WO2018155538A1 - Electron beam apparatus and exposure method, and device production method - Google Patents

Electron beam apparatus and exposure method, and device production method Download PDF

Info

Publication number
WO2018155538A1
WO2018155538A1 PCT/JP2018/006396 JP2018006396W WO2018155538A1 WO 2018155538 A1 WO2018155538 A1 WO 2018155538A1 JP 2018006396 W JP2018006396 W JP 2018006396W WO 2018155538 A1 WO2018155538 A1 WO 2018155538A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
light
optical system
optical
beam apparatus
Prior art date
Application number
PCT/JP2018/006396
Other languages
French (fr)
Japanese (ja)
Inventor
真路 佐藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2018155538A1 publication Critical patent/WO2018155538A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an electron beam apparatus, an exposure method, and a device manufacturing method, and more particularly to an electron beam apparatus, an exposure method, and an electron that irradiate light onto a photoelectric element and irradiate a target with an electron beam generated from the photoelectric element.
  • the present invention relates to a device manufacturing method using a beam apparatus or an exposure method.
  • complementary lithography using, for example, an immersion exposure technique using an ArF excimer laser light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) has been proposed.
  • a simple line and space pattern (hereinafter, abbreviated as an L / S pattern as appropriate) is formed by using double patterning or the like in immersion exposure using an ArF excimer laser light source.
  • a line pattern is cut or a via is formed through exposure using an electron beam.
  • an electron beam exposure apparatus including a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (for example, see Patent Documents 1 and 2).
  • Patent Documents 1 and 2 an electron beam exposure apparatus including a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures.
  • there are points to be improved such as generation of useless electrons that do not contribute to the processing of the target and unevenness in the intensity of the electron beam irradiation area on the target. To do.
  • the same problem may occur not only in the exposure apparatus but also in an apparatus that performs processing or processing on a target using an electron beam, processing and processing, or an inspection apparatus.
  • an electron beam apparatus that irradiates a photoelectric element with light and irradiates a target with electrons generated from the photoelectric element as an electron beam, and a plurality of individually controllable lights
  • An optical device capable of providing a beam, an illumination system for irradiating the optical device with illumination light, and a first optical system for irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from the optical device
  • a second optical system that irradiates the target with electrons emitted from the photoelectric element as a plurality of electron beams by irradiating the photoelectric element with the plurality of light beams.
  • an electron beam apparatus for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam, wherein the plurality of individually controllable lights
  • An optical device capable of providing a beam; a first optical system for irradiating the photoelectric element with a plurality of light beams generated by a plurality of light beams from the optical device; and irradiating the photoelectric element with the plurality of light beams
  • a second optical system for irradiating the target with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated on the photoelectric element,
  • An electron beam apparatus is provided that can be generated with a portion of two or more of the plurality of light beams from the optical device.
  • an electron beam apparatus for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation of the light as an electron beam
  • An optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light from the illumination system; and a plurality of light beams generated from the plurality of light beams from the optical device
  • a first optical system that irradiates the target and a second optical system that irradiates the target with one or more electron beams generated from the photoelectric element, and the illumination light from the illumination system has a first axis
  • An illumination area having a dimension along the direction smaller than a dimension along the second axis perpendicular to the first axis, the third axis perpendicular to the first axis and the second axis, and the first axis; Located in the plane containing Illuminated from serial first axis and the direction of the
  • an electron beam device for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam, wherein the first axis A plurality of first optical systems that irradiate at least one light beam to each of a plurality of photoelectric elements arranged along a second axis orthogonal to the first axis, and a plurality of first optical systems arranged along the second axis.
  • a device manufacturing method including a lithography process, wherein the lithography process includes forming a line and space pattern on a target and any one of the first to fourth aspects.
  • a device manufacturing method including cutting the line pattern constituting the line and space pattern using the electron beam apparatus according to the present invention is provided.
  • an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam wherein the plurality of individually controllable light beams Irradiating the optical device capable of providing the illumination light from the illumination system, and irradiating the photoelectric element with the plurality of light beams generated from the plurality of light beams from the optical device via the first optical system And irradiating the target from the second optical system as a plurality of electron beams emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams, Provided.
  • an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam wherein the plurality of individually controllable light beams Irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from an optical device capable of providing light, and irradiating the photoelectric element with the plurality of light beams Irradiating the target from the second optical system with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated to the photoelectric element, Another one of the plurality of light beams generated by a part of two or more light beams of the plurality of light beams from the optical device and applied to the photoelectric element is converted into the optical device.
  • Another exposure method for generating at least two light beams of the plurality of light beams from the chair is provided.
  • an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam wherein the plurality of individually controllable light beams Irradiating the photoelectric element with a plurality of light beams generated by a plurality of light beams from an optical device capable of providing light, and irradiating the photoelectric element with the plurality of light beams Irradiating the target from the second optical system with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated to the photoelectric element is An exposure method is provided that generates with two or more of a plurality of light beams from an optical device.
  • an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam from an illumination system Irradiating the photoelectric element through the first optical system with a plurality of light beams generated from a plurality of light beams from an optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light And irradiating the target with one or more electron beams generated from the photoelectric element from a second optical system, and the illumination light from the illumination system is in a direction along a first axis.
  • An in-plane including a first axis, a third axis perpendicular to the second axis, and the first axis, an illumination area having a dimension smaller than a dimension in a direction along a second axis perpendicular to the first axis Located in the first axis and front Illuminating from the direction of the axis intersecting the third axis, wherein the optical device is an exposure method that is disposed in the illumination area is provided.
  • an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation of the light as an electron beam is provided.
  • a device manufacturing method including a lithography process, wherein the lithography process includes forming a line and space pattern on a target, and any of the sixth to tenth aspects.
  • a device manufacturing method is provided that includes cutting the line pattern constituting the line and space pattern using the exposure method according to the above.
  • FIG. 2 is a perspective view showing a cross section of the electron beam optical unit of FIG. 1. It is a longitudinal section showing an electron beam optical unit.
  • 4A to 4C are diagrams (Nos. 1 to 3) for explaining the configuration of the photoelectric capsule and the procedure for mounting the lid member on the main body in the factory of the photoelectric capsule manufacturer. .
  • FIG. (1) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. (2) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. (3) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. (1) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. (2) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. (3) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. 8A is a partially omitted longitudinal sectional view showing a photoelectric element provided in the photoelectric capsule
  • FIG. 8B is a partially omitted plan view showing the photoelectric element. It is the top view which abbreviate
  • FIG. 11A is a diagram illustrating the configuration of the light irradiation device viewed from the + X direction
  • FIG. 11B is a diagram illustrating the configuration of the light irradiation device viewed from the ⁇ Y direction.
  • 12A is a perspective view showing the light diffraction type light valve
  • FIG. 12B is a side view showing the light diffraction type light valve. It is a top view which shows a pattern generator.
  • FIG. 14A is a diagram showing the configuration of the electron beam optical system viewed from the + X direction
  • FIG. 14B is a diagram showing the configuration of the electron beam optical system viewed from the ⁇ Y direction.
  • FIGS. 15A to 15C are diagrams for explaining the correction of the reduction magnification in the X-axis direction and the Y-axis direction by the first electrostatic lens. It is a perspective view which shows the external appearance of 45 electron beam optical systems supported by the base plate in the suspended state.
  • FIG. 3 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of an exposure apparatus. It is a figure for demonstrating the merit of the rectangular field compared with the square field.
  • FIG. 20A and FIG. 20B are diagrams for explaining correction of a cut pattern shape change (rounding of four corners) caused by blur and resist blur caused by the optical system.
  • FIGS. 21A and 21B are diagrams for explaining correction of distortion common to a plurality of electron beam optical systems. It is a top view which shows an example of the pattern generator which has a ribbon row
  • FIG. 23A and FIG. 23B are diagrams for explaining a correction ribbon row.
  • FIGS. 24A to 24D are diagrams showing various types of configuration examples of the optical pattern forming unit.
  • FIG. 25A is an explanatory diagram showing a method not using an aperture
  • FIG. 25B is an explanatory diagram showing a method using an aperture. It is a figure which shows schematically the structure of the exposure apparatus which concerns on 2nd Embodiment.
  • FIGS. 28A to 28E are diagrams showing various configuration examples of the aperture-integrated photoelectric element.
  • FIG. 29 is a diagram for explaining a method of compensating for the curvature of field that the electron beam optical system has as an aberration.
  • FIGS. 31A to 31C are diagrams showing a procedure for forming a cut pattern for cutting line patterns having different pitches using the aperture-integrated photoelectric element of FIG. FIG.
  • FIGS. 32A to 32E are diagrams showing various configuration examples of the aperture plate. It is a figure for demonstrating one Embodiment of a device manufacturing method.
  • FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 includes a plurality of electron beam optical systems as will be described later, hereinafter, the exposure apparatus 100 takes the Z axis parallel to the optical axis of the electron beam optical system and performs exposure described later in a plane perpendicular to the Z axis.
  • the scanning direction in which the wafer W is moved is the Y-axis direction
  • the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction
  • the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are ⁇ x and ⁇ y, respectively.
  • the ⁇ z direction will be described.
  • the exposure apparatus 100 is supported by a frame 16 on the floor surface F, a stage chamber 10 installed on the floor surface F of the clean room, a stage system 14 disposed in the exposure chamber 12 inside the stage chamber 10, An optical system 18 disposed above the stage system 14.
  • the stage chamber 10 is a vacuum chamber capable of evacuating the inside of the stage chamber 10 although illustration of both end portions in the X-axis direction is omitted in FIG.
  • the stage chamber 10 surrounds the periphery of the bottom wall 10a, the bottom wall 10a arranged on the floor F parallel to the XY plane, the frame 16 serving also as the upper wall (ceiling wall) of the stage chamber 10, and A peripheral wall 10b that horizontally supports the frame 16 from below (only a part of the + Y side portion is shown in FIG. 1) is provided.
  • Both the frame 16 and the bottom wall 10a are formed of a plate member having a rectangular shape in plan view, and the frame 16 has an opening 16a having a circular shape in plan view in the vicinity of the center portion thereof.
  • a second portion 19b having a small diameter of a casing 19 of an electron beam optical unit 18A, which will be described later, having a stepped columnar appearance is inserted into the opening 16a from above, and a first portion 19a having a large diameter of the casing 19 is The upper surface of the frame 16 around the opening 16a is supported from below. Although not shown, the space between the inner peripheral surface of the opening 16a and the second portion 19b of the housing 19 is sealed with a seal member.
  • a stage system 14 is disposed on the bottom wall 10 a of the stage chamber 10.
  • the stage system 14 is supported by a surface plate 22 supported on the bottom wall 10a via a plurality of vibration isolating members 20, and a weight canceling device 24 on the surface plate 22, and is respectively predetermined in the X-axis direction and the Y-axis direction.
  • a wafer stage WST that can move in the remaining four degrees of freedom (Z-axis, ⁇ x, ⁇ y, and ⁇ z directions), and a stage drive system 26 that drives the wafer stage WST (see FIG. 1 includes only a part thereof (see FIG. 18), and a position measurement system 28 (not shown in FIG. 1, refer to FIG. 18) that measures position information of the wafer stage WST in the direction of six degrees of freedom.
  • Wafer stage WST attracts and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
  • wafer stage WST is composed of a member having a rectangular frame shape with an XZ cross section, and has a yoke and a magnet (not shown) having a rectangular frame shape with an XZ cross section on the inside (hollow portion).
  • 30 movers 30a are integrally fixed, and a stator 30b of a motor 30 including a coil unit extending in the Y-axis direction is inserted into the mover 30a (hollow portion).
  • the both ends of the stator 30b in the longitudinal direction are connected to an X stage (not shown) that moves on the surface plate 22 in the X-axis direction.
  • the X stage is integrated with wafer stage WST at a predetermined stroke in the X-axis direction by an X stage drive system 32 (see FIG. 18) constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage, for example, a feed screw mechanism using a ball screw. It is driven by.
  • the X stage drive system 32 may be configured by a uniaxial drive mechanism including an ultrasonic motor as a drive source. In any case, the influence of magnetic field fluctuations due to magnetic flux leakage on the positioning of the electron beam is negligible.
  • the motor 30 can move the mover 30a with respect to the stator 30b with a predetermined stroke, for example, 50 mm in the Y-axis direction, and can be finely driven in the X-axis direction, Z-axis direction, ⁇ x direction, ⁇ y direction, and ⁇ z direction.
  • This is a closed magnetic field type and moving magnet type motor.
  • a wafer stage drive system is configured in which wafer stage WST is driven in the direction of six degrees of freedom by motor 30.
  • the wafer stage drive system is referred to as a wafer stage drive system 30 using the same reference numerals as those of the motor 30.
  • the X stage drive system 32 and the wafer stage drive system 30 drive the wafer stage WST in the X axis direction and the Y axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z axis, ⁇ x, The stage drive system 26 described above that is finely driven in the ⁇ y and ⁇ z directions) is configured.
  • the X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 18).
  • a magnetic shield member (not shown) having an inverted U-shaped XZ cross-section covering the upper surface of the motor 30 and both side surfaces in the X-axis direction is a pair of protrusions provided at both ends in the Y-axis direction of an X stage (not shown). It is erected between the clubs.
  • This magnetic shield member is inserted into the hollow portion of wafer stage WST in a state that does not hinder movement of mover 30a relative to stator 30b. Since the magnetic shield member covers the upper surface and the side surface of the motor 30 over the entire length of the moving stroke of the mover 30a and is fixed to the X stage, the magnetic shielding member covers the entire moving range of the wafer stage WST and the X stage. , Leakage of magnetic flux upward (to be described later with respect to the electron beam optical system side) can be prevented with certainty.
  • the weight canceling device 24 includes a metal bellows type air spring (hereinafter abbreviated as “air spring”) 24 a whose upper end is connected to the lower surface of wafer stage WST, and a flat plate member connected to the lower end of air spring 24 a.
  • air spring metal bellows type air spring
  • a base slider 24b The base slider 24b is provided with a bearing portion (not shown) that blows the air inside the air spring 24a to the upper surface of the surface plate 22, and the bearing surface of the pressurized air ejected from the bearing portion and the upper surface of the surface plate 22 are provided.
  • the weight canceling device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap).
  • compressed air is supplied to the air spring 24a via a pipe (not shown) connected to the wafer stage WST.
  • the base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential exhaust type aerostatic bearing, and air blown from the bearing portion toward the surface plate 22 is surrounded by (exposure chamber). To prevent leakage.
  • a pair of pillars are provided on the bottom surface of wafer stage WST with air spring 24a sandwiched in the Y-axis direction, and a leaf spring provided at the lower end of the pillar is connected to air spring 24a.
  • the optical system 18 includes the electron beam optical unit 18A held on the frame 16, and the optical unit 18B mounted on the electron beam optical unit 18A.
  • FIG. 2 shows a cross-sectional perspective view of the electron beam optical unit 18A.
  • FIG. 3 shows a longitudinal sectional view of the electron beam optical unit 18A.
  • the electron beam optical unit 18A includes a housing 19 having an upper first portion 19a and a lower second portion 19b.
  • the first portion 19a of the housing 19 has a cylindrical shape with a low height, as is apparent from FIG.
  • a first vacuum chamber 34 is formed inside the first portion 19a.
  • the first vacuum chamber 34 is composed of a first plate 36 made of a circular plate member that forms an upper wall (ceiling wall), and a plate member having the same diameter as the first plate 36. And is divided from a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall, a cylindrical side wall portion 40 surrounding the first plate 36 and the base plate 38, and the like.
  • the first plate 36 has a plurality of circular through holes 36a that are circular in plan view at predetermined intervals in the XY two-dimensional direction.
  • the first plate 36 has a plurality of circular through holes 36a that are circular in plan view at predetermined intervals in the XY two-dimensional direction.
  • a photoelectric capsule main body 52 to be described below is inserted into the 45 through holes 36 a from above with almost no gap.
  • the photoelectric capsule 50 has a columnar shape in which an opening 52 c is formed on one end surface (the lower end surface in FIG. 4A) and has a hollow portion 52 b inside.
  • the other end (upper end in FIG. 4 (A)) is provided with the main-body part 52 provided with the flange part 52a, and the cover member 64 which can obstruct
  • the hollow portion 52b is a hollow portion having a shape obtained by forming a round hole with a predetermined depth from the lower end surface of the main body portion 52 and further forming a substantially conical recess on the bottom surface of the round hole.
  • the upper surface of the main body 52 including the flange 52a is a square in plan view, and the center of the square coincides with the central axis of the hollow 52b.
  • a photoelectric element 54 is provided at the center of the upper surface of the main body 52.
  • the photoelectric element 54 is a transparent plate member (for example, quartz glass) that forms the uppermost surface of the main body 52 that also serves as a vacuum partition, as shown in the longitudinal sectional view of FIG. ) 56, a light shielding film (aperture film) 58 made of, for example, chromium deposited on the lower surface of the plate member 56, and an alkali photoelectric film (photoelectric conversion film) formed on the lower surface side of the plate member 56 and the light shielding film 58.
  • a large number of apertures 58 a are formed in the light shielding film 58. Although only a part of the photoelectric element 54 is shown in FIG. 8A, in reality, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (FIG. B)). The number of apertures 58a may be the same as the number of multi-beams described later, or may be larger than the number of multi-beams.
  • the alkali photoelectric layer 60 is also disposed inside the aperture 58a, and the plate member 56 and the alkali photoelectric layer 60 are in contact with each other in the aperture 58a. In the present embodiment, the plate member 56, the light shielding film 58, and the alkali photoelectric layer 60 are integrally formed to form at least a part of the photoelectric element 54.
  • the alkali photoelectric layer 60 is a multi-alkali photocathode using two or more kinds of alkali metals.
  • the multi-alkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm, and a high quantum efficiency QE of the photoelectric effect of about 10%.
  • the alkali photoelectric layer 60 is used as a kind of electron gun that generates an electron beam by a photoelectric effect by laser light, a highly efficient one having a conversion efficiency of 10 [mA / W] is used.
  • the electron emission surface of the alkali photoelectric layer 60 is a surface opposite to the lower surface in FIG. 8A, that is, the upper surface of the plate member 56.
  • a planar view annular groove having a predetermined depth is formed on the lower end surface of the main body 52 in a planar view, and a kind of seal member is formed in the recessed groove.
  • the O-ring 62 is attached so that a part of the O-ring 62 is housed in the concave groove.
  • the lid member 64 is formed of a plate member having a circular shape in plan view similar to the outer peripheral edge (contour) of the lower end surface of the main body portion 52, and is removed in a vacuum as will be described later. And the open end of the main body 52 is closed (see FIG. 5). That is, since the closed space (hollow part 52 b) inside the main body 52 closed by the lid member 64 is a vacuum space, the lid member 64 is crimped to the main body 52 by the atmospheric pressure acting on the lid member 64. Has been.
  • a lid storage plate 68 that is driven in three directions of the X-axis, Y-axis, and Z-axis directions is stored in the first vacuum chamber 34 by a pair of vacuum-compatible actuators 66.
  • 45 round holes 68 a having a predetermined depth are formed on the top surface of the lid storage plate 68 in an arrangement corresponding to the arrangement of the 45 photoelectric capsules 50.
  • a circular through hole 68b is formed on the inner bottom surface.
  • the number of round holes 68a may not be the same as the number of photoelectric capsules 50.
  • the lid member 64 may be supported by the lid storage plate 38 without providing the round hole 68a.
  • the lid storage plate 68 finally has an optical path (electron beam) between the round hole 68a and the round hole 68a.
  • a circular opening 68c that may be called a beam path) is formed. If the lid storage plate 68 can be retracted from the electron beam path, the opening 68c need not be provided.
  • concave portions 38a having a predetermined depth are formed on the central axes of the main body portions 52 of the 45 photoelectric capsules 50, respectively.
  • These concave portions 38a have a predetermined depth from the upper surface of the base plate 38, and through holes 38b functioning as throttle portions are formed in the inner bottom surface.
  • the through hole 38b is also referred to as a throttle portion 38b.
  • the diaphragm 38b will be further described later.
  • 45 electron beam optical systems 70 having their optical axes AXe positioned on the central axes of the main body portions 52 of the 45 photoelectric capsules 50 are fixed in a suspended state.
  • the support of the electron beam optical system 70 is not limited to this.
  • 45 electron beam optical systems 70 are supported by a support member different from the base plate 38, and the support members are supported by the second portion 19 b of the housing 19. You may support with.
  • the electron beam optical system 70 will be described in detail later.
  • the second portion 19b of the housing 19 has a cylindrical shape with a smaller diameter and a somewhat higher height than the first portion.
  • a second vacuum chamber 72 (see FIGS. 1 and 3) for accommodating 45 electron beam optical systems 70 is formed inside the second portion 19b.
  • the second vacuum chamber 72 includes the aforementioned base plate 38 that constitutes the upper wall (ceiling wall), and a thin plate-like cooling plate 74 that constitutes the bottom wall and has a circular shape in plan view.
  • the cooling plate 74 has an outer diameter substantially the same as the diameter of the cooling plate 74, and the cooling plate 74 is partitioned by a cylindrical peripheral wall portion 76 fixed to the lower end surface thereof.
  • the cooling plate 74 has a function of suppressing fogging, which will be described later, in addition to the cooling function.
  • the first vacuum chamber 34 and the second vacuum chamber 72 can be evacuated inside (see the white arrow in FIG. 2).
  • a second vacuum pump for evacuating the second vacuum chamber 72 may be provided, or the first vacuum pump may be provided using a common vacuum pump.
  • the vacuum chamber 34 and the second vacuum chamber 72 may be evacuated.
  • the degree of vacuum in the first vacuum chamber 34 and the degree of vacuum in the second vacuum chamber 72 may be different.
  • one of the first vacuum chamber 34 and the second vacuum chamber 72 may be an atmospheric pressure space and the other may be a vacuum space.
  • the throttle part 38b is provided so that the degree of vacuum of the first vacuum chamber 34 and the degree of vacuum of the second vacuum chamber 72 can be made different.
  • the vacuum chamber 34 and the second vacuum chamber 72 may be substantially one vacuum chamber.
  • the optical unit 18B includes a lens barrel (housing) 78 mounted on the electron beam optical unit 18A and 45 light irradiation devices (optical systems) housed in the lens barrel 78. 80).
  • the 45 light irradiation devices 80 are arranged in the XY plane in an arrangement corresponding to each of the main body portions 52 of the 45 photoelectric capsules 50.
  • the interior of the lens barrel 78 is an atmospheric pressure space.
  • Each of the 45 light irradiation devices 80 is provided corresponding to the 45 photoelectric capsules 50 (photoelectric elements 54), and at least one light beam from the light irradiation device 80 passes through the aperture 58a of the photoelectric element 54.
  • An alkali photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60 is irradiated. Note that the number of the light irradiation devices 80 and the number of the photoelectric capsules 50 may not be equal.
  • Each of the 45 light irradiation devices 80 includes, for example, an illumination system 82, a pattern generator 84 that generates patterned light, and a projection optical system 86, as shown in FIG.
  • the pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits the amplitude, phase, and polarization state of light traveling in a predetermined direction.
  • the pattern generator 84 can generate an optical pattern composed of, for example, a light / dark pattern.
  • FIGS. 11A and 11B show an example of the configuration of the light irradiation device 80 together with the main body 52 of the corresponding photoelectric capsule 50.
  • FIG. 11A shows a configuration viewed from the + X direction
  • FIG. 11B shows a configuration viewed from the ⁇ Y direction.
  • the illumination system 82 includes a light source unit 82a that generates illumination light (laser light) LB, and the illumination light LB as one or more X axes.
  • a shaping optical system 82b for shaping into a beam having a rectangular cross section which is long in the direction.
  • the light source unit 82a includes a laser diode 88 that continuously oscillates visible light as a light source or a wavelength in the vicinity of visible light, for example, a laser beam having a wavelength of 365 nm, and an AO deflector (AOD or optical deflection) disposed on the optical path of the laser light. 90) (also referred to as an element).
  • the AO deflector 90 functions as a switching element, and is used to intermittently emit laser light. That is, the light source unit 82a is a light source unit capable of intermittently emitting laser light (laser beam) LB having a wavelength of 365 nm.
  • the light emission duty ratio of the light source unit 82a can be changed by controlling the AO deflector 90, for example.
  • the switching element is not limited to an AO deflector, and may be an AOM (acousto-optic modulation element).
  • the laser diode 88 itself may emit light intermittently.
  • the shaping optical system 82b includes a diffractive optical element (also referred to as DOE) 92, an illuminance distribution adjusting element 94, and a condensing element that are sequentially arranged on the optical path of a laser beam (hereinafter, abbreviated as a beam as appropriate) LB from the light source unit 82a.
  • a lens 96 is included.
  • the diffractive optical element 92 When the laser beam from the AO deflector 90 is incident, the diffractive optical element 92 has a plurality of laser beams that are long in the X-axis direction arranged at predetermined intervals in the Y-axis direction on a predetermined surface on the exit surface side of the diffractive optical element 92.
  • the in-plane intensity distribution of the laser beam is converted so as to have a distribution in which the light intensity is large in a rectangular region (in the present embodiment, a long and narrow slit shape).
  • the diffractive optical element 92 receives a plurality of rectangular beams (slit-shaped beams) that are long in the X-axis direction and are arranged at predetermined intervals in the Y-axis direction by the incidence of the laser beam from the AO deflector 90. Generate. In the present embodiment, as will be described in detail later, the number of slit-shaped beams according to the configuration of the pattern generator 84 is generated.
  • the element that converts the in-plane intensity distribution of the laser beam is not limited to a diffractive optical element, and may be a refractive optical element, a reflective optical element, or a spatial light modulator.
  • the illuminance distribution adjusting element 94 can individually adjust the illuminance for each divided region in each divided region obtained by dividing the light receiving surface of the pattern generator 84 into a plurality of beams when the pattern generator 84 is irradiated with a plurality of beams. To do.
  • a crystal having a nonlinear optical effect whose refractive index changes in accordance with an applied voltage for example, lithium tantalate (lithium tantalate (abbreviation: LT) single crystal) is a plurality of XY planes. Are arranged in a plane parallel to each other, and an element configured by arranging polarizers on the incident side and the emission side is used.
  • lithium tantalate crystals 94a are arranged in a matrix of, for example, 2 rows and 12 columns in an XY plane at a pitch of 1 mm.
  • the arranged illuminance distribution adjusting element 94 is used.
  • Reference numeral 94b indicates an electrode.
  • the exit-side deflector passes only a predetermined polarization component, so that the polarization state of light incident on the crystal through the incident-side polarizer is changed, for example, linearly polarized light. By changing from to circularly polarized light, the intensity of the light emitted from the exit-side polarizer can be changed.
  • the change in the deflection state can be made variable by controlling the voltage applied to the crystal. Therefore, by controlling the voltage applied to each crystal, the illuminance can be adjusted for each region corresponding to each crystal (the region surrounded by the two-dot chain line in FIG. 13) (see FIG. 11A). ).
  • the illuminance distribution adjusting element 94 is not limited to lithium tantalate, and may be configured using other light intensity modulation crystals (electro-optic elements) such as lithium niobate (lithium niobate (abbreviation: LN) single crystal). .
  • the illuminance distribution The adjustment element 94 may not be provided.
  • a spatial light modulator that spatially modulates the amplitude, phase, and polarization state of the emitted light, for example, a transmissive liquid crystal element or a reflective liquid crystal element may be used.
  • an optical path bending mirror 98 is disposed on the light exit side below the condenser lens 96.
  • the condensing lens 96 condenses a plurality of rectangular cross-section (slit-shaped) beams generated by the diffractive optical element 92 with respect to the Y-axis direction and irradiates the mirror 98.
  • a cylindrical lens that is long in the X-axis direction can be used as the condenser lens 96.
  • the condensing lens 96 may be composed of a plurality of lenses.
  • a reflective optical member such as a condenser mirror or a diffractive optical element may be used.
  • the mirror 98 is not limited to a plane mirror, and may have a curvature. When the mirror 98 has a curvature (has a finite focal length), the function of the condenser lens 96 can also be used.
  • the mirror 98 is arranged at a predetermined angle with respect to the XY plane, and reflects a plurality of irradiated slit-like beams in an obliquely upper left direction in FIG.
  • the pattern generator 84 is disposed on the reflected light path of a plurality of slit-like beams reflected by the mirror 98. More specifically, the pattern generator 84 is disposed on the ⁇ Z side surface of the circuit board 102 disposed between the condenser lens 96 and the mirror 98 in the Z-axis direction.
  • openings 102a serving as optical paths of a plurality of slit-shaped beams from the condenser lens 96 toward the mirror 98 are formed.
  • the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator.
  • the light diffraction type light valve GLV includes a fine structure (hereinafter referred to as a ribbon) of a silicon nitride film called a “ribbon” on a silicon substrate (chip) 84a.
  • 84b) is a spatial light modulator formed with thousands of scales.
  • the driving principle of GLV is as follows.
  • the GLV By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, with high resolution, high speed (responsiveness 250kHz to 1MHz), high accuracy, dimming, modulation and laser light. Enable switching. GLV is classified as a microelectromechanical system (MEMS).
  • the ribbon 84b is made of an amorphous silicon nitride film (Si 3 N 4 ), which is a kind of high-temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 ⁇ m and a length of 100 to 300 ⁇ m.
  • the ribbon 84b is covered with an aluminum thin film and has both functions of a reflector and an electrode.
  • the ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 12A and 12B), the ribbon bends toward the substrate 84a due to static electricity. .
  • the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent in the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
  • GLV GLV
  • an active ribbon whose position changes due to voltage application
  • a bias ribbon that has fallen to the ground and does not change its position
  • active ribbons a type in which all are active ribbons. The latter type is used in the form.
  • a generator 84 is attached.
  • the circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84b.
  • the pattern generator 84 including the CMOS driver is called.
  • the pattern generator 84 used in this embodiment includes a ribbon row 85 having, for example, 6000 ribbons 84b.
  • the longitudinal direction (the direction in which the ribbons 84b are arranged) is set as the X axis direction, and the Y axis For example, 12 rows are formed on the silicon substrate at predetermined intervals in the direction.
  • the ribbon 84b of each ribbon row 85 is stretched on the common electrode.
  • the ribbons 84b are driven mainly for switching (on / off) of laser light by applying a voltage at a certain level and releasing the application.
  • the GLV can adjust the intensity of the diffracted light according to the applied voltage
  • the applied voltage is set when the intensity of at least some of the plurality of beams from the pattern generator 84 needs to be adjusted as will be described later. Tweaked. For example, when light of the same intensity is incident on each ribbon, a plurality of light beams having different intensities can be generated from the pattern generator 84.
  • twelve slit-shaped beams are generated by the diffractive optical element 92, and these twelve beams pass through the illuminance distribution adjusting element 94, the condensing lens 96, and the mirror 98 to each ribbon row 85.
  • a slit-like beam LB that is long in the X-axis direction is irradiated at the center.
  • the irradiation area of the beam LB on each ribbon 84b is a square area.
  • the irradiation area of the beam LB with respect to each ribbon 84b may not be a square area. It may be a rectangular region that is long in the X-axis direction or long in the Y-axis direction.
  • the irradiation region (irradiation region of the illumination system 82) on the light receiving surface of the 12 beam pattern generator 84 has a length in the X-axis direction of Smm and a length in the Y-axis direction of Tmm. It can also be said to be a rectangular area.
  • 72,000 apertures 58a are formed on the light shielding film 58 of the photoelectric element 54 of the photoelectric capsule 50 so that the 72,000 beams generated by the pattern generator 84 can be individually irradiated. Yes.
  • the number of apertures 58a may not be the same as the number of beams that can be irradiated by the pattern generator 84, for example, and the photoelectric element 54 (light shielding film) including the apertures 58a corresponding to each of 72,000 beams (laser beams).
  • the upper region may be irradiated. That is, it is only necessary that the size of each of the plurality of apertures 58a on the photoelectric element 54 is smaller than the size of the cross section of the corresponding beam.
  • the number of movable reflective elements (ribbons 84b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84. For example, using a type in which an active ribbon whose position is changed by applying a voltage and a bias ribbon that has fallen to the ground and does not change its position are alternately arranged, one of them is provided by a plurality (two) of movable elements (ribbons). The beam may be switched. Further, the number of pattern generators 84 and the number of photoelectric capsules 50 may not be equal.
  • the projection optical system 86 has an objective lens including lenses 86a and 86b sequentially arranged on the optical path of the light beam from the pattern generator 84, as shown in FIGS. 11 (A) and 11 (B).
  • a filter 86c is disposed between the lens 86a and the lens 86b.
  • the projection magnification of the projection optical system 86 is about 1/4, for example.
  • the aperture 58a is assumed to be a rectangle, but may be a square, or may be another shape such as a polygon or an ellipse.
  • each of the lenses 86a and 86b may be composed of a plurality of lenses.
  • the projection optical system is not limited to a refractive optical system, and may be a reflective optical system or a catadioptric optical system.
  • the projection optical system 86 projects the light from the pattern generator 84 onto the photoelectric element 54 so that a light beam that has passed through at least one of a plurality of (herein, 72,000) apertures 58a is the photoelectric layer 60. Is irradiated. That is, the turned-on beam from the pattern generator 84 is irradiated to the photoelectric layer 60 via the corresponding aperture 58a, and the turned-off beam is not irradiated to the corresponding aperture 58a and the photoelectric layer 60.
  • the projection optical system 86 can also be referred to as an imaging optical system. .
  • the projection optical system 86 is provided with an optical characteristic adjusting device 87 that can adjust the optical characteristics of the projection optical system 86.
  • the optical characteristic adjusting device 87 can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection optical system 86, for example, the lens 86a.
  • the optical characteristic adjusting device 87 for example, a device that changes the air pressure in an airtight space formed between a plurality of lenses constituting the projection optical system 86 may be used.
  • optical characteristic adjusting device 87 a device that deforms an optical member that constitutes the projection optical system 86, or a device that applies heat distribution to the optical member that constitutes the projection optical system 86 may be used.
  • FIG. 10 only one light irradiation device 80 in the drawing is shown as having an optical characteristic adjustment device 87, but in reality, all 45 light irradiation devices 80 are optically connected.
  • a characteristic adjusting device 87 is also provided.
  • the 45 optical characteristic adjusting devices 87 are controlled by the control unit 11 based on an instruction from the main control device 110 (see FIG. 18).
  • an intensity modulation element capable of changing the intensity of at least one of a plurality of beams generated by the pattern generator 84 and applied to the photoelectric layer 60 may be provided inside the projection optical system 86. Changing the intensity of the plurality of beams applied to the photoelectric layer 60 includes making the intensity of some of the plurality of beams zero.
  • the projection optical system 86 may include a phase modulation element, a polarization modulation element, or the like that can change at least one phase or polarization of a plurality of beams irradiated on the photoelectric layer 60.
  • the optical axis AXi of the optical system included in the illumination system 82 and the optical axis of the projection optical system 86 (coincident with the optical axis of the lens 86b as the final optical element) AXo. Is parallel to the Z-axis, but is shifted (offset) by a predetermined distance in the Y-axis direction.
  • the optical axis AXi of the optical system included in the illumination system 82 and the optical axis AXo of the projection optical system may be non-parallel.
  • FIGS. 14A and 14B show an example of the configuration of the electron beam optical system 70 together with the main body 52 of the corresponding photoelectric capsule 50.
  • FIG. 14A shows a configuration viewed from the + X direction
  • FIG. 14B shows a configuration viewed from the ⁇ Y direction.
  • the electron beam optical system 70 includes a lens barrel 104 and an objective lens including a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic lens. And a multipole 70c.
  • the objective lens of the electron beam optical system 70 and the electrostatic multipole 70c are beams of electrons (multiple electron beams EB) emitted by photoelectric conversion of the photoelectric element 54 by irradiating the photoelectric element 54 with the plurality of beams LB.
  • the pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end portion and the lower end portion in the lens barrel 104, respectively, and are separated from each other in the vertical direction.
  • An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b.
  • the electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB that is focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other due to the Coulomb force acting between them, and the magnification may change.
  • the first electrostatic lens 70c 1 for XY magnification correction and the beam irradiation position control (and irradiation position deviation correction), that is, the projection position adjustment (and projection position deviation correction) of the optical pattern are performed.
  • An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70.
  • the first electrostatic lens 70c 1 for example as schematically shown in FIG. 15 (A), the reduction magnification in the X-axis direction and the Y-axis direction, fast, and individually corrected.
  • the second electrostatic lens 70c 2 corrects (bright pixel among the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch.
  • the second electrostatic lens 70c 2 is deflection control of the beam for performing the following control for the wafer W of the beam during exposure, i.e., it is also used for the irradiation position control of the beam.
  • the deflection control of the electron beam is possible instead of the electrostatic multipole 70c.
  • An electrostatic deflection lens composed of a simple electrostatic lens may be used.
  • the reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction. Other magnifications such as 1/30, 1/20, etc. may be used.
  • FIG. 16 is a perspective view showing the appearance of 45 electron beam optical systems 70 supported in a suspended state on the base plate 38.
  • an electron beam exit 104a is formed at the exit end of the lens barrel 104.
  • a backscattered electron detector 106 is provided below the exit 104a portion. Is arranged.
  • the backscattered electron detector 106 is disposed inside a circular (or rectangular) opening 74a formed in the cooling plate 74 so as to face the above-described outlet 104a. More specifically, the optical axis AXe of the electron beam optical system 70 (corresponding to the central axis of the photoelectric capsule 50 and the optical axis AXo of the projection optical system 86 (see FIG. 11A)) is sandwiched in the X-axis direction.
  • a pair of backscattered electron detection devices 106x 1 and 106x 2 are provided on both sides.
  • a pair of backscattered electron detectors 106y 1 and 106y 2 are provided on both sides in the Y-axis direction with the optical axis AXe interposed therebetween.
  • Each of the two pairs of backscattered electron detectors 106 includes, for example, a semiconductor detector, and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on the wafer, in this case, backscattered electrons. Then, a detection signal corresponding to the detected reflected electrons is sent to the signal processing device 108 (see FIG. 18).
  • the signal processing device 108 performs signal processing after amplifying the detection signals of the plurality of backscattered electron detection devices 106 by an amplifier (not shown), and sends the processing result to the main control device 110 (see FIG. 18).
  • the backscattered electron detector 106 may or may not be provided in a part (at least one) of the 45 electron beam optical systems 70.
  • the backscattered electron detectors 106 x1 , 106 x2 , 106 y1 , and 106 y2 may be fixed to the lens barrel 104 or may be attached to the cooling plate 74.
  • cooling plate 74 In the cooling plate 74, 45 openings 74a are formed individually facing the outlets 104a of the lens barrels 104 of the 45 electron beam optical systems 70, and two pairs of backscattered electron detection devices 106 are formed in the openings 74a. Are arranged (see FIG. 2).
  • the base plate 38 is formed with the diaphragm 38b described above on the optical axis AXe.
  • the narrowed portion 38b is formed of a rectangular hole that is long in the X-axis direction and is formed on the inner bottom surface of a circular (or rectangular) concave portion 38a formed in a predetermined depth on the upper surface of the base plate 38.
  • the centers of the arrangement regions of a large number of apertures 58a provided on the upper side of the photoelectric layer 60 (here, coincide with the central axis of the main body portion 52 of the photoelectric capsule 50) substantially coincide.
  • the diaphragm portion 38 b is formed on the base plate 38 so as to individually face the optical axes AXe of 45 electron beam optical systems 70.
  • an extraction electrode 112 for accelerating electrons emitted from the photoelectric layer 60 is disposed between the base plate 38 and the photoelectric element 54.
  • the extraction electrode 112 can be provided around the circular opening 68c of the lid storage plate 68, for example.
  • the extraction electrode 112 may be provided on a member different from the lid storage plate 68.
  • the lens barrel 78, the first portion 19a, the second portion 19b, and the stage chamber 10 of the casing 19 are provided with an opening / closing portion for maintenance.
  • the lid member 64 is moved upward so that the opening 52c is closed. A lid member 64 is brought into contact with the main body 52 of the photoelectric capsule 50.
  • an upward force is applied to the lid member 64 using a spring or other biasing member 122 in the vacuum chamber 120. At this time, the O-ring 62 provided on the lower end surface of the main body 52 is completely crushed by the action of pressure.
  • FIG. 4C shows a state in which this pressurization is released.
  • the main body 52 and the lid member 64 are integrated to form the photoelectric capsule 50 (the photoelectric capsule 50 is shielded at atmospheric pressure).
  • the plurality (at least 45) of the photoelectric capsules 50 are transported to the factory of the exposure apparatus manufacturer while maintaining the state of FIG.
  • annular groove may be formed on the surface of the lid member 64 facing the main body 52, and the O-ring 62 may be partially embedded in the groove. If the vacuum state of the space inside the photoelectric capsule can be maintained even in the atmospheric space with the lid member 64 in contact with the main body 52, the sealing member such as the O-ring 62 may not be provided.
  • each of 36 a is inserted from above and assembled to the first plate 36.
  • the main body 52 of the photoelectric capsule 50 is inserted into the 45 through holes 36a with almost no gap.
  • the lid storage plate 68 has 45 round holes 68 a of a predetermined depth located directly below the 45 photoelectric capsules 50, respectively, and between the lid member 64 and the upper surface of the lid storage plate 68. It is in a height position where a predetermined gap exists.
  • the stage system 14 Prior to the assembly of the electron beam optical unit 18A to the frame 16, the stage system 14 is assembled, the assembled stage system 14 is carried into the stage chamber 10, and necessary adjustments regarding the stage system 14 are performed. Yes.
  • the lid member 64 is placed in the inside of 45 round holes 68 a having a predetermined depth of the lid storage plate 68 by the vacuum-compatible actuator 66 as shown in FIG. 6.
  • the lid storage plate 68 is driven upward to the position where the part enters.
  • evacuation of the inside of the first part 19a and the inside of the second part 19b of the housing 19 is performed in parallel (see FIG. 2).
  • the inside of the stage chamber 10 is evacuated.
  • the inside of the first portion 19a of the housing 19 is evacuated until a high vacuum state of the same level as the inside of the photoelectric capsule 50 is obtained, and the inside of the first portion 19a becomes the first vacuum chamber 34 ( (See FIG. 7).
  • the lid member 64 is separated from the main body portion 52 by its own weight as shown in FIG. 68a is completely stored inside.
  • the photoelectric elements 54 included in each of the plurality of photoelectric capsules 50 are arranged in the first vacuum chamber 34 and outside thereof (outside the housing 19). It functions as a partition (vacuum partition) that separates the space.
  • the outside of the first vacuum chamber 34 is atmospheric pressure or slightly positive pressure from atmospheric pressure.
  • the inside of the second portion 19b of the housing 19 may be evacuated until a high vacuum state of the same level as the first portion 19a is reached, but the degree of vacuum is lower than that of the first portion 19a (the pressure is high). ) Vacuuming to a medium vacuum state may be performed.
  • the inside of the first portion 19a and the inside of the second portion 19b are substantially separated by the throttle portion 38b, and thus this is possible.
  • the inside of the second portion 19a becomes the second vacuum chamber 72.
  • the inside of the second portion 19b is evacuated to a medium vacuum state, the time required for evacuation can be shortened.
  • the inside of the stage chamber 10 is evacuated to the same level as the inside of the second portion 19b.
  • the lid accommodating plate 68 is driven in the X-axis direction and the Y-axis direction (and the Z-axis direction) by the vacuum actuator 66, and 45 circular shapes formed on the lid accommodating plate 68 are formed.
  • the openings 68c are positioned on the optical axes AXe of the 45 electron beam optical systems 70, respectively.
  • FIG. 3 shows a state in which the circular opening 68c is positioned on the optical axis AXe in this way. Thereafter, necessary adjustment is performed, and the assembly of the electron beam optical unit 18A is completed.
  • an optical unit 18B separately assembled in advance is mounted on the assembled electron beam optical unit 18A (first plate 36).
  • the optical unit 18B is arranged so that each of the 45 light irradiation devices 80 inside the lens barrel 78 is arranged corresponding to each of the 45 photoelectric elements 54, that is, the light of the projection optical system 86. It is mounted in a state where the axis AXo substantially coincides with the optical axis AXe of the electron beam optical system 70.
  • the connection, the piping connection of the atmospheric pressure circuit, and the like are performed, and the assembly of the exposure apparatus 100 is completed.
  • the necessary adjustment of each part described above includes adjustment for achieving optical accuracy for various optical systems, adjustment for achieving mechanical accuracy for various mechanical systems, and electrical accuracy for various electrical systems. Adjustments to achieve are included.
  • the length Smm in the X-axis direction and the Y-axis direction on the light receiving surface of the pattern generator 84 at the time of exposure A beam is irradiated inside a rectangular region having a length of Tmm, and by this irradiation, light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection optical system 86 having a reduction magnification of 1/4, and further generated by this irradiation.
  • the irradiated electron beam is irradiated onto a rectangular area (exposure field) on an image plane (a wafer surface aligned with the image plane) via an electron beam optical system 70 having a reduction ratio of 1/50.
  • the exposure apparatus 100 of the present embodiment includes a light irradiation device 80 (projection optical system 86), a photoelectric element 54 corresponding to the light irradiation device 80, and an electron beam optical system 70 corresponding thereto, and a reduction magnification of 1 / 200 straight tube type multi-beam optical system 200 (see FIG. 18) is configured, and this multi-beam optical system 200 has 45 in the matrix arrangement described above in the XY plane. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction magnification of 1/200.
  • a 300 mm wafer having a diameter of 300 mm is an exposure object, and 45 electron beam optical systems 70 are arranged so as to face the wafer. Therefore, an arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. 43 mm.
  • the exposure area of one electron beam optical system 70 is a rectangular area of 43 mm ⁇ 43 mm at the maximum, so that the movement strokes of the wafer stage WST in the X-axis direction and the Y-axis direction are as described above.
  • a length of 50 mm is sufficient.
  • the number of electron beam optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of wafer stage WST, and the like.
  • FIG. 18 is a block diagram showing the input / output relationship of main controller 110 that mainly constitutes the control system of exposure apparatus 100.
  • Main controller 110 includes a microcomputer and the like, and comprehensively controls each component of exposure apparatus 100 including each component shown in FIG.
  • the light irradiation device 80 connected to the control unit 11 includes a laser diode 88, an AO deflector 90, a diffractive optical element 92, and a laser diode 88 controlled by the control unit 11 based on an instruction from the main control device 110.
  • An illuminance distribution adjusting element 94 is included.
  • the electron beam optical system 70 connected to the control unit 11 is based on an instruction from the main control device 110, and a pair of electromagnetic lenses 70 a and 70 b and an electrostatic multipole 70 c (the first multi-pole 70 c (first) controlled by the control unit 11.
  • electrostatic lens 70c comprises first and second electrostatic lens 70c 2).
  • reference numeral 500 includes the multi-beam optical system 200, the control unit 11, the backscattered electron detection devices 106 x1 , 106 x2 , 106 y1 , 106 y2, and the signal processing device 108.
  • the exposure unit comprised is shown. In the exposure apparatus 100, 45 units of exposure units 500 are provided.
  • the exposure apparatus 100 employs a rectangular (rectangular) exposure field (hereinafter abbreviated as a rectangular field as appropriate) RF for the following reasons.
  • FIG. 19 shows a square exposure field (hereinafter abbreviated as a square field) SF and a rectangular field RF in a circle indicating an effective area (aberration effective area) of the diameter D of the electron beam optical system.
  • the square field SF is good for the maximum use of the effective area of the electron beam optical system.
  • the field width is lost about 30% (1 / ⁇ 2).
  • the effective area is almost the field width. This is a great advantage for multi-columns.
  • the mark detection sensitivity when detecting the alignment mark is improved. Regardless of the shape of the field, the total amount of electrons irradiated in the field is the same, so the rectangular field has a higher current density than the square field, so even if the mark is placed in a smaller area on the wafer. Detection is possible with sufficient detection sensitivity.
  • the rectangular field is easier to manage aberration than the square field.
  • the practical aspect ratio t / s is 1/12 to 1/4.
  • both the exposure fields of the square field SF and the rectangular field RF are set to include the optical axis AXe of the electron beam optical system.
  • the exposure field may be set within the aberration effective region so as not to include the optical axis AXe.
  • the exposure field may be set to a shape other than a rectangle (including a square), for example, an arc shape.
  • Irradiance unevenness in the exposure field is controlled by the main controller 110 using the illuminance distribution adjusting element 94 during exposure, which will be described later, to perform the above-described variable control of the polarization state by controlling the applied voltage for each crystal.
  • the light intensity (illuminance) for each corresponding region region on the light receiving surface of the pattern generator 84 corresponding to each crystal
  • in-plane on the electron emission surface of the photoelectric layer 60 The illuminance distribution and the corresponding illuminance distribution in the exposure field RF on the wafer surface are adjusted. That is, the intensity of each of the plurality of electron beams applied to the exposure field RF is adjusted appropriately.
  • the pattern generator 84 since the pattern generator 84 is configured by GLV, the pattern generator 84 itself can generate a halftone.
  • the main controller 110 adjusts the intensity of each light beam applied to the photoelectric layer 60 to adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 and the corresponding exposure field on the wafer surface. Adjustment of the illuminance distribution in the RF, that is, dose control can also be performed.
  • the main controller 110 may adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 by using the illuminance distribution adjusting element 94 and the pattern generator 84 in combination.
  • the intensity of a plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion is adjusted so that the (current amount) is substantially the same.
  • the adjustment of the beam intensity may be performed in the illumination system 82, the pattern generator 84, or the projection optical system 86.
  • the plurality of electron beams generated by the photoelectric conversion from the electron emission surface of the photoelectric layer 60 are different from each other for at least some of the beams.
  • the beam intensity may be adjusted.
  • the resist layer formed on the wafer is not affected only by the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, but other factors such as electron forward scattering, back scattering, or fogging. Influenced by.
  • forward scattering means a phenomenon in which electrons incident on the resist layer on the wafer surface are scattered in the resist layer before reaching the wafer surface
  • backscattering means that the wafer passes through the resist layer. It means a phenomenon in which electrons that reach the surface are scattered on the wafer surface or inside thereof, enter the resist layer again, and are scattered around.
  • fogging refers to a phenomenon in which reflected electrons from the surface of the resist layer re-reflect on the bottom surface of the cooling plate 74, for example, and add a dose to the surroundings.
  • the exposure apparatus 100 employs different correction methods for forward scattering, backscattering and fogging. ing.
  • the main controller 110 In PEC (Proximity Effect Correction) for reducing the influence of the forward scattering component, the main controller 110 expects the influence of the forward scattering component, and the pattern generator 84 (and / or the illuminance distribution adjustment element via the control unit 11). 94) is used to adjust the in-plane illuminance distribution.
  • the main control device 110 sets the illuminance distribution adjusting element 94 via the control unit 11. Use to adjust the in-plane illuminance distribution at a certain spatial frequency.
  • the exposure apparatus 100 is used, for example, in complementary lithography.
  • a wafer on which an L / S pattern is formed by using double patterning or the like in immersion exposure using an ArF excimer laser light source is exposed, and a cut pattern for cutting the line pattern is formed.
  • the exposure apparatus 100 it is possible to form a cut pattern corresponding to each of 72,000 apertures 58a formed on the light shielding film 58 of the photoelectric element 54.
  • the flow of processing for the wafer is as follows.
  • an unexposed wafer W coated with an electron beam resist is placed on the wafer stage WST in the stage chamber 10 and is attracted by an electrostatic chuck.
  • each electron beam optical system 70 From each electron beam optical system 70 to at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot regions formed on wafer W on wafer stage WST. Irradiated with an electron beam, reflected electrons from at least one alignment mark are detected by at least one of the reflected electron detectors 106 x1 , 106 x2 , 106 y1 and 106 y2 , and all-point alignment measurement of the wafer W 1 is performed. We, this based on the results of all points alignment measurement, the plurality of shot areas on the wafer W 1, exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started.
  • a 45 exposure unit 500 multi-beam optical system 200
  • a plurality of beams (electron beams) emitted from each multi-beam optical system 200 are used to form a cut pattern for the L / S pattern formed on the wafer W with the X-axis direction as a periodic direction.
  • the irradiation timing (ON / OFF) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction.
  • the alignment mark formed corresponding to a part of the shot area of the wafer W is detected without performing all-point alignment measurement, and exposure of 45 shot areas is performed based on the result. good.
  • the number of exposure units 500 and the number of shot areas are the same, but they may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
  • wafer stage WST advances at speed V [nm / s], for example, Ta ⁇ V [nm].
  • V [nm / s] for example, Ta ⁇ V [nm].
  • Ta ⁇ V 96 [nm].
  • the beam is returned to the home position while the wafer stage WST is scanning 24 nm in the + Y direction at the speed V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed. The beam is turned off using the AO deflector 90.
  • the continuous 6000 pixel area in the (K + 12) th row is the same position as the 6000 pixel area in the Kth row at the exposure start time. It is in.
  • the exposure apparatus 100 is used for complementary lithography, and is used to form a cut pattern for an L / S pattern formed on the wafer W, for example, having an X-axis direction as a periodic direction.
  • a cut pattern can be formed by turning on a beam reflected by an arbitrary ribbon 84b among the ribbons 84b. In this case, 72000 beams may or may not be turned on simultaneously.
  • the stage drive system 26 is controlled by the main controller 110 based on the measurement value of the position measurement system 28 during the scanning exposure of the wafer W based on the exposure sequence described above.
  • the light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500.
  • the control unit 11 performs the above-described dose control as necessary.
  • the dose control described above is a dose control performed by controlling the illuminance distribution adjusting element 94 or the pattern generator 84, or the illuminance distribution adjusting element 94 and the pattern generator 84, and thus can be said to be dynamic dose control. .
  • the exposure apparatus 100 is not limited to this, and the following dose control can also be employed.
  • the cut pattern (resist pattern) CP that should be square (or rectangular) on the wafer is, for example, 4 due to blur (blur) and / or resist blur caused by the optical system.
  • the corners are rounded to form a cut pattern CP ′.
  • the light beam is transmitted through the non-rectangular aperture 58a ′ provided with the auxiliary patterns 58c at the four corners of the aperture 58a formed in the light shielding film 58.
  • an electron beam generated by photoelectric conversion is irradiated onto the wafer via the electron beam optical system 70 to form an irradiation region of the electron beam having a shape different from that of the non-rectangular aperture 58a ′ on the wafer.
  • the shape of the electron beam irradiation region and the shape of the cut pattern CP to be formed on the wafer may be the same or different.
  • the shape of the aperture 58a ′ is set so that the shape of the electron beam irradiation region is substantially the same as the shape of the desired cut pattern CP (for example, rectangular or square). Just decide.
  • the use of the aperture 58a 'in this case may not be considered as dose control.
  • the auxiliary pattern 58c may be provided only at least at a part of the four corners of the aperture 58a.
  • the auxiliary patterns 58c may be provided at all four corners of the rectangular aperture 58a only at a part of the plurality of apertures 58a 'formed on the light shielding film 58.
  • a part of the plurality of apertures formed in the light shielding film 58 may be the aperture 58a ', and the rest may be the aperture 58a.
  • the shape, size, etc. of the aperture may be designed based on the simulation result, but is optimized based on the characteristics of the electron beam optical system 70 based on the actual exposure result, for example. It is desirable.
  • the shape of each aperture is determined so as to suppress rounding of the corner of the irradiation area on the wafer (target). Note that the influence of the forward scattering component can also be reduced by the aperture shape.
  • the shape of the aperture 58a 'and the shape of the electron beam irradiation region may be the same.
  • the exposure apparatus 100 has a plurality of electron beam optical systems 70, for example, 45, but the 45 electron beam optical systems 70 are manufactured through the same manufacturing process so as to satisfy the same specifications. Therefore, for example, as schematically shown in FIG. 21A, inherent distortion (distortion aberration) in which the exposure field is distorted may occur in common in the 45 electron beam optical systems 70.
  • the distortion common to the plurality of electron beam optical systems 70 cancels the distortion by arranging the apertures 58a on the light shielding film 58 located on the photoelectric layer 60, as schematically shown in FIG. It may be corrected by arranging in such a manner that it is reduced or reduced. Note that the circle in FIG. 21A indicates the aberration effective region of the electron beam optical system 70.
  • each aperture 58a is shown as a parallelogram instead of a rectangle, but in reality, the aperture 58a on the light shielding film 58 is formed as a rectangle or a square. Is done.
  • This example shows a case where the barrel distortion inherent in the electron beam optical system 70 is canceled or reduced by arranging a plurality of apertures 58a on the photoelectric layer 60 along the pincushion distortion shape. .
  • the distortion of the electron beam optical system 70 is not limited to the barrel distortion.
  • a plurality of apertures 58a are arranged so as to cancel or reduce the influence. May be arranged in a barrel-shaped distortion shape.
  • the positions of the plurality of light beams from the projection optical system 86 may or may not be adjusted according to the arrangement of the apertures 58a.
  • the exposure apparatus 100 includes the multi-beam optical system 200, the control unit 11, the backscattered electron detectors 106x1 , 106x2 , 106y1 , 106y2, and the signal processing device 108. , 45 exposure units 500 are provided (see FIG. 18).
  • the multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70.
  • the light irradiation device 80 includes a pattern generator 84 capable of providing a plurality of individually controllable light beams, an illumination system 82 for irradiating the pattern generator 84 with illumination light, and a plurality of light beams from the pattern generator 84 as photoelectric elements.
  • the electron beam optical system 70 irradiates the wafer W with a plurality of light beams emitted from the photoelectric element 54 by irradiating the photoelectric element 54 with a plurality of light beams. Irradiate. Therefore, according to the exposure apparatus 100, since there is no blanking / aperture, the source of complex distortion due to charge-up and magnetization is essentially eliminated, and there are fewer wasted electrons (reflected electrons) that do not contribute to the exposure of the target. It becomes possible to eliminate long-term unstable factors.
  • the main controller 110 scans (moves) the wafer stage WST holding the wafer W in the Y-axis direction via the stage drive system 26. Control. In parallel with this, the main controller 110, for each of the m (for example, 45) multi-beam optical systems 200, passes through the n (for example, 72,000) apertures 58 a of the photoelectric element 54. The irradiation state (ON state and OFF state) of the beam is changed for each aperture 58a, and the illumination distribution adjusting element 94 is used for each divided region corresponding to each crystal, or the pattern generator 84 is used for each beam. Adjust the intensity of the light beam.
  • the first electrostatic lens 70c 1 of the electrostatic multipole 70c caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) , Fast, and individually correct.
  • the second electrostatic lens 70c 2 correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch To do.
  • a cut pattern can be formed at a desired position above, and exposure with high accuracy and high throughput is possible.
  • each multi-beam optical system 200 uses any one of the plurality of apertures 58a. Even if the beam passing through the aperture 58a is in the on state, in other words, regardless of the combination of the beams in the on state, for example, X formed in advance in each of the 45 shot regions on the wafer It becomes possible to form a cut pattern at a desired position on a desired line among fine line and space patterns whose periodic direction is the axial direction.
  • the photoelectric element 54 can be easily transported, and the photoelectric element 54 can be moved to the housing 19 of the electron beam optical unit 18A. Easy to assemble. Further, by simply evacuating the inside of the first vacuum chamber 34, the lid members 64 of the plurality of photoelectric capsules 50 are separated from the main body 52 by their own weight, and simultaneously by the lid storage plate 68 driven by the vacuum-compatible actuator 66. Since it can be received and stored in the round hole 68a, the lid members 64 of the plurality of photoelectric capsules 50 can be removed in a short time.
  • a plurality of lid members 64 individually housed in the plurality of round holes 68a of the lid housing plate 68 are simultaneously attached to the main body portion of the corresponding photoelectric capsule 50.
  • each lid member 64 is moved to the corresponding main body by the pressure difference between the inside (vacuum) and the outside (atmospheric pressure) of the photoelectric capsule 50. It can be integrated with the part 52. Thereby, it can prevent reliably that the photoelectric layer 60 touches air.
  • the main body 52 can be released from the first plate 36 that releasably supports the main body 52 in a state in which the lid member 64 is attached to the main body 52.
  • a pattern generator 184 having 13 ribbon rows 85 shown in FIG. 22 is used instead of the pattern generator 84 having 12 ribbon rows 85 shown in FIG. Also good.
  • the ribbon row located at the top in FIG. 22 (indicated as 85a for identification in FIG. 22) is one of the 12 commonly used ribbon rows (main ribbon row) 85.
  • This is a backup ribbon row that is used in place of the ribbon row 85 in which the failure occurs when a failure occurs.
  • a plurality of backup ribbon rows 85a may be provided.
  • a ribbon line for backup may be provided.
  • each ribbon 84b of the pattern generator corresponds to the aperture 58a of the photoelectric element 54 in a 1: 1 ratio, that is, each ribbon 84b and the electron beam irradiated onto the wafer are 1: 1.
  • the present invention is not limited to this, and the photoelectric element 54 is irradiated with a light beam from one ribbon row in the main ribbon row 85, for example, one ribbon 84b included in a ribbon row adjacent to the backup ribbon row 85a.
  • a target region (referred to as a first target region) on the wafer that is the target is irradiated with the electron beam generated by the above-described process.
  • one ribbon 84b included in the ribbon row 85a or one of the main ribbon rows 85 An electron beam generated by irradiating the photoelectric element 54 with a light beam from one ribbon 84b included in another ribbon row may be configured to be able to irradiate the first target region on the wafer.
  • the electron beam generated by the photoelectric element 54 resulting from the irradiation of the light beams from the two ribbons 84b included in different ribbon rows may be superimposed on the same target area on the wafer. Thereby, for example, the dose amount of the target region may be in a desired state.
  • the width of the ribbon 84b (arrangement pitch of the ribbon 84b) is less than one time with respect to the main ribbon row 85. It is also possible to use a pattern generator to which a correction ribbon row 85b arranged by shifting the distance is added.
  • the correction ribbon row 85b shown in FIG. 23A is a half of the width of the ribbon 84b (as shown in FIG. 23B, which is an enlarged view of the vicinity of the circle B in FIG. 23A).
  • the ribbons 84b are arranged so as to be shifted by half (1 ⁇ m) of the arrangement pitch of the ribbons 84b.
  • the pattern generator may have a backup ribbon row 85a and a correction ribbon row 85b.
  • the pattern generator 84 may be a reflective liquid crystal display element or a digital micromirror device (Digital Micromirror Device).
  • a reflective spatial light modulator having a plurality of movable reflective elements such as PLV (Planer Light Light Valve) may be used.
  • the pattern generator may be configured by various transmissive spatial light modulators.
  • the pattern generator 84 is not limited to a spatial light modulator as long as it can provide a plurality of individually controllable light beams.
  • the intensity can be adjusted and the size can be changed.
  • a pattern generator can be used.
  • the pattern generator 84 does not necessarily need to be able to control beams (on / off, intensity adjustment, size change, etc.) for individual light beams, but only for some beams, or a plurality of It may be possible for each beam.
  • FIG. 24 shows configuration examples of various types of optical units.
  • the optical unit shown in FIG. 24A can be called an L-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems arranged two-dimensionally in a predetermined positional relationship on the XZ plane, and an XY plane.
  • a plurality of pattern generators 84 two-dimensionally arranged on one surface of the base BS inclined at 45 degrees with respect to a plurality of illumination systems individually, and a plurality of pattern generators 84 and corresponding photoelectric elements individually
  • an optical unit IMU including a plurality of projection optical systems arranged two-dimensionally on the XY plane in a positional relationship.
  • the optical axes of the plurality of projection optical systems coincide with the optical axes of the corresponding electron beam optical systems.
  • the pattern generator 84 is formed of a reflective spatial light modulator as in the above embodiment.
  • This L-type reflection type has an advantage that the pattern generator can be easily accessed, and the restriction on the size of the light receiving surface of the pattern generator is gentler than that of the above-described embodiment.
  • the optical unit shown in FIG. 24B can be referred to as a U-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on the XY plane, and an XY plane.
  • a plurality of reflective spatial light modulators 84 1 arranged two-dimensionally on one surface of the base BS 1 inclined at ⁇ 45 degrees with respect to the plurality of illumination systems individually, and 45 with respect to the XY plane.
  • a plurality of reflective spatial light modulators 84 2 that are two-dimensionally arranged on one surface of the base BS 2 tilted at a degree in a positional relationship corresponding to the plurality of spatial light modulators 84 1 , a plurality of spatial light modulators 84 2, and And an optical unit IMU including a plurality of projection optical systems that are two-dimensionally arranged on the XY plane in a positional relationship individually corresponding to corresponding photoelectric elements.
  • the optical axes of the plurality of projection optical systems coincide with the optical axes of the corresponding electron beam optical systems.
  • one reflective spatial light modulator 84 2 as a pattern generator, and the other of the spatial light modulator 84 1, the illuminance distribution with a resolution equal to or more than the illuminance distribution adjusting element 94 described above It can be used as an adjusting device.
  • the optical unit shown in FIG. 24C can be called a straight tube transmission type, and an optical system (light irradiation device) in which an illumination system, a pattern generator 84, and a projection optical system are arranged on the same optical axis.
  • 80A are two-dimensionally arranged in the same housing (lens barrel) 78 in a predetermined positional relationship corresponding to a plurality of photoelectric elements.
  • the optical axes of the plurality of light irradiation devices 80A coincide with the optical axes of the corresponding electron beam optical systems.
  • the pattern generator 84 needs to use a transmissive spatial light modulator such as a transmissive liquid crystal display element.
  • the straight tube transmission type is easy to guarantee the accuracy for each axis, the lens barrel size is compact, and it can handle both of the two methods described later with reference to FIGS. 25 (A) and 25 (B). There is merit that there is.
  • FIG. 24D shows a simplified optical unit of the same type as the optical unit 18B employed in the exposure apparatus 100 of the above embodiment.
  • the optical unit shown in FIG. 24D can be called a straight tube reflection type, and has the same merit as the straight tube transmission type.
  • the photoelectric layer 60 is irradiated with light through the aperture 58a, but the aperture may not be used.
  • an optical pattern image formed by a pattern generator is projected onto a photoelectric element, further converted into an electronic image by the photoelectric element, and reduced to form an image on the wafer surface. May be.
  • the photoelectric layer is irradiated with light through a plurality of apertures.
  • the aperture By using the aperture in this way, a light beam having a desired cross-sectional shape can be incident on the photoelectric layer without being affected by the aberration of the projection optical system between the pattern generator and the photoelectric element.
  • the aperture and the photoelectric layer may be integrally formed as in the above-described embodiment, or may be disposed to face each other with a predetermined clearance (gap, gap).
  • the transparent plate member 56 that also serves as the vacuum partition, the light shielding film 58 formed with the aperture 58a, and the photoelectric layer 60 are integrated is described.
  • the vacuum partition, the light shielding film (aperture film), and the like. ) And the photoelectric layer can be arranged in various ways.
  • the case where the extraction electrode 112 is provided around the circular opening 68c of the lid storage plate 68 is illustrated.
  • the position of the electron beam is measured on the lid storage plate 68.
  • the former is a combination of a reflective surface with an aperture and a detector that detects reflected electrons from the reflective surface, or a reflective surface with a mark formed on the surface and the mark.
  • a combination with a detection device for detecting reflected electrons to be used can be used.
  • FIG. 26 schematically shows a configuration of an exposure apparatus 1000 according to the second embodiment.
  • the same reference numerals are used for the same or equivalent components as those of the exposure apparatus 100 according to the first embodiment described above, and the description thereof is omitted.
  • the through hole 36 a of the first plate 36 into which the main body portion 52 of the photoelectric capsule 50 is inserted defines the first vacuum chamber 34.
  • the structure of the first portion 19a of the casing 19 in which the first vacuum chamber 34 is formed and the point that the vacuum partition wall 132 made of quartz glass or the like is airtightly sealed with respect to the outside are described above. This is different from the exposure apparatus 100 according to the embodiment. Hereinafter, the difference will be mainly described.
  • FIG. 27 shows an internal configuration of the housing 19 corresponding to one electron beam optical system 70 of the exposure apparatus 1000 according to the second embodiment.
  • a photoelectric element 136 is disposed below the vacuum partition wall 132 by a predetermined distance.
  • the photoelectric element 136 is arranged in the same order as the photoelectric element 54 described above, and is a base material made of quartz (S i O 2 ) integrally formed by the same method.
  • a light shielding film 58 and a photoelectric layer 60 are provided.
  • the light shielding film 58 of the photoelectric element 136 is formed with at least 72,000 apertures 58a in the same arrangement as described above.
  • the extraction electrode 112 is disposed below the photoelectric element 136 inside the first vacuum chamber 34.
  • the lid storage plate 68 and the vacuum-compatible actuator 66 are not provided in the first vacuum chamber 34 (see FIGS. 26 and 27).
  • the electron beam optical unit 18A according to the second embodiment includes a base plate 38, and the configuration below it (including the electron beam optical system 70 inside the second vacuum chamber 72) is the first embodiment described above. This is the same as the exposure apparatus 100 according to FIG.
  • the configuration other than the electron beam optical unit 18A is the same as that of the exposure apparatus 100 described above.
  • the exposure apparatus 1000 configured as described above can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above, and is provided with the photoelectric element 136 separately from the vacuum partition wall 132. You may have the following additional functions.
  • the curvature of field component of the electron beam optical system becomes remarkable.
  • the electron beam optical system has a field curvature as schematically shown in FIG. 29 as its aberration, as shown schematically in FIG. 29, the photoelectric layer 60 (correctly, the entire photoelectric element 136). Is bent so that a curve having a phase opposite to that of the curvature component of the image plane is generated in the photoelectric layer 60, that is, the electron emission surface of the photoelectric layer 60 is bent (made non-planar).
  • the curvature of field of the electron beam optical system 70 is compensated, and displacement, defocusing, etc.
  • the amount of curvature of the electron emission surface of the photoelectric layer 60 may be variable.
  • the amount of curvature of the electron emission surface may be changed in accordance with a change in optical characteristics (aberration, for example, field curvature) of the electron beam optical system 70. Therefore, the amount of curvature of the electron emission surface may be made different among the plurality of photoelectric elements 136 according to the optical characteristics of the corresponding electron beam optical system.
  • FIG. 29 shows an example in which a convex curvature is generated in the + Z direction (toward the projection optical system 86) in the photoelectric layer 60. This is because the convex curvature of field in the ⁇ Z direction is generated.
  • the electron beam optical system has the aberration, so that the photoelectric layer 60 is curved to cancel or reduce the influence of the curvature of field. Therefore, if the electron beam optical system has a convex curvature of field in the + Z direction as its aberration, it is necessary to cause the convex curvature in the ⁇ Z direction in the photoelectric layer 60.
  • the photoelectric element 136 (photoelectric layer 60) is not limited to bending in one direction, and may be three-dimensionally deformed, for example, by bending the four corners downward. By changing how the photoelectric element 136 is deformed, it is possible to effectively suppress displacement, deformation, and the like of the optical pattern image due to spherical aberration.
  • the position of the electron emission surface in the direction of the optical axis AXe of the electron beam optical system 70 is changed between a part of the electron emission surface (for example, the central portion) and the other portion (for example, the peripheral portion). It will be different from each other.
  • the thickness of the photoelectric layer 60 may be distributed so that the position of the part of the electron emission surface (for example, the central part) and the other part (for example, the peripheral part) in the direction of the optical axis AXe are different. Also, as in the first embodiment, when the photoelectric element also serves as a vacuum partition, the electron emission surface of the photoelectric layer 60 may be curved (non-planar).
  • an actuator that can drive the aperture-integrated photoelectric element in the XY plane is provided. Also good.
  • an aperture-integrated photoelectric element as shown in FIG. 30, a multi-pitch type in which rows of apertures 58a with pitch a and rows of apertures 58b with pitch b are formed every other row.
  • the aperture integrated photoelectric element 136a may be used.
  • a zoom function for changing the projection magnification (magnification) in the X-axis direction is also used by using the optical characteristic adjusting device 87 described above. In such a case, as shown in FIG.
  • the X of the projection optical system 86 is used by using the optical characteristic adjusting device 87.
  • the magnification in the axial direction is enlarged, and as indicated by a double-headed arrow in FIG. 31 (B), a plurality of beams are expanded in the X-axis direction as a whole, and then indicated by a white arrow in FIG. 31 (C).
  • a double-headed arrow in FIG. 31 (B) a plurality of beams are expanded in the X-axis direction as a whole, and then indicated by a white arrow in FIG. 31 (C).
  • each of the plurality of beams may be irradiated to a region on the photoelectric element 136a including the corresponding aperture 58a or 58b. That is, the size of each of the plurality of apertures 58a or 58b on the photoelectric element 136a may be smaller than the size of the cross section of the corresponding beam.
  • the intensity of the beam per unit area in the irradiated surface of the beam changes.
  • a relationship with the change may be obtained, and the intensity of the beam may be changed (adjusted) based on the relationship.
  • the intensity of a part of the beam when the magnification is changed may be detected by a sensor, and the intensity of the beam may be changed (adjusted) based on the detected intensity information. In the latter case, for example, as shown in FIG.
  • a sensor 135 is provided on one end of the upper surface of the base of the photoelectric element 136, and the sensor 135 is driven in the XY plane by driving the photoelectric element 136 by the actuator described above. You may comprise so that a movement to this position is possible.
  • the photoelectric element 136 can move not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z-axis parallel to the optical axis AXe. You may comprise.
  • the intensity of the light beam applied to the photoelectric element may be adjusted according to the in-plane distribution of the photoelectric conversion efficiency of the photoelectric layer 60. That is, assuming that the photoelectric layer 60 has a first part of the first photoelectric conversion efficiency and a second part of the second photoelectric conversion efficiency, based on the first photoelectric conversion efficiency and the second photoelectric conversion efficiency, respectively.
  • the intensity of the beam applied to the first part and the intensity of the beam applied to the second part may be adjusted.
  • the intensity of the light beam applied to the first part and the intensity of the light beam applied to the second part are adjusted so as to compensate for the difference between the first photoelectric conversion efficiency and the second photoelectric conversion efficiency. Also good.
  • an aperture-separated photoelectric element in which the aperture plate (aperture member) is separate from the photoelectric element may be used.
  • An aperture-separated photoelectric element 138 shown in FIG. 32A includes a photoelectric element 140 in which a photoelectric layer 60 is formed on the lower surface (light emitting surface) of a base material 134, and an upper side of the base material 134 of the photoelectric element 140 ( And an aperture plate 142 made of a light-shielding member having a large number of apertures 58a disposed on the light incident surface side with a predetermined clearance (gap, gap) of 1 ⁇ m or less, for example.
  • a drive mechanism that can drive the aperture plate 142 in the XY plane.
  • a multi-pitch aperture similar to the aperture-integrated photoelectric element 136a described above is formed on the aperture plate 142, and the magnification enlargement function of the projection optical system 86, the photoelectric element 140, and the aperture plate 142 are provided.
  • a driving mechanism capable of driving the photoelectric element 140 in the XY plane may be provided.
  • the projection optical system 86 may be configured to be movable in the XY plane with respect to the aperture plate 142.
  • the aperture plate 142 can move not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z-axis parallel to the optical axis AXe.
  • the gap between the photoelectric element 140 and the aperture plate 142 may be adjustable.
  • a driving mechanism for moving the photoelectric element 140 when using an aperture-separated photoelectric element, only a driving mechanism for moving the photoelectric element 140 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be extended by moving the photoelectric element 140 in the XY plane. In addition, even when the integrated photoelectric element described in the first embodiment is used, a driving mechanism for moving the photoelectric element 54 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be extended by moving the photoelectric element 54 in the XY plane.
  • aperture plate aperture and the photoelectric element aperture described above may be used in combination. That is, an aperture plate may be arranged on the light beam incident side of the above-described aperture-integrated photoelectric element, and the beam that has passed through the aperture plate aperture may be incident on the photoelectric layer via the aperture-integrated photoelectric element aperture. .
  • the aperture plate may be replaced.
  • a plurality of apertures may be formed using a spatial light modulator such as a transmissive liquid crystal element instead of the aperture plate.
  • the magnification enlargement function of the projection optical system 86 is used when forming cut patterns for cutting line patterns having different pitches.
  • the aperture from the projection optical system 86 is used.
  • a device for changing the pitch of a plurality of beams irradiated respectively to a plurality of apertures in the same aperture row of the integrated photoelectric element 136a or the aperture plate 142 may be provided.
  • the aperture-integrated photoelectric element is not limited to the type shown in FIG. 28A.
  • the photoelectric element 136 in FIG. A photoelectric element 136b in which the space is filled with a transparent film 148 can also be used.
  • the photoelectric element 136b instead of the transparent film 148, a part of the base material can fill the space in the aperture 58a.
  • a light-shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 134 by vapor deposition of chromium, and the lower surface (light emitting surface) of the substrate 134.
  • the photoelectric element 136d may be used.
  • FIG. 28E there is a photoelectric element 136e of a type in which the photoelectric layer 60 is formed on the lower surface of the base material 134 and the light shielding film 58 having the aperture 58a is formed on the lower surface of the photoelectric layer 60.
  • the light-shielding film (chrome film) 58 in FIG. 28E has a function of shielding electrons, not light.
  • the base material 134 is not only made of quartz, but by a laminate of quartz and a transparent film (single layer or multilayer). It may be configured.
  • the substrate is not limited to a type including only a light-shielding member having an aperture such as the aperture plate 142, and a base material and a light-shielding film.
  • An aperture plate integrated with can be used.
  • a light shielding film 58 having an aperture 58a is formed on the lower surface (light emitting surface) of a base material 144 made of, for example, quartz by vapor deposition of chromium.
  • Aperture plate 142a as shown in FIG.
  • has an aperture plate 142d can be used. Note that the aperture plates 142, 142a, 142b, 142c, and 142d can be used upside down.
  • a vacuum partition is provided in the main body 52 instead of the photoelectric element 54 also serving as the vacuum partition of the main body 52 of the photoelectric capsule 50, and a predetermined clearance is provided below the vacuum partition.
  • Various types of aperture-integrated photoelectric elements or aperture-separated photoelectric elements described above may be arranged and housed in the main body 52.
  • a drive mechanism for moving the aperture-integrated photoelectric element 136 (136a to 136d) or a drive mechanism for moving at least one of the photoelectric element 140 and the aperture plate 142 (142a to 142d) may be provided.
  • the photoelectric elements 54, 136, 136a to 136e and the plurality of apertures 58a of the aperture plates 142, 142a to 142d are all the same size and shape. All the sizes of the plurality of apertures 58a may not be the same, and the shape may not be the same for all the apertures 58a. In short, the aperture 58a may be smaller than the size of the corresponding beam so that the corresponding beam is irradiated to the entire area.
  • the photoelectric element 140 may be used without using the aperture plate. Also in this case, as described above, the wafer W is exposed by scanning exposure in which an electron beam is irradiated while moving in the Y-axis direction.
  • a second pitch for example, pitch (interval) b
  • the pitch is changed. It is possible to form a cut pattern for cutting line patterns having different values. Also in this case, the magnification changing function of the projection optical system 86 may be used together.
  • a device for changing the pitch (interval) of a plurality of beams emitted from the projection optical system 86 to the photoelectric element 140 may be provided.
  • the optical system included in the exposure apparatuses 100 and 1000 is a multi-column type including a plurality of multi-beam optical systems 200
  • the present invention is not limited to this, and the optical system may be a single column type multi-beam optical system. Even in such a single column type multi-beam optical system, the dose control, magnification control, correction of pattern image position deviation, correction of various aberrations such as distortion, photoelectric elements or aperture plates described above are used. Correction of various elements and extension of the lifetime of the photoelectric layer can be applied.
  • an opening may be provided in the peripheral wall portion 76 so that the second vacuum chamber 72 and the inside of the stage chamber 10 may be a single vacuum chamber. Or while leaving only a part of upper end part of the surrounding wall part 76, the cooling plate 74 is removed, and it is good also considering the 2nd vacuum chamber 72 and the inside of the stage chamber 10 as one vacuum chamber.
  • the wafer W is independently transferred onto the wafer stage WST, and exposure is performed by irradiating the wafer W with a beam from the multi-beam optical system 200 while moving the wafer stage WST in the scanning direction.
  • the exposure apparatuses 100 and 1000 have been described, the present invention is not limited to this, and the exposure apparatuses of the type in which the wafer W is integrated with a table (holder) that can be transported integrally with a wafer called a shuttle and are exchanged on the stage are also included in the above-described exposure apparatuses.
  • the embodiment (excluding wafer stage WST) is applicable.
  • wafer stage WST is movable in the direction of six degrees of freedom with respect to the X stage.
  • the present invention is not limited to this, and wafer stage WST is movable only in the XY plane. May be.
  • the position measurement system 28 that measures the position information of wafer stage WST may also be able to measure position information regarding the three degrees of freedom direction in the XY plane.
  • the present invention is not limited thereto, and the ceiling surface of the clean room or the vacuum chamber is used.
  • the suspension surface may be suspended and supported at, for example, three points by a suspension support mechanism having an anti-vibration function.
  • the exposure technology that constitutes complementary lithography is not limited to the combination of the immersion exposure technology using an ArF excimer laser light source and the charged particle beam exposure technology.
  • a line and space pattern can be formed using an ArF excimer laser light source or You may form by the dry exposure technique using a KrF excimer laser light source and other light sources.
  • the exposure apparatuses 100 and 1000 according to each of the above embodiments form a mask by forming a fine pattern on a glass substrate. It can also be suitably applied when manufacturing.
  • an electronic device such as a semiconductor element includes a step of designing a function and performance of the device, a step of manufacturing a wafer from a silicon material, an actual circuit on the wafer by a lithography technique, and the like.
  • the wafer is manufactured through a wafer processing step, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like.
  • the wafer processing step includes a lithography step (a step of applying a resist (sensitive material) on the wafer, exposure to the wafer by the electron beam exposure apparatus and the exposure method thereof according to the above-described embodiment) A step of performing (drawing), a step of developing the exposed wafer), an etching step for removing the exposed member other than the portion where the resist remains by etching, and a resist for removing the unnecessary resist after the etching. Including a removal step.
  • the wafer processing step may further include a pre-process (an oxidation step, a CVD step, an electrode formation step, an ion implantation step, etc.) prior to the lithography step.
  • a device pattern is formed on the wafer by executing the above-described exposure method using one of the exposure apparatuses 100 and 1000, so that a highly integrated microdevice can be manufactured with high productivity (yield).
  • the above-described complementary lithography is performed, and at that time, the above-described exposure method is executed using any of the exposure apparatuses 100 and 1000 of the above-described embodiments. Therefore, it becomes possible to manufacture a microdevice with a higher degree of integration.
  • the exposure apparatus using an electron beam has been described.
  • the exposure apparatus is not limited to the exposure apparatus, and an apparatus that performs at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding, or
  • the electron beam apparatus of the above embodiment can also be applied to an inspection apparatus using an electron beam.
  • the photoelectric layer 60 is formed of an alkali photoelectric conversion film.
  • the photoelectric layer is not limited to the alkali photoelectric conversion film, but may be other types. You may comprise a photoelectric element using a kind of photoelectric conversion film.
  • shapes of members, openings, holes, and the like may be described using circles, rectangles, and the like, but it goes without saying that the shapes are not limited to these shapes.
  • SYMBOLS 10 Stage chamber, 34 ... 1st vacuum chamber, 50 ... Photoelectric capsule, 52 ... Main part, 54 ... Photoelectric element, 58 ... Light-shielding film, 58a ... Aperture, 58b ... Aperture, 60 ... Photoelectric layer, 62 ... O-ring 64 ... Lid member, 66 ... Vacuum-compatible actuator, 68 ... Lid storage plate, 68c ... Circular opening, 70 ... Electron beam optical system, 72 ... Second vacuum chamber, 82 ... Illumination system, 82b ... Molding optical system, 84 DESCRIPTION OF SYMBOLS ... Pattern generator, 86 ... Projection optical system, 88 ...

Abstract

This electron beam apparatus comprises: an optical device (84) capable of providing a plurality of light beams which can be controlled individually; an illuminating system (82) which can direct illuminating light onto the optical device; a projection optical system (86) which can direct the plurality of light beams from the optical device (84) onto a photoelectric element (54); and an electron beam optical system (70) which can irradiate a wafer (W) with, as a plurality of electron beams, electrons discharged from the photoelectric element (54) as a result the plurality of optical beams being directed onto the photoelectric element (54).

Description

電子ビーム装置及び露光方法、並びにデバイス製造方法Electron beam apparatus, exposure method, and device manufacturing method
 本発明は、電子ビーム装置及び露光方法、並びにデバイス製造方法に係り、特に光電素子に光を照射するとともに、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置及び露光方法、並びに電子ビーム装置又は露光方法を用いるデバイス製造方法に関する。 The present invention relates to an electron beam apparatus, an exposure method, and a device manufacturing method, and more particularly to an electron beam apparatus, an exposure method, and an electron that irradiate light onto a photoelectric element and irradiate a target with an electron beam generated from the photoelectric element. The present invention relates to a device manufacturing method using a beam apparatus or an exposure method.
 近年、例えばArFエキシマレーザ光源を用いた液浸露光技術と、荷電粒子ビーム露光技術(例えば電子ビーム露光技術)とを相補的に利用するコンプリメンタリ・リソグラフィが、提案されている。コンプリメンタリ・リソグラフィでは、例えばArFエキシマレーザ光源を用いた液浸露光においてダブルパターニングなどを利用することで、単純なラインアンドスペースパターン(以下、適宜、L/Sパターンと略記する)を形成する。次いで、電子ビームを用いた露光を通じて、ラインパターンの切断、あるいはビアの形成を行う。 Recently, complementary lithography using, for example, an immersion exposure technique using an ArF excimer laser light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) has been proposed. In complementary lithography, for example, a simple line and space pattern (hereinafter, abbreviated as an L / S pattern as appropriate) is formed by using double patterning or the like in immersion exposure using an ArF excimer laser light source. Next, a line pattern is cut or a via is formed through exposure using an electron beam.
 コンプリメンタリ・リソグラフィでは、例えば複数のブランキング・アパーチャを用いてビームのオン・オフを行うマルチビーム光学系を備えた電子ビーム露光装置を用いることができる(例えば、特許文献1、2参照)。しかしながら、ブランキング・アパーチャ方式に限らず、電子ビーム露光装置の場合、ターゲットの処理に寄与しない無駄電子の発生、及びターゲット上の電子ビームの照射領域内の強度ムラなど、改善すべき点が存在する。また、露光装置に限らず、電子ビームを用いてターゲットに対する加工若しくは処理、又は加工及び処理を行う装置、あるいは検査装置などでも、同様の問題が生じる可能性がある。 In complementary lithography, for example, an electron beam exposure apparatus including a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (for example, see Patent Documents 1 and 2). However, not limited to the blanking / aperture method, in the case of an electron beam exposure apparatus, there are points to be improved such as generation of useless electrons that do not contribute to the processing of the target and unevenness in the intensity of the electron beam irradiation area on the target. To do. The same problem may occur not only in the exposure apparatus but also in an apparatus that performs processing or processing on a target using an electron beam, processing and processing, or an inspection apparatus.
特開2015-133400号公報JP 2015-133400 A 米国特許出願公開第2015/0200074号明細書US Patent Application Publication No. 2015/0200074
 本発明の第1の態様によれば、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、個別に制御可能な複数の光ビームを提供可能な光学デバイスと、前記光学デバイスに照明光を照射する照明系と、前記光学デバイスからの複数の光ビームから生成される複数の光ビームを前記光電素子に照射する第1光学系と、前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして前記ターゲットに照射する第2光学系と、を備える電子ビーム装置が、提供される。 According to the first aspect of the present invention, there is provided an electron beam apparatus that irradiates a photoelectric element with light and irradiates a target with electrons generated from the photoelectric element as an electron beam, and a plurality of individually controllable lights An optical device capable of providing a beam, an illumination system for irradiating the optical device with illumination light, and a first optical system for irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from the optical device And a second optical system that irradiates the target with electrons emitted from the photoelectric element as a plurality of electron beams by irradiating the photoelectric element with the plurality of light beams. The
 本発明の第2の態様によれば、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、個別に制御可能な複数の光ビームを提供可能な光学デバイスと、前記光学デバイスからの複数の光ビームで生成される複数の光ビームを前記光電素子に照射する第1光学系と、前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして前記ターゲットに照射する第2光学系と、を備え、前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成可能である電子ビーム装置が、提供される。 According to the second aspect of the present invention, there is provided an electron beam apparatus for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam, wherein the plurality of individually controllable lights An optical device capable of providing a beam; a first optical system for irradiating the photoelectric element with a plurality of light beams generated by a plurality of light beams from the optical device; and irradiating the photoelectric element with the plurality of light beams A second optical system for irradiating the target with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated on the photoelectric element, An electron beam apparatus is provided that can be generated with a portion of two or more of the plurality of light beams from the optical device.
 本発明の第3の態様によれば、光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により、個別に制御可能な複数の光ビームを提供可能な光学デバイスと、前記光学デバイスからの複数の光ビームから生成される複数の光ビームを前記光電素子に照射する第1光学系と、前記光電素子から発生する1つ又は2以上の電子ビームをターゲットに照射する第2光学系と、を備え、前記照明系からの照明光は、第1軸に沿った方向の寸法が前記第1軸と直交する第2軸に沿った方向の寸法よりも小さい照明領域を、前記第1軸及び前記第2軸と直交する第3軸と前記第1軸とを含む面内に位置し、前記第1軸及び前記第3軸と交差する軸の方向から照明し、前記光学デバイスが、前記照明領域に配置されている電子ビーム装置が、提供される。 According to a third aspect of the present invention, there is provided an electron beam apparatus for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation of the light as an electron beam, An optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light from the illumination system; and a plurality of light beams generated from the plurality of light beams from the optical device A first optical system that irradiates the target and a second optical system that irradiates the target with one or more electron beams generated from the photoelectric element, and the illumination light from the illumination system has a first axis An illumination area having a dimension along the direction smaller than a dimension along the second axis perpendicular to the first axis, the third axis perpendicular to the first axis and the second axis, and the first axis; Located in the plane containing Illuminated from serial first axis and the direction of the axis intersecting the third axis, wherein the optical device, the illumination area arranged to have an electron beam device is provided.
 本発明の第4の態様によれば、光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、第1軸に直交する第2軸に沿って配列された複数の光電素子のそれぞれに少なくとも1つの光ビームを照射する複数の第1光学系と、前記第2軸に沿って配列され、前記複数の第1光学系による前記光ビームの照射により前記複数の光電素子から発生する複数の電子ビームのそれぞれを前記ターゲットに照射する複数の第2光学系と、を備え、前記第1軸及び前記第2軸は、前記第2光学系の光軸に垂直である電子ビーム装置が、提供される。 According to a fourth aspect of the present invention, there is provided an electron beam device for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam, wherein the first axis A plurality of first optical systems that irradiate at least one light beam to each of a plurality of photoelectric elements arranged along a second axis orthogonal to the first axis, and a plurality of first optical systems arranged along the second axis. A plurality of second optical systems for irradiating the target with each of a plurality of electron beams generated from the plurality of photoelectric elements by irradiation of the light beam by an optical system, wherein the first axis and the second axis are An electron beam device that is perpendicular to the optical axis of the second optical system is provided.
 本発明の第5の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、第1ないし第4の態様のいずれかに係る電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法が、提供される。 According to a fifth aspect of the present invention, there is provided a device manufacturing method including a lithography process, wherein the lithography process includes forming a line and space pattern on a target and any one of the first to fourth aspects. A device manufacturing method including cutting the line pattern constituting the line and space pattern using the electron beam apparatus according to the present invention is provided.
 本発明の第6の態様によれば、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、個別に制御可能な複数の光ビームを提供可能な光学デバイスに照明系からの照明光を照射することと、前記光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射することと、を含む露光方法が、提供される。 According to a sixth aspect of the present invention, there is provided an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam, wherein the plurality of individually controllable light beams Irradiating the optical device capable of providing the illumination light from the illumination system, and irradiating the photoelectric element with the plurality of light beams generated from the plurality of light beams from the optical device via the first optical system And irradiating the target from the second optical system as a plurality of electron beams emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams, Provided.
 本発明の第7の態様によれば、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射することと、を含み、前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成し、前記光電素子に照射される前記複数の光ビームのうちの別の1つを、前記光学デバイスからの複数の光ビームのうちの別の2以上の光ビームで生成する露光方法が、提供される。 According to a seventh aspect of the present invention, there is provided an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam, wherein the plurality of individually controllable light beams Irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from an optical device capable of providing light, and irradiating the photoelectric element with the plurality of light beams Irradiating the target from the second optical system with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated to the photoelectric element, Another one of the plurality of light beams generated by a part of two or more light beams of the plurality of light beams from the optical device and applied to the photoelectric element is converted into the optical device. Another exposure method for generating at least two light beams of the plurality of light beams from the chair is provided.
 本発明の第8の態様によれば、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームで生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射すること、を含み、前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成する露光方法が、提供される。 According to an eighth aspect of the present invention, there is provided an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element as an electron beam, wherein the plurality of individually controllable light beams Irradiating the photoelectric element with a plurality of light beams generated by a plurality of light beams from an optical device capable of providing light, and irradiating the photoelectric element with the plurality of light beams Irradiating the target from the second optical system with electrons emitted from the photoelectric element as a plurality of electron beams, and one of the plurality of light beams irradiated to the photoelectric element is An exposure method is provided that generates with two or more of a plurality of light beams from an optical device.
 本発明の第9の態様によれば、光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、照明系からの照明光の照射により、個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、前記光電素子から発生する1つ又は2以上の電子ビームを第2光学系から前記ターゲットに照射することと、を含み、前記照明系からの照明光は、第1軸に沿った方向の寸法が前記第1軸と直交する第2軸に沿った方向の寸法よりも小さい照明領域を、前記第1軸及び前記第2軸と直交する第3軸と前記第1軸とを含む面内に位置し、前記第1軸及び前記第3軸と交差する軸の方向から照明し、前記光学デバイスが、前記照明領域に配置されている露光方法が、提供される。 According to a ninth aspect of the present invention, there is provided an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam, from an illumination system Irradiating the photoelectric element through the first optical system with a plurality of light beams generated from a plurality of light beams from an optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light And irradiating the target with one or more electron beams generated from the photoelectric element from a second optical system, and the illumination light from the illumination system is in a direction along a first axis. An in-plane including a first axis, a third axis perpendicular to the second axis, and the first axis, an illumination area having a dimension smaller than a dimension in a direction along a second axis perpendicular to the first axis Located in the first axis and front Illuminating from the direction of the axis intersecting the third axis, wherein the optical device is an exposure method that is disposed in the illumination area is provided.
 本発明の第10の態様によれば、光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、第1軸に直交する第2軸に沿って配列された複数の光電素子のそれぞれに少なくとも1つの光ビームを複数の第1光学系を介して照射することと、前記第2軸に沿って配列され、前記複数の第1光学系による前記光ビームの照射により前記複数の光電素子から発生する複数の電子ビームのそれぞれを複数の第2光学系を介して前記ターゲットに照射することと、を含み、前記第1軸及び前記第2軸は、前記第2光学系の光軸に垂直である露光方法が、提供される。 According to a tenth aspect of the present invention, there is provided an exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation of the light as an electron beam. Irradiating each of the plurality of photoelectric elements arranged along the second axis perpendicular to each other with at least one light beam via the plurality of first optical systems; and arranging the plurality of photoelectric elements arranged along the second axis, Irradiating the target with each of a plurality of electron beams generated from the plurality of photoelectric elements by irradiating the light beam with the first optical system via a plurality of second optical systems, An exposure method is provided in which the axis and the second axis are perpendicular to the optical axis of the second optical system.
 本発明の第11の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、第6ないし第10の態様のいずれかに係る露光方法を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法が、提供される。 According to an eleventh aspect of the present invention, there is provided a device manufacturing method including a lithography process, wherein the lithography process includes forming a line and space pattern on a target, and any of the sixth to tenth aspects. A device manufacturing method is provided that includes cutting the line pattern constituting the line and space pattern using the exposure method according to the above.
第1の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 1st Embodiment. 図1の電子ビーム光学ユニットを断面して示す斜視図である。FIG. 2 is a perspective view showing a cross section of the electron beam optical unit of FIG. 1. 電子ビーム光学ユニットを示す縦断面である。It is a longitudinal section showing an electron beam optical unit. 図4(A)~図4(C)は、光電カプセルの構成及び光電カプセルメーカーの工場内での蓋部材の本体部に対する装着の手順を説明するための図(その1~その3)である。4A to 4C are diagrams (Nos. 1 to 3) for explaining the configuration of the photoelectric capsule and the procedure for mounting the lid member on the main body in the factory of the photoelectric capsule manufacturer. . 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その1)である。It is FIG. (1) for demonstrating a part of assembly procedure of an electron beam optical unit. 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その2)である。It is FIG. (2) for demonstrating a part of assembly procedure of an electron beam optical unit. 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その3)である。It is FIG. (3) for demonstrating a part of assembly procedure of an electron beam optical unit. 図8(A)は光電カプセルに設けられた光電素子を示す一部省略した縦断面図、図8(B)は光電素子を示す一部省略した平面図である。FIG. 8A is a partially omitted longitudinal sectional view showing a photoelectric element provided in the photoelectric capsule, and FIG. 8B is a partially omitted plan view showing the photoelectric element. 蓋収納プレートを示す一部省略した平面図である。It is the top view which abbreviate | omitted a part which shows a lid | cover storage plate. 光学ユニット内の複数のパターン投射装置を、電子ビーム光学ユニットとともに示す図である。It is a figure which shows the some pattern projection apparatus in an optical unit with an electron beam optical unit. 図11(A)は、+X方向から見た光照射装置の構成を示す図、図11(B)は、-Y方向から見た光照射装置の構成を示す図である。FIG. 11A is a diagram illustrating the configuration of the light irradiation device viewed from the + X direction, and FIG. 11B is a diagram illustrating the configuration of the light irradiation device viewed from the −Y direction. 図12(A)は、光回折型ライトバルブを示す斜視図、図12(B)は、光回折型ライトバルブを示す側面図である。12A is a perspective view showing the light diffraction type light valve, and FIG. 12B is a side view showing the light diffraction type light valve. パターンジェネレータを示す平面図である。It is a top view which shows a pattern generator. 図14(A)は、+X方向から見た電子ビーム光学系の構成を示す図、図14(B)は、-Y方向から見た電子ビーム光学系の構成を示す図である。FIG. 14A is a diagram showing the configuration of the electron beam optical system viewed from the + X direction, and FIG. 14B is a diagram showing the configuration of the electron beam optical system viewed from the −Y direction. 図15(A)~図15(C)は、第1静電レンズによるX軸方向及びY軸方向に関する縮小倍率の補正について説明するための図である。FIGS. 15A to 15C are diagrams for explaining the correction of the reduction magnification in the X-axis direction and the Y-axis direction by the first electrostatic lens. ベースプレートに吊り下げ状態で支持された45の電子ビーム光学系の外観を示す斜視図である。It is a perspective view which shows the external appearance of 45 electron beam optical systems supported by the base plate in the suspended state. パターンジェネレータの受光面上でのレーザビームの照射領域と、光電素子の面上でのレーザビームの照射領域と、像面(ウエハ面)上での電子ビームの照射領域(露光領域)との対応関係を示す図である。Correspondence between the irradiation area of the laser beam on the light receiving surface of the pattern generator, the irradiation area of the laser beam on the surface of the photoelectric element, and the irradiation area (exposure area) of the electron beam on the image plane (wafer surface) It is a figure which shows a relationship. 露光装置の制御系を主として構成する主制御装置の入出力関係を示すブロック図である。FIG. 3 is a block diagram showing an input / output relationship of a main controller that mainly constitutes a control system of an exposure apparatus. 正方形フィールドと比べた矩形フィールドのメリットについて説明するための図である。It is a figure for demonstrating the merit of the rectangular field compared with the square field. 図20(A)及び図20(B)は、光学系起因のブラー及びレジストブラーによって生じるカットパターンの形状変化(4隅の丸まり)の補正について説明するための図である。FIG. 20A and FIG. 20B are diagrams for explaining correction of a cut pattern shape change (rounding of four corners) caused by blur and resist blur caused by the optical system. 図21(A)及び図21(B)は、複数の電子ビーム光学系に共通のディストーションの補正について説明するための図である。FIGS. 21A and 21B are diagrams for explaining correction of distortion common to a plurality of electron beam optical systems. バックアップ用のリボン列を有するパターンジェネレータの一例を示す平面図である。It is a top view which shows an example of the pattern generator which has a ribbon row | line | column for backup. 図23(A)及び図23(B)は、補正用のリボン列について説明するための図である。FIG. 23A and FIG. 23B are diagrams for explaining a correction ribbon row. 図24(A)~図24(D)は、光学パターン形成ユニットの種々のタイプの構成例を示す図である。FIGS. 24A to 24D are diagrams showing various types of configuration examples of the optical pattern forming unit. 図25(A)は、アパーチャを使用しない方式を示す説明図、図25(B)は、アパーチャを使用する方式を示す説明図である。FIG. 25A is an explanatory diagram showing a method not using an aperture, and FIG. 25B is an explanatory diagram showing a method using an aperture. 第2の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る露光装置の1つの電子ビーム光学系に対応する、筐体の内部の構成を示す図である。It is a figure which shows the structure inside a housing | casing corresponding to one electron beam optical system of the exposure apparatus which concerns on 2nd Embodiment. 図28(A)~図28(E)は、アパーチャ一体型光電素子の種々の構成例を示す図である。FIGS. 28A to 28E are diagrams showing various configuration examples of the aperture-integrated photoelectric element. 図29は、電子ビーム光学系が収差として有する像面湾曲を補償する方法について説明するための図である。FIG. 29 is a diagram for explaining a method of compensating for the curvature of field that the electron beam optical system has as an aberration. 1列置きにピッチが異なるアパーチャ列が形成されたマルチピッチ型のアパーチャ一体型光電素子の一例を示す図である。It is a figure which shows an example of the multi-pitch type aperture integrated photoelectric element in which aperture rows having different pitches are formed every other row. 図31(A)~図31(C)は、図30のアパーチャ一体型光電素子を用いてピッチが異なるラインパターンの切断用のカットパターンを形成する手順を示す図である。FIGS. 31A to 31C are diagrams showing a procedure for forming a cut pattern for cutting line patterns having different pitches using the aperture-integrated photoelectric element of FIG. 図32(A)は、アパーチャ別体型光電素子の構成の一例について説明するための図、図32(B)~図32(E)は、アパーチャ板の種々の構成例を示す図である。FIG. 32A is a diagram for explaining an example of the configuration of the aperture-separated photoelectric element, and FIGS. 32B to 32E are diagrams showing various configuration examples of the aperture plate. デバイス製造方法の一実施形態を説明するための図である。It is a figure for demonstrating one Embodiment of a device manufacturing method.
《第1の実施形態》
 以下、第1の実施形態について、図1~図25に基づいて説明する。図1には、第1の実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、後述するように複数の電子ビーム光学系を備えているので、以下、電子ビーム光学系の光軸に平行にZ軸を取り、Z軸に垂直な平面内で後述する露光時にウエハWが移動される走査方向をY軸方向とし、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。
<< First Embodiment >>
Hereinafter, a first embodiment will be described with reference to FIGS. FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 includes a plurality of electron beam optical systems as will be described later, hereinafter, the exposure apparatus 100 takes the Z axis parallel to the optical axis of the electron beam optical system and performs exposure described later in a plane perpendicular to the Z axis. The scanning direction in which the wafer W is moved is the Y-axis direction, the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction, and the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are θx and θy, respectively. And the θz direction will be described.
 露光装置100は、クリーンルームの床面F上に設置されたステージチャンバ10と、ステージチャンバ10の内部の露光室12内に配置されたステージシステム14と、床面F上でフレーム16に支持され、ステージシステム14の上方に配置された光学システム18と、を備えている。 The exposure apparatus 100 is supported by a frame 16 on the floor surface F, a stage chamber 10 installed on the floor surface F of the clean room, a stage system 14 disposed in the exposure chamber 12 inside the stage chamber 10, An optical system 18 disposed above the stage system 14.
 ステージチャンバ10は、図1では、X軸方向の両端部の図示が省略されているが、その内部を真空引き可能な真空チャンバである。ステージチャンバ10は、床面F上に配置されたXY平面に平行な底壁10aと、ステージチャンバ10の上壁(天井壁)を兼ねる前述のフレーム16と、底壁10aの周囲を取り囲むとともに、フレーム16を下方から水平に支持する周壁10b(図1ではそのうちの+Y側部分の一部のみ図示)とを備えている。フレーム16及び底壁10aは、ともに平面視矩形の板部材から成り、フレーム16にはその中央部の近傍に平面視円形の開口16aが形成されている。開口16a内に外観が段付き円柱状の後述する電子ビーム光学ユニット18Aの筐体19の直径が小さい第2部分19bが上方から挿入され、筐体19の直径が大きい第1部分19aが、その開口16aの周囲のフレーム16の上面に下方から支持されている。図示は省略されているが、開口16aの内周面と、筐体19の第2部分19bとの間は、シール部材によってシールされている。ステージチャンバ10の底壁10a上にステージシステム14が配置されている。 The stage chamber 10 is a vacuum chamber capable of evacuating the inside of the stage chamber 10 although illustration of both end portions in the X-axis direction is omitted in FIG. The stage chamber 10 surrounds the periphery of the bottom wall 10a, the bottom wall 10a arranged on the floor F parallel to the XY plane, the frame 16 serving also as the upper wall (ceiling wall) of the stage chamber 10, and A peripheral wall 10b that horizontally supports the frame 16 from below (only a part of the + Y side portion is shown in FIG. 1) is provided. Both the frame 16 and the bottom wall 10a are formed of a plate member having a rectangular shape in plan view, and the frame 16 has an opening 16a having a circular shape in plan view in the vicinity of the center portion thereof. A second portion 19b having a small diameter of a casing 19 of an electron beam optical unit 18A, which will be described later, having a stepped columnar appearance is inserted into the opening 16a from above, and a first portion 19a having a large diameter of the casing 19 is The upper surface of the frame 16 around the opening 16a is supported from below. Although not shown, the space between the inner peripheral surface of the opening 16a and the second portion 19b of the housing 19 is sealed with a seal member. A stage system 14 is disposed on the bottom wall 10 a of the stage chamber 10.
 ステージシステム14は、底壁10a上に複数の防振部材20を介して支持された定盤22と、定盤22上で重量キャンセル装置24に支持され、X軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動可能であるとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微動可能なウエハステージWSTと、ウエハステージWSTを駆動するステージ駆動系26(図1ではそのうちの一部のみ図示、図18参照)と、ウエハステージWSTの6自由度方向の位置情報を計測する位置計測系28(図1では不図示、図18参照)と、を備えている。ウエハステージWSTは、その上面に設けられた不図示の静電チャックを介してウエハWを吸着し、保持している。 The stage system 14 is supported by a surface plate 22 supported on the bottom wall 10a via a plurality of vibration isolating members 20, and a weight canceling device 24 on the surface plate 22, and is respectively predetermined in the X-axis direction and the Y-axis direction. , For example, a wafer stage WST that can move in the remaining four degrees of freedom (Z-axis, θx, θy, and θz directions), and a stage drive system 26 that drives the wafer stage WST (see FIG. 1 includes only a part thereof (see FIG. 18), and a position measurement system 28 (not shown in FIG. 1, refer to FIG. 18) that measures position information of the wafer stage WST in the direction of six degrees of freedom. . Wafer stage WST attracts and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
 ウエハステージWSTは、図1に示されるように、XZ断面矩形枠状の部材から成り、その内部(中空部)の底面上にXZ断面矩形枠状のヨークと磁石(不図示)とを有するモータ30の可動子30aが一体的に固定され、その可動子30aの内部(中空部)にY軸方向に延びるコイルユニットから成るモータ30の固定子30bが挿入されている。固定子30bは、その長手方向の両端が、定盤22上でX軸方向に移動する不図示のXステージに接続されている。Xステージは、磁束漏れが生じない一軸駆動機構、例えばボールねじを用いた送りねじ機構によって構成されるXステージ駆動系32(図18参照)によって、ウエハステージWSTと一体でX軸方向に所定ストロークで駆動される。なお、Xステージ駆動系32を、駆動源として超音波モータを備えた一軸駆動機構によって構成しても良い。いずれにしても、磁束漏れに起因する磁場変動が電子ビームの位置決めに与える影響は無視できるレベルである。 As shown in FIG. 1, wafer stage WST is composed of a member having a rectangular frame shape with an XZ cross section, and has a yoke and a magnet (not shown) having a rectangular frame shape with an XZ cross section on the inside (hollow portion). 30 movers 30a are integrally fixed, and a stator 30b of a motor 30 including a coil unit extending in the Y-axis direction is inserted into the mover 30a (hollow portion). The both ends of the stator 30b in the longitudinal direction are connected to an X stage (not shown) that moves on the surface plate 22 in the X-axis direction. The X stage is integrated with wafer stage WST at a predetermined stroke in the X-axis direction by an X stage drive system 32 (see FIG. 18) constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage, for example, a feed screw mechanism using a ball screw. It is driven by. Note that the X stage drive system 32 may be configured by a uniaxial drive mechanism including an ultrasonic motor as a drive source. In any case, the influence of magnetic field fluctuations due to magnetic flux leakage on the positioning of the electron beam is negligible.
 モータ30は、可動子30aを固定子30bに対して、Y軸方向に所定ストローク、例えば50mmで移動可能で、かつX軸方向、Z軸方向、θx方向、θy方向及びθz方向に微小駆動可能な閉磁界型かつムービングマグネット型のモータである。本実施形態では、モータ30によってウエハステージWSTを6自由度方向に駆動するウエハステージ駆動系が構成されている。以下、ウエハステージ駆動系をモータ30と同一の符号を用いて、ウエハステージ駆動系30と表記する。 The motor 30 can move the mover 30a with respect to the stator 30b with a predetermined stroke, for example, 50 mm in the Y-axis direction, and can be finely driven in the X-axis direction, Z-axis direction, θx direction, θy direction, and θz direction. This is a closed magnetic field type and moving magnet type motor. In the present embodiment, a wafer stage drive system is configured in which wafer stage WST is driven in the direction of six degrees of freedom by motor 30. Hereinafter, the wafer stage drive system is referred to as a wafer stage drive system 30 using the same reference numerals as those of the motor 30.
 Xステージ駆動系32とウエハステージ駆動系30とによって、ウエハステージWSTをX軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで駆動するとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微小駆動する前述のステージ駆動系26が構成されている。Xステージ駆動系32及びウエハステージ駆動系30は、主制御装置110によって制御される(図18参照)。 The X stage drive system 32 and the wafer stage drive system 30 drive the wafer stage WST in the X axis direction and the Y axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z axis, θx, The stage drive system 26 described above that is finely driven in the θy and θz directions) is configured. The X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 18).
 モータ30の上面及びX軸方向の両側面を覆う状態でXZ断面逆U字状の磁気シールド部材(不図示)が、不図示のXステージのY軸方向の両端部に設けられた一対の凸部間に架設されている。この磁気シールド部材は、可動子30aの固定子30bに対する移動を妨げることがない状態で、ウエハステージWSTの中空部内に挿入されている。磁気シールド部材は、モータ30の上面及び側面を、可動子30aの移動ストロークの全長に渡って覆っており、かつXステージに固定されているので、ウエハステージWST及びXステージの移動範囲の全域で、上方(後述する電子ビーム光学系側)への磁束の漏れをほぼ確実に防止することができる。 A magnetic shield member (not shown) having an inverted U-shaped XZ cross-section covering the upper surface of the motor 30 and both side surfaces in the X-axis direction is a pair of protrusions provided at both ends in the Y-axis direction of an X stage (not shown). It is erected between the clubs. This magnetic shield member is inserted into the hollow portion of wafer stage WST in a state that does not hinder movement of mover 30a relative to stator 30b. Since the magnetic shield member covers the upper surface and the side surface of the motor 30 over the entire length of the moving stroke of the mover 30a and is fixed to the X stage, the magnetic shielding member covers the entire moving range of the wafer stage WST and the X stage. , Leakage of magnetic flux upward (to be described later with respect to the electron beam optical system side) can be prevented with certainty.
 重量キャンセル装置24は、ウエハステージWSTの下面に上端が接続された金属製のベローズ型空気ばね(以下、空気ばねと略記する)24aと、空気ばね24aの下端に接続された平板状の板部材から成るベーススライダ24bと、を有している。ベーススライダ24bには、空気ばね24a内部の空気を、定盤22の上面に噴き出す軸受部(不図示)が設けられ、軸受部から噴出される加圧空気の軸受面と定盤22上面との間の静圧(隙間内圧力)により、重量キャンセル装置24、ウエハステージWST(可動子30aを含む)及びウエハWの自重が支持されている。なお、空気ばね24aには、ウエハステージWSTに接続された不図示の配管を介して圧縮空気が供給されている。ベーススライダ24bは、一種の差動排気型の空気静圧軸受を介して定盤22上に非接触で支持され、軸受部から定盤22に向かって噴出された空気が、周囲に(露光室内に)漏れ出すことが防止されている。なお、実際には、ウエハステージWSTの底面には、空気ばね24aをY軸方向に挟んで一対のピラーが設けられ、ピラーの下端に設けられた板ばねが空気ばね24aに接続されている。 The weight canceling device 24 includes a metal bellows type air spring (hereinafter abbreviated as “air spring”) 24 a whose upper end is connected to the lower surface of wafer stage WST, and a flat plate member connected to the lower end of air spring 24 a. A base slider 24b. The base slider 24b is provided with a bearing portion (not shown) that blows the air inside the air spring 24a to the upper surface of the surface plate 22, and the bearing surface of the pressurized air ejected from the bearing portion and the upper surface of the surface plate 22 are provided. The weight canceling device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap). Note that compressed air is supplied to the air spring 24a via a pipe (not shown) connected to the wafer stage WST. The base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential exhaust type aerostatic bearing, and air blown from the bearing portion toward the surface plate 22 is surrounded by (exposure chamber). To prevent leakage. In practice, a pair of pillars are provided on the bottom surface of wafer stage WST with air spring 24a sandwiched in the Y-axis direction, and a leaf spring provided at the lower end of the pillar is connected to air spring 24a.
 光学システム18は、前述したように、フレーム16に保持された電子ビーム光学ユニット18Aと、電子ビーム光学ユニット18Aの上に搭載された光学ユニット18Bと、を備えている。 As described above, the optical system 18 includes the electron beam optical unit 18A held on the frame 16, and the optical unit 18B mounted on the electron beam optical unit 18A.
 図2には、電子ビーム光学ユニット18Aが断面して斜視図にて示されている。また、図3には、電子ビーム光学ユニット18Aの縦断面図が示されている。これらの図に示されるように、電子ビーム光学ユニット18Aは、上側の第1部分19aと下側の第2部分19bとを有する筐体19を備えている。 FIG. 2 shows a cross-sectional perspective view of the electron beam optical unit 18A. FIG. 3 shows a longitudinal sectional view of the electron beam optical unit 18A. As shown in these drawings, the electron beam optical unit 18A includes a housing 19 having an upper first portion 19a and a lower second portion 19b.
 筐体19の第1部分19aは、図2から明らかなように、その外観は、高さの低い円柱状である。第1部分19aの内部には、例えば図1及び図3に示されるように、第1の真空室34が形成されている。第1の真空室34は、図1等に示されるように、上壁(天井壁)を構成する平面視円形の板部材から成る第1プレート36、第1プレート36と同じ直径の板部材から成り、底壁を構成する第2プレート(以下、ベースプレートと呼ぶ)38、及び第1プレート36とベースプレート38の周囲を取り囲む円筒状の側壁部40等から区画されている。 The first portion 19a of the housing 19 has a cylindrical shape with a low height, as is apparent from FIG. As shown in FIGS. 1 and 3, for example, a first vacuum chamber 34 is formed inside the first portion 19a. As shown in FIG. 1 and the like, the first vacuum chamber 34 is composed of a first plate 36 made of a circular plate member that forms an upper wall (ceiling wall), and a plate member having the same diameter as the first plate 36. And is divided from a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall, a cylindrical side wall portion 40 surrounding the first plate 36 and the base plate 38, and the like.
 第1プレート36には、図3などに示されるように、平面視円形の上下方向の貫通孔36aがXY2次元方向に所定間隔で複数、ここでは、一例として7行7列のマトリクスの4隅を除く配置で、45(=7×7-4)個形成されている。これら45個の貫通孔36aには、図3に示されるように、次に説明する光電カプセルの本体部52がほぼ隙間がない状態で上方から挿入されている。 As shown in FIG. 3 and the like, the first plate 36 has a plurality of circular through holes 36a that are circular in plan view at predetermined intervals in the XY two-dimensional direction. Here, as an example, four corners of a matrix of 7 rows and 7 columns. 45 (= 7 × 7−4) are formed in an arrangement excluding. As shown in FIG. 3, a photoelectric capsule main body 52 to be described below is inserted into the 45 through holes 36 a from above with almost no gap.
 光電カプセル50は、図4(A)、図5に示されるように、一端面(図4(A)における下端面)側に開口52cが形成され、内部に中空部52bを有する円柱状で、他端(図4(A)における上端)にフランジ部52aが設けられた本体部52と、開口52cを閉塞可能な蓋部材64と、を備える。中空部52bは、本体部52の下端面から所定深さで丸穴を形成し、さらにその丸穴の底面に略円錐状の凹部を形成して得られるような形状の中空部である。フランジ部52aを含む本体部52の上面は、平面視正方形であり、その正方形の中心は、中空部52bの中心軸に一致している。本体部52の上面には、その中心部に光電素子54が設けられている。光電素子54は、光電素子54の一部を示す、図8(A)の縦断面図に示されるように、真空隔壁を兼ねる本体部52の最上面を形成する透明の板部材(例えば石英ガラス)56と、その板部材56の下面に例えば蒸着されたクロムなどから成る遮光膜(アパーチャ膜)58と、板部材56及び遮光膜58の下面側に成膜されたアルカリ光電膜(光電変換膜)の層(アルカリ光電変換層(アルカリ光電層))60と、を含む。遮光膜58には、多数のアパーチャ58aが形成されている。図8(A)には、光電素子54の一部のみが示されているが、実際には、遮光膜58には、所定の位置関係で多数のアパーチャ58aが形成されている(図8(B)参照)。アパーチャ58aの数は、後述するマルチビームの数と同一であっても良いし、マルチビーム数より多くても良い。アルカリ光電層60は、アパーチャ58aの内部にも配置され、アパーチャ58aにおいて板部材56とアルカリ光電層60が接触している。本実施形態では、板部材56、遮光膜58及びアルカリ光電層60が一体的に形成され、光電素子54の少なくとも一部を形成している。 As shown in FIGS. 4A and 5, the photoelectric capsule 50 has a columnar shape in which an opening 52 c is formed on one end surface (the lower end surface in FIG. 4A) and has a hollow portion 52 b inside. The other end (upper end in FIG. 4 (A)) is provided with the main-body part 52 provided with the flange part 52a, and the cover member 64 which can obstruct | occlude the opening 52c. The hollow portion 52b is a hollow portion having a shape obtained by forming a round hole with a predetermined depth from the lower end surface of the main body portion 52 and further forming a substantially conical recess on the bottom surface of the round hole. The upper surface of the main body 52 including the flange 52a is a square in plan view, and the center of the square coincides with the central axis of the hollow 52b. A photoelectric element 54 is provided at the center of the upper surface of the main body 52. The photoelectric element 54 is a transparent plate member (for example, quartz glass) that forms the uppermost surface of the main body 52 that also serves as a vacuum partition, as shown in the longitudinal sectional view of FIG. ) 56, a light shielding film (aperture film) 58 made of, for example, chromium deposited on the lower surface of the plate member 56, and an alkali photoelectric film (photoelectric conversion film) formed on the lower surface side of the plate member 56 and the light shielding film 58. ) 60 (alkali photoelectric conversion layer (alkali photoelectric layer)). A large number of apertures 58 a are formed in the light shielding film 58. Although only a part of the photoelectric element 54 is shown in FIG. 8A, in reality, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (FIG. B)). The number of apertures 58a may be the same as the number of multi-beams described later, or may be larger than the number of multi-beams. The alkali photoelectric layer 60 is also disposed inside the aperture 58a, and the plate member 56 and the alkali photoelectric layer 60 are in contact with each other in the aperture 58a. In the present embodiment, the plate member 56, the light shielding film 58, and the alkali photoelectric layer 60 are integrally formed to form at least a part of the photoelectric element 54.
 アルカリ光電層60は、2種類以上のアルカリ金属を用いたマルチアルカリフォトカソードである。マルチアルカリフォトカソードは、耐久性が高く、波長が500nm帯の緑色光で電子発生が可能で、光電効果の量子効率QEが10%程度と高いとされるのが特長のフォトカソードである。本実施形態では、アルカリ光電層60は、レーザ光による光電効果によって電子ビームを生成する一種の電子銃として用いられるので、変換効率が10[mA/W]の高効率のものが用いられている。なお、光電素子54では、アルカリ光電層60の電子放出面は、図8(A)における下面、すなわち板部材56の上面とは反対側の面である。 The alkali photoelectric layer 60 is a multi-alkali photocathode using two or more kinds of alkali metals. The multi-alkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm, and a high quantum efficiency QE of the photoelectric effect of about 10%. In the present embodiment, since the alkali photoelectric layer 60 is used as a kind of electron gun that generates an electron beam by a photoelectric effect by laser light, a highly efficient one having a conversion efficiency of 10 [mA / W] is used. . In the photoelectric element 54, the electron emission surface of the alkali photoelectric layer 60 is a surface opposite to the lower surface in FIG. 8A, that is, the upper surface of the plate member 56.
 本体部52の平面視円環状の下端面には、図4(A)等に示されるように、所定深さの平面視円環状の凹溝が形成され、その凹溝内にシール部材の一種であるOリング62がその一部が凹溝内に収納される状態で取付けられている。 As shown in FIG. 4A or the like, a planar view annular groove having a predetermined depth is formed on the lower end surface of the main body 52 in a planar view, and a kind of seal member is formed in the recessed groove. The O-ring 62 is attached so that a part of the O-ring 62 is housed in the concave groove.
 蓋部材64は、本体部52の下端面の外周縁(輪郭)と同様の平面視円形の板部材から成り、後述するようにして真空中で取り外されるが、その前の状態では、本体部52に装着され、本体部52の開口端を閉塞している(図5参照)。すなわち、蓋部材64によって閉塞された本体部52の内部の閉空間(中空部52b)は真空空間になっているため、蓋部材64は、蓋部材64に作用する大気圧によって本体部52に圧着されている。 The lid member 64 is formed of a plate member having a circular shape in plan view similar to the outer peripheral edge (contour) of the lower end surface of the main body portion 52, and is removed in a vacuum as will be described later. And the open end of the main body 52 is closed (see FIG. 5). That is, since the closed space (hollow part 52 b) inside the main body 52 closed by the lid member 64 is a vacuum space, the lid member 64 is crimped to the main body 52 by the atmospheric pressure acting on the lid member 64. Has been.
 なお、光電カプセルのメーカーで製造された光電カプセルの搬送中を含む、露光装置メーカーで蓋部材が開放されるまでの、一連の流れについては、後に詳述する。 It should be noted that a series of flows until the lid member is opened by the exposure apparatus manufacturer, including during the conveyance of the photoelectric capsule manufactured by the photoelectric capsule manufacturer, will be described in detail later.
 電子ビーム光学ユニット18Aの説明に戻る。図5に示されるように、第1の真空室34の内部には、一対の真空対応のアクチュエータ66によって、X軸、Y軸及びZ軸方向の3方向に駆動される蓋収納プレート68が収納されている。蓋収納プレート68には、図5に示されるように、45個の光電カプセル50の配置に対応する配置で、45個の所定深さの丸穴68aが上面に形成され、各丸穴68aの内部底面には、円形の貫通孔68bが形成されている。なお、丸穴68aの数は、光電カプセル50の数と同じでなくても良い。また、丸穴68aを設けずに、蓋収納プレート38で蓋部材64を支持しても良い。 Returning to the description of the electron beam optical unit 18A. As shown in FIG. 5, a lid storage plate 68 that is driven in three directions of the X-axis, Y-axis, and Z-axis directions is stored in the first vacuum chamber 34 by a pair of vacuum-compatible actuators 66. Has been. As shown in FIG. 5, 45 round holes 68 a having a predetermined depth are formed on the top surface of the lid storage plate 68 in an arrangement corresponding to the arrangement of the 45 photoelectric capsules 50. A circular through hole 68b is formed on the inner bottom surface. The number of round holes 68a may not be the same as the number of photoelectric capsules 50. Further, the lid member 64 may be supported by the lid storage plate 38 without providing the round hole 68a.
 蓋収納プレート68には、さらに、蓋収納プレート68の一部省略した平面図である図9に示されるように、丸穴68aと丸穴68aとの間に最終的に電子ビームの光路(電子ビームの通路と呼んでも良い)となる円形開口68cが形成されている。なお、蓋収納プレート68が電子ビームの通路から待避可能であれば、開口68cを設けなくても良い。 Further, as shown in FIG. 9, which is a plan view with a part omitted of the lid storage plate 68, the lid storage plate 68 finally has an optical path (electron beam) between the round hole 68a and the round hole 68a. A circular opening 68c that may be called a beam path) is formed. If the lid storage plate 68 can be retracted from the electron beam path, the opening 68c need not be provided.
 ベースプレート38には、図3などに示されるように、45個の光電カプセル50の本体部52それぞれの中心軸上にその中心が位置する45個の所定深さの凹部38aが形成されている。これらの凹部38aは、ベースプレート38の上面から所定深さを有し、その内部底面には、絞り部として機能する貫通孔38bが形成されている。以下では、貫通孔38bを絞り部38bとも呼ぶ。絞り部38bについてはさらに後述する。 In the base plate 38, as shown in FIG. 3 and the like, 45 concave portions 38a having a predetermined depth are formed on the central axes of the main body portions 52 of the 45 photoelectric capsules 50, respectively. These concave portions 38a have a predetermined depth from the upper surface of the base plate 38, and through holes 38b functioning as throttle portions are formed in the inner bottom surface. Hereinafter, the through hole 38b is also referred to as a throttle portion 38b. The diaphragm 38b will be further described later.
 ベースプレート38の下面には、45個の光電カプセル50の本体部52それぞれの中心軸上にその光軸AXeが位置する45個の電子ビーム光学系70が吊り下げ状態で固定されている。なお、電子ビーム光学系70の支持はこれに限定されず、例えば45個の電子ビーム光学系70をベースプレート38とは異なる支持部材で支持し、その支持部材を、筐体19の第2部分19bで支持しても良い。電子ビーム光学系70については、後にさらに詳述する。 On the lower surface of the base plate 38, 45 electron beam optical systems 70 having their optical axes AXe positioned on the central axes of the main body portions 52 of the 45 photoelectric capsules 50 are fixed in a suspended state. The support of the electron beam optical system 70 is not limited to this. For example, 45 electron beam optical systems 70 are supported by a support member different from the base plate 38, and the support members are supported by the second portion 19 b of the housing 19. You may support with. The electron beam optical system 70 will be described in detail later.
 筐体19の第2部分19bは、図1及び図2から明らかなように、その外観は、第1部分に比べて直径が小さく、高さが幾分高い円柱状である。第2部分19bの内部には、45個の電子ビーム光学系70をその内部に収容する第2の真空室72(図1及び図3参照)が形成されている。第2の真空室72は、図1及び図2に示されるように、上壁(天井壁)を構成する前述のベースプレート38と、底壁を構成する平面視円形の薄板状のクーリングプレート74と、クーリングプレート74の直径とほぼ同一の外径を有し、クーリングプレート74がその下端面に固定された円筒状の周壁部76と、によって区画されている。周壁部76の上面がベースプレート38の下面に固定されることで、第1部分19aと第2部分19bとが一体化され、これによって筐体19が構成されている。クーリングプレート74は、冷却機能に加えて後述するフォギングを抑制する機能を備えている。 As apparent from FIGS. 1 and 2, the second portion 19b of the housing 19 has a cylindrical shape with a smaller diameter and a somewhat higher height than the first portion. A second vacuum chamber 72 (see FIGS. 1 and 3) for accommodating 45 electron beam optical systems 70 is formed inside the second portion 19b. As shown in FIGS. 1 and 2, the second vacuum chamber 72 includes the aforementioned base plate 38 that constitutes the upper wall (ceiling wall), and a thin plate-like cooling plate 74 that constitutes the bottom wall and has a circular shape in plan view. The cooling plate 74 has an outer diameter substantially the same as the diameter of the cooling plate 74, and the cooling plate 74 is partitioned by a cylindrical peripheral wall portion 76 fixed to the lower end surface thereof. By fixing the upper surface of the peripheral wall part 76 to the lower surface of the base plate 38, the 1st part 19a and the 2nd part 19b are integrated, and the housing | casing 19 is comprised by this. The cooling plate 74 has a function of suppressing fogging, which will be described later, in addition to the cooling function.
 第1の真空室34と第2の真空室72とは、それぞれの内部を真空引きすることが可能である(図2における白抜き矢印参照)。なお、第1の真空室34を真空引きする第1真空ポンプとは別に、第2の真空室72を真空引きする第2真空ポンプを備えても良いし、共通の真空ポンプを使って第1の真空室34と第2の真空室72を真空引きしても良い。また、第1の真空室34の真空度と第2の真空室72の真空度が異なっていても良い。また、メンテナンスなどのために、第1の真空室34と第2の真空室72の一方を大気圧空間にし、他方を真空空間にしても良い。本実施形態においては、絞り部38bを設けて第1の真空室34の真空度と第2の真空室72の真空度を異ならせることができるが、絞り部38bなどを設けずに、第1の真空室34と第2の真空室72とが実質的に1つの真空室となるようにしても良い。 The first vacuum chamber 34 and the second vacuum chamber 72 can be evacuated inside (see the white arrow in FIG. 2). In addition to the first vacuum pump for evacuating the first vacuum chamber 34, a second vacuum pump for evacuating the second vacuum chamber 72 may be provided, or the first vacuum pump may be provided using a common vacuum pump. The vacuum chamber 34 and the second vacuum chamber 72 may be evacuated. The degree of vacuum in the first vacuum chamber 34 and the degree of vacuum in the second vacuum chamber 72 may be different. Further, for maintenance or the like, one of the first vacuum chamber 34 and the second vacuum chamber 72 may be an atmospheric pressure space and the other may be a vacuum space. In the present embodiment, the throttle part 38b is provided so that the degree of vacuum of the first vacuum chamber 34 and the degree of vacuum of the second vacuum chamber 72 can be made different. The vacuum chamber 34 and the second vacuum chamber 72 may be substantially one vacuum chamber.
 光学ユニット18Bは、図1に示されるように、電子ビーム光学ユニット18Aの上に搭載された鏡筒(筐体)78と、鏡筒78内に収納された45個の光照射装置(光学系と呼ぶこともできる)80と、を備えている。45個の光照射装置80は、45個の光電カプセル50の本体部52のそれぞれに対応する配置でXY平面内で配置されている。鏡筒78内部は、大気圧空間である。 As shown in FIG. 1, the optical unit 18B includes a lens barrel (housing) 78 mounted on the electron beam optical unit 18A and 45 light irradiation devices (optical systems) housed in the lens barrel 78. 80). The 45 light irradiation devices 80 are arranged in the XY plane in an arrangement corresponding to each of the main body portions 52 of the 45 photoelectric capsules 50. The interior of the lens barrel 78 is an atmospheric pressure space.
 45個の光照射装置80のそれぞれは、45個の光電カプセル50(光電素子54)に対応して設けられ、光照射装置80からの少なくとも1つの光ビームが光電素子54のアパーチャ58aを介してアルカリ光電層(以下、光電層と略記する)60に照射される。なお、光照射装置80の数と光電カプセル50の数とは等しくなくても良い。 Each of the 45 light irradiation devices 80 is provided corresponding to the 45 photoelectric capsules 50 (photoelectric elements 54), and at least one light beam from the light irradiation device 80 passes through the aperture 58a of the photoelectric element 54. An alkali photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60 is irradiated. Note that the number of the light irradiation devices 80 and the number of the photoelectric capsules 50 may not be equal.
 45個の光照射装置80のそれぞれは、例えば、図10に示されるように、照明系82と、パターニングされた光を発生するパターンジェネレータ84と、投影光学系86と、を有する。パターンジェネレータ84は、所定方向へ進行する光の振幅、位相及び偏光の状態を空間的に変調して射出する空間光変調器と称しても良い。パターンジェネレータ84は、例えば明暗パターンからなる光学パターンを発生することができる。 Each of the 45 light irradiation devices 80 includes, for example, an illumination system 82, a pattern generator 84 that generates patterned light, and a projection optical system 86, as shown in FIG. The pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits the amplitude, phase, and polarization state of light traveling in a predetermined direction. The pattern generator 84 can generate an optical pattern composed of, for example, a light / dark pattern.
 図11(A)及び図11(B)には、光照射装置80の構成の一例が、対応する光電カプセル50の本体部52とともに示されている。このうち、図11(A)は、+X方向から見た構成を示し、図11(B)は、-Y方向から見た構成を示す。図11(A)及び図11(B)に示されるように、照明系82は、照明光(レーザ光)LBを発生する光源部82aと、その照明光LBを、1又は2以上のX軸方向に長い断面矩形状のビームに成形する成形光学系82bと、を有する。 FIGS. 11A and 11B show an example of the configuration of the light irradiation device 80 together with the main body 52 of the corresponding photoelectric capsule 50. Among these, FIG. 11A shows a configuration viewed from the + X direction, and FIG. 11B shows a configuration viewed from the −Y direction. As shown in FIGS. 11A and 11B, the illumination system 82 includes a light source unit 82a that generates illumination light (laser light) LB, and the illumination light LB as one or more X axes. And a shaping optical system 82b for shaping into a beam having a rectangular cross section which is long in the direction.
 光源部82aは、光源としての可視光又は可視光近傍の波長、例えば波長365nmのレーザ光を連続発振するレーザダイオード88と、このレーザ光の光路上に配置されたAO偏向器(AOD又は光偏向素子とも呼ばれる)90とを含む。AO偏向器90は、ここでは、スイッチング素子として機能し、レーザ光を間欠発光化するのに用いられる。すなわち、光源部82aは、波長365nmのレーザ光(レーザビーム)LBを間欠的に発光可能な光源部である。なお、光源部82aの発光のデューティ比は、例えばAO偏向器90を制御することにより変更可能である。スイッチング素子としては、AO偏向器には限定されず、AOM(音響光学変調素子)であっても良い。なお、レーザダイオード88自体を間欠的に発光させても良い。 The light source unit 82a includes a laser diode 88 that continuously oscillates visible light as a light source or a wavelength in the vicinity of visible light, for example, a laser beam having a wavelength of 365 nm, and an AO deflector (AOD or optical deflection) disposed on the optical path of the laser light. 90) (also referred to as an element). Here, the AO deflector 90 functions as a switching element, and is used to intermittently emit laser light. That is, the light source unit 82a is a light source unit capable of intermittently emitting laser light (laser beam) LB having a wavelength of 365 nm. Note that the light emission duty ratio of the light source unit 82a can be changed by controlling the AO deflector 90, for example. The switching element is not limited to an AO deflector, and may be an AOM (acousto-optic modulation element). The laser diode 88 itself may emit light intermittently.
 成形光学系82bは、光源部82aからのレーザビーム(以下、適宜、ビームと略記する)LBの光路上に順次配置された回折光学素子(DOEとも呼ばれる)92、照度分布調整素子94及び集光レンズ96を含む。 The shaping optical system 82b includes a diffractive optical element (also referred to as DOE) 92, an illuminance distribution adjusting element 94, and a condensing element that are sequentially arranged on the optical path of a laser beam (hereinafter, abbreviated as a beam as appropriate) LB from the light source unit 82a. A lens 96 is included.
 回折光学素子92は、AO偏向器90からのレーザビームが入射すると、そのレーザビームが、回折光学素92の射出面側の所定面において、Y軸方向に所定間隔で並ぶX軸方向に長い複数の矩形状(本実施形態では細長いスリット状)の領域で光強度が大きい分布を持つように、レーザビームの面内強度分布を変換する。本実施形態では、回折光学素子92は、AO偏向器90からのレーザビームの入射により、Y軸方向に所定間隔で並ぶX軸方向に長い複数の断面矩形状のビーム(スリット状のビーム)を生成する。本実施形態では、詳細は後述するが、パターンジェネレータ84の構成に合わせた数のスリット状のビームを生成する。なお、レーザビームの面内強度分布を変換する素子としては、回折光学素子には限定されず、屈折光学素子や反射光学素子であっても良く、空間光変調器であっても良い。 When the laser beam from the AO deflector 90 is incident, the diffractive optical element 92 has a plurality of laser beams that are long in the X-axis direction arranged at predetermined intervals in the Y-axis direction on a predetermined surface on the exit surface side of the diffractive optical element 92. The in-plane intensity distribution of the laser beam is converted so as to have a distribution in which the light intensity is large in a rectangular region (in the present embodiment, a long and narrow slit shape). In the present embodiment, the diffractive optical element 92 receives a plurality of rectangular beams (slit-shaped beams) that are long in the X-axis direction and are arranged at predetermined intervals in the Y-axis direction by the incidence of the laser beam from the AO deflector 90. Generate. In the present embodiment, as will be described in detail later, the number of slit-shaped beams according to the configuration of the pattern generator 84 is generated. The element that converts the in-plane intensity distribution of the laser beam is not limited to a diffractive optical element, and may be a refractive optical element, a reflective optical element, or a spatial light modulator.
 照度分布調整素子94は、パターンジェネレータ84に複数のビームが照射された際に、パターンジェネレータ84の受光面を複数に分割した個々の分割領域において、分割領域毎に照度を個別に調整できるようにするものである。本実施形態では、照度分布調整素子94としては、印加電圧に応じて屈折率が変化する非線形光学効果を有する結晶、例えばリチウムタンタレート(タンタル酸リチウム(略称:LT)単結晶)を複数XY平面に平行な面内で並べ、その入射側と出射側に偏光子を配置して構成される素子が用いられる。本実施形態では、図11(A)の円内に模式的に示されるように、一例として1mmピッチでXY平面内で例えば2行12列のマトリクス状に24個のリチウムタンタレートの結晶94aが配置された照度分布調整素子94が用いられる。符号94bは、電極を示す。かかる構成の照度分布調整素子94によると、出射側の偏向子は所定の偏光成分のみを通過させるので、入射側の偏光子を介して結晶に入射した光の偏光状態を変化させる、例えば直線偏光から円偏光へ変化させることで、出射側の偏光子から射出される光の強度を変化させることができる。この場合において、偏向状態の変化は、結晶に対する印加電圧を制御することで可変にできる。したがって、個々の結晶に対する印加電圧を制御することで、個々の結晶に対応する領域(図13の二点鎖線で囲まれた領域)毎の照度の調整が可能になる(図11(A)参照)。照度分布調整素子94は、リチウムタンタレートに限らず、リチウムナイオベート(ニオブ酸リチウム(略称:LN)単結晶)などの他の光強度変調結晶(電気光学素子)を用いて構成することもできる。なお、パターンジェネレータ84、あるいはパターンジェネレータ84と光電素子54との間に配置された光学部材を使って、光電素子54に照射される少なくとも1つの光ビームの強度を調整できる場合には、照度分布調整素子94を設けなくても良い。なお、照度分布調整素子94として、射出する光の振幅、位相及び偏光の状態を空間的に変調する空間光変調器、一例としては透過型液晶素子や反射型液晶素子などを用いても良い。 The illuminance distribution adjusting element 94 can individually adjust the illuminance for each divided region in each divided region obtained by dividing the light receiving surface of the pattern generator 84 into a plurality of beams when the pattern generator 84 is irradiated with a plurality of beams. To do. In the present embodiment, as the illuminance distribution adjusting element 94, a crystal having a nonlinear optical effect whose refractive index changes in accordance with an applied voltage, for example, lithium tantalate (lithium tantalate (abbreviation: LT) single crystal) is a plurality of XY planes. Are arranged in a plane parallel to each other, and an element configured by arranging polarizers on the incident side and the emission side is used. In this embodiment, as schematically shown in a circle of FIG. 11A, as an example, 24 lithium tantalate crystals 94a are arranged in a matrix of, for example, 2 rows and 12 columns in an XY plane at a pitch of 1 mm. The arranged illuminance distribution adjusting element 94 is used. Reference numeral 94b indicates an electrode. According to the illuminance distribution adjusting element 94 having such a configuration, the exit-side deflector passes only a predetermined polarization component, so that the polarization state of light incident on the crystal through the incident-side polarizer is changed, for example, linearly polarized light. By changing from to circularly polarized light, the intensity of the light emitted from the exit-side polarizer can be changed. In this case, the change in the deflection state can be made variable by controlling the voltage applied to the crystal. Therefore, by controlling the voltage applied to each crystal, the illuminance can be adjusted for each region corresponding to each crystal (the region surrounded by the two-dot chain line in FIG. 13) (see FIG. 11A). ). The illuminance distribution adjusting element 94 is not limited to lithium tantalate, and may be configured using other light intensity modulation crystals (electro-optic elements) such as lithium niobate (lithium niobate (abbreviation: LN) single crystal). . When the intensity of at least one light beam irradiated to the photoelectric element 54 can be adjusted using the pattern generator 84 or an optical member disposed between the pattern generator 84 and the photoelectric element 54, the illuminance distribution The adjustment element 94 may not be provided. As the illuminance distribution adjusting element 94, a spatial light modulator that spatially modulates the amplitude, phase, and polarization state of the emitted light, for example, a transmissive liquid crystal element or a reflective liquid crystal element may be used.
 本実施形態では、後述するように、パターンジェネレータ84として、反射型の空間光変調器が用いられているため、集光レンズ96下方の光射出側には光路折り曲げ用のミラー98が配置されている。集光レンズ96は、回折光学素子92で生成された複数の断面矩形状(スリット状)のビームをY軸方向に関して集光し、ミラー98に照射する。集光レンズ96としては、例えばX軸方向に長いシリンドリカルレンズなどを用いることができる。なお、集光レンズ96は複数のレンズで構成されていても良い。集光レンズの代わりに、集光ミラー等の反射光学部材や回折光学素子を用いても良い。また、ミラー98は、平面鏡に限定されず、曲率を持った形状であっても良い。ミラー98が曲率を有する(有限の焦点距離を有する)場合、集光レンズ96の機能も兼用できる。 In this embodiment, as will be described later, since a reflective spatial light modulator is used as the pattern generator 84, an optical path bending mirror 98 is disposed on the light exit side below the condenser lens 96. Yes. The condensing lens 96 condenses a plurality of rectangular cross-section (slit-shaped) beams generated by the diffractive optical element 92 with respect to the Y-axis direction and irradiates the mirror 98. For example, a cylindrical lens that is long in the X-axis direction can be used as the condenser lens 96. The condensing lens 96 may be composed of a plurality of lenses. Instead of the condenser lens, a reflective optical member such as a condenser mirror or a diffractive optical element may be used. Further, the mirror 98 is not limited to a plane mirror, and may have a curvature. When the mirror 98 has a curvature (has a finite focal length), the function of the condenser lens 96 can also be used.
 ミラー98は、XY平面に対して所定角度で配置され、照射された複数のスリット状のビームを図11(A)における左斜め上方向に反射する。 The mirror 98 is arranged at a predetermined angle with respect to the XY plane, and reflects a plurality of irradiated slit-like beams in an obliquely upper left direction in FIG.
 パターンジェネレータ84は、ミラー98によって反射された複数のスリット状のビームの反射光路上に配置されている。詳述すると、パターンジェネレータ84は、Z軸方向に関して、集光レンズ96とミラー98との間に配置された回路基板102の-Z側の面に配置されている。ここで、回路基板102には、図11(A)に示されるように、集光レンズ96からミラー98に向かう複数のスリット状のビームの光路となる開口102aが形成されている。 The pattern generator 84 is disposed on the reflected light path of a plurality of slit-like beams reflected by the mirror 98. More specifically, the pattern generator 84 is disposed on the −Z side surface of the circuit board 102 disposed between the condenser lens 96 and the mirror 98 in the Z-axis direction. Here, in the circuit board 102, as shown in FIG. 11A, openings 102a serving as optical paths of a plurality of slit-shaped beams from the condenser lens 96 toward the mirror 98 are formed.
 本実施形態では、パターンジェネレータ84は、プログラマブルな空間光変調器の一種である光回折型ライトバルブ(GLV(登録商標))によって構成されている。光回折型ライトバルブGLVは、図12(A)及び図12(B)に示されるように、シリコン基板(チップ)84a上に「リボン」と呼ばれるシリコン窒化膜の微細な構造体(以下、リボンと称する)84bを数千個の規模で形成した空間光変調器である。 In this embodiment, the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator. As shown in FIGS. 12A and 12B, the light diffraction type light valve GLV includes a fine structure (hereinafter referred to as a ribbon) of a silicon nitride film called a “ribbon” on a silicon substrate (chip) 84a. 84b) is a spatial light modulator formed with thousands of scales.
 GLVの駆動原理は、次のとおりである。 The driving principle of GLV is as follows.
 リボン84bのたわみを電気的に制御することにより、GLVはプログラム可能な回折格子として機能し、高解像度、ハイスピード(応答性250kHz~1MHz)、高い正確さで、調光、変調、レーザ光のスイッチングを可能にする。GLVは微小電気機械システム(MEMS)に分類される。リボン84bは、硬度、耐久性、化学安定性において強固な特性を持つ高温セラミックの一種である、非晶質シリコン窒化膜(Si)から作られている。各リボンの幅は2~4μmで、長さは100~300μmである。リボン84bはアルミ薄膜で覆われており、反射板と電極の両方の機能を合わせ持つ。リボンは、共通電極84cを跨いで張られており、ドライバ(図12(A)及び図12(B)では不図示)から制御電圧がリボン84bに供給されると、静電気により基板84a方向にたわむ。制御電圧が無くなると、リボン84bは、シリコン窒化膜固有の高い張力により元の状態に戻る。すなわち、リボン84bは、可動反射素子の一種である。 By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, with high resolution, high speed (responsiveness 250kHz to 1MHz), high accuracy, dimming, modulation and laser light. Enable switching. GLV is classified as a microelectromechanical system (MEMS). The ribbon 84b is made of an amorphous silicon nitride film (Si 3 N 4 ), which is a kind of high-temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 μm and a length of 100 to 300 μm. The ribbon 84b is covered with an aluminum thin film and has both functions of a reflector and an electrode. The ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 12A and 12B), the ribbon bends toward the substrate 84a due to static electricity. . When the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent in the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
 GLVには、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプと、全てがアクティブリボンであるタイプとがあるが、本実施形態では後者のタイプが用いられている。 There are two types of GLV: an active ribbon whose position changes due to voltage application, and a bias ribbon that has fallen to the ground and does not change its position, and a type in which all are active ribbons. The latter type is used in the form.
 本実施形態では、リボン84bが-Z側に位置し、シリコン基板84aが+Z側に位置する状態で、図11(A)等に示される回路基板102の-Z側の面にGLVから成るパターンジェネレータ84が取付けられている。回路基板102には、リボン84bに制御電圧を供給するためのCMOSドライバ(不図示)が設けられている。以下の説明では、便宜上、CMOSドライバを含んでパターンジェネレータ84と呼ぶ。 In the present embodiment, a pattern made of GLV on the −Z side surface of the circuit board 102 shown in FIG. 11A or the like with the ribbon 84b positioned on the −Z side and the silicon substrate 84a positioned on the + Z side. A generator 84 is attached. The circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84b. In the following description, for convenience, the pattern generator 84 including the CMOS driver is called.
 本実施形態で用いられるパターンジェネレータ84は、図13に示されるように、リボン84bを、例えば6000個有するリボン列85が、その長手方向(リボン84bの並ぶ方向)をX軸方向として、Y軸方向に所定の間隔で例えば12列、シリコン基板上に形成されている。各リボン列85のリボン84bは、共通電極の上に張られている。本実施形態では、一定レベルの電圧の印加と印加の解除とにより、主としてレーザ光のスイッチング(オン・オフ)のために、各リボン84bは、駆動される。ただし、GLVは、印加電圧に応じて回折光強度の調節が可能なので、後述するようにパターンジェネレータ84からの複数のビームの少なくとも一部の強度の調整が必要な場合などには、印加電圧が微調整される。例えば、各リボンに同じ強度の光が入射した場合に、異なる強度を持つ複数の光ビームをパターンジェネレータ84から発生することができる。 As shown in FIG. 13, the pattern generator 84 used in this embodiment includes a ribbon row 85 having, for example, 6000 ribbons 84b. The longitudinal direction (the direction in which the ribbons 84b are arranged) is set as the X axis direction, and the Y axis For example, 12 rows are formed on the silicon substrate at predetermined intervals in the direction. The ribbon 84b of each ribbon row 85 is stretched on the common electrode. In the present embodiment, the ribbons 84b are driven mainly for switching (on / off) of laser light by applying a voltage at a certain level and releasing the application. However, since the GLV can adjust the intensity of the diffracted light according to the applied voltage, the applied voltage is set when the intensity of at least some of the plurality of beams from the pattern generator 84 needs to be adjusted as will be described later. Tweaked. For example, when light of the same intensity is incident on each ribbon, a plurality of light beams having different intensities can be generated from the pattern generator 84.
 本実施形態では、回折光学素子92でスリット状のビームが12本生成され、この12本のビームが、照度分布調整素子94、集光レンズ96、及びミラー98を介して、各リボン列85の中央にX軸方向に長いスリット状のビームLBが照射される。本実施形態においては、各リボン84bに対するビームLBの照射領域は、正方形領域となる。なお、各リボン84bに対するビームLBの照射領域は、正方形領域でなくても良い。X軸方向に長い、あるいはY軸方向に長い矩形領域であっても良い。本実施形態においては、12本のビームのパターンジェネレータ84の受光面上での照射領域(照明系82の照射領域)は、X軸方向の長さがSmm、Y軸方向の長さがTmmの矩形の領域とも言える。 In the present embodiment, twelve slit-shaped beams are generated by the diffractive optical element 92, and these twelve beams pass through the illuminance distribution adjusting element 94, the condensing lens 96, and the mirror 98 to each ribbon row 85. A slit-like beam LB that is long in the X-axis direction is irradiated at the center. In the present embodiment, the irradiation area of the beam LB on each ribbon 84b is a square area. In addition, the irradiation area of the beam LB with respect to each ribbon 84b may not be a square area. It may be a rectangular region that is long in the X-axis direction or long in the Y-axis direction. In the present embodiment, the irradiation region (irradiation region of the illumination system 82) on the light receiving surface of the 12 beam pattern generator 84 has a length in the X-axis direction of Smm and a length in the Y-axis direction of Tmm. It can also be said to be a rectangular area.
 各リボン84bは独立に制御可能となっているので、パターンジェネレータ84で発生される断面正方形のビームの本数は、6000×12=72000本であり、72000本のビームのスイッチング(オン・オフ)が可能である。本実施形態では、パターンジェネレータ84で発生される72000本のビームを、個別に照射可能となるように、光電カプセル50の光電素子54の遮光膜58には、72000個のアパーチャ58aが形成されている。なお、アパーチャ58aの数は、例えばパターンジェネレータ84が照射可能なビームの数と同じでなくても良く、72000本のビーム(レーザビーム)のそれぞれが対応するアパーチャ58aを含む光電素子54(遮光膜58)上の領域に照射されれば良い。すなわち、光電素子54上の複数のアパーチャ58aそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。なお、パターンジェネレータ84が有する可動反射素子(リボン84b)の数と、パターンジェネレータ84で発生するビームの本数とは異なっていても良い。例えば、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプを用いて、複数(2つ)の可動素子(リボン)によって1本のビームのスイッチングを行っても良い。また、パターンジェネレータ84の数と光電カプセル50の数とは等しくなくても良い。 Since each ribbon 84b can be controlled independently, the number of square beams generated by the pattern generator 84 is 6000 × 12 = 72,000, and switching (on / off) of 72,000 beams is performed. Is possible. In the present embodiment, 72,000 apertures 58a are formed on the light shielding film 58 of the photoelectric element 54 of the photoelectric capsule 50 so that the 72,000 beams generated by the pattern generator 84 can be individually irradiated. Yes. The number of apertures 58a may not be the same as the number of beams that can be irradiated by the pattern generator 84, for example, and the photoelectric element 54 (light shielding film) including the apertures 58a corresponding to each of 72,000 beams (laser beams). 58) The upper region may be irradiated. That is, it is only necessary that the size of each of the plurality of apertures 58a on the photoelectric element 54 is smaller than the size of the cross section of the corresponding beam. The number of movable reflective elements (ribbons 84b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84. For example, using a type in which an active ribbon whose position is changed by applying a voltage and a bias ribbon that has fallen to the ground and does not change its position are alternately arranged, one of them is provided by a plurality (two) of movable elements (ribbons). The beam may be switched. Further, the number of pattern generators 84 and the number of photoelectric capsules 50 may not be equal.
 投影光学系86は、図11(A)及び図11(B)に示されるように、パターンジェネレータ84からの光ビームの光路上に順次配置されたレンズ86a、86bを含む対物レンズを有する。レンズ86aとレンズ86bとの間には、フィルタ86cが配置されている。投影光学系86の投影倍率は、例えば約1/4である。以下では、アパーチャ58aは、矩形であるものとするが、正方形であっても良いし、多角形、楕円など、他の形状であっても良い。ここで、各レンズ86a、86bは、それぞれが複数のレンズで構成されていても良い。また、投影光学系は、屈折型光学系には限定されず、反射型光学系や反射屈折型光学系であっても良い。 The projection optical system 86 has an objective lens including lenses 86a and 86b sequentially arranged on the optical path of the light beam from the pattern generator 84, as shown in FIGS. 11 (A) and 11 (B). A filter 86c is disposed between the lens 86a and the lens 86b. The projection magnification of the projection optical system 86 is about 1/4, for example. Hereinafter, the aperture 58a is assumed to be a rectangle, but may be a square, or may be another shape such as a polygon or an ellipse. Here, each of the lenses 86a and 86b may be composed of a plurality of lenses. The projection optical system is not limited to a refractive optical system, and may be a reflective optical system or a catadioptric optical system.
 本実施形態においては、投影光学系86は、パターンジェネレータ84からの光を光電素子54に投射することで、複数、ここでは72000個のアパーチャ58aの少なくとも1つを通過した光ビームが光電層60に照射される。すなわち、パターンジェネレータ84からのオンとされたビームは、対応するアパーチャ58aを介して光電層60に照射され、オフとされたビームは、対応するアパーチャ58a及び光電層60へ照射されない。なお、パターンジェネレータからの光の像が、例えば光電層60上(板部材56の下面、あるいはその近傍面)に結像する場合には、投影光学系86を結像光学系とも呼ぶことができる。 In the present embodiment, the projection optical system 86 projects the light from the pattern generator 84 onto the photoelectric element 54 so that a light beam that has passed through at least one of a plurality of (herein, 72,000) apertures 58a is the photoelectric layer 60. Is irradiated. That is, the turned-on beam from the pattern generator 84 is irradiated to the photoelectric layer 60 via the corresponding aperture 58a, and the turned-off beam is not irradiated to the corresponding aperture 58a and the photoelectric layer 60. Note that when the image of the light from the pattern generator forms an image on, for example, the photoelectric layer 60 (the lower surface of the plate member 56 or the vicinity thereof), the projection optical system 86 can also be referred to as an imaging optical system. .
 投影光学系86には、図10に示されるように、投影光学系86の光学特性を調整可能な光学特性調整装置87が、設けられている。光学特性調整装置87は、本実施形態では投影光学系86を構成する一部の光学素子、例えばレンズ86aを、動かすことで、少なくともX軸方向の投影倍率(倍率)の変更が可能である。光学特性調整装置87として、例えば投影光学系86を構成する複数のレンズ間に形成される気密空間の気圧を変更する装置を使っても良い。また、光学特性調整装置87として、投影光学系86を構成する光学部材を変形させる装置、あるいは投影光学系86を構成する光学部材に熱分布を与える装置を使っても良い。なお、図10では、図中の1つの光照射装置80にのみ光学特性調整装置87が併設されているように示されているが、実際には、45個の光照射装置80の全てに光学特性調整装置87が併設されている。45個の光学特性調整装置87は主制御装置110の指示に基づき、制御部11によって制御される(図18参照)。 As shown in FIG. 10, the projection optical system 86 is provided with an optical characteristic adjusting device 87 that can adjust the optical characteristics of the projection optical system 86. In this embodiment, the optical characteristic adjusting device 87 can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection optical system 86, for example, the lens 86a. As the optical characteristic adjusting device 87, for example, a device that changes the air pressure in an airtight space formed between a plurality of lenses constituting the projection optical system 86 may be used. Further, as the optical characteristic adjusting device 87, a device that deforms an optical member that constitutes the projection optical system 86, or a device that applies heat distribution to the optical member that constitutes the projection optical system 86 may be used. In FIG. 10, only one light irradiation device 80 in the drawing is shown as having an optical characteristic adjustment device 87, but in reality, all 45 light irradiation devices 80 are optically connected. A characteristic adjusting device 87 is also provided. The 45 optical characteristic adjusting devices 87 are controlled by the control unit 11 based on an instruction from the main control device 110 (see FIG. 18).
 なお、投影光学系86の内部にパターンジェネレータ84で発生され、光電層60に照射される複数のビームの少なくとも1つの強度を変更可能な強度変調素子を設けても良い。光電層60に照射される複数のビームの強度の変更は、複数のビームのうちの一部のビームの強度を零にすることを含む。また、投影光学系86が光電層60に照射される複数のビームの少なくとも1つの位相や偏光を変更可能な位相変調素子、偏光変調素子などを備えていても良い。 It should be noted that an intensity modulation element capable of changing the intensity of at least one of a plurality of beams generated by the pattern generator 84 and applied to the photoelectric layer 60 may be provided inside the projection optical system 86. Changing the intensity of the plurality of beams applied to the photoelectric layer 60 includes making the intensity of some of the plurality of beams zero. Further, the projection optical system 86 may include a phase modulation element, a polarization modulation element, or the like that can change at least one phase or polarization of a plurality of beams irradiated on the photoelectric layer 60.
 図11(A)から明らかなように、本実施形態では、照明系82が有する光学系の光軸AXiと投影光学系86の光軸(最終光学素子であるレンズ86bの光軸と一致)AXoとは、いずれもZ軸に平行であるが、Y軸方向に所定距離ずれている(オフセットしている)。なお、照明系82が有する光学系の光軸AXiと投影光学系の光軸AXoとが非平行であっても良い。 As is clear from FIG. 11A, in this embodiment, the optical axis AXi of the optical system included in the illumination system 82 and the optical axis of the projection optical system 86 (coincident with the optical axis of the lens 86b as the final optical element) AXo. Is parallel to the Z-axis, but is shifted (offset) by a predetermined distance in the Y-axis direction. The optical axis AXi of the optical system included in the illumination system 82 and the optical axis AXo of the projection optical system may be non-parallel.
 図14(A)及び図14(B)には、電子ビーム光学系70の構成の一例が、対応する光電カプセル50の本体部52とともに示されている。このうち、図14(A)は、+X方向から見た構成を示し、図14(B)は、-Y方向から見た構成を示す。図14(A)及び図14(B)に示されるように、電子ビーム光学系70は、鏡筒104と鏡筒104に保持された一対の電磁レンズ70a、70bから成る対物レンズと、静電マルチポール70cとを有する。電子ビーム光学系70の対物レンズと、静電マルチポール70cは、複数のビームLBを光電素子54に照射することによって光電素子54の光電変換によって放出される電子(複数の電子ビームEB)のビーム路上に配置されている。一対の電磁レンズ70a、70bは、それぞれ鏡筒104内の上端部近傍及び下端部近傍に配置され、上下方向に関して両者は離れている。この一対の電磁レンズ70a、70b相互間に静電マルチポール70cが配置されている。静電マルチポール70cは、対物レンズによって絞られる電子ビームEBのビーム路上のビームウェスト部分に配置されている。このため、静電マルチポール70cを通過する複数のビームEBは、相互間に働くクーロン力によって互いに反発し、倍率が変化することがある。 FIGS. 14A and 14B show an example of the configuration of the electron beam optical system 70 together with the main body 52 of the corresponding photoelectric capsule 50. Among these, FIG. 14A shows a configuration viewed from the + X direction, and FIG. 14B shows a configuration viewed from the −Y direction. As shown in FIGS. 14A and 14B, the electron beam optical system 70 includes a lens barrel 104 and an objective lens including a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic lens. And a multipole 70c. The objective lens of the electron beam optical system 70 and the electrostatic multipole 70c are beams of electrons (multiple electron beams EB) emitted by photoelectric conversion of the photoelectric element 54 by irradiating the photoelectric element 54 with the plurality of beams LB. Located on the street. The pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end portion and the lower end portion in the lens barrel 104, respectively, and are separated from each other in the vertical direction. An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b. The electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB that is focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other due to the Coulomb force acting between them, and the magnification may change.
 そこで、本実施形態では、XY倍率補正用の第1静電レンズ70cと、ビームの照射位置制御(及び照射位置ずれ補正)、すなわち光学パターンの投影位置調整(及び投影位置ずれ補正)用の第2静電レンズ70cとを有する静電マルチポール70cが電子ビーム光学系70の内部に設けられている。第1静電レンズ70cは、例えば図15(A)に模式的に示されるように、X軸方向及びY軸方向に関する縮小倍率を、高速で、かつ個別に補正する。ただし、第1静電レンズ70cは、図15(B)に示されるように、総電流量の変化によって生じる、クーロン効果に起因する倍率変化を補正対象とし、図15(C)に示されるような局所的なクーロン効果に起因する偏った倍率変化は補正対象としない。図15(C)に示されるような倍率変化が極力生じないようにするパターンの生成ルールの採用を前提とし、その上で発生するクーロン効果を、第1静電レンズ70cを用いて補正する。 Therefore, in the present embodiment, the first electrostatic lens 70c 1 for XY magnification correction and the beam irradiation position control (and irradiation position deviation correction), that is, the projection position adjustment (and projection position deviation correction) of the optical pattern are performed. An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70. The first electrostatic lens 70c 1, for example as schematically shown in FIG. 15 (A), the reduction magnification in the X-axis direction and the Y-axis direction, fast, and individually corrected. However, the first electrostatic lens 70c 1, as shown in FIG. 15 (B), caused by changes in the total current amount, the magnification change due to Coulomb effect as the correction target, shown in FIG. 15 (C) Such a biased magnification change due to the local Coulomb effect is not subject to correction. Figure 15 assumes adoption of the pattern generation rule magnification change as shown in (C) is to prevent the occurrence as much as possible, the Coulomb effect occurring thereon is corrected by using the first electrostatic lens 70c 1 .
 また、第2静電レンズ70cは、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。第2静電レンズ70cは、露光の際にビームのウエハWに対する追従制御を行う際のビームの偏向制御、すなわちビームの照射位置制御にも用いられる。なお、縮小倍率の補正を、電子ビーム光学系70以外の部分、例えば前述の投影光学系86などを用いて行う場合などには、静電マルチポール70cに代えて、電子ビームの偏向制御が可能な静電レンズから成る静電偏向レンズを用いても良い。 The second electrostatic lens 70c 2 corrects (bright pixel among the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch. The second electrostatic lens 70c 2 is deflection control of the beam for performing the following control for the wafer W of the beam during exposure, i.e., it is also used for the irradiation position control of the beam. When correction of the reduction magnification is performed using a portion other than the electron beam optical system 70, such as the projection optical system 86 described above, the deflection control of the electron beam is possible instead of the electrostatic multipole 70c. An electrostatic deflection lens composed of a simple electrostatic lens may be used.
 電子ビーム光学系70の縮小倍率は、倍率補正を行わない状態で、設計上例えば1/50である。1/30、1/20など、その他の倍率でも良い。 The reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction. Other magnifications such as 1/30, 1/20, etc. may be used.
 図16は、ベースプレート38に吊り下げ状態で支持された45個の電子ビーム光学系70の外観を斜視図にて示す。 FIG. 16 is a perspective view showing the appearance of 45 electron beam optical systems 70 supported in a suspended state on the base plate 38.
 鏡筒104の射出端には、図14(A)及び図14(B)に示されるように電子ビームの出口104aが形成されており、この出口104a部分の下方には、反射電子検出装置106が配置されている。反射電子検出装置106は、クーリングプレート74に前述の出口104aに対向して形成された円形(又は矩形)の開口74aの内部に配置されている。より具体的には、電子ビーム光学系70の光軸AXe(前述の光電カプセル50の中心軸及び投影光学系86の光軸AXo(図11(A)参照)に一致)を挟みX軸方向の両側に、一対の反射電子検出装置106x、106xが設けられている。また、光軸AXeを挟みY軸方向の両側に、一対の反射電子検出装置106y、106yが設けられている。また、上記2対の反射電子検出装置106のそれぞれは、例えば半導体検出器によって構成され、ウエハ上のアライメントマーク、あるいは基準マーク等の検出対象マークから発生する反射成分、ここでは反射電子を検出し、検出した反射電子に対応する検出信号を信号処理装置108に送る(図18参照)。信号処理装置108は、複数の反射電子検出装置106の検出信号を不図示のアンプにより増幅した後に信号処理を行い、その処理結果を主制御装置110に送る(図18参照)。なお、反射電子検出装置106は、45個の電子ビーム光学系70の一部(少なくとも1つ)に設けるだけでも良いし、設けなくても良い。 As shown in FIGS. 14A and 14B, an electron beam exit 104a is formed at the exit end of the lens barrel 104. Below the exit 104a portion, a backscattered electron detector 106 is provided. Is arranged. The backscattered electron detector 106 is disposed inside a circular (or rectangular) opening 74a formed in the cooling plate 74 so as to face the above-described outlet 104a. More specifically, the optical axis AXe of the electron beam optical system 70 (corresponding to the central axis of the photoelectric capsule 50 and the optical axis AXo of the projection optical system 86 (see FIG. 11A)) is sandwiched in the X-axis direction. A pair of backscattered electron detection devices 106x 1 and 106x 2 are provided on both sides. A pair of backscattered electron detectors 106y 1 and 106y 2 are provided on both sides in the Y-axis direction with the optical axis AXe interposed therebetween. Each of the two pairs of backscattered electron detectors 106 includes, for example, a semiconductor detector, and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on the wafer, in this case, backscattered electrons. Then, a detection signal corresponding to the detected reflected electrons is sent to the signal processing device 108 (see FIG. 18). The signal processing device 108 performs signal processing after amplifying the detection signals of the plurality of backscattered electron detection devices 106 by an amplifier (not shown), and sends the processing result to the main control device 110 (see FIG. 18). The backscattered electron detector 106 may or may not be provided in a part (at least one) of the 45 electron beam optical systems 70.
 反射電子検出装置106x1、106x2、106y1、106y2は、鏡筒104に固定されても良いし、クーリングプレート74に取付けられていても良い。 The backscattered electron detectors 106 x1 , 106 x2 , 106 y1 , and 106 y2 may be fixed to the lens barrel 104 or may be attached to the cooling plate 74.
 クーリングプレート74には、45個の電子ビーム光学系70の鏡筒104の出口104aに個別に対向して開口74aが、45個形成され、その開口74a内に2対の反射電子検出装置106が配置されている(図2参照)。 In the cooling plate 74, 45 openings 74a are formed individually facing the outlets 104a of the lens barrels 104 of the 45 electron beam optical systems 70, and two pairs of backscattered electron detection devices 106 are formed in the openings 74a. Are arranged (see FIG. 2).
 図14(A)及び図14(B)に示されるように、ベースプレート38には、光軸AXe上に、前述した絞り部38bが形成されている。絞り部38bは、ベースプレート38の上面に所定の深さで形成された平面視円形(又は矩形)の凹部38aの内部底面に形成された、X軸方向に長い矩形の孔から成る。また、光軸AXe上には、光電層60の上側に設けられた多数のアパーチャ58aの配置領域の中心(ここでは、光電カプセル50の本体部52の中心軸に一致)がほぼ一致している。絞り部38bは、図2に示されるように、ベースプレート38に45個の電子ビーム光学系70の光軸AXeに個別に対向して形成されている。 As shown in FIGS. 14A and 14B, the base plate 38 is formed with the diaphragm 38b described above on the optical axis AXe. The narrowed portion 38b is formed of a rectangular hole that is long in the X-axis direction and is formed on the inner bottom surface of a circular (or rectangular) concave portion 38a formed in a predetermined depth on the upper surface of the base plate 38. Further, on the optical axis AXe, the centers of the arrangement regions of a large number of apertures 58a provided on the upper side of the photoelectric layer 60 (here, coincide with the central axis of the main body portion 52 of the photoelectric capsule 50) substantially coincide. . As shown in FIG. 2, the diaphragm portion 38 b is formed on the base plate 38 so as to individually face the optical axes AXe of 45 electron beam optical systems 70.
 また、ベースプレート38と光電素子54との間には、光電層60から射出される電子を加速するための引き出し電極112が配置されている。なお、図14(A)及び図14(B)では、図示が省略されているが、引き出し電極112は、例えば蓋収納プレート68の円形開口68cの周囲に設けることができる。勿論、引き出し電極112を、蓋収納プレート68とは別の部材に設けても良い。 Further, an extraction electrode 112 for accelerating electrons emitted from the photoelectric layer 60 is disposed between the base plate 38 and the photoelectric element 54. Although not shown in FIGS. 14A and 14B, the extraction electrode 112 can be provided around the circular opening 68c of the lid storage plate 68, for example. Of course, the extraction electrode 112 may be provided on a member different from the lid storage plate 68.
 露光装置100では、前述の鏡筒78、筐体19の第1部分19a、第2部分19b、及びステージチャンバ10には、メンテナンス用の開閉部が設けられている。 In the exposure apparatus 100, the lens barrel 78, the first portion 19a, the second portion 19b, and the stage chamber 10 of the casing 19 are provided with an opening / closing portion for maintenance.
 ここで、露光装置100の組み立ての流れの一例を、光電カプセルメーカーで製造された光電カプセルの搬送、及び露光装置メーカーで蓋部材が開放されるまでの一連の流れを中心として説明する。 Here, an example of a flow of assembly of the exposure apparatus 100 will be described focusing on a series of flow until the photoelectric capsule manufactured by the photoelectric capsule manufacturer is transported and the lid member is opened by the exposure apparatus manufacturer.
 まず、光電カプセルメーカーの工場の真空チャンバ120内で、図4(A)中の上向きの白抜き矢印で示されるように、蓋部材64が上方に移動され、開口52cが塞がれるように、光電カプセル50の本体部52に蓋部材64を接触させる。次いで、図4(B)に示されるように、真空チャンバ120内でばねその他の付勢部材122を用いて、蓋部材64に上向きの力(与圧)が加えられる。このとき、与圧の作用により、本体部52の下端面に設けられたOリング62が完全に潰される。そして、蓋部材64に与圧を加えたままの状態で、真空チャンバ120内を大気開放すると、光電カプセル50の内部が真空であるため、大気圧によって蓋部材64が本体部52に圧着されるので、付勢部材122による与圧を解除する。図4(C)には、この与圧が解除された状態が示されている。この図4(C)の状態では、本体部52と蓋部材64とが、一体化され光電カプセル50が構成されている(大気圧で光電カプセル50がシールドされている)。上述のようにして、複数(少なくとも45個)の光電カプセル50は、図4(C)の状態を維持したまま、露光装置メーカーの工場まで輸送される。なお、蓋部材64の本体部52と対向する面に環状の凹溝を形成し、該凹溝にOリング62を一部埋め込んだ状態で取付けても良い。なお、本体部52に蓋部材64を接触させた状態で、大気空間においても光電カプセル内部の空間の真空状態を維持できるのであれば、Oリング62などのシール部材を設けなくても良い。 First, in the vacuum chamber 120 of the factory of the photoelectric capsule manufacturer, as shown by the upward white arrow in FIG. 4A, the lid member 64 is moved upward so that the opening 52c is closed. A lid member 64 is brought into contact with the main body 52 of the photoelectric capsule 50. Next, as shown in FIG. 4B, an upward force (pressure) is applied to the lid member 64 using a spring or other biasing member 122 in the vacuum chamber 120. At this time, the O-ring 62 provided on the lower end surface of the main body 52 is completely crushed by the action of pressure. Then, when the inside of the vacuum chamber 120 is opened to the atmosphere with the pressurized pressure applied to the lid member 64, the inside of the photoelectric capsule 50 is in a vacuum, so that the lid member 64 is pressure-bonded to the main body 52 by the atmospheric pressure. Therefore, the pressure applied by the urging member 122 is released. FIG. 4C shows a state in which this pressurization is released. In the state of FIG. 4C, the main body 52 and the lid member 64 are integrated to form the photoelectric capsule 50 (the photoelectric capsule 50 is shielded at atmospheric pressure). As described above, the plurality (at least 45) of the photoelectric capsules 50 are transported to the factory of the exposure apparatus manufacturer while maintaining the state of FIG. Alternatively, an annular groove may be formed on the surface of the lid member 64 facing the main body 52, and the O-ring 62 may be partially embedded in the groove. If the vacuum state of the space inside the photoelectric capsule can be maintained even in the atmospheric space with the lid member 64 in contact with the main body 52, the sealing member such as the O-ring 62 may not be provided.
 露光装置メーカーの工場内では、45個の光電カプセル50は、クリーンルーム内に搬送され、既に、フレーム16に組み付けられている電子ビーム光学ユニット18Aの第1プレート36に形成された45個の貫通孔36aのそれぞれに、図5中に下向きの矢印で示されるように、上方から挿入され、第1プレート36に組み付けられる。この組み付け状態では、45個の貫通孔36aには、光電カプセル50の本体部52がほぼ隙間がない状態で挿入されている。また、このとき、蓋収納プレート68は、45個の所定深さの丸穴68aが、45個の光電カプセル50の真下にそれぞれ位置し、蓋部材64と蓋収納プレート68の上面との間に所定の隙間が存在する高さ位置にある。 In the factory of the exposure apparatus manufacturer, 45 photoelectric capsules 50 are transported into a clean room and 45 through-holes already formed in the first plate 36 of the electron beam optical unit 18A assembled to the frame 16. As indicated by a downward arrow in FIG. 5, each of 36 a is inserted from above and assembled to the first plate 36. In this assembled state, the main body 52 of the photoelectric capsule 50 is inserted into the 45 through holes 36a with almost no gap. Further, at this time, the lid storage plate 68 has 45 round holes 68 a of a predetermined depth located directly below the 45 photoelectric capsules 50, respectively, and between the lid member 64 and the upper surface of the lid storage plate 68. It is in a height position where a predetermined gap exists.
 なお、フレーム16に対する電子ビーム光学ユニット18Aの組み付けに先立って、ステージシステム14の組み立て、組み立てられたステージシステム14のステージチャンバ10内への搬入、並びにステージシステム14に関する必要な調整などが行われている。 Prior to the assembly of the electron beam optical unit 18A to the frame 16, the stage system 14 is assembled, the assembled stage system 14 is carried into the stage chamber 10, and necessary adjustments regarding the stage system 14 are performed. Yes.
 光電カプセル50の、第1プレート36に対する組み付け後、真空対応アクチュエータ66によって、図6に示されるように、蓋収納プレート68の45個の所定深さの丸穴68aの内部に蓋部材64が一部入り込む位置まで、蓋収納プレート68が上方に駆動される。 After the assembly of the photoelectric capsule 50 with respect to the first plate 36, the lid member 64 is placed in the inside of 45 round holes 68 a having a predetermined depth of the lid storage plate 68 by the vacuum-compatible actuator 66 as shown in FIG. 6. The lid storage plate 68 is driven upward to the position where the part enters.
 次に、筐体19の第1部分19a内部と第2部分19b内部との真空引きが並行して行われる(図2参照)。また、これと並行して、ステージチャンバ10内部の真空引きが行われる。 Next, evacuation of the inside of the first part 19a and the inside of the second part 19b of the housing 19 is performed in parallel (see FIG. 2). In parallel with this, the inside of the stage chamber 10 is evacuated.
 このとき、筐体19の第1部分19a内部は、光電カプセル50内部と同レベルの高真空状態となるまで真空引きが行われ、第1部分19aの内部が第1の真空室34となる(図7参照)。このとき、光電カプセル50内部の気圧と外部(第1部分19a内部)の気圧とが釣り合うようになるので、図7に示されるように蓋部材64が自重によって、本体部52から離れ、丸穴68aの内部に完全に収納される。なお、筐体19の第1部分19a内部の真空引きが完了した状態では、複数の光電カプセル50がそれぞれ有する光電素子54は、第1の真空室34とその外側(筐体19の外部)の空間とを隔てる隔壁(真空隔壁)として機能する。第1の真空室34の外側は、大気圧、又は大気圧よりわずかに陽圧である。 At this time, the inside of the first portion 19a of the housing 19 is evacuated until a high vacuum state of the same level as the inside of the photoelectric capsule 50 is obtained, and the inside of the first portion 19a becomes the first vacuum chamber 34 ( (See FIG. 7). At this time, since the atmospheric pressure inside the photoelectric capsule 50 and the atmospheric pressure inside the first portion 19a are balanced, the lid member 64 is separated from the main body portion 52 by its own weight as shown in FIG. 68a is completely stored inside. In the state where the evacuation inside the first portion 19a of the housing 19 is completed, the photoelectric elements 54 included in each of the plurality of photoelectric capsules 50 are arranged in the first vacuum chamber 34 and outside thereof (outside the housing 19). It functions as a partition (vacuum partition) that separates the space. The outside of the first vacuum chamber 34 is atmospheric pressure or slightly positive pressure from atmospheric pressure.
 一方、筐体19の第2部分19b内部は、第1部分19aと同レベルの高真空状態となるまで、真空引きを行なっても良いが、第1部分19aより真空度が低い(圧力が高い)レベルの中真空状態まで真空引きを行なっても良い。本実施形態では、第1部分19a内部と第2部分19b内部とは、絞り部38bによって実質的に隔離されているので、このようなことが可能である。第2部分19b内部の真空引き完了後、第2部分19aの内部が第2の真空室72となる。第2部分19b内部を、中真空状態まで真空引きする場合には、真空引きに要する時間を短縮することが可能になる。ステージチャンバ10の内部は、第2部分19bの内部と同レベルの真空引きが行われる。 On the other hand, the inside of the second portion 19b of the housing 19 may be evacuated until a high vacuum state of the same level as the first portion 19a is reached, but the degree of vacuum is lower than that of the first portion 19a (the pressure is high). ) Vacuuming to a medium vacuum state may be performed. In the present embodiment, the inside of the first portion 19a and the inside of the second portion 19b are substantially separated by the throttle portion 38b, and thus this is possible. After the evacuation inside the second portion 19b is completed, the inside of the second portion 19a becomes the second vacuum chamber 72. When the inside of the second portion 19b is evacuated to a medium vacuum state, the time required for evacuation can be shortened. The inside of the stage chamber 10 is evacuated to the same level as the inside of the second portion 19b.
 第1部分19bの真空引き完了後、真空対応アクチュエータ66によって、蓋収納プレート68がX軸方向及びY軸方向(並びにZ軸方向)に駆動され、蓋収納プレート68に形成された45個の円形開口68cが、45個の電子ビーム光学系70の光軸AXe上にそれぞれ位置決めされる。図3には、このようにして、光軸AXe上に円形開口68cが位置決めされた状態が示されている。その後、必要な調整が行われ、電子ビーム光学ユニット18Aの組立が終了する。 After the first portion 19b is evacuated, the lid accommodating plate 68 is driven in the X-axis direction and the Y-axis direction (and the Z-axis direction) by the vacuum actuator 66, and 45 circular shapes formed on the lid accommodating plate 68 are formed. The openings 68c are positioned on the optical axes AXe of the 45 electron beam optical systems 70, respectively. FIG. 3 shows a state in which the circular opening 68c is positioned on the optical axis AXe in this way. Thereafter, necessary adjustment is performed, and the assembly of the electron beam optical unit 18A is completed.
 次いで、図1に示されるように、組み立てられた電子ビーム光学ユニット18A(第1プレート36)上に、予め別に組み立てられた光学ユニット18Bが、搭載される。このとき、光学ユニット18Bは、鏡筒78の内部の45個の光照射装置80のそれぞれが、45個の光電素子54のそれぞれに対応する配置となるように、すなわち、投影光学系86の光軸AXoが、電子ビーム光学系70の光軸AXeとほぼ一致する状態で、搭載される。そして、光学ユニット18Bに関する必要な調整及び電子ビーム光学ユニット18Aと光学ユニット18Bとの間の必要な調整、並びに光学ユニット18Bと電子ビーム光学ユニット18Aとの相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続などが行われ、露光装置100の組み立てが完了する。 Next, as shown in FIG. 1, an optical unit 18B separately assembled in advance is mounted on the assembled electron beam optical unit 18A (first plate 36). At this time, the optical unit 18B is arranged so that each of the 45 light irradiation devices 80 inside the lens barrel 78 is arranged corresponding to each of the 45 photoelectric elements 54, that is, the light of the projection optical system 86. It is mounted in a state where the axis AXo substantially coincides with the optical axis AXe of the electron beam optical system 70. Then, necessary adjustments regarding the optical unit 18B and necessary adjustments between the electron beam optical unit 18A and the optical unit 18B, and mechanical connection and electrical circuit wiring between the optical unit 18B and the electron beam optical unit 18A. The connection, the piping connection of the atmospheric pressure circuit, and the like are performed, and the assembly of the exposure apparatus 100 is completed.
 なお、上述した各部の必要な調整には、各種光学系についての光学的精度を達成するための調整、各種機械系についての機械的精度を達成するための調整、各種電気系についての電気的精度を達成するための調整が含まれる。 The necessary adjustment of each part described above includes adjustment for achieving optical accuracy for various optical systems, adjustment for achieving mechanical accuracy for various mechanical systems, and electrical accuracy for various electrical systems. Adjustments to achieve are included.
 これまでの説明から明らかなように、本実施形態に係る露光装置100では、図17に示されるように、露光時に、パターンジェネレータ84の受光面上でX軸方向の長さSmm、Y軸方向の長さTmmの矩形の領域の内部にビームが照射され、この照射によりパターンジェネレータ84からの光が縮小倍率1/4を有する投影光学系86によって光電素子54に照射され、さらにこの照射によって生成される電子ビームが縮小倍率1/50を有する電子ビーム光学系70を介して、像面(像面に位置合わせされるウエハ面)上の矩形の領域(露光フィールド)に照射される。すなわち、本実施形態の露光装置100では、光照射装置80(投影光学系86)と、これに対応する光電素子54と、これらに対応する電子ビーム光学系70と、を含んで、縮小倍率1/200の直筒型のマルチビーム光学システム200(図18参照)が構成され、このマルチビーム光学システム200を、XY平面内で前述したマトリクス状の配置で45有している。したがって、本実施形態の露光装置100の光学系は、縮小倍率1/200の縮小光学系を45個有するマルチカラム電子ビーム光学系である。 As is apparent from the above description, in the exposure apparatus 100 according to the present embodiment, as shown in FIG. 17, the length Smm in the X-axis direction and the Y-axis direction on the light receiving surface of the pattern generator 84 at the time of exposure. A beam is irradiated inside a rectangular region having a length of Tmm, and by this irradiation, light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection optical system 86 having a reduction magnification of 1/4, and further generated by this irradiation. The irradiated electron beam is irradiated onto a rectangular area (exposure field) on an image plane (a wafer surface aligned with the image plane) via an electron beam optical system 70 having a reduction ratio of 1/50. That is, the exposure apparatus 100 of the present embodiment includes a light irradiation device 80 (projection optical system 86), a photoelectric element 54 corresponding to the light irradiation device 80, and an electron beam optical system 70 corresponding thereto, and a reduction magnification of 1 / 200 straight tube type multi-beam optical system 200 (see FIG. 18) is configured, and this multi-beam optical system 200 has 45 in the matrix arrangement described above in the XY plane. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction magnification of 1/200.
 また、露光装置100では、直径300ミリの300ミリウエハを露光対象とし、ウエハに対向して45個の電子ビーム光学系70を配置するため、電子ビーム光学系70の光軸AXeの配置間隔を一例として43mmとしている。このようにすれば、1つの電子ビーム光学系70が受け持つ露光エリアは、最大で43mm×43mmの矩形領域となるため、前述したようにウエハステージWSTのX軸方向及びY軸方向の移動ストロークが50mmもあれば十分である。なお、電子ビーム光学系70の数は、45個に限られず、ウエハの直径、ウエハステージWSTのストローク、などに基づいて決めることができる。 Further, in the exposure apparatus 100, a 300 mm wafer having a diameter of 300 mm is an exposure object, and 45 electron beam optical systems 70 are arranged so as to face the wafer. Therefore, an arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. 43 mm. In this way, the exposure area of one electron beam optical system 70 is a rectangular area of 43 mm × 43 mm at the maximum, so that the movement strokes of the wafer stage WST in the X-axis direction and the Y-axis direction are as described above. A length of 50 mm is sufficient. The number of electron beam optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of wafer stage WST, and the like.
 図18には、露光装置100の制御系を主として構成する主制御装置110の入出力関係がブロック図にて示されている。主制御装置110は、マイクロコンピュータ等を含み、図18に示される各部を含む露光装置100の構成各部を統括的に制御する。図18において、制御部11に接続されている光照射装置80は、主制御装置110からの指示に基づき、制御部11によって制御されるレーザダイオード88、AO偏向器90、回折光学素子92、及び照度分布調整素子94を含む。また、制御部11に接続されている電子ビーム光学系70は、主制御装置110からの指示に基づき、制御部11によって制御される一対の電磁レンズ70a、70b及び静電マルチポール70c(第1静電レンズ70c及び第2静電レンズ70c)を含む。また、図18において、符号500は、前述したマルチビーム光学システム200と、制御部11と、反射電子検出装置106x1、106x2、106y1、106y2と、信号処理装置108と、を含んで構成される露光ユニットを示す。露光装置100では、露光ユニット500が45ユニット設けられている。 FIG. 18 is a block diagram showing the input / output relationship of main controller 110 that mainly constitutes the control system of exposure apparatus 100. Main controller 110 includes a microcomputer and the like, and comprehensively controls each component of exposure apparatus 100 including each component shown in FIG. In FIG. 18, the light irradiation device 80 connected to the control unit 11 includes a laser diode 88, an AO deflector 90, a diffractive optical element 92, and a laser diode 88 controlled by the control unit 11 based on an instruction from the main control device 110. An illuminance distribution adjusting element 94 is included. In addition, the electron beam optical system 70 connected to the control unit 11 is based on an instruction from the main control device 110, and a pair of electromagnetic lenses 70 a and 70 b and an electrostatic multipole 70 c (the first multi-pole 70 c (first) controlled by the control unit 11. electrostatic lens 70c comprises first and second electrostatic lens 70c 2). In FIG. 18, reference numeral 500 includes the multi-beam optical system 200, the control unit 11, the backscattered electron detection devices 106 x1 , 106 x2 , 106 y1 , 106 y2, and the signal processing device 108. The exposure unit comprised is shown. In the exposure apparatus 100, 45 units of exposure units 500 are provided.
 ところで、露光装置100では、次のような理由により、正方形ではなく、矩形(長方形)の露光フィールド(以下、適宜、矩形フィールドと略記する)RFを採用している。 By the way, the exposure apparatus 100 employs a rectangular (rectangular) exposure field (hereinafter abbreviated as a rectangular field as appropriate) RF for the following reasons.
 図19には、電子ビーム光学系の直径Dの有効領域(収差有効領域)を示す円内に、正方形の露光フィールド(以下、正方形フィールドと略記する)SFと矩形フィールドRFとが図示されている。この図19から明らかなように、電子ビーム光学系の有効領域を最大限使おうとすると正方形フィールドSFが良い。ただし、正方形フィールドSFの場合、図19に示されるようにフィールド幅としては30%(1/√2)程度損をする。例えば、短辺の長さをt(=T/50)mm、長辺の長さをs(=S/50)mmとして、t/s=11/60のアスペクト比を持つ矩形フィールドRFだと有効領域がほぼフィールド幅となる。これは、マルチカラムでは大きなメリットになる。この他、アライメントマークを検出する際のマーク検出感度が向上するというメリットもある。フィールドの形状を問わず、フィールド内に照射される電子の総量は同じであるため、矩形フィールドは正方形フィールドに比べて電流密度が大きく、そのため、ウエハ上のより小さい面積にマークを配置しても十分な検出感度で検出できる。また、矩形フィールドは収差管理が正方形フィールドに比べて容易である。なお、実用的なアスペクト比t/sは、1/12~1/4である。 FIG. 19 shows a square exposure field (hereinafter abbreviated as a square field) SF and a rectangular field RF in a circle indicating an effective area (aberration effective area) of the diameter D of the electron beam optical system. . As can be seen from FIG. 19, the square field SF is good for the maximum use of the effective area of the electron beam optical system. However, in the case of the square field SF, as shown in FIG. 19, the field width is lost about 30% (1 / √2). For example, when the length of the short side is t (= T / 50) mm and the length of the long side is s (= S / 50) mm, the rectangular field RF has an aspect ratio of t / s = 11/60. The effective area is almost the field width. This is a great advantage for multi-columns. In addition, there is an advantage that the mark detection sensitivity when detecting the alignment mark is improved. Regardless of the shape of the field, the total amount of electrons irradiated in the field is the same, so the rectangular field has a higher current density than the square field, so even if the mark is placed in a smaller area on the wafer. Detection is possible with sufficient detection sensitivity. The rectangular field is easier to manage aberration than the square field. The practical aspect ratio t / s is 1/12 to 1/4.
 図19では、正方形フィールドSF及び矩形フィールドRFのいずれの露光フィールドも電子ビーム光学系の光軸AXeを含むように設定されている。しかし、これに限らず、露光フィールドを光軸AXeを含まないように、収差有効領域内に設定しても良い。また、露光フィールドを、矩形(正方形を含む)以外の形状、例えば円弧状に設定しても良い。 In FIG. 19, both the exposure fields of the square field SF and the rectangular field RF are set to include the optical axis AXe of the electron beam optical system. However, the present invention is not limited to this, and the exposure field may be set within the aberration effective region so as not to include the optical axis AXe. Further, the exposure field may be set to a shape other than a rectangle (including a square), for example, an arc shape.
 次に、本実施形態に係る露光装置100で、ウエハWの露光中に行われるドーズ制御について説明する。 Next, dose control performed during exposure of the wafer W by the exposure apparatus 100 according to the present embodiment will be described.
 露光フィールド内の照度ムラは、主制御装置110が、後述する露光時に、照度分布調整素子94を用いて、前述した印加電圧の制御による偏光状態の可変制御を結晶毎に行い、個々の結晶に対応する領域(個々の結晶に対応するパターンジェネレータ84の受光面上の領域)毎に光強度(照度)の制御を行うことで、結果的に光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールドRF内の照度分布の調整を行う。すなわち、露光フィールドRFに照射される複数の電子ビームのそれぞれの強度を適正に調整する。なお、本実施形態の露光装置100では、パターンジェネレータ84がGLVによって構成されているので、パターンジェネレータ84自体で中間調を発生することができる。主制御装置110は、光電層60に照射されるそれぞれの光ビームの強度調整により、光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールドRF内の照度分布の調整、すなわちドーズ制御を行うこともできる。勿論、主制御装置110は、照度分布調整素子94とパターンジェネレータ84とを併用して光電層60の電子放出面上での面内の照度分布の調整を行なっても良い。 Irradiance unevenness in the exposure field is controlled by the main controller 110 using the illuminance distribution adjusting element 94 during exposure, which will be described later, to perform the above-described variable control of the polarization state by controlling the applied voltage for each crystal. By controlling the light intensity (illuminance) for each corresponding region (region on the light receiving surface of the pattern generator 84 corresponding to each crystal), as a result, in-plane on the electron emission surface of the photoelectric layer 60 The illuminance distribution and the corresponding illuminance distribution in the exposure field RF on the wafer surface are adjusted. That is, the intensity of each of the plurality of electron beams applied to the exposure field RF is adjusted appropriately. In the exposure apparatus 100 of the present embodiment, since the pattern generator 84 is configured by GLV, the pattern generator 84 itself can generate a halftone. The main controller 110 adjusts the intensity of each light beam applied to the photoelectric layer 60 to adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 and the corresponding exposure field on the wafer surface. Adjustment of the illuminance distribution in the RF, that is, dose control can also be performed. Of course, the main controller 110 may adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 by using the illuminance distribution adjusting element 94 and the pattern generator 84 in combination.
 なお、光電層60の電子放出面上での面内の照度分布の調整の前提として、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)がほぼ同一となるように、パターンジェネレータ84で発生され光電層60に照射される複数のビームの強度の調整が行われる。このビームの強度の調整は、照明系82内で行なっても良いし、パターンジェネレータ84で行なっても良いし、投影光学系86内で行なっても良い。ただし、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)を少なくとも一部のビームについて他のビームと異ならせるように、複数のビームの強度の調整を行なっても良い。 As a premise for adjusting the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, the intensity of a plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion (electron beam illuminance, beam The intensity of the plurality of beams generated by the pattern generator 84 and applied to the photoelectric layer 60 is adjusted so that the (current amount) is substantially the same. The adjustment of the beam intensity may be performed in the illumination system 82, the pattern generator 84, or the projection optical system 86. However, the plurality of electron beams generated by the photoelectric conversion from the electron emission surface of the photoelectric layer 60 (the illuminance of the electron beam and the amount of beam current) are different from each other for at least some of the beams. The beam intensity may be adjusted.
 なお、ウエハに形成されたレジスト層は、光電層60の電子放出面上での面内の照度分布のみの影響を受けるものではなく、その他の要因、例えば電子の前方散乱、後方散乱、あるいはフォギングなどの影響を受ける。 The resist layer formed on the wafer is not affected only by the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, but other factors such as electron forward scattering, back scattering, or fogging. Influenced by.
 ここで、前方散乱とは、ウエハ表面のレジスト層内に入射した電子がウエハ表面に到達するまでの間にレジスト層内で散乱する現象を意味し、後方散乱とは、レジスト層を介してウエハ表面に到達した電子がウエハ表面又はその内部で散乱してレジスト層内に再度入射し、周囲に散乱する現象を意味する。また、フォギングとは、レジスト層の表面からの反射電子が、例えばクーリングプレート74の底面で再反射し、周囲にドーズを加える現象を指す。 Here, forward scattering means a phenomenon in which electrons incident on the resist layer on the wafer surface are scattered in the resist layer before reaching the wafer surface, and backscattering means that the wafer passes through the resist layer. It means a phenomenon in which electrons that reach the surface are scattered on the wafer surface or inside thereof, enter the resist layer again, and are scattered around. In addition, fogging refers to a phenomenon in which reflected electrons from the surface of the resist layer re-reflect on the bottom surface of the cooling plate 74, for example, and add a dose to the surroundings.
 上記の説明から明らかなように、前方散乱の影響を受ける範囲は、後方散乱及びフォギングと比べて狭いので、露光装置100では、前方散乱と、後方散乱及びフォギングとで、異なる補正方法を採用している。 As is apparent from the above description, the range affected by forward scattering is narrower than that of backscattering and fogging. Therefore, the exposure apparatus 100 employs different correction methods for forward scattering, backscattering and fogging. ing.
 前方散乱成分の影響を軽減するためのPEC(Proximity Effect Correction)では、主制御装置110は、前方散乱成分の影響を見込んで、制御部11を介してパターンジェネレータ84(及び/又は照度分布調整素子94)を用いた面内の照度分布の調整を行う。 In PEC (Proximity Effect Correction) for reducing the influence of the forward scattering component, the main controller 110 expects the influence of the forward scattering component, and the pattern generator 84 (and / or the illuminance distribution adjustment element via the control unit 11). 94) is used to adjust the in-plane illuminance distribution.
 一方、後方散乱成分の影響を軽減するためのPEC、及びフォギングの影響を軽減するためのFEC(Fogging Effect Correction)では、主制御装置110は、制御部11を介して、照度分布調整素子94を用いてある程度の空間周波数で面内の照度分布の調整を行う。 On the other hand, in the PEC for reducing the influence of the backscattering component and the FEC (Fogging Effect Correction) for reducing the influence of fogging, the main control device 110 sets the illuminance distribution adjusting element 94 via the control unit 11. Use to adjust the in-plane illuminance distribution at a certain spatial frequency.
 ところで、本実施形態に係る露光装置100は、例えばコンプリメンタリ・リソグラフィに用いられる。この場合、例えばArFエキシマレーザ光源を用いた液浸露光においてダブルパターニングなどを利用することでL/Sパターンが形成されたウエハを露光対象とし、そのラインパターンの切断を行うためのカットパターンの形成に用いられる。露光装置100では、光電素子54の遮光膜58に形成された72000個のアパーチャ58aのそれぞれに対応するカットパターンを形成することが可能である。 Incidentally, the exposure apparatus 100 according to the present embodiment is used, for example, in complementary lithography. In this case, for example, a wafer on which an L / S pattern is formed by using double patterning or the like in immersion exposure using an ArF excimer laser light source is exposed, and a cut pattern for cutting the line pattern is formed. Used for. In the exposure apparatus 100, it is possible to form a cut pattern corresponding to each of 72,000 apertures 58a formed on the light shielding film 58 of the photoelectric element 54.
 本実施形態における、ウエハに対する処理の流れは、次の通りである。 In the present embodiment, the flow of processing for the wafer is as follows.
 まず、電子線レジストが塗布された露光前のウエハWが、ステージチャンバ10内で、ウエハステージWST上に載置され、静電チャックによって吸着される。 First, an unexposed wafer W coated with an electron beam resist is placed on the wafer stage WST in the stage chamber 10 and is attracted by an electrostatic chuck.
 ウエハステージWST上のウエハWに形成された例えば45個のショット領域のそれぞれに対応してスクライブライン(ストリートライン)に形成された少なくとも各1つのアライメントマークに対して、各電子ビーム光学系70から電子ビームを照射し、少なくとも各1つのアライメントマークからの反射電子が反射電子検出装置106x1、106x2、106y1、106y2の少なくとも1つで検出され、ウエハWの全点アライメント計測が行われ、この全点アライメント計測の結果に基づいて、ウエハW上の複数のショット領域に対し、45の露光ユニット500(マルチビーム光学システム200)を用いた露光が開始される。例えばコンプリメンタリ・リソグラフィの場合、ウエハW上に形成されたX軸方向を周期方向とするL/Sパターンに対するカットパターンを各マルチビーム光学システム200から射出される多数のビーム(電子ビーム)を用いて形成する際に、ウエハW(ウエハステージWST)をY軸方向に走査しつつ、各ビームの照射タイミング(オン・オフ)を制御する。なお、全点アライメント計測を行わずに、ウエハWの一部のショット領域に対応して形成されたアライメントマークの検出を行い、その結果に基づいて45個のショット領域の露光を実行しても良い。また、本実施形態においては、露光ユニット500の数とショット領域の数が同じであるが、異なっていても良い。例えば、露光ユニット500の数が、ショット領域の数よりも少なくても良い。 From each electron beam optical system 70 to at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot regions formed on wafer W on wafer stage WST. Irradiated with an electron beam, reflected electrons from at least one alignment mark are detected by at least one of the reflected electron detectors 106 x1 , 106 x2 , 106 y1 and 106 y2 , and all-point alignment measurement of the wafer W 1 is performed. We, this based on the results of all points alignment measurement, the plurality of shot areas on the wafer W 1, exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started. For example, in the case of complementary lithography, a plurality of beams (electron beams) emitted from each multi-beam optical system 200 are used to form a cut pattern for the L / S pattern formed on the wafer W with the X-axis direction as a periodic direction. When forming, the irradiation timing (ON / OFF) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction. Note that the alignment mark formed corresponding to a part of the shot area of the wafer W is detected without performing all-point alignment measurement, and exposure of 45 shot areas is performed based on the result. good. In the present embodiment, the number of exposure units 500 and the number of shot areas are the same, but they may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
 ここで、パターンジェネレータ84を用いた露光シーケンスについて、説明を行う。ここでは、ウエハ上のある領域内に互いに隣接してXY2次元配置された多数の10nm角(アパーチャ58aを介したビームの照射領域と一致)の画素領域を仮想的に設定し、その全ての画素を露光する場合について説明する。また、ここでは、リボン列として、A、B、C、……、K、Lの12列があるものとする。 Here, an exposure sequence using the pattern generator 84 will be described. Here, a large number of 10-nm square pixel regions (coincident with the irradiation region of the beam through the aperture 58a) adjacent to each other in a certain region on the wafer are virtually set, and all the pixels are set. The case of exposing the light will be described. Here, it is assumed that there are 12 rows of ribbons, A, B, C,.
 リボン列Aに着目して説明すると、ウエハ上にX軸方向に並ぶある行(第K行とする)の連続した6000画素領域に対してリボン列Aを用いた露光が開始される。この露光開始の時点では、リボン列Aで反射されるビームは、ホームポジションにあるものとする。そして、露光開始からウエハWの+Y方向(又は-Y方向)のスキャンに追従させてビームを+Y方向(又は-Y方向)に偏向しながら同一の6000画素領域に対する露光を続行する。そして、例えば時間Ta[s]でその6000画素領域の露光が完了したとすると、その間にウエハステージWSTは、速度V[nm/s]で、例えばTa×V[nm]進む。ここで、便宜上、Ta×V=96[nm]とする。 Explaining by focusing on the ribbon column A, exposure using the ribbon column A is started on a continuous 6000 pixel area of a certain row (referred to as the Kth row) arranged in the X-axis direction on the wafer. It is assumed that the beam reflected by the ribbon row A is at the home position at the start of exposure. Then, the exposure to the same 6000 pixel area is continued while the beam is deflected in the + Y direction (or −Y direction) following the scan in the + Y direction (or −Y direction) of the wafer W from the start of exposure. For example, when the exposure of the 6000 pixel region is completed at time Ta [s], wafer stage WST advances at speed V [nm / s], for example, Ta × V [nm]. Here, for convenience, Ta × V = 96 [nm].
 続いて、ウエハステージWSTが速度Vで+Y方向に24nmスキャンしている間に、ビームをホームポジションに戻す。このとき、実際にウエハ上のレジストが感光されないようにビームをオフにする。このビームのオフは、AO偏向器90を用いて行われる。 Subsequently, the beam is returned to the home position while the wafer stage WST is scanning 24 nm in the + Y direction at the speed V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed. The beam is turned off using the AO deflector 90.
 このとき、上記の露光開始時点からウエハステージWSTは+Y方向に120nm進んでいるので、第(K+12)行目の連続した6000画素領域が、露光開始時点における第K行の6000画素領域と同じ位置にある。 At this time, since wafer stage WST has advanced 120 nm in the + Y direction from the exposure start time, the continuous 6000 pixel area in the (K + 12) th row is the same position as the 6000 pixel area in the Kth row at the exposure start time. It is in.
 そこで、同様にして、第(K+12)行目の連続した6000画素領域を、ウエハステージWSTにビームを偏向追従させながら露光する。 Therefore, similarly, a continuous 6000 pixel area in the (K + 12) th row is exposed while deflecting and following the beam to wafer stage WST.
 実際には、第K行の6000画素領域の露光と並行して、第(K+1)行~第(K+11)行それぞれの6000画素は、リボン列B、C、……、K、Lによって露光される。 Actually, in parallel with the exposure of the 6000 pixel area in the Kth row, the 6000 pixels in the (K + 1) th to (K + 11) th rows are exposed by the ribbon columns B, C,. The
 このようにして、ウエハ上のX軸方向の長さ60μmの幅の領域については、ウエハステージWSTをY軸方向にスキャンさせながらの露光(スキャン露光)が可能であり、ウエハステージWSTを60μmX軸方向にステッピングして同様のスキャン露光を行えば、そのX軸方向に隣接する長さ60μmの幅の領域の露光が可能である。したがって、上記のスキャン露光とウエハステージのX軸方向のステッピングとを交互に繰り返すことで、ウエハ上の1つのショット領域の露光を、1つの露光ユニット500により行うことができる。また、実際には、45の露光ユニット500を用いて並行してウエハ上の互いに異なるショット領域を露光することができるので、ウエハ全面の露光が可能である。 In this way, exposure (scan exposure) while scanning the wafer stage WST in the Y-axis direction is possible for a region having a width of 60 μm in the X-axis direction on the wafer, and the wafer stage WST is 60 μm in the X-axis direction. If the same scan exposure is performed by stepping in the direction, it is possible to expose a region having a width of 60 μm adjacent in the X-axis direction. Therefore, by alternately repeating the scan exposure and the stepping in the X-axis direction of the wafer stage, one exposure unit 500 can perform exposure of one shot area on the wafer. Actually, since different shot areas on the wafer can be exposed in parallel using 45 exposure units 500, the entire surface of the wafer can be exposed.
 なお、露光装置100は、コンプリメンタリ・リソグラフィに用いられ、ウエハW上に形成された例えばX軸方向を周期方向とするL/Sパターンに対するカットパターンの形成に用いられるので、パターンジェネレータ84で72000のリボン84bのうち、任意のリボン84bで反射するビームをオンにしてカットパターンを形成することができる。この場合に、72000本のビームが同時にオン状態とされても良いし、されなくても良い。 The exposure apparatus 100 is used for complementary lithography, and is used to form a cut pattern for an L / S pattern formed on the wafer W, for example, having an X-axis direction as a periodic direction. A cut pattern can be formed by turning on a beam reflected by an arbitrary ribbon 84b among the ribbons 84b. In this case, 72000 beams may or may not be turned on simultaneously.
 本実施形態に係る露光装置100では、上述した露光シーケンスに基づく、ウエハWに対する走査露光中に、主制御装置110によって位置計測系28の計測値に基づいて、ステージ駆動系26が制御されるとともに、各露光ユニット500の制御部11を介して光照射装置80及び電子ビーム光学系70が制御される。この際、主制御装置110の指示に基づき、制御部11によって、前述したドーズ制御が必要に応じて行われる。 In the exposure apparatus 100 according to the present embodiment, the stage drive system 26 is controlled by the main controller 110 based on the measurement value of the position measurement system 28 during the scanning exposure of the wafer W based on the exposure sequence described above. The light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main controller 110, the control unit 11 performs the above-described dose control as necessary.
 ところで、上で説明したドーズ制御は、照度分布調整素子94若しくはパターンジェネレータ84、又は照度分布調整素子94及びパターンジェネレータ84を制御することで行われるドーズ制御であるから、動的なドーズ制御と言える。 Incidentally, the dose control described above is a dose control performed by controlling the illuminance distribution adjusting element 94 or the pattern generator 84, or the illuminance distribution adjusting element 94 and the pattern generator 84, and thus can be said to be dynamic dose control. .
 しかしながら、露光装置100では、これに限られず、以下のようなドーズ制御をも採用することができる。 However, the exposure apparatus 100 is not limited to this, and the following dose control can also be employed.
 例えば光学系起因のブラー(ぼけ)及び/又はレジストブラーによって、図20(A)に示されるように、ウエハ上では本来正方形(又は矩形)であるべきカットパターン(レジストパターン)CPが、例えば4隅(コーナー)が丸まってカットパターンCP’のようになる場合がある。本実施形態では、図20(B)に示されるように、遮光膜58に形成されるアパーチャ58aの4隅に補助パターン58cを設けた非矩形のアパーチャ58a’を介して光ビームを光電層60に照射し、光電変換により発生した電子ビームを電子ビーム光学系70を介してウエハ上に照射することで、非矩形のアパーチャ58a’と形状の異なる形状の電子ビームの照射領域をウエハ上に形成しても良い。この場合、電子ビームの照射領域の形状と、ウエハに形成されるべきカットパターンCPの形状は、同じであっても良いし、異なっていても良い。例えば、レジストブラーの影響をほぼ無視できる場合には、電子ビームの照射領域の形状が、所望のカットパターンCPの形状(例えば、矩形あるいは正方形)とほぼ同じになるようにアパーチャ58a’の形状を決めれば良い。この場合のアパーチャ58a’の使用をドーズ制御と考えなくても良い。 For example, as shown in FIG. 20A, the cut pattern (resist pattern) CP that should be square (or rectangular) on the wafer is, for example, 4 due to blur (blur) and / or resist blur caused by the optical system. In some cases, the corners are rounded to form a cut pattern CP ′. In the present embodiment, as shown in FIG. 20B, the light beam is transmitted through the non-rectangular aperture 58a ′ provided with the auxiliary patterns 58c at the four corners of the aperture 58a formed in the light shielding film 58. And an electron beam generated by photoelectric conversion is irradiated onto the wafer via the electron beam optical system 70 to form an irradiation region of the electron beam having a shape different from that of the non-rectangular aperture 58a ′ on the wafer. You may do it. In this case, the shape of the electron beam irradiation region and the shape of the cut pattern CP to be formed on the wafer may be the same or different. For example, when the influence of the resist blur can be almost ignored, the shape of the aperture 58a ′ is set so that the shape of the electron beam irradiation region is substantially the same as the shape of the desired cut pattern CP (for example, rectangular or square). Just decide. The use of the aperture 58a 'in this case may not be considered as dose control.
 ここで、アパーチャ58a’では、矩形のアパーチャ58aの4隅の全てに補助パターン58cを設ける必要はなく、アパーチャ58aの4隅のうち、少なくとも一部にのみ補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャ58a’の一部でのみ矩形のアパーチャ58aの4隅の全てに補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャの一部をアパーチャ58a’とし、残りのをアパーチャ58aとしても良い。すなわち、遮光膜58に形成される複数のアパーチャ58a’の全ての形状を同一にする必要はない。なお、アパーチャの形状、大きさ等は、シミュレーション結果に基づいて設計することも可能であると思われるが、実際の露光結果に基づいて、例えば電子ビーム光学系70の特性に基づいて最適化することが望ましい。いずれにしても、ウエハ(ターゲット)上での照射領域の角部の丸まりを抑えるようにアパーチャそれぞれの形状が決定される。なお、前方散乱成分の影響もアパーチャ形状で軽減可能である。 Here, in the aperture 58a ', it is not necessary to provide the auxiliary pattern 58c at all four corners of the rectangular aperture 58a, and the auxiliary pattern 58c may be provided only at least at a part of the four corners of the aperture 58a. Further, the auxiliary patterns 58c may be provided at all four corners of the rectangular aperture 58a only at a part of the plurality of apertures 58a 'formed on the light shielding film 58. Further, a part of the plurality of apertures formed in the light shielding film 58 may be the aperture 58a ', and the rest may be the aperture 58a. That is, it is not necessary to make all the shapes of the plurality of apertures 58a 'formed in the light shielding film 58 the same. The shape, size, etc. of the aperture may be designed based on the simulation result, but is optimized based on the characteristics of the electron beam optical system 70 based on the actual exposure result, for example. It is desirable. In any case, the shape of each aperture is determined so as to suppress rounding of the corner of the irradiation area on the wafer (target). Note that the influence of the forward scattering component can also be reduced by the aperture shape.
 なお、例えば、光学系起因のブラーをほぼ無視できる場合には、アパーチャ58a’の形状と電子ビームの照射領域の形状が同じであっても良い。 For example, when the blur caused by the optical system can be almost ignored, the shape of the aperture 58a 'and the shape of the electron beam irradiation region may be the same.
 露光装置100では、電子ビーム光学系70を複数、一例として45個持っているが、その45個の電子ビーム光学系70は同様の仕様を満足するように、同様の製造工程を経て製造されるため、例えば図21(A)に模式的に示されるように、露光フィールドが歪む固有のディストーション(歪曲収差)が、45個の電子ビーム光学系70に共通して発生することがある。かかる複数の電子ビーム光学系70に共通のディストーションは、図21(B)に模式的に示されるように、光電層60上に位置する遮光膜58上のアパーチャ58aの配置を、上記ディストーションを打ち消すような、又は低減するような配置にして補正しても良い。なお、図21(A)の円は、電子ビーム光学系70の収差有効領域を示す。 The exposure apparatus 100 has a plurality of electron beam optical systems 70, for example, 45, but the 45 electron beam optical systems 70 are manufactured through the same manufacturing process so as to satisfy the same specifications. Therefore, for example, as schematically shown in FIG. 21A, inherent distortion (distortion aberration) in which the exposure field is distorted may occur in common in the 45 electron beam optical systems 70. The distortion common to the plurality of electron beam optical systems 70 cancels the distortion by arranging the apertures 58a on the light shielding film 58 located on the photoelectric layer 60, as schematically shown in FIG. It may be corrected by arranging in such a manner that it is reduced or reduced. Note that the circle in FIG. 21A indicates the aberration effective region of the electron beam optical system 70.
 図21(B)には、わかりやすくするため、各アパーチャ58aが、矩形ではなく、平行四辺形などとして示されているが、実際には、遮光膜58上のアパーチャ58aは矩形又は正方形で形成される。この例は、電子ビーム光学系70に固有の樽型ディストーションを、糸巻き型ディストーション形状に沿って複数のアパーチャ58aを光電層60上に配置することで、相殺する、又は低減する場合を示している。なお、電子ビーム光学系70のディストーションは、樽型ディストーションに限られず、例えば電子ビーム光学系70のディストーションが糸巻き型ディストーションの場合には、その影響を打ち消す、あるいは低減するように、複数のアパーチャ58aを樽型ディストーション形状に配置しても良い。また、各アパーチャ58aの配置に合わせて投影光学系86からの複数の光ビームの位置を調整しても良いし、調整しなくても良い。 In FIG. 21B, for easy understanding, each aperture 58a is shown as a parallelogram instead of a rectangle, but in reality, the aperture 58a on the light shielding film 58 is formed as a rectangle or a square. Is done. This example shows a case where the barrel distortion inherent in the electron beam optical system 70 is canceled or reduced by arranging a plurality of apertures 58a on the photoelectric layer 60 along the pincushion distortion shape. . The distortion of the electron beam optical system 70 is not limited to the barrel distortion. For example, when the distortion of the electron beam optical system 70 is a pincushion distortion, a plurality of apertures 58a are arranged so as to cancel or reduce the influence. May be arranged in a barrel-shaped distortion shape. Further, the positions of the plurality of light beams from the projection optical system 86 may or may not be adjusted according to the arrangement of the apertures 58a.
 以上説明したように、本実施形態に係る露光装置100は、マルチビーム光学システム200と、制御部11と、反射電子検出器106x1、106x2、106y1、106y2と、信号処理装置108と、を含んで構成される露光ユニット500を45ユニット備えている(図18参照)。マルチビーム光学システム200は、光照射装置80と、電子ビーム光学系70とを含む。光照射装置80は、個別に制御可能な複数の光ビームを提供可能なパターンジェネレータ84と、パターンジェネレータ84に照明光を照射する照明系82と、パターンジェネレータ84からの複数の光ビームを光電素子54に照射する投影光学系86と、を含み、電子ビーム光学系70は、複数の光ビームを光電素子54に照射することによって光電素子54から放出される電子を複数の電子ビームとしてウエハWに照射する。したがって、露光装置100によると、ブランキング・アパーチャが無いため、チャージアップや磁化による複雑なディストーションの発生源が根本的になくなるとともに、ターゲットの露光に寄与しない無駄電子(反射電子)が少なくなるので、長期的な不安定要素を排除することが可能になる。 As described above, the exposure apparatus 100 according to the present embodiment includes the multi-beam optical system 200, the control unit 11, the backscattered electron detectors 106x1 , 106x2 , 106y1 , 106y2, and the signal processing device 108. , 45 exposure units 500 are provided (see FIG. 18). The multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70. The light irradiation device 80 includes a pattern generator 84 capable of providing a plurality of individually controllable light beams, an illumination system 82 for irradiating the pattern generator 84 with illumination light, and a plurality of light beams from the pattern generator 84 as photoelectric elements. The electron beam optical system 70 irradiates the wafer W with a plurality of light beams emitted from the photoelectric element 54 by irradiating the photoelectric element 54 with a plurality of light beams. Irradiate. Therefore, according to the exposure apparatus 100, since there is no blanking / aperture, the source of complex distortion due to charge-up and magnetization is essentially eliminated, and there are fewer wasted electrons (reflected electrons) that do not contribute to the exposure of the target. It becomes possible to eliminate long-term unstable factors.
 また、本実施形態に係る露光装置100によると、実際のウエハの露光時には、主制御装置110は、ウエハWを保持するウエハステージWSTのY軸方向の走査(移動)をステージ駆動系26を介して制御する。これと並行して、主制御装置110は、m個(例えば45個)のマルチビーム光学システム200のそれぞれについて、光電素子54のn個(例えば72000個)のアパーチャ58aをそれぞれ通過したn本のビームの照射状態(オン状態とオフ状態)をアパーチャ58aごとにそれぞれ変化させるとともに、照度分布調整素子94を用いて個々の結晶に対応する分割領域毎に、又はパターンジェネレータ84を用いてビーム毎に光ビームの強度調整を行う。 In the exposure apparatus 100 according to the present embodiment, during actual wafer exposure, the main controller 110 scans (moves) the wafer stage WST holding the wafer W in the Y-axis direction via the stage drive system 26. Control. In parallel with this, the main controller 110, for each of the m (for example, 45) multi-beam optical systems 200, passes through the n (for example, 72,000) apertures 58 a of the photoelectric element 54. The irradiation state (ON state and OFF state) of the beam is changed for each aperture 58a, and the illumination distribution adjusting element 94 is used for each divided region corresponding to each crystal, or the pattern generator 84 is used for each beam. Adjust the intensity of the light beam.
 また、露光装置100では、静電マルチポール70cの第1静電レンズ70cにより、総電流量の変化によって生じる、クーロン効果に起因するX軸方向及びY軸方向に関する縮小倍率(の変化)を、高速で、かつ個別に補正する。また、露光装置100では、第2静電レンズ70cにより、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。 Further, in exposure apparatus 100, the first electrostatic lens 70c 1 of the electrostatic multipole 70c, caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) , Fast, and individually correct. Further, in exposure apparatus 100, the second electrostatic lens 70c 2, correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch To do.
 これにより、例えばArF液浸露光装置を用いたダブルパターニングなどによりウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンの所望のライン上の所望の位置にカットパターンを形成することが可能になり、高精度かつ高スループットな露光が可能になる。 Thereby, for example, a desired line of a fine line-and-space pattern in which the X-axis direction is formed in advance in each of, for example, 45 shot regions on the wafer by double patterning using an ArF immersion exposure apparatus or the like. A cut pattern can be formed at a desired position above, and exposure with high accuracy and high throughput is possible.
 したがって、本実施形態に係る露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、L/Sパターンの切断を行う場合に、各マルチビーム光学システム200で、複数のアパーチャ58aのうち、いずれのアパーチャ58aを通過するビームがオン状態となる場合であっても、換言すればオン状態となるビームの組み合わせの如何を問わず、ウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンのうちの所望のライン上の所望の位置にカットパターンを形成することが可能になる。 Therefore, when the above-described complementary lithography is performed using the exposure apparatus 100 according to the present embodiment and the L / S pattern is cut, each multi-beam optical system 200 uses any one of the plurality of apertures 58a. Even if the beam passing through the aperture 58a is in the on state, in other words, regardless of the combination of the beams in the on state, for example, X formed in advance in each of the 45 shot regions on the wafer It becomes possible to form a cut pattern at a desired position on a desired line among fine line and space patterns whose periodic direction is the axial direction.
 また、本実施形態に係る露光装置100では、前述の光電カプセル50が採用されていることから光電素子54の搬送が容易であるとともに、光電素子54の電子ビーム光学ユニット18Aの筐体19への組付けが容易である。また、第1の真空室34内を真空引きするだけで、複数の光電カプセル50それぞれの蓋部材64を、自重で本体部52から離し、真空対応アクチュエータ66により駆動される蓋収納プレート68によって同時に受け取り、丸穴68a内に収納することができるので、複数の光電カプセル50の蓋部材64の取り外しを短時間で行うことができる。また、電子ビーム光学ユニット18Aのメンテナンスの際などには、蓋収納プレート68の複数の丸穴68a内に個別に収納されている複数の蓋部材64を、同時に、対応する光電カプセル50の本体部52に押し付けた状態で、第1の真空室34内を大気開放するだけで、光電カプセル50の内部(真空)と外部(大気圧)との圧力差により、それぞれの蓋部材64を対応する本体部52と一体化させることができる。これにより、確実に、光電層60が空気に触れるのを阻止できる。さらに、この本体部52に蓋部材64が装着されている状態で、本体部52は、本体部52をリリース可能に支持する第1プレート36からリリース可能である。 Further, in the exposure apparatus 100 according to the present embodiment, since the photoelectric capsule 50 described above is employed, the photoelectric element 54 can be easily transported, and the photoelectric element 54 can be moved to the housing 19 of the electron beam optical unit 18A. Easy to assemble. Further, by simply evacuating the inside of the first vacuum chamber 34, the lid members 64 of the plurality of photoelectric capsules 50 are separated from the main body 52 by their own weight, and simultaneously by the lid storage plate 68 driven by the vacuum-compatible actuator 66. Since it can be received and stored in the round hole 68a, the lid members 64 of the plurality of photoelectric capsules 50 can be removed in a short time. Further, during maintenance of the electron beam optical unit 18A, a plurality of lid members 64 individually housed in the plurality of round holes 68a of the lid housing plate 68 are simultaneously attached to the main body portion of the corresponding photoelectric capsule 50. In a state where the first vacuum chamber 34 is released to the atmosphere while being pressed against the main body 52, each lid member 64 is moved to the corresponding main body by the pressure difference between the inside (vacuum) and the outside (atmospheric pressure) of the photoelectric capsule 50. It can be integrated with the part 52. Thereby, it can prevent reliably that the photoelectric layer 60 touches air. Further, the main body 52 can be released from the first plate 36 that releasably supports the main body 52 in a state in which the lid member 64 is attached to the main body 52.
 なお、上記実施形態に係る露光装置100において、図13に示されるリボン列85を12列有するパターンジェネレータ84に代えて、図22に示される、リボン列85を13列有するパターンジェネレータ184を用いても良い。パターンジェネレータ184では、図22中の最上部に位置するリボン列(図22では識別のため85aと表記されている)は、通常用いられる12列のリボン列(メインのリボン列)85のいずれかに不良が生じた際に、その不良が生じたリボン列85に代えて用いられるバックアップ用のリボン列である。バックアップ用のリボン列85aを複数設けても良い。 In the exposure apparatus 100 according to the above embodiment, a pattern generator 184 having 13 ribbon rows 85 shown in FIG. 22 is used instead of the pattern generator 84 having 12 ribbon rows 85 shown in FIG. Also good. In the pattern generator 184, the ribbon row located at the top in FIG. 22 (indicated as 85a for identification in FIG. 22) is one of the 12 commonly used ribbon rows (main ribbon row) 85. This is a backup ribbon row that is used in place of the ribbon row 85 in which the failure occurs when a failure occurs. A plurality of backup ribbon rows 85a may be provided.
 また、露光装置100では、照度分布調整素子94によってパターンジェネレータ84の受光面が実質的に2×12=24の部分領域に分割されている(図13参照)ので、分割された部分領域毎にバックアップ用のリボン列を設けても良い。 In the exposure apparatus 100, the light receiving surface of the pattern generator 84 is substantially divided into 2 × 12 = 24 partial areas by the illuminance distribution adjusting element 94 (see FIG. 13). A ribbon line for backup may be provided.
 なお、これまでの説明では、パターンジェネレータの各リボン84bと、光電素子54のアパーチャ58aとは1:1で対応する、すなわち各リボン84bとウエハ上に照射される電子ビームとは1:1で対応するものとした。しかし、これに限らず、メインのリボン列85のうちの1つのリボン列、例えばバックアップ用のリボン列85aに隣接するリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ターゲットであるウエハ上のあるターゲット領域(第1ターゲット領域と称する)に照射し、例えばリボン列85aに含まれる1つのリボン84b又はメインのリボン列85のうちの他のリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ウエハ上の第1ターゲット領域に照射可能に構成しても良い。すなわち、異なるリボン列にそれぞれ含まれる2つのリボン84bからの光ビームの照射に起因して光電素子54で生成された電子ビームをウエハ上の同一のターゲット領域に重畳して照射可能としても良い。これによって、例えばそのターゲット領域のドーズ量が所望状態になるようにしても良い。 In the description so far, each ribbon 84b of the pattern generator corresponds to the aperture 58a of the photoelectric element 54 in a 1: 1 ratio, that is, each ribbon 84b and the electron beam irradiated onto the wafer are 1: 1. Corresponding. However, the present invention is not limited to this, and the photoelectric element 54 is irradiated with a light beam from one ribbon row in the main ribbon row 85, for example, one ribbon 84b included in a ribbon row adjacent to the backup ribbon row 85a. A target region (referred to as a first target region) on the wafer that is the target is irradiated with the electron beam generated by the above-described process. For example, one ribbon 84b included in the ribbon row 85a or one of the main ribbon rows 85 An electron beam generated by irradiating the photoelectric element 54 with a light beam from one ribbon 84b included in another ribbon row may be configured to be able to irradiate the first target region on the wafer. In other words, the electron beam generated by the photoelectric element 54 resulting from the irradiation of the light beams from the two ribbons 84b included in different ribbon rows may be superimposed on the same target area on the wafer. Thereby, for example, the dose amount of the target region may be in a desired state.
 この他、図13に示されるパターンジェネレータ84に代えて、図23(A)に示されるように、メインのリボン列85に対して、リボン84bの幅(リボン84bの配列ピッッチ)の1倍未満の距離だけずらして配置した補正用のリボン列85bを追加したパターンジェネレータを用いても良い。図23(A)に示される補正用のリボン列85bは、図23(A)の円B内の近傍を拡大して示す図23(B)に示されるように、リボン84bの幅の半分(リボン84bの配列ピッチの半分(1μm))だけずらして配置されている。この補正用のリボン列85bを用いて、PEC(Proximity Effect Correction)等の微妙なDose調整を実施しても良い。GLV自体で中間調を作ることも可能であるが、さらに画素ずらしで補正したい場合に有効である。パターンジェネレータは、メインのリボン列85に加えて、バックアップ用のリボン列85aと補正用のリボン列85bとを、持っていても良い。 In addition, instead of the pattern generator 84 shown in FIG. 13, as shown in FIG. 23A, the width of the ribbon 84b (arrangement pitch of the ribbon 84b) is less than one time with respect to the main ribbon row 85. It is also possible to use a pattern generator to which a correction ribbon row 85b arranged by shifting the distance is added. The correction ribbon row 85b shown in FIG. 23A is a half of the width of the ribbon 84b (as shown in FIG. 23B, which is an enlarged view of the vicinity of the circle B in FIG. 23A). The ribbons 84b are arranged so as to be shifted by half (1 μm) of the arrangement pitch of the ribbons 84b. Using this correction ribbon row 85b, fine dose adjustment such as PEC (Proximity Effect 実 施 Correction) may be performed. Although it is possible to create a halftone with the GLV itself, it is effective when it is desired to further correct by pixel shifting. In addition to the main ribbon row 85, the pattern generator may have a backup ribbon row 85a and a correction ribbon row 85b.
 なお、上記実施形態では、パターンジェネレータ84を、GLVで構成する場合について例示したが、これに限らず、パターンジェネレータ84を、反射型の液晶表示素子あるいはデジタル・マイクロミラー・デバイス(Digital Micromirror Device)、PLV(Planer Light Valve)などの複数の可動反射素子を有する反射型の空間光変調器を用いて構成しても良い。あるいは、光照射装置80内部の光学系の構成によっては、各種の透過型の空間光変調器によってパターンジェネレータを構成しても良い。パターンジェネレータ84は、個別に制御可能な複数の光ビームを提供可能なパターンジェネレータであれば、空間光変調器に限らず、ビームのオン・オフは勿論、強度の調整、サイズの変更が可能なパターンジェネレータを用いることができる。また、パターンジェネレータ84は、ビームの制御(オン・オフ、強度の調整、サイズの変更など)が、必ずしも個々の光ビームについて可能である必要はなく、一部のビームについてのみ可能、あるいは複数のビーム毎に可能であっても良い。 In the above embodiment, the case where the pattern generator 84 is configured by GLV has been exemplified. However, the present invention is not limited to this, and the pattern generator 84 may be a reflective liquid crystal display element or a digital micromirror device (Digital Micromirror Device). Alternatively, a reflective spatial light modulator having a plurality of movable reflective elements such as PLV (Planer Light Light Valve) may be used. Alternatively, depending on the configuration of the optical system inside the light irradiation device 80, the pattern generator may be configured by various transmissive spatial light modulators. The pattern generator 84 is not limited to a spatial light modulator as long as it can provide a plurality of individually controllable light beams. In addition to turning on and off the beam, the intensity can be adjusted and the size can be changed. A pattern generator can be used. The pattern generator 84 does not necessarily need to be able to control beams (on / off, intensity adjustment, size change, etc.) for individual light beams, but only for some beams, or a plurality of It may be possible for each beam.
 したがって、上記実施形態の光学ユニット18Bに相当する、光学ユニットの構成は、種々考えられる。図24には、種々のタイプの光学ユニットの構成例が示されている。図24(A)に示される光学ユニットは、L型反射タイプと呼ぶことができ、XZ平面上に所定の位置関係で2次元配置された複数の照明系を含む照明系ユニットIUと、XY平面に対して45度傾斜したベースBSの一面に複数の照明系に個別に対応する位置関係で2次元配置された複数のパターンジェネレータ84と、複数のパターンジェネレータ84及び対応する光電素子に個別に対応する位置関係でXY平面上で2次元配置された複数の投影光学系を含む光学ユニットIMUと、を備えている。複数の投影光学系それぞれの光軸は、図示は省略されているが、対応する電子ビーム光学系の光軸に一致している。この場合、パターンジェネレータ84は、上記実施形態と同様に反射型の空間光変調器で構成される。このL型反射タイプは、パターンジェネレータに対するアクセスが容易であり、パターンジェネレータの受光面のサイズに対する制約が前述した実施形態などに比べて緩やかであるという利点がある。 Therefore, various configurations of the optical unit corresponding to the optical unit 18B of the above embodiment can be considered. FIG. 24 shows configuration examples of various types of optical units. The optical unit shown in FIG. 24A can be called an L-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems arranged two-dimensionally in a predetermined positional relationship on the XZ plane, and an XY plane. A plurality of pattern generators 84 two-dimensionally arranged on one surface of the base BS inclined at 45 degrees with respect to a plurality of illumination systems individually, and a plurality of pattern generators 84 and corresponding photoelectric elements individually And an optical unit IMU including a plurality of projection optical systems arranged two-dimensionally on the XY plane in a positional relationship. Although not shown, the optical axes of the plurality of projection optical systems coincide with the optical axes of the corresponding electron beam optical systems. In this case, the pattern generator 84 is formed of a reflective spatial light modulator as in the above embodiment. This L-type reflection type has an advantage that the pattern generator can be easily accessed, and the restriction on the size of the light receiving surface of the pattern generator is gentler than that of the above-described embodiment.
 図24(B)に示される光学ユニットは、U型反射タイプと呼ぶことができ、XY平面上に所定の位置関係で2次元配置された複数の照明系を含む照明系ユニットIUと、XY平面に対して-45度傾斜したベースBSの一面に複数の照明系に個別に対応する位置関係で2次元配置された複数の反射型の空間光変調器84と、XY平面に対して45度傾斜したベースBSの一面に複数の空間光変調器84に対応する位置関係で2次元配置された複数の反射型の空間光変調器84と、複数の空間光変調器84及び対応する光電素子に個別に対応する位置関係でXY平面上で2次元配置された複数の投影光学系を含む光学ユニットIMUと、を備えている。複数の投影光学系それぞれの光軸は、図示は省略されているが、対応する電子ビーム光学系の光軸に一致している。この場合、例えば一方の反射型の空間光変調器84をパターンジェネレータとして用いるものとすると、他方の空間光変調器84を、前述した照度分布調整素子94と同等以上の分解能を有する照度分布調整装置として用いることができる。 The optical unit shown in FIG. 24B can be referred to as a U-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on the XY plane, and an XY plane. A plurality of reflective spatial light modulators 84 1 arranged two-dimensionally on one surface of the base BS 1 inclined at −45 degrees with respect to the plurality of illumination systems individually, and 45 with respect to the XY plane. A plurality of reflective spatial light modulators 84 2 that are two-dimensionally arranged on one surface of the base BS 2 tilted at a degree in a positional relationship corresponding to the plurality of spatial light modulators 84 1 , a plurality of spatial light modulators 84 2, and And an optical unit IMU including a plurality of projection optical systems that are two-dimensionally arranged on the XY plane in a positional relationship individually corresponding to corresponding photoelectric elements. Although not shown, the optical axes of the plurality of projection optical systems coincide with the optical axes of the corresponding electron beam optical systems. In this case, for example, it shall be used one reflective spatial light modulator 84 2 as a pattern generator, and the other of the spatial light modulator 84 1, the illuminance distribution with a resolution equal to or more than the illuminance distribution adjusting element 94 described above It can be used as an adjusting device.
 図24(C)に示される光学ユニットは、直筒透過型タイプと呼ぶことができ、照明系とパターンジェネレータ84と投影光学系とが同一の光軸上に配置されて成る光学系(光照射装置80A)が、複数、複数の光電素子に対応する所定の位置関係で同一の筐体(鏡筒)78内でXY2次元配置されている。複数の光照射装置80Aの光軸は、対応する電子ビーム光学系の光軸と一致している。この直筒透過型タイプでは、パターンジェネレータ84は、透過型の空間光変調器、例えば透過型の液晶表示素子などを用いる必要がある。直筒透過型タイプは、各軸毎の精度保証がし易い、鏡筒サイズがコンパクト、並びに図25(A)及び図25(B)をそれぞれ用いて後述する、2つの方式の両者に対応可能であるというメリットがある。 The optical unit shown in FIG. 24C can be called a straight tube transmission type, and an optical system (light irradiation device) in which an illumination system, a pattern generator 84, and a projection optical system are arranged on the same optical axis. 80A) are two-dimensionally arranged in the same housing (lens barrel) 78 in a predetermined positional relationship corresponding to a plurality of photoelectric elements. The optical axes of the plurality of light irradiation devices 80A coincide with the optical axes of the corresponding electron beam optical systems. In this straight tube transmissive type, the pattern generator 84 needs to use a transmissive spatial light modulator such as a transmissive liquid crystal display element. The straight tube transmission type is easy to guarantee the accuracy for each axis, the lens barrel size is compact, and it can handle both of the two methods described later with reference to FIGS. 25 (A) and 25 (B). There is merit that there is.
 図24(D)は、上記実施形態の露光装置100で採用した光学ユニット18Bと同様のタイプの光学ユニットを、簡略化して示す。この図24(D)に示される光学ユニットは、直筒反射型タイプと呼ぶことができ、直筒透過型タイプと同様のメリットがある。 FIG. 24D shows a simplified optical unit of the same type as the optical unit 18B employed in the exposure apparatus 100 of the above embodiment. The optical unit shown in FIG. 24D can be called a straight tube reflection type, and has the same merit as the straight tube transmission type.
 上述の実施形態では、アパーチャ58aを介して光電層60に光を照射しているが、アパーチャを用いなくても良い。例えば図25(A)に示されるように、パターンジェネレータで形成した光パターン像を光電素子上に投影し、さらに光電素子で電子像に変換してウエハ面上に縮小して結像するようにしても良い。 In the above-described embodiment, the photoelectric layer 60 is irradiated with light through the aperture 58a, but the aperture may not be used. For example, as shown in FIG. 25A, an optical pattern image formed by a pattern generator is projected onto a photoelectric element, further converted into an electronic image by the photoelectric element, and reduced to form an image on the wafer surface. May be.
 上述の実施形態では、図25(B)に示されるように、複数のアパーチャを介して光電層に光を照射している。このようにアパーチャを用いることで、パターンジェネレータと光電素子との間の投影光学系の収差などの影響をうけずに、所望の断面形状を有する光ビームを光電層に入射させることできる。なお、アパーチャと光電層とは、前述した実施形態のように一体的に形成されていても良いし、所定のクリアランス(隙間、ギャップ)を介して対向配置されていても良い。 In the above-described embodiment, as shown in FIG. 25B, the photoelectric layer is irradiated with light through a plurality of apertures. By using the aperture in this way, a light beam having a desired cross-sectional shape can be incident on the photoelectric layer without being affected by the aberration of the projection optical system between the pattern generator and the photoelectric element. Note that the aperture and the photoelectric layer may be integrally formed as in the above-described embodiment, or may be disposed to face each other with a predetermined clearance (gap, gap).
 なお、上記実施形態では、真空隔壁を兼ねる透明の板部材56とアパーチャ58aが形成された遮光膜58と光電層60とが一体である場合について説明したが、真空隔壁と、遮光膜(アパーチャ膜)と、光電層とは、種々の配置が可能である。 In the above embodiment, the case where the transparent plate member 56 that also serves as the vacuum partition, the light shielding film 58 formed with the aperture 58a, and the photoelectric layer 60 are integrated is described. However, the vacuum partition, the light shielding film (aperture film), and the like. ) And the photoelectric layer can be arranged in various ways.
 なお、上記実施形態では、蓋収納プレート68の円形開口68cの周囲に引き出し電極112を設ける場合について例示したが、これに代えて、あるいはこれに加えて蓋収納プレート68に電子ビームの位置を計測する計測部材及び電子ビームを検出するセンサの少なくとも一方を設けても良い。前者のビームの位置を計測する計測部材としては、開口を有する反射面と該反射面からの反射電子を検出する検出装置との組合せ、あるいは表面にマークが形成された反射面とそのマークから発生する反射電子を検出する検出装置との組合せなどを用いることができる。 In the above-described embodiment, the case where the extraction electrode 112 is provided around the circular opening 68c of the lid storage plate 68 is illustrated. However, instead of or in addition to this, the position of the electron beam is measured on the lid storage plate 68. You may provide at least one of the measurement member to perform, and the sensor which detects an electron beam. The former is a combination of a reflective surface with an aperture and a detector that detects reflected electrons from the reflective surface, or a reflective surface with a mark formed on the surface and the mark. A combination with a detection device for detecting reflected electrons to be used can be used.
《第2の実施形態》
 図26には、第2の実施形態に係る露光装置1000の構成が概略的に示されている。ここで、前述した第1の実施形態に係る露光装置100と同一若しくは同等の構成については同一の符号を用いるとともにその説明を省略する。
<< Second Embodiment >>
FIG. 26 schematically shows a configuration of an exposure apparatus 1000 according to the second embodiment. Here, the same reference numerals are used for the same or equivalent components as those of the exposure apparatus 100 according to the first embodiment described above, and the description thereof is omitted.
 露光装置1000は、前述の第1の実施形態に係る露光装置100において、光電カプセル50の本体部52が挿入されていた第1プレート36の貫通孔36aが第1の真空室34を区画する、石英ガラスなどから成る真空隔壁132によって外部に対して気密状態で閉塞されている点及び第1の真空室34が形成される筐体19の第1部分19aの内部の構成が、前述した第1の実施形態に係る露光装置100と相違する。以下、相違点を中心として説明する。 In the exposure apparatus 1000, in the exposure apparatus 100 according to the first embodiment described above, the through hole 36 a of the first plate 36 into which the main body portion 52 of the photoelectric capsule 50 is inserted defines the first vacuum chamber 34. The structure of the first portion 19a of the casing 19 in which the first vacuum chamber 34 is formed and the point that the vacuum partition wall 132 made of quartz glass or the like is airtightly sealed with respect to the outside are described above. This is different from the exposure apparatus 100 according to the embodiment. Hereinafter, the difference will be mainly described.
 図27には、本第2の実施形態に係る露光装置1000の1つの電子ビーム光学系70に対応する、筐体19の内部の構成が、示されている。図27に示されるように、真空隔壁132から所定距離下方には、光電素子136が配置されている。光電素子136は、図28(A)に示されるように、前述の光電素子54と同様の順序で配置され、同様の手法によって一体的に形成された石英(S)から成る基材134、遮光膜58及び光電層60を備えている。光電素子136の遮光膜58には、前述と同様の配置で、少なくとも72000個のアパーチャ58aが形成されている。 FIG. 27 shows an internal configuration of the housing 19 corresponding to one electron beam optical system 70 of the exposure apparatus 1000 according to the second embodiment. As shown in FIG. 27, a photoelectric element 136 is disposed below the vacuum partition wall 132 by a predetermined distance. As shown in FIG. 28A, the photoelectric element 136 is arranged in the same order as the photoelectric element 54 described above, and is a base material made of quartz (S i O 2 ) integrally formed by the same method. 134, a light shielding film 58 and a photoelectric layer 60 are provided. The light shielding film 58 of the photoelectric element 136 is formed with at least 72,000 apertures 58a in the same arrangement as described above.
 図27に戻り、第1の真空室34内部の光電素子136の下方には、引き出し電極112が配置されている。 27, the extraction electrode 112 is disposed below the photoelectric element 136 inside the first vacuum chamber 34.
 露光装置1000では、光電カプセル50は用いられていないため、第1の真空室34内に蓋収納プレート68及び真空対応アクチュエータ66は、設けられていない(図26及び図27参照)。 In the exposure apparatus 1000, since the photoelectric capsule 50 is not used, the lid storage plate 68 and the vacuum-compatible actuator 66 are not provided in the first vacuum chamber 34 (see FIGS. 26 and 27).
 本第2の実施形態に係る電子ビーム光学ユニット18Aは、ベースプレート38を含み、その下方の構成(第2の真空室72内部の電子ビーム光学系70を含む)は、前述した第1の実施形態に係る露光装置100と同様である。また、電子ビーム光学ユニット18A以外の構成も、前述した露光装置100と同様である。 The electron beam optical unit 18A according to the second embodiment includes a base plate 38, and the configuration below it (including the electron beam optical system 70 inside the second vacuum chamber 72) is the first embodiment described above. This is the same as the exposure apparatus 100 according to FIG. The configuration other than the electron beam optical unit 18A is the same as that of the exposure apparatus 100 described above.
 このようにして構成された露光装置1000では、前述した第1の実施形態に係る露光装置100と同等の効果を得ることができる他、真空隔壁132とは別に光電素子136が設けられているため、以下のような追加の機能を持っても良い。 The exposure apparatus 1000 configured as described above can obtain the same effects as those of the exposure apparatus 100 according to the first embodiment described above, and is provided with the photoelectric element 136 separately from the vacuum partition wall 132. You may have the following additional functions.
 すなわち、電子ビーム光学系の数を増やすため、鏡筒の径を小さくしていくと、電子ビーム光学系の像面湾曲成分が顕著になる。例えば図29に模式的に示されるような像面湾曲を電子ビーム光学系がその収差として持つ場合、図29に模式的に示されるように、光電層60(正しくは、光電素子136の全体)を、像面の湾曲成分と逆位相の湾曲が光電層60に生じるように撓ませる、すなわち光電層60の電子放出面を湾曲させる(非平面にする)。これにより、電子ビーム光学系70の像面湾曲の少なくとも一部を補償し、像面湾曲に起因する電子ビーム像の位置ずれ、ぼけ(デフォーカス)等を抑制する。なお、光電層60の電子放出面の湾曲量を、可変にしても良い。例えば、電子ビーム光学系70の光学特性(収差、例えば像面湾曲)の変化に応じて、電子放出面の湾曲量を変えても良い。したがって、対応する電子ビーム光学系の光学特性にそれぞれ応じて、複数の光電素子136相互間で電子放出面の湾曲量を異ならせても良い。また、図29では、光電層60に+Z方向に(投影光学系86に向かって)凸の湾曲を生じさせる場合の例が示されているが、これは-Z方向に凸の像面湾曲を電子ビーム光学系がその収差として持つ場合を仮定したため、この像面湾曲の影響を相殺する、又は低減する湾曲を光電層60に与えるためである。したがって、+Z方向に凸の像面湾曲を電子ビーム光学系がその収差として持つ場合、光電層60に-Z方向に凸の湾曲を生じさせる必要がある。 That is, when the diameter of the lens barrel is reduced in order to increase the number of electron beam optical systems, the curvature of field component of the electron beam optical system becomes remarkable. For example, when the electron beam optical system has a field curvature as schematically shown in FIG. 29 as its aberration, as shown schematically in FIG. 29, the photoelectric layer 60 (correctly, the entire photoelectric element 136). Is bent so that a curve having a phase opposite to that of the curvature component of the image plane is generated in the photoelectric layer 60, that is, the electron emission surface of the photoelectric layer 60 is bent (made non-planar). Thereby, at least a part of the curvature of field of the electron beam optical system 70 is compensated, and displacement, defocusing, etc. of the electron beam image caused by the curvature of field are suppressed. Note that the amount of curvature of the electron emission surface of the photoelectric layer 60 may be variable. For example, the amount of curvature of the electron emission surface may be changed in accordance with a change in optical characteristics (aberration, for example, field curvature) of the electron beam optical system 70. Therefore, the amount of curvature of the electron emission surface may be made different among the plurality of photoelectric elements 136 according to the optical characteristics of the corresponding electron beam optical system. FIG. 29 shows an example in which a convex curvature is generated in the + Z direction (toward the projection optical system 86) in the photoelectric layer 60. This is because the convex curvature of field in the −Z direction is generated. This is because it is assumed that the electron beam optical system has the aberration, so that the photoelectric layer 60 is curved to cancel or reduce the influence of the curvature of field. Therefore, if the electron beam optical system has a convex curvature of field in the + Z direction as its aberration, it is necessary to cause the convex curvature in the −Z direction in the photoelectric layer 60.
 なお、本第2の実施形態に係る露光装置1000においても、前述した露光装置100と同様に、X軸方向に長い矩形の露光フィールドが採用されているので、図29中に短い両矢印で示されるように、1方向の曲げ(一軸回りの曲げ、すなわちX軸方向に関して湾曲する、XZ断面内での曲げ)でも効果が高い。なお、光電素子136(光電層60)を1方向の曲げに限らず、4隅を下方に撓ませるなど3次元的に変形させても勿論良い。光電素子136の変形のさせ方を変えることで、球面収差に起因する光学パターン像の位置ずれ、変形等を効果的に抑制することができる。光電層60の電子放出面を湾曲させると、その電子放出面の一部(例えば中央部)と、他部(例えば周辺部)とで、電子ビーム光学系70の光軸AXeの方向に関して位置が互いに異なることになる。 Note that, in the exposure apparatus 1000 according to the second embodiment, a rectangular exposure field that is long in the X-axis direction is adopted as in the exposure apparatus 100 described above. As described above, even in one-direction bending (bending around one axis, that is, bending in the XZ section that curves in the X-axis direction), the effect is high. Of course, the photoelectric element 136 (photoelectric layer 60) is not limited to bending in one direction, and may be three-dimensionally deformed, for example, by bending the four corners downward. By changing how the photoelectric element 136 is deformed, it is possible to effectively suppress displacement, deformation, and the like of the optical pattern image due to spherical aberration. When the electron emission surface of the photoelectric layer 60 is curved, the position of the electron emission surface in the direction of the optical axis AXe of the electron beam optical system 70 is changed between a part of the electron emission surface (for example, the central portion) and the other portion (for example, the peripheral portion). It will be different from each other.
 なお、光電層60の厚みに分布を持たせて、電子放出面の一部(例えば中央部)と、他部(例えば周辺部)の光軸AXeの方向の位置が異なるようにしても良い。また、第1実施形態のように、光電素子が真空隔壁を兼ねる場合にも、光電層60の電子放出面を湾曲(非平面)にしても良い。 It should be noted that the thickness of the photoelectric layer 60 may be distributed so that the position of the part of the electron emission surface (for example, the central part) and the other part (for example, the peripheral part) in the direction of the optical axis AXe are different. Also, as in the first embodiment, when the photoelectric element also serves as a vacuum partition, the electron emission surface of the photoelectric layer 60 may be curved (non-planar).
 また、光電素子136のようなアパーチャが光電層と一体的に設けられたいわばアパーチャ一体型の光電素子を用いる場合、そのアパーチャ一体型光電素子を、XY平面内で駆動可能なアクチュエータを設けることとしても良い。この場合には、例えば、アパーチャ一体型光電素子として、図30に示されるように、1列置きにピッチaのアパーチャ58aの列と、ピッチbのアパーチャ58bの列とが形成されたマルチピッチ型のアパーチャ一体型光電素子136aを用いても良い。ただし、この場合には、前述した光学特性調整装置87を用いて、X軸方向の投影倍率(倍率)を変更するズーム機能を併用する。かかる場合には、図31(A)に示されるように、アパーチャ一体型光電素子136aのアパーチャ58aの列にビームを照射する状態から、光学特性調整装置87を用いて、投影光学系86のX軸方向の倍率を拡大し、図31(B)中の両矢印で示されるように、複数のビームを全体的にX軸方向に拡大した後、図31(C)中の白抜き矢印で示されるように+Y方向に、アパーチャ一体型光電素子136aを駆動することで、ビームをアパーチャ58bの列に照射することが可能になる。これにより、ピッチが異なるラインパターンの切断用のカットパターン形成が可能になる。ただし、ビームのサイズ、形状によっては、必ずしも投影光学系86のズーム機能を用いなくても、アパーチャ一体型光電素子136aを駆動するのみで、ビームをピッチがaのアパーチャ58aの列とピッチがbのアパーチャ58bの列とに切り換えて照射することが可能になる。要は、切り換えの前後のいずれの状態においても、複数のビーム(レーザビーム)のそれぞれが対応するアパーチャ58a又は58bを含む光電素子136a上の領域に照射されれば良い。すなわち、光電素子136a上の複数のアパーチャ58a又は58bそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。 In addition, when using an aperture-integrated photoelectric element in which an aperture such as the photoelectric element 136 is provided integrally with the photoelectric layer, an actuator that can drive the aperture-integrated photoelectric element in the XY plane is provided. Also good. In this case, for example, as an aperture-integrated photoelectric element, as shown in FIG. 30, a multi-pitch type in which rows of apertures 58a with pitch a and rows of apertures 58b with pitch b are formed every other row. The aperture integrated photoelectric element 136a may be used. However, in this case, a zoom function for changing the projection magnification (magnification) in the X-axis direction is also used by using the optical characteristic adjusting device 87 described above. In such a case, as shown in FIG. 31A, from the state of irradiating the beam to the column of apertures 58a of the aperture-integrated photoelectric element 136a, the X of the projection optical system 86 is used by using the optical characteristic adjusting device 87. The magnification in the axial direction is enlarged, and as indicated by a double-headed arrow in FIG. 31 (B), a plurality of beams are expanded in the X-axis direction as a whole, and then indicated by a white arrow in FIG. 31 (C). As described above, by driving the aperture-integrated photoelectric element 136a in the + Y direction, it becomes possible to irradiate the array of apertures 58b with the beam. This makes it possible to form a cut pattern for cutting line patterns having different pitches. However, depending on the size and shape of the beam, even if the zoom function of the projection optical system 86 is not necessarily used, only the aperture-integrated photoelectric element 136a is driven, and the beam is arranged in a row of apertures 58a with a pitch a and pitch b. It is possible to irradiate by switching to the row of apertures 58b. In short, in any state before and after the switching, each of the plurality of beams (laser beams) may be irradiated to a region on the photoelectric element 136a including the corresponding aperture 58a or 58b. That is, the size of each of the plurality of apertures 58a or 58b on the photoelectric element 136a may be smaller than the size of the cross section of the corresponding beam.
 なお、ピッチが互いに異なる3種類以上のアパーチャの列を光電素子136の遮光膜58上に形成し、上述と同様の手順で露光を行うことで、3つ以上のピッチのカットパターンの形成に対応可能にしても良い。 Note that three or more types of aperture rows having different pitches are formed on the light-shielding film 58 of the photoelectric element 136, and exposure is performed in the same procedure as described above, thereby corresponding to the formation of cut patterns having three or more pitches. It may be possible.
 上述したように、投影光学系86の倍率を変更すると、ビーム(レーザビーム)の被照射面内の単位面積当たりのビームの強度が変わるので、予めシミュレーションなどで、倍率の変化とビームの強度の変化との関係を求めておき、その関係に基づいて、ビームの強度を変更(調整)することとしても良い。あるいは、倍率を変更したときの一部のビームの強度をセンサで検出し、その検出された強度の情報に基づいてビームの強度を変更(調整)することとしても良い。後者の場合、例えば図27に示されるように、光電素子136の基材の上面の一端部にセンサ135を設け、上述したアクチュエータによって光電素子136を駆動することでセンサ135をXY平面内の所望の位置に移動可能に構成しても良い。なお、光電素子136は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良い。 As described above, when the magnification of the projection optical system 86 is changed, the intensity of the beam per unit area in the irradiated surface of the beam (laser beam) changes. A relationship with the change may be obtained, and the intensity of the beam may be changed (adjusted) based on the relationship. Alternatively, the intensity of a part of the beam when the magnification is changed may be detected by a sensor, and the intensity of the beam may be changed (adjusted) based on the detected intensity information. In the latter case, for example, as shown in FIG. 27, a sensor 135 is provided on one end of the upper surface of the base of the photoelectric element 136, and the sensor 135 is driven in the XY plane by driving the photoelectric element 136 by the actuator described above. You may comprise so that a movement to this position is possible. The photoelectric element 136 can move not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z-axis parallel to the optical axis AXe. You may comprise.
 ところで、これまでは、特に説明しなかったが、光電層60は、ある程度の面積を有するため、その面内の光電変換効率が均一である保証はなく、光電層60は光電変換効率の面内分布を有すると考えるのが実際的である。したがって、光電層60の光電変換効率の面内分布に応じて、光電素子に照射される光ビームの強度の調整を行なっても良い。すなわち、光電層60が第1の光電変換効率の第1部分と第2の光電変換効率の第2部分とを有するとすると、第1の光電変換効率及び第2の光電変換効率にそれぞれ基づいて、第1部分に照射されるビームの強度及び第2部分に照射されるビームの強度を調整することとしても良い。あるいは、第1の光電変換効率と第2の光電変換効率との違いを補償するように第1部分に照射される光ビームの強度と第2部分に照射される光ビームの強度を調整しても良い。 By the way, although not particularly described so far, since the photoelectric layer 60 has a certain area, there is no guarantee that the in-plane photoelectric conversion efficiency is uniform, and the photoelectric layer 60 has an in-plane photoelectric conversion efficiency. It is practical to think of having a distribution. Therefore, the intensity of the light beam applied to the photoelectric element may be adjusted according to the in-plane distribution of the photoelectric conversion efficiency of the photoelectric layer 60. That is, assuming that the photoelectric layer 60 has a first part of the first photoelectric conversion efficiency and a second part of the second photoelectric conversion efficiency, based on the first photoelectric conversion efficiency and the second photoelectric conversion efficiency, respectively. The intensity of the beam applied to the first part and the intensity of the beam applied to the second part may be adjusted. Alternatively, the intensity of the light beam applied to the first part and the intensity of the light beam applied to the second part are adjusted so as to compensate for the difference between the first photoelectric conversion efficiency and the second photoelectric conversion efficiency. Also good.
 また、本第2の実施形態に係る露光装置1000において、アパーチャ一体型光電素子136に代えて、アパーチャ板(アパーチャ部材)が光電素子と別体であるいわばアパーチャ別体型光電素子を用いても良い。図32(A)に示されるアパーチャ別体型光電素子138は、基材134の下面(光射出面)に光電層60が形成されて成る光電素子140と、光電素子140の基材134の上方(光入射面側)に例えば1μ以下の所定のクリアランス(間隙、ギャップ)を隔てて配置された多数のアパーチャ58aが形成された遮光部材から成るアパーチャ板142とを含む。 In the exposure apparatus 1000 according to the second embodiment, instead of the aperture-integrated photoelectric element 136, an aperture-separated photoelectric element in which the aperture plate (aperture member) is separate from the photoelectric element may be used. . An aperture-separated photoelectric element 138 shown in FIG. 32A includes a photoelectric element 140 in which a photoelectric layer 60 is formed on the lower surface (light emitting surface) of a base material 134, and an upper side of the base material 134 of the photoelectric element 140 ( And an aperture plate 142 made of a light-shielding member having a large number of apertures 58a disposed on the light incident surface side with a predetermined clearance (gap, gap) of 1 μm or less, for example.
 アパーチャ別体型光電素子を用いる場合、アパーチャ板142をXY平面内で駆動可能な駆動機構を設けることが望ましい。かかる場合には、前述したアパーチャ一体型光電素子136aと同様のマルチピッチ型のアパーチャを、アパーチャ板142に形成し、投影光学系86の倍率の拡大機能と、光電素子140とアパーチャ板142とを、両者の位置関係を維持した状態で駆動する機能とを用いることで、前述と同様の手順で、ピッチが異なるラインパターンの切断用のカットパターンの形成が可能になる。これに加えて、光電素子140をXY平面内で駆動可能な駆動機構を設けても良い。例えば、光電素子140及びアパーチャ板142の一方のみを駆動することで、アパーチャ板142と光電素子140とのXY平面内の相対位置をずらすことで、光電層60の長寿命化を図ることができる。なお、アパーチャ板142に対して投影光学系86をXY平面内で移動可能に構成しても良い。また、アパーチャ板142は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良く、光電素子140とアパーチャ板142とのギャップを調整可能としても良い。 When using an aperture-separated photoelectric element, it is desirable to provide a drive mechanism that can drive the aperture plate 142 in the XY plane. In such a case, a multi-pitch aperture similar to the aperture-integrated photoelectric element 136a described above is formed on the aperture plate 142, and the magnification enlargement function of the projection optical system 86, the photoelectric element 140, and the aperture plate 142 are provided. By using the function of driving while maintaining the positional relationship between the two, it becomes possible to form a cut pattern for cutting line patterns having different pitches by the same procedure as described above. In addition to this, a driving mechanism capable of driving the photoelectric element 140 in the XY plane may be provided. For example, by driving only one of the photoelectric element 140 and the aperture plate 142 and shifting the relative position of the aperture plate 142 and the photoelectric element 140 in the XY plane, the lifetime of the photoelectric layer 60 can be increased. . Note that the projection optical system 86 may be configured to be movable in the XY plane with respect to the aperture plate 142. The aperture plate 142 can move not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z-axis parallel to the optical axis AXe. The gap between the photoelectric element 140 and the aperture plate 142 may be adjustable.
 なお、アパーチャ別体型光電素子を用いる場合、光電素子140を移動する駆動機構だけを設けるようにしても良い。この場合も、光電素子140をXY平面内で移動することによって、光電層60の長寿命化を図ることができる。また、第1実施形態で説明した一体型光電素子を用いる場合にも、光電素子54を移動する駆動機構を設けても良い。この場合も、光電素子54をXY平面内で移動することによって、光電層60の長寿命化を図ることができる。 In addition, when using an aperture-separated photoelectric element, only a driving mechanism for moving the photoelectric element 140 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be extended by moving the photoelectric element 140 in the XY plane. In addition, even when the integrated photoelectric element described in the first embodiment is used, a driving mechanism for moving the photoelectric element 54 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be extended by moving the photoelectric element 54 in the XY plane.
 なお、上述したアパーチャ板のアパーチャと、光電素子のアパーチャとを併用しても良い。すなわち、前述したアパーチャ一体型光電素子の光ビームの入射側に、アパーチャ板を配置し、アパーチャ板のアパーチャを介したビームをアパーチャ一体型光電素子のアパーチャを介して光電層に入射させても良い。 It should be noted that the aperture plate aperture and the photoelectric element aperture described above may be used in combination. That is, an aperture plate may be arranged on the light beam incident side of the above-described aperture-integrated photoelectric element, and the beam that has passed through the aperture plate aperture may be incident on the photoelectric layer via the aperture-integrated photoelectric element aperture. .
 なお、ピッチが異なるラインパターンの切断用のカットパターンの形成に際して、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板を交換しても良い。また、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板の代わりに、透過型液晶素子などの空間光変調器を使って複数のアパーチャを形成しても良い。 In addition, when the above-described aperture-separated photoelectric element is used in forming a cut pattern for cutting line patterns having different pitches, the aperture plate may be replaced. When the above-described aperture-separated photoelectric element is used, a plurality of apertures may be formed using a spatial light modulator such as a transmissive liquid crystal element instead of the aperture plate.
 なお、上では、ピッチが異なるラインパターンの切断用のカットパターンの形成に際して、投影光学系86の倍率の拡大機能を用いる場合について説明したが、倍率の変更の代わりに、投影光学系86からアパーチャ一体型光電素子136a又はアパーチャ板142の同一のアパーチャ列の複数のアパーチャにそれぞれ照射される複数のビームのピッチを変更する装置を設けても良い。例えば、投影光学系86と光電素子との間の光路中に、複数の平行平板を配置して、その傾斜角を変えることで複数のビームのピッチを変更することができる。 In the above description, the case where the magnification enlargement function of the projection optical system 86 is used when forming cut patterns for cutting line patterns having different pitches has been described. However, instead of changing the magnification, the aperture from the projection optical system 86 is used. There may be provided a device for changing the pitch of a plurality of beams irradiated respectively to a plurality of apertures in the same aperture row of the integrated photoelectric element 136a or the aperture plate 142. For example, it is possible to change the pitch of the plurality of beams by arranging a plurality of parallel plates in the optical path between the projection optical system 86 and the photoelectric element and changing the inclination angle thereof.
 なお、アパーチャ一体型光電素子としては、図28(A)に示されるタイプに限らず、例えば図28(B)に示されるように、図28(A)の光電素子136において、アパーチャ58a内の空間が透明膜148で埋められたタイプの光電素子136bを用いることもできる。光電素子136bにおいて、透明膜148の代わりに、基材の一部がアパーチャ58a内の空間を埋めるようにすることもできる。 The aperture-integrated photoelectric element is not limited to the type shown in FIG. 28A. For example, as shown in FIG. 28B, the photoelectric element 136 in FIG. A photoelectric element 136b in which the space is filled with a transparent film 148 can also be used. In the photoelectric element 136b, instead of the transparent film 148, a part of the base material can fill the space in the aperture 58a.
 この他、図28(C)に示されるように、基材134の上面(光入射面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58を形成し、基材134の下面(光射出面)に光電層60を形成したタイプの光電素子136c、あるいは図28(D)に示されるように、図28(C)の光電素子136cにおいて、アパーチャ58a内の空間が透明膜148で埋められたタイプの光電素子136dを用いることもできる。 In addition, as shown in FIG. 28C, a light-shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 134 by vapor deposition of chromium, and the lower surface (light emitting surface) of the substrate 134. As shown in FIG. 28D, the photoelectric element 136c of the type in which the photoelectric layer 60 is formed, or the type in which the space in the aperture 58a is filled with the transparent film 148 in the photoelectric element 136c of FIG. Alternatively, the photoelectric element 136d may be used.
 この他、図28(E)に示されるように、基材134の下面に光電層60を形成し、光電層60の下面にアパーチャ58aを有する遮光膜58を形成したタイプの光電素子136eが存在する。なお、図28(E)の遮光膜(クロム膜)58は、光ではなく、電子を遮蔽する役目を有している。 In addition, as shown in FIG. 28E, there is a photoelectric element 136e of a type in which the photoelectric layer 60 is formed on the lower surface of the base material 134 and the light shielding film 58 having the aperture 58a is formed on the lower surface of the photoelectric layer 60. To do. Note that the light-shielding film (chrome film) 58 in FIG. 28E has a function of shielding electrons, not light.
 これまでに説明したアパーチャ一体型光電素子136、136a、136b、136c、136d、136eのいずれにおいても、基材134を石英のみでなく、石英と透明膜(単層、又は多層)の積層体によって構成しても良い。 In any of the aperture-integrated photoelectric elements 136, 136a, 136b, 136c, 136d, and 136e described so far, the base material 134 is not only made of quartz, but by a laminate of quartz and a transparent film (single layer or multilayer). It may be configured.
 なお、例えば図32(A)に示される光電素子140とともにアパーチャ別体型光電素子を構成するために、アパーチャ板142のようにアパーチャを有する遮光部材のみから成るタイプに限らず、基材と遮光膜とが一体のアパーチャ板を用いることもできる。このタイプのアパーチャ板としては、例えば図32(B)に示されるように、例えば石英から成る基材144の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142a、図32(C)に示されるように、石英から成る板部材146と透明膜148とから成る基材150と、この基材150の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142b、図32(D)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が透明膜148で埋められたアパーチャ板142c、図32(E)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が、基材144の一部によって埋められているアパーチャ板142dを用いることができる。なお、アパーチャ板142、142a、142b、142c,142dは、いずれも上下反転して用いることもできる。 For example, in order to configure the aperture-separated photoelectric element together with the photoelectric element 140 shown in FIG. 32A, the substrate is not limited to a type including only a light-shielding member having an aperture such as the aperture plate 142, and a base material and a light-shielding film. An aperture plate integrated with can be used. As this type of aperture plate, for example, as shown in FIG. 32B, a light shielding film 58 having an aperture 58a is formed on the lower surface (light emitting surface) of a base material 144 made of, for example, quartz by vapor deposition of chromium. Aperture plate 142a, as shown in FIG. 32C, a substrate 150 made of quartz and a transparent film 148, and a lower surface (light emitting surface) of the substrate 150 by vapor deposition of chromium. As shown in FIG. 32D, the aperture plate 142b on which the light shielding film 58 having 58a is formed, and in the aperture plate 142a, the aperture plate 142c in which the space in the aperture 58a is filled with the transparent film 148, FIG. E), in the aperture plate 142a, the space in the aperture 58a is filled with a part of the base material 144. And has an aperture plate 142d can be used. Note that the aperture plates 142, 142a, 142b, 142c, and 142d can be used upside down.
 なお、前述した第1の実施形態において、光電カプセル50の本体部52の真空隔壁を兼ねる光電素子54に代えて、本体部52に真空隔壁を設け、その真空隔壁の下に所定のクリアランスを介して前述した種々のタイプのアパーチャ一体型光電素子、又はアパーチャ別体型光電素子を配置し、本体部52の内部に収納しても良い。アパーチャ一体型光電素子136(136a~136d)の駆動機構、又は光電素子140とアパーチャ板142(142a~142d)との少なくとも一方を移動する駆動機構を設けても良い。 In the first embodiment described above, a vacuum partition is provided in the main body 52 instead of the photoelectric element 54 also serving as the vacuum partition of the main body 52 of the photoelectric capsule 50, and a predetermined clearance is provided below the vacuum partition. Various types of aperture-integrated photoelectric elements or aperture-separated photoelectric elements described above may be arranged and housed in the main body 52. A drive mechanism for moving the aperture-integrated photoelectric element 136 (136a to 136d) or a drive mechanism for moving at least one of the photoelectric element 140 and the aperture plate 142 (142a to 142d) may be provided.
 また、これまでは、光電素子54、136、136a~136e及びアパーチャ板142、142a~142dの複数のアパーチャ58aは、全てが同一サイズ、同一形状であることを前提として説明を行っているが、複数のアパーチャ58aの全てのサイズが同一でなくても良いし、形状も全てのアパーチャ58aで同一でなくても良い。要は、アパーチャ58aは、対応するビームがその全域に照射されるように、その対応するビームのサイズより小さければ良い。 In the above, description has been made on the assumption that the photoelectric elements 54, 136, 136a to 136e and the plurality of apertures 58a of the aperture plates 142, 142a to 142d are all the same size and shape. All the sizes of the plurality of apertures 58a may not be the same, and the shape may not be the same for all the apertures 58a. In short, the aperture 58a may be smaller than the size of the corresponding beam so that the corresponding beam is irradiated to the entire area.
 なお、第2の実施形態に係る露光装置1000において、アパーチャ板を使うことなく、光電素子140のみを使っても良い。この場合も、前述と同様、ウエハWは、Y軸方向に移動しながら電子ビームが照射される走査露光によって露光される。この場合、X軸方向に第1のピッチ(例えばピッチ(間隔)a)で複数の光ビームを光電素子140の基材134を介して光電層60に照射可能な第1状態と、X軸方向に第2のピッチ(例えばピッチ(間隔)b)で複数の光ビームを光電素子140の基材134を介して光電層60に照射可能な第2状態との一方から他方へ切り換えることで、ピッチが異なるラインパターンの切断用のカットパターン形成が可能になる。この場合も、投影光学系86の倍率の変更機能を併用しても良い。この場合も、倍率の変更の代わりに、投影光学系86から光電素子140に照射される複数のビームのピッチ(間隔)を変更する装置を設けても良い。例えば、投影光学系86と光電素子との間の光路中に、複数の平行平板を配置して、その傾斜角を変えることで複数のビームのピッチ(間隔)を変更することができる。この場合も、3つ以上のピッチのカットパターンの形成に対応可能にしても良い。 In the exposure apparatus 1000 according to the second embodiment, only the photoelectric element 140 may be used without using the aperture plate. Also in this case, as described above, the wafer W is exposed by scanning exposure in which an electron beam is irradiated while moving in the Y-axis direction. In this case, a first state in which a plurality of light beams can be irradiated to the photoelectric layer 60 through the base material 134 of the photoelectric element 140 at a first pitch (for example, pitch (interval) a) in the X-axis direction, and the X-axis direction By switching from one to the other in the second state in which a plurality of light beams can be irradiated onto the photoelectric layer 60 through the base material 134 of the photoelectric element 140 at a second pitch (for example, pitch (interval) b), the pitch is changed. It is possible to form a cut pattern for cutting line patterns having different values. Also in this case, the magnification changing function of the projection optical system 86 may be used together. Also in this case, instead of changing the magnification, a device for changing the pitch (interval) of a plurality of beams emitted from the projection optical system 86 to the photoelectric element 140 may be provided. For example, it is possible to change the pitch (interval) of the plurality of beams by arranging a plurality of parallel plates in the optical path between the projection optical system 86 and the photoelectric element and changing the inclination angle thereof. In this case, it may be possible to cope with the formation of cut patterns having three or more pitches.
 また、上記第1及び第2の実施形態(以下、各実施形態と称する)では、露光装置100、1000が備える光学系が、複数のマルチビーム光学システム200を備えるマルチカラムタイプである場合について説明したが、これに限らず、光学系は、シングルカラムタイプのマルチビーム光学系であっても良い。かかるシングルカラムタイプのマルチビーム光学系であっても、上で説明したドーズ制御、倍率制御、パターンの結像位置ずれの補正、ディストーション等の各種の収差の補正、光電素子又はアパーチャ板を用いた各種要素の補正、及び光電層の長寿命化などは適用可能である。 In the first and second embodiments (hereinafter referred to as each embodiment), the case where the optical system included in the exposure apparatuses 100 and 1000 is a multi-column type including a plurality of multi-beam optical systems 200 will be described. However, the present invention is not limited to this, and the optical system may be a single column type multi-beam optical system. Even in such a single column type multi-beam optical system, the dose control, magnification control, correction of pattern image position deviation, correction of various aberrations such as distortion, photoelectric elements or aperture plates described above are used. Correction of various elements and extension of the lifetime of the photoelectric layer can be applied.
 なお、上記各実施形態において、周壁部76に開口を設けて、第2の真空室72とステージチャンバ10の内部とを1つの真空室としても良い。あるいは、周壁部76の上端部の一部のみを残すとともに、クーリングプレート74を取り去って、第2の真空室72とステージチャンバ10の内部とを1つの真空室としても良い。 In each of the above embodiments, an opening may be provided in the peripheral wall portion 76 so that the second vacuum chamber 72 and the inside of the stage chamber 10 may be a single vacuum chamber. Or while leaving only a part of upper end part of the surrounding wall part 76, the cooling plate 74 is removed, and it is good also considering the 2nd vacuum chamber 72 and the inside of the stage chamber 10 as one vacuum chamber.
 また、上記各実施形態では、ウエハWが単独でウエハステージWST上に搬送され、そのウエハステージWSTを走査方向に移動しつつ、マルチビーム光学システム200からウエハWにビームを照射して露光を行う露光装置100、1000について説明したが、これに限らず、ウエハWがシャトルと呼ばれるウエハと一体で搬送可能なテーブル(ホルダ)と一体でステージ上で交換されるタイプの露光装置にも、上記各実施形態(ウエハステージWSTを除く)は適用が可能である。 In each of the above embodiments, the wafer W is independently transferred onto the wafer stage WST, and exposure is performed by irradiating the wafer W with a beam from the multi-beam optical system 200 while moving the wafer stage WST in the scanning direction. Although the exposure apparatuses 100 and 1000 have been described, the present invention is not limited to this, and the exposure apparatuses of the type in which the wafer W is integrated with a table (holder) that can be transported integrally with a wafer called a shuttle and are exchanged on the stage are also included in the above-described exposure apparatuses. The embodiment (excluding wafer stage WST) is applicable.
 また、上記各実施形態では、ウエハステージWSTが、Xステージに対して6自由度方向に移動可能な場合について説明したが、これに限らず、ウエハステージWSTはXY平面内でのみ移動可能であっても良い。この場合、ウエハステージWSTの位置情報を計測する位置計測系28も、XY平面内の3自由度方向に関する位置情報を計測可能であっても良い。 In each of the above embodiments, the case where wafer stage WST is movable in the direction of six degrees of freedom with respect to the X stage has been described. However, the present invention is not limited to this, and wafer stage WST is movable only in the XY plane. May be. In this case, the position measurement system 28 that measures the position information of wafer stage WST may also be able to measure position information regarding the three degrees of freedom direction in the XY plane.
 上記各実施形態では、光学システム18が、ステージチャンバ10の天井部を構成するフレーム16を介して床面上に支持される場合について説明したが、これに限らず、クリーンルームの天井面又は真空チャンバの天井面に、防振機能を備えた吊り下げ支持機構によって例えば3点で吊り下げ支持されていても良い。 In each of the above embodiments, the case where the optical system 18 is supported on the floor surface via the frame 16 constituting the ceiling portion of the stage chamber 10 has been described. However, the present invention is not limited thereto, and the ceiling surface of the clean room or the vacuum chamber is used. The suspension surface may be suspended and supported at, for example, three points by a suspension support mechanism having an anti-vibration function.
 また、コンプリメンタリ・リソグラフィを構成する露光技術は、ArFエキシマレーザ光源を用いた液浸露光技術と、荷電粒子ビーム露光技術との組み合わせに限られず、例えば、ラインアンドスペースパターンをArFエキシマレーザ光源、あるいはKrFエキシマレーザ光源その他の光源を用いたドライ露光技術で形成しても良い。 In addition, the exposure technology that constitutes complementary lithography is not limited to the combination of the immersion exposure technology using an ArF excimer laser light source and the charged particle beam exposure technology. For example, a line and space pattern can be formed using an ArF excimer laser light source or You may form by the dry exposure technique using a KrF excimer laser light source and other light sources.
 なお、上記各実施形態では、ターゲットが半導体素子製造用のウエハである場合について説明したが、上記各実施形態に係る露光装置100、1000は、ガラス基板上に微細なパターンを形成してマスクを製造する際にも好適に適用できる。 In each of the above embodiments, the case where the target is a wafer for manufacturing a semiconductor element has been described. However, the exposure apparatuses 100 and 1000 according to each of the above embodiments form a mask by forming a fine pattern on a glass substrate. It can also be suitably applied when manufacturing.
 半導体素子などの電子デバイス(マイクロデバイス)は、図33に示されるように、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを製作するステップ、リソグラフィ技術等によってウエハ上に実際の回路等を形成するウエハ処理ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。ウエハ処理ステップは、リソグラフィステップ(ウエハ上にレジスト(感応材)を塗布する工程、前述した実施形態に係る電子ビーム露光装置及びその露光方法によりウエハに対する露光(設計されたパターンデータに従ったパターンの描画)を行う工程、露光されたウエハを現像する工程を含む)、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップなどを含む。ウエハ処理ステップは、リソグラフィステップに先立って、前工程の処理(酸化ステップ、CVDステップ、電極形成ステップ、イオン打ち込みステップなどをさらに含んでいても良い。この場合、リソグラフィステップで、上記各実施形態の露光装置100、1000のいずれかを用いて前述の露光方法を実行することで、ウエハ上にデバイスパターンが形成されるので、高集積度のマイクロデバイスを生産性良く(歩留まり良く)製造することができる。特に、リソグラフィステップ(露光を行う工程)で、前述したコンプリメンタリ・リソグラフィを行い、その際に上記各実施形態の露光装置100、1000のいずれかを用いて前述の露光方法を実行することで、より集積度の高いマイクロデバイスを製造することが可能になる。 As shown in FIG. 33, an electronic device such as a semiconductor element includes a step of designing a function and performance of the device, a step of manufacturing a wafer from a silicon material, an actual circuit on the wafer by a lithography technique, and the like. The wafer is manufactured through a wafer processing step, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like. The wafer processing step includes a lithography step (a step of applying a resist (sensitive material) on the wafer, exposure to the wafer by the electron beam exposure apparatus and the exposure method thereof according to the above-described embodiment) A step of performing (drawing), a step of developing the exposed wafer), an etching step for removing the exposed member other than the portion where the resist remains by etching, and a resist for removing the unnecessary resist after the etching. Including a removal step. The wafer processing step may further include a pre-process (an oxidation step, a CVD step, an electrode formation step, an ion implantation step, etc.) prior to the lithography step. A device pattern is formed on the wafer by executing the above-described exposure method using one of the exposure apparatuses 100 and 1000, so that a highly integrated microdevice can be manufactured with high productivity (yield). In particular, in the lithography step (exposure process), the above-described complementary lithography is performed, and at that time, the above-described exposure method is executed using any of the exposure apparatuses 100 and 1000 of the above-described embodiments. Therefore, it becomes possible to manufacture a microdevice with a higher degree of integration.
 なお、上記各実施形態では、電子ビームを使用する露光装置について説明したが、露光装置に限らず、溶接など電子ビームを用いてターゲットに対する所定の加工及び所定の処理の少なくとも一方を行う装置、あるいは電子ビームを用いる検査装置などにも上記実施形態の電子ビーム装置は適用することができる。 In each of the above embodiments, the exposure apparatus using an electron beam has been described. However, the exposure apparatus is not limited to the exposure apparatus, and an apparatus that performs at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding, or The electron beam apparatus of the above embodiment can also be applied to an inspection apparatus using an electron beam.
 なお、上記各実施形態では、光電層60がアルカリ光電変換膜によって形成される場合について説明したが、電子ビーム装置の種類、用途によっては、光電層として、アルカリ光電変換膜に限らず、その他の種類の光電変換膜を用いて光電素子を構成しても良い。
 また、上述の各実施形態では、部材、開口、穴などの形状を、円形、矩形などを用いて説明している場合があるが、これらの形状に限られないことは言うまでもない。
In each of the above embodiments, the case where the photoelectric layer 60 is formed of an alkali photoelectric conversion film has been described. However, depending on the type and use of the electron beam device, the photoelectric layer is not limited to the alkali photoelectric conversion film, but may be other types. You may comprise a photoelectric element using a kind of photoelectric conversion film.
In the above-described embodiments, shapes of members, openings, holes, and the like may be described using circles, rectangles, and the like, but it goes without saying that the shapes are not limited to these shapes.
 なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。 It should be noted that the disclosures of all publications, international publications, US patent application publication specifications, US patent specifications, and the like related to the exposure apparatus and the like cited in the above embodiments are incorporated herein by reference.
 10…ステージチャンバ、34…第1の真空室、50…光電カプセル、52…本体部、54…光電素子、58…遮光膜、58a…アパーチャ、58b…アパーチャ、60…光電層、62…Oリング、64…蓋部材、66…真空対応アクチュエータ、68…蓋収納プレート、68c…円形開口、70…電子ビーム光学系、72…第2の真空室、82…照明系、82b…成形光学系、84…パターンジェネレータ、86…投影光学系、88…レーザダイオード、98…ミラー、100…露光装置、102…回路基板、102a…開口、110…主制御装置、112…引き出し電極、134…基材、136…光電素子、140…光電素子、142…アパーチャ部材、144…基材、EB…電子ビーム、LB…レーザビーム、W…ウエハ、WST…ウエハステージ。 DESCRIPTION OF SYMBOLS 10 ... Stage chamber, 34 ... 1st vacuum chamber, 50 ... Photoelectric capsule, 52 ... Main part, 54 ... Photoelectric element, 58 ... Light-shielding film, 58a ... Aperture, 58b ... Aperture, 60 ... Photoelectric layer, 62 ... O-ring 64 ... Lid member, 66 ... Vacuum-compatible actuator, 68 ... Lid storage plate, 68c ... Circular opening, 70 ... Electron beam optical system, 72 ... Second vacuum chamber, 82 ... Illumination system, 82b ... Molding optical system, 84 DESCRIPTION OF SYMBOLS ... Pattern generator, 86 ... Projection optical system, 88 ... Laser diode, 98 ... Mirror, 100 ... Exposure apparatus, 102 ... Circuit board, 102a ... Opening, 110 ... Main controller, 112 ... Extraction electrode, 134 ... Base material, 136 ... Photoelectric element 140 ... Photoelectric element 142 ... Aperture member 144 ... Base material EB ... Electron beam LB ... Laser beam W ... Wafer WST ... Ehasuteji.

Claims (110)

  1.  光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、
     個別に制御可能な複数の光ビームを提供可能な光学デバイスと、
     前記光学デバイスに照明光を照射する照明系と、
     前記光学デバイスからの複数の光ビームから生成される複数の光ビームを前記光電素子に照射する第1光学系と、
     前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして前記ターゲットに照射する第2光学系と、を備える電子ビーム装置。
    An electron beam device that irradiates light onto a photoelectric element and irradiates a target with electrons generated from the photoelectric element as an electron beam,
    An optical device capable of providing a plurality of individually controllable light beams;
    An illumination system for illuminating the optical device with illumination light;
    A first optical system for irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from the optical device;
    And a second optical system that irradiates the target with electrons emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams.
  2.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら前記複数の電子ビームが照射される請求項1に記載の電子ビーム装置。 The electron beam apparatus according to claim 1, wherein the target is irradiated with the plurality of electron beams while moving in a first direction orthogonal to an optical axis of the second optical system.
  3.  前記照明系は、照明光の強度と強度分布の少なくとも一方の変更可能である請求項1又は2に記載の電子ビーム装置。 3. The electron beam apparatus according to claim 1, wherein the illumination system can change at least one of intensity and intensity distribution of illumination light.
  4.  前記照明系は、間欠点灯機能を有する請求項1~3のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 3, wherein the illumination system has an intermittent lighting function.
  5.  前記照明系は、光源からの光から、所定の断面形状を有する1つ又は2以上の光を生成する成形光学系を有する請求項1~4のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 4, wherein the illumination system includes a shaping optical system that generates one or more lights having a predetermined cross-sectional shape from light from a light source.
  6.  前記成形光学系は、前記第2光学系の光軸に直交するとともに前記第1方向に直交する第2方向に対応する方向に長い断面形状を有する1つ又は2以上の光を生成する請求項5に記載の電子ビーム装置。 The said shaping | molding optical system produces | generates the 1 or 2 or more light which has a long cross-sectional shape in the direction corresponding to the 2nd direction orthogonal to the said 1st direction while orthogonal to the optical axis of the said 2nd optical system. 5. The electron beam apparatus according to 5.
  7.  前記照明系の光学系の光軸と、前記第1光学系の光軸は、同軸上に無く、互いに平行である請求項6に記載の電子ビーム装置。 The electron beam apparatus according to claim 6, wherein the optical axis of the optical system of the illumination system and the optical axis of the first optical system are not coaxial but are parallel to each other.
  8.  前記照明系の光学系の光軸と前記第1光学系の光軸は、前記第1方向に対応する方向にオフセットしている請求項7に記載の電子ビーム装置。 The electron beam apparatus according to claim 7, wherein the optical axis of the optical system of the illumination system and the optical axis of the first optical system are offset in a direction corresponding to the first direction.
  9.  前記照明系は、前記照明光を前記光学デバイスに向けて反射するミラーを有し、
     前記光学デバイスを保持する保持部材には、前記成形光学系を介して前記ミラーに入射する1つ又は2以上の光が通過する開口が形成されている請求項5~8のいずれか一項に記載の電子ビーム装置。
    The illumination system has a mirror that reflects the illumination light toward the optical device;
    The holding member that holds the optical device is formed with an opening through which one or more light incident on the mirror through the shaping optical system passes. The electron beam apparatus as described.
  10.  前記光学デバイスは、前記光学デバイスから射出される複数のビームのうちの少なくとも1つのビームの強度を変更可能である請求項1~9のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 9, wherein the optical device is capable of changing an intensity of at least one of a plurality of beams emitted from the optical device.
  11.  前記光電素子は、光電変換層を有する請求項1~10のいずれか一項に記載の電子ビーム装置。 11. The electron beam apparatus according to claim 1, wherein the photoelectric element has a photoelectric conversion layer.
  12.  前記第1光学系と前記光電変換層との間に配置された複数のアパーチャをさらに備える請求項11に記載の電子ビーム装置。 The electron beam apparatus according to claim 11, further comprising a plurality of apertures disposed between the first optical system and the photoelectric conversion layer.
  13.  前記複数のアパーチャは、前記第1光学系と前記光電素子との間の光路上に配置されたアパーチャ部材に設けられ、前記複数のアパーチャを通過した複数の光ビームが前記光電素子に照射される請求項12に記載の電子ビーム装置。 The plurality of apertures are provided on an aperture member disposed on an optical path between the first optical system and the photoelectric element, and a plurality of light beams that have passed through the plurality of apertures are irradiated onto the photoelectric element. The electron beam apparatus according to claim 12.
  14.  前記アパーチャ部材を備える請求項13に記載の電子ビーム装置。 14. The electron beam apparatus according to claim 13, comprising the aperture member.
  15.  前記アパーチャ部材は、前記光ビームを透過可能な光透過部材と、前記光透過部材の一側に配置された遮光層を有し、
     前記複数のアパーチャは、前記遮光層に形成された複数の開口を含む請求項13又は14に記載の電子ビーム装置。
    The aperture member has a light transmissive member capable of transmitting the light beam, and a light shielding layer disposed on one side of the light transmissive member,
    15. The electron beam apparatus according to claim 13, wherein the plurality of apertures include a plurality of openings formed in the light shielding layer.
  16.  前記遮光層は、前記光透過部材の光射出面側に配置されている請求項15に記載の電子ビーム装置。 The electron beam apparatus according to claim 15, wherein the light shielding layer is disposed on a light emitting surface side of the light transmitting member.
  17.  前記アパーチャ部材は、前記第1光学系の光軸に直交する方向に移動可能である請求項13~16のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 13 to 16, wherein the aperture member is movable in a direction perpendicular to the optical axis of the first optical system.
  18.  前記アパーチャ部材と前記第1光学系は、前記第1光学系の光軸に直交する方向に相対移動可能である請求項13~17のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 13 to 17, wherein the aperture member and the first optical system are relatively movable in a direction orthogonal to an optical axis of the first optical system.
  19.  前記アパーチャ部材と前記光電素子は、前記第1光学系の光軸に直交する方向に相対移動可能である請求項13~18のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 13 to 18, wherein the aperture member and the photoelectric element are relatively movable in a direction perpendicular to the optical axis of the first optical system.
  20.  前記アパーチャ部材と前記光電素子は、前記アパーチャ部材と前記光電素子の位置関係を維持しつつ、前記第1光学系の光軸に直交する方向に移動可能である請求項13~19のいずれか一項に記載の電子ビーム装置。 The aperture member and the photoelectric element are movable in a direction perpendicular to the optical axis of the first optical system while maintaining a positional relationship between the aperture member and the photoelectric element. The electron beam apparatus according to Item.
  21.  前記アパーチャ部材は、前記光電素子と前記第1光学系との間の光路上に、前記光電素子とギャップを介して配置されている請求項13~20のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 13 to 20, wherein the aperture member is disposed on an optical path between the photoelectric element and the first optical system via a gap with the photoelectric element. .
  22.  前記光電素子は、前記光ビームを透過可能な光透過部材を有し、
     前記光電変換層は、前記光透過部材の光射出面に配置されている請求項11~21のいずれか一項に記載の電子ビーム装置。
    The photoelectric element has a light transmission member capable of transmitting the light beam,
    The electron beam apparatus according to any one of claims 11 to 21, wherein the photoelectric conversion layer is disposed on a light emitting surface of the light transmitting member.
  23.  前記光電素子は、前記光ビームを透過可能な光透過部材と、
     前記光透過部材の光射出面に配置された光電変換層と、
     前記光透過部材の一側に配置された遮光層と、を有し、
     複数のアパーチャとして、前記遮光層には複数の開口が形成され、
     前記複数の開口を通過した複数の光ビームが前記光電変換層に入射する請求項1~13のいずれか一項に記載の電子ビーム装置。
    The photoelectric element includes a light transmissive member capable of transmitting the light beam;
    A photoelectric conversion layer disposed on a light exit surface of the light transmitting member;
    A light shielding layer disposed on one side of the light transmissive member,
    A plurality of apertures are formed in the light shielding layer as a plurality of apertures,
    The electron beam apparatus according to any one of claims 1 to 13, wherein a plurality of light beams that have passed through the plurality of openings are incident on the photoelectric conversion layer.
  24.  前記遮光層は、前記光透過部材の光射出面側に配置されている請求項23に記載の電子ビーム装置。 24. The electron beam apparatus according to claim 23, wherein the light shielding layer is disposed on a light emitting surface side of the light transmitting member.
  25.  前記遮光層に形成された前記複数の開口に光電変換層が配置されている請求項24に記載の電子ビーム装置。 25. The electron beam apparatus according to claim 24, wherein a photoelectric conversion layer is disposed in the plurality of openings formed in the light shielding layer.
  26.  前記遮光層は、前記光透過部材の光入射面側に配置されている請求項25に記載の電子ビーム装置。 26. The electron beam apparatus according to claim 25, wherein the light shielding layer is disposed on a light incident surface side of the light transmitting member.
  27.  前記光電素子は、前記第2光学系の光軸に直交する方向に移動可能である請求項23~26のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 23 to 26, wherein the photoelectric element is movable in a direction orthogonal to the optical axis of the second optical system.
  28.  前記第1光学系によって前記光電素子の第1位置に照射される前記光学デバイスからの複数の光ビームが、前記複数のアパーチャのうちの1つのアパーチャを介して前記光電変換層に入射する請求項12~27のいずれか一項に記載の電子ビーム装置。 The plurality of light beams from the optical device irradiated to the first position of the photoelectric element by the first optical system are incident on the photoelectric conversion layer through one of the plurality of apertures. The electron beam apparatus according to any one of 12 to 27.
  29.  前記第1光学系によって前記光電素子の第2位置に照射される前記光学デバイスからの複数の光ビームが、前記複数のアパーチャのうちの前記1つのアパーチャとは別のアパーチャを介して前記光電変換層に入射する請求項28に記載の電子ビーム装置。 The plurality of light beams from the optical device irradiated to the second position of the photoelectric element by the first optical system are converted into the photoelectric conversion through an aperture different from the one of the plurality of apertures. 29. The electron beam device according to claim 28, which is incident on the layer.
  30.  前記複数のアパーチャそれぞれのサイズは、対応する光ビームの断面のサイズよりも小さい請求項12~29のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 12 to 29, wherein the size of each of the plurality of apertures is smaller than the size of the cross section of the corresponding light beam.
  31.  前記複数のアパーチャのそれぞれは、対応する光ビームを制限し、
     前記複数のアパーチャのそれぞれを通過した複数の光ビームが、前記光電変換層に入射する請求項12~30のいずれか一項に記載の電子ビーム装置。
    Each of the plurality of apertures restricts a corresponding light beam;
    The electron beam apparatus according to any one of claims 12 to 30, wherein a plurality of light beams that have passed through each of the plurality of apertures are incident on the photoelectric conversion layer.
  32.  前記複数のアパーチャの少なくとも1つの形状は、前記複数のアパーチャのそれぞれを通過した複数の光ビームが前記光電変換層に入射することによって生成される前記複数の電子ビームの、前記ターゲット上での照射領域の形状と異なる請求項12~31のいずれか一項に記載の電子ビーム装置。 The shape of at least one of the plurality of apertures is such that the plurality of electron beams generated when a plurality of light beams that have passed through the plurality of apertures enter the photoelectric conversion layer are irradiated on the target. The electron beam apparatus according to any one of claims 12 to 31, which has a shape different from that of the region.
  33.  前記複数の電子ビームそれぞれの、前記ターゲット上での照射領域が矩形となるように、前記少なくとも1つのアパーチャの形状が決定される請求項32に記載の電子ビーム装置。 33. The electron beam apparatus according to claim 32, wherein the shape of the at least one aperture is determined such that an irradiation area on the target of each of the plurality of electron beams is rectangular.
  34.  前記ターゲット上での照射領域の角部の丸まりを抑えるように前記少なくとも1つのアパーチャの形状が決定される請求項33に記載の電子ビーム装置。 34. The electron beam apparatus according to claim 33, wherein a shape of the at least one aperture is determined so as to suppress rounding of a corner of an irradiation area on the target.
  35.  前記少なくとも1つのアパーチャの形状は、前記複数の電子ビームが前記ターゲットに照射されたときに生じる、電子の前方散乱を考慮して決定される請求項32~34のいずれか一項に記載の電子ビーム装置。 The shape of the at least one aperture is determined in consideration of electron forward scattering that occurs when the target is irradiated with the plurality of electron beams. Beam device.
  36.  前記複数のアパーチャの配置は、前記第2光学系の光学特性に基づいて決定される請求項12~35のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 12 to 35, wherein the arrangement of the plurality of apertures is determined based on optical characteristics of the second optical system.
  37.  前記複数のアパーチャの配置は、前記第2光学系の歪曲収差に基づいて決定される請求項12~36のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 12 to 36, wherein the arrangement of the plurality of apertures is determined based on a distortion aberration of the second optical system.
  38.  前記複数のアパーチャの配置は、前記複数の電子ビームに対する前記第2光学系の収差の影響を打ち消すように、又は低減するように決定される請求項12~37のいずれか一項に記載の電子ビーム装置。 The electron according to any one of claims 12 to 37, wherein the arrangement of the plurality of apertures is determined so as to cancel or reduce the influence of the aberration of the second optical system on the plurality of electron beams. Beam device.
  39.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームが照射され、
     前記複数のアパーチャは、前記第2光学系の光軸に直交するとともに、前記第1方向に直交する第2方向に対応する方向に沿って配置された複数のアパーチャを含む請求項12~38のいずれか一項に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    The plurality of apertures includes a plurality of apertures that are orthogonal to the optical axis of the second optical system and arranged along a direction corresponding to a second direction that is orthogonal to the first direction. The electron beam apparatus as described in any one of Claims.
  40.  前記複数のアパーチャは、前記第2方向に対応する方向に第1ピッチで配置された複数のアパーチャを含む第1グループと、前記第2方向に対応する方向に第2ピッチで配置された複数のアパーチャを含む第2グループと、を含み、
     前記第1グループと前記第2グループは、前記第1方向に対応する方向に離れている請求項39に記載の電子ビーム装置。
    The plurality of apertures includes a first group including a plurality of apertures arranged at a first pitch in a direction corresponding to the second direction, and a plurality of apertures arranged at a second pitch in a direction corresponding to the second direction. A second group including an aperture,
    40. The electron beam apparatus according to claim 39, wherein the first group and the second group are separated from each other in a direction corresponding to the first direction.
  41.  前記複数の光ビームの光路上に、前記第1グループに含まれる前記複数のアパーチャが配置される第1状態と、前記複数の光ビームの光路上に、前記第2グループに含まれる前記複数のアパーチャが配置される第2状態との一方から他方へ切り換え可能である請求項40に記載の電子ビーム装置。 A first state in which the plurality of apertures included in the first group are disposed on an optical path of the plurality of light beams, and the plurality of the plurality of apertures included in the second group on the optical path of the plurality of light beams. 41. The electron beam apparatus according to claim 40, wherein the electron beam apparatus can be switched from one of the second states in which the aperture is disposed to the other.
  42.  前記第1状態と前記第2状態の一方から他方への切り換えは、前記第1光学系の投影倍率の変更を含む請求項41に記載の電子ビーム装置。 42. The electron beam apparatus according to claim 41, wherein switching from one of the first state and the second state to the other includes changing a projection magnification of the first optical system.
  43.  前記複数のアパーチャは、前記第1光学系の光軸に直交する面内に配置される請求項12~42のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 12 to 42, wherein the plurality of apertures are arranged in a plane orthogonal to the optical axis of the first optical system.
  44.  前記光電変換層は湾曲している請求項11~43のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 11 to 43, wherein the photoelectric conversion layer is curved.
  45.  前記光電変換層は、前記第1光学系に向かって凸状に湾曲している請求項44に記載の電子ビーム装置。 45. The electron beam apparatus according to claim 44, wherein the photoelectric conversion layer is curved convexly toward the first optical system.
  46.  前記光電変換層は、前記複数の電子ビームに対する前記第2光学系の収差の影響を打ち消すように、又は低減するように湾曲している請求項44又は45に記載の電子ビーム装置。 46. The electron beam apparatus according to claim 44 or 45, wherein the photoelectric conversion layer is curved so as to cancel or reduce the influence of the aberration of the second optical system on the plurality of electron beams.
  47.  前記光電変換層を湾曲させることによって、前記第2光学系の像面湾曲の少なくとも一部を補償する請求項44~46のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 44 to 46, wherein at least a part of curvature of field of the second optical system is compensated by bending the photoelectric conversion layer.
  48.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームが照射され、
     前記光電変換層は、前記第2光学系の光軸に直交するとともに前記第1方向に直交する第2方向に対応する方向において湾曲している請求項44~47のいずれか一項に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    The photoelectric conversion layer according to any one of claims 44 to 47, wherein the photoelectric conversion layer is curved in a direction corresponding to a second direction perpendicular to the optical axis of the second optical system and perpendicular to the first direction. Electron beam device.
  49.  前記光電変換層の電子放出面は、第1部分と第2部分を有し、
     前記第2光学系の光軸方向において、前記第1部分の位置と前記第2部分の位置が異なる請求項11~48のいずれか一項に記載の電子ビーム装置。
    The electron emission surface of the photoelectric conversion layer has a first portion and a second portion,
    The electron beam apparatus according to any one of claims 11 to 48, wherein a position of the first portion is different from a position of the second portion in an optical axis direction of the second optical system.
  50.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームが照射され、
     前記第2光学系の光軸に直交するとともに、前記第1方向に直交する第2方向に対応する方向に第1のピッチで前記複数の光ビームを前記光電変換層に照射可能な第1状態と、前記第2方向に対応する方向に第2のピッチで前記複数の光ビームを前記光電変換層に照射可能な第2状態の一方から他方へ切り換え可能である請求項1~49のいずれか一項に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    A first state in which the photoelectric conversion layer can be irradiated with the plurality of light beams at a first pitch in a direction corresponding to a second direction orthogonal to the first direction and orthogonal to the optical axis of the second optical system. 50. One of the second states in which the plurality of light beams can be irradiated to the photoelectric conversion layer at a second pitch in a direction corresponding to the second direction can be switched from one to the other. The electron beam apparatus according to one item.
  51.  前記第1状態と前記第2状態の一方から他方への切り換えは、前記第1光学系の投影倍率の変更を含む請求項50に記載の電子ビーム装置。 51. The electron beam apparatus according to claim 50, wherein switching from one of the first state and the second state to the other includes changing a projection magnification of the first optical system.
  52.  前記第1光学系の投影倍率を変更するための倍率可変装置を備える請求項1~51のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 51, further comprising a magnification varying device for changing a projection magnification of the first optical system.
  53.  前記光電素子は、前記第1光学系の光軸に直交する方向に移動可能である請求項1~52のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 52, wherein the photoelectric element is movable in a direction orthogonal to an optical axis of the first optical system.
  54.  前記光電素子と前記第1光学系は、前記第1光学系の光軸に直交する方向に相対移動可能である請求項1~53のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 53, wherein the photoelectric element and the first optical system are relatively movable in a direction orthogonal to an optical axis of the first optical system.
  55.  前記光学デバイスは、空間光変調器を含む請求項1~54のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 54, wherein the optical device includes a spatial light modulator.
  56.  前記光学デバイスは複数の可動反射素子を含み、
     前記複数の可動反射素子の少なくとも一部で、前記照明光を反射することによって、前記複数の光ビームを提供可能である請求項1~55のいずれか一項に記載の電子ビーム装置。
    The optical device includes a plurality of movable reflective elements;
    The electron beam apparatus according to any one of claims 1 to 55, wherein the plurality of light beams can be provided by reflecting the illumination light by at least a part of the plurality of movable reflection elements.
  57.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームで照射され、
     前記複数の可動反射素子は、前記第2光学系の光軸に直交するとともに、前記第1方向に直交する第2方向に対応する方向に並んで配置されている請求項56に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    57. The electron beam according to claim 56, wherein the plurality of movable reflection elements are arranged side by side in a direction corresponding to a second direction orthogonal to the first direction while being orthogonal to the optical axis of the second optical system. apparatus.
  58.  前記複数の可動反射素子は、前記第2方向に並ぶ複数の可動反射素子を含む第1列と、前記第2方向に並ぶ複数の可動反射素子を含む第2列とを含み、
     前記第1列と前記第2列は、前記第1方向に対応する方向における位置が異なる請求項57に記載の電子ビーム装置。
    The plurality of movable reflective elements includes a first row including a plurality of movable reflective elements arranged in the second direction, and a second row including a plurality of movable reflective elements arranged in the second direction,
    58. The electron beam apparatus according to claim 57, wherein the first row and the second row have different positions in a direction corresponding to the first direction.
  59.  前記第2列は、前記第1列のバックアップとして機能する請求項58に記載の電子ビーム装置。 59. The electron beam apparatus according to claim 58, wherein the second column functions as a backup of the first column.
  60.  前記第1列に含まれる1つの可動反射素子からの光ビームを前記光電素子に照射することによって生成された電子ビームを、前記ターゲット上のターゲット領域に照射し、
     前記第2列に含まれる1つの可動反射素子からの光ビームを前記光電素子に照射することによって生成された電子ビームを、前記ターゲット領域に照射可能である請求項58に記載の電子ビーム装置。
    Irradiating a target region on the target with an electron beam generated by irradiating the photoelectric element with a light beam from one movable reflective element included in the first row;
    59. The electron beam apparatus according to claim 58, wherein the target region can be irradiated with an electron beam generated by irradiating the photoelectric element with a light beam from one movable reflective element included in the second row.
  61.  前記複数の可動反射素子のそれぞれは、前記第2方向に幅を有しており、
     前記第1列と前記第2列は、前記幅よりも小さい量だけ、前記第2方向にずれている請求項58~60のいずれか一項に記載の電子ビーム装置。
    Each of the plurality of movable reflective elements has a width in the second direction,
    The electron beam apparatus according to any one of claims 58 to 60, wherein the first row and the second row are shifted in the second direction by an amount smaller than the width.
  62.  前記光電素子に照射される前記複数の光ビームのうちの1つを、前記複数の可動反射素子のうちの一部の2以上の可動反射素子からの光ビームから生成可能である請求項56~61のいずれか一項記載の電子ビーム装置。 One of the plurality of light beams applied to the photoelectric element can be generated from light beams from a part of two or more movable reflective elements of the plurality of movable reflective elements. 61. The electron beam apparatus according to any one of 61.
  63.  前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成可能である請求項1~55のいずれか一項に記載の電子ビーム装置。 The one of the plurality of light beams applied to the photoelectric element can be generated by two or more light beams of a part of the plurality of light beams from the optical device. The electron beam apparatus as described in any one of Claims.
  64.  前記第1光学系は、前記光学デバイスと前記光電素子の配置位置との間に位置する少なくとも1つの可動光学部材を有する請求項1~63のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 63, wherein the first optical system includes at least one movable optical member positioned between the optical device and the arrangement position of the photoelectric element.
  65.  光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、
     個別に制御可能な複数の光ビームを提供可能な光学デバイスと、
     前記光学デバイスからの複数の光ビームで生成される複数の光ビームを前記光電素子に照射する第1光学系と、
     前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして前記ターゲットに照射する第2光学系と、を備え、
     前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成可能である電子ビーム装置。
    An electron beam device that irradiates light onto a photoelectric element and irradiates a target with electrons generated from the photoelectric element as an electron beam,
    An optical device capable of providing a plurality of individually controllable light beams;
    A first optical system for irradiating the photoelectric element with a plurality of light beams generated by a plurality of light beams from the optical device;
    A second optical system that irradiates the target with electrons emitted from the photoelectric element as a plurality of electron beams by irradiating the photoelectric element with the plurality of light beams;
    An electron beam apparatus capable of generating one of the plurality of light beams applied to the photoelectric element with two or more of the plurality of light beams from the optical device.
  66.  前記光学デバイスは、複数の可動反射素子を含み、
     前記複数の可動反射素子を使って、前記光学デバイスからの複数の光ビームが生成され、
     前記複数の可動反射素子のうちの一部の2以上の可動反射素子からの光ビームから、前記光電素子に照射される複数の光ビームのうちの1つを生成可能である請求項65に記載の電子ビーム装置。
    The optical device includes a plurality of movable reflective elements,
    A plurality of light beams from the optical device are generated using the plurality of movable reflective elements,
    66. One of a plurality of light beams applied to the photoelectric element can be generated from a light beam from a part of two or more movable reflective elements of the plurality of movable reflective elements. Electron beam equipment.
  67.  前記光電素子に照射される前記複数の光ビームのうちの別の1つを、前記光学デバイスからの複数の光ビームのうちの別の2以上の光ビームで生成可能であり、前記別の2以上の光ビームで生成される別の1つの光ビームの強度を変更可能である請求項62~66のいずれか一項に記載の電子ビーム装置。 Another one of the plurality of light beams irradiated on the photoelectric element can be generated by another two or more light beams of the plurality of light beams from the optical device, and the other two The electron beam apparatus according to any one of claims 62 to 66, wherein the intensity of another light beam generated by the light beam can be changed.
  68.  前記光学デバイスは、光回折型ライトバルブを含む請求項62又は66に記載の電子ビーム装置。 67. The electron beam apparatus according to claim 62 or 66, wherein the optical device includes a light diffraction type light valve.
  69.  前記2以上の可動反射素子のそれぞれは、前記可動反射素子からの光を前記光電素子に入射させる第1状態と、前記可動反射素子からの光を前記光電素子に入射させない第2状態とのいずれか一方となるように制御可能である請求項62又は66に記載の電子ビーム装置。 Each of the two or more movable reflective elements is either a first state in which light from the movable reflective element is incident on the photoelectric element or a second state in which light from the movable reflective element is not incident on the photoelectric element. 67. The electron beam apparatus according to claim 62 or 66, wherein the electron beam apparatus is controllable to be one of them.
  70.  前記光学デバイスは、前記2以上の可動反射素子の相対的な位置を変更して前記複数の光ビームの少なくとも1つを発生させる請求項62,66,69のいずれか一項に記載の電子ビーム装置。 The electron beam according to any one of claims 62, 66, and 69, wherein the optical device changes a relative position of the two or more movable reflective elements to generate at least one of the plurality of light beams. apparatus.
  71.  前記2以上の可動反射素子は、前記2以上の可動反射素子のうちの1つからの光と、前記2以上の可動反射素子のうちの別の1つからの光の位相差を変更するように制御可能である請求項70に記載の電子ビーム装置。 The two or more movable reflective elements change a phase difference between light from one of the two or more movable reflective elements and light from another one of the two or more movable reflective elements. The electron beam apparatus according to claim 70, wherein the electron beam apparatus is controllable.
  72.  前記照明系からの光は、第1軸に沿った方向の寸法が前記第1軸と直交する第2軸に沿った方向の寸法よりも小さい照明領域を、前記第1軸及び前記第2軸に直交する第3軸と前記第1軸とを含む面内に位置し、前記第1軸及び前記第3軸と交差する軸の方向から照明し、
     前記光学デバイスが、前記照明領域に配置されている請求項1~64のいずれか一項記載の電子ビーム装置。
    The light from the illumination system has an illumination area in which the dimension in the direction along the first axis is smaller than the dimension in the direction along the second axis perpendicular to the first axis, the first axis and the second axis. Illuminating from the direction of the axis intersecting the first axis and the third axis, located in a plane including the third axis orthogonal to the first axis and the first axis,
    The electron beam apparatus according to any one of claims 1 to 64, wherein the optical device is arranged in the illumination area.
  73.  光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、
     照明系と、
     前記照明系からの照明光の照射により、個別に制御可能な複数の光ビームを提供可能な光学デバイスと、
     前記光学デバイスからの複数の光ビームから生成される複数の光ビームを前記光電素子に照射する第1光学系と、
     前記光電素子から発生する1つ又は2以上の電子ビームをターゲットに照射する第2光学系と、を備え、
     前記照明系からの照明光は、第1軸に沿った方向の寸法が前記第1軸と直交する第2軸に沿った方向の寸法よりも小さい照明領域を、前記第1軸及び前記第2軸と直交する第3軸と前記第1軸とを含む面内に位置し、前記第1軸及び前記第3軸と交差する軸の方向から照明し、
     前記光学デバイスが、前記照明領域に配置されている電子ビーム装置。
    An electron beam apparatus that irradiates a photoelectric element with light and irradiates a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam,
    Lighting system,
    An optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light from the illumination system;
    A first optical system for irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from the optical device;
    A second optical system for irradiating the target with one or more electron beams generated from the photoelectric element,
    The illumination light from the illumination system has an illumination area in which the dimension in the direction along the first axis is smaller than the dimension in the direction along the second axis perpendicular to the first axis. Illuminated from the direction of the axis intersecting the first axis and the third axis, located in a plane including the third axis orthogonal to the axis and the first axis,
    An electron beam apparatus in which the optical device is disposed in the illumination area.
  74.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームで照射され、
     前記第1軸は前記第1方向と平行である請求項72又は73に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    74. The electron beam apparatus according to claim 72, wherein the first axis is parallel to the first direction.
  75.  前記照明系からの照明光を偏向する偏向部材をさらに備え、
     前記偏向部材で偏向された光が、前記第1軸と前記第3軸に交差する前記軸の方向から前記照明領域に照射される請求項72~74のいずれか一項に記載の電子ビーム装置。
    A deflection member for deflecting illumination light from the illumination system;
    The electron beam apparatus according to any one of claims 72 to 74, wherein the light deflected by the deflecting member is applied to the illumination region from a direction of the axis that intersects the first axis and the third axis. .
  76.  前記照明系の光軸と前記第1光学系の光軸とは前記第1軸と平行な方向にずれている請求項72~75のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 72 to 75, wherein an optical axis of the illumination system and an optical axis of the first optical system are shifted in a direction parallel to the first axis.
  77.  光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置であって、
     第1軸に直交する第2軸に沿って配列された複数の光電素子のそれぞれに少なくとも1つの光ビームを照射する複数の第1光学系と、
     前記第2軸に沿って配列され、前記複数の第1光学系による前記光ビームの照射により前記複数の光電素子から発生する複数の電子ビームのそれぞれを前記ターゲットに照射する複数の第2光学系と、を備え、
     前記第1軸及び前記第2軸は、前記第2光学系の光軸に垂直である電子ビーム装置。
    An electron beam apparatus that irradiates a photoelectric element with light and irradiates a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam,
    A plurality of first optical systems for irradiating at least one light beam to each of a plurality of photoelectric elements arranged along a second axis orthogonal to the first axis;
    A plurality of second optical systems arranged along the second axis and irradiating the target with each of a plurality of electron beams generated from the plurality of photoelectric elements by irradiation of the light beam with the plurality of first optical systems. And comprising
    The electron beam apparatus, wherein the first axis and the second axis are perpendicular to the optical axis of the second optical system.
  78.  前記複数の第1光学系の1つからの少なくとも1つの光ビームが、前記複数の光電素子のうちの1つに照射され、
     前記複数の光電素子のうちの1つから発生する少なくとも1つの電子ビームが、前記複数の第2光学系の1つを介して前記ターゲットに照射される請求項77に記載の電子ビーム装置。
    At least one light beam from one of the plurality of first optical systems is applied to one of the plurality of photoelectric elements;
    78. The electron beam apparatus according to claim 77, wherein at least one electron beam generated from one of the plurality of photoelectric elements is irradiated to the target via one of the plurality of second optical systems.
  79.  前記第2軸と平行な方向に沿って配置された複数の照明系と、
     前記複数の照明系からの光で照明される複数の光学デバイスと、をさらに備え、
     前記複数の照明系の1つからの少なくとも1つの照明光が、前記複数の光学デバイスのうちの1つに照射され、
     前記複数の光学デバイスのうちの1つからの少なくとも1つの光ビームが、前記複数の第1光学系のうちの1つに入射する請求項77又は78に記載の電子ビーム装置。
    A plurality of illumination systems arranged along a direction parallel to the second axis;
    A plurality of optical devices illuminated with light from the plurality of illumination systems; and
    At least one illumination light from one of the plurality of illumination systems is applied to one of the plurality of optical devices;
    The electron beam apparatus according to claim 77 or 78, wherein at least one light beam from one of the plurality of optical devices is incident on one of the plurality of first optical systems.
  80.  前記複数の照明系からの複数の照明光は、複数の照明領域のそれぞれに照射され、
     前記複数の照明領域に前記複数の光学デバイスがそれぞれ配置されており、
     前記照明領域のそれぞれは、前記第2軸と平行な長手方向を有する請求項79に記載の電子ビーム装置。
    A plurality of illumination lights from the plurality of illumination systems are irradiated to each of a plurality of illumination regions,
    The plurality of optical devices are respectively disposed in the plurality of illumination regions;
    80. The electron beam apparatus according to claim 79, wherein each of the illumination areas has a longitudinal direction parallel to the second axis.
  81.  前記ターゲットは、前記第1軸と平行な第1方向に移動しながら前記電子ビームで照射される請求項77~80のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 77 to 80, wherein the target is irradiated with the electron beam while moving in a first direction parallel to the first axis.
  82.  前記第2軸と平行な方向に沿って離れた複数の前記電子ビームが前記ターゲットに照射される請求項81に記載の電子ビーム装置。 82. The electron beam apparatus according to claim 81, wherein the target is irradiated with a plurality of the electron beams separated along a direction parallel to the second axis.
  83.  前記複数の光電素子のそれぞれに照射される少なくとも1つの光ビームの、前記第2光学系の光軸に垂直な面内での断面形状は、前記第2軸に長手方向を有する請求項77~82のいずれか一項に記載の電子ビーム装置。 The cross-sectional shape of at least one light beam applied to each of the plurality of photoelectric elements in a plane perpendicular to the optical axis of the second optical system has a longitudinal direction on the second axis. 82. The electron beam apparatus according to any one of 82.
  84.  前記第2光学系は、静電偏向レンズを有する電子光学系である請求項1~83のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 83, wherein the second optical system is an electron optical system having an electrostatic deflection lens.
  85.  前記静電偏向レンズは、前記第2光学系の縮小倍率の調整と、前記ターゲットに照射される前記複数の電子ビームの位置の調整の少なくとも一方に用いられる請求項84に記載の電子ビーム装置。 85. The electron beam apparatus according to claim 84, wherein the electrostatic deflection lens is used for at least one of adjusting a reduction magnification of the second optical system and adjusting positions of the plurality of electron beams irradiated on the target.
  86.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームで照射され、
     前記第2光学系は、前記第1方向の長さがt、前記第2光学系の光軸にほぼ直交し、前記第1方向に直交する第2方向の長さがsの矩形の露光フィールド有し、
     前記第2光学系からの複数の電子ビームは、前記露光フィールド内に照射される請求項84又は85に記載の電子ビーム装置。
    The target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system,
    The second optical system has a rectangular exposure field whose length in the first direction is t, substantially perpendicular to the optical axis of the second optical system, and whose length in the second direction perpendicular to the first direction is s. Have
    The electron beam apparatus according to claim 84 or 85, wherein a plurality of electron beams from the second optical system are irradiated into the exposure field.
  87.  前記矩形の露光フィールドのアスペクト比t/sは、1/12~1/4である請求項86に記載の電子ビーム装置。 The electron beam apparatus according to claim 86, wherein the rectangular exposure field has an aspect ratio t / s of 1/12 to 1/4.
  88.  前記露光フィールドは、前記第2光学系の光軸を含むように設定される請求項86又は87に記載の電子ビーム装置。 88. The electron beam apparatus according to claim 86 or 87, wherein the exposure field is set so as to include an optical axis of the second optical system.
  89.  前記第1光学系は、縮小投影光学系を含み、
     前記第2光学系は、縮小電子光学系であり、
     前記露光フィールドは、前記第2光学系の収差有効領域内に設定される請求項1~88のいずれか一項に記載の電子ビーム装置。
    The first optical system includes a reduction projection optical system,
    The second optical system is a reduction electron optical system;
    The electron beam apparatus according to any one of claims 1 to 88, wherein the exposure field is set in an effective aberration area of the second optical system.
  90.  前記光電素子は、電子放出面を有し、
     前記電子放出面、及び前記第2光学系が配置される真空室をさらに備え、
     前記真空室内で、前記複数の電子ビームが前記ターゲットに照射される請求項1~89のいずれか一項に記載の電子ビーム装置。
    The photoelectric element has an electron emission surface,
    A vacuum chamber in which the electron emission surface and the second optical system are disposed;
    The electron beam apparatus according to any one of claims 1 to 89, wherein the target is irradiated with the plurality of electron beams in the vacuum chamber.
  91.  前記光電素子は、前記真空室とその外側の空間とを隔てる隔壁として機能する請求項90に記載の電子ビーム装置。 The electron beam apparatus according to claim 90, wherein the photoelectric element functions as a partition wall that separates the vacuum chamber from a space outside the vacuum chamber.
  92.  前記真空室は、前記電子放出面が配置される第1室と、前記第2光学系が配置される第2室を含む請求項90又は91に記載の電子ビーム装置。 92. The electron beam apparatus according to claim 90 or 91, wherein the vacuum chamber includes a first chamber in which the electron emission surface is disposed and a second chamber in which the second optical system is disposed.
  93.  前記光電素子の電子放出面が内部空間に配置された本体部からリリースされた蓋部材を支持する第1支持部材と、
     前記第1支持部材を移動するためのアクチュエータと、をさらに備え、
     前記本体部は、開口を有し、
     前記蓋部材は、前記開口を閉じるように前記本体部にリリース可能に装着可能であり、
     前記本体部から前記蓋部材がリリースされ、前記第1支持部材に支持された前記蓋部材が待避位置に移動されると、前記電子放出面から放出された電子が前記開口を介して前記第2光学系に向かって移動可能である請求項1~92のいずれか一項に記載の電子ビーム装置。
    A first support member for supporting a lid member released from a main body portion in which an electron emission surface of the photoelectric element is disposed in an internal space;
    An actuator for moving the first support member,
    The main body has an opening,
    The lid member can be releasably attached to the main body so as to close the opening,
    When the lid member is released from the main body and the lid member supported by the first support member is moved to the retracted position, the electrons emitted from the electron emission surface pass through the opening to the second. The electron beam apparatus according to any one of claims 1 to 92, which is movable toward the optical system.
  94.  前記第1支持部材は、開口を有し、
     前記第1支持部材に支持された前記蓋部材が待避位置に移動されると、前記第1支持部材の開口が前記本体部と前記第2光学系との間に配置され、前記電子放出面から放出された電子が、前記本体部の開口と、前記第1支持部材の開口を介して前記第2光学系に向かって移動可能である請求項93に記載の電子ビーム装置。
    The first support member has an opening;
    When the lid member supported by the first support member is moved to the retracted position, an opening of the first support member is disposed between the main body portion and the second optical system, and from the electron emission surface. 94. The electron beam apparatus according to claim 93, wherein the emitted electrons are movable toward the second optical system via the opening of the main body and the opening of the first support member.
  95.  前記本体部に前記蓋部材を装着したときに前記本体部と前記蓋部材との間に位置するシール部材が前記本体部と前記蓋部材の少なくとも一方に設けられている請求項93又は94に記載の電子ビーム装置。 95. The seal member according to claim 93 or 94, wherein a seal member located between the main body and the lid member when the lid member is attached to the main body is provided on at least one of the main body and the lid member. Electron beam equipment.
  96.  前記第1支持部材には、前記電子放出面から放出される電子を前記第2光学系に向かって加速する引き出し電極が配置されている請求項93~95のいずれか一項に記載の電子ビーム装置。 The electron beam according to any one of claims 93 to 95, wherein an extraction electrode for accelerating electrons emitted from the electron emission surface toward the second optical system is disposed on the first support member. apparatus.
  97.  前記第1支持部材には、前記第2光学系に入射する電子ビームの強度を計測可能センサが配置されている請求項93~96のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 93 to 96, wherein a sensor capable of measuring the intensity of an electron beam incident on the second optical system is disposed on the first support member.
  98.  前記蓋部材を前記本体部に装着する動作、及び本体部から前記蓋部材をリリースする動作は、前記本体部の内部空間及び前記本体部の周囲の空間が真空状態で行われる請求項93~97のいずれか一項に記載の電子ビーム装置。 The operation of mounting the lid member on the main body and the operation of releasing the lid member from the main body are performed in a vacuum state in the internal space of the main body and the space around the main body. The electron beam apparatus according to any one of the above.
  99.  前記本体部に前記蓋部材を装着することによって、前記内部空間は真空状態が維持される請求項93~98のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 93 to 98, wherein the internal space is maintained in a vacuum state by mounting the lid member on the main body.
  100.  前記本体部をリリース可能に支持する第2支持部材をさらに備え、
     前記本体部に前記蓋部材が装着されている状態で、前記本体部は前記第2支持部材からリリース可能である請求項93~99のいずれか一項に記載の電子ビーム装置。
    A second support member that releasably supports the main body,
    The electron beam apparatus according to any one of claims 93 to 99, wherein the main body portion can be released from the second support member in a state where the lid member is attached to the main body portion.
  101.  前記光学デバイスと前記第1光学系と前記第2光学系のそれぞれを複数備えた請求項1~100のいずれか一項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 100, comprising a plurality of each of the optical device, the first optical system, and the second optical system.
  102.  前記ターゲットを支持する可動ステージと、
     前記可動ステージの移動を制御するとともに、前記ターゲットに照射される前記電子ビームの照射状態を調整する制御装置と、を、さらに備える請求項1~101のいずれか一項に記載の電子ビーム装置。
    A movable stage for supporting the target;
    The electron beam apparatus according to any one of claims 1 to 101, further comprising: a control device that controls movement of the movable stage and adjusts an irradiation state of the electron beam applied to the target.
  103.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、請求項1~102のいずれか一項に記載の電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法。
    A device manufacturing method including a lithography process,
    The lithography process includes forming a line and space pattern on a target and cutting the line pattern constituting the line and space pattern using the electron beam apparatus according to any one of claims 1 to 102. Performing a device manufacturing method.
  104.  光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、
     個別に制御可能な複数の光ビームを提供可能な光学デバイスに照明系からの照明光を照射することと、
     前記光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、
     前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射することと、を含む露光方法。
    An exposure method for irradiating light onto a photoelectric element and irradiating a target with electrons generated from the photoelectric element as an electron beam,
    Illuminating an optical device capable of providing a plurality of individually controllable light beams with illumination light from an illumination system;
    Irradiating the photoelectric element with a plurality of light beams generated from a plurality of light beams from the optical device via a first optical system;
    Irradiating the target from the second optical system with a plurality of electron beams emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams.
  105.  光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、
     個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、
     前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射することと、を含み、
     前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成し、前記光電素子に照射される前記複数の光ビームのうちの別の1つを、前記光学デバイスからの複数の光ビームのうちの別の2以上の光ビームで生成する露光方法。
    An exposure method for irradiating light onto a photoelectric element and irradiating a target with electrons generated from the photoelectric element as an electron beam,
    Irradiating the photoelectric element via a first optical system with a plurality of light beams generated from a plurality of light beams from an optical device capable of providing individually controllable light beams;
    Irradiating the target from the second optical system with electrons emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams as a plurality of electron beams,
    One of the plurality of light beams applied to the photoelectric element is generated by a part of two or more of the plurality of light beams from the optical device, and the photoelectric element is applied to the photoelectric element. An exposure method in which another one of the plurality of light beams is generated by another two or more light beams of the plurality of light beams from the optical device.
  106.  光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、
     個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームで生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、
     前記複数の光ビームを前記光電素子に照射することによって前記光電素子から放出される電子を複数の電子ビームとして第2光学系から前記ターゲットに照射すること、を含み、
     前記光電素子に照射される前記複数の光ビームのうちの1つを、前記光学デバイスからの複数の光ビームのうちの一部の2以上の光ビームで生成する露光方法。
    An exposure method for irradiating light onto a photoelectric element and irradiating a target with electrons generated from the photoelectric element as an electron beam,
    Irradiating the photoelectric element through a first optical system with a plurality of light beams generated by a plurality of light beams from an optical device capable of providing a plurality of individually controllable light beams;
    Irradiating the target from the second optical system with electrons emitted from the photoelectric element by irradiating the photoelectric element with the plurality of light beams as a plurality of electron beams,
    An exposure method in which one of the plurality of light beams irradiated on the photoelectric element is generated by two or more of the plurality of light beams from the optical device.
  107.  光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、
     照明系からの照明光の照射により、個別に制御可能な複数の光ビームを提供可能な光学デバイスからの複数の光ビームから生成される複数の光ビームを第1光学系を介して前記光電素子に照射することと、
     前記光電素子から発生する1つ又は2以上の電子ビームを第2光学系から前記ターゲットに照射することと、を含み、
     前記照明系からの照明光は、第1軸に沿った方向の寸法が前記第1軸と直交する第2軸に沿った方向の寸法よりも小さい照明領域を、前記第1軸及び前記第2軸と直交する第3軸と前記第1軸とを含む面内に位置し、前記第1軸及び前記第3軸と交差する軸の方向から照明し、
     前記光学デバイスが、前記照明領域に配置されている露光方法。
    An exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam,
    A plurality of light beams generated from a plurality of light beams from an optical device capable of providing a plurality of individually controllable light beams by irradiation of illumination light from the illumination system through the first optical system, the photoelectric element Irradiating
    Irradiating the target with one or more electron beams generated from the photoelectric element from a second optical system,
    The illumination light from the illumination system has an illumination area in which the dimension in the direction along the first axis is smaller than the dimension in the direction along the second axis perpendicular to the first axis. Illuminated from the direction of the axis intersecting the first axis and the third axis, located in a plane including the third axis orthogonal to the axis and the first axis,
    An exposure method in which the optical device is disposed in the illumination area.
  108.  光電素子に光を照射するとともに、前記光の照射によって前記光電素子から発生する電子を電子ビームとしてターゲットに照射する露光方法であって、
     第1軸に直交する第2軸に沿って配列された複数の光電素子のそれぞれに少なくとも1つの光ビームを複数の第1光学系を介して照射することと、
     前記第2軸に沿って配列され、前記複数の第1光学系による前記光ビームの照射により前記複数の光電素子から発生する複数の電子ビームのそれぞれを複数の第2光学系を介して前記ターゲットに照射することと、を含み、
     前記第1軸及び前記第2軸は、前記第2光学系の光軸に垂直である露光方法。
    An exposure method for irradiating a photoelectric element with light and irradiating a target with electrons generated from the photoelectric element by irradiation with the light as an electron beam,
    Irradiating each of a plurality of photoelectric elements arranged along a second axis orthogonal to the first axis with at least one light beam via the plurality of first optical systems;
    Each of a plurality of electron beams generated from the plurality of photoelectric elements by being irradiated with the light beam by the plurality of first optical systems is arranged along the second axis via the plurality of second optical systems. Irradiating with,
    The exposure method, wherein the first axis and the second axis are perpendicular to the optical axis of the second optical system.
  109.  前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら複数の前記電子ビームで照射される請求項104~108のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 104 to 108, wherein the target is irradiated with a plurality of the electron beams while moving in a first direction orthogonal to the optical axis of the second optical system.
  110.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、請求項104~109のいずれか一項に記載の露光方法を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法。
    A device manufacturing method including a lithography process,
    The lithography process includes forming a line and space pattern on a target and cutting the line pattern constituting the line and space pattern using the exposure method according to any one of claims 104 to 109. Performing a device manufacturing method.
PCT/JP2018/006396 2017-02-24 2018-02-22 Electron beam apparatus and exposure method, and device production method WO2018155538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034194 2017-02-24
JP2017034194 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155538A1 true WO2018155538A1 (en) 2018-08-30

Family

ID=63252701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006396 WO2018155538A1 (en) 2017-02-24 2018-02-22 Electron beam apparatus and exposure method, and device production method

Country Status (2)

Country Link
TW (1) TW201837966A (en)
WO (1) WO2018155538A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003453A2 (en) * 1995-07-10 1997-01-30 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
JP2000036459A (en) * 1998-07-01 2000-02-02 Asm Lithography Bv Lithography projecting device
WO2001026134A1 (en) * 1999-09-30 2001-04-12 Etec Systems, Inc. Array of multiple charged particle beamlet emitting columns
WO2002013226A2 (en) * 2000-08-08 2002-02-14 Applied Materials, Inc. Spatial light modulator driven photocathode source electron beam pattern generator
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
WO2003040829A2 (en) * 2001-11-07 2003-05-15 Applied Materials, Inc. Maskless printer using photoelectric conversion of a light beam array
WO2006123447A1 (en) * 2005-05-17 2006-11-23 Kyoto University Electron beam exposure device
JP2011258842A (en) * 2010-06-10 2011-12-22 Nikon Corp Charged particle beam exposure apparatus and method of manufacturing device
US20120223245A1 (en) * 2011-03-01 2012-09-06 John Bennett Electron beam source system and method
JP2012178437A (en) * 2011-02-25 2012-09-13 Canon Inc Drawing apparatus, drawing method and article manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003453A2 (en) * 1995-07-10 1997-01-30 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
JP2000036459A (en) * 1998-07-01 2000-02-02 Asm Lithography Bv Lithography projecting device
WO2001026134A1 (en) * 1999-09-30 2001-04-12 Etec Systems, Inc. Array of multiple charged particle beamlet emitting columns
WO2002013226A2 (en) * 2000-08-08 2002-02-14 Applied Materials, Inc. Spatial light modulator driven photocathode source electron beam pattern generator
JP2003045368A (en) * 2001-07-27 2003-02-14 Hamamatsu Photonics Kk Electron beam generating device, and photoelectric surface housing cartridge
WO2003040829A2 (en) * 2001-11-07 2003-05-15 Applied Materials, Inc. Maskless printer using photoelectric conversion of a light beam array
WO2006123447A1 (en) * 2005-05-17 2006-11-23 Kyoto University Electron beam exposure device
JP2011258842A (en) * 2010-06-10 2011-12-22 Nikon Corp Charged particle beam exposure apparatus and method of manufacturing device
JP2012178437A (en) * 2011-02-25 2012-09-13 Canon Inc Drawing apparatus, drawing method and article manufacturing method
US20120223245A1 (en) * 2011-03-01 2012-09-06 John Bennett Electron beam source system and method

Also Published As

Publication number Publication date
TW201837966A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5287114B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP6466333B2 (en) Actuating mechanism, optical apparatus, lithographic apparatus, and device manufacturing method
JP5286744B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
CN101446773A (en) Maskless photon-electron spot-grid array printer
JP2004095862A (en) Exposure device
WO2018155537A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155545A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155539A1 (en) Electron beam apparatus and device production method, and photoelectric element holding container
JP2020031156A (en) Electron beam apparatus, exposure apparatus, exposure method and device manufacturing method
WO2019064503A1 (en) Electron beam device, illumination optical system, and method for manufacturing device
JP6610890B2 (en) Charged particle beam exposure apparatus and device manufacturing method
WO2018155538A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155542A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155540A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155543A1 (en) Electronic beam apparatus and device production method
WO2019064511A1 (en) Electron beam apparatus, and device manufacturing method
WO2019064502A1 (en) Electron beam device and device manufacturing method
WO2019064516A1 (en) Electron beam apparatus, and device manufacturing method
WO2019064519A1 (en) Electron beam apparatus, and device manufacturing method
WO2019064521A1 (en) Electron beam apparatus, and device manufacturing method
US20030043357A1 (en) Vacuum chamber having instrument- mounting bulkhead exhibiting reduced deformation in response to pressure differential, and energy-beam systems comprising same
WO2018167924A1 (en) Charged particle beam optical system, exposure apparatus, exposure method, and device manufacturing method
WO2019146027A1 (en) Electron beam device, device production method, and photoelectric element unit
WO2019064508A1 (en) Electron beam apparatus, exposure method, and device manufacturing method
WO2019064507A1 (en) Electron beam apparatus, exposure method, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP