flow of the working fluid that passes through the gap between the tip of the stationary blade and the rotating shaft flows out radially outward from the gap between the tip of the stationary blade and the rotating shaft on the downstream side of the stationary blade. Join the mainstream of the fluid.
  • the leakage flow of the working fluid flowing out in the radial direction on the downstream side of the moving blade and the downstream side of the stationary blade joins the main flow of the working fluid flowing in the central axis direction in the casing so as to intersect.
  • the main flow of the working fluid and the leakage flow of the working fluid intersect and merge, the main flow of the working fluid and the leakage flow of the working fluid collide and mix, and thus an energy loss called a mixing loss occurs.
  • This increase in the mixing loss may hinder the improvement of the efficiency of the axial-flow rotating machine, and it is desired to reduce the mixing loss.
  • the moving blade and the stationary blade have a blade cross-sectional shape.
  • the moving blade has a leading edge on the upstream side in the main flow direction of the working fluid and an intermediate portion between the leading edge and the trailing edge with respect to the trailing edge on the downstream side in the flow direction. It has a blade cross-sectional shape that is recessed forward.
  • a working fluid to which a swirl component around the rotation axis is applied to the moving blade through the upstream stationary blade to rotate the moving blade. For this reason, the front edge part of a moving blade is formed so that it may extend toward the direction along the flow of the working fluid swirled by the stationary blade.
  • the leakage flow of the working fluid that has passed through the gap between the radially inner tip portion of the stationary blade positioned upstream of the moving blade and the rotating shaft is not given a swirl component by the stationary blade.
  • the direction of the leakage flow of the working fluid to which the swirl component is not applied is the direction of the leading edge of the moving blade formed in accordance with the direction along the flow of the working fluid swirled by the stationary blade as described above. Different. Therefore, when the leakage flow of the working fluid that has passed through the gap between the stationary blade located on the upstream side and the rotating shaft hits the leading edge of the moving blade at the radially inner end of the moving blade, mixing loss occurs.
  • the stationary blade has a blade cross-sectional shape such that an intermediate portion between the front edge portion and the rear edge portion is recessed rearward in the rotation direction of the moving blade with respect to the front edge portion and the rear edge portion. .
  • the flow of the working fluid that consumed the energy of the swirling component to rotate the moving blade through the moving blade on the upstream side, that is, the center of the rotating shaft hardly swiveled around the rotating shaft.
  • the flow of the working fluid along the axial direction is hit.
  • the front edge part of a stationary blade is formed so that it may extend upstream along the center axis direction of a rotating shaft.
  • the present invention has been made in view of the above circumstances, and reduces the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid, and increases the efficiency of the axial flow rotating machine.
  • the purpose is to provide wings and blades.
  • a rotating shaft that rotates about a central axis, a platform provided radially outward of the rotating shaft, and a moving blade provided to extend radially outward from the platform
  • a moving blade having a main body, and a cylindrical casing that is disposed radially outside the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side toward the downstream side along the central axis direction
  • a stationary blade main body provided to extend radially inward from the casing, and a stationary blade having a stationary blade shroud provided radially inward of the stationary blade body.
  • the stationary blade body is located between the stationary blade leading edge and the stationary blade trailing edge with respect to the upstream stationary blade leading edge and the downstream stationary blade trailing edge in the stationary blade body.
  • a stationary vane intermediate portion is formed so as to be convex in a direction opposite to the rotation direction of the rotating shaft, and is formed on the radially outer side with respect to the stationary blade first shape portion,
  • a stationary blade second shape portion having a stationary blade inclined portion extending toward the upstream side in the direction opposite to the rotation direction of the rotating shaft with respect to the stationary blade leading edge portion of the stationary blade first shape portion; Is provided.
  • the stationary blade first shape portion of the stationary blade body allows the main flow of the working fluid flowing from the upstream side to flow from the stationary blade leading edge portion to the stationary blade trailing edge portion via the stationary blade intermediate portion.
  • the swirl flow for rotating the rotor blade on the wake side is generated.
  • the stationary blade second shape portion of the stationary blade body has a stationary blade inclined portion extending toward the upstream side of the stationary blade leading edge portion of the stationary blade first shape portion in the direction opposite to the rotation direction of the rotating shaft. Yes.
  • the inlet angle of the stationary blade can be made to follow the direction of the leakage flow of the working fluid having the energy of the swirling component through the gap between the moving blade and the casing located on the upstream side of the stationary blade. .
  • the stationary blade inclined portion is configured such that the rotating shaft of the rotating shaft with respect to the stationary blade leading edge portion is directed radially outward from the stationary blade first shape portion.
  • the amount of displacement in the direction opposite to the rotational direction may be formed so as to gradually increase.
  • the stationary blade inclined portion can be made to follow the direction of the leakage flow of the working fluid, as the flow rate of the leakage flow of the working fluid is larger in the radial direction. Further, the displacement of the stationary blade inclined portion is decreased toward the radially inner side where the flow rate of the leakage flow of the working fluid gradually decreases, and the stationary blade inclined portion is moved to the stationary blade leading edge portion of the stationary blade first shape portion. Can be continuous.
  • the stationary blade inclined portion may be formed in a connection portion with the casing in the stationary blade body.
  • the stationary blade inclined portion is formed in the connection portion with the casing on the radially outer side in the stationary blade body where the influence of the leakage flow of the working fluid is maximized.
  • the casing is recessed radially outward of the moving blade main body located upstream of the stationary blade.
  • a moving blade cavity may be formed, and at least a part of the stationary blade inclined portion may be provided to face the moving blade cavity in the central axis direction.
  • the moving blade main body includes the upstream moving blade leading edge portion of the moving blade main body and the downstream moving blade rear.
  • the blade first shape portion curved so that a blade intermediate portion between the blade front edge and the blade trailing edge is convex in the rotation direction of the rotating shaft with respect to the edge, and The blade is formed radially inward with respect to the blade first shape portion, and extends toward the upstream side of the rotating shaft toward the upstream side of the blade front edge of the blade first shape portion.
  • a moving blade inclined portion having a moving blade inclined portion.
  • the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body.
  • the swirling flow hits the first shape portion of the moving blade and flows along the moving blade rear edge portion from the moving blade leading edge portion through the moving blade intermediate portion, so that the moving blade and the rotating shaft swirl around the central axis.
  • the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating blade front edge portion of the moving blade first shape portion,
  • the inlet angle of the moving blade can be made to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
  • the rotating blade inclined portion rotates with respect to the moving blade leading edge as it moves radially inward from the moving blade first shape portion. It may be formed so that the amount of displacement of the shaft in the rotational direction side gradually increases.
  • the moving blade inclined portion is made to follow the direction of the leakage flow of the working fluid as the flow rate of the leakage flow of the working fluid between the stationary blade and the rotating shaft is larger in the radial direction. Can do. Further, the displacement of the blade inclined portion is decreased toward the radially outer side where the flow rate of the leakage flow of the working fluid gradually decreases, and the blade inclined portion is moved to the blade leading edge portion of the blade first shape portion. Can be continuous.
  • the moving blade inclined portion may be formed in the connecting portion with the rotating shaft in the moving blade body.
  • the blade inclined portion is formed at the connecting portion with the rotary shaft on the radially inner side in the blade main body, where the influence of the leakage flow of the working fluid is maximized.
  • the rotary shaft includes a radially inner side radially inward of the stationary blade body positioned upstream of the moving blade.
  • a stationary blade cavity that is recessed may be formed, and at least a part of the blade inclined portion may be provided to face the stationary blade cavity in the central axis direction.
  • the leakage flow of the working fluid that passes through the gap between the stationary blade cavity and the radially inner tip of the stationary blade body flows in the direction along the central axis direction, It can be accepted as it is. Thereby, the loss when the leakage flow of the working fluid and the moving blade collide can be effectively suppressed.
  • the rotating shaft that rotates around the central axis, the platform provided on the radially outer side of the rotating shaft, and the movement provided to extend radially outward from the platform.
  • a moving blade having a blade body, and a cylindrical shape that is disposed on the outer side in the radial direction of the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side to the downstream side along the central axis direction
  • the blade main body is located between the blade front edge and the blade trailing edge with respect to the upstream blade front edge and the downstream blade trailing edge of the blade body.
  • a moving blade intermediate portion is formed so as to be convex in the rotation direction of the rotating shaft, and is formed on the radially inner side with respect to the moving blade first shape portion.
  • a moving blade second shape portion having a moving blade inclined portion extending toward the upstream side in the rotation direction of the rotating shaft with respect to the moving blade leading edge portion of the one shape portion.
  • the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body.
  • the swirling flow hits the first shape portion of the moving blade and flows along the moving blade rear edge portion from the moving blade leading edge portion through the moving blade intermediate portion, so that the moving blade and the rotating shaft swirl around the central axis.
  • the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating blade front edge portion of the moving blade first shape portion, It is possible to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
  • a stationary blade body provided to extend radially inward from the casing of the axial-flow rotating machine in which the rotation shaft is provided to be rotatable around the central axis in the casing.
  • the stationary blade main body has a first blade edge on the first side in the central axis direction and a second blade edge on the second side in the central axis direction of the stationary blade body.
  • a stationary vane first shape portion curved so that a stationary blade intermediate portion between the first edge portion and the stationary blade second edge portion protrudes in a direction opposite to the rotation direction of the rotating shaft; It is formed on the outer side in the radial direction with respect to one shape portion, and on the opposite side to the rotation direction of the rotary shaft toward the first side with respect to the first blade portion of the stator blade first shape portion.
  • a stationary blade second shape portion having an extending stationary blade inclined portion.
  • the stationary blade first shape portion of the stationary blade body causes the main flow of the working fluid flowing from the upstream side to flow from the stationary blade first edge to the stationary blade second through the stationary blade intermediate portion.
  • a swirling flow for rotating the rotor blade on the wake side is generated by being along the edge.
  • the stationary blade second shape portion of the stationary blade main body has a stationary blade inclined portion that extends toward the upstream side in the direction opposite to the rotation direction of the rotation shaft with respect to the stationary blade first edge portion of the stationary blade first shape portion. Therefore, it is possible to make the inlet angle of the stationary blade follow the direction of the leakage flow of the working fluid having the energy of the swirling component through the gap between the moving blade and the casing located on the upstream side of the stationary blade. it can. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the stationary blade.
  • the rotor blade body provided in the casing so as to extend radially outward from the rotation shaft of the axial-flow rotating machine in which the rotation shaft is rotatably provided around the central axis.
  • the rotor blade main body has a first blade edge on the first side in the central axis direction of the rotor blade body and a second blade edge on the second side in the central axis direction.
  • a moving blade first shape portion curved so that a moving blade intermediate portion between one edge portion and the moving blade second edge portion is convex in the rotation direction of the rotating shaft, and the moving blade first shape portion The blade inclined portion that is formed on the radially inner side and extends toward the first side toward the rotation direction of the rotating shaft with respect to the blade first edge of the blade first shape portion. And a moving blade second shape portion.
  • the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body.
  • This swirling flow hits the first shape part of the moving blade and flows along the second edge of the moving blade from the first edge of the moving blade through the intermediate portion of the moving blade.
  • the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating shaft with respect to the moving blade first edge portion of the moving blade first shape portion.
  • the inlet angle of the moving blade can be made to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
  • the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid can be reduced, and the efficiency of the axial flow rotating machine can be increased.
  • FIG. 1 is a schematic diagram showing a configuration of a steam turbine according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part of the steam turbine according to the first embodiment of the present invention.
  • a steam turbine (axial flow rotary machine) 100 according to this embodiment includes a rotating shaft 1, a casing 2, a moving blade stage 3 including a plurality of moving blades 4, and a plurality of stationary blades 7. And a stationary blade stage 6 provided with.
  • the rotary shaft 1 has a cylindrical shape extending along the central axis Ac.
  • the rotary shaft 1 is supported at both ends in the central axis direction Da along the central axis Ac by the bearing device 5 so as to be rotatable around the central axis Ac.
  • the bearing device 5 includes a journal bearing 5A provided on each side of the central axis direction Da of the rotating shaft 1 and a thrust bearing 5B provided only on the first side in the central axis direction Da.
  • the journal bearing 5 ⁇ / b> A supports a load in the radial direction Dr by the rotating shaft 1.
  • the thrust bearing 5B supports the load in the central axis direction Da by the rotating shaft 1.
  • the casing 2 has a cylindrical shape extending in the central axis direction Da.
  • the casing 2 covers the rotating shaft 1 from the outer peripheral side.
  • the casing 2 includes an intake port 10 and an exhaust port 11.
  • the air inlet 10 is formed on the first side in the central axis direction Da of the casing 2 and takes in steam (working fluid) into the casing 2 from the outside.
  • the exhaust port 11 is formed on the second side of the casing 2 in the central axis direction Da and exhausts the steam that has passed through the casing 2 to the outside.
  • the side where the intake port 10 is located when viewed from the exhaust port 11 is referred to as the upstream side
  • the side where the exhaust port 11 is located when viewed from the intake port 10 is referred to as the downstream side.
  • the rotor blade stage 3 is provided with a plurality of stages on the outer peripheral surface 1S of the rotating shaft 1 at intervals from the first side to the second side in the central axis direction Da.
  • Each blade stage 3 has a plurality of blades 4 arranged on the outer peripheral surface 1S of the rotary shaft 1 at intervals in the circumferential direction around the central axis Ac.
  • the moving blade 4 includes a platform 43 provided on the outer peripheral surface 1 ⁇ / b> S of the rotating shaft 1, a moving blade body 40 ⁇ / b> A, and a moving blade shroud 41.
  • the rotor blade main body 40A is formed to extend from the platform 43 toward the outside in the radial direction Dr.
  • the rotor blade main body 40A has an airfoil-shaped cross section when viewed from the radial direction Dr.
  • the rotor blade shroud 41 is provided at the outer end of the rotor blade main body 40A in the radial direction Dr.
  • the moving blade shroud 41 is set such that the dimension in the central axis direction Da is larger than the dimension of the moving blade body 40A in the central axis direction Da.
  • a moving blade cavity 20 for accommodating the moving blade shroud 41 is formed in an area on the inner peripheral side of the casing 2 and facing the moving blade shroud 41 in the radial direction Dr.
  • the rotor blade cavity 20 is recessed from the inner peripheral surface 2S of the casing 2 toward the outer side in the radial direction Dr, and has a groove shape continuous in the circumferential direction around the central axis Ac.
  • the blade cavity 20 is provided with a plurality (two) of blade-side fins 42. These blade-side fins 42 have a thin plate shape extending inward in the radial direction Dr. The tip of the rotor blade side fin 42 and the rotor blade cavity 20 face each other with a predetermined gap (clearance) in the radial direction Dr.
  • the stationary blade stage 6 is provided with a plurality of stages on the inner peripheral surface of the casing 2 at intervals along the central axis direction Da.
  • Each stationary blade stage 6 is arranged on the upstream side of each moving blade stage 3.
  • Each stationary blade stage 6 has a plurality of stationary blades 7 arranged at intervals in the circumferential direction around the central axis Ac.
  • the stationary blade 7 includes a stationary blade body 70 ⁇ / b> A and a stationary blade shroud 71.
  • the stationary blade body 70A is provided so as to extend from the inner peripheral surface 2S of the casing 2 toward the inside in the radial direction Dr.
  • the stationary blade body 70A has a blade-shaped cross section when viewed from the radial direction Dr.
  • the stationary blade shroud 71 is attached to an end portion on the inner side in the radial direction Dr of the stationary blade body 70A.
  • the radial direction Dr dimensions of the stationary blade body 70A and the moving blade body 40A are the same.
  • the stationary blade body 70A and the moving blade body 40A are arranged so as to overlap each other.
  • the outer peripheral surface 1S of the rotary shaft 1 is recessed from the outer peripheral surface 1S toward the inner side in the radial direction Dr.
  • a groove-shaped stationary blade cavity 8 continuous in the direction is formed.
  • the stationary blade shroud 71 of each stationary blade 7 is accommodated in the stationary blade cavity 8.
  • the stationary blade shroud 71 is provided with a plurality (two) of stationary blade side fins 72.
  • Each of the stationary blade side fins 72 has a thin plate shape that extends from the stationary blade shroud 71 toward the inside in the radial direction Dr.
  • the stationary blade side fin 72 and the stationary blade cavity 8 are opposed to each other with a predetermined gap in the radial direction Dr.
  • the steam flows alternately from the upstream side to the downstream side through the stationary blades 7 and the moving blades 4, thereby forming the mainstream FM.
  • the mainstream FM is rectified by sequentially colliding with the stationary blade 7 and the moving blade 4 as described above, and gives energy to the moving blade 4.
  • each stationary blade stage 6 components other than the main flow FM out of the steam flowing from the upstream side flow into the stationary blade cavity 8 and are disposed on the stationary blade shroud 71. And a stationary blade leakage flow FLs passing through a gap between the rotating blade 1 and the stationary blade cavity 8 formed on the rotating shaft 1 is formed.
  • the stationary blade leakage flow FLs reaches the downstream side of the stationary blade shroud 71, the stationary blade leakage flow FLs flows between the stationary blade shroud 71 and the platform 43 from the inner side in the radial direction Dr toward the outer side on the downstream side of the stationary blade shroud 71. , Join the mainstream FM.
  • a blade leakage flow FLm is formed that passes through the gap with the blade-side fin 42.
  • the moving blade leakage flow FLm reaches the downstream side of the moving blade shroud 41, it flows between the moving blade shroud 41 and the moving blade cavity 20 from the outer side in the radial direction Dr to the inner side, and joins the main flow FM.
  • the stationary blade body 70A and the moving blade body 40A have the following configurations.
  • FIG. 3 is a perspective view showing the shape of the stationary blade body of the steam turbine.
  • FIG. 4 is a view of the stationary blade body as viewed from the outside in the radial direction.
  • the stationary blade body 70 ⁇ / b> A has a stationary blade first shape portion 73 ⁇ / b> A and a stationary blade second shape portion 73 ⁇ / b> B.
  • the stationary blade first shape portion 73A is formed in the stationary blade body 70A from the stationary blade shroud 71 inside the radial direction Dr over a predetermined length along the radial direction Dr.
  • the stationary blade first shape portion 73A includes a stationary blade leading edge portion (static blade first edge portion) 74 positioned on the upstream side in the stationary blade body 70A and a stationary blade trailing edge portion (static blade second edge) positioned on the downstream side.
  • the blade is curved so that the stationary blade intermediate portion 76 between the stationary blade leading edge portion 74 and the stationary blade trailing edge portion 75 is convex in the direction opposite to the rotation direction R of the rotary shaft 1 with respect to the edge) 75. It has a cross-sectional shape.
  • the stationary blade second shape portion 73B is formed outside the radial direction Dr with respect to the stationary blade first shape portion 73A.
  • the stationary blade second shape portion 73B has a stationary blade inclined portion 77A on the upstream side.
  • the stationary blade inclined portion 77A is formed to extend toward the upstream side in the direction Rz opposite to the rotational direction R of the rotating shaft 1 with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A.
  • the stationary blade inclined portion 77A has a displacement amount in the direction Rz opposite to the rotational direction R of the rotary shaft 1 with respect to the stationary blade leading edge portion 74 as it goes outward from the stationary blade first shape portion 73A in the radial direction Dr. It is formed to gradually increase.
  • the stationary blade inclined portion 77A is formed at the connection portion with the casing 2 in the stationary blade body 70A.
  • the downstream side of the stationary blade second shape portion 73B other than the stationary blade inclined portion 77A has the same shape as the stationary blade first shape portion 73A.
  • the inclination direction Dk of the stationary blade inclined portion 77A passes through the gap between the moving blade 4 located on the upstream side of the stationary blade 7 and the moving blade cavity 20 of the casing 2, and has the energy of the swirling component. It is preferable to follow the direction of the steam leakage flow FLm.
  • the inclination direction Dk of the stationary blade inclined portion 77A is preferably set at an angle of, for example, about 5 to 45 degrees with respect to the central axis direction Da.
  • the stationary blade inclined portion 77A is preferably formed in the stationary blade body 70A so as to be within a range of, for example, 10 to 30% with respect to the blade height Ht along the radial direction Dr.
  • FIG. 5 is a perspective view showing the shape of the rotor blade main body of the steam turbine.
  • FIG. 6 is a view of the moving blade main body as viewed from the outside in the radial direction.
  • the rotor blade main body 40A includes a rotor blade first shape portion 44A and a rotor blade second shape portion 44B.
  • the moving blade first shape portion 44A includes a moving blade leading edge portion (moving blade first edge portion) 45 located on the upstream side of the moving blade main body 40A and a moving blade trailing edge portion (moving blade second blade) located on the downstream side.
  • the blade cross-sectional shape is curved so that the blade intermediate portion 47 between the blade leading edge 45 and the blade trailing edge 46 is convex in the rotation direction R of the rotating shaft 1 with respect to the edge 46).
  • the moving blade second shape portion 44B is formed on the inner side in the radial direction Dr with respect to the moving blade first shape portion 44A.
  • the moving blade second shape portion 44B has a moving blade inclined portion 48A on the upstream side.
  • the moving blade inclined portion 48A is formed so as to extend toward the rotation direction R of the rotating shaft 1 toward the upstream side with respect to the moving blade leading edge 45 of the moving blade first shape portion 44A. Further, the moving blade inclined portion 48A gradually increases in the amount of displacement of the rotating shaft 1 in the rotational direction R side with respect to the moving blade leading edge 45 toward the inner side in the radial direction Dr from the moving blade first shape portion 44A. Is formed.
  • the moving blade inclined portion 48A is formed in the connecting portion with the rotating shaft 1 in the moving blade main body 40A.
  • the portion other than the moving blade inclined portion 48A on the downstream side of the moving blade second shape portion 44B has the same shape as the moving blade first shape portion 44A.
  • the inclination direction Dm of the moving blade inclined portion 48A passes through the gap between the stationary blade 7 located on the upstream side of the moving blade 4 and the stationary blade cavity 8 of the rotating shaft 1, and has the energy of the swirl component. It is preferable to follow the direction of no steam leakage flow FLs.
  • the inclination direction Dm of the moving blade inclined portion 48A is preferably about 5 to 45 degrees, for example, with respect to the central axis direction Da.
  • the moving blade inclined portion 48A is preferably formed so as to fall within a range of, for example, 10 to 30% with respect to the blade height Hu along the radial direction Dr in the moving blade body 40A.
  • the stationary blade first shape portion 73 ⁇ / b> A of the stationary blade body 70 ⁇ / b> A converts the main flow FM of the steam flowing from the upstream side into the stationary blade leading edge portion.
  • a swirling flow for rotating the moving blade 4 on the wake side is generated by moving along the stationary blade trailing edge 75 from 74 through the stationary blade intermediate portion 76.
  • the stationary blade inclined portion 77A has a rotational direction R of the rotating shaft 1 toward the upstream side with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A.
  • the swirl flow generated by the upstream stationary blade 7 flows as the main flow FM of the steam into the first blade-shaped portion 44A of the blade main body 40A.
  • the swirling flow hits the first blade shaped portion 44A and flows from the blade leading edge 45 through the blade intermediate portion 47 along the blade trailing edge 46, whereby the blade 4 and the rotary shaft 1 are moved. It turns around the central axis Ac.
  • the moving blade inclined portion 48A rotates the rotary shaft 1 toward the upstream side with respect to the moving blade leading edge portion 45 of the moving blade first shape portion 44A. It extends in the direction R side.
  • the direction of the inclined portion 48A of the moving blade passes through the gap between the stationary blade 7 and the casing 2 located on the upstream side of the moving blade 4, and the direction of the leakage flow FLs of the steam having no swirling component energy Can be along.
  • the steam leakage flow FLs flowing along the moving blade inclined portion 48A flows in the same direction as the main flow FM of steam on the downstream side of the moving blade inclined portion 48A.
  • the steam leakage flow FLm having the energy of the swirl component can be made to follow the stationary blade inclined portion 77A.
  • the steam leakage flow FLm can be satisfactorily merged with the main steam FM along the stationary blade 7, the mixing loss with the steam leakage flow FLm can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
  • the stationary blade inclined portion 77A moves from the stationary blade first shape portion 73A toward the outside in the radial direction Dr, the displacement amount of the rotating blade 1 in the direction Rz opposite to the rotational direction R of the stationary blade leading edge 74 gradually increases. It is getting bigger. As a result, the stationary blade inclined portion 77A can be made to follow the direction of the steam leakage flow FLm as the flow rate of the steam leakage flow FLm increases toward the outside of the radial direction Dr. Further, the amount of displacement of the stationary blade inclined portion 77A is decreased toward the inner side of the radial direction Dr where the flow rate of the steam leakage flow FLm gradually decreases, and the stationary blade inclined portion 77A is replaced with the stationary blade first shape portion 73A. The wing leading edge 74 can be continued. This makes it possible to more efficiently suppress the loss that occurs when the steam leakage flow FLm hits the stationary blade 7.
  • the stationary blade inclined portion 77A is formed at a connection portion with the casing 2 in the stationary blade body 70A.
  • the stationary blade inclined portion 77A is formed at the connection portion with the casing 2 outside the radial direction Dr in the stationary blade body 70A, where the influence of the steam leakage flow FLm is maximized.
  • the loss when the steam leakage flow FLm and the stationary blade 7 collide can be effectively suppressed.
  • the flow FLs can be made to follow the blade inclined portion 48A. As a result, it is possible to suppress the loss that occurs when the steam leakage flow FLs hits the rotor blade 4. Therefore, the steam leakage flow FLs can be satisfactorily merged with the main steam FM along the moving blade 4, the mixing loss with the steam leakage flow FLs can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
  • the moving blade inclined portion 48A gradually increases in the amount of displacement of the rotating shaft 1 in the rotation direction R side with respect to the moving blade leading edge 45 toward the inner side in the radial direction Dr from the moving blade first shape portion 44A. Is formed.
  • the moving blade inclined portion 48A can be made to follow the direction of the steam leakage flow FLs as the flow rate of the steam leakage flow FLs between the stationary blade 7 and the rotary shaft 1 is larger in the radial direction Dr. it can.
  • the displacement amount of the moving blade inclined portion 48A is decreased toward the outside of the radial direction Dr where the flow rate of the steam leakage flow FLs gradually decreases, and the moving blade inclined portion 48A is moved to the dynamic state of the moving blade first shape portion 44A.
  • the wing leading edge 45 can be continued. As a result, the loss that occurs when the steam leakage flow FLs hits the rotor blade 4 can be more efficiently suppressed.
  • the moving blade inclined portion 48A is formed at the connecting portion with the rotating shaft 1 in the moving blade main body 40A.
  • the blade inclined portion 48A is formed at the connecting portion with the rotary shaft 1 inside the radial direction Dr in the blade main body 40A, where the influence of the steam leakage flow FLs is maximized. Thereby, the loss when the steam leakage flow FLs and the moving blade 4 collide can be effectively suppressed.
  • FIG. 7 is an enlarged view of a main part of the steam turbine according to the second embodiment of the present invention.
  • the stationary blade body 70C and the moving blade body 40C have the following configurations. .
  • the stationary blade body 70C includes a stationary blade first shape portion 73A and a stationary blade second shape portion 73C.
  • the stationary blade first shape portion 73A is formed in the stationary blade body 70C from the stationary blade shroud 71 inside the radial direction Dr over a predetermined length along the radial direction Dr.
  • the stationary blade first shape portion 73A is opposed to the stationary blade leading edge portion 74 and the stationary blade leading edge portion 74 located on the upstream side of the stationary blade body 70C and the stationary blade trailing edge portion 75 located on the downstream side.
  • the stationary blade intermediate portion 76 between the blade trailing edge portions 75 has a blade cross-sectional shape curved so as to protrude in the direction opposite to the rotation direction R of the rotating shaft 1.
  • the stationary blade second shape portion 73C is formed outside the radial direction Dr with respect to the stationary blade first shape portion 73A.
  • the stationary blade second shape portion 73C has a stationary blade inclined portion 77C on the upstream side.
  • the stationary blade inclined portion 77C faces the upstream side with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A, like the stationary blade inclined portion 77A of the first embodiment. Thus, it is formed to extend in the direction Rz opposite to the rotation direction R of the rotation shaft 1.
  • the amount of displacement in the direction Rz opposite to the rotational direction R of the rotating shaft 1 relative to the stationary blade leading edge 74 gradually increases from the stationary blade first shape portion 73A toward the outside in the radial direction Dr. It is formed to be large.
  • the stationary blade inclined portion 77C is provided such that a part of the end portion 77s inside the radial direction Dr faces the moving blade cavity 20 in the central axis direction Da.
  • the inner peripheral surface 2S of the casing 2 is formed with a recess 27 that is inclined outward in the radial direction Dr toward the upstream side.
  • the end 77s of the stationary blade inclined portion 77C on the outer side in the radial direction Dr gradually protrudes outward in the radial direction Dr along the concave portion 27 toward the upstream side.
  • the stationary blade inclined portion 77C is formed at the connection portion with the casing 2 in the stationary blade body 70C.
  • the inclination direction Dk of the stationary blade inclined portion 77C passes through the gap between the moving blade 4 located on the upstream side of the stationary blade 7 and the moving blade cavity 20 of the casing 2, and has the energy of the swirling component. It is preferable to follow the direction of the steam leakage flow FLm.
  • the inclination direction of the stationary blade inclined portion 77C is preferably set at an angle of, for example, about 10 to 30 degrees with respect to the central axis direction Da.
  • the end 77s of the stationary blade inclined portion 77C on the outer side in the radial direction Dr, that is, the portion protruding outward in the radial direction Dr is 20 chord length of the stationary blade body 70C from the front edge end of the stationary blade body 70C. It may be formed in a range of ⁇ 40%.
  • the outer end face in the radial direction Dr is along the central axis Ac.
  • the moving blade main body 40C includes a moving blade first shape portion 44A and a moving blade second shape portion 44C.
  • the moving blade first shape portion 44A has a moving blade leading edge 45 and a moving blade leading edge 45 located on the upstream side of the moving blade body 40C and a moving blade trailing edge 46 located on the downstream side.
  • the blade intermediate portion 47 between the blade trailing edge portions 46 has a blade cross-sectional shape that is curved so as to be convex in the rotation direction R of the rotating shaft 1.
  • the moving blade second shape portion 44C is formed on the inner side in the radial direction Dr with respect to the moving blade first shape portion 44A.
  • the moving blade second shape portion 44C has a moving blade inclined portion 48C on the upstream side.
  • the moving blade inclined portion 48C rotates toward the upstream side with respect to the moving blade leading edge 45 of the moving blade first shape portion 44A, similarly to the moving blade inclined portion 48A of the first embodiment shown in FIG. It is formed so as to extend toward the rotation direction R side of the shaft 1. Further, in the moving blade inclined portion 48C, the amount of displacement of the rotating shaft 1 in the rotation direction R side with respect to the moving blade leading edge 45 gradually increases from the moving blade first shape portion 44A toward the inside in the radial direction Dr. Is formed.
  • the blade inclined portion 48C is provided such that a part of the end 48s outside the radial direction Dr faces the stationary blade cavity 8 in the central axis direction Da.
  • the outer peripheral surface of the rotating shaft 1 is formed with a recess 87 that is inclined inward in the radial direction Dr toward the upstream side.
  • the end 48s on the inner side in the radial direction Dr of the blade inclined portion 48C gradually protrudes inward in the radial direction Dr toward the upstream side along the recess 87.
  • the moving blade inclined portion 48C is formed at the connecting portion with the rotating shaft 1 in the moving blade main body 40C.
  • the inclination direction Dm of the moving blade inclined portion 48C passes through the gap between the stationary blade 7 located on the upstream side of the moving blade 4 and the stationary blade cavity 8 of the rotating shaft 1, and has the energy of the swirl component. It is preferable to follow the direction of no steam leakage flow FLs.
  • the inclination direction of the rotor blade inclination portion 48C is preferably set at an angle of, for example, about 5 to 45 degrees with respect to the central axis direction Da.
  • the end 48s of the blade inclined portion 48C on the outer side in the radial direction Dr, that is, the portion protruding inward in the radial direction Dr is 10 chord length of the blade main body 40C from the front edge end of the blade main body 40C. It may be formed in a range of ⁇ 30%.
  • the inner end face in the radial direction Dr is along the central axis Ac.
  • the steam leakage flow FLm having the energy of the swirl component can be made to follow the stationary blade inclined portion 77C as in the first embodiment. .
  • the steam leakage flow FLm can be satisfactorily merged with the main steam FM along the stationary blade 7, the mixing loss with the steam leakage flow FLm can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
  • the end 77s of the stationary blade inclined portion 77C is provided to face the moving blade cavity 20 in the central axis direction Da.
  • the steam leakage flow FLm passing through the gap between the moving blade cavity 20 and the tip of the moving blade body 40C on the outer side in the radial direction Dr flows in the direction along the central axis direction Da.
  • the blade inclined portion 77C can be accepted as it is. Thereby, the loss when the steam leakage flow FLm and the stationary blade 7 collide can be effectively suppressed.
  • the flow FLs can be made to follow the blade inclined portion 48C. As a result, it is possible to suppress the loss that occurs when the steam leakage flow FLs hits the rotor blade 4. Therefore, the steam leakage flow FLs can be satisfactorily merged with the main steam FM along the moving blade 4, the mixing loss with the steam leakage flow FLs can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
  • the end 48s of the blade inclined portion 48C is provided so as to face the stationary blade cavity 8 in the central axis direction Da.
  • the description has been made based on an example in which a steam turbine is applied as an axial flow rotary machine.
  • the aspect of the axial flow rotary machine is not limited to the steam turbine, and other devices such as a gas turbine and an aircraft jet engine can be applied as the axial flow rotary machine.
  • the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid can be reduced, and the efficiency of the axial flow rotating machine can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

An axial flow rotating machine (100) comprises a rotating shaft (1), a rotor blade (4), a casing (2), and a stator blade (7). A stator blade body (70A) comprises: a stator blade first shape part (73A) in which a stator blade intermediate part (76), which lies between a stator blade leading edge (74) and a stator blade trailing edge (75), is curved so as to be convex in the opposite direction from the rotating direction of the rotating shaft (1); and a stator blade second shape part (73B), which is formed on the outer side of the stator blade first shape part (73A) in a diametrical direction (Dr), and which has a stator blade inclined part (77A) that, relative to the stator blade leading edge (74) of the stator blade first shape part (73A), extends upstream in the opposite direction from the rotating direction of the rotating shaft (1).

Description

軸流回転機械、静翼、動翼Axial-flow rotating machine, stationary blade, moving blade
 本発明は、軸流回転機械、静翼、動翼に関する。
 本願は、2017年2月24日に日本に出願された特願2017-033012号について優先権を主張し、その内容をここに援用する。
The present invention relates to an axial-flow rotating machine, a stationary blade, and a moving blade.
This application claims priority on Japanese Patent Application No. 2017-033012 filed in Japan on February 24, 2017, the contents of which are incorporated herein by reference.
 蒸気タービン、ガスタービン等の軸流回転機械において、例えば特許文献1に開示されているように、ケーシングと、ケーシングの内部に回転自在に設けられた回転軸と、ケーシングの内周部に固定配置された静翼と、この静翼の下流側において回転軸に放射状に設けられた動翼と、を備えたものが知られている。
 例えば蒸気タービンの場合、蒸気の圧力エネルギーを静翼によって速度エネルギーに変換し、この速度エネルギーを動翼によって回転エネルギー(機械エネルギー)に変換している。また、動翼内で圧力エネルギーが速度エネルギーに変換され、蒸気が噴出する反動力により回転エネルギー(機械エネルギー)に変換される場合もある。
In an axial-flow rotating machine such as a steam turbine or a gas turbine, for example, as disclosed in Patent Document 1, a casing, a rotating shaft that is rotatably provided inside the casing, and an inner peripheral portion of the casing are fixedly disposed. And a moving blade provided radially on a rotating shaft on the downstream side of the stationary blade is known.
For example, in the case of a steam turbine, steam pressure energy is converted into velocity energy by a stationary blade, and this velocity energy is converted into rotational energy (mechanical energy) by a moving blade. In some cases, pressure energy is converted into velocity energy in the moving blade, and converted into rotational energy (mechanical energy) by reaction force from which steam is ejected.
 この種の回転機械では、動翼の先端部と、動翼を囲繞して蒸気の流路を形成するケーシングとの間に径方向の隙間が形成されている。また、静翼の先端部と回転軸との間にも、径方向の隙間が形成されている。これらの隙間を蒸気等の作動流体が通過(漏洩)することがある。
 動翼の先端部とケーシングとの隙間を通過する作動流体の漏れ流れは、動翼の下流側において、動翼の先端部とケーシングとの隙間から径方向内側に流れ出て、ケーシング内を中心軸方向に流れる作動流体の主流に合流する。また、静翼の先端部と回転軸との隙間を通過する作動流体の漏れ流れも、静翼の下流側で、静翼の先端部と回転軸との隙間から径方向外側に流れ出て、作動流体の主流に合流する。
In this type of rotary machine, a radial gap is formed between the tip of the rotor blade and a casing that surrounds the rotor blade and forms a steam flow path. A radial gap is also formed between the tip of the stationary blade and the rotating shaft. A working fluid such as steam may pass (leak) through these gaps.
The leakage flow of the working fluid that passes through the gap between the tip of the rotor blade and the casing flows radially inward from the gap between the tip of the rotor blade and the casing on the downstream side of the rotor blade. It joins the main flow of working fluid flowing in the direction. In addition, the leakage flow of the working fluid that passes through the gap between the tip of the stationary blade and the rotating shaft flows out radially outward from the gap between the tip of the stationary blade and the rotating shaft on the downstream side of the stationary blade. Join the mainstream of the fluid.
 このようにして、動翼の下流側、静翼の下流側で径方向に流れ出る作動流体の漏れ流れは、ケーシング内を中心軸方向に流れる作動流体の主流に対して、交差するように合流する。作動流体の主流と作動流体の漏れ流れとが交差して合流するときには、作動流体の主流と作動流体の漏れ流れとが衝突して混合されるため、混合損失と呼ばれるエネルギー損失が発生する。この混合損失の増加は、軸流回転機械の効率向上の妨げとなる場合があり、混合損失を低減することが望まれる。 In this way, the leakage flow of the working fluid flowing out in the radial direction on the downstream side of the moving blade and the downstream side of the stationary blade joins the main flow of the working fluid flowing in the central axis direction in the casing so as to intersect. . When the main flow of the working fluid and the leakage flow of the working fluid intersect and merge, the main flow of the working fluid and the leakage flow of the working fluid collide and mix, and thus an energy loss called a mixing loss occurs. This increase in the mixing loss may hinder the improvement of the efficiency of the axial-flow rotating machine, and it is desired to reduce the mixing loss.
特公平2-3003号公報Japanese Patent Publication No. 2-3003
 ところで、特許文献1に開示されているように、動翼や静翼は、翼断面形状を有している。
 動翼は、作動流体の主流の流れ方向上流側の前縁部、及び流れ方向下流側の後縁部に対し、前縁部と後縁部との間の中間部が、動翼の回転方向前方に窪むような翼断面形状を有している。動翼には、上流側の静翼を経て、動翼を回転させるために回転軸回りの旋回成分が付与された作動流体が流れてくる。このため、動翼の前縁部は、静翼によって旋回させられた作動流体の流れに沿う方向に向けて延びるように形成されている。
 しかし、この動翼の上流側に位置する静翼の径方向内側の先端部と回転軸との隙間を通り抜けた作動流体の漏れ流れは、静翼によって旋回成分が付与されていない。この旋回成分が付与されていない作動流体の漏れ流れの方向は、上記したように静翼によって旋回させられた作動流体の流れに沿う方向に合わせて形成された動翼の前縁部の向きと異なる。したがって、上流側に位置する静翼と回転軸との隙間を通り抜けた作動流体の漏れ流れが、動翼の径方向内側の端部で動翼の前縁部に当たると、混合損失が生じる。
By the way, as disclosed in Patent Document 1, the moving blade and the stationary blade have a blade cross-sectional shape.
The moving blade has a leading edge on the upstream side in the main flow direction of the working fluid and an intermediate portion between the leading edge and the trailing edge with respect to the trailing edge on the downstream side in the flow direction. It has a blade cross-sectional shape that is recessed forward. A working fluid to which a swirl component around the rotation axis is applied to the moving blade through the upstream stationary blade to rotate the moving blade. For this reason, the front edge part of a moving blade is formed so that it may extend toward the direction along the flow of the working fluid swirled by the stationary blade.
However, the leakage flow of the working fluid that has passed through the gap between the radially inner tip portion of the stationary blade positioned upstream of the moving blade and the rotating shaft is not given a swirl component by the stationary blade. The direction of the leakage flow of the working fluid to which the swirl component is not applied is the direction of the leading edge of the moving blade formed in accordance with the direction along the flow of the working fluid swirled by the stationary blade as described above. Different. Therefore, when the leakage flow of the working fluid that has passed through the gap between the stationary blade located on the upstream side and the rotating shaft hits the leading edge of the moving blade at the radially inner end of the moving blade, mixing loss occurs.
 また、静翼は、その前縁部及び後縁部に対し、前縁部と後縁部との間の中間部が、動翼の回転方向後方に窪むような翼断面形状を有している。静翼の前縁部には、上流側の動翼を経て、動翼を回転させるために旋回成分のエネルギーを消費した作動流体の流れ、つまり回転軸回りにほとんど旋回せずに回転軸の中心軸方向に沿った作動流体の流れが当たる。このため、静翼の前縁部は、回転軸の中心軸方向に沿って上流側に延びるように形成される。しかし、この静翼の上流側に位置する動翼の径方向外側の先端部とケーシングとの隙間を通り抜けた作動流体の漏れ流れは、この動翼の上流側の静翼で付与された、動翼を回転させるための旋回成分のエネルギーが消費されておらず、回転軸回りに旋回している。このため、この動翼の先端部とケーシングとの隙間を通り抜けた作動流体の漏れ流れの方向が、中心軸方向上流側を向く静翼の前縁部の向きとは異なるため、混合損失が生じる。 Further, the stationary blade has a blade cross-sectional shape such that an intermediate portion between the front edge portion and the rear edge portion is recessed rearward in the rotation direction of the moving blade with respect to the front edge portion and the rear edge portion. . At the leading edge of the stationary blade, the flow of the working fluid that consumed the energy of the swirling component to rotate the moving blade through the moving blade on the upstream side, that is, the center of the rotating shaft hardly swiveled around the rotating shaft. The flow of the working fluid along the axial direction is hit. For this reason, the front edge part of a stationary blade is formed so that it may extend upstream along the center axis direction of a rotating shaft. However, the leakage flow of the working fluid that has passed through the gap between the radially outer tip of the moving blade located on the upstream side of the stationary blade and the casing is applied by the stationary blade on the upstream side of the moving blade. The energy of the swirl component for rotating the wing is not consumed, and the swirl is about the rotation axis. For this reason, since the direction of the leakage flow of the working fluid that has passed through the gap between the tip of the rotor blade and the casing is different from the direction of the leading edge of the stationary blade that faces the upstream side in the central axis direction, mixing loss occurs. .
 本発明は、上記事情に鑑みてなされたものであり、作動流体の主流と作動流体の漏れ流れとの混合損失を低減し、軸流回転機械の効率を高めることができる軸流回転機械、静翼、動翼を提供することを目的とする。 The present invention has been made in view of the above circumstances, and reduces the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid, and increases the efficiency of the axial flow rotating machine. The purpose is to provide wings and blades.
 本発明は、上記課題を解決するため、以下の手段を採用する。
 本発明の第一の態様では、中心軸回りに回転する回転軸と、前記回転軸の径方向外側に設けられたプラットフォーム、及び、前記プラットフォームから径方向外側に向かって延びるよう設けられた動翼本体を有する動翼と、前記回転軸及び前記動翼の径方向外側に配置され、その径方向内側を作動流体が前記中心軸方向に沿って上流側から下流側に向かって流れる筒状のケーシングと、前記ケーシングから径方向内側に向かって延びるよう設けられた静翼本体、及び前記静翼本体の径方向内側に設けられた静翼シュラウドを有する静翼と、を備える。前記静翼本体は、前記静翼本体において前記上流側の静翼前縁部、及び前記下流側の静翼後縁部に対し、前記静翼前縁部と前記静翼後縁部の間の静翼中間部が、前記回転軸の回転方向と反対方向に凸となるように湾曲した静翼第一形状部と、前記静翼第一形状部に対して前記径方向外側に形成され、前記静翼第一形状部の前記静翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向と反対方向側に延びている静翼傾斜部を有する静翼第二形状部と、を備える。
The present invention employs the following means in order to solve the above problems.
In a first aspect of the present invention, a rotating shaft that rotates about a central axis, a platform provided radially outward of the rotating shaft, and a moving blade provided to extend radially outward from the platform A moving blade having a main body, and a cylindrical casing that is disposed radially outside the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side toward the downstream side along the central axis direction And a stationary blade main body provided to extend radially inward from the casing, and a stationary blade having a stationary blade shroud provided radially inward of the stationary blade body. The stationary blade body is located between the stationary blade leading edge and the stationary blade trailing edge with respect to the upstream stationary blade leading edge and the downstream stationary blade trailing edge in the stationary blade body. A stationary vane intermediate portion is formed so as to be convex in a direction opposite to the rotation direction of the rotating shaft, and is formed on the radially outer side with respect to the stationary blade first shape portion, A stationary blade second shape portion having a stationary blade inclined portion extending toward the upstream side in the direction opposite to the rotation direction of the rotating shaft with respect to the stationary blade leading edge portion of the stationary blade first shape portion; Is provided.
 このような構成によれば、静翼本体の静翼第一形状部は、上流側から流れてきた作動流体の主流を、静翼前縁部から静翼中間部を介して静翼後縁部に沿わせることで、後流側の動翼を回転させるための旋回流を生成する。
 静翼本体の静翼第二形状部は、静翼傾斜部が、静翼第一形状部の静翼前縁部に対し、上流側に向かって回転軸の回転方向と反対方向側に延びている。このため、この静翼の上流側に位置する動翼とケーシングとの隙間を通り抜け、旋回成分のエネルギーを有している作動流体の漏れ流れの向きに静翼の入口角を沿わせることができる。これによって、作動流体の漏れ流れが静翼に当たるときに生じる損失を抑えることができる。
According to such a configuration, the stationary blade first shape portion of the stationary blade body allows the main flow of the working fluid flowing from the upstream side to flow from the stationary blade leading edge portion to the stationary blade trailing edge portion via the stationary blade intermediate portion. The swirl flow for rotating the rotor blade on the wake side is generated.
The stationary blade second shape portion of the stationary blade body has a stationary blade inclined portion extending toward the upstream side of the stationary blade leading edge portion of the stationary blade first shape portion in the direction opposite to the rotation direction of the rotating shaft. Yes. For this reason, the inlet angle of the stationary blade can be made to follow the direction of the leakage flow of the working fluid having the energy of the swirling component through the gap between the moving blade and the casing located on the upstream side of the stationary blade. . Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the stationary blade.
 本発明の第二の態様では、上記第一の態様において、前記静翼傾斜部は、前記静翼第一形状部から径方向外側に向かうにしたがって、前記静翼前縁部に対する前記回転軸の回転方向と反対方向側への変位量が漸次大きくなるよう形成されていてもよい。 According to a second aspect of the present invention, in the first aspect, the stationary blade inclined portion is configured such that the rotating shaft of the rotating shaft with respect to the stationary blade leading edge portion is directed radially outward from the stationary blade first shape portion. The amount of displacement in the direction opposite to the rotational direction may be formed so as to gradually increase.
 このような構成によれば、作動流体の漏れ流れの流量が多い径方向外側であるほど、静翼傾斜部を、作動流体の漏れ流れの向きに沿わせることができる。また、作動流体の漏れ流れの流量が漸次小さくなる径方向内側に向かって、静翼傾斜部の変位量を小さくして、静翼傾斜部を、静翼第一形状部の静翼前縁部に連続させることができる。 According to such a configuration, the stationary blade inclined portion can be made to follow the direction of the leakage flow of the working fluid, as the flow rate of the leakage flow of the working fluid is larger in the radial direction. Further, the displacement of the stationary blade inclined portion is decreased toward the radially inner side where the flow rate of the leakage flow of the working fluid gradually decreases, and the stationary blade inclined portion is moved to the stationary blade leading edge portion of the stationary blade first shape portion. Can be continuous.
 本発明の第三の態様では、上記第一又は第二の態様において、前記静翼傾斜部は、前記静翼本体において前記ケーシングとの接続部に形成されていてもよい。 In the third aspect of the present invention, in the first or second aspect, the stationary blade inclined portion may be formed in a connection portion with the casing in the stationary blade body.
 このような構成によれば、作動流体の漏れ流れの影響が最大となる、静翼本体において径方向外側のケーシングとの接続部に静翼傾斜部が形成される。これにより、作動流体の漏れ流れと静翼とが衝突する時の損失を有効に抑えることができる。 According to such a configuration, the stationary blade inclined portion is formed in the connection portion with the casing on the radially outer side in the stationary blade body where the influence of the leakage flow of the working fluid is maximized. Thereby, the loss when the leakage flow of the working fluid collides with the stationary blade can be effectively suppressed.
 本発明の第四の態様では、上記第一から第三の態様において、前記ケーシングには、前記静翼に対して上流側に位置する前記動翼本体の径方向外側に、径方向外側に窪む動翼キャビティが形成され、前記静翼傾斜部の少なくとも一部は、前記動翼キャビティに対して前記中心軸方向において対向するよう設けられているようにしてもよい。 According to a fourth aspect of the present invention, in the first to third aspects, the casing is recessed radially outward of the moving blade main body located upstream of the stationary blade. A moving blade cavity may be formed, and at least a part of the stationary blade inclined portion may be provided to face the moving blade cavity in the central axis direction.
 このように構成することで、動翼キャビティと動翼本体の径方向外側の先端部との隙間を通り抜ける作動流体の漏れ流れを、中心軸方向に沿った方向に流して、静翼傾斜部でそのまま受け入れることができる。これにより、作動流体の漏れ流れと静翼とが衝突する時の損失を有効に抑えることができる。 With this configuration, the leakage flow of the working fluid passing through the gap between the blade cavity and the radially outer tip of the blade body flows in the direction along the central axis direction, and the stationary blade inclined portion It can be accepted as it is. Thereby, the loss when the leakage flow of the working fluid collides with the stationary blade can be effectively suppressed.
 本発明の第五の態様によれば、上記第一から第四の態様において、前記動翼本体は、前記動翼本体の前記上流側の動翼前縁部、及び前記下流側の動翼後縁部に対し、前記動翼前縁部と前記動翼後縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、を備えてもよい。 According to a fifth aspect of the present invention, in the first to fourth aspects, the moving blade main body includes the upstream moving blade leading edge portion of the moving blade main body and the downstream moving blade rear. The blade first shape portion curved so that a blade intermediate portion between the blade front edge and the blade trailing edge is convex in the rotation direction of the rotating shaft with respect to the edge, and The blade is formed radially inward with respect to the blade first shape portion, and extends toward the upstream side of the rotating shaft toward the upstream side of the blade front edge of the blade first shape portion. A moving blade inclined portion having a moving blade inclined portion.
 このような構成によれば、動翼本体の動翼第一形状部には、作動流体の主流として、上流側の静翼によって生成された旋回流が流れてくる。この旋回流が、動翼第一形状部に当たり、動翼前縁部から動翼中間部を介して動翼後縁部に沿って流れることで、動翼及び回転軸が中心軸回りに旋回する。
 動翼本体の動翼第二形状部は、動翼傾斜部が、動翼第一形状部の動翼前縁部に対し、上流側に向かって回転軸の回転方向側に延びているので、この動翼の上流側に位置する静翼とケーシングとの隙間を通り抜け、旋回成分のエネルギーを有していない作動流体の漏れ流れの向きに動翼の入口角を沿わせることができる。これによって、作動流体の漏れ流れが動翼に当たるときに生じる損失を抑えることができる。
According to such a configuration, the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body. The swirling flow hits the first shape portion of the moving blade and flows along the moving blade rear edge portion from the moving blade leading edge portion through the moving blade intermediate portion, so that the moving blade and the rotating shaft swirl around the central axis. .
Since the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating blade front edge portion of the moving blade first shape portion, The inlet angle of the moving blade can be made to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
 本発明の第六の態様によれば、上記第五の態様において、前記動翼傾斜部は、前記動翼第一形状部から径方向内側に向かうにしたがって、前記動翼前縁部に対する前記回転軸の回転方向側への変位量が漸次大きくなるよう形成されていてもよい。 According to a sixth aspect of the present invention, in the fifth aspect, the rotating blade inclined portion rotates with respect to the moving blade leading edge as it moves radially inward from the moving blade first shape portion. It may be formed so that the amount of displacement of the shaft in the rotational direction side gradually increases.
 このような構成によれば、静翼と回転軸との間における作動流体の漏れ流れの流量が多い径方向内側であるほど、動翼傾斜部を、作動流体の漏れ流れの向きに沿わせることができる。また、作動流体の漏れ流れの流量が漸次小さくなる径方向外側に向かって、動翼傾斜部の変位量を小さくして、動翼傾斜部を、動翼第一形状部の動翼前縁部に連続させることができる。 According to such a configuration, the moving blade inclined portion is made to follow the direction of the leakage flow of the working fluid as the flow rate of the leakage flow of the working fluid between the stationary blade and the rotating shaft is larger in the radial direction. Can do. Further, the displacement of the blade inclined portion is decreased toward the radially outer side where the flow rate of the leakage flow of the working fluid gradually decreases, and the blade inclined portion is moved to the blade leading edge portion of the blade first shape portion. Can be continuous.
 本発明の第七の態様によれば、上記第五又は第六の態様において、前記動翼傾斜部は、前記動翼本体において前記回転軸との接続部に形成されていてもよい。 According to the seventh aspect of the present invention, in the fifth or sixth aspect, the moving blade inclined portion may be formed in the connecting portion with the rotating shaft in the moving blade body.
 このような構成によれば、作動流体の漏れ流れの影響が最大となる、動翼本体において径方向内側の回転軸との接続部に動翼傾斜部が形成される。これにより、作動流体の漏れ流れと動翼とが衝突する時の損失を有効に抑えることができる。 According to such a configuration, the blade inclined portion is formed at the connecting portion with the rotary shaft on the radially inner side in the blade main body, where the influence of the leakage flow of the working fluid is maximized. Thereby, the loss when the leakage flow of the working fluid and the moving blade collide can be effectively suppressed.
 本発明の第八態様によれば、上記第五から第七の態様において、前記回転軸には、前記動翼に対して上流側に位置する前記静翼本体の径方向内側に、径方向内側に窪む静翼キャビティが形成され、前記動翼傾斜部の少なくとも一部は、前記静翼キャビティに対して前記中心軸方向において対向するよう設けられていてもよい。 According to an eighth aspect of the present invention, in the fifth to seventh aspects, the rotary shaft includes a radially inner side radially inward of the stationary blade body positioned upstream of the moving blade. A stationary blade cavity that is recessed may be formed, and at least a part of the blade inclined portion may be provided to face the stationary blade cavity in the central axis direction.
 このように構成することで、静翼キャビティと静翼本体の径方向内側の先端部との隙間を通り抜ける作動流体の漏れ流れを、中心軸方向に沿った方向に流して、動翼傾斜部でそのまま受け入れることができる。これにより、作動流体の漏れ流れと動翼とが衝突する時の損失を有効に抑えることができる。 By configuring in this way, the leakage flow of the working fluid that passes through the gap between the stationary blade cavity and the radially inner tip of the stationary blade body flows in the direction along the central axis direction, It can be accepted as it is. Thereby, the loss when the leakage flow of the working fluid and the moving blade collide can be effectively suppressed.
 本発明の第九態様によれば、中心軸回りに回転する回転軸と、前記回転軸の径方向外側に設けられたプラットフォーム、及び、前記プラットフォームから径方向外側に向かって延びるよう設けられた動翼本体を有する動翼と、前記回転軸及び前記動翼の径方向外側に配置され、その径方向内側を作動流体が前記中心軸方向に沿って上流側から下流側に向かって流れる筒状のケーシングと、前記ケーシングから径方向内側に向かって延びるよう設けられた静翼本体、及び前記静翼本体の径方向内側に設けられた静翼シュラウドを有する静翼と、を備える。前記動翼本体は、前記動翼本体の前記上流側の動翼前縁部、及び前記下流側の動翼後縁部に対し、前記動翼前縁部と前記動翼後縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、を備える。 According to the ninth aspect of the present invention, the rotating shaft that rotates around the central axis, the platform provided on the radially outer side of the rotating shaft, and the movement provided to extend radially outward from the platform. A moving blade having a blade body, and a cylindrical shape that is disposed on the outer side in the radial direction of the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side to the downstream side along the central axis direction A casing, a stationary blade body provided so as to extend radially inward from the casing, and a stationary blade having a stationary blade shroud provided radially inward of the stationary blade body. The blade main body is located between the blade front edge and the blade trailing edge with respect to the upstream blade front edge and the downstream blade trailing edge of the blade body. A moving blade intermediate portion is formed so as to be convex in the rotation direction of the rotating shaft, and is formed on the radially inner side with respect to the moving blade first shape portion. A moving blade second shape portion having a moving blade inclined portion extending toward the upstream side in the rotation direction of the rotating shaft with respect to the moving blade leading edge portion of the one shape portion.
 このような構成によれば、動翼本体の動翼第一形状部には、作動流体の主流として、上流側の静翼によって生成された旋回流が流れてくる。この旋回流が、動翼第一形状部に当たり、動翼前縁部から動翼中間部を介して動翼後縁部に沿って流れることで、動翼及び回転軸が中心軸回りに旋回する。
 動翼本体の動翼第二形状部は、動翼傾斜部が、動翼第一形状部の動翼前縁部に対し、上流側に向かって回転軸の回転方向側に延びているので、この動翼の上流側に位置する静翼とケーシングとの隙間を通り抜け、旋回成分のエネルギーを有していない作動流体の漏れ流れの向きに沿わせることができる。これによって、作動流体の漏れ流れが動翼に当たるときに生じる損失を抑えることができる。
According to such a configuration, the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body. The swirling flow hits the first shape portion of the moving blade and flows along the moving blade rear edge portion from the moving blade leading edge portion through the moving blade intermediate portion, so that the moving blade and the rotating shaft swirl around the central axis. .
Since the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating blade front edge portion of the moving blade first shape portion, It is possible to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
 本発明の第十態様によれば、ケーシング内に回転軸が中心軸回りに回転可能に設けられた軸流回転機械の前記ケーシングから径方向内側に向かって延びるよう設けられる静翼本体を有し、前記静翼本体は、前記静翼本体において前記中心軸方向の第一側の静翼第一縁部、及び前記中心軸方向の第二側の静翼第二縁部に対し、前記静翼第一縁部と前記静翼第二縁部の間の静翼中間部が、前記回転軸の回転方向と反対方向に凸となるように湾曲した静翼第一形状部と、前記静翼第一形状部に対して前記径方向外側に形成され、前記静翼第一形状部の前記静翼第一縁部に対し、前記第一側に向かって前記回転軸の回転方向と反対方向側に延びている静翼傾斜部を有する静翼第二形状部と、を備える。 According to a tenth aspect of the present invention, there is provided a stationary blade body provided to extend radially inward from the casing of the axial-flow rotating machine in which the rotation shaft is provided to be rotatable around the central axis in the casing. The stationary blade main body has a first blade edge on the first side in the central axis direction and a second blade edge on the second side in the central axis direction of the stationary blade body. A stationary vane first shape portion curved so that a stationary blade intermediate portion between the first edge portion and the stationary blade second edge portion protrudes in a direction opposite to the rotation direction of the rotating shaft; It is formed on the outer side in the radial direction with respect to one shape portion, and on the opposite side to the rotation direction of the rotary shaft toward the first side with respect to the first blade portion of the stator blade first shape portion. A stationary blade second shape portion having an extending stationary blade inclined portion.
 このような構成によれば、静翼本体の静翼第一形状部は、上流側から流れてきた作動流体の主流を、静翼第一縁部から静翼中間部を介して静翼第二縁部に沿わせることで、後流側の動翼を回転させるための旋回流を生成する。
 静翼本体の静翼第二形状部は、静翼傾斜部が、静翼第一形状部の静翼第一縁部に対し、上流側に向かって回転軸の回転方向と反対方向側に延びているので、この静翼の上流側に位置する動翼とケーシングとの隙間を通り抜け、旋回成分のエネルギーを有している作動流体の漏れ流れの向きに静翼の入口角を沿わせることができる。これによって、作動流体の漏れ流れが静翼に当たるときに生じる損失を抑えることができる。
According to such a configuration, the stationary blade first shape portion of the stationary blade body causes the main flow of the working fluid flowing from the upstream side to flow from the stationary blade first edge to the stationary blade second through the stationary blade intermediate portion. A swirling flow for rotating the rotor blade on the wake side is generated by being along the edge.
The stationary blade second shape portion of the stationary blade main body has a stationary blade inclined portion that extends toward the upstream side in the direction opposite to the rotation direction of the rotation shaft with respect to the stationary blade first edge portion of the stationary blade first shape portion. Therefore, it is possible to make the inlet angle of the stationary blade follow the direction of the leakage flow of the working fluid having the energy of the swirling component through the gap between the moving blade and the casing located on the upstream side of the stationary blade. it can. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the stationary blade.
 本発明の第十一態様によれば、ケーシング内に回転軸が中心軸回りに回転可能に設けられた軸流回転機械の回転軸から径方向外側に向かって延びるよう設けられる動翼本体を有する。前記動翼本体は、前記動翼本体の前記中心軸方向の第一側の動翼第一縁部、及び前記中心軸方向の第二側の動翼第二縁部に対し、前記動翼第一縁部と前記動翼第二縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼第一縁部に対し、前記第一側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、を備える。 According to the eleventh aspect of the present invention, there is provided the rotor blade body provided in the casing so as to extend radially outward from the rotation shaft of the axial-flow rotating machine in which the rotation shaft is rotatably provided around the central axis. . The rotor blade main body has a first blade edge on the first side in the central axis direction of the rotor blade body and a second blade edge on the second side in the central axis direction. A moving blade first shape portion curved so that a moving blade intermediate portion between one edge portion and the moving blade second edge portion is convex in the rotation direction of the rotating shaft, and the moving blade first shape portion The blade inclined portion that is formed on the radially inner side and extends toward the first side toward the rotation direction of the rotating shaft with respect to the blade first edge of the blade first shape portion. And a moving blade second shape portion.
 このような構成によれば、動翼本体の動翼第一形状部には、作動流体の主流として、上流側の静翼によって生成された旋回流が流れてくる。この旋回流が、動翼第一形状部に当たり、動翼第一縁部から動翼中間部を介して動翼第二縁部に沿って流れることで、動翼及び回転軸が中心軸回りに旋回する。
 動翼本体の動翼第二形状部は、動翼傾斜部が、動翼第一形状部の動翼第一縁部に対し、上流側に向かって回転軸の回転方向側に延びているので、この動翼の上流側に位置する静翼とケーシングとの隙間を通り抜け、旋回成分のエネルギーを有していない作動流体の漏れ流れの向きに動翼の入口角を沿わせることができる。これによって、作動流体の漏れ流れが動翼に当たるときに生じる損失を抑えることができる。
According to such a configuration, the swirl flow generated by the upstream stationary vane flows as the main flow of the working fluid in the moving blade first shape portion of the moving blade body. This swirling flow hits the first shape part of the moving blade and flows along the second edge of the moving blade from the first edge of the moving blade through the intermediate portion of the moving blade. Turn.
Since the moving blade inclined portion of the moving blade second shape portion of the moving blade body extends toward the upstream side of the rotating shaft with respect to the moving blade first edge portion of the moving blade first shape portion. The inlet angle of the moving blade can be made to follow the direction of the leakage flow of the working fluid that does not have the energy of the swirling component through the gap between the stationary blade and the casing located on the upstream side of the moving blade. Thereby, it is possible to suppress a loss that occurs when the leakage flow of the working fluid hits the moving blade.
 本発明に係る軸流回転機械、静翼、動翼によれば、作動流体の主流と作動流体の漏れ流れとの混合損失を低減し、軸流回転機械の効率を高めることができる。 According to the axial flow rotating machine, the stationary blade, and the moving blade according to the present invention, the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid can be reduced, and the efficiency of the axial flow rotating machine can be increased.
本発明の実施形態に係る蒸気タービンの構成を示す模式図である。It is a mimetic diagram showing the composition of the steam turbine concerning the embodiment of the present invention. 本発明の第一実施形態に係る蒸気タービンの要部拡大図である。It is a principal part enlarged view of the steam turbine which concerns on 1st embodiment of this invention. 上記蒸気タービンの静翼本体の形状を示す斜視図である。It is a perspective view which shows the shape of the stationary blade main body of the said steam turbine. 上記静翼本体を径方向外側から見た図である。It is the figure which looked at the said stationary blade main body from the radial direction outer side. 上記蒸気タービンの動翼本体の形状を示す斜視図である。It is a perspective view which shows the shape of the moving blade main body of the said steam turbine. 上記動翼本体を径方向外側から見た図である。It is the figure which looked at the said moving-blade main body from the radial direction outer side. 本発明の第二実施形態に係る蒸気タービンの要部拡大図である。It is a principal part enlarged view of the steam turbine which concerns on 2nd embodiment of this invention.
 以下、本発明の一実施形態に係る軸流回転機械、静翼、動翼を図面に基づき説明する。
〔第一実施形態〕
 図1は、本発明の実施形態に係る蒸気タービンの構成を示す模式図である。図2は、本発明の第一実施形態に係る蒸気タービンの要部拡大図である。
 図1に示すように、本実施形態に係る蒸気タービン(軸流回転機械)100は、回転軸1と、ケーシング2と、複数の動翼4を備える動翼段3と、複数の静翼7を備える静翼段6と、を備えている。
Hereinafter, an axial flow rotating machine, a stationary blade, and a moving blade according to an embodiment of the present invention will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a schematic diagram showing a configuration of a steam turbine according to an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of the steam turbine according to the first embodiment of the present invention.
As shown in FIG. 1, a steam turbine (axial flow rotary machine) 100 according to this embodiment includes a rotating shaft 1, a casing 2, a moving blade stage 3 including a plurality of moving blades 4, and a plurality of stationary blades 7. And a stationary blade stage 6 provided with.
 回転軸1は、中心軸Acに沿って延びる円柱状をなしている。回転軸1は、中心軸Acに沿った中心軸方向Daの両端部が、軸受装置5によって中心軸Ac回りに回転自在に支持されている。軸受装置5は、回転軸1の中心軸方向Da両側に1つずつ設けられたジャーナル軸受5Aと、中心軸方向Daの第一側のみに設けられたスラスト軸受5Bと、を有している。ジャーナル軸受5Aは、回転軸1による径方向Drへの荷重を支持する。スラスト軸受5Bは、回転軸1による中心軸方向Daへの荷重を支持する。 The rotary shaft 1 has a cylindrical shape extending along the central axis Ac. The rotary shaft 1 is supported at both ends in the central axis direction Da along the central axis Ac by the bearing device 5 so as to be rotatable around the central axis Ac. The bearing device 5 includes a journal bearing 5A provided on each side of the central axis direction Da of the rotating shaft 1 and a thrust bearing 5B provided only on the first side in the central axis direction Da. The journal bearing 5 </ b> A supports a load in the radial direction Dr by the rotating shaft 1. The thrust bearing 5B supports the load in the central axis direction Da by the rotating shaft 1.
 ケーシング2は、中心軸方向Daに延びる筒状をなしている。ケーシング2は、回転軸1を外周側から覆う。
 ケーシング2は、吸気口10と、排気口11と、を備えている。吸気口10は、ケーシング2の中心軸方向Daの第一側に形成され、外部からケーシング2内に蒸気(作動流体)を取り入れる。排気口11は、ケーシング2の中心軸方向Daの第二側に形成され、ケーシング2内を通過した蒸気を外部に排気する。
 以降の説明では、排気口11から見て吸気口10が位置する側を上流側と呼び、吸気口10から見て排気口11が位置する側を下流側と呼ぶ。
The casing 2 has a cylindrical shape extending in the central axis direction Da. The casing 2 covers the rotating shaft 1 from the outer peripheral side.
The casing 2 includes an intake port 10 and an exhaust port 11. The air inlet 10 is formed on the first side in the central axis direction Da of the casing 2 and takes in steam (working fluid) into the casing 2 from the outside. The exhaust port 11 is formed on the second side of the casing 2 in the central axis direction Da and exhausts the steam that has passed through the casing 2 to the outside.
In the following description, the side where the intake port 10 is located when viewed from the exhaust port 11 is referred to as the upstream side, and the side where the exhaust port 11 is located when viewed from the intake port 10 is referred to as the downstream side.
 動翼段3は、回転軸1の外周面1Sに、中心軸方向Daの第一側から第二側に向かって間隔をあけて、複数段が設けられている。各動翼段3は、回転軸1の外周面1S上で、中心軸Ac回りの周方向に間隔をあけて配列された複数の動翼4を有している。 The rotor blade stage 3 is provided with a plurality of stages on the outer peripheral surface 1S of the rotating shaft 1 at intervals from the first side to the second side in the central axis direction Da. Each blade stage 3 has a plurality of blades 4 arranged on the outer peripheral surface 1S of the rotary shaft 1 at intervals in the circumferential direction around the central axis Ac.
 図2に示すように、動翼4は、回転軸1の外周面1Sに設けられたプラットフォーム43と、動翼本体40Aと、動翼シュラウド41と、を有している。 As shown in FIG. 2, the moving blade 4 includes a platform 43 provided on the outer peripheral surface 1 </ b> S of the rotating shaft 1, a moving blade body 40 </ b> A, and a moving blade shroud 41.
 動翼本体40Aは、プラットフォーム43から径方向Dr外側に向かって延びるよう形成されている。動翼本体40Aは、径方向Drから見て翼型の断面を有している。 The rotor blade main body 40A is formed to extend from the platform 43 toward the outside in the radial direction Dr. The rotor blade main body 40A has an airfoil-shaped cross section when viewed from the radial direction Dr.
 動翼シュラウド41は、動翼本体40Aの径方向Dr外側の端部に設けられている。動翼シュラウド41は、中心軸方向Daにおける寸法が、同中心軸方向Daにおける動翼本体40Aの寸法よりも大きく設定されている。 The rotor blade shroud 41 is provided at the outer end of the rotor blade main body 40A in the radial direction Dr. The moving blade shroud 41 is set such that the dimension in the central axis direction Da is larger than the dimension of the moving blade body 40A in the central axis direction Da.
 ケーシング2の内周側であって、動翼シュラウド41と径方向Drで対向する領域には、動翼シュラウド41を収容するための動翼キャビティ20が形成されている。動翼キャビティ20は、ケーシング2の内周面2Sから径方向Dr外側に向かって窪み、中心軸Ac回りの周方向に連続する溝状をなしている。 A moving blade cavity 20 for accommodating the moving blade shroud 41 is formed in an area on the inner peripheral side of the casing 2 and facing the moving blade shroud 41 in the radial direction Dr. The rotor blade cavity 20 is recessed from the inner peripheral surface 2S of the casing 2 toward the outer side in the radial direction Dr, and has a groove shape continuous in the circumferential direction around the central axis Ac.
 動翼キャビティ20には、複数(2つ)の動翼側フィン42が設けられている。これら動翼側フィン42は、径方向Dr内側に向かって延びる薄板状をなしている。動翼側フィン42の先端部と動翼キャビティ20とは、径方向Drに所定の間隙(クリアランス)を隔てて対向している。 The blade cavity 20 is provided with a plurality (two) of blade-side fins 42. These blade-side fins 42 have a thin plate shape extending inward in the radial direction Dr. The tip of the rotor blade side fin 42 and the rotor blade cavity 20 face each other with a predetermined gap (clearance) in the radial direction Dr.
 図1に示すように、静翼段6は、ケーシング2の内周面に、中心軸方向Daに沿って間隔をあけて、複数段が設けられている。各静翼段6は、各動翼段3の上流側に配置されている。各静翼段6は、中心軸Ac回りの周方向に間隔をあけて配列された複数の静翼7を有している。 As shown in FIG. 1, the stationary blade stage 6 is provided with a plurality of stages on the inner peripheral surface of the casing 2 at intervals along the central axis direction Da. Each stationary blade stage 6 is arranged on the upstream side of each moving blade stage 3. Each stationary blade stage 6 has a plurality of stationary blades 7 arranged at intervals in the circumferential direction around the central axis Ac.
 図2に示すように、静翼7は、静翼本体70Aと、静翼シュラウド71と、を備えている。
 静翼本体70Aは、ケーシング2の内周面2Sから径方向Dr内側に向かって延びるよう設けられている。静翼本体70Aは、径方向Drから見て翼型の断面を有している。
 静翼シュラウド71は、静翼本体70Aの径方向Dr内側の端部に取り付けられている。
As shown in FIG. 2, the stationary blade 7 includes a stationary blade body 70 </ b> A and a stationary blade shroud 71.
The stationary blade body 70A is provided so as to extend from the inner peripheral surface 2S of the casing 2 toward the inside in the radial direction Dr. The stationary blade body 70A has a blade-shaped cross section when viewed from the radial direction Dr.
The stationary blade shroud 71 is attached to an end portion on the inner side in the radial direction Dr of the stationary blade body 70A.
 本実施形態では、静翼本体70Aと動翼本体40Aの径方向Dr寸法は互いに同一とされている。言い換えると、中心軸方向Daから見た場合、静翼本体70Aと動翼本体40Aとは互いに重なるように配列されている。 In this embodiment, the radial direction Dr dimensions of the stationary blade body 70A and the moving blade body 40A are the same. In other words, when viewed from the central axis direction Da, the stationary blade body 70A and the moving blade body 40A are arranged so as to overlap each other.
 回転軸1の径方向Dr外側を向く外周面1S上において、各動翼段3の上流側には、回転軸1の外周面1Sから径方向Dr内側に向かって窪み、中心軸Ac回りの周方向に連続する溝状の静翼キャビティ8が形成されている。各静翼7の静翼シュラウド71は、静翼キャビティ8内に収容されている。 On the outer peripheral surface 1S facing the outer side of the radial direction Dr of the rotary shaft 1, on the upstream side of each rotor blade stage 3, the outer peripheral surface 1S of the rotary shaft 1 is recessed from the outer peripheral surface 1S toward the inner side in the radial direction Dr. A groove-shaped stationary blade cavity 8 continuous in the direction is formed. The stationary blade shroud 71 of each stationary blade 7 is accommodated in the stationary blade cavity 8.
 静翼シュラウド71には、複数(2つ)の静翼側フィン72が設けられている。これらの静翼側フィン72は、いずれも静翼シュラウド71から径方向Dr内側に向かって延びる薄板状をなしている。静翼側フィン72と静翼キャビティ8とは、径方向Drに所定の間隙を隔てて対向している。 The stationary blade shroud 71 is provided with a plurality (two) of stationary blade side fins 72. Each of the stationary blade side fins 72 has a thin plate shape that extends from the stationary blade shroud 71 toward the inside in the radial direction Dr. The stationary blade side fin 72 and the stationary blade cavity 8 are opposed to each other with a predetermined gap in the radial direction Dr.
 以上のように構成された蒸気タービン100の動作について図1を参照して説明する。蒸気タービン100を運転するに当たっては、まずボイラ等の蒸気供給源(図示省略)から供給された高温高圧の蒸気が、吸気口10を通じてケーシング2の内部に導入される。ケーシング2内に導入された蒸気は、動翼4(動翼段3)、及び静翼7(静翼段6)に順次衝突する。各静翼段6においては、上流側から流れてきた蒸気が静翼7に当たることで、この蒸気の流れに回転軸1回りの旋回成分が付与される。これにより、各静翼段6の下流側では、蒸気の流れは回転軸1回りに旋回している。各動翼段3は、上流側の静翼段6を経て回転軸1回りに旋回した蒸気の流れが到達する。この旋回した蒸気の流れが各動翼4に当たることで、回転軸1は回転エネルギーを得て、中心軸Ac回りに回転する。この回転軸1の回転運動は、軸端に連結された発電機等(図示省略)によって取り出される。
 以上のサイクルが連続的に繰り返される。
The operation of the steam turbine 100 configured as described above will be described with reference to FIG. In operating the steam turbine 100, first, high-temperature and high-pressure steam supplied from a steam supply source (not shown) such as a boiler is introduced into the casing 2 through the intake port 10. The steam introduced into the casing 2 sequentially collides with the moving blade 4 (the moving blade stage 3) and the stationary blade 7 (the stationary blade stage 6). In each stationary blade stage 6, the steam flowing from the upstream side hits the stationary blade 7, so that a swirl component around the rotating shaft 1 is added to this steam flow. As a result, on the downstream side of each stationary blade stage 6, the steam flow swirls around the rotary shaft 1. Each moving blade stage 3 reaches the flow of steam swirling around the rotary shaft 1 through the upstream stationary blade stage 6. When the swirling steam flow hits each rotor blade 4, the rotating shaft 1 obtains rotational energy and rotates around the central axis Ac. The rotational movement of the rotary shaft 1 is taken out by a generator or the like (not shown) connected to the shaft end.
The above cycle is repeated continuously.
 上記のようにして、蒸気が、静翼7と動翼4とを交互に経て上流側から下流側に向かって流れることで、主流FMを形成する。この主流FMは、上記のように静翼7と動翼4とに順次衝突することで整流されるとともに、動翼4に対してエネルギーを与える。 As described above, the steam flows alternately from the upstream side to the downstream side through the stationary blades 7 and the moving blades 4, thereby forming the mainstream FM. The mainstream FM is rectified by sequentially colliding with the stationary blade 7 and the moving blade 4 as described above, and gives energy to the moving blade 4.
 一方で、各静翼段6においては、上流側から流れてきた蒸気のうち、主流FMを除く成分は、上記の静翼キャビティ8内に流れ込み、静翼シュラウド71に設けられた静翼側フィン72と回転軸1に形成された静翼キャビティ8との隙間を通り抜ける、静翼漏れ流れFLsを形成する。この静翼漏れ流れFLsは、静翼シュラウド71の下流側に到達すると、静翼シュラウド71の下流側において、静翼シュラウド71とプラットフォーム43との間を、径方向Dr内側から外側に向かって流れ、主流FMに合流する。 On the other hand, in each stationary blade stage 6, components other than the main flow FM out of the steam flowing from the upstream side flow into the stationary blade cavity 8 and are disposed on the stationary blade shroud 71. And a stationary blade leakage flow FLs passing through a gap between the rotating blade 1 and the stationary blade cavity 8 formed on the rotating shaft 1 is formed. When the stationary blade leakage flow FLs reaches the downstream side of the stationary blade shroud 71, the stationary blade leakage flow FLs flows between the stationary blade shroud 71 and the platform 43 from the inner side in the radial direction Dr toward the outer side on the downstream side of the stationary blade shroud 71. , Join the mainstream FM.
 また、各動翼段3においては、上流側から流れてきた蒸気のうち、主流FMを除く成分は、上記の動翼キャビティ20に流れ込み、動翼シュラウド41と動翼キャビティ20に設けられた動翼側フィン42との隙間を通り抜ける、動翼漏れ流れFLmを形成する。この動翼漏れ流れFLmは、動翼シュラウド41の下流側に到達すると、動翼シュラウド41と動翼キャビティ20との間を、径方向Dr外側から内側に向かって流れ、主流FMに合流する。 In each blade stage 3, the components other than the mainstream FM out of the steam flowing from the upstream side flow into the blade cavity 20, and the moving blades provided in the blade shroud 41 and the blade cavity 20. A blade leakage flow FLm is formed that passes through the gap with the blade-side fin 42. When the moving blade leakage flow FLm reaches the downstream side of the moving blade shroud 41, it flows between the moving blade shroud 41 and the moving blade cavity 20 from the outer side in the radial direction Dr to the inner side, and joins the main flow FM.
 本実施形態では、上記したような構成の蒸気タービン100において、静翼本体70A、動翼本体40Aは、以下に示すような構成を有する。 In the present embodiment, in the steam turbine 100 configured as described above, the stationary blade body 70A and the moving blade body 40A have the following configurations.
 図3は、上記蒸気タービンの静翼本体の形状を示す斜視図である。図4は、上記静翼本体を径方向外側から見た図である。
 図3、図4に示すように、静翼本体70Aは、静翼第一形状部73Aと、静翼第二形状部73Bと、を有している。
FIG. 3 is a perspective view showing the shape of the stationary blade body of the steam turbine. FIG. 4 is a view of the stationary blade body as viewed from the outside in the radial direction.
As shown in FIGS. 3 and 4, the stationary blade body 70 </ b> A has a stationary blade first shape portion 73 </ b> A and a stationary blade second shape portion 73 </ b> B.
 静翼第一形状部73Aは、静翼本体70Aにおいて、径方向Dr内側の静翼シュラウド71から、径方向Drに沿って所定の長さにわたって形成されている。静翼第一形状部73Aは、静翼本体70Aにおいて上流側に位置する静翼前縁部(静翼第一縁部)74と、下流側に位置する静翼後縁部(静翼第二縁部)75とに対し、静翼前縁部74と静翼後縁部75の間の静翼中間部76が、回転軸1の回転方向Rと反対方向に凸となるように湾曲した翼断面形状を有している。 The stationary blade first shape portion 73A is formed in the stationary blade body 70A from the stationary blade shroud 71 inside the radial direction Dr over a predetermined length along the radial direction Dr. The stationary blade first shape portion 73A includes a stationary blade leading edge portion (static blade first edge portion) 74 positioned on the upstream side in the stationary blade body 70A and a stationary blade trailing edge portion (static blade second edge) positioned on the downstream side. The blade is curved so that the stationary blade intermediate portion 76 between the stationary blade leading edge portion 74 and the stationary blade trailing edge portion 75 is convex in the direction opposite to the rotation direction R of the rotary shaft 1 with respect to the edge) 75. It has a cross-sectional shape.
 静翼第二形状部73Bは、静翼第一形状部73Aに対して径方向Dr外側に形成されている。静翼第二形状部73Bは、上流側に、静翼傾斜部77Aを有している。この静翼傾斜部77Aは、静翼第一形状部73Aの静翼前縁部74に対し、上流側に向かって回転軸1の回転方向Rと反対方向Rz側に延びるように形成されている。さらに、静翼傾斜部77Aは、静翼第一形状部73Aから径方向Dr外側に向かうにしたがって、静翼前縁部74に対する回転軸1の回転方向Rと反対方向Rz側への変位量が漸次大きくなるよう形成されている。このようにして、静翼傾斜部77Aは、静翼本体70Aにおいてケーシング2との接続部に形成されている。
 なお、静翼第二形状部73Bにおいて下流側の、静翼傾斜部77A以外の部分は、静翼第一形状部73Aと同形状を有している。
The stationary blade second shape portion 73B is formed outside the radial direction Dr with respect to the stationary blade first shape portion 73A. The stationary blade second shape portion 73B has a stationary blade inclined portion 77A on the upstream side. The stationary blade inclined portion 77A is formed to extend toward the upstream side in the direction Rz opposite to the rotational direction R of the rotating shaft 1 with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A. . Further, the stationary blade inclined portion 77A has a displacement amount in the direction Rz opposite to the rotational direction R of the rotary shaft 1 with respect to the stationary blade leading edge portion 74 as it goes outward from the stationary blade first shape portion 73A in the radial direction Dr. It is formed to gradually increase. In this way, the stationary blade inclined portion 77A is formed at the connection portion with the casing 2 in the stationary blade body 70A.
The downstream side of the stationary blade second shape portion 73B other than the stationary blade inclined portion 77A has the same shape as the stationary blade first shape portion 73A.
 ここで、静翼傾斜部77Aの傾斜方向Dkは、この静翼7の上流側に位置する動翼4とケーシング2の動翼キャビティ20との隙間を通り抜け、旋回成分のエネルギーを有している蒸気の漏れ流れFLmの向きに沿わせるのが好ましい。静翼傾斜部77Aの傾斜方向Dkは、中心軸方向Daに対し、例えば5~45度程度の角度で設定するのが好ましい。
 また、静翼傾斜部77Aは、静翼本体70Aにおいて、径方向Drに沿った翼高さHtに対し、例えば、10~30%の範囲に収まるように形成するのが好ましい。
Here, the inclination direction Dk of the stationary blade inclined portion 77A passes through the gap between the moving blade 4 located on the upstream side of the stationary blade 7 and the moving blade cavity 20 of the casing 2, and has the energy of the swirling component. It is preferable to follow the direction of the steam leakage flow FLm. The inclination direction Dk of the stationary blade inclined portion 77A is preferably set at an angle of, for example, about 5 to 45 degrees with respect to the central axis direction Da.
In addition, the stationary blade inclined portion 77A is preferably formed in the stationary blade body 70A so as to be within a range of, for example, 10 to 30% with respect to the blade height Ht along the radial direction Dr.
 図5は、上記蒸気タービンの動翼本体の形状を示す斜視図である。図6は、上記動翼本体を径方向外側から見た図である。
 図5、図6に示すように、動翼本体40Aは、動翼第一形状部44Aと、動翼第二形状部44Bと、を有している。
FIG. 5 is a perspective view showing the shape of the rotor blade main body of the steam turbine. FIG. 6 is a view of the moving blade main body as viewed from the outside in the radial direction.
As shown in FIGS. 5 and 6, the rotor blade main body 40A includes a rotor blade first shape portion 44A and a rotor blade second shape portion 44B.
 動翼第一形状部44Aは、動翼本体40Aの上流側に位置する動翼前縁部(動翼第一縁部)45と、下流側に位置する動翼後縁部(動翼第二縁部)46とに対し、これら動翼前縁部45と動翼後縁部46の間の動翼中間部47が、回転軸1の回転方向Rに凸となるように湾曲した翼断面形状を有している。 The moving blade first shape portion 44A includes a moving blade leading edge portion (moving blade first edge portion) 45 located on the upstream side of the moving blade main body 40A and a moving blade trailing edge portion (moving blade second blade) located on the downstream side. The blade cross-sectional shape is curved so that the blade intermediate portion 47 between the blade leading edge 45 and the blade trailing edge 46 is convex in the rotation direction R of the rotating shaft 1 with respect to the edge 46). have.
 動翼第二形状部44Bは、動翼第一形状部44Aに対して径方向Dr内側に形成されている。動翼第二形状部44Bは、上流側に動翼傾斜部48Aを有している。この動翼傾斜部48Aは、動翼第一形状部44Aの動翼前縁部45に対し、上流側に向かって回転軸1の回転方向R側に延びるように形成されている。さらに、動翼傾斜部48Aは、動翼第一形状部44Aから径方向Dr内側に向かうにしたがって、動翼前縁部45に対する回転軸1の回転方向R側への変位量が漸次大きくなるよう形成されている。このようにして、動翼傾斜部48Aは、動翼本体40Aにおいて回転軸1との接続部に形成されている。
 なお、動翼第二形状部44Bにおいて下流側の、動翼傾斜部48A以外の部分は、動翼第一形状部44Aと同形状を有している。
The moving blade second shape portion 44B is formed on the inner side in the radial direction Dr with respect to the moving blade first shape portion 44A. The moving blade second shape portion 44B has a moving blade inclined portion 48A on the upstream side. The moving blade inclined portion 48A is formed so as to extend toward the rotation direction R of the rotating shaft 1 toward the upstream side with respect to the moving blade leading edge 45 of the moving blade first shape portion 44A. Further, the moving blade inclined portion 48A gradually increases in the amount of displacement of the rotating shaft 1 in the rotational direction R side with respect to the moving blade leading edge 45 toward the inner side in the radial direction Dr from the moving blade first shape portion 44A. Is formed. In this way, the moving blade inclined portion 48A is formed in the connecting portion with the rotating shaft 1 in the moving blade main body 40A.
The portion other than the moving blade inclined portion 48A on the downstream side of the moving blade second shape portion 44B has the same shape as the moving blade first shape portion 44A.
 ここで、動翼傾斜部48Aの傾斜方向Dmは、この動翼4の上流側に位置する静翼7と回転軸1の静翼キャビティ8との隙間を通り抜け、旋回成分のエネルギーを有していない蒸気の漏れ流れFLsの向きに沿わせるのが好ましい。動翼傾斜部48Aの傾斜方向Dmは、中心軸方向Daに対し、例えば5~45度程度とするのが好ましい。
 また、動翼傾斜部48Aは、動翼本体40Aにおいて、径方向Drに沿った翼高さHuに対し、例えば、10~30%の範囲に収まるように形成するのが好ましい。
Here, the inclination direction Dm of the moving blade inclined portion 48A passes through the gap between the stationary blade 7 located on the upstream side of the moving blade 4 and the stationary blade cavity 8 of the rotating shaft 1, and has the energy of the swirl component. It is preferable to follow the direction of no steam leakage flow FLs. The inclination direction Dm of the moving blade inclined portion 48A is preferably about 5 to 45 degrees, for example, with respect to the central axis direction Da.
Further, the moving blade inclined portion 48A is preferably formed so as to fall within a range of, for example, 10 to 30% with respect to the blade height Hu along the radial direction Dr in the moving blade body 40A.
 上記したような構成によれば、図3、図4に示すように、静翼本体70Aの静翼第一形状部73Aは、上流側から流れてきた蒸気の主流FMを、静翼前縁部74から静翼中間部76を介して静翼後縁部75に沿わせることで、後流側の動翼4を回転させるための旋回流を生成する。
 静翼本体70Aの静翼第二形状部73Bは、静翼傾斜部77Aが、静翼第一形状部73Aの静翼前縁部74に対し、上流側に向かって回転軸1の回転方向Rと反対方向Rzに延びているので、この静翼7の上流側に位置する動翼4とケーシング2との隙間を通り抜け、旋回成分のエネルギーを有している蒸気の漏れ流れFLmの向きに沿わせることができる。これにより、静翼第二形状部73Bにおいて、静翼傾斜部77Aの下流側では、静翼傾斜部77Aに沿って流れた蒸気の漏れ流れFLmは、蒸気の主流FMと同方向に流れるようになる。
According to the configuration as described above, as shown in FIGS. 3 and 4, the stationary blade first shape portion 73 </ b> A of the stationary blade body 70 </ b> A converts the main flow FM of the steam flowing from the upstream side into the stationary blade leading edge portion. A swirling flow for rotating the moving blade 4 on the wake side is generated by moving along the stationary blade trailing edge 75 from 74 through the stationary blade intermediate portion 76.
In the stationary blade second shape portion 73B of the stationary blade body 70A, the stationary blade inclined portion 77A has a rotational direction R of the rotating shaft 1 toward the upstream side with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A. Since it extends in the opposite direction Rz, it passes through the gap between the moving blade 4 located on the upstream side of the stationary blade 7 and the casing 2 and follows the direction of the steam leakage flow FLm having the energy of the swirling component. Can be made. Thereby, in the stationary blade second shape portion 73B, on the downstream side of the stationary blade inclined portion 77A, the steam leakage flow FLm flowing along the stationary blade inclined portion 77A flows in the same direction as the main flow FM of steam. Become.
 また、動翼本体40Aの動翼第一形状部44Aには、蒸気の主流FMとして、上流側の静翼7によって生成された旋回流が流れてくる。この旋回流が、動翼第一形状部44Aに当たり、動翼前縁部45から動翼中間部47を介して動翼後縁部46に沿って流れることで、動翼4及び回転軸1が中心軸Ac回りに旋回する。
 また、動翼本体40Aの動翼第二形状部44Bは、動翼傾斜部48Aが、動翼第一形状部44Aの動翼前縁部45に対し、上流側に向かって回転軸1の回転方向R側に延びている。これにより、動翼傾斜部48Aの向きを、この動翼4の上流側に位置する静翼7とケーシング2との隙間を通り抜け、旋回成分のエネルギーを有していない蒸気の漏れ流れFLsの向きに沿わせることができる。これにより、動翼第二形状部44Bにおいて、動翼傾斜部48Aの下流側では、動翼傾斜部48Aに沿って流れた蒸気の漏れ流れFLsは、蒸気の主流FMと同方向に流れるようになる。
Further, the swirl flow generated by the upstream stationary blade 7 flows as the main flow FM of the steam into the first blade-shaped portion 44A of the blade main body 40A. The swirling flow hits the first blade shaped portion 44A and flows from the blade leading edge 45 through the blade intermediate portion 47 along the blade trailing edge 46, whereby the blade 4 and the rotary shaft 1 are moved. It turns around the central axis Ac.
Further, in the moving blade second shape portion 44B of the moving blade main body 40A, the moving blade inclined portion 48A rotates the rotary shaft 1 toward the upstream side with respect to the moving blade leading edge portion 45 of the moving blade first shape portion 44A. It extends in the direction R side. Thus, the direction of the inclined portion 48A of the moving blade passes through the gap between the stationary blade 7 and the casing 2 located on the upstream side of the moving blade 4, and the direction of the leakage flow FLs of the steam having no swirling component energy Can be along. Thereby, in the moving blade second shape portion 44B, the steam leakage flow FLs flowing along the moving blade inclined portion 48A flows in the same direction as the main flow FM of steam on the downstream side of the moving blade inclined portion 48A. Become.
 上述したような蒸気タービン100及び静翼7によれば、旋回成分のエネルギーを有している蒸気の漏れ流れFLmを、静翼傾斜部77Aに沿わせることができる。これによって、蒸気の漏れ流れFLmが静翼7に当たるときに生じる損失を抑えることができる。したがって、蒸気の漏れ流れFLmを静翼7に沿わせて蒸気の主流FMと良好に合流させることができ、蒸気の漏れ流れFLmとの混合損失を低減し、蒸気タービン100の効率を高めることができる。 According to the steam turbine 100 and the stationary blade 7 as described above, the steam leakage flow FLm having the energy of the swirl component can be made to follow the stationary blade inclined portion 77A. Thereby, it is possible to suppress a loss that occurs when the steam leakage flow FLm hits the stationary blade 7. Therefore, the steam leakage flow FLm can be satisfactorily merged with the main steam FM along the stationary blade 7, the mixing loss with the steam leakage flow FLm can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
 また、静翼傾斜部77Aは、静翼第一形状部73Aから径方向Dr外側に向かうにしたがって、静翼前縁部74に対する回転軸1の回転方向Rと反対方向Rzへの変位量が漸次大きくなっている。これにより、蒸気の漏れ流れFLmの流量が多い径方向Dr外側であるほど、静翼傾斜部77Aを、蒸気の漏れ流れFLmの向きに沿わせることができる。また、蒸気の漏れ流れFLmの流量が漸次小さくなる径方向Dr内側に向かって、静翼傾斜部77Aの変位量を小さくして、静翼傾斜部77Aを、静翼第一形状部73Aの静翼前縁部74に連続させることができる。これによって、蒸気の漏れ流れFLmが静翼7に当たるときに生じる損失を、より効率良く抑えることができる。 Further, as the stationary blade inclined portion 77A moves from the stationary blade first shape portion 73A toward the outside in the radial direction Dr, the displacement amount of the rotating blade 1 in the direction Rz opposite to the rotational direction R of the stationary blade leading edge 74 gradually increases. It is getting bigger. As a result, the stationary blade inclined portion 77A can be made to follow the direction of the steam leakage flow FLm as the flow rate of the steam leakage flow FLm increases toward the outside of the radial direction Dr. Further, the amount of displacement of the stationary blade inclined portion 77A is decreased toward the inner side of the radial direction Dr where the flow rate of the steam leakage flow FLm gradually decreases, and the stationary blade inclined portion 77A is replaced with the stationary blade first shape portion 73A. The wing leading edge 74 can be continued. This makes it possible to more efficiently suppress the loss that occurs when the steam leakage flow FLm hits the stationary blade 7.
 また、静翼傾斜部77Aは、静翼本体70Aにおいてケーシング2との接続部に形成されている。これにより、蒸気の漏れ流れFLmの影響が最大となる、静翼本体70Aにおいて径方向Dr外側のケーシング2との接続部に静翼傾斜部77Aが形成される。これにより、蒸気の漏れ流れFLmと静翼7とが衝突する時の損失を有効に抑えることができる。 Further, the stationary blade inclined portion 77A is formed at a connection portion with the casing 2 in the stationary blade body 70A. Thereby, the stationary blade inclined portion 77A is formed at the connection portion with the casing 2 outside the radial direction Dr in the stationary blade body 70A, where the influence of the steam leakage flow FLm is maximized. Thereby, the loss when the steam leakage flow FLm and the stationary blade 7 collide can be effectively suppressed.
 また、上述したような蒸気タービン100及び動翼4によれば、動翼4の上流側に位置する静翼7とケーシング2との隙間を通り抜け、旋回成分のエネルギーを有していない蒸気の漏れ流れFLsを、動翼傾斜部48Aに沿わせることができる。これによって、蒸気の漏れ流れFLsが動翼4に当たるときに生じる損失を抑えることができる。したがって、蒸気の漏れ流れFLsを動翼4に沿わせて蒸気の主流FMと良好に合流させることができ、蒸気の漏れ流れFLsとの混合損失を低減し、蒸気タービン100の効率を高めることができる。 Further, according to the steam turbine 100 and the moving blade 4 as described above, the leakage of the steam that does not have the energy of the swirling component through the gap between the stationary blade 7 and the casing 2 located on the upstream side of the moving blade 4. The flow FLs can be made to follow the blade inclined portion 48A. As a result, it is possible to suppress the loss that occurs when the steam leakage flow FLs hits the rotor blade 4. Therefore, the steam leakage flow FLs can be satisfactorily merged with the main steam FM along the moving blade 4, the mixing loss with the steam leakage flow FLs can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
 また、動翼傾斜部48Aは、動翼第一形状部44Aから径方向Dr内側に向かうにしたがって、動翼前縁部45に対する回転軸1の回転方向R側への変位量が漸次大きくなるよう形成されている。これにより、静翼7と回転軸1との間における蒸気の漏れ流れFLsの流量が多い径方向Dr内側であるほど、動翼傾斜部48Aを、蒸気の漏れ流れFLsの向きに沿わせることができる。また、蒸気の漏れ流れFLsの流量が漸次小さくなる径方向Dr外に向かって、動翼傾斜部48Aの変位量を小さくして、動翼傾斜部48Aを、動翼第一形状部44Aの動翼前縁部45に連続させることができる。これによって、蒸気の漏れ流れFLsが動翼4に当たるときに生じる損失を、より効率良く抑えることができる。 Further, the moving blade inclined portion 48A gradually increases in the amount of displacement of the rotating shaft 1 in the rotation direction R side with respect to the moving blade leading edge 45 toward the inner side in the radial direction Dr from the moving blade first shape portion 44A. Is formed. As a result, the moving blade inclined portion 48A can be made to follow the direction of the steam leakage flow FLs as the flow rate of the steam leakage flow FLs between the stationary blade 7 and the rotary shaft 1 is larger in the radial direction Dr. it can. Further, the displacement amount of the moving blade inclined portion 48A is decreased toward the outside of the radial direction Dr where the flow rate of the steam leakage flow FLs gradually decreases, and the moving blade inclined portion 48A is moved to the dynamic state of the moving blade first shape portion 44A. The wing leading edge 45 can be continued. As a result, the loss that occurs when the steam leakage flow FLs hits the rotor blade 4 can be more efficiently suppressed.
 また、動翼傾斜部48Aは、動翼本体40Aにおいて回転軸1との接続部に形成されている。これにより、蒸気の漏れ流れFLsの影響が最大となる、動翼本体40Aにおいて径方向Dr内側の回転軸1との接続部に動翼傾斜部48Aが形成される。これにより、蒸気の漏れ流れFLsと動翼4とが衝突するときの損失を有効に抑えることができる。 Further, the moving blade inclined portion 48A is formed at the connecting portion with the rotating shaft 1 in the moving blade main body 40A. As a result, the blade inclined portion 48A is formed at the connecting portion with the rotary shaft 1 inside the radial direction Dr in the blade main body 40A, where the influence of the steam leakage flow FLs is maximized. Thereby, the loss when the steam leakage flow FLs and the moving blade 4 collide can be effectively suppressed.
〔第二実施形態〕
 次に、本発明にかかる軸流回転機械、静翼、動翼の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と、静翼本体70A、動翼本体40Aの構成のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
[Second Embodiment]
Next, a second embodiment of the axial-flow rotating machine, the stationary blade, and the moving blade according to the present invention will be described. In the second embodiment described below, since only the configuration of the stationary blade body 70A and the moving blade body 40A is different from that of the first embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals and described. The duplicated explanation is omitted.
 図7は、本発明の第二実施形態に係る蒸気タービンの要部拡大図である。
 図7に示すように、本実施形態では、上記第一実施形態で示したのと同様の構成の蒸気タービン100において、静翼本体70C、動翼本体40Cは、以下に示すような構成を有する。
FIG. 7 is an enlarged view of a main part of the steam turbine according to the second embodiment of the present invention.
As shown in FIG. 7, in the present embodiment, in the steam turbine 100 having the same configuration as that shown in the first embodiment, the stationary blade body 70C and the moving blade body 40C have the following configurations. .
 静翼本体70Cは、静翼第一形状部73Aと、静翼第二形状部73Cと、を有している。 The stationary blade body 70C includes a stationary blade first shape portion 73A and a stationary blade second shape portion 73C.
 静翼第一形状部73Aは、静翼本体70Cにおいて、径方向Dr内側の静翼シュラウド71から、径方向Drに沿って所定の長さにわたって形成されている。静翼第一形状部73Aは、静翼本体70Cにおいて上流側に位置する静翼前縁部74と、下流側に位置する静翼後縁部75とに対し、静翼前縁部74と静翼後縁部75の間の静翼中間部76が、回転軸1の回転方向Rと反対方向に凸となるように湾曲した翼断面形状を有している。 The stationary blade first shape portion 73A is formed in the stationary blade body 70C from the stationary blade shroud 71 inside the radial direction Dr over a predetermined length along the radial direction Dr. The stationary blade first shape portion 73A is opposed to the stationary blade leading edge portion 74 and the stationary blade leading edge portion 74 located on the upstream side of the stationary blade body 70C and the stationary blade trailing edge portion 75 located on the downstream side. The stationary blade intermediate portion 76 between the blade trailing edge portions 75 has a blade cross-sectional shape curved so as to protrude in the direction opposite to the rotation direction R of the rotating shaft 1.
 静翼第二形状部73Cは、静翼第一形状部73Aに対して径方向Dr外側に形成されている。静翼第二形状部73Cは、上流側に、静翼傾斜部77Cを有している。この静翼傾斜部77Cは、図4に示すように、上記第一実施形態の静翼傾斜部77Aと同様、静翼第一形状部73Aの静翼前縁部74に対し、上流側に向かって回転軸1の回転方向Rと反対方向Rzに延びるように形成されている。さらに、静翼傾斜部77Cは、静翼第一形状部73Aから径方向Dr外側に向かうにしたがって、静翼前縁部74に対する回転軸1の回転方向Rと反対方向Rzへの変位量が漸次大きくなるよう形成されている。 The stationary blade second shape portion 73C is formed outside the radial direction Dr with respect to the stationary blade first shape portion 73A. The stationary blade second shape portion 73C has a stationary blade inclined portion 77C on the upstream side. As shown in FIG. 4, the stationary blade inclined portion 77C faces the upstream side with respect to the stationary blade leading edge portion 74 of the stationary blade first shape portion 73A, like the stationary blade inclined portion 77A of the first embodiment. Thus, it is formed to extend in the direction Rz opposite to the rotation direction R of the rotation shaft 1. Further, in the stationary blade inclined portion 77C, the amount of displacement in the direction Rz opposite to the rotational direction R of the rotating shaft 1 relative to the stationary blade leading edge 74 gradually increases from the stationary blade first shape portion 73A toward the outside in the radial direction Dr. It is formed to be large.
 こ
の実施形態において、静翼傾斜部77Cは、径方向Dr内側の一部の端部77sが、動翼キャビティ20に対して中心軸方向Daにおいて対向するよう設けられている。このため、ケーシング2の内周面2Sには、上流側に向かって径方向Dr外側に傾斜した凹部27が形成されている。静翼傾斜部77Cの径方向Dr外側の端部77sは、凹部27に沿って、上流側に向かって径方向Dr外側に漸次突出している。このようにして、静翼傾斜部77Cは、静翼本体70Cにおいてケーシング2との接続部に形成されている。
In this embodiment, the stationary blade inclined portion 77C is provided such that a part of the end portion 77s inside the radial direction Dr faces the moving blade cavity 20 in the central axis direction Da. For this reason, the inner peripheral surface 2S of the casing 2 is formed with a recess 27 that is inclined outward in the radial direction Dr toward the upstream side. The end 77s of the stationary blade inclined portion 77C on the outer side in the radial direction Dr gradually protrudes outward in the radial direction Dr along the concave portion 27 toward the upstream side. In this way, the stationary blade inclined portion 77C is formed at the connection portion with the casing 2 in the stationary blade body 70C.
 ここで、静翼傾斜部77Cの傾斜方向Dkは、この静翼7の上流側に位置する動翼4とケーシング2の動翼キャビティ20との隙間を通り抜け、旋回成分のエネルギーを有している蒸気の漏れ流れFLmの向きに沿わせるのが好ましい。静翼傾斜部77Cの傾斜方向は、中心軸方向Daに対し、例えば10~30度程度の角度で設定するのが好ましい。また、静翼傾斜部77Cの径方向Dr外側の端部77s、即ち、径方向Drの外側に突出する部分は、静翼本体70Cの前縁端から、静翼本体70Cの翼弦長の20~40%の範囲に形成されているとよい。静翼傾斜部77Cの端部77s以外の部分では、径方向Drの外側の端面は中心軸Acに沿っている。 Here, the inclination direction Dk of the stationary blade inclined portion 77C passes through the gap between the moving blade 4 located on the upstream side of the stationary blade 7 and the moving blade cavity 20 of the casing 2, and has the energy of the swirling component. It is preferable to follow the direction of the steam leakage flow FLm. The inclination direction of the stationary blade inclined portion 77C is preferably set at an angle of, for example, about 10 to 30 degrees with respect to the central axis direction Da. Further, the end 77s of the stationary blade inclined portion 77C on the outer side in the radial direction Dr, that is, the portion protruding outward in the radial direction Dr is 20 chord length of the stationary blade body 70C from the front edge end of the stationary blade body 70C. It may be formed in a range of ˜40%. At portions other than the end 77s of the stationary blade inclined portion 77C, the outer end face in the radial direction Dr is along the central axis Ac.
 動翼本体40Cは、動翼第一形状部44Aと、動翼第二形状部44Cと、を有している。
 動翼第一形状部44Aは、動翼本体40Cの上流側に位置する動翼前縁部45と、下流側に位置する動翼後縁部46とに対し、これら動翼前縁部45と動翼後縁部46の間の動翼中間部47が、回転軸1の回転方向Rに凸となるように湾曲した翼断面形状を有している。
The moving blade main body 40C includes a moving blade first shape portion 44A and a moving blade second shape portion 44C.
The moving blade first shape portion 44A has a moving blade leading edge 45 and a moving blade leading edge 45 located on the upstream side of the moving blade body 40C and a moving blade trailing edge 46 located on the downstream side. The blade intermediate portion 47 between the blade trailing edge portions 46 has a blade cross-sectional shape that is curved so as to be convex in the rotation direction R of the rotating shaft 1.
 動翼第二形状部44Cは、動翼第一形状部44Aに対して径方向Dr内側に形成されている。動翼第二形状部44Cは、上流側に動翼傾斜部48Cを有している。この動翼傾斜部48Cは、図6に示す上記第一実施形態の動翼傾斜部48Aと同様に、動翼第一形状部44Aの動翼前縁部45に対し、上流側に向かって回転軸1の回転方向R側に延びるように形成されている。さらに、動翼傾斜部48Cは、動翼第一形状部44Aから径方向Dr内側に向かうにしたがって、動翼前縁部45に対する回転軸1の回転方向R側への変位量が漸次大きくなるよう形成されている。 The moving blade second shape portion 44C is formed on the inner side in the radial direction Dr with respect to the moving blade first shape portion 44A. The moving blade second shape portion 44C has a moving blade inclined portion 48C on the upstream side. The moving blade inclined portion 48C rotates toward the upstream side with respect to the moving blade leading edge 45 of the moving blade first shape portion 44A, similarly to the moving blade inclined portion 48A of the first embodiment shown in FIG. It is formed so as to extend toward the rotation direction R side of the shaft 1. Further, in the moving blade inclined portion 48C, the amount of displacement of the rotating shaft 1 in the rotation direction R side with respect to the moving blade leading edge 45 gradually increases from the moving blade first shape portion 44A toward the inside in the radial direction Dr. Is formed.
 この実施形態において、動翼傾斜部48Cは、径方向Dr外側の一部の端部48sが、静翼キャビティ8に対して中心軸方向Daにおいて対向するよう設けられている。このため、回転軸1の外周面には、上流側に向かって径方向Dr内側に傾斜した凹部87が形成されている。動翼傾斜部48Cの径方向Dr内側の端部48sは、凹部87に沿って、上流側に向かって径方向Dr内側に漸次突出している。このようにして、動翼傾斜部48Cは、動翼傾斜部48Cは、動翼本体40Cにおいて回転軸1との接続部に形成されている。 In this embodiment, the blade inclined portion 48C is provided such that a part of the end 48s outside the radial direction Dr faces the stationary blade cavity 8 in the central axis direction Da. For this reason, the outer peripheral surface of the rotating shaft 1 is formed with a recess 87 that is inclined inward in the radial direction Dr toward the upstream side. The end 48s on the inner side in the radial direction Dr of the blade inclined portion 48C gradually protrudes inward in the radial direction Dr toward the upstream side along the recess 87. Thus, the moving blade inclined portion 48C is formed at the connecting portion with the rotating shaft 1 in the moving blade main body 40C.
 ここで、動翼傾斜部48Cの傾斜方向Dmは、この動翼4の上流側に位置する静翼7と回転軸1の静翼キャビティ8との隙間を通り抜け、旋回成分のエネルギーを有していない蒸気の漏れ流れFLsの向きに沿わせるのが好ましい。動翼傾斜部48Cの傾斜方向は、中心軸方向Daに対し、例えば5~45度程度の角度で設定するのが好ましい。また、動翼傾斜部48Cの径方向Dr外側の端部48s、即ち、径方向Drの内側に突出する部分は、動翼本体40Cの前縁端から、動翼本体40Cの翼弦長の10~30%の範囲に形成されているとよい。動翼傾斜部48Cの端部48s以外の部分では、径方向Drの内側の端面は中心軸Acに沿っている。 Here, the inclination direction Dm of the moving blade inclined portion 48C passes through the gap between the stationary blade 7 located on the upstream side of the moving blade 4 and the stationary blade cavity 8 of the rotating shaft 1, and has the energy of the swirl component. It is preferable to follow the direction of no steam leakage flow FLs. The inclination direction of the rotor blade inclination portion 48C is preferably set at an angle of, for example, about 5 to 45 degrees with respect to the central axis direction Da. Further, the end 48s of the blade inclined portion 48C on the outer side in the radial direction Dr, that is, the portion protruding inward in the radial direction Dr is 10 chord length of the blade main body 40C from the front edge end of the blade main body 40C. It may be formed in a range of ˜30%. In the portion other than the end 48s of the rotor blade inclined portion 48C, the inner end face in the radial direction Dr is along the central axis Ac.
 上述したような蒸気タービン100及び静翼7によれば、上記第一実施形態と同様、旋回成分のエネルギーを有している蒸気の漏れ流れFLmを、静翼傾斜部77Cに沿わせることができる。これによって、蒸気の漏れ流れFLmが静翼7に当たるときに生じる損失を抑えることができる。したがって、蒸気の漏れ流れFLmを静翼7に沿わせて蒸気の主流FMと良好に合流させることができ、蒸気の漏れ流れFLmとの混合損失を低減し、蒸気タービン100の効率を高めることができる。 According to the steam turbine 100 and the stationary blade 7 as described above, the steam leakage flow FLm having the energy of the swirl component can be made to follow the stationary blade inclined portion 77C as in the first embodiment. . Thereby, it is possible to suppress a loss that occurs when the steam leakage flow FLm hits the stationary blade 7. Therefore, the steam leakage flow FLm can be satisfactorily merged with the main steam FM along the stationary blade 7, the mixing loss with the steam leakage flow FLm can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
 また、静翼傾斜部77Cの端部77sは、動翼キャビティ20に対して中心軸方向Daにおいて対向するよう設けられている。このように構成することで、動翼キャビティ20と動翼本体40Cの径方向Dr外側の先端部との隙間を通り抜ける蒸気の漏れ流れFLmを、中心軸方向Daに沿った方向に流して、静翼傾斜部77Cでそのまま受け入れることができる。これにより、蒸気の漏れ流れFLmと静翼7とが衝突する時の損失を有効に抑えることができる。 Further, the end 77s of the stationary blade inclined portion 77C is provided to face the moving blade cavity 20 in the central axis direction Da. With this configuration, the steam leakage flow FLm passing through the gap between the moving blade cavity 20 and the tip of the moving blade body 40C on the outer side in the radial direction Dr flows in the direction along the central axis direction Da. The blade inclined portion 77C can be accepted as it is. Thereby, the loss when the steam leakage flow FLm and the stationary blade 7 collide can be effectively suppressed.
 また、上述したような蒸気タービン100及び動翼4によれば、動翼4の上流側に位置する静翼7とケーシング2との隙間を通り抜け、旋回成分のエネルギーを有していない蒸気の漏れ流れFLsを、動翼傾斜部48Cに沿わせることができる。これによって、蒸気の漏れ流れFLsが動翼4に当たるときに生じる損失を抑えることができる。したがって、蒸気の漏れ流れFLsを動翼4に沿わせて蒸気の主流FMと良好に合流させることができ、蒸気の漏れ流れFLsとの混合損失を低減し、蒸気タービン100の効率を高めることができる。 Further, according to the steam turbine 100 and the moving blade 4 as described above, the leakage of the steam that does not have the energy of the swirling component through the gap between the stationary blade 7 and the casing 2 located on the upstream side of the moving blade 4. The flow FLs can be made to follow the blade inclined portion 48C. As a result, it is possible to suppress the loss that occurs when the steam leakage flow FLs hits the rotor blade 4. Therefore, the steam leakage flow FLs can be satisfactorily merged with the main steam FM along the moving blade 4, the mixing loss with the steam leakage flow FLs can be reduced, and the efficiency of the steam turbine 100 can be improved. it can.
 また、動翼傾斜部48Cの端部48sは、静翼キャビティ8に対して中心軸方向Daにおいて対向するよう設けられている。このように構成することで、静翼キャビティ8と静翼本体70Cの径方向Dr内側の先端部との隙間を通り抜ける蒸気の漏れ流れFLsを、中心軸方向Daに沿った方向に流して、動翼傾斜部48Cでそのまま受け入れることができる。これにより、蒸気の漏れ流れFLsと動翼4とが衝突する時の損失を有効に抑えることができる。 Further, the end 48s of the blade inclined portion 48C is provided so as to face the stationary blade cavity 8 in the central axis direction Da. With this configuration, the steam leakage flow FLs passing through the gap between the stationary blade cavity 8 and the tip of the stationary blade body 70C in the radial direction Dr flows in the direction along the central axis direction Da, The blade inclined portion 48C can be accepted as it is. Thereby, the loss when the steam leakage flow FLs and the rotor blade 4 collide can be effectively suppressed.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。即ち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上記各実施形態では、動翼4に形成した動翼傾斜部48A,48Cと、静翼7に形成した静翼傾斜部77A,77Cと、の双方を備えるようにしたが、何れか一方のみを少なくとも備えていれば良い。
Note that the present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
For example, in each of the embodiments described above, both the blade inclined portions 48A and 48C formed on the moving blade 4 and the stator blade inclined portions 77A and 77C formed on the stationary blade 7 are provided. Only need to have at least.
 また、上記各実施形態では、軸流回転機械として蒸気タービンを適用した例に基づいて説明した。しかしながら、軸流回転機械の態様は蒸気タービンに限定されず、ガスタービンや航空機用のジェットエンジン等、他の装置を軸流回転機械として適用することが可能である。 Further, in each of the above embodiments, the description has been made based on an example in which a steam turbine is applied as an axial flow rotary machine. However, the aspect of the axial flow rotary machine is not limited to the steam turbine, and other devices such as a gas turbine and an aircraft jet engine can be applied as the axial flow rotary machine.
 また、上述した実施形態、及び各変形例の構成は、適宜組み合わせてよい。 Further, the configuration of the above-described embodiment and each modification may be combined as appropriate.
 本発明に係る軸流回転機械、静翼、動翼によれば、作動流体の主流と作動流体の漏れ流れとの混合損失を低減し、軸流回転機械の効率を高めることができる。 According to the axial flow rotating machine, the stationary blade, and the moving blade according to the present invention, the mixing loss between the main flow of the working fluid and the leakage flow of the working fluid can be reduced, and the efficiency of the axial flow rotating machine can be increased.
1 回転軸
1S 外周面
2 ケーシング
2S 内周面
3 動翼段
4 動翼
5 軸受装置
5A ジャーナル軸受
5B スラスト軸受
6 静翼段
7 静翼
8 静翼キャビティ
10 吸気口
11 排気口
20 動翼キャビティ
27 凹部
40A、40C 動翼本体
41 動翼シュラウド
42 動翼側フィン
43 プラットフォーム
44A 動翼第一形状部
44B、44C 動翼第二形状部
45 動翼前縁部(動翼第一縁部)
46 動翼後縁部(動翼第二縁部)
47 動翼中間部
48A、48C 動翼傾斜部
48s 端部
70A、70C 静翼本体
71 静翼シュラウド
72 静翼側フィン
73A 静翼第一形状部
73B、73C 静翼第二形状部
74 静翼前縁部(静翼第一縁部)
75 静翼後縁部(静翼第二縁部)
76 静翼中間部
77A、77C 静翼傾斜部
77s 端部
87 凹部
100 蒸気タービン
Ac 中心軸
Da 中心軸方向
Dk 傾斜方向
Dm 傾斜方向
Dr 径方向
FM 主流
FLm 動翼とケーシングとの隙間の漏れ流れ
FLs 静翼と回転軸との隙間の漏れ流れ
Ht、Hu 翼高さ
R 回転方向
Rz 回転方向と反対方向
DESCRIPTION OF SYMBOLS 1 Rotating shaft 1S Outer peripheral surface 2 Casing 2S Inner peripheral surface 3 Rotor blade stage 4 Rotor blade 5 Bearing device 5A Journal bearing 5B Thrust bearing 6 Stator blade stage 7 Stator blade 8 Stator blade cavity 10 Inlet port 11 Exhaust port 20 Rotor blade cavity 27 Recess 40A, 40C Moving blade body 41 Moving blade shroud 42 Moving blade side fin 43 Platform 44A Moving blade first shape portion 44B, 44C Moving blade second shape portion 45 Moving blade front edge (moving blade first edge)
46 Moving blade trailing edge (second moving blade edge)
47 Moving blade intermediate portions 48A, 48C Moving blade inclined portion 48s End portions 70A, 70C Stator blade body 71 Stator blade shroud 72 Stator blade side fin 73A Stator blade first shape portion 73B, 73C Stator blade second shape portion 74 Stator blade leading edge (Static blade first edge)
75 Stator blade trailing edge (Static blade second edge)
76 Stator blade intermediate part 77A, 77C Stator blade inclined part 77s End part 87 Recess 100 Steam turbine Ac Central axis Da Central axis direction Dk Inclined direction Dm Inclined direction Dr Radial direction FM Main flow FLm Leakage flow FLs between the moving blade and casing FLs Leakage flow between the stationary blade and the rotating shaft Ht, Hu Blade height R Rotating direction Rz Direction opposite to rotating direction

Claims (11)

  1.  中心軸回りに回転する回転軸と、
     前記回転軸の径方向外側に設けられたプラットフォーム、及び、前記プラットフォームから径方向外側に向かって延びるよう設けられた動翼本体を有する動翼と、
     前記回転軸及び前記動翼の径方向外側に配置され、その径方向内側を作動流体が前記中心軸方向に沿って上流側から下流側に向かって流れる筒状のケーシングと、
     前記ケーシングから径方向内側に向かって延びるよう設けられた静翼本体、及び前記静翼本体の径方向内側に設けられた静翼シュラウドを有する静翼と、を備え、
     前記静翼本体は、
     前記静翼本体において前記上流側の静翼前縁部、及び前記下流側の静翼後縁部に対し、前記静翼前縁部と前記静翼後縁部の間の静翼中間部が、前記回転軸の回転方向と反対方向に凸となるように湾曲した静翼第一形状部と、
     前記静翼第一形状部に対して前記径方向外側に形成され、前記静翼第一形状部の前記静翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向と反対方向側に延びている静翼傾斜部を有する静翼第二形状部と、
    を備える、軸流回転機械。
    A rotating shaft that rotates about a central axis;
    A platform provided on the radially outer side of the rotating shaft, and a bucket having a blade main body provided to extend radially outward from the platform;
    A cylindrical casing that is disposed radially outside the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side toward the downstream side along the central axis direction,
    A stationary blade body provided to extend radially inward from the casing, and a stationary blade having a stationary blade shroud provided radially inward of the stationary blade body,
    The stationary blade body is
    In the stationary blade body, with respect to the upstream stationary blade leading edge portion and the downstream stationary blade trailing edge portion, a stationary blade intermediate portion between the stationary blade leading edge portion and the stationary blade trailing edge portion, A stationary blade first shape portion curved so as to be convex in a direction opposite to the rotation direction of the rotation shaft;
    It is formed on the radially outer side with respect to the stationary blade first shape portion, and is opposite to the rotation direction of the rotary shaft toward the upstream side with respect to the stationary blade leading edge portion of the stationary blade first shape portion. A stationary blade second shape portion having a stationary blade inclined portion extending to the side;
    An axial flow rotating machine comprising:
  2.  前記静翼傾斜部は、前記静翼第一形状部から径方向外側に向かうにしたがって、前記静翼前縁部に対する前記回転軸の回転方向と反対方向側への変位量が漸次大きくなるよう形成されている、
     請求項1に記載の軸流回転機械。
    The stationary blade inclined portion is formed such that a displacement amount in the direction opposite to the rotation direction of the rotary shaft with respect to the stationary blade leading edge portion gradually increases from the stationary blade first shape portion toward the radially outer side. Being
    The axial-flow rotating machine according to claim 1.
  3.  前記静翼傾斜部は、前記静翼本体において前記ケーシングとの接続部に形成されている、
     請求項1又は2に記載の軸流回転機械。
    The stationary blade inclined portion is formed in a connection portion with the casing in the stationary blade body.
    The axial flow rotary machine according to claim 1 or 2.
  4.  前記ケーシングには、前記静翼に対して上流側に位置する前記動翼本体の径方向外側に、径方向外側に窪む動翼キャビティが形成され、
     前記静翼傾斜部の少なくとも一部は、前記動翼キャビティに対して前記中心軸方向において対向するよう設けられている、
     請求項1から3の何れか一項に記載の軸流回転機械。
    In the casing, a blade cavity that is recessed radially outward is formed on the radially outer side of the blade main body located on the upstream side of the stationary blade,
    At least a part of the stationary blade inclined portion is provided to face the moving blade cavity in the central axis direction.
    The axial-flow rotary machine as described in any one of Claim 1 to 3.
  5.  前記動翼本体は、
     前記動翼本体の前記上流側の動翼前縁部、及び前記下流側の動翼後縁部に対し、前記動翼前縁部と前記動翼後縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、
     前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、
    を備える、
     請求項1から4の何れか一項に記載の軸流回転機械。
    The blade main body is
    The blade intermediate portion between the blade front edge and the blade trailing edge with respect to the upstream blade front edge and the downstream blade trailing edge of the blade body, A moving blade first shape portion curved so as to be convex in the rotation direction of the rotation shaft;
    It is formed on the inner side in the radial direction with respect to the moving blade first shape portion, and extends toward the upstream side of the rotating shaft with respect to the moving blade front edge portion of the moving blade first shape portion. A moving blade second shape portion having a moving blade inclined portion;
    Comprising
    The axial-flow rotary machine as described in any one of Claim 1 to 4.
  6.  前記動翼傾斜部は、前記動翼第一形状部から径方向内側に向かうにしたがって、前記動翼前縁部に対する前記回転軸の回転方向側への変位量が漸次大きくなるよう形成されている、
     請求項5記載の軸流回転機械。
    The moving blade inclined portion is formed such that the amount of displacement of the rotating blade toward the rotating direction of the rotating shaft with respect to the moving blade leading edge portion gradually increases inward in the radial direction from the moving blade first shape portion. ,
    The axial-flow rotating machine according to claim 5.
  7.  前記動翼傾斜部は、前記動翼本体において前記回転軸との接続部に形成されている、
     請求項5又は6に記載の軸流回転機械。
    The blade inclined portion is formed at a connection portion with the rotating shaft in the blade main body.
    The axial flow rotary machine according to claim 5 or 6.
  8.  前記回転軸には、前記動翼に対して上流側に位置する前記静翼本体の径方向内側に、径方向内側に窪む静翼キャビティが形成され、
     前記動翼傾斜部の少なくとも一部は、前記静翼キャビティに対して前記中心軸方向において対向するよう設けられている、
     請求項5から7の何れか一項に記載の軸流回転機械。
    On the rotating shaft, a stationary blade cavity that is recessed radially inward is formed on the radially inner side of the stationary blade body that is located upstream of the moving blade,
    At least a part of the blade inclined portion is provided to face the stationary blade cavity in the central axis direction,
    The axial-flow rotary machine as described in any one of Claim 5 to 7.
  9.  中心軸回りに回転する回転軸と、
     前記回転軸の径方向外側に設けられたプラットフォーム、及び、前記プラットフォームから径方向外側に向かって延びるよう設けられた動翼本体を有する動翼と、
     前記回転軸及び前記動翼の径方向外側に配置され、その径方向内側を作動流体が前記中心軸方向に沿って上流側から下流側に向かって流れる筒状のケーシングと、
     前記ケーシングから径方向内側に向かって延びるよう設けられた静翼本体、及び前記静翼本体の径方向内側に設けられた静翼シュラウドを有する静翼と、を備え、
     前記動翼本体は、
     前記動翼本体の前記上流側の動翼前縁部、及び前記下流側の動翼後縁部に対し、前記動翼前縁部と前記動翼後縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、
     前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼前縁部に対し、前記上流側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、
    を備える、軸流回転機械。
    A rotating shaft that rotates about a central axis;
    A platform provided on the radially outer side of the rotating shaft, and a bucket having a blade main body provided to extend radially outward from the platform;
    A cylindrical casing that is disposed radially outside the rotating shaft and the moving blade, and in which the working fluid flows from the upstream side toward the downstream side along the central axis direction,
    A stationary blade body provided to extend radially inward from the casing, and a stationary blade having a stationary blade shroud provided radially inward of the stationary blade body,
    The blade main body is
    The blade intermediate portion between the blade front edge and the blade trailing edge with respect to the upstream blade front edge and the downstream blade trailing edge of the blade body, A moving blade first shape portion curved so as to be convex in the rotation direction of the rotation shaft;
    It is formed on the inner side in the radial direction with respect to the moving blade first shape portion, and extends toward the upstream side of the rotating shaft with respect to the moving blade front edge portion of the moving blade first shape portion. A moving blade second shape portion having a moving blade inclined portion;
    An axial flow rotating machine comprising:
  10.  ケーシング内に回転軸が中心軸回りに回転可能に設けられた軸流回転機械の前記ケーシングから径方向内側に向かって延びるよう設けられる静翼本体を有し、
     前記静翼本体は、
     前記静翼本体において前記中心軸方向の第一側の静翼第一縁部、及び前記中心軸方向の第二側の静翼第二縁部に対し、前記静翼第一縁部と前記静翼第二縁部の間の静翼中間部が、前記回転軸の回転方向と反対方向に凸となるように湾曲した静翼第一形状部と、
     前記静翼第一形状部に対して前記径方向外側に形成され、前記静翼第一形状部の前記静翼第一縁部に対し、前記第一側に向かって前記回転軸の回転方向と反対方向側に延びている静翼傾斜部を有する静翼第二形状部と、
    を備える、静翼。
    A stationary blade body provided so as to extend radially inward from the casing of the axial-flow rotating machine in which the rotation shaft is rotatably provided around the central axis in the casing;
    The stationary blade body is
    In the stationary blade body, the stationary blade first edge and the stationary blade first edge portion on the first side in the central axis direction and the stationary blade second edge portion on the second side in the central axis direction. A stationary blade first shape portion curved so that a stationary blade intermediate portion between the blade second edge portions is convex in a direction opposite to the rotation direction of the rotation shaft;
    It is formed on the radially outer side with respect to the stationary blade first shape portion, and with respect to the stationary blade first edge portion of the stationary blade first shape portion, the rotation direction of the rotary shaft toward the first side; A stationary blade second shape portion having a stationary blade inclined portion extending in the opposite direction side;
    Comprising a stationary blade.
  11.  ケーシング内に回転軸が中心軸回りに回転可能に設けられた軸流回転機械の回転軸から径方向外側に向かって延びるよう設けられる動翼本体を有し、
     前記動翼本体は、
     前記動翼本体の前記中心軸方向の第一側の動翼第一縁部、及び前記中心軸方向の第二側の動翼第二縁部に対し、前記動翼第一縁部と前記動翼第二縁部の間の動翼中間部が、前記回転軸の回転方向に凸となるように湾曲した動翼第一形状部と、
     前記動翼第一形状部に対して前記径方向内側に形成され、前記動翼第一形状部の前記動翼第一縁部に対し、前記第一側に向かって前記回転軸の回転方向側に延びている動翼傾斜部を有する動翼第二形状部と、
    を備える、動翼。
    A rotating blade body provided in the casing so as to extend radially outward from a rotating shaft of an axial-flow rotating machine provided rotatably around a central axis;
    The blade main body is
    The moving blade first edge and the moving blade with respect to the moving blade first edge portion on the first side in the central axis direction of the moving blade body and the moving blade second edge portion on the second side in the central axis direction. A moving blade first shape portion curved so that a moving blade intermediate portion between the blade second edges is convex in the rotation direction of the rotating shaft;
    It is formed on the radially inner side with respect to the moving blade first shape portion, and with respect to the moving blade first edge portion of the moving blade first shape portion, toward the first side in the rotation direction side of the rotating shaft A moving blade second shape portion having a moving blade inclined portion extending to
    Equipped with a moving blade.
PCT/JP2018/006750 2017-02-24 2018-02-23 Axial-flow rotating machine, stator blade, and rotor blade WO2018155640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033012 2017-02-24
JP2017033012A JP2018138764A (en) 2017-02-24 2017-02-24 Axial flow rotary machine, stator blade, and rotor blade

Publications (1)

Publication Number Publication Date
WO2018155640A1 true WO2018155640A1 (en) 2018-08-30

Family

ID=63253731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006750 WO2018155640A1 (en) 2017-02-24 2018-02-23 Axial-flow rotating machine, stator blade, and rotor blade

Country Status (2)

Country Link
JP (1) JP2018138764A (en)
WO (1) WO2018155640A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022113570A1 (en) 2020-11-25 2022-06-02

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1067169A (en) * 1962-11-30 1967-05-03 Escher Wyss Ag Improvements in or relating to blade cascades for turbo-machines
JP2011089518A (en) * 2009-10-23 2011-05-06 General Electric Co <Ge> Turbine airfoil
JP2014163367A (en) * 2013-02-28 2014-09-08 Hitachi Ltd Rotor blade row of axial-flow turbine, and axial-flow turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1067169A (en) * 1962-11-30 1967-05-03 Escher Wyss Ag Improvements in or relating to blade cascades for turbo-machines
JP2011089518A (en) * 2009-10-23 2011-05-06 General Electric Co <Ge> Turbine airfoil
JP2014163367A (en) * 2013-02-28 2014-09-08 Hitachi Ltd Rotor blade row of axial-flow turbine, and axial-flow turbine

Also Published As

Publication number Publication date
JP2018138764A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
KR101305575B1 (en) Turbine rotor blade and turbo machine
US8920126B2 (en) Turbine and turbine rotor blade
JP5651459B2 (en) System and apparatus for compressor operation in a turbine engine
JP6858032B2 (en) Axial rotating machine
KR101939520B1 (en) turbine
WO2018155636A1 (en) Axial flow rotary machine
WO2018124068A1 (en) Turbine and gas turbine
CN110799730B (en) Compressor wing section
WO2018155640A1 (en) Axial-flow rotating machine, stator blade, and rotor blade
JP6830999B2 (en) Turbine blades and gas turbines
JP7148273B2 (en) steam turbine
JPWO2018116394A1 (en) Turbocharger and turbocharger nozzle vanes and turbines
JP6803772B2 (en) Axial-flow rotating machine and rotor blades
EP3748130B1 (en) Axial flow rotary machine
US11066946B2 (en) Axial turbomachinery
EP3456937B1 (en) Turbocharger
WO2022113570A1 (en) Turbine
JP7130372B2 (en) rotating machinery
CN104121136B (en) Axial flow water turbine
JP6930896B2 (en) Turbines and blades
JP7130575B2 (en) axial turbine
CN115280049A (en) Sealing device and rotary machine
JP2021110291A (en) Rotor blade and axial flow rotary machine
JP2008163761A (en) Radial turbine
JP2019100204A (en) Turbine and rotor blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757372

Country of ref document: EP

Kind code of ref document: A1