WO2018155535A1 - Light deflection device - Google Patents

Light deflection device Download PDF

Info

Publication number
WO2018155535A1
WO2018155535A1 PCT/JP2018/006385 JP2018006385W WO2018155535A1 WO 2018155535 A1 WO2018155535 A1 WO 2018155535A1 JP 2018006385 W JP2018006385 W JP 2018006385W WO 2018155535 A1 WO2018155535 A1 WO 2018155535A1
Authority
WO
WIPO (PCT)
Prior art keywords
periodic
waveguide core
waveguide
length direction
refractive index
Prior art date
Application number
PCT/JP2018/006385
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 俊彦
萌江 竹内
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2019501398A priority Critical patent/JP6883828B2/en
Publication of WO2018155535A1 publication Critical patent/WO2018155535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Definitions

  • the present invention relates to an optical deflection device that controls the traveling direction of light.
  • Laser radar or lidar equipment LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • Laser radar or lidar equipment that uses laser measurement to acquire the distance to surrounding objects as a two-dimensional image It is used for making maps, and its basic technology can be applied to laser printers and laser displays.
  • a light beam is applied to an object, reflected light that is reflected back from the object is detected, distance information is obtained from the time difference or frequency difference, and the light beam is scanned two-dimensionally. To obtain wide-angle three-dimensional information.
  • An optical deflection device is essential for optical beam scanning.
  • mechanical mechanisms such as rotating the entire device, mechanical mirrors such as polygonal mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have been used.
  • MEMS technology micromachine technology
  • phased array type or a diffraction grating type that realizes optical deflection by changing the wavelength of light or the refractive index of the device has been proposed.
  • the phased array type optical deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and a high-quality sharp light beam cannot be formed.
  • the diffraction grating type optical deflection device can easily form a sharp beam, there is a problem that the optical deflection angle is small.
  • the inventors of the present invention have proposed a technique for increasing the light deflection angle by coupling the slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 1).
  • Slow light is generated in a photonic nanostructure such as a photonic crystal waveguide and has a low group velocity.
  • Slow light has a characteristic that the propagation constant is greatly changed by a slight change in wavelength or refractive index of the waveguide.
  • the slow light waveguide is coupled to the diffractive mechanism to form a leaky waveguide, and emits light into free space. At this time, a large change in the propagation constant is reflected in the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
  • the slow light propagating light is non-radiating in a periodic structure in which a circular hole of one kind of diameter is repeated along the waveguide in the plane of the photonic crystal.
  • the slow light propagating light is converted into radiation conditions and emitted into space.
  • a photonic crystal waveguide having a periodic structure formed by repeating circular holes of one type of diameter emits propagating light by a diffraction mechanism such as a diffraction grating.
  • a diffraction mechanism such as a diffraction grating.
  • the double periodic structure in which two types of holes having different diameters are repeated in the plane of the photonic crystal is composed of one component in which a diffraction mechanism is incorporated in the photonic crystal waveguide.
  • FIG. 7A to 7D show an outline of a device structure in which a diffraction mechanism is introduced into a photonic crystal waveguide that propagates light (slow light) having a low group velocity and a radiation beam emitted therefrom.
  • the optical deflection device 101A includes a photonic crystal waveguide 102 having a double periodic structure in which circular holes 111a and 111b having two different diameters are repeated.
  • a photonic crystal waveguide 102 in which a low refractive index portion 111 is arranged on a high refractive index member 101 is provided on a clad 106 made of a low refractive index material such as SiO 2 .
  • the lattice arrangement 112 of the low refractive index portion 111 is, for example, a double periodic structure of a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated.
  • the large and small diameters of the circular holes forming the double periodic structure indicate a large or small relationship with respect to the diameter of the reference circular hole or in comparison of the diameters of the reference circular holes.
  • the diameter 2r1 of the large-diameter circular hole 111a is 2 (r + ⁇ r)
  • the diameter 2r2 of the small-diameter circular hole 111b is 2 (r ⁇ r).
  • a portion where the circular holes 111 are not provided constitutes a waveguide core 105 that propagates incident light.
  • (Second device structure) 7C and 7D show the device structure of the second optical deflection device.
  • a surface diffraction grating 103 is disposed on a photonic crystal waveguide 102 having a periodic structure formed by repeating circular holes 111c having one type of diameter.
  • circular holes 111c at low refractive index portions are periodically arranged in the high refractive index member 101, and the photonic crystal waveguide 102 is formed.
  • a surface diffraction grating 103 is disposed on the photonic crystal waveguide 102 and constitutes a diffraction mechanism for emitting propagating light.
  • propagating light propagating through a waveguide core is emitted little by little along the waveguide by a diffraction mechanism, and a radiated light beam is formed.
  • the emitted light beam is deflected by changing the refractive index and incident wavelength of the waveguide of the optical deflection device.
  • the emitted light beam is a sharp beam having a uniform beam intensity distribution in the direction along the waveguide (here, the longitudinal direction).
  • the slow light is confined in the narrow waveguide core 105 and propagates in the direction orthogonal to the waveguide (here, the lateral direction). Since the light is radiated from there, the light beam generally spreads. In addition, since the light emitted from the periodic waveguide mode distribution interferes with each other due to the periodicity of the photonic crystal, a complicated lateral distribution may be formed.
  • FIG. 8A and 8B are diagrams for explaining the beam intensity distribution of the emitted light beam
  • FIG. 8A shows the beam intensity distribution in the vertical direction
  • FIG. 8B shows the beam intensity distribution in the horizontal direction.
  • the radiated light beam gradually leaks along the waveguide, so that the beam intensity distribution in the vertical direction becomes a sharp beam.
  • the lateral beam intensity distribution has a wide angular distribution.
  • the emitted light beam from the optical deflection device is required to be uniform in beam intensity in the vertical direction, to suppress the spread of the beam intensity distribution in the horizontal direction, and to be unimodal. .
  • a configuration is often used in which a collimating lens is installed above the light deflection device and the radiated light beam from the waveguide is converted into a parallel beam.
  • the conversion to a parallel beam by the collimating lens does not suppress the occurrence of the lateral distribution of the light beam itself, although it suppresses the lateral divergence angle, and the beam has a plurality of lateral peaks.
  • the intensity distribution is maintained as it is even after conversion to a parallel beam.
  • the present invention is directed to an optical deflection device that suppresses the spread of the beam intensity distribution of the radiated light beam in the lateral direction and makes the beam intensity distribution of the radiated light beam unimodal.
  • the optical deflection device of the present invention is a diffraction mechanism that diffracts the light beam emitted from the waveguide core in the outward direction, and when the length direction of the waveguide core is the vertical direction, the waveguide mode changes in the horizontal direction in order.
  • the lateral spread of the beam intensity distribution of the radiated light beam is suppressed.
  • the radiation from the electromagnetic field having the same sign of the transverse distribution of the waveguide mode interference at a distant place is suppressed and a unimodal beam is formed.
  • the optical deflection device of the present invention deflects the propagation light of a photonic crystal waveguide in which low refractive index portions are periodically arranged in a plane of a high refractive index member and a waveguide core of the photonic crystal waveguide.
  • a diffraction mechanism that emits a radiation light beam to the outside, and the diffraction mechanism includes a plurality of periodic portions arranged along the length direction of the waveguide core, and each periodic portion extends in the length direction of the waveguide core. On the other hand, it is arranged at an acute angle or an obtuse angle.
  • the optical deflecting device of the present invention has a double period in which a photonic crystal waveguide repeats two types of low-refractive-index portions in a lattice arrangement formed by arranging low-refractive-index portions on a high-refractive-index member.
  • a first form having a structure and a second form having a periodic structure in which the photonic crystal waveguide repeats one kind of low refractive index portion having the same size are included.
  • the photonic crystal waveguide and the diffraction mechanism include two types of low refractive index portions having different sizes along the length direction of the waveguide core in the plane of the high refractive index member.
  • a lattice arrangement of a double periodic structure arranged periodically is provided.
  • the diffraction mechanism includes two types of periodic parts in which a low-refractive index part of the same size is periodically arranged in a lattice arrangement of a double periodic structure.
  • the two types of periodic portions are alternately arranged along the length direction of the waveguide core, and are arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core.
  • the periodic portions are alternately arranged along the length direction of the waveguide core according to a plurality of arrangement forms, and can be arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core.
  • each periodic part of the diffraction mechanism is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core.
  • the waveguide mode oozes out from the waveguide core in the lateral direction, thereby gradually reducing the confinement of light in the waveguide core, and the radiation angle.
  • the distribution is narrowed to about ⁇ 25 °.
  • this V-shaped periodic part pattern promotes radiation from an electromagnetic field having the same sign in the transverse distribution of the waveguide mode, thereby suppressing interference at a distance and forming a unimodal beam. Play.
  • each periodic part of the diffraction mechanism is an arrangement called a grating shift in which a linear arrangement of a part of the low refractive index part of the grating arrangement is displaced with respect to the length direction of the waveguide core.
  • a grating shift in which a linear arrangement of a part of the low refractive index part of the grating arrangement is displaced with respect to the length direction of the waveguide core.
  • two linear arrangements at positions symmetrical to the waveguide core are different from the other linear arrangements.
  • the waveguide cores are arranged so as to be displaced in the length direction.
  • the V-shaped arrangement with lattice shift according to the second arrangement form has an effect of uniforming the deflection angle characteristics of the photonic crystal waveguide that is not lattice-shifted.
  • each periodic part of the diffraction mechanism is a lattice arrangement
  • the grating arrangement in the vicinity of the waveguide core has a double periodic structure
  • the first arrangement form for two kinds of periodic parts of the double periodic structure.
  • the other lattice arrangement is a periodic structure.
  • the lattice arrangement of the photonic crystal waveguide in the length direction of the waveguide core Among the two types of lattice arrangements arranged along the low-refractive-index regions arranged along the periodic array, the multiple rows of lattice arrangements near the waveguide core have a double periodic structure, and the remaining lattice arrangements are the same.
  • a periodic structure in which low-refractive-index portions having a size are periodically arranged is used.
  • a double periodic structure can be provided only in the vicinity of the waveguide core where the waveguide modes are mainly concentrated. The effect is made simpler and unimodal.
  • each periodic part of the diffraction mechanism is arranged in a V shape or an inverted V shape similarly to the first arrangement form, and for two types of periodic parts of the double periodic structure of the lattice arrangement,
  • the sizes of the low refractive index portions are arranged in gradation, and the low refractive index portions are arranged so that the size of the low refractive index portions increases or decreases in order along the arrangement direction of the low refractive index portions.
  • the 4th arrangement form is the form which combined V shape or reverse V shape and gradation arrangement.
  • the combination of the V shape and the gradation arrangement has the effect of making the lateral distribution of the emitted light beam smoother by making the double periodic structure gradually uniform as the distance from the waveguide core increases. Play.
  • the form in which the inverted V shape and the gradation arrangement are combined has an effect of effectively widening the width in which the waveguide mode is radiated and narrowing the lateral distribution.
  • each periodic part of the diffraction mechanism is an arrangement form in which two kinds of periodic parts of the double periodic structure intersect with the waveguide core at an acute angle or an obtuse angle.
  • the periodic part on the side is arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
  • the lattice arrangement of the double periodic structure has a circular pattern of the photonic crystal having a large diameter hole and a small diameter circular hole. It is composed by repeating.
  • this double periodic structure composed of large and small circular holes in addition to fewer processing steps, changing the amount of change in the size of the circular hole in the plane can change the amount of radiation without changing the radiation angle. Therefore, the longitudinal distribution of the radiated light beam is gradually changed to a Gaussian distribution in the waveguide propagation direction, so that a high-quality beam with little side loop in the longitudinal direction can be formed.
  • a photonic crystal waveguide having a periodic structure in which low-refractive index portions of one kind are repeated and a diffraction mechanism are arranged on the photonic crystal waveguide.
  • the photonic crystal waveguide includes a grating structure having a periodic structure in which low refractive index portions having the same size are periodically arranged along the length direction of the waveguide core in the plane of the high refractive index member.
  • the diffraction mechanism is a surface diffraction grating arranged on a grating array of photonic crystal waveguides.
  • the periodic parts included in the surface diffraction grating are concavo-convex arrays, and each periodic part is arranged at an acute angle or an obtuse angle with respect to the waveguide core.
  • the periodic part can be arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core depending on a plurality of forms.
  • each periodic part of the surface diffraction grating is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core. Also in the first arrangement form of the periodic parts of the surface diffraction grating, the same effect as that of the form in which the V-shaped or inverted V-shaped periodic parts are arranged in the double periodic structure.
  • each periodic part of the surface diffraction grating is an arrangement form in which the periodic part of the periodic structure intersects the waveguide core at an acute angle or an obtuse angle, and the periodic part on one side with respect to the waveguide core. Are arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
  • the optical deflection device of the present invention suppresses the lateral spread of the beam intensity distribution of the radiated light beam in the lateral distribution of the radiated light beam, and the beam intensity distribution of the radiated light beam is unimodal. It can be.
  • each periodic part which constitutes a diffraction mechanism. It is the 3rd arrangement form of each periodic part which constitutes a diffraction mechanism. It is the 4th arrangement form of each periodic part which constitutes a diffraction mechanism. It is the 4th arrangement form of each periodic part which constitutes a diffraction mechanism. It is a figure for demonstrating the structural example of the double periodic structure of the 1st form of this invention, and is the 5th arrangement
  • positioning form which comprises a diffraction mechanism with a surface diffraction grating. It is a figure for demonstrating the device structure which introduce
  • FIG. 1 a schematic configuration example of the optical deflection device of the present invention will be described with reference to FIG. 1, and a first example of the optical deflection device of the present invention will be described with reference to FIGS. 2A to 2D, 3A to 3F, 4A, and 4B.
  • the second embodiment of the present invention will be described with reference to FIGS. 5A, 5B, and 6A to 6E.
  • FIG. 1 is a diagram for explaining an outline of an optical deflection device of the present invention.
  • the optical deflection device 1 includes a photonic crystal waveguide 2 in which low refractive index regions 11 are periodically arranged in a plane of a high refractive index member 10, and light propagating through a waveguide core 5 of the photonic crystal waveguide 2. And a diffraction mechanism 3 that emits a radiation beam to the outside.
  • the photonic crystal waveguide 2 and the diffraction mechanism 3 are provided on a clad 6 made of a semiconductor material such as Si.
  • Incident light incident on the waveguide core 5 is radiated from the waveguide core 5 to the outside by the diffraction mechanism 3 while propagating in the length direction in the waveguide core 5.
  • the arrows in FIG. 1 schematically indicate incident light and emitted light beams.
  • the photonic crystal waveguide 2 is formed by a lattice arrangement in which low refractive index portions 11 are periodically arranged on a high refractive index member 10 made of a semiconductor such as Si.
  • the low refractive index region 11 can be, for example, a circular hole provided in the high refractive index member 10.
  • a waveguide core 5 for propagating light is formed by providing a portion where the low refractive index portion 11 is not provided in a part of the lattice arrangement.
  • the waveguide core 5 is formed by providing a part where the circular hole is not disposed in a part of the lattice arrangement.
  • the diffraction mechanism 3 is a mechanism that deflects the propagation light of the waveguide core 5 and emits a radiated light beam to the outside, and includes a plurality of periodic portions 4 arranged along the length direction of the waveguide core 5, Each periodic part 4 is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5. As one form of disposing the periodic part 4, it is disposed in a V shape or an inverted V shape with respect to the length direction of the waveguide core 5.
  • the periodic part 4 included in the diffraction mechanism 3 is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5 when the longitudinal direction of the waveguide core 5 is the longitudinal direction.
  • the degree of lateral action on the wave mode is reduced, the light confinement of the waveguide core 5 is weakened and the waveguide mode is oozed out, thereby narrowing the radiation angle distribution in the transverse direction of the radiation light beam.
  • the effect of narrowing the radiation angle distribution can be about ⁇ 25 °, for example.
  • the V-shaped periodic portion has the same sign in the lateral distribution of the waveguide mode.
  • the radiation from the electromagnetic field is promoted, the interference of the radiation light beam is suppressed at a distance far from the optical deflection device, and the formation of a plurality of peaks is suppressed to form a unimodal beam.
  • the diffraction mechanism 3 of the optical deflection device 1 of the present invention is a first form formed together with the lattice arrangement of the photonic crystal waveguide 2 or a photonic crystal waveguide as a separate component from the photonic crystal waveguide 2 It can be set as the 2nd form which overlaps and comprises.
  • the photonic crystal waveguide 2 has a double periodic structure in which two types of low refractive index portions having different sizes are periodically arranged, and the diffraction mechanism 3 has the double structure.
  • the periodic part of each periodic structure constituting the periodic structure is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5.
  • the photonic crystal waveguide 2 has a periodic structure in which one kind of low refractive index portion having the same size is periodically arranged, and the diffraction mechanism 3 is a surface diffraction grating.
  • the photonic crystal waveguides 2 are arranged on the lattice arrangement of the photonic crystal waveguides 2.
  • the periodic part 4 of the diffraction mechanism 3 is schematically shown to represent both the first form and the second form.
  • FIG. 2 is a diagram for explaining the first schematic configuration and the lateral spread of the emitted light beam
  • FIGS. 3A to 3F, 4A, and 4B show the configuration of the double periodic structure of the first embodiment. It is a figure for demonstrating an example.
  • two types of low refractive index portions 11a and 11b having different sizes are periodically arranged along the length direction of the waveguide core 5 in the plane of the high refractive index member 10.
  • a lattice array 12 having a double periodic structure is formed.
  • the photonic crystal waveguide 2 and the diffraction mechanism 3 are formed on the same grating array 12.
  • the low refractive index portions 11a and 11b can be formed by circular holes formed in the high refractive index member 10 and having different diameters.
  • a circular hole as a low-refractive index part in a lattice arrangement with a double periodic structure
  • the radiation angle The amount of radiation can be changed without changing.
  • the longitudinal distribution of the radiated light beam is gradually changed to a Gaussian distribution in the propagation direction of the waveguide, and a high-quality beam with little side loop in the longitudinal direction can be formed.
  • the conventionally proposed double periodic structure of the lattice array 12 is such that the circular holes 111a and 111b of the triangular lattice pattern are periodically formed in the high refractive index material 110 such as Si as shown in FIG. 7B.
  • An optical waveguide core 105 is formed by providing a region where the circular holes (111a, 111b) are not formed in the central portion.
  • circular holes (111a, 111b) having large and small diameters are arranged along the length direction of the waveguide core 5, which is the traveling direction of light propagating in the waveguide core 5.
  • a double periodic structure is formed, and the light propagating through the waveguide core 5 is emitted out of the plane by the double periodic structure.
  • the angular distribution in the lateral direction of the radiation light beam formed by this double periodic structure has a wide angular distribution range of about ⁇ 80 ° as shown in FIG. 2D, and the light intensity peak is split into three. .
  • Such a wide angular distribution is attributed to the fact that the propagation light of the waveguide core 5 is radiated out of the plane from the state where it is strongly confined, and the three splits of the light intensity peak are in the transverse direction of the waveguide mode.
  • the distribution oscillates in the positive and negative directions, and it is assumed that radiation from electromagnetic fields having different signs interfere with each other to form a belly and a node.
  • the double periodic structure 3A provided in the optical deflection device 1 according to the first embodiment of the present invention has a length of the waveguide core 5 in the plane of the high refractive index member 10.
  • FIG. 2B shows an example in which two types of low refractive index portions of the lattice arrangement are configured by a large diameter circular hole 11a and a small diameter circular hole 11b.
  • the arrangement in which the large-diameter circular holes 11a extend in the horizontal oblique direction from the waveguide core 5 constitutes the periodic part 4Aa
  • the arrangement in which the small-diameter circular holes 11b extend in the horizontal oblique direction from the waveguide core 5 is the periodic part 4Ab.
  • the two types of periodic portions 4Aa and 4Ab are alternately arranged along the length direction of the waveguide core 5 (the traveling direction of the light propagating through the waveguide core 5). It is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5.
  • the arrangement of the periodic parts 4Aa and 4Ab is V-shaped or inverted V-shaped. .
  • the lattice arrangement of the first form constitutes the photonic crystal waveguide 2 and the diffraction mechanism 3.
  • FIG. 2C shows the angular distribution in the lateral direction of the emitted light beam by the lattice arrangement having a V-shaped periodic portion in the double periodic structure of the present invention.
  • the V-shaped periodic part causes the waveguide mode to ooze out from the waveguide core in the lateral direction to moderately weaken light confinement, the radiation angle distribution is narrowed to about ⁇ 25 °. Further, the V-shaped periodic part promotes radiation from the electromagnetic field having the same sign in the transverse distribution of the waveguide mode, so that interference at a distant place is suppressed and a unimodal beam is formed.
  • the wavelength is 1.55 ⁇ m
  • the lattice constant of the photonic crystal is 400 nm
  • the diameter 2r1 of the large-diameter hole 11a is 215 nm
  • the diameter of the small-diameter hole 11b is 2r2 is 295 nm
  • the refractive index of the refractive index member 10 is 3.5
  • the thickness is 210 nm
  • the refractive index of the upper cladding and the lower cladding 6 is 1.45.
  • the periodic portions 4Aa and 4Ab are alternately arranged along the length direction of the waveguide core according to a plurality of arrangement forms, and arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core. Can do.
  • the arrangement of the periodic parts will be described with reference to FIGS. 3A to 3F, FIG. 4A, and FIG. 4B.
  • each periodic portion 4A (4Aa, 4Ab) is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core 5.
  • 3A and 3B show a first arrangement form of each periodic portion constituting the diffraction mechanism, FIG. 3A shows a V-shaped arrangement, and FIG. 3B shows an inverted V-shaped arrangement.
  • the waveguide mode oozes out from the waveguide core 5 in the lateral direction, thereby gradually reducing light confinement in the waveguide core 5.
  • the radiation angle distribution is narrowed to about ⁇ 25 °.
  • this V-shaped periodic part pattern promotes radiation from an electromagnetic field having the same sign in the transverse distribution of the waveguide mode, thereby suppressing interference at a distance and forming a unimodal beam. Play.
  • FIG. 3C shows a second arrangement form of each periodic part constituting the diffraction mechanism.
  • the linear array 13 of the low refractive index parts 11 a and 11 b of the periodic parts 4 Aa and 4 Ab in the grating array 12 is arranged in the length direction of the waveguide core 5.
  • the arrangement is shifted from the arrangement, which is an arrangement form called a lattice shift.
  • two linear arrays 13A and 13B that are symmetrical with respect to the waveguide core 5 are:
  • the waveguide core 5 is arranged so as to be displaced in the length direction with respect to the other linear arrangement. This second arrangement form uniformizes the deflection angle characteristics of the photonic crystal waveguide 2 that is not misaligned.
  • FIG. 3D shows a third arrangement form of each periodic part constituting the diffraction mechanism.
  • the third arrangement form of the periodic parts constituting the diffraction mechanism 3 is that in the grating array 12, the grating arrays 14A and 14B in the vicinity of the waveguide core 5 have a double periodic structure, and two kinds of periods of the double periodic structure are used.
  • the parts 4Aa and 4Ab are arranged in a V shape or an inverted V shape similarly to the first arrangement form, and the other lattice arrangements 15A and 15B have the same periodic structure.
  • the waveguide is one of the lattice arrangements 12 in which two types of low refractive index portions 11a and 11b having different sizes arranged along the length direction of the waveguide core are periodically arranged.
  • a plurality of lattice arrays 14A and 14B in the vicinity of the core have a double periodic structure, and the remaining lattice arrays 15A and 15B have a periodic structure in which low refractive index portions 11 of the same size are periodically arrayed.
  • (d) Fourth arrangement form: 3E and 3F show a fourth arrangement form of each periodic part constituting the diffraction mechanism.
  • the fourth arrangement form of each periodic part of the diffraction mechanism is arranged in a V shape or an inverted V shape similarly to the first arrangement form, and two kinds of periods of the double periodic structure of the grating array 12 are arranged.
  • the size of the low refractive index portion is arranged in gradation.
  • the low refractive index portions 11b are arranged so that the size of the low refractive index portions 11b sequentially increases along the arrangement direction of the low refractive index portions.
  • the low refractive index portions 11a are arranged so that the size of the low refractive index portions 11a sequentially increases along the arrangement direction of the low refractive index portions.
  • FIG. 4th arrangement form is the form which combined V shape or reverse V shape and gradation arrangement.
  • FIG. 3E shows a combination of a V shape and a gradation array. In this arrangement, the structure in which the double periodic structure is gradually uniformed as the distance from the waveguide core is increased, so that the lateral distribution of the emitted light beam is more smoothly smoothed.
  • FIG. 3F shows a combination of an inverted V shape and a gradation array. In this arrangement form, the width in which the guided mode is radiated is effectively widened, and the lateral distribution is further narrowed.
  • the fifth arrangement form of each periodic part of the diffraction mechanism is an arrangement form in which two kinds of periodic parts of the double periodic structure intersect the waveguide core at an acute angle or an obtuse angle.
  • 4A with the waveguide core 5 as the center, the periodic part 16A on one side is arranged at an acute angle with respect to the length direction of the waveguide core 5, and the periodic part 16B on the other side is disposed on the waveguide core 5. It is arranged at an obtuse angle with respect to the length direction.
  • the arrangement shown in FIG. 4B shows a configuration in which the arrangement shown in FIG. 4A is symmetric with respect to the waveguide core 5.
  • FIGS. 5A, 5B, and 6A to 6E A second embodiment of the optical deflection device of the present invention will be described with reference to FIGS. 5A, 5B, and 6A to 6E.
  • 5A and 5B are diagrams for explaining the second schematic configuration
  • FIGS. 6A to 6E are diagrams for explaining a configuration example of the surface diffraction grating of the second embodiment.
  • the second embodiment of the optical deflection device is a photonic crystal waveguide 2 having a grating structure 12 having a periodic structure in which low-refractive index portions 11 having one size are repeated, and the photonic crystal waveguide as a diffraction mechanism 3. 2 is provided with a surface diffraction grating 3B.
  • the photonic crystal waveguide 2 includes a grating structure 12 having a periodic structure in which low refractive index portions 11 having the same size are periodically arranged along the length direction of the waveguide core 5 in the plane of the high refractive index member 10. .
  • the diffraction mechanism 3 is configured by disposing a surface diffraction grating 3 ⁇ / b> B on the grating array 12 of the photonic crystal waveguide 2.
  • the periodic part 4B (convex part 4Ba, concave part 4Bb) provided in the surface diffraction grating 3B is an uneven arrangement, and each periodic part 4B (4Ba, 4Bb) is arranged at an acute angle or an obtuse angle with respect to the waveguide core 5.
  • the convex portion 4Ba of the surface diffraction grating 3B and the 4Bb concave portion of the surface diffraction grating 3B are used as the periodic portion 4B.
  • the periodic portion of the convex portion 4Ba of the surface diffraction grating 3B is a dark ground pattern.
  • the periodic part of the concave portion 4Bb of the surface diffraction grating 3B is indicated by a thin ground pattern.
  • the form in which the periodic parts (projections 4Ba, recesses 4Bb) of the surface diffraction grating 3B are arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5 can be a plurality of forms.
  • the first arrangement form of the periodic parts (convex part 4Ba, concave part 4Bb) of the surface diffraction grating 3B is a V-shaped or convex part 4Ba and concave part 4Bb of each periodic part 4B with respect to the length direction of the waveguide core 5. Arranged in an inverted V-shape. Even in the first arrangement form of the periodic parts by the surface diffraction grating, the same effect as that of the form in which the periodic parts are arranged in a V-shaped or inverted V-shaped shape in the double periodic structure is obtained.
  • FIG. 6A, FIG. 6B, and FIG. 6C show a first arrangement form in which a diffraction mechanism is constituted by a surface diffraction grating.
  • FIG. 6A shows a V-shaped configuration in which the angle of the convex portions 4Ba and the concave portions 4Bb, which are each periodic part of the surface diffraction grating 3B, is 60 ° in a triangular arrangement of circular holes.
  • the holes are arranged in a triangular pattern
  • an inverted V-shaped configuration is shown in which the angles of the convex portions 4Ba and the concave portions 4Bb that are each periodic portion of the surface diffraction grating 3B are 120 °.
  • FIG. 6C shows a V-shaped configuration in which the angle of the convex portions 4Ba and the concave portions 4Bb, which are each periodic portion of the surface diffraction grating 3B, is 30 ° in a lattice arrangement in which circular holes are arranged in a triangle.
  • each periodic part of the surface diffraction grating is an arrangement form in which the periodic part of the periodic structure intersects the waveguide core at an acute angle or an obtuse angle, and the periodic part on one side with respect to the waveguide core. Are arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
  • FIG. 6D and FIG. 6E show a second arrangement form in which the diffraction mechanism is constituted by the surface diffraction grating.
  • FIG. 6D shows a convex arrangement on one side with respect to the waveguide core 5 by inclining the convex portions 4Ba and the concave portions 4Bb, which are each periodic portion of the surface diffraction grating 3B, in one direction in a triangular arrangement of circular holes.
  • the portion 4Ba and the concave portion 4Bb are arranged at 60 ° with respect to the length direction of the waveguide core 5, and the convex portion 4Ba and the concave portion 4Bb on the other side are arranged at 120 ° with respect to the length direction of the waveguide core 5. .
  • a normal surface diffraction grating has a simple linear diffraction grating having a period twice that of a photonic crystal.
  • the configuration using this diffraction grating has a wide lateral angle distribution as in the conventional double periodic structure shown in FIG. 2D.
  • the light intensity peak is a radiation light beam divided into a plurality.
  • the diffraction grating of the surface diffraction grating is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core, similarly to the first embodiment of the optical deflection device having the double periodic structure of the present invention. As a result, a unidirectional radiation light beam with a narrow divergence angle can be obtained.
  • the optical deflection device and the lidar apparatus (laser radar) of the present invention can be mounted on automobiles, drones, robots, etc., and can be mounted on a personal computer or a smartphone to easily capture the surrounding environment, a monitoring system, optical exchange, It can be applied to a space matrix optical switch for a data center.
  • Si is used as the high refractive index member constituting the photonic crystal waveguide of the optical deflection device, and light in the near infrared wavelength range is used.
  • a visible light material as a refractive index member
  • a projector a laser display, a retina display, a 2D / 3D printer, a POS, a card reading, and the like is expected.

Abstract

Provided is a light deflection device having a diffraction mechanism for diffracting light beams emitted from a waveguide core to an external direction, the mechanism being configured to sequentially change waveguide modes in a transverse direction, with the length direction of the waveguide core being a longitudinal direction. The degrees of confining light in the transverse direction are sequentially decreased to change the state of leak from the waveguide core, whereby transverse spread of beam intensity distribution of emitted light beams is suppressed, and the radiation from electromagnetic fields having the same sign in the transverse distribution of waveguide modes is promoted, whereby interference at a distant place is suppressed, in order to form a unimodal beam. As a result of the feature, in the transverse distribution of emitted light beams, the transverse spread of beam intensity distribution of emitted light beams is suppressed such that the beam intensity distribution of emitted light beams has unimodality.

Description

光偏向デバイスOptical deflection device
 本発明は、光の進行方向を制御する光偏向デバイスに関する。 The present invention relates to an optical deflection device that controls the traveling direction of light.
 周囲の物体までの距離を2次元画像として取得するレーザ計測を用いたレーザレーダーもしくはライダー装置(LiDAR(Light Detection and Ranging, Laser Imaging Detection and Ranging))の技術分野は、車の自動運転や3次元地図作製等に利用されており、その基盤技術はレーザプリンタやレーザディスプレイ等にも適用可能である。 Laser radar or lidar equipment (LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)) that uses laser measurement to acquire the distance to surrounding objects as a two-dimensional image It is used for making maps, and its basic technology can be applied to laser printers and laser displays.
 この技術分野では、光ビームを物体に当て、物体で反射して戻ってくる反射光を検出し、その時間差や周波数差から距離の情報を取得すると共に、光ビームを2次元的に走査することによって広角の3次元情報を取得する。 In this technical field, a light beam is applied to an object, reflected light that is reflected back from the object is detected, distance information is obtained from the time difference or frequency difference, and the light beam is scanned two-dimensionally. To obtain wide-angle three-dimensional information.
 光ビーム走査には光偏向デバイスが必須である。従来は、機器全体の回転、多角形ミラー(ポリゴンミラー)、ガルバノミラーといった機械式ミラー、マイクロマシーン技術(MEMS技術)による小型集積ミラーなど、いずれも機械式の機構が用いられているが、大型、高価、振動する移動体での不安定性などが問題であり、近年、非機械式の光偏向デバイスの研究が盛んとなっている。 An optical deflection device is essential for optical beam scanning. Conventionally, mechanical mechanisms such as rotating the entire device, mechanical mirrors such as polygonal mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have been used. However, the instability of a moving body that is expensive and vibrates is a problem. In recent years, research on non-mechanical optical deflection devices has been actively conducted.
 非機械式の光偏向デバイスとして、光の波長やデバイスの屈折率を変えることで光偏向を実現するフェーズドアレイ型や回折格子型が提案されている。しかしながら、フェーズドアレイ型の光偏向デバイスはアレイ状に並べられた多数の光放射器の位相調整が非常に難しく、高品質な鋭い光ビームを形成することができないという課題がある。回折格子型の光偏向デバイスは鋭いビームの形成が容易であるが、光偏向角が小さいという課題がある。 As a non-mechanical optical deflection device, a phased array type or a diffraction grating type that realizes optical deflection by changing the wavelength of light or the refractive index of the device has been proposed. However, the phased array type optical deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and a high-quality sharp light beam cannot be formed. Although the diffraction grating type optical deflection device can easily form a sharp beam, there is a problem that the optical deflection angle is small.
 光偏向角の課題に対して、本発明の発明者は、スローライト導波路を回折格子等の回折機構に結合させることによって光偏向角を増大させる技術を提案している(特許文献1)。スローライトはフォトニック結晶導波路のようなフォトニックナノ構造の中で発生し、低群速度を持つ。スローライトの光は、波長や導波路の屈折率のわずかな変化により、伝搬定数を大きく変化させるという特徴を持つ。このスローライト導波路の内部、もしくは直近に回折機構を設置すると、スローライト導波路が回折機構に結合して漏れ導波路となり、自由空間に光を放射する。このとき伝搬定数の大きな変化は放射光の偏向角に反映し、結果として大きな偏向角が実現される。 In response to the problem of the light deflection angle, the inventors of the present invention have proposed a technique for increasing the light deflection angle by coupling the slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 1). Slow light is generated in a photonic nanostructure such as a photonic crystal waveguide and has a low group velocity. Slow light has a characteristic that the propagation constant is greatly changed by a slight change in wavelength or refractive index of the waveguide. When a diffractive mechanism is installed in or near the slow light waveguide, the slow light waveguide is coupled to the diffractive mechanism to form a leaky waveguide, and emits light into free space. At this time, a large change in the propagation constant is reflected in the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
 フォトニック結晶の面内に導波路に沿って1種類の直径の円孔を繰り返してなる周期構造ではスローライト伝搬光は非放射である。また、2種類の異なる直径の円孔を繰り返す二重周期構造では、スローライト伝搬光は放射条件に変換され、空間に放射される。 The slow light propagating light is non-radiating in a periodic structure in which a circular hole of one kind of diameter is repeated along the waveguide in the plane of the photonic crystal. In addition, in a double periodic structure in which two types of holes having different diameters are repeated, the slow light propagating light is converted into radiation conditions and emitted into space.
 したがって、1種類の直径の円孔を繰り返してなる周期構造からなるフォトニック結晶導波路は、回折格子等の回折機構により伝搬光を放射する。一方、フォトニック結晶の面内に2種類の異なる直径の円孔を繰り返す二重周期構造では、フォトニック結晶導波路に回折機構が組み込まれた一つの構成要素で構成される。 Therefore, a photonic crystal waveguide having a periodic structure formed by repeating circular holes of one type of diameter emits propagating light by a diffraction mechanism such as a diffraction grating. On the other hand, the double periodic structure in which two types of holes having different diameters are repeated in the plane of the photonic crystal is composed of one component in which a diffraction mechanism is incorporated in the photonic crystal waveguide.
 低群速度をもつ光(スローライト)を伝搬するフォトニック結晶導波路に回折機構を導入したデバイス構造とそこからの放射光ビームの概要を図7A~図7Dに示す。 7A to 7D show an outline of a device structure in which a diffraction mechanism is introduced into a photonic crystal waveguide that propagates light (slow light) having a low group velocity and a radiation beam emitted therefrom.
 (第1のデバイス構造)
 図7A,図7Bは第1の光偏向デバイスのデバイス構造を示す。光偏向デバイス101Aは、2種類の異なる直径の円孔111a,111bを繰り返してなる二重周期構造を有するフォトニック結晶導波路102を備える。
(First device structure)
7A and 7B show the device structure of the first optical deflection device. The optical deflection device 101A includes a photonic crystal waveguide 102 having a double periodic structure in which circular holes 111a and 111b having two different diameters are repeated.
 光偏向デバイス101Aは、SiO等の低屈折率材料からなるクラッド106上に、高屈折率部材101に低屈折率部位111が配列されたフォトニック結晶導波路102が設けられる。低屈折率部位111の格子配列112は、例えば、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造の二重周期構造である。二重周期構造を形成する円孔の大径及び小径は、基準の円孔の直径に対して、あるいは互いの直径の比較において、大小の関係を示すものであり、例えば、基準の円孔の直径を2rとし、直径の相違幅を2Δrとしたとき、大径の円孔111aの直径2r1は2(r+Δr)であり、小径の円孔111bの直径2r2は2(r-Δr)である。フォトニック結晶導波路102の格子配列112において、円孔111を設けない部分は入射光を伝搬する導波路コア105を構成する。 In the optical deflection device 101A, a photonic crystal waveguide 102 in which a low refractive index portion 111 is arranged on a high refractive index member 101 is provided on a clad 106 made of a low refractive index material such as SiO 2 . The lattice arrangement 112 of the low refractive index portion 111 is, for example, a double periodic structure of a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated. The large and small diameters of the circular holes forming the double periodic structure indicate a large or small relationship with respect to the diameter of the reference circular hole or in comparison of the diameters of the reference circular holes. When the diameter is 2r and the difference width of diameter is 2Δr, the diameter 2r1 of the large-diameter circular hole 111a is 2 (r + Δr), and the diameter 2r2 of the small-diameter circular hole 111b is 2 (r−Δr). In the lattice arrangement 112 of the photonic crystal waveguide 102, a portion where the circular holes 111 are not provided constitutes a waveguide core 105 that propagates incident light.
 (第2のデバイス構造)
 図7C,図7Dは第2の光偏向デバイスのデバイス構造を示す。光偏向デバイス101Bは、1種類の直径の円孔111cを繰り返してなる周期構造のフォトニック結晶導波路102上に表面回折格子103が配設されてなる。
(Second device structure)
7C and 7D show the device structure of the second optical deflection device. In the optical deflection device 101B, a surface diffraction grating 103 is disposed on a photonic crystal waveguide 102 having a periodic structure formed by repeating circular holes 111c having one type of diameter.
 格子配列112は高屈折率部材101に低屈折率部位の円孔111cが周期配列され、フォトニック結晶導波路102が形成される。フォトニック結晶導波路102上には表面回折格子103が配設され、伝搬光を放射する回折機構を構成する。 In the lattice arrangement 112, circular holes 111c at low refractive index portions are periodically arranged in the high refractive index member 101, and the photonic crystal waveguide 102 is formed. A surface diffraction grating 103 is disposed on the photonic crystal waveguide 102 and constitutes a diffraction mechanism for emitting propagating light.
特願2016-10844Japanese Patent Application No. 2016-10844
 従来提案されている光偏向デバイスにおいて、導波路コアを伝搬する伝搬光は回折機構によって導波路に沿って少しずつ光が放射され、放射光ビームが形成される。放射光ビームは、光偏向デバイスの導波路の屈折率や入射波長を変えることによって偏向される。放射光ビームは、導波路に沿った方向(ここでは縦方向とする)に対してはビーム強度分布が揃った鋭いビームとなる。 In a conventionally proposed optical deflection device, propagating light propagating through a waveguide core is emitted little by little along the waveguide by a diffraction mechanism, and a radiated light beam is formed. The emitted light beam is deflected by changing the refractive index and incident wavelength of the waveguide of the optical deflection device. The emitted light beam is a sharp beam having a uniform beam intensity distribution in the direction along the waveguide (here, the longitudinal direction).
 一方、導波路と直交する方向(ここでは横方向とする)に対してスローライトは、狭い導波路コア105に閉じ込められて伝搬する。そこから空間に放射されるため、一般に光ビームが広がる。また、フォトニック結晶の周期性に由来して、周期的な導波モード分布から放射された光が相互に干渉するため、複雑な横方向分布が形成される可能性がある。 On the other hand, the slow light is confined in the narrow waveguide core 105 and propagates in the direction orthogonal to the waveguide (here, the lateral direction). Since the light is radiated from there, the light beam generally spreads. In addition, since the light emitted from the periodic waveguide mode distribution interferes with each other due to the periodicity of the photonic crystal, a complicated lateral distribution may be formed.
 図8A,図8Bは放射光ビームのビーム強度分布を説明するための図であり、図8Aは縦方向のビーム強度分布を示し、図8Bは横方向のビーム強度分布を示している。図8Aにおいて、放射光ビームは導波路に沿って徐々に漏れ出すことで縦方向のビーム強度分布は揃った鋭いビームとなる。図8Bにおいて、横方向のビーム強度分布は広い角度分布を有する。 8A and 8B are diagrams for explaining the beam intensity distribution of the emitted light beam, FIG. 8A shows the beam intensity distribution in the vertical direction, and FIG. 8B shows the beam intensity distribution in the horizontal direction. In FIG. 8A, the radiated light beam gradually leaks along the waveguide, so that the beam intensity distribution in the vertical direction becomes a sharp beam. In FIG. 8B, the lateral beam intensity distribution has a wide angular distribution.
 光偏向デバイスによる放射光ビームには、縦方向におけるビーム強度の均一化の他、ビーム強度分布の横方向への広がりが抑制されること、及びビーム強度分布が単峰性であることが求められる。 The emitted light beam from the optical deflection device is required to be uniform in beam intensity in the vertical direction, to suppress the spread of the beam intensity distribution in the horizontal direction, and to be unimodal. .
 特に、放射光ビームの横方向分布において、横方向の広がり、及びビームの強度が複数のピークを有した複雑なビーム強度の分布形状がある場合は、平行ビームヘの変換効率を低下させる要因となる。 In particular, in the lateral distribution of the synchrotron radiation beam, when there is a spread in the lateral direction and there is a complex beam intensity distribution shape having a plurality of peaks, it becomes a factor of reducing the conversion efficiency to a parallel beam. .
 放射光ビームの横方向への広がりを抑制するために、光偏向デバイスの上方にコリメートレンズを設置し、導波路からの放射光ビームを平行ビームに変換する構成がよく用いられる。しかしながら、コリメートレンズによる平行ビームへの変換は、横方向の広がり角を小さく抑えるものの、光ビームの横方向分布の発生自体を抑えるものではなく、また、横方向の複数個のピークを有したビーム強度分布は、平行ビームへの変換後においてもそのまま保持される。 In order to suppress the spread of the radiated light beam in the lateral direction, a configuration is often used in which a collimating lens is installed above the light deflection device and the radiated light beam from the waveguide is converted into a parallel beam. However, the conversion to a parallel beam by the collimating lens does not suppress the occurrence of the lateral distribution of the light beam itself, although it suppresses the lateral divergence angle, and the beam has a plurality of lateral peaks. The intensity distribution is maintained as it is even after conversion to a parallel beam.
 即ち、平行ビームヘの変換効率を高めるには、放射光ビームにおいて、複雑な横方向分布の発生が抑えられ、ビーム強度分布のピークは単峰であることが求められる。 That is, in order to increase the conversion efficiency to the parallel beam, it is required that the generation of a complex lateral distribution is suppressed in the synchrotron radiation beam and the peak of the beam intensity distribution is a single peak.
 本発明は、放射光ビームの横方向分布において、放射光ビームのビーム強度分布の横方向の広がりを抑制し、放射光ビームのビーム強度分布を単峰性とする光偏向デバイスを目的とする。 The present invention is directed to an optical deflection device that suppresses the spread of the beam intensity distribution of the radiated light beam in the lateral direction and makes the beam intensity distribution of the radiated light beam unimodal.
 本発明の光偏向デバイスは、導波路コアから放射される光ビームを外部方向に回折する回折機構において、導波路コアの長さ方向を縦方向としたとき、導波モードを横方向に順に変化させる構成とすることによって、横方向において光を閉じ込める程度を順に弱めて、導波路コアから浸み出し状態を変化させることによって、放射光ビームのビーム強度分布の横方向の広がりを抑制し、また、導波モードの横方向分布の同符号を持った電磁界からの放射を促進することで遠方での干渉を抑制し、単峰のビームを形成する。 The optical deflection device of the present invention is a diffraction mechanism that diffracts the light beam emitted from the waveguide core in the outward direction, and when the length direction of the waveguide core is the vertical direction, the waveguide mode changes in the horizontal direction in order. By gradually reducing the degree of light confinement in the lateral direction and changing the leaching state from the waveguide core, the lateral spread of the beam intensity distribution of the radiated light beam is suppressed. By accelerating the radiation from the electromagnetic field having the same sign of the transverse distribution of the waveguide mode, interference at a distant place is suppressed and a unimodal beam is formed.
 本発明の光偏向デバイスは、高屈折率部材の面内に低屈折率部位が周期的に格子配列されたフォトニック結晶導波路と、フォトニック結晶導波路の導波路コアの伝搬光を偏向させ外部に放射光ビームを放射する回折機構とを備え、回折機構は、導波路コアの長さ方向に沿って配列された複数の周期部位を備え、各周期部位は導波路コアの長さ方向に対して鋭角又は鈍角に配置される。 The optical deflection device of the present invention deflects the propagation light of a photonic crystal waveguide in which low refractive index portions are periodically arranged in a plane of a high refractive index member and a waveguide core of the photonic crystal waveguide. A diffraction mechanism that emits a radiation light beam to the outside, and the diffraction mechanism includes a plurality of periodic portions arranged along the length direction of the waveguide core, and each periodic portion extends in the length direction of the waveguide core. On the other hand, it is arranged at an acute angle or an obtuse angle.
 本発明の光偏向デバイスは、高屈折率部材に低屈折率部位を配列してなる格子配列において、フォトニック結晶導波路が2種類の異なる大きさの低屈折率部を繰り返してなる二重周期構造を有する第1の形態と、フォトニック結晶導波路が1種類の同じ大きさの低屈折率部を繰り返してなる周期構造を有する第2の形態とを含む。 The optical deflecting device of the present invention has a double period in which a photonic crystal waveguide repeats two types of low-refractive-index portions in a lattice arrangement formed by arranging low-refractive-index portions on a high-refractive-index member. A first form having a structure and a second form having a periodic structure in which the photonic crystal waveguide repeats one kind of low refractive index portion having the same size are included.
 (第1の形態)
 光偏向デバイスの第1の形態において、フォトニック結晶導波路及び回折機構は、高屈折率部材の面内に導波路コアの長さ方向に沿って2種類の異なる大きさの低屈折率部位が周期配列された二重周期構造の格子配列を備える。
(First form)
In the first embodiment of the optical deflecting device, the photonic crystal waveguide and the diffraction mechanism include two types of low refractive index portions having different sizes along the length direction of the waveguide core in the plane of the high refractive index member. A lattice arrangement of a double periodic structure arranged periodically is provided.
 回折機構は、二重周期構造の格子配列において、それぞれ同じ大きさの低屈折率部位が周期配列された2種類の周期部位を備える。2種類の周期部位は導波路コアの長さ方向に沿って交互に配列され、導波路コアの長さ方向に対して鋭角又は鈍角に配置される。 The diffraction mechanism includes two types of periodic parts in which a low-refractive index part of the same size is periodically arranged in a lattice arrangement of a double periodic structure. The two types of periodic portions are alternately arranged along the length direction of the waveguide core, and are arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core.
 周期部位は、複数の配置形態によって、導波路コアの長さ方向に沿って交互に配列され、導波路コアの長さ方向に対して鋭角又は鈍角に配置することができる。 The periodic portions are alternately arranged along the length direction of the waveguide core according to a plurality of arrangement forms, and can be arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core.
  (a) 第1の配置形態:
 回折機構の各周期部位の第1の配置形態は、各周期部位を導波路コアの長さ方向に対してV字形状又は逆V字形状の形状に配置する。
(a) First arrangement form:
In the first arrangement form of each periodic part of the diffraction mechanism, each periodic part is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core.
 二重周期構造をV字形状又は逆V字形状とする配置形態では、導波モードが導波路コアから横方向に染み出すことによって、導波路コアへの光の閉じ込めを漸次に弱め、放射角度分布を例えば±25°程度まで狭める効果を奏する。 In the arrangement form in which the double periodic structure is V-shaped or inverted V-shaped, the waveguide mode oozes out from the waveguide core in the lateral direction, thereby gradually reducing the confinement of light in the waveguide core, and the radiation angle. For example, the distribution is narrowed to about ± 25 °.
 また、このV字形状の周期部位のパターンは、導波モードの横方向分布において同符号を持つ電磁界からの放射を促進して遠方での干渉を抑制し、単峰性ビームを形成する効果を奏する。 In addition, this V-shaped periodic part pattern promotes radiation from an electromagnetic field having the same sign in the transverse distribution of the waveguide mode, thereby suppressing interference at a distance and forming a unimodal beam. Play.
  (b) 第2の配置形態:
 回折機構の各周期部位の第2の配置形態は、格子配列の一部の低屈折率部位の直線配列を導波路コアの長さ方向に対して位置ずれさせて配置する、格子シフトと呼ばれる配置形態であり、二重周期構造において、導波路コアの長さ方向に並ぶ低屈折率部位の直線配列において、導波路コアに対して対称の位置にある2つの直線配列は他の直線配列に対して導波路コアの長さ方向に位置ずれさせて配列する。この第2配置形態による格子シフト付V字形状配置は、格子シフトさせていないフォトニック結晶導波路の偏向角特性を均一化する効果を奏する。
(b) Second arrangement form:
The second arrangement form of each periodic part of the diffraction mechanism is an arrangement called a grating shift in which a linear arrangement of a part of the low refractive index part of the grating arrangement is displaced with respect to the length direction of the waveguide core. In the double periodic structure, in the linear arrangement of the low refractive index regions arranged in the length direction of the waveguide core, two linear arrangements at positions symmetrical to the waveguide core are different from the other linear arrangements. Thus, the waveguide cores are arranged so as to be displaced in the length direction. The V-shaped arrangement with lattice shift according to the second arrangement form has an effect of uniforming the deflection angle characteristics of the photonic crystal waveguide that is not lattice-shifted.
  (c) 第3の配置形態:
 回折機構の各周期部位の第3の配置形態は、格子配列において、導波路コアの近傍の格子配列については二重周期構造とし、二重周期構造の2種類の周期部位について第1の配置形態と同様にV字形状又は逆V字形状の形状に配置し、その他の格子配列については周期構造とする配置形態であり、フォトニック結晶導波路の格子配列において、導波路コアの長さ方向に沿って配列された2種類の異なる大きさの低屈折率部位が周期配列された格子配列の内、導波路コアに近傍の複数列の格子配列は二重周期構造とし、残りの格子配列は同じ大きさの低屈折率部位が周期配列された周期構造とする。
(c) Third arrangement:
The third arrangement form of each periodic part of the diffraction mechanism is a lattice arrangement, the grating arrangement in the vicinity of the waveguide core has a double periodic structure, and the first arrangement form for two kinds of periodic parts of the double periodic structure. Are arranged in a V-shape or inverted V-shape, and the other lattice arrangement is a periodic structure. In the lattice arrangement of the photonic crystal waveguide, in the length direction of the waveguide core Among the two types of lattice arrangements arranged along the low-refractive-index regions arranged along the periodic array, the multiple rows of lattice arrangements near the waveguide core have a double periodic structure, and the remaining lattice arrangements are the same. A periodic structure in which low-refractive-index portions having a size are periodically arranged is used.
 格子配列の一部を第1の配置形態のV字形状とすることによって、導波モードが主に集中する導波路コアの近傍にだけ二重周期構造を設ける構成とすることができ、放射パターンをより単純化させ、単峰にする効果を奏する。 By making a part of the lattice arrangement into the V shape of the first arrangement form, a double periodic structure can be provided only in the vicinity of the waveguide core where the waveguide modes are mainly concentrated. The effect is made simpler and unimodal.
  (d) 第4の配置形態:
 回折機構の各周期部位の第4の配置形態は、第1の配置形態と同様にV字形状又は逆V字形状に配置すると共に、格子配列の二重周期構造の2種類の周期部位について、低屈折率部位の大きさをグラデーション配列するものであり、低屈折率部位の大きさが低屈折率部位の配列方向に沿って順に増加又は減少するように配列する。
(d) Fourth arrangement form:
The fourth arrangement form of each periodic part of the diffraction mechanism is arranged in a V shape or an inverted V shape similarly to the first arrangement form, and for two types of periodic parts of the double periodic structure of the lattice arrangement, The sizes of the low refractive index portions are arranged in gradation, and the low refractive index portions are arranged so that the size of the low refractive index portions increases or decreases in order along the arrangement direction of the low refractive index portions.
 第4の配置形態は、V字形状又は逆V字形状とグラデーション配列とを組み合わせた形態である。V字形状とグラデーション配列とを組み合わせた形態は、導波路コアから離れるにしたがって二重周期構造を徐々に均一化する構成とすることによって、放射光ビームの横方向分布をより滑らかにする効果を奏する。一方、逆V字形状とグラデーション配列とを組み合わせた形態は、導波モードが放射される幅を実効的に広げ、横方向分布をより狭くする効果を奏する。 4th arrangement form is the form which combined V shape or reverse V shape and gradation arrangement. The combination of the V shape and the gradation arrangement has the effect of making the lateral distribution of the emitted light beam smoother by making the double periodic structure gradually uniform as the distance from the waveguide core increases. Play. On the other hand, the form in which the inverted V shape and the gradation arrangement are combined has an effect of effectively widening the width in which the waveguide mode is radiated and narrowing the lateral distribution.
  (e) 第5の配置形態:
 回折機構の各周期部位の第5の配置形態は、二重周期構造の2種類の周期部位が導波路コアと鋭角又は鈍角で交差する配置形態であり、導波路コアを中心にして、一方の側の周期部位を導波路コアの長さ方向に対して鋭角に配置し、他方の側の周期部位を導波路コアの長さ方向に対して鈍角に配置する。
(e) Fifth arrangement form:
The fifth arrangement form of each periodic part of the diffraction mechanism is an arrangement form in which two kinds of periodic parts of the double periodic structure intersect with the waveguide core at an acute angle or an obtuse angle. The periodic part on the side is arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
 フォトニック結晶において、高屈折率部材に設ける低屈折率部位を円孔とする構成では、二重周期構造の格子配列は、フォトニック結晶の円孔パターンを大径の円孔と小径の円孔とを繰り返すことで構成される。この大小の円孔で構成される二重周期構造では、加工工程が少ないことに加え、円孔の大小の変化量を面内で変えると、放射角度を変えることなく、放射量を変えることができるので、導波路伝搬方向に向かって徐々に放射光ビームの縦方向分布をガウス分布にし、縦方向に対してサイドロ一プが少ない高品質なビームを形成できるという効果を奏する。 In the photonic crystal, in the configuration in which the low refractive index portion provided in the high refractive index member is a circular hole, the lattice arrangement of the double periodic structure has a circular pattern of the photonic crystal having a large diameter hole and a small diameter circular hole. It is composed by repeating. With this double periodic structure composed of large and small circular holes, in addition to fewer processing steps, changing the amount of change in the size of the circular hole in the plane can change the amount of radiation without changing the radiation angle. Therefore, the longitudinal distribution of the radiated light beam is gradually changed to a Gaussian distribution in the waveguide propagation direction, so that a high-quality beam with little side loop in the longitudinal direction can be formed.
 (第2の形態)
 光偏向デバイスの第2の形態は、1種類の大きさの低屈折率部位を繰り返してなる周期構造の格子配列のフォトニック結晶導波路と、回折機構としてこのフォトニック結晶導波路上に配置された表面回折格子を備える。
(Second form)
In the second embodiment of the optical deflection device, a photonic crystal waveguide having a periodic structure in which low-refractive index portions of one kind are repeated and a diffraction mechanism are arranged on the photonic crystal waveguide. A surface diffraction grating.
 フォトニック結晶導波路は、高屈折率部材の面内に導波路コアの長さ方向に沿って同じ大きさの低屈折率部位が周期配列された周期構造の格子配列を備える。一方、回折機構は、フォトニック結晶導波路の格子配列上に配置された表面回折格子である。表面回折格子が備える周期部位は凹凸配列であり、各周期部位を導波路コアに対して鋭角又は鈍角に配置する。 The photonic crystal waveguide includes a grating structure having a periodic structure in which low refractive index portions having the same size are periodically arranged along the length direction of the waveguide core in the plane of the high refractive index member. On the other hand, the diffraction mechanism is a surface diffraction grating arranged on a grating array of photonic crystal waveguides. The periodic parts included in the surface diffraction grating are concavo-convex arrays, and each periodic part is arranged at an acute angle or an obtuse angle with respect to the waveguide core.
 周期部位は複数の形態によって、導波路コアの長さ方向に対して鋭角又は鈍角に配置することができる。 The periodic part can be arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core depending on a plurality of forms.
  (a) 第1の配置形態:
 表面回折格子の各周期部位の第1の配置形態は、各周期部位を導波路コアの長さ方向に対してV字形状又は逆V字形状の形状に配置する。表面回折格子の周期部位の第1の配置形態においても、二重周期構造においてV字形状又は逆V字形状の形状の周期部位を配置する形態と同様の効果を奏する。
(a) First arrangement form:
In the first arrangement form of each periodic part of the surface diffraction grating, each periodic part is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core. Also in the first arrangement form of the periodic parts of the surface diffraction grating, the same effect as that of the form in which the V-shaped or inverted V-shaped periodic parts are arranged in the double periodic structure.
  (b) 第2の配置形態:
 表面回折格子の各周期部位の第2の配置形態は、周期構造の周期部位が導波路コアと鋭角又は鈍角で交差する配置形態であり、導波路コアを中心にして、一方の側の周期部位を導波路コアの長さ方向に対して鋭角に配置し、他方の側の周期部位を導波路コアの長さ方向に対して鈍角に配置する。
(b) Second arrangement form:
The second arrangement form of each periodic part of the surface diffraction grating is an arrangement form in which the periodic part of the periodic structure intersects the waveguide core at an acute angle or an obtuse angle, and the periodic part on one side with respect to the waveguide core. Are arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
 以上説明したように、本発明の光偏向デバイスは、放射光ビームの横方向分布において、放射光ビームのビーム強度分布の横方向の広がりを抑制し、放射光ビームのビーム強度分布を単峰性とすることができる。 As described above, the optical deflection device of the present invention suppresses the lateral spread of the beam intensity distribution of the radiated light beam in the lateral distribution of the radiated light beam, and the beam intensity distribution of the radiated light beam is unimodal. It can be.
本発明の光偏向デバイスの概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the optical deflection | deviation device of this invention. 本発明の第1の概略構成を説明するための図である。It is a figure for demonstrating the 1st schematic structure of this invention. 本発明の第1の概略構成を説明するための図である。It is a figure for demonstrating the 1st schematic structure of this invention. 放射光ビームの横方向の広がりを説明するための図である。It is a figure for demonstrating the breadth of the horizontal direction of a radiation light beam. 放射光ビームの横方向の広がりを説明するための図である。It is a figure for demonstrating the breadth of the horizontal direction of a radiation light beam. 本発明の第1の形態の二重周期構造の構成例を説明するための図であり、回折機構を構成する各周期部位の第1の配置形態である。It is a figure for demonstrating the structural example of the double periodic structure of the 1st form of this invention, and is the 1st arrangement | positioning form of each periodic region which comprises a diffraction mechanism. 回折機構を構成する各周期部位の第1の配置形態である。It is the 1st arrangement form of each periodic part which constitutes a diffraction mechanism. 回折機構を構成する各周期部位の第2の配置形態である。It is the 2nd arrangement form of each periodic part which constitutes a diffraction mechanism. 回折機構を構成する各周期部位の第3の配置形態である。It is the 3rd arrangement form of each periodic part which constitutes a diffraction mechanism. 回折機構を構成する各周期部位の第4の配置形態である。It is the 4th arrangement form of each periodic part which constitutes a diffraction mechanism. 回折機構を構成する各周期部位の第4の配置形態である。It is the 4th arrangement form of each periodic part which constitutes a diffraction mechanism. 本発明の第1の形態の二重周期構造の構成例を説明するための図であり、回折機構を構成する各周期部位の第5の配置形態である。It is a figure for demonstrating the structural example of the double periodic structure of the 1st form of this invention, and is the 5th arrangement | positioning form of each periodic region which comprises a diffraction mechanism. 回折機構を構成する各周期部位の第5の配置形態である。It is the 5th arrangement form of each periodic part which constitutes a diffraction mechanism. 本発明の第2の形態の二重周期構造の構成例を説明するための図である。It is a figure for demonstrating the structural example of the double periodic structure of the 2nd form of this invention. 本発明の第2の形態の二重周期構造の構成例を説明するための図である。It is a figure for demonstrating the structural example of the double periodic structure of the 2nd form of this invention. 本発明の第2の形態の二重周期構造の構成例を説明するための図であり、表面回折格子により回折機構を構成する第1の配置形態である。It is a figure for demonstrating the structural example of the double periodic structure of the 2nd form of this invention, and is the 1st arrangement | positioning form which comprises a diffraction mechanism with a surface diffraction grating. 表面回折格子により回折機構を構成する第1の配置形態である。It is the 1st arrangement form which constitutes a diffraction mechanism by a surface diffraction grating. 表面回折格子により回折機構を構成する第1の配置形態である。It is the 1st arrangement form which constitutes a diffraction mechanism by a surface diffraction grating. 表面回折格子により回折機構を構成する第2の配置形態である。It is the 2nd arrangement | positioning form which comprises a diffraction mechanism with a surface diffraction grating. 表面回折格子により回折機構を構成する第2の配置形態である。It is the 2nd arrangement | positioning form which comprises a diffraction mechanism with a surface diffraction grating. 低群速度をもつ光(スローライト)を伝搬するフォトニック結晶導波路に回折機構を導入したデバイス構造を説明するための図であり、第1の光偏向デバイスのデバイス構造である。It is a figure for demonstrating the device structure which introduce | transduced the diffraction mechanism into the photonic crystal waveguide which propagates the light (slow light) with a low group velocity, and is a device structure of the 1st optical deflection | deviation device. 第1の光偏向デバイスのデバイス構造である。It is a device structure of the 1st optical deflection device. 第2の光偏向デバイスのデバイス構造である。It is a device structure of the 2nd optical deflection device. 第2の光偏向デバイスのデバイス構造である。It is a device structure of the 2nd optical deflection device. 放射光ビームのビーム強度分布を説明するための図であり、縦方向のビーム強度分布である。It is a figure for demonstrating the beam intensity distribution of a synchrotron radiation beam, and is a beam intensity distribution of the vertical direction. 放射光ビームのビーム強度分布を説明するための図であり、横方向のビーム強度分布である。It is a figure for demonstrating the beam intensity distribution of a synchrotron radiation beam, and is a beam intensity distribution of a horizontal direction.
 以下、本願発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1を用いて本願発明の光偏向デバイスの概略構成例を説明し、図2A~図2D,図3A~図3F,図4A,図4Bを用いて本願発明の光偏向デバイスの第1の形態を説明し、図5A,図5B,図6A~Eを用いて本願発明の第2の形態を説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a schematic configuration example of the optical deflection device of the present invention will be described with reference to FIG. 1, and a first example of the optical deflection device of the present invention will be described with reference to FIGS. 2A to 2D, 3A to 3F, 4A, and 4B. The second embodiment of the present invention will be described with reference to FIGS. 5A, 5B, and 6A to 6E.
 (光偏向デバイスの概要)
 図1は本願発明の光偏向デバイスの概略を説明するための図である。
(Outline of optical deflection device)
FIG. 1 is a diagram for explaining an outline of an optical deflection device of the present invention.
 光偏向デバイス1は、高屈折率部材10の面内に低屈折率部位11が周期的に格子配列されたフォトニック結晶導波路2と、フォトニック結晶導波路2の導波路コア5の伝搬光を偏向させ外部に放射光ビームを放射する回折機構3とを備える。 The optical deflection device 1 includes a photonic crystal waveguide 2 in which low refractive index regions 11 are periodically arranged in a plane of a high refractive index member 10, and light propagating through a waveguide core 5 of the photonic crystal waveguide 2. And a diffraction mechanism 3 that emits a radiation beam to the outside.
 フォトニック結晶導波路2及び回折機構3は、Si等の半導体材からなるクラッド6上に設けられる。 The photonic crystal waveguide 2 and the diffraction mechanism 3 are provided on a clad 6 made of a semiconductor material such as Si.
 導波路コア5に入射された入射光は、導波路コア5を長さ方向の伝搬しながら、回折機構3によって導波路コア5から外部に放射される。図1中の矢印は入射光及び放射光ビームを模式的に示している。 Incident light incident on the waveguide core 5 is radiated from the waveguide core 5 to the outside by the diffraction mechanism 3 while propagating in the length direction in the waveguide core 5. The arrows in FIG. 1 schematically indicate incident light and emitted light beams.
 フォトニック結晶導波路2は、Si等の半導体からなる高屈折率部材10に低屈折率部位11を周期的に配した格子配列により形成される。低屈折率部位11は、例えば、高屈折率部材10に設けた円孔とすることができる。 The photonic crystal waveguide 2 is formed by a lattice arrangement in which low refractive index portions 11 are periodically arranged on a high refractive index member 10 made of a semiconductor such as Si. The low refractive index region 11 can be, for example, a circular hole provided in the high refractive index member 10.
 フォトニック結晶導波路2は、格子配列の一部に低屈折率部位11を設けない部分を設けることによって光を伝搬する導波路コア5が形成される。低屈折率部位11を円孔とする構成では、格子配列の一部に円孔を配置しない部分を設けることによって導波路コア5が形成される。 In the photonic crystal waveguide 2, a waveguide core 5 for propagating light is formed by providing a portion where the low refractive index portion 11 is not provided in a part of the lattice arrangement. In the configuration in which the low refractive index portion 11 is a circular hole, the waveguide core 5 is formed by providing a part where the circular hole is not disposed in a part of the lattice arrangement.
 回折機構3は、導波路コア5の伝搬光を偏向させて外部に放射光ビームを放射する機構であり、導波路コア5の長さ方向に沿って配列された複数の周期部位4を備え、各周期部位4を導波路コア5の長さ方向に対して鋭角又は鈍角で配置する。周期部位4を配置する一形態として、導波路コア5の長さ方向に対してV字形状又は逆V字形状に配置する。 The diffraction mechanism 3 is a mechanism that deflects the propagation light of the waveguide core 5 and emits a radiated light beam to the outside, and includes a plurality of periodic portions 4 arranged along the length direction of the waveguide core 5, Each periodic part 4 is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5. As one form of disposing the periodic part 4, it is disposed in a V shape or an inverted V shape with respect to the length direction of the waveguide core 5.
 回折機構3が備える周期部位4は、導波路コア5の長さ方向を縦方向としたとき、導波路コア5の長さ方向に対して鋭角又は鈍角に配置することによって、周期部位4が導波モードに対する横方向の作用する程度を減少させ、導波路コア5の光の閉じ込めを弱めて導波モードを染み出させ、これによって放射光ビームの横方向における放射角度分布を狭める。放射角度分布の狭まりの効果は、例えば±25°程度とすることができる。 The periodic part 4 included in the diffraction mechanism 3 is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5 when the longitudinal direction of the waveguide core 5 is the longitudinal direction. The degree of lateral action on the wave mode is reduced, the light confinement of the waveguide core 5 is weakened and the waveguide mode is oozed out, thereby narrowing the radiation angle distribution in the transverse direction of the radiation light beam. The effect of narrowing the radiation angle distribution can be about ± 25 °, for example.
 また、周期部位4を導波路コア5の長さ方向に対してV字形状又は逆V字形状に配置した構成は、導波モードの横方向分布において、V字形状の周期部位は同符号を持った電磁界からの放射を促進して、光偏向デバイスから離れた遠方において、放射光ビームの干渉を抑制し、複数ピークの形成を抑えて単峰性のビームを形成する。 Further, in the configuration in which the periodic portion 4 is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core 5, the V-shaped periodic portion has the same sign in the lateral distribution of the waveguide mode. The radiation from the electromagnetic field is promoted, the interference of the radiation light beam is suppressed at a distance far from the optical deflection device, and the formation of a plurality of peaks is suppressed to form a unimodal beam.
 本発明の光偏向デバイス1の回折機構3は、フォトニック結晶導波路2の格子配列と共に形成する第1の形態、あるいは、フォトニック結晶導波路2と別体の構成部材としてフォトニック結晶導波路2に重ねて構成する第2の形態とすることができる。 The diffraction mechanism 3 of the optical deflection device 1 of the present invention is a first form formed together with the lattice arrangement of the photonic crystal waveguide 2 or a photonic crystal waveguide as a separate component from the photonic crystal waveguide 2 It can be set as the 2nd form which overlaps and comprises.
 第1の形態において、フォトニック結晶導波路2は、その格子配列を大きさが異なる2種類の低屈折率部位をそれぞれ周期配列してなる二重周期構造とし、回折機構3は、この二重周期構造を構成する各周期構造の周期部位を導波路コア5の長さ方向に対して鋭角又は鈍角で配置する。 In the first embodiment, the photonic crystal waveguide 2 has a double periodic structure in which two types of low refractive index portions having different sizes are periodically arranged, and the diffraction mechanism 3 has the double structure. The periodic part of each periodic structure constituting the periodic structure is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5.
 第2の形態において、フォトニック結晶導波路2は、その格子配列を大きさが同じである1種類の低屈折率部位を周期配列してなる周期構造とし、回折機構3は表面回折格子として、フォトニック結晶導波路2の格子配列上に重ねて配置する。 In the second embodiment, the photonic crystal waveguide 2 has a periodic structure in which one kind of low refractive index portion having the same size is periodically arranged, and the diffraction mechanism 3 is a surface diffraction grating. The photonic crystal waveguides 2 are arranged on the lattice arrangement of the photonic crystal waveguides 2.
 なお、図1では、回折機構3の周期部位4は、第1の形態と第2の形態の両形態を表すために模式的に示している。 In FIG. 1, the periodic part 4 of the diffraction mechanism 3 is schematically shown to represent both the first form and the second form.
 (第1の形態)
 本発明の光偏向デバイスの第1の形態について図2A~図2D,図3A~図3F,図4A,図4Bを用いて説明する。図2は第1の概略構成、及び放射光ビームの横方向の広がりを説明するための図であり、図3A~図3F,図4A,図4Bは第1の形態の二重周期構造の構成例を説明するための図である。
(First form)
A first embodiment of the optical deflection device of the present invention will be described with reference to FIGS. 2A to 2D, FIGS. 3A to 3F, FIGS. 4A and 4B. FIG. 2 is a diagram for explaining the first schematic configuration and the lateral spread of the emitted light beam, and FIGS. 3A to 3F, 4A, and 4B show the configuration of the double periodic structure of the first embodiment. It is a figure for demonstrating an example.
 光偏向デバイスの第1の形態は、高屈折率部材10の面内において、導波路コア5の長さ方向に沿って2種類の異なる大きさの低屈折率部位11a,11bが周期配列され、二重周期構造の格子配列12が形成される。第1の形態は、フォトニック結晶導波路2と回折機構3とを同一の格子配列12上に形成する構成である。 In the first embodiment of the optical deflecting device, two types of low refractive index portions 11a and 11b having different sizes are periodically arranged along the length direction of the waveguide core 5 in the plane of the high refractive index member 10. A lattice array 12 having a double periodic structure is formed. In the first form, the photonic crystal waveguide 2 and the diffraction mechanism 3 are formed on the same grating array 12.
 低屈折率部位11a,11bは、高屈折率部材10に形成した径が異なる円孔によって構成することができる。二重周期構造の格子配列において、低屈折率部位として円孔を用いて構成する場合には、加工工程が少ないことに加え、円孔の大小の変化量を面内で変えることによって、放射角度を変えることなく放射量を変えることができる。これにより、導波路の伝搬方向に向かって徐々に放射光ビームの縦方向分布をガウス分布にし、縦方向に対してサイドロ一プが少ない高品質なビームを形成できる。 The low refractive index portions 11a and 11b can be formed by circular holes formed in the high refractive index member 10 and having different diameters. In the case of using a circular hole as a low-refractive index part in a lattice arrangement with a double periodic structure, in addition to the small number of processing steps, by changing the amount of change of the circular hole in the plane, the radiation angle The amount of radiation can be changed without changing. As a result, the longitudinal distribution of the radiated light beam is gradually changed to a Gaussian distribution in the propagation direction of the waveguide, and a high-quality beam with little side loop in the longitudinal direction can be formed.
 二重周期構造において、従来提案される格子配列12の二重周期構造は、図7Bに示したように、Siなどの高屈折率材料110に三角格子パターンの円孔111a,111bが周期的に配列され、中央部分に円孔(111a,111b)が形成されない領域を設けて光導波路コア105としている。この二重周期構造では、導波路コア5中を伝搬する光の進行方向である、導波路コア5の長さ方向に沿って、大小の径の円孔(111a,111b)が交亙に配置されて二重周期構造が構成され、この二重周期構造によって、導波路コア5を伝搬する光が面外に放射される。 In the double periodic structure, the conventionally proposed double periodic structure of the lattice array 12 is such that the circular holes 111a and 111b of the triangular lattice pattern are periodically formed in the high refractive index material 110 such as Si as shown in FIG. 7B. An optical waveguide core 105 is formed by providing a region where the circular holes (111a, 111b) are not formed in the central portion. In this double periodic structure, circular holes (111a, 111b) having large and small diameters are arranged along the length direction of the waveguide core 5, which is the traveling direction of light propagating in the waveguide core 5. Thus, a double periodic structure is formed, and the light propagating through the waveguide core 5 is emitted out of the plane by the double periodic structure.
 この二重周期構造が形成する放射光ビームの横方向の角度分布は、図2Dに示す様に約±80°程度の広い角度の分布範囲を有し、しかも光強度ピークが三つに分裂する。このような広い角度分布は、導波路コア5の伝搬光が強く閉じ込められている状態から面外に放射されることに起因し、また、光強度ピークの三つの分裂は導波モードの横方向分布がプラス方向とマイナス方向に振動しており、異符号をもった電磁界からの放射同士が遠方で干渉して腹と節を作るためと推察される。 The angular distribution in the lateral direction of the radiation light beam formed by this double periodic structure has a wide angular distribution range of about ± 80 ° as shown in FIG. 2D, and the light intensity peak is split into three. . Such a wide angular distribution is attributed to the fact that the propagation light of the waveguide core 5 is radiated out of the plane from the state where it is strongly confined, and the three splits of the light intensity peak are in the transverse direction of the waveguide mode. The distribution oscillates in the positive and negative directions, and it is assumed that radiation from electromagnetic fields having different signs interfere with each other to form a belly and a node.
 この従来提案される二重周期構造に対して、本発明の第1の形態の光偏向デバイス1が備える二重周期構造3Aは、高屈折率部材10の面内に導波路コア5の長さ方向に沿って2種類の異なる大きさの低屈折率部位11a,11bを周期配列して形成される格子配列12において、それぞれ同じ大きさの低屈折率部位が周期配列された2種類の周期部位4Aa,4Abを備える。 In contrast to this conventionally proposed double periodic structure, the double periodic structure 3A provided in the optical deflection device 1 according to the first embodiment of the present invention has a length of the waveguide core 5 in the plane of the high refractive index member 10. Two types of periodic parts in which low refractive index parts of the same size are periodically arranged in the grating array 12 formed by periodically arranging two kinds of low refractive index parts 11a and 11b along the direction. 4Aa, 4Ab.
 図2Bに示す構成では、格子配列の2種類の低屈折率部位を、大径の円孔11aと小径の円孔11bで構成する例を示している。ここで、大径の円孔11aが導波路コア5から横斜め方向に延びる配列は周期部位4Aaを構成し、小径の円孔11bが導波路コア5から横斜め方向に延びる配列は周期部位4Abを構成する。 The configuration shown in FIG. 2B shows an example in which two types of low refractive index portions of the lattice arrangement are configured by a large diameter circular hole 11a and a small diameter circular hole 11b. Here, the arrangement in which the large-diameter circular holes 11a extend in the horizontal oblique direction from the waveguide core 5 constitutes the periodic part 4Aa, and the arrangement in which the small-diameter circular holes 11b extend in the horizontal oblique direction from the waveguide core 5 is the periodic part 4Ab. Configure.
 本発明の二重周期構造では、この2種類の周期部位4Aa及び4Abを導波路コア5の長さ方向(導波路コア5を伝搬する光の進行方向)に沿って交互に配列すると共に、導波路コア5の長さ方向に対して鋭角あるいは鈍角に配置する。この配置において、周期部位4Aa,4Abが導波路コア5を伝搬する光の進行方向に対して鋭角である場合には、各周期部位4Aa,4Abの配置はV字形状又は逆V字形状となる。 In the double periodic structure of the present invention, the two types of periodic portions 4Aa and 4Ab are alternately arranged along the length direction of the waveguide core 5 (the traveling direction of the light propagating through the waveguide core 5). It is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5. In this arrangement, when the periodic parts 4Aa and 4Ab are acute with respect to the traveling direction of the light propagating through the waveguide core 5, the arrangement of the periodic parts 4Aa and 4Ab is V-shaped or inverted V-shaped. .
 第1の形態の格子配列は、フォトニック結晶導波路2を構成すると共に、回折機構3を構成する。 The lattice arrangement of the first form constitutes the photonic crystal waveguide 2 and the diffraction mechanism 3.
 図2Cは、本発明の二重周期構造において、V字形状の周期部位を有した格子配列による放射光ビームの横方向の角度分布を示している。 FIG. 2C shows the angular distribution in the lateral direction of the emitted light beam by the lattice arrangement having a V-shaped periodic portion in the double periodic structure of the present invention.
 V字形状の周期部位によって、導波モードが導波路コアから横方向に染み出すことによって光の閉じ込めを適度に弱めるため、放射角度分布は±25°程度まで狭まる。また、V字形状の周期部位によって、導波モードの横方向分布において、同符号を持った電磁界からの放射を促進するため、遠方での干渉が抑制され、単峰性のビームが形成される。 Since the V-shaped periodic part causes the waveguide mode to ooze out from the waveguide core in the lateral direction to moderately weaken light confinement, the radiation angle distribution is narrowed to about ± 25 °. Further, the V-shaped periodic part promotes radiation from the electromagnetic field having the same sign in the transverse distribution of the waveguide mode, so that interference at a distant place is suppressed and a unimodal beam is formed. The
 なお、図2Cにおいて、波長を1.55μmとし、フォトニック結晶の格子定数を400nmとし、大径の円孔11aの直径2r1を215nmとし、小径の円孔11bの直径を2r2を295nmとし、高屈折率部材10の屈折率を3.5、厚さを210nmとし、上クラッド及び下クラッド6の屈折率を1.45にしている。 In FIG. 2C, the wavelength is 1.55 μm, the lattice constant of the photonic crystal is 400 nm, the diameter 2r1 of the large-diameter hole 11a is 215 nm, the diameter of the small-diameter hole 11b is 2r2 is 295 nm, The refractive index of the refractive index member 10 is 3.5, the thickness is 210 nm, and the refractive index of the upper cladding and the lower cladding 6 is 1.45.
 第1の形態において、周期部位4Aa,4Abは複数の配置形態によって、導波路コアの長さ方向に沿って交互に配列し、導波路コアの長さ方向に対して鋭角又は鈍角に配置することができる。以下、図3A~図3F,図4A,図4Bを用いて周期部位の配置形態について説明する。 In the first embodiment, the periodic portions 4Aa and 4Ab are alternately arranged along the length direction of the waveguide core according to a plurality of arrangement forms, and arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core. Can do. Hereinafter, the arrangement of the periodic parts will be described with reference to FIGS. 3A to 3F, FIG. 4A, and FIG. 4B.
 (a) 第1の配置形態:
 第1の配置形態は、各周期部位4A(4Aa,4Ab)を導波路コア5の長さ方向に対してV字形状又は逆V字形状に配置する。図3A,図3Bは回折機構を構成する各周期部位の第1の配置形態を示し、図3AはV字形状の配置を示し、図3Bは逆V字形状の配置を示している。
(a) First arrangement form:
In the first arrangement form, each periodic portion 4A (4Aa, 4Ab) is arranged in a V shape or an inverted V shape with respect to the length direction of the waveguide core 5. 3A and 3B show a first arrangement form of each periodic portion constituting the diffraction mechanism, FIG. 3A shows a V-shaped arrangement, and FIG. 3B shows an inverted V-shaped arrangement.
 二重周期構造をV字形状又は逆V字形状とする配置形態では、導波モードが導波路コア5から横方向に染み出すことによって、導波路コア5への光の閉じ込めを漸次に弱め、放射角度分布を例えば±25°程度まで狭める効果を奏する。 In the arrangement form in which the double periodic structure is V-shaped or inverted V-shaped, the waveguide mode oozes out from the waveguide core 5 in the lateral direction, thereby gradually reducing light confinement in the waveguide core 5. For example, the radiation angle distribution is narrowed to about ± 25 °.
 また、このV字形状の周期部位のパターンは、導波モードの横方向分布において同符号を持つ電磁界からの放射を促進して遠方での干渉を抑制し、単峰性ビームを形成する効果を奏する。 In addition, this V-shaped periodic part pattern promotes radiation from an electromagnetic field having the same sign in the transverse distribution of the waveguide mode, thereby suppressing interference at a distance and forming a unimodal beam. Play.
 (b) 第2の配置形態:
 図3Cは回折機構を構成する各周期部位の第2の配置形態を示している。回折機構3の各周期部位の第2の配置形態は、格子配列12中の周期部位4Aa,4Abの一部の低屈折率部位11a,11bの直線配列13を導波路コア5の長さ方向に対して位置ずれさせて配置する構成であり、格子シフトと呼ばれる配置形態である。
(b) Second arrangement form:
FIG. 3C shows a second arrangement form of each periodic part constituting the diffraction mechanism. In the second arrangement form of each periodic part of the diffraction mechanism 3, the linear array 13 of the low refractive index parts 11 a and 11 b of the periodic parts 4 Aa and 4 Ab in the grating array 12 is arranged in the length direction of the waveguide core 5. The arrangement is shifted from the arrangement, which is an arrangement form called a lattice shift.
 二重周期構造において、導波路コア5の長さ方向に並ぶ低屈折率部位11a,11bの直線配列13において、導波路コア5に対して対称の位置にある2つの直線配列13A,13Bは、他の直線配列に対して導波路コア5の長さ方向に位置ずれさせて配列する。この第2の配置形態は、位置ずれしていないフォトニック結晶導波路2の偏向角特性を均一化する。 In the double periodic structure, in the linear array 13 of the low refractive index portions 11a and 11b arranged in the length direction of the waveguide core 5, two linear arrays 13A and 13B that are symmetrical with respect to the waveguide core 5 are: The waveguide core 5 is arranged so as to be displaced in the length direction with respect to the other linear arrangement. This second arrangement form uniformizes the deflection angle characteristics of the photonic crystal waveguide 2 that is not misaligned.
 (c) 第3の配置形態:
 図3Dは回折機構を構成する各周期部位の第3の配置形態を示している。回折機構3を構成する周期部位の第3の配置形態は、格子配列12において、導波路コア5の近傍の格子配列14A,14Bについては二重周期構造とし、二重周期構造の2種類の周期部位4Aa,4Abについて第1の配置形態と同様にV字形状又は逆V字形状の形状に配置し、その他の格子配列15A,15Bについては同一の周期構造とする。
(c) Third arrangement:
FIG. 3D shows a third arrangement form of each periodic part constituting the diffraction mechanism. The third arrangement form of the periodic parts constituting the diffraction mechanism 3 is that in the grating array 12, the grating arrays 14A and 14B in the vicinity of the waveguide core 5 have a double periodic structure, and two kinds of periods of the double periodic structure are used. The parts 4Aa and 4Ab are arranged in a V shape or an inverted V shape similarly to the first arrangement form, and the other lattice arrangements 15A and 15B have the same periodic structure.
 フォトニック結晶導波路の格子配列において、導波路コアの長さ方向に沿って配列された2種類の異なる大きさの低屈折率部位11a,11bが周期配列された格子配列12の内、導波路コアに近傍の複数列の格子配列14A,14Bは二重周期構造とし、残りの格子配列15A,15Bは同じ大きさの低屈折率部位11が周期配列された周期構造とする。 In the lattice arrangement of the photonic crystal waveguide, the waveguide is one of the lattice arrangements 12 in which two types of low refractive index portions 11a and 11b having different sizes arranged along the length direction of the waveguide core are periodically arranged. A plurality of lattice arrays 14A and 14B in the vicinity of the core have a double periodic structure, and the remaining lattice arrays 15A and 15B have a periodic structure in which low refractive index portions 11 of the same size are periodically arrayed.
 格子配列12の一部を第1の配置形態のV字形状とすることによって、導波モードが主に集中する導波路コアの近傍にだけ二重周期構造を設ける構成とすることができ、放射パターンをより単純化させる効果を奏する。 By making a part of the lattice arrangement 12 into the V shape of the first arrangement form, it is possible to adopt a configuration in which a double periodic structure is provided only in the vicinity of the waveguide core where the waveguide modes are mainly concentrated. This has the effect of simplifying the pattern.
 (d) 第4の配置形態:
 図3E,図3Fは回折機構を構成する各周期部位の第4の配置形態を示している。回折機構の各周期部位の第4の配置形態は、第1の配置形態と同様にV字形状又は逆V字形状の形状に配置すると共に、格子配列12の二重周期構造の2種類の周期部位について、低屈折率部位の大きさをグラデーション配列するものである。図3Eでは、低屈折率部位11bの大きさが低屈折率部位の配列方向に沿って順に増加するように配列する。
また、図3Fでは、低屈折率部位11aの大きさが低屈折率部位の配列方向に沿って順に増加するように配列する。
(d) Fourth arrangement form:
3E and 3F show a fourth arrangement form of each periodic part constituting the diffraction mechanism. The fourth arrangement form of each periodic part of the diffraction mechanism is arranged in a V shape or an inverted V shape similarly to the first arrangement form, and two kinds of periods of the double periodic structure of the grating array 12 are arranged. For the portion, the size of the low refractive index portion is arranged in gradation. In FIG. 3E, the low refractive index portions 11b are arranged so that the size of the low refractive index portions 11b sequentially increases along the arrangement direction of the low refractive index portions.
In FIG. 3F, the low refractive index portions 11a are arranged so that the size of the low refractive index portions 11a sequentially increases along the arrangement direction of the low refractive index portions.
 第4の配置形態は、V字形状又は逆V字形状とグラデーション配列とを組み合わせた形態である。図3EはV字形状とグラデーション配列とを組み合わせた形態を示している。この配置形態では、導波路コアから離れるにしたがって二重周期構造を徐々に均一化する構成とすることによって、放射光ビームの横方向分布をより滑らかにする効果を奏する。一方、図3Fは逆V字形状とグラデーション配列とを組み合わせた形態である。この配置形態では、導波モードが放射される幅を実効的に広げ、横方向分布をより狭くする効果を奏する。 4th arrangement form is the form which combined V shape or reverse V shape and gradation arrangement. FIG. 3E shows a combination of a V shape and a gradation array. In this arrangement, the structure in which the double periodic structure is gradually uniformed as the distance from the waveguide core is increased, so that the lateral distribution of the emitted light beam is more smoothly smoothed. On the other hand, FIG. 3F shows a combination of an inverted V shape and a gradation array. In this arrangement form, the width in which the guided mode is radiated is effectively widened, and the lateral distribution is further narrowed.
 (e) 第5の配置形態:
 図4A,図4Bは回折機構を構成する各周期部位の第5の配置形態を示している。回折機構の各周期部位の第5の配置形態は、二重周期構造の2種類の周期部位が導波路コアと鋭角又は鈍角で交差する配置形態である。図4Aにおいて、導波路コア5を中心にして、一方の側の周期部位16Aを導波路コア5の長さ方向に対して鋭角に配置し、他方の側の周期部位16Bを導波路コア5の長さ方向に対して鈍角に配置する。図4Bに示す配置形態は、図4Aに示す配置形態を導波路コア5を中心に対称として構成を示している。
(e) Fifth arrangement form:
4A and 4B show a fifth arrangement form of each periodic part constituting the diffraction mechanism. The fifth arrangement form of each periodic part of the diffraction mechanism is an arrangement form in which two kinds of periodic parts of the double periodic structure intersect the waveguide core at an acute angle or an obtuse angle. 4A, with the waveguide core 5 as the center, the periodic part 16A on one side is arranged at an acute angle with respect to the length direction of the waveguide core 5, and the periodic part 16B on the other side is disposed on the waveguide core 5. It is arranged at an obtuse angle with respect to the length direction. The arrangement shown in FIG. 4B shows a configuration in which the arrangement shown in FIG. 4A is symmetric with respect to the waveguide core 5.
 (第2の形態)
 本発明の光偏向デバイスの第2の形態について図5A,図5B,図6A~図6Eを用いて説明する。図5A,図5Bは第2の概略構成を説明するための図であり、図6A~図6Eは第2の形態の表面回折格子の構成例を説明するための図である。
(Second form)
A second embodiment of the optical deflection device of the present invention will be described with reference to FIGS. 5A, 5B, and 6A to 6E. 5A and 5B are diagrams for explaining the second schematic configuration, and FIGS. 6A to 6E are diagrams for explaining a configuration example of the surface diffraction grating of the second embodiment.
 光偏向デバイスの第2の形態は、1種類の大きさの低屈折率部位11を繰り返してなる周期構造の格子配列12のフォトニック結晶導波路2と、回折機構3としてこのフォトニック結晶導波路2上に配置された表面回折格子3Bを備える。 The second embodiment of the optical deflection device is a photonic crystal waveguide 2 having a grating structure 12 having a periodic structure in which low-refractive index portions 11 having one size are repeated, and the photonic crystal waveguide as a diffraction mechanism 3. 2 is provided with a surface diffraction grating 3B.
 フォトニック結晶導波路2は、高屈折率部材10の面内に導波路コア5の長さ方向に沿って同じ大きさの低屈折率部位11が周期配列された周期構造の格子配列12を備える。回折機構3は、フォトニック結晶導波路2の格子配列12上に表面回折格子3Bを配置して構成される。表面回折格子3Bが備える周期部位4B(凸部4Ba,凹部4Bb)は凹凸配列であり、各周期部位4B(4Ba,4Bb)を導波路コア5に対して鋭角又は鈍角に配置する。なお、図5Aでは、周期部位4Bとして、表面回折格子3Bの凸部4Ba、及び表面回折格子3Bの4Bb凹部をし、図5Bでは、表面回折格子3Bの凸部4Baの周期部位を濃い地模様で示し、表面回折格子3Bの凹部4Bbの周期部位を薄い地模様で示している。 The photonic crystal waveguide 2 includes a grating structure 12 having a periodic structure in which low refractive index portions 11 having the same size are periodically arranged along the length direction of the waveguide core 5 in the plane of the high refractive index member 10. . The diffraction mechanism 3 is configured by disposing a surface diffraction grating 3 </ b> B on the grating array 12 of the photonic crystal waveguide 2. The periodic part 4B (convex part 4Ba, concave part 4Bb) provided in the surface diffraction grating 3B is an uneven arrangement, and each periodic part 4B (4Ba, 4Bb) is arranged at an acute angle or an obtuse angle with respect to the waveguide core 5. In FIG. 5A, the convex portion 4Ba of the surface diffraction grating 3B and the 4Bb concave portion of the surface diffraction grating 3B are used as the periodic portion 4B. In FIG. 5B, the periodic portion of the convex portion 4Ba of the surface diffraction grating 3B is a dark ground pattern. The periodic part of the concave portion 4Bb of the surface diffraction grating 3B is indicated by a thin ground pattern.
 表面回折格子3Bの周期部位(凸部4Ba、凹部4Bb)を、導波路コア5の長さ方向に対して鋭角又は鈍角で配置する形態は複数の形態とすることができる。 The form in which the periodic parts (projections 4Ba, recesses 4Bb) of the surface diffraction grating 3B are arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core 5 can be a plurality of forms.
  (a) 第1の配置形態:
 表面回折格子3Bの周期部位(凸部4Ba、凹部4Bb)の第1の配置形態は、各周期部位4Bの凸部4Ba、凹部4Bbを導波路コア5の長さ方向に対してV字形状又は逆V字形状の形状に配置する。この表面回折格子による周期部位の第1の配置形態においても、二重周期構造に周期部位をV字形状又は逆V字形状の形状に配置する形態と同様の効果を奏する。
(a) First arrangement form:
The first arrangement form of the periodic parts (convex part 4Ba, concave part 4Bb) of the surface diffraction grating 3B is a V-shaped or convex part 4Ba and concave part 4Bb of each periodic part 4B with respect to the length direction of the waveguide core 5. Arranged in an inverted V-shape. Even in the first arrangement form of the periodic parts by the surface diffraction grating, the same effect as that of the form in which the periodic parts are arranged in a V-shaped or inverted V-shaped shape in the double periodic structure is obtained.
 図6A,図6B,図6Cは表面回折格子により回折機構を構成する第1の配置形態を示している。図6Aは、円孔を三角配列した格子配列において、表面回折格子3Bの各周期部位である凸部4Ba及び凹部4Bbの角度を60°としたV字形状の構成を示し、図6Bは、円孔を三角配列した格子配列において、表面回折格子3Bの各周期部位である凸部4Ba及び凹部4Bbの角度を120°とした逆V字形状の構成を示している。 FIG. 6A, FIG. 6B, and FIG. 6C show a first arrangement form in which a diffraction mechanism is constituted by a surface diffraction grating. FIG. 6A shows a V-shaped configuration in which the angle of the convex portions 4Ba and the concave portions 4Bb, which are each periodic part of the surface diffraction grating 3B, is 60 ° in a triangular arrangement of circular holes. In the grating arrangement in which the holes are arranged in a triangular pattern, an inverted V-shaped configuration is shown in which the angles of the convex portions 4Ba and the concave portions 4Bb that are each periodic portion of the surface diffraction grating 3B are 120 °.
 また、図6Cは、円孔を三角配列した格子配列において、表面回折格子3Bの各周期部位である凸部4Ba及び凹部4Bbの角度を30°としたV字形状の構成を示している。 FIG. 6C shows a V-shaped configuration in which the angle of the convex portions 4Ba and the concave portions 4Bb, which are each periodic portion of the surface diffraction grating 3B, is 30 ° in a lattice arrangement in which circular holes are arranged in a triangle.
  (b) 第2の配置形態:
 表面回折格子の各周期部位の第2の配置形態は、周期構造の周期部位が導波路コアと鋭角又は鈍角で交差する配置形態であり、導波路コアを中心にして、一方の側の周期部位を導波路コアの長さ方向に対して鋭角に配置し、他方の側の周期部位を導波路コアの長さ方向に対して鈍角に配置する。
(b) Second arrangement form:
The second arrangement form of each periodic part of the surface diffraction grating is an arrangement form in which the periodic part of the periodic structure intersects the waveguide core at an acute angle or an obtuse angle, and the periodic part on one side with respect to the waveguide core. Are arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged at an obtuse angle with respect to the length direction of the waveguide core.
 図6D,図6Eは表面回折格子により回折機構を構成する第2の配置形態を示している。図6Dは、円孔を三角配列した格子配列において、表面回折格子3Bの各周期部位である凸部4Ba及び凹部4Bbを一方向に傾斜させ、導波路コア5に対して、一方の側の凸部4Ba及び凹部4Bbを導波路コア5の長さ方向に対して60°に配置し、他方の側の凸部4Ba及び凹部4Bbを導波路コア5の長さ方向に対して120°に配置する。 FIG. 6D and FIG. 6E show a second arrangement form in which the diffraction mechanism is constituted by the surface diffraction grating. FIG. 6D shows a convex arrangement on one side with respect to the waveguide core 5 by inclining the convex portions 4Ba and the concave portions 4Bb, which are each periodic portion of the surface diffraction grating 3B, in one direction in a triangular arrangement of circular holes. The portion 4Ba and the concave portion 4Bb are arranged at 60 ° with respect to the length direction of the waveguide core 5, and the convex portion 4Ba and the concave portion 4Bb on the other side are arranged at 120 ° with respect to the length direction of the waveguide core 5. .
 通常の表面回折格子は、フォトニック結晶の二倍の周期をもった単純な直線的な回折格子を有している。これに対して、表面回折格子を用いた第2の形態によれば、この回折格子による構成とすることで、図2Dに示した従来の二重周期構造と同様に、横方向角度分布が広く、光強度ピークが複数に分裂した放射光ビームとなる。これに対して、表面回折格子の回折格子を、本発明の二重周期構造を有する光偏向デバイスの第1の形態と同様に、導波路コアの長さ方向に対して鋭角又は鈍角に配置することによって、広がり角が狭く、単峰性の放射光ビームを得ることができる。 A normal surface diffraction grating has a simple linear diffraction grating having a period twice that of a photonic crystal. On the other hand, according to the second embodiment using the surface diffraction grating, the configuration using this diffraction grating has a wide lateral angle distribution as in the conventional double periodic structure shown in FIG. 2D. The light intensity peak is a radiation light beam divided into a plurality. On the other hand, the diffraction grating of the surface diffraction grating is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core, similarly to the first embodiment of the optical deflection device having the double periodic structure of the present invention. As a result, a unidirectional radiation light beam with a narrow divergence angle can be obtained.
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。 The present invention is not limited to the above embodiments. Various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
 本発明の光偏向デバイス及びライダー装置(レーザレーダー)は、自動車,ドローン,ロボットなどに搭載することができ、パソコンやスマホに搭載して周囲環境を手軽に取り込む3Dスキャナ、監視システム、光交換やデータセンター用の空間マトリックス光スイッチなどに適用することができる。 The optical deflection device and the lidar apparatus (laser radar) of the present invention can be mounted on automobiles, drones, robots, etc., and can be mounted on a personal computer or a smartphone to easily capture the surrounding environment, a monitoring system, optical exchange, It can be applied to a space matrix optical switch for a data center.
 上記した実施例では、光偏向デバイスのフォトニック結晶導波路を構成する高屈折率部材としてSiを想定して近赤外光の波長域の光を用いているが、光偏向デバイスを構成する高屈折率部材として可視光材料へ適用することにより、さらにプロジェクタやレーザディスプレイ、網膜ディスプレイ、2D/3Dプリンタ、POSやカード読み取り等への適用が期待される。 In the above-described embodiments, Si is used as the high refractive index member constituting the photonic crystal waveguide of the optical deflection device, and light in the near infrared wavelength range is used. By applying it to a visible light material as a refractive index member, further application to a projector, a laser display, a retina display, a 2D / 3D printer, a POS, a card reading, and the like is expected.
 この出願は、2017年2月24日に出願された日本出願特願2017-033640を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-033640 filed on Feb. 24, 2017, the entire disclosure of which is incorporated herein.
 1  光偏向デバイス
 2  フォトニック結晶導波路
 3  回折機構
 3A  二重周期構造
 3B  表面回折格子
 4A,4B,4Aa,4Ab  周期部位
 4Ba  凸部
 4Bb  凹部
 5  導波路コア
 6  クラッド
 10  高屈折率部材
 11  低屈折率部位
 11a  低屈折率部位(円孔)
 11b  低屈折率部位(円孔)
 12  格子配列
 13,13A,13B  直線配列
 14A,14B  格子配列
 15A,15B  格子配列
 16A,16B  周期部位
 101  高屈折率部材
 101A,101B  光偏向デバイス
 102  フォトニック結晶導波路
 103  表面回折格子
 105  導波路コア
 106  クラッド
 110  高屈折率材料
 111  低屈折率部位(円孔)
 111a,111b,111c  円孔
 112  格子配列
DESCRIPTION OF SYMBOLS 1 Optical deflection device 2 Photonic crystal waveguide 3 Diffraction mechanism 3A Double periodic structure 3B Surface diffraction grating 4A, 4B, 4Aa, 4Ab Periodic part 4Ba Convex part 4Bb Concave part 5 Waveguide core 6 Cladding 10 High refractive index member 11 Low refraction Index part 11a Low refractive index part (circular hole)
11b Low refractive index region (circular hole)
12 grating array 13, 13A, 13B linear array 14A, 14B grating array 15A, 15B grating array 16A, 16B periodic part 101 high refractive index member 101A, 101B optical deflection device 102 photonic crystal waveguide 103 surface diffraction grating 105 waveguide core 106 Cladding 110 High refractive index material 111 Low refractive index region (circular hole)
111a, 111b, 111c circular holes 112 lattice arrangement

Claims (10)

  1.  高屈折率部材の面内に低屈折率部位が周期的に格子配列されたフォトニック結晶導波路と、
     前記フォトニック結晶導波路の導波路コアの伝搬光を偏向させ外部に放射光ビームを放射する回折機構とを備え、
     前記回折機構は、前記導波路コアの長さ方向に沿って配列された複数の周期部位を備え、各周期部位は前記導波路コアの長さ方向に対して鋭角又は鈍角に配置される、光偏向デバイス。
    A photonic crystal waveguide in which low refractive index sites are periodically arranged in a plane of a high refractive index member;
    A diffraction mechanism for deflecting the propagation light of the waveguide core of the photonic crystal waveguide and radiating a radiation beam to the outside,
    The diffraction mechanism includes a plurality of periodic portions arranged along the length direction of the waveguide core, and each periodic portion is arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core. Deflection device.
  2.  前記フォトニック結晶導波路及び前記回折機構は、高屈折率部材の面内に導波路コアの長さ方向に沿って2種類の異なる大きさの低屈折率部位が周期配列された二重周期構造の格子配列を備え、
     前記回折機構は、前記二重周期構造の格子配列において、それぞれ同じ大きさの低屈折率部位が周期配列された2種類の周期部位を備え、
     前記2種類の周期部位は前記導波路コアの長さ方向に沿って交互に配列され、前記導波路コアの長さ方向に対して鋭角又は鈍角に配置される、請求項1に記載の光偏向デバイス。
    The photonic crystal waveguide and the diffraction mechanism have a double periodic structure in which two different types of low refractive index portions are periodically arranged along the length direction of the waveguide core in the plane of the high refractive index member. With a grid array of
    The diffraction mechanism includes two types of periodic parts in which the low refractive index parts of the same size are periodically arranged in the lattice arrangement of the double periodic structure,
    2. The optical deflection according to claim 1, wherein the two types of periodic portions are alternately arranged along a length direction of the waveguide core, and are arranged at an acute angle or an obtuse angle with respect to the length direction of the waveguide core. device.
  3.  前記回折機構の各周期部位の配置は、前記導波路コアの長さ方向に対してV字形状又は逆V字形状である、請求項2に記載の光偏向デバイス。 3. The optical deflection device according to claim 2, wherein the arrangement of each periodic part of the diffraction mechanism is V-shaped or inverted V-shaped with respect to the length direction of the waveguide core.
  4.  前記フォトニック結晶導波路の格子配列において、
     前記導波路コアの長さ方向に沿って配列された2種類の異なる大きさの低屈折率部位が周期配列された格子配列の内、前記導波路コアに近傍の複数列の格子配列は二重周期構造であり、残りの格子配列は同じ大きさの低屈折率部位が周期配列された周期構造である、請求項3に記載の光偏向デバイス。
    In the lattice arrangement of the photonic crystal waveguide,
    Of the two types of lattice arrays arranged along the length direction of the waveguide core, the low-refractive-index portions of different sizes are periodically arrayed. 4. The optical deflection device according to claim 3, wherein the optical deflection device has a periodic structure, and the remaining grating array is a periodic structure in which low refractive index portions having the same size are periodically arrayed.
  5.  前記回折機構の各周期部位において、
     前記導波路コアを中心にして、一方の側の周期部位は前記導波路コアの長さ方向に対して鋭角に配置され、他方の側の周期部位は前記導波路コアの長さ方向に対して鈍角に配置される、請求項2に記載の光偏向デバイス。
    In each periodic part of the diffraction mechanism,
    Centering on the waveguide core, the periodic part on one side is arranged at an acute angle with respect to the length direction of the waveguide core, and the periodic part on the other side is arranged with respect to the length direction of the waveguide core. The optical deflection device according to claim 2, which is arranged at an obtuse angle.
  6.  前記二重周期構造において、前記導波路コアの長さ方向に並ぶ低屈折率部位の直線配列において、前記導波路コアに対して対称の位置にある2つの直線配列は他の直線配列に対して導波路コアの長さ方向に位置ずれした配列である、請求項2から4の何れか一つに記載の光偏向デバイス。 In the double periodic structure, in the linear arrangement of the low refractive index regions arranged in the length direction of the waveguide core, two linear arrangements that are symmetrical with respect to the waveguide core are different from the other linear arrangement. The optical deflection device according to any one of claims 2 to 4, wherein the optical deflection device is an array shifted in a length direction of the waveguide core.
  7.  前記各周期部位は、それぞれの周期部位において、当該低屈折率部位の大きさが低屈折率部位の配列方向に沿って順に増加又は減少する、請求項2から4の何れか一つに記載の光偏向デバイス。 5. The each periodic part according to claim 2, wherein the size of the low refractive index part increases or decreases in order along the arrangement direction of the low refractive index part in each periodic part. Optical deflection device.
  8.  前記フォトニック結晶導波路は、高屈折率部材の面内に導波路コアの長さ方向に沿って同じ大きさの低屈折率部位が周期配列された周期構造の格子配列を備え、
     前記回折機構は、
     前記フォトニック結晶導波路の格子配列上に配置された表面回折格子であり、
     前記表面回折格子が備える周期部位は凹凸配列であり、各周期部位は前記導波路コアに対して鋭角又は鈍角に配置される、請求項1に記載の光偏向デバイス。
    The photonic crystal waveguide includes a grating structure having a periodic structure in which low refractive index portions having the same size are periodically arranged in the length direction of the waveguide core in the plane of the high refractive index member,
    The diffraction mechanism is
    A surface diffraction grating disposed on a grating array of the photonic crystal waveguide;
    2. The optical deflection device according to claim 1, wherein the periodic parts included in the surface diffraction grating are concave and convex arrays, and each periodic part is disposed at an acute angle or an obtuse angle with respect to the waveguide core.
  9.  前記回折機構の各周期部位の配置は、前記導波路コアの長さ方向に対してV字形状又は逆V字形状である、請求項8に記載の光偏向デバイス。 The optical deflection device according to claim 8, wherein the arrangement of each periodic part of the diffraction mechanism is V-shaped or inverted V-shaped with respect to the length direction of the waveguide core.
  10.  前記回折機構の各周期部位は、前記導波路コアを中心にして、一方の側の周期部位は前記導波路コアの長さ方向に対して鋭角に配置され、他方の側の周期部位は前記導波路コアの長さ方向に対して鈍角に配置される、請求項8に記載の光偏向デバイス。 Each periodic part of the diffraction mechanism is arranged at an acute angle with respect to the length direction of the waveguide core, with the periodic part on one side centered on the waveguide core, and the periodic part on the other side The optical deflection device according to claim 8, wherein the optical deflection device is arranged at an obtuse angle with respect to the length direction of the waveguide core.
PCT/JP2018/006385 2017-02-24 2018-02-22 Light deflection device WO2018155535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501398A JP6883828B2 (en) 2017-02-24 2018-02-22 Light deflection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033640 2017-02-24
JP2017033640 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155535A1 true WO2018155535A1 (en) 2018-08-30

Family

ID=63253834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006385 WO2018155535A1 (en) 2017-02-24 2018-02-22 Light deflection device

Country Status (2)

Country Link
JP (1) JP6883828B2 (en)
WO (1) WO2018155535A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079541B2 (en) * 2016-01-22 2021-08-03 National University Corporation Yokohama National University Optical deflection device and LIDAR apparatus
WO2023026712A1 (en) * 2021-08-24 2023-03-02 国立大学法人京都大学 Grating coupler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509918A (en) * 2001-11-21 2005-04-14 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Photonic crystal structure for mode conversion
JP2006251063A (en) * 2005-03-08 2006-09-21 Japan Aviation Electronics Industry Ltd Optical connector, optical coupling method and optical element
US20140219602A1 (en) * 2011-06-13 2014-08-07 Board Of Regents, The University Of Texas System Broadband, Group Index Independent, and Ultra-Low Loss Coupling into Slow Light Slotted Photonic Crystal Waveguides
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509918A (en) * 2001-11-21 2005-04-14 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Photonic crystal structure for mode conversion
JP2006251063A (en) * 2005-03-08 2006-09-21 Japan Aviation Electronics Industry Ltd Optical connector, optical coupling method and optical element
US20140219602A1 (en) * 2011-06-13 2014-08-07 Board Of Regents, The University Of Texas System Broadband, Group Index Independent, and Ultra-Low Loss Coupling into Slow Light Slotted Photonic Crystal Waveguides
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GU XIAODONG ET AL.: "Giant and high-resolution beam steering using slow-light waveguide amplifie r", OPTICS EXPRESS, vol. 19, no. 23, 7 November 2011 (2011-11-07), pages 22675 - 22683, XP055451699 *
TAKEUCHI, GORO ET AL.: "Heating control-type Si photonic crystal waveguide-slow light deflector", THE 78TH JSAP AUTUMN MEETING, 5 September 2017 (2017-09-05) *
TAKEUCHI, GORO ET AL.: "Optimization of double period photonic crystal waveguide for high-quality radiation beam in Si Photonic LiDAR", THE 64TH JSAP SPRING MEETING, 1 March 2017 (2017-03-01) *
TAKEUCHI, MOE ET AL.: "Investigation of Si Photonic Crystal Waveguide Structures for Optical Beam Steering (II)", THE 64TH JSAP SPRING MEETING, JAPAN SOCIETY OF APPLIED PHYSICS, 1 March 2017 (2017-03-01) *
TAKEUCHI, MOE ET AL.: "Investigation of Si Photonic Crystal Waveguide Structures for Optical Beam Steering", THE 77TH JSAP AUTUMN MEETING, THE JAPAN SOCIETY OF APPLIED PHYSICS, 13 September 2016 (2016-09-13), XP055551100 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079541B2 (en) * 2016-01-22 2021-08-03 National University Corporation Yokohama National University Optical deflection device and LIDAR apparatus
WO2023026712A1 (en) * 2021-08-24 2023-03-02 国立大学法人京都大学 Grating coupler

Also Published As

Publication number Publication date
JPWO2018155535A1 (en) 2019-12-19
JP6883828B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2017126386A1 (en) Light-deflecting device and lidar apparatus
Guo et al. Integrated optical phased arrays for beam forming and steering
US11448729B2 (en) Optical deflection device and LIDAR apparatus
US8467641B2 (en) System and method for using planar device to generate and steer light beam
JP6140838B2 (en) Multi-beam grating-based backlighting
JP2019511079A (en) Multi-beam element type backlight and display using the same
JP7076822B2 (en) Optical receiver array and rider device
JP2016505898A5 (en)
US20220278505A1 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
WO2018155535A1 (en) Light deflection device
KR20130022249A (en) Acousto-optic device having wide diffraction angle, and optical scanner, light modulator and display apparatus using the acousto-optic device
KR101959444B1 (en) Acousto-optic device, and light modulator, optical scanner and display apparatus using the acousto-optic device
JP6942333B2 (en) Light deflection device and rider device
US20200355983A1 (en) Chip-Scale Optical Phased Array For Projecting Visible Light
CN103080827B (en) The acoustooptic deflector of more than one octave
JP6931237B2 (en) Light deflection device and rider device
JP7134443B2 (en) optical deflection device
JP6945816B2 (en) Light deflection device
JP6346240B2 (en) Multi-beam grating-based backlighting
WO2020079862A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
KR102223750B1 (en) Array Antenna Capable of Varying the Phase of Light
Abe et al. Two-dimensional beam steering device using double periodic Si photonic crystal waveguide
JP2007133172A (en) Stationary mode excitation apparatus
TW202346928A (en) Optical phased array
TW202238221A (en) Backlight, multiview backlight, and method having global mode mixer

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758453

Country of ref document: EP

Kind code of ref document: A1