WO2018155636A1 - Axial flow rotary machine - Google Patents

Axial flow rotary machine Download PDF

Info

Publication number
WO2018155636A1
WO2018155636A1 PCT/JP2018/006731 JP2018006731W WO2018155636A1 WO 2018155636 A1 WO2018155636 A1 WO 2018155636A1 JP 2018006731 W JP2018006731 W JP 2018006731W WO 2018155636 A1 WO2018155636 A1 WO 2018155636A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
fin
upstream
downstream
flow
Prior art date
Application number
PCT/JP2018/006731
Other languages
French (fr)
Japanese (ja)
Inventor
英治 小西
祥弘 桑村
松本 和幸
伸次 深尾
椙下 秀昭
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018155636A1 publication Critical patent/WO2018155636A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals

Definitions

  • the present invention relates to an axial-flow rotating machine.
  • This application claims priority on Japanese Patent Application No. 2017-032372 filed in Japan on February 23, 2017, the contents of which are incorporated herein by reference.
  • This steam turbine is roughly classified into an impulse turbine and a reaction turbine depending on the operation method.
  • the stationary blade has a nozzle shape, and the steam that has passed through the stationary blade is injected to the moving blade, and the moving blade rotates only by the impact force received from the steam.
  • the shape of the stationary blade is the same as that of the moving blade, and the moving blade is caused by the impact force received from the steam that has passed through the stationary blade and the reaction force against the expansion of the steam generated when passing through the moving blade. Rotate.
  • a gap having a predetermined width is formed in the radial direction between the tip portion of the rotor blade and the casing, and also between the tip portion of the stationary blade and the rotating shaft.
  • a gap having a predetermined width is formed in the direction.
  • a part of the steam flowing along the rotation axis of the rotation shaft leaks to the downstream side through the gaps between the tip portions of the rotor blades and the stationary blades.
  • the steam leaking downstream from the gap between the moving blade and the casing does not give impact force or reaction force to the moving blade, so it does not become a driving force for rotating the moving blade.
  • the steam that leaks downstream from the gap between the stationary blade and the shaft does not change its speed and does not expand even if it exceeds the stationary blade. It doesn't help. Therefore, in order to improve the performance of the steam turbine, it is important to reduce the amount of steam leakage in the gap between the tip portions of the moving blades and the stationary blades.
  • seal fins are used as a means for preventing steam from leaking from the gaps at the tips of the rotor blades and stationary blades.
  • an example of the seal fin is disclosed in Patent Document 1.
  • the seal fin of Patent Document 1 is provided so as to extend from the casing toward the shroud of the moving blade, and the shroud of the moving blade has a step shape.
  • the present invention provides a high-performance axial rotary machine that has a simple structure and reduces the flow rate of the leak flow.
  • the axial-flow rotating machine is provided with a blade disposed in a flow path through which a main flow of fluid flows and a front end side of the blade via a gap, and rotates relative to the blade.
  • the blade includes a shroud at a tip portion, and a shroud-side fin that protrudes from the shroud toward the structure and forms a minute gap between the structure and the blade.
  • the structure has a structure-side fin that is arranged side by side in the direction in which the main flow flows with respect to the shroud-side fin and protrudes toward the shroud to form a minute gap with the shroud.
  • the surfaces facing the upstream side and the downstream side of the mainstream flow are in the relative rotation between the blade and the structure in the fin.
  • the fluid that has passed through the minute gap formed at the tip of the fin disposed on the upstream side of the shroud-side fin and the structure-side fin becomes a jet, and this minute gap It collides with the fin arranged on the downstream side.
  • the jet is guided toward the front end side of the fin along the upstream surface of the fin disposed on the downstream side.
  • the center line is inclined toward the upstream side toward the tip side. Therefore, the jet that collided with the fin flows so as to be pushed back upstream by the upstream surface of the fin.
  • the fluid that tries to pass through the minute gap at the tip of the fin arranged on the downstream side can be pushed back upstream, and the flow rate of the fluid that passes through the minute gap at the tip of the fin arranged on the downstream side can be reduced. Can be reduced. As a result, the flow rate of the leak flow passing through the cavity between the structure and the shroud can be reduced. Furthermore, since the center line of the fin is inclined toward the upstream side toward the tip side, the fluid flowing along the upstream surface of the fin disposed on the downstream side of the shroud side fin and the structure side fin is upstream. Flows toward the side, contacts the downstream surface of the fin disposed on the upstream side, the flow direction is turned, and a vortex is formed between the fins.
  • the axial-flow rotating machine of this aspect has an opposing fin shape by adjoining the shroud side fin and the structure side fin in the mainstream flow direction. And since the centerline of each fin inclines in the upstream toward the front-end
  • circular arc surfaces are formed at the base end portions of the shroud side fin and the structure side fin. Therefore, it is possible to guide the fluid toward the upstream side while smoothly turning the flow direction of the fluid that has passed through the minute gaps at the tips of the fins disposed on the upstream side. Therefore, since the fluid can be guided toward the upstream side by the fin without rapidly decelerating the velocity of the fluid that has passed through the minute gap, the velocity of the vortex formed between the fins can be increased. Therefore, the contraction effect of the fluid passing through the minute gap can be further improved. Moreover, since the dead water area
  • the shroud-side fin and the structure-side fin have the relative rotation between the blade and the structure relative to a central axis direction.
  • the inclination angle of the center line may be 40 degrees or more and 80 degrees or less.
  • the arcuate surfaces of the shroud side fin and the structure side fin are R surfaces, and the shroud side fin And in the front-end
  • the radius of curvature of the R surface facing the upstream side of the mainstream flow is the shroud side fin and the structure side. It may be 1 ⁇ 2 times the length of the center line of the fin.
  • any one of the shroud side fin and the structure side fin is provided, and
  • the inclination angle of the center line with respect to the central axis of the at least two fins may be the same.
  • the shroud side fins and the structure side fins are alternately provided. And since the centerline of all these fins inclines toward the upstream side, the upstream surface of the fin disposed on the downstream side can be brought closer to the upstream fin. Therefore, the jet that has passed through the minute gap at the tip of the upstream fin can be reliably brought into contact with the upstream surface of the downstream fin. As a result, it is possible to improve the effect of contracting the fluid that attempts to pass through the minute gap at the tip of the upstream fin.
  • the structure-side fin is disposed on the most upstream side, and the blade includes the shroud.
  • An upstream inclined surface that is inclined from the upstream side toward the downstream side as it goes radially outward is provided on the end surface facing the upstream side, and the structure is disposed on the upstream side of the shroud.
  • An upstream inclined inner wall surface that is inclined from the upstream side toward the downstream side toward the radially outer side may be provided at a position facing the direction in which the main flow flows.
  • the shroud is provided with the upstream inclined surface, and the structure is provided with the upstream inclined inner wall surface.
  • the leak flow that branches off from the main flow and tries to flow into the cavity does not flow straight in the radial direction but flows obliquely toward the downstream side along the upstream inclined surface and the upstream inclined inner wall surface. Therefore, the leak flow when the leak flow branches from the main flow does not branch in completely different directions.
  • production of a dead water area can be suppressed. As a result, it is possible to suppress fluid separation and reduce loss.
  • the fluid flowing along the upstream inclined surface contacts the structure-side fin and flows so as to be pushed back toward the upstream side.
  • a vortex is formed on the upstream side of the structure-side fin in the cavity. Since this vortex is formed so as to extend obliquely along the upstream inclined surface and the upstream inclined inner wall surface, the vortex is formed along the flow direction of the leak flow branched from the main flow. Therefore, it can suppress that a fine vortex is formed around this vortex, and it can suppress that a vibration arises in a rotary machine.
  • the blade has a radially inward end surface facing the downstream side of the shroud.
  • a downstream inclined surface that inclines from the upstream side toward the downstream side is provided, and the structure is disposed on the downstream side of the shroud, and is positioned in a radial direction at a position facing the direction in which the mainstream flows through the shroud.
  • a downstream inclined inner wall surface that is inclined from the upstream side toward the downstream side as it goes inward may be provided.
  • the shroud is provided with the downstream inclined surface, and the structure is provided with the downstream inclined inner wall surface.
  • the leak flow tries to join the main flow, it flows into the main flow obliquely toward the downstream side along the downstream inclined surface and the downstream inclined inner wall surface, instead of straight in the radial direction. Therefore, when the leak flows merge into the main flow, the flow directions can be made closer to each other. Furthermore, since it can avoid that a corner
  • FIG. 1 It is a schematic structure sectional view of the steam turbine of a first embodiment of the present invention. It is a figure which shows the principal part of the steam turbine of 1st embodiment of this invention, Comprising: The A section of FIG. 1 is shown. It is a figure which shows the principal part of the steam turbine of 2nd embodiment of this invention, Comprising: The position corresponded to the A section of FIG. 1 is shown.
  • a steam turbine 100 includes a rotating shaft (structure) 1, a casing (structure) 2, a moving blade stage 3 including a plurality of moving blades (blades) 4, And a stationary blade stage 6 including a plurality of stationary blades (blades) 7.
  • the rotary shaft 1 has a cylindrical shape extending along the central axis Ac.
  • the rotary shaft 1 is supported at both ends in the central axis direction Da along the central axis Ac by the bearing device 5 so as to be rotatable around the central axis Ac.
  • the bearing device 5 includes a journal bearing 5A provided on each side of the central axis direction Da of the rotating shaft 1 and a thrust bearing 5B provided only on the first side in the central axis direction Da.
  • the journal bearing 5 ⁇ / b> A supports a load in the radial direction Dr by the rotating shaft 1.
  • the thrust bearing 5B supports the load in the central axis direction Da by the rotating shaft 1.
  • the casing 2 has a cylindrical shape extending in the central axis direction Da.
  • the casing 2 covers the rotating shaft 1 from the outer peripheral side.
  • the casing 2 rotates relative to the rotating shaft 1.
  • the casing 2 includes an intake port 10 and an exhaust port 11.
  • the air inlet 10 is formed on the first side in the central axis direction Da of the casing 2 and takes in steam (fluid) into the casing 2 from the outside.
  • the exhaust port 11 is formed on the second side of the casing 2 in the central axis direction Da and exhausts the steam that has passed through the inside of the casing 2 to the outside.
  • the side where the intake port 10 is located when viewed from the exhaust port 11 is referred to as the upstream side
  • the side where the exhaust port 11 is located when viewed from the intake port 10 is referred to as the downstream side.
  • the rotor blade stage 3 is provided with a plurality of stages on the outer peripheral surface 1S of the rotating shaft 1 at intervals from the first side to the second side in the central axis direction Da.
  • Each blade stage 3 has a plurality of blades 4 arranged on the outer peripheral surface 1S of the rotary shaft 1 at intervals in the circumferential direction around the central axis Ac.
  • the moving blade 4 includes a platform 43 formed on the outer peripheral surface 1 ⁇ / b> S of the rotating shaft 1, a moving blade main body 40, and a moving blade shroud 41.
  • the rotor blade body 40 is formed so as to extend radially outward from the platform 43.
  • the rotor blade body 40 has an airfoil-shaped cross section as viewed from the radial direction Dr.
  • the moving blade shroud 41 is provided at the radially outer end of the moving blade body 40.
  • the moving blade shroud 41 is set such that the dimension in the central axis direction Da is larger than the dimension of the moving blade body 40 in the central axis direction Da.
  • a moving blade accommodating recess 20 for accommodating the moving blade shroud 41 is formed in an inner peripheral side of the casing 2 and in a region facing the moving blade shroud 41 in the radial direction Dr.
  • the moving blade housing recess 20 is recessed from the inner peripheral surface 2S of the casing 2 toward the outer side in the radial direction Dr, and has a groove shape continuous in the circumferential direction around the central axis Ac.
  • the moving blade housing recess 20 is called a cavity formed between the moving blade shroud 41 and the casing 2.
  • a leak flow LF flows into the cavity from the main flow MF of the steam flowing in the central axis direction Da around the rotation shaft 1 in the radial direction.
  • the surface facing the downstream side in the moving blade housing recess 20 and the end surface facing the upstream side of the moving blade shroud 41 are arranged with a gap in the radial direction, that is, the downstream side of the moving blade housing recess 20
  • the facing surface is located on the upstream side of the end surface facing the upstream side of the moving blade shroud 41 and is disposed to face the moving blade shroud 41. This gap is the entrance of the cavity.
  • two casing-side fins (structure-side fins) 42 that protrude from the casing 2 toward the blade shroud 41 are provided on the bottom surface 23 (the surface facing the inner side of the radial direction Dr) of the blade accommodating recess 20. Are arranged side by side in the central axis direction Da.
  • casing-side fins 42 have a thin plate shape extending from the casing 2 toward the inside in the radial direction Dr.
  • a clear lance (a minute gap) is formed in the radial direction Dr between the tip of the casing side fin 42 and the blade shroud 41.
  • the center line CL1 is inclined toward the upstream side toward the tip end portion (the inner end portion in the radial direction Dr).
  • the center line CL1 is an imaginary line that passes through the central portion of the casing-side fin 42 in the central axis direction Da.
  • the inclination angle ⁇ 1 of the center line CL1 of each casing-side fin 42 with respect to the central axis direction Da is the same in this embodiment, but may be different from each other.
  • the inclination angle of the center line CL1 is preferably 40 degrees or more and 80 degrees or less, and more preferably 60 degrees.
  • the surfaces facing the upstream side and the downstream side have an arc surface 42a that is recessed toward the center line CL1.
  • the arc surface 42a is an R surface in the present embodiment.
  • the curvature radius is different between the arc surface 42a1 facing the upstream side and the arc surface 42a2 facing the downstream side.
  • the radius of curvature of the arcuate surface 42a1 facing the upstream side may be 1 ⁇ 2 times the length of the center line CL1 of the casing-side fin 42.
  • the surfaces facing the upstream side and the downstream side of the casing-side fin 42 further have a flat surface 42b that is smoothly continuous with the arcuate surface 42a that is the R surface and that extends in the tangential direction at the connection portion with the R surface. ing.
  • a plane 42b1 is provided on the upstream side, and a plane 42b2 is provided on the downstream side.
  • the casing-side fin 42 has a tapered shape in which the thickness in the central axis direction Dc gradually decreases from the base end portion to the tip end portion.
  • shroud-side fin 44 protruding from the moving blade shroud 41 toward the casing 2 in the present embodiment, and the casing-side fin 42 from the upstream side and the downstream side in the central axis direction Da. It is provided so as to be sandwiched between.
  • the shroud-side fin 44 has a thin plate shape extending from the blade shroud 41 toward the outside in the radial direction Dr. A clear lance (a minute gap) is formed in the radial direction Dr between the tip portion of the shroud-side fin 44 and the casing 2.
  • the center line CL2 is inclined toward the upstream side toward the tip portion (end portion on the outer side in the radial direction Dr).
  • the center line CL ⁇ b> 2 is an imaginary line that passes through the central portion of the shroud-side fin 44 in the central axis direction Da.
  • the inclination angle ⁇ 2 of the center line CL2 with respect to the central axis direction Da is the same as the inclination angle ⁇ 1 of the center line CL1 of the casing side fin 42 in the present embodiment, but may be different.
  • the inclination angle of the center line CL2 is preferably 40 degrees or more and 80 degrees or less, and more preferably 60 degrees.
  • the surfaces facing the upstream side and the downstream side have an arc surface 44a that is recessed toward the center line CL2.
  • the arc surface 44a is an R surface in the present embodiment.
  • the curvature radius is different between the arc surface 44a1 facing the upstream side and the arc surface 44a2 facing the downstream side.
  • the radius of curvature of the arcuate surface 44a1 facing the upstream side may be 1/2 of the length of the center line CL2 of the shroud-side fin 44.
  • the surfaces facing the upstream side and the downstream side of the shroud-side fin 44 further have a flat surface 44b extending smoothly in a tangential direction at a connection portion with the R surface, which is smoothly connected to the arc surface 44a which is the R surface. ing.
  • a flat surface 44b1 is provided on the upstream side, and a flat surface 44b2 is provided on the downstream side.
  • the shroud side fin 44 has a tapered shape in which the thickness in the central axis direction Dc gradually decreases from the base end portion to the tip end portion.
  • the stationary blade stage 6 is provided with a plurality of stages on the inner peripheral surface of the casing 2 at intervals along the central axis direction Da.
  • Each stationary blade stage 6 is arranged on the upstream side of each moving blade stage 3.
  • Each stationary blade stage 6 has a plurality of stationary blades 7 arranged at intervals in the circumferential direction around the central axis Ac.
  • the stationary blade 7 includes a stationary blade body 70 and a stationary blade shroud 71.
  • the stationary blade body 70 is provided so as to extend from the inner peripheral surface 2S of the casing 2 toward the inside in the radial direction Dr.
  • the stationary blade body 70 has a blade-shaped cross section as viewed from the radial direction Dr.
  • the stationary blade shroud 71 is attached to the inner end of the stationary blade body 70 in the radial direction Dr.
  • the outer peripheral surface 1S of the rotary shaft 1 is recessed from the outer peripheral surface 1S toward the inner side in the radial direction Dr.
  • a groove-shaped stationary blade housing recess 8 that is continuous in the direction is formed.
  • the stationary blade shroud 71 of each stationary blade 7 is accommodated in the stationary blade accommodating recess 8.
  • the steam that has passed through the clearance formed at the tip of the casing-side fin 42 disposed on the most upstream side becomes a jet, It collides with the shroud side fins 44 arranged on the downstream side of the clearance. At this time, the steam is guided toward the front end side of the shroud fin 44 along the upstream surface of the shroud fin 44.
  • the steam that has passed through the clearance formed at the tip of the shroud-side fin 44 becomes a jet and collides with the casing-side fin 42 disposed on the downstream side of the clearance.
  • the air is guided along the upstream surface of the casing-side fin 42 toward the front end side of the casing-side fin 42, and the leak flow LF joins the main flow MF from the exit of the cavity through the clearance.
  • a vortex V1 in the present embodiment, a counterclockwise vortex
  • a vortex V2 clockwise vortex in the present embodiment
  • the vortex V1 can cause the steam that is about to pass through the clearance at the tip end of the casing-side fin 42 on the most upstream side to contract toward the inside in the radial direction Dr. Further, the vortex V ⁇ b> 2 can contract the steam that attempts to pass through the clearance at the tip of the shroud-side fin 44 toward the outside in the radial direction Dr. Thereby, the flow volume of the vapor
  • the shroud side fin 44 and the casing side fin 42 adjoin in the distribution
  • arcuate surfaces 42 a 1, 42 a 2, 44 a 1, 44 a 2 which are R surfaces are formed at the base ends of the shroud side fins 44 and the casing side fins 42. Therefore, it is possible to guide the steam toward the upstream side while smoothly turning the flow direction of the steam that has passed through the clearance. Therefore, the steam can be guided toward the upstream side by the shroud-side fins 44 and the casing-side fins 42 without rapidly reducing the speed of the steam that has passed through the clearance. Therefore, the flow speed of the vortices V1 and V2 can be increased. Therefore, the contraction effect of the steam passing through the clearance can be further improved. Moreover, since the dead water area of the base end part of the fins 42 and 44 can be reduced by the circular arc surfaces 42a1, 42a2, 44a1, and 44a2, loss of steam flow can be reduced.
  • the inclination angles of the center lines CL1 and CL2 of the fins 42 and 44 are not less than 40 degrees and not more than 80 degrees, preferably 60 degrees, so that the steam passing through the clearance is compressed while being pushed back to the upstream side. The effect of flowing can be further improved.
  • shroud side fin 42 and the casing side fin 44 are provided with flat surfaces 42b, 44b extending in the tangential direction of the R surface continuously to the arc surfaces 42a, 44a which are the R surface, the shroud side fin 42 and the casing side fin 44 try to pass the clearance. It is possible to further improve the effect of contracting while pushing back the steam to the upstream side.
  • the clearance has passed. It is possible to guide the steam toward the upstream side while smoothly turning the flow direction of the steam. Accordingly, the speed of the vortices V1 and V2 formed between the fins 42 and 44 can be increased, and the effect of contraction of the steam passing through the clearance can be further improved.
  • the center line CL1 is inclined toward the upstream side also in the casing-side fins 42 arranged on the most downstream side. ing. Therefore, the upstream side surface of the most downstream casing side fin 42 can be brought closer to the shroud side fin 44. Therefore, the jet of steam that has passed through the clearance at the tip of the shroud-side fin 44 can be reliably brought into contact with the upstream surface of the casing-side fin 42 on the most downstream side. As a result, it is possible to improve the effect of contracting the steam that attempts to pass through the clearance at the tip of the shroud-side fin 44.
  • the end surface facing the upstream side of the moving blade shroud 41 ⁇ / b> A is an upstream inclined surface 80 that inclines toward the downstream side toward the outside in the radial direction Dr.
  • the upstream inclined surface 80 is a curved concave surface that is concave toward the downstream side.
  • the radius of curvature of the curved concave surface may be determined so as to follow the shape of the vortex V formed at the entrance of the cavity.
  • the steam is guided to the arc surface 42a1 and the flat surface 42b1 of the casing-side fin 42 on the most upstream side and flows upstream toward the outside in the radial direction Dr, thereby forming a counterclockwise vortex V. Is done.
  • the moving blade shroud 41A has a curved downstream inclined surface 85 inclined toward the downstream side toward the outer side in the radial direction Dr, and a radial direction Dr of the downstream inclined surface 85 on the end surface facing the downstream side. And a plane 86 extending in the radial direction Dr continuously.
  • the downstream inclined surface 85 is a curved convex surface (R surface) that is convex toward the downstream side.
  • the surface facing the downstream side of the moving blade housing recess 20A has a radial direction Dr continuous to the inside of the radial direction Dr, the plane 91 extending perpendicularly to the central axis Ac and extending in the radial direction Dr, and the outside of the radial direction Dr of the plane 91. And an upstream inclined inner wall surface 92 that inclines toward the downstream side as it goes outward.
  • the connecting portion between the upstream inclined inner wall surface 92 and the flat surface 91 has no corners, and the upstream inclined inner wall surface 92 and the flat surface 91 are smoothly connected in an arc shape.
  • the connecting portion between the bottom surface 23 and the upstream inclined inner wall surface 92 of the moving blade housing recess 20A has no corners, and the bottom surface 23 and the upstream inclined inner wall surface 92 are smoothly connected in an arc shape.
  • the upstream inclined inner wall surface 92 may be formed by attaching another member to the moving blade housing recess 20A, or may be provided by forming the surface of the moving blade housing recess 20A into an inclined surface.
  • the surface facing the upstream side of the moving blade housing recess 20A and the end surface facing the downstream side of the moving blade shroud 41A are spaced apart from each other in the radial direction Dr, that is, downstream of the moving blade housing recess 20A. Is located on the downstream side of the end surface facing the downstream side of the moving blade shroud 41A, and is disposed to face the moving blade shroud 41A. This gap is the exit of the cavity. At the exit of the cavity, the leak flow LF, which is steam that has passed through the clearance formed between the casing-side fin 42 disposed on the most downstream side and the blade shroud 41A, joins the main flow MF.
  • the surface facing the upstream side of the moving blade housing recess 20A has a downstream inclined inner wall surface 96 that is continuous with the bottom surface 23 and is inclined toward the downstream side toward the inner side in the radial direction Dr, and a downstream inclined inner wall surface.
  • 96 has a flat surface 95 extending in the radial direction Dr perpendicular to the central axis Ac and continuously inside the radial direction Dr.
  • the connecting portion between the downstream inclined inner wall surface 96 and the flat surface 95 has no corners, and these surfaces 95 and 96 are smoothly connected in an arc shape. Further, the connecting portion between the bottom surface 23 of the moving blade accommodating recess 20A and the downstream inclined inner wall surface 96 has no corners, and these surfaces 23 and 96 are smoothly connected in an arc shape.
  • the downstream inclined inner wall surface 96 may be formed by attaching another member to the moving blade housing recess 20A, or may be provided by forming the surface of the moving blade housing recess 20A into an inclined surface.
  • the steam passing through the clearance lances of the tips of the fins 42 and 44 can be pushed back to the upstream side in the same manner as in the first embodiment.
  • the contraction effect by V2 can be enhanced. That is, the flow rate of the leak flow LF can be reduced with a simple structure, and the performance of the steam turbine 200 can be improved.
  • the moving blade shroud 41A is provided with an upstream inclined surface 80, and the casing 2 is provided with an upstream inclined inner wall surface 92.
  • the leak flow LF that branches from the main flow MF of steam and flows into the cavity is not straight toward the outside in the radial direction Dr, but along the upstream inclined surface 80 and the upstream inclined inner wall surface 92. It flows obliquely toward the downstream side.
  • the leak flow LF when the leak flow LF branches from the main flow MF does not branch from the main flow MF in a direction completely different from the main flow MF.
  • the upstream inclined surface 80 and the upstream inclined inner wall surface 92 can prevent the corner portion from being formed in the moving blade accommodating recess 20A. For this reason, generation
  • the upstream inclined surface 80 can be aligned with the shape of the vortex V formed at the entrance of the cavity. Therefore, friction loss between the vortex V and the upstream inclined surface 80 can be reduced, loss due to branching of the leak flow LF can be suppressed, and high performance of the steam turbine 200 can be achieved.
  • the steam flowing along the upstream inclined surface 80 comes into contact with the casing-side fin 42 and flows so as to be pushed back toward the upstream side.
  • the vortex V on the upstream side of the casing-side fin 42 in the cavity extends obliquely toward the downstream side toward the outer side of the radial direction Dr along the upstream inclined surface 80 and the upstream inclined inner wall surface 92.
  • the vortex V is formed along the flow direction of the leak flow LF branched from the main flow MF. Therefore, it is possible to suppress the formation of fine vortices around the vortex V, and it is possible to suppress the occurrence of axial vibration on the rotating shaft 1 and the like.
  • the moving blade shroud 41A is provided with a downstream inclined surface 85, and the casing 2 is provided with a downstream inclined inner wall surface 96.
  • the flow direction of the leak flow LF and the flow direction of the main flow MF can be made as close as possible. Furthermore, since it is possible to avoid the formation of a corner in the moving blade housing recess 20A by the downstream inclined surface 85 and the downstream inclined inner wall surface 96, it is possible to suppress the occurrence of a dead water area. As a result, it is possible to suppress loss of vapor and reduce loss. Thereby, the loss by the merge of the leak flow LF to the main flow MF can be suppressed. As a result, the loss due to the merge of the leak flow LF to the main flow MF is suppressed, and the performance of the steam turbine 200 can be improved.
  • the vortex V3 is formed on the downstream side of the casing-side fin 42 arranged on the most downstream side at the exit portion of the cavity.
  • the vortex V3 is formed by a leak flow LF that has become a jet flow through a clearance between the casing-side fin 42 disposed on the most downstream side and the blade shroud 41A.
  • the vortex V3 is formed so as to extend obliquely toward the downstream side along the downstream inclined surface 85 and the downstream inclined inner wall surface 96 toward the inner side in the radial direction Dr.
  • downstream inclined surface 85 which is a curved convex surface, allows the leak flow LF flowing along the surface of the rotor blade shroud 41A to flow to the main flow MF in a radial direction at a certain distance without flowing straight at the exit portion of the cavity. Without being separated from the downstream inclined surface 85, the leak flow LF can be merged with the main flow MF.
  • the leakage flow LF is adjusted along the flow direction of the main flow MF while avoiding the leakage flow LF from directly flowing into the stationary blade 7 located on the rear stage side.
  • the mainstream MF can be merged. Therefore, the mixing loss of the leak flow LF to the main flow MF can be reduced.
  • the upstream inclined surface 80 of the present embodiment may not be a curved concave surface, but may be a flat inclined surface.
  • the shape of the blade shroud is not limited to the above embodiment.
  • the shapes of the fins 42 and 44 in the moving blade housing recess 20 (20A) have been described.
  • the shapes of the fins 42 and 44 are applied to the fins in the stationary blade housing recess 8. Also good.
  • the quantity of each fin 42 and 44 is not limited to the above-mentioned case.
  • the description has been made based on an example in which a steam turbine is applied as an axial flow rotary machine.
  • the aspect of the axial flow rotary machine is not limited to the steam turbine, and other devices such as a gas turbine and an aircraft jet engine can be applied as the axial flow rotary machine.

Abstract

In an axial flow rotary machine according to the present invention, a moving blade (4) comprises a moving blade shroud (41) and a shroud-side fin (44), and a small gap is formed between said shroud-side fin (44) and a casing (2). The casing (2) comprises a casing-side fin (42), and a small gap is formed between said casing-side fin (42) and the moving blade shroud (41). The base end sections of each of the fins (42, 44) have an arcuate surface (42a, 44a) in which surfaces facing the upstream side and the downstream side of the flow of a main flow (MF) are recessed toward central lines (CL1, CL2). The central lines (CL1, CL2) incline toward the upstream side as the proximity to tip sections increases in each of the fins (42, 44).

Description

軸流回転機械Axial flow rotating machine
 本発明は、軸流回転機械に関する。
 本願は、2017年2月23日に日本に出願された特願2017-032372号について優先権を主張し、その内容をここに援用する。
The present invention relates to an axial-flow rotating machine.
This application claims priority on Japanese Patent Application No. 2017-032372 filed in Japan on February 23, 2017, the contents of which are incorporated herein by reference.
 従来から、軸流回転機械である蒸気タービンの一種として、ケーシングと、ケーシングに対して回転自在に設けられた回転軸と、ケーシングの内周部に固定された静翼と、この静翼の下流側において回転軸に放射状に設けられた動翼とを複数段備えたものが知られている。 Conventionally, as a kind of steam turbine which is an axial flow rotating machine, a casing, a rotating shaft provided to be rotatable with respect to the casing, a stationary blade fixed to an inner peripheral portion of the casing, and a downstream of the stationary blade On the side, there is known one provided with a plurality of stages of rotor blades provided radially on a rotating shaft.
 この蒸気タービンは、作動方式の違いによって、衝動タービンと反動タービンとに大別される。衝動タービンでは静翼がノズル形状を有し、この静翼を通過した蒸気が動翼に噴射され、蒸気から受ける衝撃力だけによって動翼が回転する。一方、反動タービンでは静翼の形状は動翼と同様であって、この静翼を通過した蒸気から受ける衝撃力と、動翼を通過する際に生じる蒸気の膨張に対する反動力とによって動翼が回転する。 This steam turbine is roughly classified into an impulse turbine and a reaction turbine depending on the operation method. In the impulse turbine, the stationary blade has a nozzle shape, and the steam that has passed through the stationary blade is injected to the moving blade, and the moving blade rotates only by the impact force received from the steam. On the other hand, in the reaction turbine, the shape of the stationary blade is the same as that of the moving blade, and the moving blade is caused by the impact force received from the steam that has passed through the stationary blade and the reaction force against the expansion of the steam generated when passing through the moving blade. Rotate.
 ところで、このような蒸気タービンでは、動翼の先端部とケーシングとの間に、径方向に所定幅の隙間が形成されており、また静翼の先端部と回転軸との間にも、径方向に所定幅の隙間が形成されている。そして、回転軸の回転軸線に沿って流れる蒸気の一部が、これら動翼や静翼の先端部の隙間を通って下流側へリークする。 By the way, in such a steam turbine, a gap having a predetermined width is formed in the radial direction between the tip portion of the rotor blade and the casing, and also between the tip portion of the stationary blade and the rotating shaft. A gap having a predetermined width is formed in the direction. A part of the steam flowing along the rotation axis of the rotation shaft leaks to the downstream side through the gaps between the tip portions of the rotor blades and the stationary blades.
 ここで、動翼とケーシングとの間の隙間から下流側へリークする蒸気は、動翼に対して衝撃力も反動力も付与しないので動翼を回転させる駆動力にはならない。また静翼と軸体との間の隙間から下流側へリークする蒸気も、静翼を越えてもその速度が変化せず、また膨張も生じないため下流側の動翼を回転させるための駆動力とはならない。従って、蒸気タービンの性能向上のためには動翼や静翼の先端部の隙間における蒸気のリーク量を低減させることが重要である。 Here, the steam leaking downstream from the gap between the moving blade and the casing does not give impact force or reaction force to the moving blade, so it does not become a driving force for rotating the moving blade. Also, the steam that leaks downstream from the gap between the stationary blade and the shaft does not change its speed and does not expand even if it exceeds the stationary blade. It doesn't help. Therefore, in order to improve the performance of the steam turbine, it is important to reduce the amount of steam leakage in the gap between the tip portions of the moving blades and the stationary blades.
 そこで、動翼や静翼の先端部の隙間から蒸気がリークすることを防止する手段としてシールフィンが用いられている。ここでシールフィンの一例が特許文献1に開示されている。特許文献1のシールフィンは、ケーシングから動翼のシュラウドに向かって延びるように設けられており、さらに、動翼のシュラウドはステップ形状となっている。 Therefore, seal fins are used as a means for preventing steam from leaking from the gaps at the tips of the rotor blades and stationary blades. Here, an example of the seal fin is disclosed in Patent Document 1. The seal fin of Patent Document 1 is provided so as to extend from the casing toward the shroud of the moving blade, and the shroud of the moving blade has a step shape.
特開2013-19537号公報JP 2013-19537 A
 ところで、特許文献1では、シールフィンとシュラウドのステップとによって隙間を通過する流体(リーク流れ)を低減しようとしている。しかしながら、例えばステップの角部に流体が付着し、その結果、上記隙間を流体が通過し、リーク流れの流量が増大する可能性がある。 By the way, in patent document 1, it is trying to reduce the fluid (leakage flow) which passes a clearance gap by the step of a seal fin and a shroud. However, for example, the fluid may adhere to the corner of the step, and as a result, the fluid may pass through the gap and the flow rate of the leak flow may increase.
 そこで本発明は、簡易な構造でリーク流れの流量低減を図った高性能な軸流回転機械を提供する。 Therefore, the present invention provides a high-performance axial rotary machine that has a simple structure and reduces the flow rate of the leak flow.
 本発明の第一の態様に係る軸流回転機械は、流体の主流が流れる流路に配置されるブレードと、該ブレードの先端側に隙間を介して設けられ、前記ブレードに対して相対回転する構造体と、を備え、前記ブレードは、先端部にシュラウドと、該シュラウドから前記構造体に向かって突出して該構造体との間に微小隙間を形成するシュラウド側フィンと、を有し、前記構造体は、前記シュラウド側フィンに対して前記主流が流れる方向に並んで配置されて、前記シュラウドに向かって突出して該シュラウドとの間に微小隙間を形成する構造体側フィンと、を有し、前記シュラウド側フィン及び前記構造体側フィンの基端部では、前記主流の流れの上流側及び下流側を向く面はこれらフィンにおける前記ブレードと前記構造体との相対回転の中心軸の方向の中心線に向かって凹む円弧面を有し、前記シュラウド側フィン及び前記構造体側フィンでは、先端部に向かうに従って、前記中心線が上流側に向かって傾斜している。 The axial-flow rotating machine according to the first aspect of the present invention is provided with a blade disposed in a flow path through which a main flow of fluid flows and a front end side of the blade via a gap, and rotates relative to the blade. The blade includes a shroud at a tip portion, and a shroud-side fin that protrudes from the shroud toward the structure and forms a minute gap between the structure and the blade. The structure has a structure-side fin that is arranged side by side in the direction in which the main flow flows with respect to the shroud-side fin and protrudes toward the shroud to form a minute gap with the shroud. At the base ends of the shroud-side fin and the structure-side fin, the surfaces facing the upstream side and the downstream side of the mainstream flow are in the relative rotation between the blade and the structure in the fin. Has an arcuate surface that is recessed toward the centerline of the shaft, in the shroud-side fin and the structure side fins, toward the distal end portion, said center line is inclined toward the upstream side.
 このような軸流回転機械によれば、シュラウド側フィンと構造体側フィンのうち、上流側に配置されたフィンの先端部に形成された微小隙間を通過した流体は噴流となって、この微小隙間の下流側に配置されたフィンに衝突する。この際、噴流は下流側に配置されたフィンの上流側の面に沿ってフィンの先端側に向かって案内される。ここで、本態様ではシュラウド側フィン及び構造体側フィンでは、その中心線が先端側に向かうに従って上流側に傾斜している。よって、フィンに衝突した噴流はこのフィンの上流側の面によって上流側に押し戻されるように流れる。従って、下流側に配置されたフィンの先端部の微小隙間を通過しようとする流体を上流側に押し戻すことができ、下流側に配置されたフィンの先端部の微小隙間を通過する流体の流量を低減できる。この結果、構造体とシュラウドとの間のキャビティを通過するリーク流れの流量を低減できる。
 さらに、フィンの中心線が先端側に向かうに従って上流側に傾斜しているため、シュラウド側フィンと構造体側フィンのうち、下流側に配置されたフィンの上流側の面に沿って流れる流体は上流側に向って流れ、上流側に配置されたフィンの下流側の面に接触して流れ方向が転向し、フィン同士の間には渦が形成される。この結果、流体は上流側に配置されたフィンの下流側の面に案内されて、上流側に配置されたフィンの先端部の微小隙間に向って流れる。これにより、上流側に配置されたフィンの先端部の微小隙間を通過しようとする流体を上流側に押し戻しつつ縮流することができる。
 このように、本態様の軸流回転機械は、シュラウド側フィンと構造体側フィンとを主流の流通方向に隣接させることで対向フィン形状を有している。そして各々のフィンの中心線が先端部に向かって上流側に傾斜しているので、各々のフィンの先端部の微小隙間を通過する流体への縮流効果を高めることができる。
 さらに、シュラウド側フィン及び構造体側フィンの基端部では、円弧面が形成されている。よって上流側に配置されたフィンの先端部の微小隙間を通過した流体の流れ方向を滑らかに転向させつつ、流体を上流側に向って案内することができる。従って微小隙間を通過した流体の速度を急激に減速させることなく、フィンによって流体を上流側に向けて案内できるので、フィン同士の間に形成される渦の速度を速めることができる。よって微小隙間を通過する流体の縮流効果をさらに向上することができる。またこのような円弧面によってフィンの基端部の死水域を低減することができるため、流れの損失を低減することができる。
According to such an axial-flow rotating machine, the fluid that has passed through the minute gap formed at the tip of the fin disposed on the upstream side of the shroud-side fin and the structure-side fin becomes a jet, and this minute gap It collides with the fin arranged on the downstream side. At this time, the jet is guided toward the front end side of the fin along the upstream surface of the fin disposed on the downstream side. Here, in this aspect, in the shroud side fin and the structure side fin, the center line is inclined toward the upstream side toward the tip side. Therefore, the jet that collided with the fin flows so as to be pushed back upstream by the upstream surface of the fin. Therefore, the fluid that tries to pass through the minute gap at the tip of the fin arranged on the downstream side can be pushed back upstream, and the flow rate of the fluid that passes through the minute gap at the tip of the fin arranged on the downstream side can be reduced. Can be reduced. As a result, the flow rate of the leak flow passing through the cavity between the structure and the shroud can be reduced.
Furthermore, since the center line of the fin is inclined toward the upstream side toward the tip side, the fluid flowing along the upstream surface of the fin disposed on the downstream side of the shroud side fin and the structure side fin is upstream. Flows toward the side, contacts the downstream surface of the fin disposed on the upstream side, the flow direction is turned, and a vortex is formed between the fins. As a result, the fluid is guided to the downstream surface of the fin disposed on the upstream side and flows toward the minute gap at the tip of the fin disposed on the upstream side. Thereby, the fluid which is going to pass the micro clearance gap of the front-end | tip part of the fin arrange | positioned upstream can be contracted, pushing back to the upstream.
Thus, the axial-flow rotating machine of this aspect has an opposing fin shape by adjoining the shroud side fin and the structure side fin in the mainstream flow direction. And since the centerline of each fin inclines in the upstream toward the front-end | tip part, the contraction effect to the fluid which passes the micro clearance gap of the front-end | tip part of each fin can be heightened.
Furthermore, circular arc surfaces are formed at the base end portions of the shroud side fin and the structure side fin. Therefore, it is possible to guide the fluid toward the upstream side while smoothly turning the flow direction of the fluid that has passed through the minute gaps at the tips of the fins disposed on the upstream side. Therefore, since the fluid can be guided toward the upstream side by the fin without rapidly decelerating the velocity of the fluid that has passed through the minute gap, the velocity of the vortex formed between the fins can be increased. Therefore, the contraction effect of the fluid passing through the minute gap can be further improved. Moreover, since the dead water area | region of the base end part of a fin can be reduced with such a circular arc surface, the loss of a flow can be reduced.
 本発明の第二の態様に係る軸流回転機械では、上記第一の態様において、前記シュラウド側フィンと前記構造体側フィンとでは、前記ブレードと前記構造体との相対回転の中心軸方向に対する前記中心線の傾斜角度が40度以上80度以下となっていてもよい。 In the axial-flow rotating machine according to the second aspect of the present invention, in the first aspect, the shroud-side fin and the structure-side fin have the relative rotation between the blade and the structure relative to a central axis direction. The inclination angle of the center line may be 40 degrees or more and 80 degrees or less.
 このように傾斜角度を設定することで、フィンの先端部の微小隙間を通過しようとする流体を上流側に押し戻しつつ、縮流する効果を向上できる。 By setting the inclination angle in this way, it is possible to improve the effect of contracting while pushing back the fluid that tries to pass through the minute gap at the tip of the fin to the upstream side.
 また、本発明の第三の態様に係る軸流回転機械では、上記第一又は第二の態様において、前記シュラウド側フィン及び前記構造体側フィンの前記円弧面はR面であり、前記シュラウド側フィン及び前記構造体側フィンの先端部では、前記主流の流れの上流側及び下流側を向く面は、前記R面に連続して該R面の接線方向に延びる平面をさらに有していてもよい。 In the axial flow rotating machine according to the third aspect of the present invention, in the first or second aspect, the arcuate surfaces of the shroud side fin and the structure side fin are R surfaces, and the shroud side fin And in the front-end | tip part of the said structure side fin, the surface which faces the upstream and downstream of the flow of the said main flow may further have the plane extended in the tangential direction of this R surface continuously to the said R surface.
 シュラウド側フィン及び構造体側フィンの各々にこのようなR面及び平面を設けることで、フィンの先端部の微小隙間を通過した流体の流れ方向を滑らかに転向させつつ、流体を上流側に向って案内することができる。従ってフィン同士の間に形成される渦の速度を速めることができ、微小隙間を通過する流体の縮流効果をさらに向上することができる。 By providing such an R surface and a flat surface for each of the shroud side fin and the structure side fin, the flow of the fluid that has passed through the minute gap at the tip of the fin is smoothly turned and the fluid is directed upstream. I can guide you. Therefore, the speed of the vortex formed between the fins can be increased, and the contraction effect of the fluid passing through the minute gap can be further improved.
 また、本発明の第四の態様に係る軸流回転機械では、上記第三の態様において、前記主流の流れの上流側を向く前記R面の曲率半径は、前記シュラウド側フィン、及び前記構造体側フィンの前記中心線の長さ寸法の1/2倍であってもよい。 In the axial flow rotating machine according to the fourth aspect of the present invention, in the third aspect, the radius of curvature of the R surface facing the upstream side of the mainstream flow is the shroud side fin and the structure side. It may be ½ times the length of the center line of the fin.
 このようにR面を設けることで、フィンの先端部の微小隙間を通過した流体の流れ方向を滑らかに転向させつつ、流体を上流側に向って案内することができる。従ってフィン同士の間に形成される渦流れの速度を速めることができ、微小隙間を通過する流体の縮流効果をさらに向上することができる。 By providing the R surface in this way, it is possible to guide the fluid toward the upstream side while smoothly turning the flow direction of the fluid that has passed through the minute gap at the tip of the fin. Therefore, the speed of the vortex flow formed between the fins can be increased, and the contraction effect of the fluid passing through the minute gap can be further improved.
 また、本発明の第五の態様に係る軸流回転機械では、上記第一から第四のいずれかの態様において、前記シュラウド側フィン及び前記構造体側フィンの一方は、少なくとも二つ設けられ、かつ、該少なくとも二つのフィンの前記中心軸に対する前記中心線の傾斜角度が同一であってもよい。 Moreover, in the axial-flow rotating machine according to the fifth aspect of the present invention, in any one of the first to fourth aspects, at least one of the shroud side fin and the structure side fin is provided, and The inclination angle of the center line with respect to the central axis of the at least two fins may be the same.
 このようにシュラウド側フィン及び構造体側フィンの一方は少なくとも二つ設けられていることで、シュラウド側フィン及び構造体側フィンが交互に設けられることになる。そしてこれら全てのフィンの中心線は上流側に向って傾斜しているため、下流側に配置されたフィンの上流側の面を上流側のフィンにより近接させることができる。よって上流側のフィンの先端部の微小隙間を通過した噴流を確実に下流側のフィンの上流側の面に接触させて付着させることができる。この結果、上流側のフィンの先端部の微小隙間を通過しようとする流体を縮流する効果を向上することができる。 Thus, by providing at least two of the shroud side fins and the structure side fins, the shroud side fins and the structure side fins are alternately provided. And since the centerline of all these fins inclines toward the upstream side, the upstream surface of the fin disposed on the downstream side can be brought closer to the upstream fin. Therefore, the jet that has passed through the minute gap at the tip of the upstream fin can be reliably brought into contact with the upstream surface of the downstream fin. As a result, it is possible to improve the effect of contracting the fluid that attempts to pass through the minute gap at the tip of the upstream fin.
 また、本発明の第六の態様に係る軸流回転機械では、上記第一から第五のいずれかの態様において、前記構造体側フィンが最も上流側に配置され、前記ブレードには、前記シュラウドにおける上流側を向く端面に径方向外側に向かうに従って上流側から下流側に向うように傾斜する上流側傾斜面が設けられ、前記構造体には、前記シュラウドの上流側に配置されて、該シュラウドに前記主流が流れる方向に対向する位置に径方向外側に向かうに従って上流側から下流側に向うように傾斜する上流側傾斜内壁面が設けられていてもよい。 In the axial-flow rotating machine according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the structure-side fin is disposed on the most upstream side, and the blade includes the shroud. An upstream inclined surface that is inclined from the upstream side toward the downstream side as it goes radially outward is provided on the end surface facing the upstream side, and the structure is disposed on the upstream side of the shroud. An upstream inclined inner wall surface that is inclined from the upstream side toward the downstream side toward the radially outer side may be provided at a position facing the direction in which the main flow flows.
 このように構造体とブレードとの間のキャビティの入口部で、シュラウドに上流側傾斜面が設けられ、構造体に上流側傾斜内壁面が設けられている。このため、主流から分岐してキャビティに流入しようとするリーク流れは径方向に真っ直ぐではなく、これら上流側傾斜面及び上流側傾斜内壁面に沿って下流側に向って斜めに流れ込む。従って、主流からリーク流れが分岐する際のリーク流れが全く異なる方向に分岐することがなくなる。さらに上流側傾斜面及び上流側傾斜内壁面によってキャビティ内に角部が形成されることを回避できるため死水域の発生を抑えることができる。この結果、流体の剥離を抑えて損失を低減することができる。
 さらに上流側傾斜面に沿って流れる流体が構造体側フィンに接触し、上流側に向って押戻されるように流れ、その結果、キャビティ内で構造体側フィンの上流側には渦が形成される。そしてこの渦は、上流側傾斜面及び上流側傾斜内壁面に沿って斜めに延びるように形成されるため、主流から分岐するリーク流れの流れ方向に沿って渦が形成されることになる。よってこの渦の周りに細かな渦が形成されてしまうことを抑制でき、回転機械に振動が生じることを抑制できる。
Thus, at the entrance of the cavity between the structure and the blade, the shroud is provided with the upstream inclined surface, and the structure is provided with the upstream inclined inner wall surface. For this reason, the leak flow that branches off from the main flow and tries to flow into the cavity does not flow straight in the radial direction but flows obliquely toward the downstream side along the upstream inclined surface and the upstream inclined inner wall surface. Therefore, the leak flow when the leak flow branches from the main flow does not branch in completely different directions. Furthermore, since it can avoid that a corner | angular part is formed in a cavity with an upstream inclined surface and an upstream inclined inner wall surface, generation | occurence | production of a dead water area can be suppressed. As a result, it is possible to suppress fluid separation and reduce loss.
Further, the fluid flowing along the upstream inclined surface contacts the structure-side fin and flows so as to be pushed back toward the upstream side. As a result, a vortex is formed on the upstream side of the structure-side fin in the cavity. Since this vortex is formed so as to extend obliquely along the upstream inclined surface and the upstream inclined inner wall surface, the vortex is formed along the flow direction of the leak flow branched from the main flow. Therefore, it can suppress that a fine vortex is formed around this vortex, and it can suppress that a vibration arises in a rotary machine.
 また、本発明の第七の態様に係る軸流回転機械では、上記第一から第六のいずれかの態様において、前記ブレードには、前記シュラウドにおける下流側を向く端面に径方向内側に向かうに従って上流側から下流側に向うように傾斜する下流側傾斜面が設けられ、前記構造体には、前記シュラウドの下流側に配置されて、該シュラウドに前記主流が流れる方向に対向する位置に径方向内側に向かうに従って上流側から下流側に向うように傾斜する下流側傾斜内壁面が設けられていてもよい。 Moreover, in the axial-flow rotating machine according to the seventh aspect of the present invention, in any one of the first to sixth aspects, the blade has a radially inward end surface facing the downstream side of the shroud. A downstream inclined surface that inclines from the upstream side toward the downstream side is provided, and the structure is disposed on the downstream side of the shroud, and is positioned in a radial direction at a position facing the direction in which the mainstream flows through the shroud. A downstream inclined inner wall surface that is inclined from the upstream side toward the downstream side as it goes inward may be provided.
 このように、構造体とブレードとの間のキャビティの出口部で、シュラウドに下流側傾斜面が設けられ、構造体に下流側傾斜内壁面が設けられている。このため、リーク流れが主流に合流しようとする際、径方向に真っ直ぐではなくこれら下流側傾斜面及び下流側傾斜内壁面に沿って下流側に向って斜めに主流に流れ込む。従って、リーク流れが主流へ合流する際、その流れ方向を互いに近づけることができる。さらに下流側傾斜面及び下流側傾斜内壁面によってキャビティ内に角部が形成されることを回避できるため、死水域の発生を抑えることができる。この結果、流体の剥離を抑えて損失を低減することができる。 Thus, at the exit of the cavity between the structure and the blade, the shroud is provided with the downstream inclined surface, and the structure is provided with the downstream inclined inner wall surface. For this reason, when the leak flow tries to join the main flow, it flows into the main flow obliquely toward the downstream side along the downstream inclined surface and the downstream inclined inner wall surface, instead of straight in the radial direction. Therefore, when the leak flows merge into the main flow, the flow directions can be made closer to each other. Furthermore, since it can avoid that a corner | angular part is formed in a cavity by a downstream inclined surface and a downstream inclined inner wall surface, generation | occurrence | production of a dead water area can be suppressed. As a result, it is possible to suppress fluid separation and reduce loss.
 上記の軸流回転機械によれば、いわゆる対向フィンを採用し、全てのフィンの中心線が上流側に向って傾斜するようにすることで、簡易な構造でリーク流れの流量低減を図り、高性能化が可能となる。 According to the above axial flow rotating machine, so-called opposed fins are adopted, and the center line of all the fins is inclined toward the upstream side, so that the flow rate of the leak flow is reduced with a simple structure. Performance improvement is possible.
本発明の第一実施形態の蒸気タービンの概略構成断面図である。It is a schematic structure sectional view of the steam turbine of a first embodiment of the present invention. 本発明の第一実施形態の蒸気タービンの要部を示す図であって、図1のA部を示す。It is a figure which shows the principal part of the steam turbine of 1st embodiment of this invention, Comprising: The A section of FIG. 1 is shown. 本発明の第二実施形態の蒸気タービンの要部を示す図であって、図1のA部に相当する位置を示す。It is a figure which shows the principal part of the steam turbine of 2nd embodiment of this invention, Comprising: The position corresponded to the A section of FIG. 1 is shown.
 以下、本発明の第一実施形態の蒸気タービン(軸流回転機械)100について説明する。
 図1に示すように、本実施形態に係る蒸気タービン100は、回転軸(構造体)1と、ケーシング(構造体)2と、複数の動翼(ブレード)4を備える動翼段3と、複数の静翼(ブレード)7を備える静翼段6と、を備えている。
Hereinafter, the steam turbine (axial flow rotary machine) 100 of 1st embodiment of this invention is demonstrated.
As shown in FIG. 1, a steam turbine 100 according to the present embodiment includes a rotating shaft (structure) 1, a casing (structure) 2, a moving blade stage 3 including a plurality of moving blades (blades) 4, And a stationary blade stage 6 including a plurality of stationary blades (blades) 7.
 回転軸1は、中心軸Acに沿って延びる円柱状をなしている。回転軸1は、中心軸Acに沿った中心軸方向Daの両端部が、軸受装置5によって中心軸Ac回りに回転自在に支持されている。軸受装置5は、回転軸1の中心軸方向Da両側に1つずつ設けられたジャーナル軸受5Aと、中心軸方向Daの第一側のみに設けられたスラスト軸受5Bと、を有している。ジャーナル軸受5Aは、回転軸1による径方向Drへの荷重を支持する。スラスト軸受5Bは、回転軸1による中心軸方向Daへの荷重を支持する。 The rotary shaft 1 has a cylindrical shape extending along the central axis Ac. The rotary shaft 1 is supported at both ends in the central axis direction Da along the central axis Ac by the bearing device 5 so as to be rotatable around the central axis Ac. The bearing device 5 includes a journal bearing 5A provided on each side of the central axis direction Da of the rotating shaft 1 and a thrust bearing 5B provided only on the first side in the central axis direction Da. The journal bearing 5 </ b> A supports a load in the radial direction Dr by the rotating shaft 1. The thrust bearing 5B supports the load in the central axis direction Da by the rotating shaft 1.
 ケーシング2は、中心軸方向Daに延びる筒状をなしている。ケーシング2は、回転軸1を外周側から覆っている。ケーシング2は回転軸1に対して相対回転する。
 ケーシング2は、吸気口10と、排気口11と、を備えている。吸気口10は、ケーシング2の中心軸方向Daの第一側に形成され、外部からケーシング2内に蒸気(流体)を取り入れる。排気口11は、ケーシング2の中心軸方向Daの第二側に形成され、ケーシング2内部を通過した蒸気を外部に排気する。
 以降の説明では、排気口11から見て吸気口10が位置する側を上流側と呼び、吸気口10から見て排気口11が位置する側を下流側と呼ぶ。
The casing 2 has a cylindrical shape extending in the central axis direction Da. The casing 2 covers the rotating shaft 1 from the outer peripheral side. The casing 2 rotates relative to the rotating shaft 1.
The casing 2 includes an intake port 10 and an exhaust port 11. The air inlet 10 is formed on the first side in the central axis direction Da of the casing 2 and takes in steam (fluid) into the casing 2 from the outside. The exhaust port 11 is formed on the second side of the casing 2 in the central axis direction Da and exhausts the steam that has passed through the inside of the casing 2 to the outside.
In the following description, the side where the intake port 10 is located when viewed from the exhaust port 11 is referred to as the upstream side, and the side where the exhaust port 11 is located when viewed from the intake port 10 is referred to as the downstream side.
 動翼段3は、回転軸1の外周面1Sに、中心軸方向Daの第一側から第二側に向かって間隔をあけて、複数段が設けられている。各動翼段3は、回転軸1の外周面1S上で、中心軸Ac回りの周方向に間隔をあけて配列された複数の動翼4を有している。 The rotor blade stage 3 is provided with a plurality of stages on the outer peripheral surface 1S of the rotating shaft 1 at intervals from the first side to the second side in the central axis direction Da. Each blade stage 3 has a plurality of blades 4 arranged on the outer peripheral surface 1S of the rotary shaft 1 at intervals in the circumferential direction around the central axis Ac.
 図2に示すように、動翼4は、回転軸1の外周面1Sに形成されたプラットフォーム43と、動翼本体40と、動翼シュラウド41と、を有している。 As shown in FIG. 2, the moving blade 4 includes a platform 43 formed on the outer peripheral surface 1 </ b> S of the rotating shaft 1, a moving blade main body 40, and a moving blade shroud 41.
 詳しくは図示しないが、動翼本体40は、プラットフォーム43から径方向外側に向かって延びるよう形成されている。動翼本体40は、径方向Drから見て翼型の断面を有している。
 動翼シュラウド41は、動翼本体40の径方向外側の端部に設けられている。動翼シュラウド41は、中心軸方向Daにおける寸法が、同中心軸方向Daにおける動翼本体40の寸法よりも大きく設定されている。
Although not shown in detail, the rotor blade body 40 is formed so as to extend radially outward from the platform 43. The rotor blade body 40 has an airfoil-shaped cross section as viewed from the radial direction Dr.
The moving blade shroud 41 is provided at the radially outer end of the moving blade body 40. The moving blade shroud 41 is set such that the dimension in the central axis direction Da is larger than the dimension of the moving blade body 40 in the central axis direction Da.
 ケーシング2の内周側であって、動翼シュラウド41と径方向Drで対向する領域には、動翼シュラウド41を収容するための動翼収容凹部20が形成されている。動翼収容凹部20は、ケーシング2の内周面2Sから径方向Dr外側に向かって窪み、中心軸Ac回りの周方向に連続する溝状をなしている。 A moving blade accommodating recess 20 for accommodating the moving blade shroud 41 is formed in an inner peripheral side of the casing 2 and in a region facing the moving blade shroud 41 in the radial direction Dr. The moving blade housing recess 20 is recessed from the inner peripheral surface 2S of the casing 2 toward the outer side in the radial direction Dr, and has a groove shape continuous in the circumferential direction around the central axis Ac.
 図2に示すように、動翼収容凹部20は、動翼シュラウド41とケーシング2との間に形成されたキャビティと呼ばれるものである。このキャビティには、回転軸1の周りを中心軸方向Daに流通する蒸気の主流MFから径方向に分岐して、リーク流れLFが流入する。動翼収容凹部20における下流側を向く面と、動翼シュラウド41の上流側を向く端面とは径方向に離れて隙間をあけて配置されており、即ち、動翼収容凹部20の下流側を向く面は、動翼シュラウド41の上流側を向く端面の上流側に位置し、動翼シュラウド41に対向するように配置されている。そしてこの隙間がキャビティの入口部となっている。 As shown in FIG. 2, the moving blade housing recess 20 is called a cavity formed between the moving blade shroud 41 and the casing 2. A leak flow LF flows into the cavity from the main flow MF of the steam flowing in the central axis direction Da around the rotation shaft 1 in the radial direction. The surface facing the downstream side in the moving blade housing recess 20 and the end surface facing the upstream side of the moving blade shroud 41 are arranged with a gap in the radial direction, that is, the downstream side of the moving blade housing recess 20 The facing surface is located on the upstream side of the end surface facing the upstream side of the moving blade shroud 41 and is disposed to face the moving blade shroud 41. This gap is the entrance of the cavity.
 動翼収容凹部20の底面23(径方向Drの内側を向く面)には、ケーシング2から動翼シュラウド41に向かって突出するケーシング側フィン(構造体側フィン)42が、本実施形態では2つ、中心軸方向Daに離れて並んで設けられている。 In the present embodiment, two casing-side fins (structure-side fins) 42 that protrude from the casing 2 toward the blade shroud 41 are provided on the bottom surface 23 (the surface facing the inner side of the radial direction Dr) of the blade accommodating recess 20. Are arranged side by side in the central axis direction Da.
 これらケーシング側フィン42は、ケーシング2から径方向Drの内側に向かって延びる薄板状をなしている。ケーシング側フィン42の先端部と、動翼シュラウド41との間には、径方向Drにクリアンランス(微小隙間)が形成されている。 These casing-side fins 42 have a thin plate shape extending from the casing 2 toward the inside in the radial direction Dr. A clear lance (a minute gap) is formed in the radial direction Dr between the tip of the casing side fin 42 and the blade shroud 41.
 また、各々のケーシング側フィン42では、先端部(径方向Drの内側の端部)に向かうに従って、中心線CL1が上流側に向かって傾斜している。ここで、中心線CL1とはケーシング側フィン42における中心軸方向Daの中央部を通過する仮想線である。中心軸方向Daに対する各々のケーシング側フィン42の中心線CL1の傾斜角度α1は、本実施形態では同一あるが、互いに異なっていてもよい。この中心線CL1の傾斜角度は40度以上80度以下であるとよく、60度であるとさらによい。 Further, in each casing-side fin 42, the center line CL1 is inclined toward the upstream side toward the tip end portion (the inner end portion in the radial direction Dr). Here, the center line CL1 is an imaginary line that passes through the central portion of the casing-side fin 42 in the central axis direction Da. The inclination angle α1 of the center line CL1 of each casing-side fin 42 with respect to the central axis direction Da is the same in this embodiment, but may be different from each other. The inclination angle of the center line CL1 is preferably 40 degrees or more and 80 degrees or less, and more preferably 60 degrees.
 また、ケーシング側フィン42の基端部(径方向Drの外側の端部)では、上流側及び下流側を向く面は中心線CL1に向かって凹む円弧面42aを有している。円弧面42aは本実施形態ではR面である。また上流側を向く円弧面42a1と下流側を向く円弧面42a2とでは曲率半径が異なっている。上流側を向く円弧面42a1の曲率半径は、ケーシング側フィン42の中心線CL1の長さ寸法の1/2倍であるとよい。 Further, at the base end portion (end portion on the outer side in the radial direction Dr) of the casing side fin 42, the surfaces facing the upstream side and the downstream side have an arc surface 42a that is recessed toward the center line CL1. The arc surface 42a is an R surface in the present embodiment. Further, the curvature radius is different between the arc surface 42a1 facing the upstream side and the arc surface 42a2 facing the downstream side. The radius of curvature of the arcuate surface 42a1 facing the upstream side may be ½ times the length of the center line CL1 of the casing-side fin 42.
 さらに、ケーシング側フィン42における上流側及び下流側を向く面は、R面である円弧面42aに滑らかに連続して、このR面との接続部分での接線方向に延びる平面42bをさらに有している。上流側では平面42b1が、下流側では平面42b2が設けられている。
 そしてケーシング側フィン42は基端部から先端部にかけて徐々に中心軸方向Dcの肉厚が小さくなる先細り形状をなしている。
Further, the surfaces facing the upstream side and the downstream side of the casing-side fin 42 further have a flat surface 42b that is smoothly continuous with the arcuate surface 42a that is the R surface and that extends in the tangential direction at the connection portion with the R surface. ing. A plane 42b1 is provided on the upstream side, and a plane 42b2 is provided on the downstream side.
The casing-side fin 42 has a tapered shape in which the thickness in the central axis direction Dc gradually decreases from the base end portion to the tip end portion.
 また、動翼収容凹部20には、動翼シュラウド41からケーシング2に向かって突出するシュラウド側フィン44が本実施形態では1つ、中心軸方向Daに上流側と下流側とからケーシング側フィン42に挟まれるようにして設けられている。シュラウド側フィン44は、動翼シュラウド41から径方向Drの外側に向かって延びる薄板状をなしている。シュラウド側フィン44の先端部と、ケーシング2との間には、径方向Drにクリアンランス(微小隙間)が形成されている。 Further, in the moving blade housing recess 20, there is one shroud-side fin 44 protruding from the moving blade shroud 41 toward the casing 2 in the present embodiment, and the casing-side fin 42 from the upstream side and the downstream side in the central axis direction Da. It is provided so as to be sandwiched between. The shroud-side fin 44 has a thin plate shape extending from the blade shroud 41 toward the outside in the radial direction Dr. A clear lance (a minute gap) is formed in the radial direction Dr between the tip portion of the shroud-side fin 44 and the casing 2.
 また、シュラウド側フィン44では、先端部(径方向Drの外側の端部)に向かうに従って、中心線CL2が上流側に向かって傾斜している。ここで、中心線CL2とはシュラウド側フィン44における中心軸方向Daの中央部を通過する仮想線である。中心軸方向Daに対する中心線CL2の傾斜角度α2は、本実施形態ではケーシング側フィン42の中心線CL1の傾斜角度α1と同一あるが、異なっていてもよい。この中心線CL2の傾斜角度は40度以上80度以下であるとよく、60度であるとさらによい。 Further, in the shroud-side fin 44, the center line CL2 is inclined toward the upstream side toward the tip portion (end portion on the outer side in the radial direction Dr). Here, the center line CL <b> 2 is an imaginary line that passes through the central portion of the shroud-side fin 44 in the central axis direction Da. The inclination angle α2 of the center line CL2 with respect to the central axis direction Da is the same as the inclination angle α1 of the center line CL1 of the casing side fin 42 in the present embodiment, but may be different. The inclination angle of the center line CL2 is preferably 40 degrees or more and 80 degrees or less, and more preferably 60 degrees.
 また、シュラウド側フィン44の基端部(径方向Drの内側の端部)では、上流側及び下流側を向く面は中心線CL2に向かって凹む円弧面44aを有している。円弧面44aは本実施形態ではR面である。また上流側を向く円弧面44a1と下流側を向く円弧面44a2とでは曲率半径が異なっている。上流側を向く円弧面44a1の曲率半径は、シュラウド側フィン44の中心線CL2の長さ寸法の1/2倍であるとよい。 Further, at the base end portion (the end portion on the inner side in the radial direction Dr) of the shroud side fin 44, the surfaces facing the upstream side and the downstream side have an arc surface 44a that is recessed toward the center line CL2. The arc surface 44a is an R surface in the present embodiment. Further, the curvature radius is different between the arc surface 44a1 facing the upstream side and the arc surface 44a2 facing the downstream side. The radius of curvature of the arcuate surface 44a1 facing the upstream side may be 1/2 of the length of the center line CL2 of the shroud-side fin 44.
 さらに、シュラウド側フィン44における上流側及び下流側を向く面は、R面である円弧面44aに滑らかに連続して、このR面との接続部分での接線方向に延びる平面44bをさらに有している。上流側では平面44b1が、下流側では平面44b2が設けられている。 Further, the surfaces facing the upstream side and the downstream side of the shroud-side fin 44 further have a flat surface 44b extending smoothly in a tangential direction at a connection portion with the R surface, which is smoothly connected to the arc surface 44a which is the R surface. ing. A flat surface 44b1 is provided on the upstream side, and a flat surface 44b2 is provided on the downstream side.
 そしてシュラウド側フィン44は基端部から先端部にかけて徐々に中心軸方向Dcの肉厚が小さくなる先細り形状をなしている。 The shroud side fin 44 has a tapered shape in which the thickness in the central axis direction Dc gradually decreases from the base end portion to the tip end portion.
 図1に示すように、静翼段6は、ケーシング2の内周面に、中心軸方向Daに沿って間隔をあけて、複数段が設けられている。各静翼段6は、各動翼段3の上流側に配置されている。各静翼段6は、中心軸Ac回りの周方向に間隔をあけて配列された複数の静翼7を有している。 As shown in FIG. 1, the stationary blade stage 6 is provided with a plurality of stages on the inner peripheral surface of the casing 2 at intervals along the central axis direction Da. Each stationary blade stage 6 is arranged on the upstream side of each moving blade stage 3. Each stationary blade stage 6 has a plurality of stationary blades 7 arranged at intervals in the circumferential direction around the central axis Ac.
 静翼7は、静翼本体70と、静翼シュラウド71と、を備えている。
 静翼本体70は、ケーシング2の内周面2Sから径方向Drの内側に向かって延びるよう設けられている。静翼本体70は、径方向Drから見て翼型の断面を有している。
 静翼シュラウド71は、静翼本体70の径方向Drの内側の端部に取り付けられている。
The stationary blade 7 includes a stationary blade body 70 and a stationary blade shroud 71.
The stationary blade body 70 is provided so as to extend from the inner peripheral surface 2S of the casing 2 toward the inside in the radial direction Dr. The stationary blade body 70 has a blade-shaped cross section as viewed from the radial direction Dr.
The stationary blade shroud 71 is attached to the inner end of the stationary blade body 70 in the radial direction Dr.
 回転軸1の径方向Dr外側を向く外周面1S上において、各動翼段3の上流側には、回転軸1の外周面1Sから径方向Dr内側に向かって窪み、中心軸Ac回りの周方向に連続する溝状の静翼収容凹部8が形成されている。各静翼7の静翼シュラウド71は、静翼収容凹部8内に収容されている。 On the outer peripheral surface 1S facing the outer side of the radial direction Dr of the rotary shaft 1, on the upstream side of each rotor blade stage 3, the outer peripheral surface 1S of the rotary shaft 1 is recessed from the outer peripheral surface 1S toward the inner side in the radial direction Dr. A groove-shaped stationary blade housing recess 8 that is continuous in the direction is formed. The stationary blade shroud 71 of each stationary blade 7 is accommodated in the stationary blade accommodating recess 8.
 以上説明した本実施形態の蒸気タービン(軸流回転機械)100によれば、最も上流側に配置されたケーシング側フィン42の先端部に形成されたクリアランスを通過した蒸気は噴流となって、このクリアランスの下流側に配置されたシュラウド側フィン44に衝突する。この際、蒸気はシュラウド側フィン44の上流側の面に沿って、このシュラウド側フィン44の先端側に向かって案内される。同様に、シュラウド側フィン44の先端部に形成されたクリアランスを通過した蒸気は噴流となって、このクリアランスの下流側に配置されたケーシング側フィン42に衝突する。この際、ケーシング側フィン42の上流側の面に沿ってケーシング側フィン42の先端側に向かって案内され、クリアランスを通じてリーク流れLFがキャビティの出口部から主流MFに合流する。 According to the steam turbine (axial rotary machine) 100 of the present embodiment described above, the steam that has passed through the clearance formed at the tip of the casing-side fin 42 disposed on the most upstream side becomes a jet, It collides with the shroud side fins 44 arranged on the downstream side of the clearance. At this time, the steam is guided toward the front end side of the shroud fin 44 along the upstream surface of the shroud fin 44. Similarly, the steam that has passed through the clearance formed at the tip of the shroud-side fin 44 becomes a jet and collides with the casing-side fin 42 disposed on the downstream side of the clearance. At this time, the air is guided along the upstream surface of the casing-side fin 42 toward the front end side of the casing-side fin 42, and the leak flow LF joins the main flow MF from the exit of the cavity through the clearance.
 ここで、シュラウド側フィン44及びケーシング側フィン42に衝突した噴流はシュラウド側フィン44及びケーシング側フィン42の上流側の面によって上流側に押し戻されるように流れる。そして、シュラウド側フィン44と上流側のケーシング側フィン42との間には渦V1(本実施形態では反時計回りの渦)が形成される。また、シュラウド側フィン44と下流側のケーシング側フィン42との間には渦V2(本実施形態では時計回りの渦)が形成される。 Here, the jet that collides with the shroud side fin 44 and the casing side fin 42 flows so as to be pushed back to the upstream side by the upstream surface of the shroud side fin 44 and the casing side fin 42. A vortex V1 (in the present embodiment, a counterclockwise vortex) is formed between the shroud side fin 44 and the upstream casing side fin 42. Further, a vortex V2 (clockwise vortex in the present embodiment) is formed between the shroud side fin 44 and the downstream casing side fin 42.
 そして渦V1によって最も上流側のケーシング側フィン42の先端部のクリアランスを通過しようとする蒸気を径方向Drの内側に向かって縮流することができる。また渦V2によってシュラウド側フィン44の先端部のクリアランスを通過しようとする蒸気を径方向Drの外側に向かって縮流することができる。これにより、クリアランスを通過する蒸気の流量を低減できる。この結果、キャビティを通過するリーク流れLFの流量を低減できる。 Then, the vortex V1 can cause the steam that is about to pass through the clearance at the tip end of the casing-side fin 42 on the most upstream side to contract toward the inside in the radial direction Dr. Further, the vortex V <b> 2 can contract the steam that attempts to pass through the clearance at the tip of the shroud-side fin 44 toward the outside in the radial direction Dr. Thereby, the flow volume of the vapor | steam which passes a clearance can be reduced. As a result, the flow rate of the leak flow LF passing through the cavity can be reduced.
 そして、本実施形態では、シュラウド側フィン44とケーシング側フィン42とを主流MFの流通方向に隣接させることで対向フィン形状を有している。そして各々のフィン42、44の中心線CL1、CL2が先端部に向かって上流側に傾斜しているので、各々のフィン42、44の先端部のクリアンランスを通過しようとする蒸気を上流側へ押し戻すように縮流でき、渦V1、V2による縮流効果を高めることができる。即ち、簡易な構造でリーク流れLFの流量低減を図り、蒸気タービン100の高性能化が可能となる。 And in this embodiment, it has an opposing fin shape by making the shroud side fin 44 and the casing side fin 42 adjoin in the distribution | circulation direction of the mainstream MF. Since the center lines CL1 and CL2 of the fins 42 and 44 are inclined toward the upstream side toward the tip, the steam that is about to pass through the clearance of the tip of the fins 42 and 44 is upstream. The flow can be reduced so as to push back, and the effect of reduced flow caused by the vortices V1 and V2 can be enhanced. That is, the flow rate of the leak flow LF can be reduced with a simple structure, and the performance of the steam turbine 100 can be improved.
 さらに、シュラウド側フィン44及びケーシング側フィン42の基端部では、R面である円弧面42a1、42a2、44a1、44a2が形成されている。よってクリアランスを通過した蒸気の流れ方向を滑らかに転向させつつ、蒸気を上流側に向って案内することができる。従ってクリアランスを通過した蒸気の速度を急激に減速させることなく、シュラウド側フィン44及びケーシング側フィン42によって上流側に向けて蒸気を案内できる。よって渦V1、V2の流れの速度を速めることができる。よってクリアランスを通過する蒸気の縮流効果をさらに向上することができる。また円弧面42a1、42a2、44a1、44a2によってフィン42、44の基端部の死水域を低減することができるため、蒸気の流れの損失を低減することができる。 Furthermore, arcuate surfaces 42 a 1, 42 a 2, 44 a 1, 44 a 2 which are R surfaces are formed at the base ends of the shroud side fins 44 and the casing side fins 42. Therefore, it is possible to guide the steam toward the upstream side while smoothly turning the flow direction of the steam that has passed through the clearance. Therefore, the steam can be guided toward the upstream side by the shroud-side fins 44 and the casing-side fins 42 without rapidly reducing the speed of the steam that has passed through the clearance. Therefore, the flow speed of the vortices V1 and V2 can be increased. Therefore, the contraction effect of the steam passing through the clearance can be further improved. Moreover, since the dead water area of the base end part of the fins 42 and 44 can be reduced by the circular arc surfaces 42a1, 42a2, 44a1, and 44a2, loss of steam flow can be reduced.
 また各フィン42、44の中心線CL1、CL2の傾斜角度が40度以上80度以下であることで、好ましくは60度であることで、クリアランスを通過しようとする蒸気を上流側に押し戻しつつ縮流する効果をさらに向上できる。 Further, the inclination angles of the center lines CL1 and CL2 of the fins 42 and 44 are not less than 40 degrees and not more than 80 degrees, preferably 60 degrees, so that the steam passing through the clearance is compressed while being pushed back to the upstream side. The effect of flowing can be further improved.
 さらに、シュラウド側フィン42及びケーシング側フィン44では、R面である円弧面42a、44aに連続して、R面の接線方向に延びる平面42b、44bが設けられているため、クリアランスを通過しようとする蒸気を上流側に押し戻しつつ縮流する効果をさらに向上できる。 Furthermore, since the shroud side fin 42 and the casing side fin 44 are provided with flat surfaces 42b, 44b extending in the tangential direction of the R surface continuously to the arc surfaces 42a, 44a which are the R surface, the shroud side fin 42 and the casing side fin 44 try to pass the clearance. It is possible to further improve the effect of contracting while pushing back the steam to the upstream side.
 また上流側を向くR面である円弧面42a1の曲率半径が、シュラウド側フィン44、及びケーシング側フィン42の中心線CL1、CL2の長さ寸法の1/2倍であると、クリアランスを通過した蒸気の流れ方向を滑らかに転向させつつ、蒸気を上流側に向って案内することができる。従ってフィン42、44同士の間に形成される渦V1、V2の速度を速めることができ、クリアランスを通過する蒸気の縮流効果をさらに向上することができる。 Further, when the radius of curvature of the arcuate surface 42a1 which is the R surface facing the upstream side is 1/2 times the length of the center lines CL1 and CL2 of the shroud side fin 44 and the casing side fin 42, the clearance has passed. It is possible to guide the steam toward the upstream side while smoothly turning the flow direction of the steam. Accordingly, the speed of the vortices V1 and V2 formed between the fins 42 and 44 can be increased, and the effect of contraction of the steam passing through the clearance can be further improved.
 また、各フィン42、44の中心線CL1、CL2の傾斜角度α1、α2が同一であるため、最も下流側に配置されたケーシング側フィン42についても、中心線CL1が上流側に向って傾斜している。よって最も下流側のケーシング側フィン42の上流側の面をシュラウド側フィン44により近接させることができる。よってシュラウド側フィン44の先端部のクリアランスを通過した蒸気の噴流を、最も下流側のケーシング側フィン42の上流側の面に確実に接触させて付着させることができる。この結果、シュラウド側フィン44の先端部のクリアランスを通過しようとする蒸気を縮流する効果を向上することができる。 In addition, since the inclination angles α1 and α2 of the center lines CL1 and CL2 of the fins 42 and 44 are the same, the center line CL1 is inclined toward the upstream side also in the casing-side fins 42 arranged on the most downstream side. ing. Therefore, the upstream side surface of the most downstream casing side fin 42 can be brought closer to the shroud side fin 44. Therefore, the jet of steam that has passed through the clearance at the tip of the shroud-side fin 44 can be reliably brought into contact with the upstream surface of the casing-side fin 42 on the most downstream side. As a result, it is possible to improve the effect of contracting the steam that attempts to pass through the clearance at the tip of the shroud-side fin 44.
〔第二実施形態〕
 次に、本発明の第二実施形態の蒸気タービン(軸流回転機械)200について説明する。以下に説明する第二実施形態においては、第一実施形態と動翼シュラウド41A、及び動翼収容凹部20Aが異なるのみであるため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
[Second Embodiment]
Next, a steam turbine (axial flow rotary machine) 200 according to a second embodiment of the present invention will be described. In the second embodiment described below, the first embodiment differs from the first embodiment only in the moving blade shroud 41A and the moving blade housing recess 20A. Therefore, the same portions as those in the first embodiment are denoted by the same reference numerals. At the same time, redundant description is omitted.
 図3に示すように、動翼シュラウド41Aの上流側を向く端面は、径方向Drの外側に向かうに従って下流側に向うように傾斜する上流側傾斜面80となっている。また、上流側傾斜面80は、下流側に向って凹状をなす湾曲凹面である。この湾曲凹面の曲率半径は、キャビティの入口部に形成される渦Vの形状に沿うように決定するとよい。本実施形態では、蒸気が最も上流側のケーシング側フィン42の円弧面42a1及び平面42b1に案内されて、径方向Drの外側に向かって上流側に流れることで、反時計回りの渦Vが形成される。 As shown in FIG. 3, the end surface facing the upstream side of the moving blade shroud 41 </ b> A is an upstream inclined surface 80 that inclines toward the downstream side toward the outside in the radial direction Dr. The upstream inclined surface 80 is a curved concave surface that is concave toward the downstream side. The radius of curvature of the curved concave surface may be determined so as to follow the shape of the vortex V formed at the entrance of the cavity. In the present embodiment, the steam is guided to the arc surface 42a1 and the flat surface 42b1 of the casing-side fin 42 on the most upstream side and flows upstream toward the outside in the radial direction Dr, thereby forming a counterclockwise vortex V. Is done.
 また動翼シュラウド41Aは、下流側を向く端面に、径方向Drの外側に向かうに従って下流側に向うように傾斜する曲面状の下流側傾斜面85と、下流側傾斜面85の径方向Drの内側に連続して径方向Drに延びる平面86とを有している。下流側傾斜面85は下流側に向って凸状をなす湾曲凸面(R面)である。 Further, the moving blade shroud 41A has a curved downstream inclined surface 85 inclined toward the downstream side toward the outer side in the radial direction Dr, and a radial direction Dr of the downstream inclined surface 85 on the end surface facing the downstream side. And a plane 86 extending in the radial direction Dr continuously. The downstream inclined surface 85 is a curved convex surface (R surface) that is convex toward the downstream side.
 動翼収容凹部20Aの下流側を向く面は、径方向Drの内側に、中心軸Acに直交して径方向Drに延びる平面91と平面91の径方向Drの外側に連続して径方向Drの外側に向かうに従って下流側に向うように傾斜する上流側傾斜内壁面92とを有している。上流側傾斜内壁面92と平面91との接続部分には角がなく、上流側傾斜内壁面92と平面91とが円弧状に滑らかに接続されている。また動翼収容凹部20Aの上記底面23と上流側傾斜内壁面92との接続部分にも角がなく、底面23と上流側傾斜内壁面92とが円弧状に滑らかに接続されている。
 ここで上流側傾斜内壁面92は、動翼収容凹部20Aに別部材を取り付けて形成してもよいし、動翼収容凹部20Aの表面を傾斜面状に形成することで設けてもよい。
The surface facing the downstream side of the moving blade housing recess 20A has a radial direction Dr continuous to the inside of the radial direction Dr, the plane 91 extending perpendicularly to the central axis Ac and extending in the radial direction Dr, and the outside of the radial direction Dr of the plane 91. And an upstream inclined inner wall surface 92 that inclines toward the downstream side as it goes outward. The connecting portion between the upstream inclined inner wall surface 92 and the flat surface 91 has no corners, and the upstream inclined inner wall surface 92 and the flat surface 91 are smoothly connected in an arc shape. Further, the connecting portion between the bottom surface 23 and the upstream inclined inner wall surface 92 of the moving blade housing recess 20A has no corners, and the bottom surface 23 and the upstream inclined inner wall surface 92 are smoothly connected in an arc shape.
Here, the upstream inclined inner wall surface 92 may be formed by attaching another member to the moving blade housing recess 20A, or may be provided by forming the surface of the moving blade housing recess 20A into an inclined surface.
 動翼収容凹部20Aにおける上流側を向く面と、動翼シュラウド41Aの下流側を向く端面とは径方向Drに離れて隙間をあけて配置されており、即ち、動翼収容凹部20Aの下流側を向く面は、動翼シュラウド41Aの下流側を向く端面の下流側に位置し、動翼シュラウド41Aに対向するように配置されている。そしてこの隙間がキャビティの出口部となっている。キャビティの出口部では、最も下流側に配置されたケーシング側フィン42と動翼シュラウド41Aとの間に形成されたクリアランスを通過した蒸気であるリーク流れLFが、主流MFへ合流する。 The surface facing the upstream side of the moving blade housing recess 20A and the end surface facing the downstream side of the moving blade shroud 41A are spaced apart from each other in the radial direction Dr, that is, downstream of the moving blade housing recess 20A. Is located on the downstream side of the end surface facing the downstream side of the moving blade shroud 41A, and is disposed to face the moving blade shroud 41A. This gap is the exit of the cavity. At the exit of the cavity, the leak flow LF, which is steam that has passed through the clearance formed between the casing-side fin 42 disposed on the most downstream side and the blade shroud 41A, joins the main flow MF.
 そして、動翼収容凹部20Aの上流側を向く面は、底面23に連続して径方向Drの内側に向かうに従って下流側に向うように傾斜する下流側傾斜内壁面96と、下流側傾斜内壁面96の径方向Drの内側に連続して中心軸Acに直交して径方向Drに延びる平面95とを有している。 The surface facing the upstream side of the moving blade housing recess 20A has a downstream inclined inner wall surface 96 that is continuous with the bottom surface 23 and is inclined toward the downstream side toward the inner side in the radial direction Dr, and a downstream inclined inner wall surface. 96 has a flat surface 95 extending in the radial direction Dr perpendicular to the central axis Ac and continuously inside the radial direction Dr.
 下流側傾斜内壁面96と平面95との接続部分には角がなく、これらの面95、96は円弧状に滑らかに接続されている。また動翼収容凹部20Aの上記底面23と下流側傾斜内壁面96との接続部分にも角がなく、これらの面23、96は円弧状に滑らかに接続されている。
 ここで、下流側傾斜内壁面96は、動翼収容凹部20Aに別部材を取り付けて形成してもよいし、動翼収容凹部20Aの表面を傾斜面状に形成して設けてもよい。
The connecting portion between the downstream inclined inner wall surface 96 and the flat surface 95 has no corners, and these surfaces 95 and 96 are smoothly connected in an arc shape. Further, the connecting portion between the bottom surface 23 of the moving blade accommodating recess 20A and the downstream inclined inner wall surface 96 has no corners, and these surfaces 23 and 96 are smoothly connected in an arc shape.
Here, the downstream inclined inner wall surface 96 may be formed by attaching another member to the moving blade housing recess 20A, or may be provided by forming the surface of the moving blade housing recess 20A into an inclined surface.
 以上説明した本実施形態の蒸気タービン200によれば、第一実施形態と同様に、各々のフィン42、44の先端部のクリアンランスを通過する蒸気を上流側へ押し戻すようにでき、渦V1、V2による縮流効果を高めることができる。即ち、簡易な構造でリーク流れLFの流量低減を図り、蒸気タービン200の高性能化が可能となる。 According to the steam turbine 200 of the present embodiment described above, the steam passing through the clearance lances of the tips of the fins 42 and 44 can be pushed back to the upstream side in the same manner as in the first embodiment. The contraction effect by V2 can be enhanced. That is, the flow rate of the leak flow LF can be reduced with a simple structure, and the performance of the steam turbine 200 can be improved.
 さらに、ケーシング2と動翼シュラウド41Aとの間のキャビティの入口で、動翼シュラウド41Aに上流側傾斜面80が設けられ、ケーシング2に上流側傾斜内壁面92が設けられている。このため、蒸気の主流MFから分岐してキャビティに流入しようとするリーク流れLFは径方向Drの外側に向かってに真っ直ぐではなく、これら上流側傾斜面80及び上流側傾斜内壁面92に沿って下流側に向って斜めに流れ込む。 Furthermore, at the entrance of the cavity between the casing 2 and the moving blade shroud 41A, the moving blade shroud 41A is provided with an upstream inclined surface 80, and the casing 2 is provided with an upstream inclined inner wall surface 92. For this reason, the leak flow LF that branches from the main flow MF of steam and flows into the cavity is not straight toward the outside in the radial direction Dr, but along the upstream inclined surface 80 and the upstream inclined inner wall surface 92. It flows obliquely toward the downstream side.
 従って、主流MFからリーク流れLFが分岐する際のリーク流れLFが、主流MFと全く異なる方向に主流MFから分岐することがなくなる。さらに上流側傾斜面80及び上流側傾斜内壁面92によって、動翼収容凹部20A内に角部が形成されることを回避できる。このため、死水域の発生を抑えることができる。この結果、蒸気の剥離を抑えて損失を低減することができる。これにより、リーク流れLFの主流MFからの分岐による損失を抑制し、蒸気タービン200の高性能化を達成できる。 Therefore, the leak flow LF when the leak flow LF branches from the main flow MF does not branch from the main flow MF in a direction completely different from the main flow MF. Further, the upstream inclined surface 80 and the upstream inclined inner wall surface 92 can prevent the corner portion from being formed in the moving blade accommodating recess 20A. For this reason, generation | occurrence | production of a dead water area can be suppressed. As a result, it is possible to suppress loss of vapor and reduce loss. Thereby, the loss by the branch from the main flow MF of the leak flow LF is suppressed, and the high performance of the steam turbine 200 can be achieved.
 また上流側傾斜面80として湾曲凹面を形成することで、キャビティの入口に形成される渦Vの形状に上流側傾斜面80を沿わせることができる。従って、渦Vと上流側傾斜面80との間の摩擦損失を低減することができ、リーク流れLFの分岐による損失を抑制し、蒸気タービン200の高性能化を達成できる。 Further, by forming a curved concave surface as the upstream inclined surface 80, the upstream inclined surface 80 can be aligned with the shape of the vortex V formed at the entrance of the cavity. Therefore, friction loss between the vortex V and the upstream inclined surface 80 can be reduced, loss due to branching of the leak flow LF can be suppressed, and high performance of the steam turbine 200 can be achieved.
 さらに、上流側傾斜面80に沿って流れる蒸気がケーシング側フィン42に接触し、上流側に向って押戻されるように流れる。その結果、キャビティ内でケーシング側フィン42の上流側の渦Vは、上流側傾斜面80及び上流側傾斜内壁面92に沿って、径方向Drの外側に向かうに従って下流側に向って斜めに延びるように形成される。このため、主流MFから分岐するリーク流れLFの流れ方向に沿って渦Vが形成されることになる。よってこの渦Vの周りに細かな渦が形成されてしまうことを抑制でき、回転軸1に軸振動が生じること等を抑制できる。 Furthermore, the steam flowing along the upstream inclined surface 80 comes into contact with the casing-side fin 42 and flows so as to be pushed back toward the upstream side. As a result, the vortex V on the upstream side of the casing-side fin 42 in the cavity extends obliquely toward the downstream side toward the outer side of the radial direction Dr along the upstream inclined surface 80 and the upstream inclined inner wall surface 92. Formed as follows. For this reason, the vortex V is formed along the flow direction of the leak flow LF branched from the main flow MF. Therefore, it is possible to suppress the formation of fine vortices around the vortex V, and it is possible to suppress the occurrence of axial vibration on the rotating shaft 1 and the like.
 また、キャビティの出口で、動翼シュラウド41Aに下流側傾斜面85が設けられ、ケーシング2に下流側傾斜内壁面96が設けられている。このため、リーク流れLFが主流MFに合流しようとする際、径方向に真っ直ぐではなく、リーク流れLFは下流側傾斜面85及び下流側傾斜内壁面82に沿って下流側に向って径方向Drの内側に向かって斜めに主流MFに流れ込む。 Further, at the exit of the cavity, the moving blade shroud 41A is provided with a downstream inclined surface 85, and the casing 2 is provided with a downstream inclined inner wall surface 96. For this reason, when the leak flow LF tries to join the main flow MF, the leak flow LF is not straight in the radial direction, but the leak flow LF is directed in the radial direction Dr along the downstream inclined surface 85 and the downstream inclined inner wall surface 82 toward the downstream side. Into the mainstream MF at an angle toward the inside.
 従って、リーク流れLFが主流MFへ合流する際、リーク流れLFの流れ方向と主流MFの流れ方向とをできるだけ近づけることができる。さらに下流側傾斜面85及び下流側傾斜内壁面96によって動翼収容凹部20A内に角部が形成されることを回避できるため、死水域の発生を抑えることができる。この結果、蒸気の剥離を抑えて損失を低減することができる。これにより、リーク流れLFの主流MFへの合流による損失を抑制できる。この結果、リーク流れLFの主流MFへの合流による損失を抑制し、蒸気タービン200の高性能化が可能となる。 Therefore, when the leak flow LF joins the main flow MF, the flow direction of the leak flow LF and the flow direction of the main flow MF can be made as close as possible. Furthermore, since it is possible to avoid the formation of a corner in the moving blade housing recess 20A by the downstream inclined surface 85 and the downstream inclined inner wall surface 96, it is possible to suppress the occurrence of a dead water area. As a result, it is possible to suppress loss of vapor and reduce loss. Thereby, the loss by the merge of the leak flow LF to the main flow MF can be suppressed. As a result, the loss due to the merge of the leak flow LF to the main flow MF is suppressed, and the performance of the steam turbine 200 can be improved.
 さらに本実施形態では、キャビティの出口部で最も下流側に配置されたケーシング側フィン42の下流側に渦V3が形成される。渦V3は、最も下流側に配置されたケーシング側フィン42と動翼シュラウド41Aとの間のクリアランスを通過して噴流となったリーク流れLFによって形成される。この渦V3は、下流側傾斜面85及び下流側傾斜内壁面96に沿って、径方向Drの内側に向かうに従って下流側に向って斜めに延びるように形成される。 Furthermore, in the present embodiment, the vortex V3 is formed on the downstream side of the casing-side fin 42 arranged on the most downstream side at the exit portion of the cavity. The vortex V3 is formed by a leak flow LF that has become a jet flow through a clearance between the casing-side fin 42 disposed on the most downstream side and the blade shroud 41A. The vortex V3 is formed so as to extend obliquely toward the downstream side along the downstream inclined surface 85 and the downstream inclined inner wall surface 96 toward the inner side in the radial direction Dr.
 また、湾曲凸面である下流側傾斜面85によって、動翼シュラウド41Aの表面に沿って流れるリーク流れLFが、キャビティの出口部で径方向に真っすぐに主流MFに向かって流れることなく、ある程度の距離を下流側傾斜面85から剥離することなく、径方向Drに対して斜めに向かって流れて、リーク流れLFを主流MFに合流させることができる。 Further, the downstream inclined surface 85, which is a curved convex surface, allows the leak flow LF flowing along the surface of the rotor blade shroud 41A to flow to the main flow MF in a radial direction at a certain distance without flowing straight at the exit portion of the cavity. Without being separated from the downstream inclined surface 85, the leak flow LF can be merged with the main flow MF.
 従って、湾曲凸面の形状を適宜設計することで、後段側に位置する静翼7に直接リーク流れLFを流入させてしまうことを回避しつつ、主流MFの流れ方向に沿うようにリーク流れLFを主流MFに合流させることができる。よって主流MFへのリーク流れLFの混合損失を低減することが可能となる。 Accordingly, by appropriately designing the shape of the curved convex surface, the leakage flow LF is adjusted along the flow direction of the main flow MF while avoiding the leakage flow LF from directly flowing into the stationary blade 7 located on the rear stage side. The mainstream MF can be merged. Therefore, the mixing loss of the leak flow LF to the main flow MF can be reduced.
 ここで、本実施形態の上流側傾斜面80は、湾曲凹面でなくともよく、平面状の傾斜面であってもよい。 Here, the upstream inclined surface 80 of the present embodiment may not be a curved concave surface, but may be a flat inclined surface.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 例えば動翼シュラウドの形状は上記の実施形態の場合に限定されない。 For example, the shape of the blade shroud is not limited to the above embodiment.
 また、上記の実施形態では、動翼収容凹部20(20A)内でのフィン42、44の形状について説明したが、これらフィン42、44の形状を静翼収容凹部8内のフィンに適用してもよい。また各フィン42、44の数量は上述の場合に限定されない。 In the above-described embodiment, the shapes of the fins 42 and 44 in the moving blade housing recess 20 (20A) have been described. However, the shapes of the fins 42 and 44 are applied to the fins in the stationary blade housing recess 8. Also good. Moreover, the quantity of each fin 42 and 44 is not limited to the above-mentioned case.
 また、上記各実施形態では、軸流回転機械として蒸気タービンを適用した例に基づいて説明した。しかしながら、軸流回転機械の態様は蒸気タービンに限定されず、ガスタービンや航空機用のジェットエンジン等、他の装置を軸流回転機械として適用することが可能である。 Further, in each of the above embodiments, the description has been made based on an example in which a steam turbine is applied as an axial flow rotary machine. However, the aspect of the axial flow rotary machine is not limited to the steam turbine, and other devices such as a gas turbine and an aircraft jet engine can be applied as the axial flow rotary machine.
 また、各実施形態の構成は適宜組み合わせてよい。 Further, the configurations of the respective embodiments may be appropriately combined.
 上記の軸流回転機械によれば、いわゆる対向フィンを採用し、全てのフィンの中心線が上流側に向って傾斜す・BR>驍謔、にすることで、簡易な構造でリーク流れの流量低減を図り、高性能化が可能となる。 According to the above axial flow rotating machine, so-called opposed fins are adopted, and the centerline of all fins is inclined toward the upstream side. Reduction can be achieved and high performance can be achieved.
1…回転軸(構造体)
1S…外周面
2…ケーシング(構造体)
2S…内周面
3…動翼段
4…動翼(ブレード)
5…軸受装置
5A…ジャーナル軸受
5B…スラスト軸受
6…静翼段
7…静翼(ブレード)
8…静翼収容凹部
20、20A…動翼収容凹部
23…底面
40…動翼本体
41、41A…動翼シュラウド
42…ケーシング側フィン
42a…円弧面
42a1…円弧面
42a2…円弧面
42b…平面
42b1…平面
42b2…平面
43…プラットフォーム
44…シュラウド側フィン
44a…円弧面
44a1…円弧面
44a2…円弧面
44b…平面
44b1…平面
44b2…平面
70…静翼本体
71…静翼シュラウド
80…上流側傾斜面
85…下流側傾斜面
86…平面
91…平面
92…上流側傾斜内壁面
95…平面
96…下流側傾斜内壁面
100、200…蒸気タービン(軸流回転機械)
Ac…中心軸
Da…中心軸方向
Dr…径方向
MF…主流
LF…リーク流れ
CL1、CL2…中心線
V、V1、V2、V3…渦
1 ... Rotating shaft (structure)
1S ... outer peripheral surface 2 ... casing (structure)
2S ... inner peripheral surface 3 ... blade stage 4 ... blade (blade)
DESCRIPTION OF SYMBOLS 5 ... Bearing apparatus 5A ... Journal bearing 5B ... Thrust bearing 6 ... Stator blade stage 7 ... Stator blade (blade)
8 ... Stator blade accommodating recess 20, 20A ... Rotor blade accommodating recess 23 ... Bottom surface 40 ... Rotor blade body 41, 41A ... Rotor blade shroud 42 ... Casing side fin 42a ... Arc surface 42a1 ... Arc surface 42a2 ... Arc surface 42b ... Plane 42b1 ... plane 42b2 ... plane 43 ... platform 44 ... shroud side fin 44a ... arc surface 44a1 ... arc surface 44a2 ... arc surface 44b ... plane 44b1 ... plane 44b2 ... plane 70 ... stator blade body 71 ... stator blade shroud 80 ... upstream side inclined surface 85 ... Downstream inclined surface 86 ... Flat surface 91 ... Flat surface 92 ... Upstream inclined inner wall surface 95 ... Flat surface 96 ... Downstream inclined inner wall surface 100, 200 ... Steam turbine (axial rotary machine)
Ac ... Center axis Da ... Center axis direction Dr ... Radial direction MF ... Main flow LF ... Leak flow CL1, CL2 ... Centerlines V, V1, V2, V3 ... Vortex

Claims (7)

  1.  流体の主流が流れる流路に配置されるブレードと、該ブレードの先端側に隙間を介して設けられ、前記ブレードに対して相対回転する構造体と、
     を備え、
     前記ブレードは、先端部にシュラウドと、該シュラウドから前記構造体に向かって突出して該構造体との間に微小隙間を形成するシュラウド側フィンと、を有し、
     前記構造体は、前記シュラウド側フィンに対して前記主流が流れる方向に並んで配置されて、前記シュラウドに向かって突出して該シュラウドとの間に微小隙間を形成する構造体側フィンと、を有し、
     前記シュラウド側フィン及び前記構造体側フィンの基端部では、前記主流の流れの上流側及び下流側を向く面はこれらフィンにおける前記ブレードと前記構造体との相対回転の中心軸の方向の中心線に向かって凹む円弧面を有し、
     前記シュラウド側フィン及び前記構造体側フィンでは、先端部に向かうに従って、前記中心線が上流側に向かって傾斜する軸流回転機械。
    A blade disposed in a flow path through which a main flow of fluid flows, and a structure that is provided at a tip side of the blade via a gap and rotates relative to the blade;
    With
    The blade has a shroud at a tip portion, and a shroud side fin that protrudes from the shroud toward the structure and forms a minute gap between the structure and the blade.
    The structure has a structure-side fin that is arranged in a direction in which the main flow flows with respect to the shroud-side fin and protrudes toward the shroud to form a minute gap with the shroud. ,
    At the base ends of the shroud-side fin and the structure-side fin, the surfaces facing the upstream and downstream sides of the mainstream flow are center lines in the direction of the central axis of the relative rotation between the blade and the structure in the fin. Having an arc surface recessed toward
    In the shroud-side fin and the structure-side fin, an axial-flow rotating machine in which the center line is inclined toward the upstream side toward the tip.
  2.  前記シュラウド側フィンと前記構造体側フィンとでは、前記ブレードと前記構造体との相対回転の中心軸方向に対する前記中心線の傾斜角度が40度以上80度以下となっている
     請求項1に記載の軸流回転機械。
    The inclination angle of the center line with respect to a central axis direction of relative rotation between the blade and the structure is 40 degrees or more and 80 degrees or less between the shroud side fin and the structure side fin. Axial flow rotating machine.
  3.  前記シュラウド側フィン及び前記構造体側フィンの前記円弧面はR面であり、
     前記シュラウド側フィン及び前記構造体側フィンの先端部では、前記主流の流れの上流側及び下流側を向く面は、前記R面に連続して該R面の接線方向に延びる平面をさらに有する
     請求項1又は2に記載の軸流回転機械。
    The arcuate surfaces of the shroud side fin and the structure side fin are R surfaces,
    The front surface of the shroud fin and the structure-side fin further have a plane that faces the upstream and downstream sides of the mainstream flow, and further has a flat surface extending in a tangential direction of the R surface. The axial flow rotary machine according to 1 or 2.
  4.  前記主流の流れの上流側を向く前記R面の曲率半径は、前記シュラウド側フィン、及び前記構造体側フィンの前記中心線の長さ寸法の1/2倍である
     請求項3に記載の軸流回転機械。
    4. The axial flow according to claim 3, wherein a radius of curvature of the R surface facing the upstream side of the main flow is ½ times the length of the center line of the shroud fin and the structure fin. 5. Rotating machine.
  5.  前記シュラウド側フィン及び前記構造体側フィンの一方は、少なくとも二つ設けられ、かつ、該少なくとも二つのフィンの前記中心軸に対する前記中心線の傾斜角度が同一である
     請求項1から4のいずれか一項に記載の軸流回転機械。
    One of the shroud side fin and the structure side fin is provided at least two, and the inclination angle of the center line with respect to the central axis of the at least two fins is the same. The axial flow rotating machine according to the item.
  6.  前記構造体側フィンが最も上流側に配置され、
     前記ブレードには、前記シュラウドにおける上流側を向く端面に径方向外側に向かうに従って上流側から下流側に向うように傾斜する上流側傾斜面が設けられ、
     前記構造体には、前記シュラウドの上流側に配置されて、該シュラウドに前記主流が流れる方向に対向する位置に径方向外側に向かうに従って上流側から下流側に向うように傾斜する上流側傾斜内壁面が設けられている
     請求項1から5のいずれか一項に記載の軸流回転機械。
    The structure-side fin is disposed on the most upstream side,
    The blade is provided with an upstream inclined surface that is inclined from the upstream side toward the downstream side toward the radially outer side on the end surface facing the upstream side in the shroud,
    The structure is disposed on the upstream side of the shroud, and in an upstream inclined side that inclines from the upstream side toward the downstream side toward the outer side in the radial direction at a position facing the direction in which the main flow flows through the shroud. The axial flow rotary machine according to any one of claims 1 to 5, wherein a wall surface is provided.
  7.  前記ブレードには、前記シュラウドにおける下流側を向く端面に径方向内側に向かうに従って上流側から下流側に向うように傾斜する下流側傾斜面が設けられ、
     前記構造体には、前記シュラウドの下流側に配置されて、該シュラウドに前記主流が流れる方向に対向する位置に径方向内側に向かうに従って上流側から下流側に向うように傾斜する下流側傾斜内壁面が設けられている
     請求項1から6のいずれか一項に記載の軸流回転機械。
    The blade is provided with a downstream inclined surface that is inclined toward the downstream side from the upstream side toward the radially inner side on the end surface facing the downstream side in the shroud,
    The structure is disposed on the downstream side of the shroud, and inclines in a downstream side that inclines from the upstream side toward the downstream side toward the inner side in the radial direction at a position opposite to the direction in which the main flow flows through the shroud. The axial flow rotating machine according to any one of claims 1 to 6, wherein a wall surface is provided.
PCT/JP2018/006731 2017-02-23 2018-02-23 Axial flow rotary machine WO2018155636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032372 2017-02-23
JP2017032372A JP2018135847A (en) 2017-02-23 2017-02-23 Axial flow rotary machine

Publications (1)

Publication Number Publication Date
WO2018155636A1 true WO2018155636A1 (en) 2018-08-30

Family

ID=63252818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006731 WO2018155636A1 (en) 2017-02-23 2018-02-23 Axial flow rotary machine

Country Status (2)

Country Link
JP (1) JP2018135847A (en)
WO (1) WO2018155636A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822461A1 (en) * 2019-11-15 2021-05-19 MTU Aero Engines AG Axial turbomachine sealing system
WO2021220950A1 (en) * 2020-04-28 2021-11-04 三菱パワー株式会社 Sealing device and dynamo-electric machine
CN113631797A (en) * 2019-01-31 2021-11-09 三菱动力株式会社 Rotary machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086595B2 (en) 2017-12-28 2022-06-20 三菱重工航空エンジン株式会社 Aircraft gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397804A (en) * 1986-10-13 1988-04-28 Toshiba Corp Steam turbine
JPH02245581A (en) * 1988-12-14 1990-10-01 General Electric Co <Ge> Labyrinth seal device
JP2011237033A (en) * 2010-05-11 2011-11-24 General Electric Co <Ge> Curved labyrinth seal
JP2013019537A (en) * 2011-07-04 2013-01-31 Alstom Technology Ltd Labyrinth seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397804A (en) * 1986-10-13 1988-04-28 Toshiba Corp Steam turbine
JPH02245581A (en) * 1988-12-14 1990-10-01 General Electric Co <Ge> Labyrinth seal device
JP2011237033A (en) * 2010-05-11 2011-11-24 General Electric Co <Ge> Curved labyrinth seal
JP2013019537A (en) * 2011-07-04 2013-01-31 Alstom Technology Ltd Labyrinth seal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631797A (en) * 2019-01-31 2021-11-09 三菱动力株式会社 Rotary machine
CN113631797B (en) * 2019-01-31 2023-01-20 三菱重工业株式会社 Rotary machine
EP3822461A1 (en) * 2019-11-15 2021-05-19 MTU Aero Engines AG Axial turbomachine sealing system
WO2021220950A1 (en) * 2020-04-28 2021-11-04 三菱パワー株式会社 Sealing device and dynamo-electric machine
US11927112B2 (en) 2020-04-28 2024-03-12 Mitsubishi Heavy Industries, Ltd. Sealing device and rotary machine

Also Published As

Publication number Publication date
JP2018135847A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2018155636A1 (en) Axial flow rotary machine
US10385714B2 (en) Seal structure and rotary machine
JP5972374B2 (en) Axial fluid machine
KR101305575B1 (en) Turbine rotor blade and turbo machine
KR102031510B1 (en) Seal structure and turbine
US11187097B2 (en) Rotary machine
JP2011137458A (en) System and apparatus relating to compressor operation in turbo engine
JP6846374B2 (en) Moving wing side sealing device, stationary wing side sealing device and rotating machine
JP6227572B2 (en) Turbine
JP6684842B2 (en) Turbine rotor blades and rotating machinery
JP2006233857A (en) Turbine bucket and turbine provided with it
JP7148273B2 (en) steam turbine
JP2013177866A (en) Turbomachine
WO2017098944A1 (en) Seal fin, seal structure, and turbomachine
WO2018155652A1 (en) Axial flow rotary machine
JP7145774B2 (en) rotating machinery
WO2021039811A1 (en) Swirl breaker assembly and rotating machine
JP7267022B2 (en) rotating machinery
JP6638938B2 (en) Rotating machinery
KR20220149589A (en) Sealing device and rotating machine
JP7235595B2 (en) rotating machinery
JP7232034B2 (en) Turbine blade and steam turbine having the same
JP2017155626A (en) Seal structure and turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758334

Country of ref document: EP

Kind code of ref document: A1