WO2018155420A1 - Marine diesel engine, and engine control device and method - Google Patents

Marine diesel engine, and engine control device and method Download PDF

Info

Publication number
WO2018155420A1
WO2018155420A1 PCT/JP2018/005937 JP2018005937W WO2018155420A1 WO 2018155420 A1 WO2018155420 A1 WO 2018155420A1 JP 2018005937 W JP2018005937 W JP 2018005937W WO 2018155420 A1 WO2018155420 A1 WO 2018155420A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
engine
gas temperature
temperature raising
dangerous
Prior art date
Application number
PCT/JP2018/005937
Other languages
French (fr)
Japanese (ja)
Inventor
中川 貴裕
平岡 直大
Original Assignee
三菱重工業株式会社
株式会社ジャパンエンジンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社ジャパンエンジンコーポレーション filed Critical 三菱重工業株式会社
Priority to CN201880009202.9A priority Critical patent/CN110312856B/en
Priority to KR1020197021971A priority patent/KR102194357B1/en
Publication of WO2018155420A1 publication Critical patent/WO2018155420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed

Definitions

  • the present invention relates to a marine diesel engine equipped with a selective catalytic reduction (SCR) denitration device.
  • SCR selective catalytic reduction
  • a marine diesel engine as a main engine mounted on a marine vessel includes a device for reducing this NOx because nitrogen oxide (NOx) is contained in exhaust gas.
  • a device for reducing this NOx there is an SCR denitration apparatus.
  • This SCR denitration device removes nitrogen oxides in the exhaust gas by supplying a reducing agent that has the effect of reducing nitrogen oxides into the exhaust pipe and promoting the reaction between the nitrogen oxides in the exhaust gas and the reducing agent. , To reduce.
  • the SCR denitration apparatus it is necessary to maintain the exhaust gas temperature at a predetermined reaction temperature or higher.
  • the temperature of the exhaust gas is predetermined by raising the temperature of the exhaust gas using a burner or spraying an aqueous solution containing a reducing agent on the high-temperature exhaust gas immediately after being discharged from the exhaust port of the engine.
  • the reaction temperature is maintained at or above. For this reason, there is a risk of increasing the cost.
  • the marine diesel engine will increase in rotational speed when it starts operation.
  • the engine since the engine is a rotating machine and resonance or the like occurs, there is a dangerous rotational speed range (Barred Range, Critical Speed) in which long-time operation in a predetermined rotational speed range is prohibited. This is described in Patent Document 2 above. Therefore, when the engine speed reaches the dangerous speed range, the ship is required to quickly exit the dangerous speed range by increasing the rotational speed in a short time.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a marine diesel engine, an engine control device, and a method for achieving both denitration treatment of exhaust gas and stable engine driving.
  • a marine diesel engine includes an engine main body, a denitration device provided in an exhaust line for exhaust gas discharged from the engine main body, and an exhaust gas that raises the temperature of exhaust gas flowing into the denitration device.
  • the control device operates the exhaust gas temperature raising device, the temperature of the exhaust gas from the engine rises, and the denitration device performs the denitration treatment of the exhaust gas. Then, the control device stops the operation of the exhaust gas temperature raising device when the engine speed enters the dangerous speed range.
  • the temperature of the exhaust gas does not rapidly decrease due to the large heat capacity of the denitration device, and the denitration device can appropriately perform the denitration treatment of the exhaust gas. it can.
  • the operation of the exhaust gas temperature raising device is stopped, the combustion state of the engine body is stabilized, so that the control device can appropriately increase the engine speed and quickly exit the dangerous speed range. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
  • the control device stops the operation of the exhaust gas temperature raising device when the command value is input when the command value for increasing the engine speed exceeding the dangerous speed range is input. It is characterized by doing.
  • the operation of the exhaust gas temperature raising device can be stopped before the engine speed reaches the dangerous speed range.
  • the control device stops the operation of the exhaust gas temperature raising device when the current engine speed reaches the dangerous speed range.
  • the operation of the exhaust gas temperature raising device is stopped when the engine speed reaches the dangerous speed range, the operation of the exhaust gas temperature raising device is surely performed when the engine speed reaches the dangerous speed range.
  • the engine can be stopped, the combustion state of the engine body can be made stable, the engine speed can be increased appropriately, and the dangerous speed range can be quickly exited.
  • a margin lower limit value of the dangerous rotational speed range lower than the lower limit value of the dangerous rotational speed range obtained by adding a preset margin value to the lower limit value of the dangerous rotational speed range is set,
  • the control device is characterized in that the operation of the exhaust gas temperature raising device is stopped when the current engine speed reaches the margin lower limit value.
  • the operation of the exhaust gas temperature raising device is stopped when the engine speed reaches the margin lower limit value, the operation of the exhaust gas temperature raising device is stopped before the engine speed reaches the dangerous speed range. Therefore, the combustion state of the engine body can be made stable, the engine speed can be increased appropriately, and the dangerous speed range can be quickly exited.
  • the control device starts the operation of the exhaust gas temperature raising device when the current engine speed passes through the dangerous speed range.
  • the denitration device should appropriately perform the denitration treatment of the exhaust gas with the stop state of the exhaust gas temperature raising device as the shortest period. Can do.
  • the control device starts the operation of the exhaust gas temperature raising device after a predetermined time elapses after the current engine speed passes through the dangerous speed range. It is said.
  • the exhaust gas temperature riser since the operation of the exhaust gas temperature riser starts after a lapse of a predetermined time after the engine speed has passed the dangerous speed range, the exhaust gas temperature riser must be turned on after the engine speed has completely passed the dangerous speed range. Thus, the safety of the engine body can be ensured, and the denitration treatment of the exhaust gas by the denitration apparatus can be appropriately performed.
  • the engine control device of the present invention includes an engine main body, a denitration device provided in an exhaust line of exhaust gas discharged from the engine main body, and an exhaust gas temperature raising device that raises the temperature of exhaust gas flowing into the denitration device.
  • the operation of the exhaust gas temperature raising device is controlled, and the operation of the exhaust gas temperature raising device is stopped when the engine rotational speed is in a preset dangerous rotational speed range. It is.
  • the exhaust gas temperature raising device when the exhaust gas temperature raising device is operated, the temperature of the exhaust gas from the engine rises, and the denitration device performs the denitration treatment of the exhaust gas.
  • the operation of the exhaust gas temperature raising device is stopped.
  • the temperature of the exhaust gas does not rapidly decrease due to the large heat capacity of the denitration device, and the denitration device can appropriately perform the denitration treatment of the exhaust gas.
  • the combustion state of the engine body is stabilized, so that the engine speed can be appropriately increased and the dangerous speed range can be quickly exited. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
  • the engine control method of the present invention includes a process of increasing the temperature of exhaust gas from the engine and a denitration process of exhaust gas when the ship is at least in an air pollutant emission restricted area, and an engine speed. And a step of stopping the process of raising the temperature of the exhaust gas when entering the preset dangerous rotation speed range.
  • the marine diesel engine and the engine control device and method of the present invention it is possible to achieve both denitration treatment of exhaust gas and stable driving of the engine.
  • FIG. 1 is a schematic configuration diagram illustrating a marine diesel engine according to the first embodiment.
  • FIG. 2 is a time chart showing the operation of the SCR denitration apparatus.
  • FIG. 3 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the second embodiment.
  • FIG. 4 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the third embodiment.
  • FIG. 5 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram illustrating a marine diesel engine according to the first embodiment.
  • the marine diesel engine 10 includes an engine body 11, a supercharger 12, an SCR denitration device 13, an exhaust gas temperature raising device 14, and a control device 15. ing.
  • the engine body 11 is a propulsion engine (main engine) that drives and rotates the propeller for propulsion via the propeller shaft.
  • This engine body 11 is a uniflow scavenging exhaust type diesel engine, which is a two-stroke diesel engine, in which the flow of intake and exhaust in the cylinder is unidirectional from the bottom to the top so as to eliminate the residual exhaust. It is.
  • the engine body 11 includes a plurality of cylinders (combustion chambers) 21 in which pistons move up and down, a scavenging trunk 22 that communicates with each cylinder 21, and an exhaust manifold (exhaust static pressure pipe) 23 that communicates with each cylinder 21. .
  • a scavenging port 24 is provided between each cylinder 21 and the scavenging trunk 22, and an exhaust port 25 is provided between each cylinder 21 and the exhaust manifold 23.
  • the air supply line G ⁇ b> 1 is connected to the scavenging trunk 22, and the exhaust line G ⁇ b> 2 is connected to the exhaust manifold 23.
  • the marine diesel engine 10 includes a supercharger 12.
  • the supercharger 12 is configured by connecting a compressor 31 and a turbine 32 so as to rotate integrally with a rotary shaft 33.
  • the compressor 31 has a suction port G3 connected to the suction side and an air supply line G1 connected to the discharge side.
  • the turbine 32 has an exhaust line G2 connected to the inflow side and an exhaust line G4 connected to the exhaust side. Therefore, the turbine 32 is rotated by the exhaust gas discharged from the exhaust manifold 23 to the exhaust line G2, and the rotation of the turbine 32 is transmitted by the rotary shaft 33, so that the compressor 31 rotates.
  • the compressor 31 compresses the air taken in from the suction port G3 and supplies the compressed air to the scavenging trunk 22 from the air supply line G1.
  • the SCR denitration device 13 is provided in the exhaust line G4.
  • the SCR denitration device 13 includes an SCR reactor 41 and a reducing agent supply device 42.
  • the SCR denitration device 13 supplies a reducing agent having an action of reducing nitrogen oxides (NOx) to the exhaust line G4, and promotes the reaction between the NOx and the reducing agent in the exhaust gas to which the reducing agent is supplied. It is intended to remove and reduce NOx contained therein. Therefore, a reducing agent supply device 42 is provided upstream of the SCR reactor 41 in the exhaust line G4 in the exhaust gas flow direction.
  • the reducing agent supply device 42 can diffuse the reducing agent in the exhaust line G4 through which exhaust gas flows by supplying the reducing agent toward the downstream side of the entire flow path in the exhaust line G4.
  • a reducing agent ammonia water, gaseous ammonia, urea water etc. can be used, for example.
  • the turbine 32 of the supercharger 12 described above is connected to the downstream side of the exhaust line G2 from the engine body 11 on the inflow side, and the exhaust line G4 that discharges exhaust gas that has rotated the turbine 32 on the discharge side, that is, the SCR denitration device 13. Are connected.
  • the exhaust line G4 is connected to a chimney (funnel) (not shown).
  • the SCR denitration apparatus 13 needs to maintain the exhaust gas temperature at a predetermined reaction temperature or higher in order to efficiently remove NOx in the exhaust gas by the catalyst.
  • the exhaust gas temperature raising device 14 extracts a part of the exhaust gas flowing into the turbine 32 of the supercharger 12.
  • the exhaust gas temperature raising device 14 includes an extraction gas line G5 and an extraction gas valve 51.
  • the extraction gas line G5 has a proximal end connected to the upstream side of the turbine 32 in the exhaust line G2, and a distal end connected to the upstream side of the SCR denitration device 13 on the downstream side of the turbine 32 in the exhaust line G4.
  • the extraction gas valve 51 is provided in the extraction gas line G5.
  • the exhaust gas temperature raising device 14 is not limited to the one constituted by the extraction gas line G5 and the extraction gas valve 51.
  • the exhaust gas temperature raising device 14 ⁇ / b> A extracts a part of the air supplied from the compressor 31 of the supercharger 12 to the engine body 11.
  • the exhaust gas temperature raising device 14 ⁇ / b> A includes an extraction line G ⁇ b> 6 and an extraction valve 52.
  • the bleed line G6 has a base end connected to the air supply line G1 and a distal end open to the atmosphere.
  • the bleed valve 52 is provided in the bleed line G6. Therefore, when the bleed valve 52 is opened, the amount of air supplied from the compressor 31 to each cylinder 21 of the engine body 11 through the air supply line G1 decreases. Then, the air-fuel ratio of the engine body 11 is reduced, the combustion temperature is increased, and the exhaust gas temperature is also increased.
  • exhaust gas temperature raising devices include, for example, a control device that controls the opening / closing timing of an exhaust valve (not shown) provided in the engine body 11, and a fuel injection valve (not shown) provided in the engine body 11. You may apply the control apparatus etc. which control injection quantity or control injection timing.
  • the air supply line G ⁇ b> 1 is provided with an air cooler (cooler) 61.
  • the air cooler 61 cools the air by exchanging heat between the air compressed by the compressor 31 and the high temperature and the cooling water.
  • the ship can switch forward, reverse, stop, and navigation speed by operating the steering handle 71. From the advancing side, navigation full ahead (Navigation Full Ahead: full forward speed at voyage (regular) speed), and full ahead (full Ahead: full forward speed at port speed) Half Ahead (Half Ahead: Half-speed forward speed at harbor speed), Slow Ahead (Slow Ahead: Forward speed at harbor speed), Dead Slow Ahead (Advance at harbor speed) There is a main engine stop.
  • Dead Slow Astern Dead Slow Astern: reverse speed at the port speed
  • Slow Astern Slow Astern: reverse speed at the port speed
  • Half Astern Half Speed Astern
  • Full Astern full reverse rotation speed
  • the control device 15 is connected to the steering handle 71 and controls the engine body 11 based on a signal (required load) from the steering handle 71. For example, the control device 15 adjusts the fuel injection amount, fuel injection timing, exhaust valve opening / closing timing, etc. in the engine body 11 based on a signal from the steering handle 71, and adjusts the engine speed to a predetermined speed. The navigation speed of the ship can be adjusted.
  • NOx-ECA which is stricter than general sea areas, is set for NOx, SOx and PM in exhaust gas.
  • the control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 (14A) if the current operating area of the ship is this NOx-ECA that regulates NOx emission.
  • the occupant may input a signal for operating the SCR denitration device 13 and the exhaust gas temperature raising device 14 to the control device 15 by an operation switch (not shown), or the control device 15 automatically operates based on the current navigation position.
  • the SCR denitration device 13 and the exhaust gas temperature raising device 14 may be operated. The same applies to the operation stop of the SCR denitration device 13 and the exhaust gas temperature raising device 14.
  • the control device 15 stops the operation of the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operation area of the ship is outside the NOx-ECA (NOx regulation sea area). That is, the supply of the reducing agent to the exhaust line G4 by the reducing agent supply device 42 is stopped, and the extraction gas valve 51 is closed to shut off the extraction gas line G5. Alternatively, the extraction valve 52 is closed and the extraction line G6 is shut off.
  • the control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operating area of the ship is within the NOx-ECA (NOx regulated sea area).
  • the supply of the reducing agent to the exhaust line G4 by the reducing agent supply device 42 is started, and the extraction gas valve 51 is opened to allow the extraction gas line G5 to flow.
  • the extraction valve 52 is opened so that the extraction line G6 can be distributed.
  • the SCR denitration device 13 and the exhaust gas temperature raising device 14 are operated to remove and reduce NOx in the exhaust gas. Since the exhaust gas temperature rises, the combustion state of the engine body 11 is slightly deteriorated. On the other hand, since marine diesel engine 10 generates resonance in engine body 11 when the rotational speed increases, there is a dangerous rotational speed range in which long-time operation in a predetermined rotational speed range is prohibited. In the present embodiment, the control device 15 determines that the engine speed reaches the dangerous speed range when the ship is in the NOx-ECA and the SCR denitration device 13 and the exhaust gas temperature raising devices 14 and 14A are operating. Then, the operation of the exhaust gas temperature raising devices 14, 14A is stopped.
  • the control device 15 detects the exhaust gas temperature when the command value is input. The operation of the lifting devices 14, 14A is stopped. Then, the control device 15 starts the operation of the exhaust gas temperature raising devices 14 and 14A when the current engine rotational speed passes through the dangerous rotational speed range.
  • the engine body 11 is provided with a rotation speed sensor 72 for detecting the engine rotation speed.
  • the rotational speed sensor 72 is connected to the control device 15 and outputs the detected engine rotational speed to the control device 15.
  • the engine main body 11 compresses the combustion gas by a piston (not shown) and converts the combustion gas into the high-temperature combustion gas.
  • the fuel is injected and spontaneously ignites and burns.
  • the generated combustion gas is discharged as exhaust gas from the exhaust manifold 23 to the exhaust line G2.
  • the exhaust gas discharged from the engine body 11 rotates the turbine 32 in the supercharger 12, and then is discharged to the exhaust line G4, and is discharged to the outside from the exhaust line G4.
  • the turbocharger 12 When the turbine 32 is rotated by exhaust gas, the turbocharger 12 is rotated by the rotation of the turbine 32 being transmitted to the compressor 31 through the rotating shaft 33.
  • the compressor 31 compresses the air taken in from the suction port G3 and supplies the compressed air to the scavenging trunk 22 from the air supply line G1.
  • the air supplied to the scavenging trunk 22 from the air supply line G ⁇ b> 1 is cooled by the air cooler 61.
  • control device 15 stops the operation of the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current navigation area of the ship is outside the ECA.
  • control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operating area of the ship is within the NOx-ECA.
  • the extraction gas valve 51 is opened, the amount of exhaust gas flowing into the turbine 32 from the exhaust line G2 is reduced, and the amount of air supplied from the supply line G1 to the engine body 11 is reduced. By doing so, the temperature of the exhaust gas rises.
  • the extraction valve 52 is opened, and the amount of air supplied from the supply line G1 to the engine body 11 is reduced, so that the temperature of the exhaust gas also rises.
  • the SCR denitration device 13 operates, the reducing agent supply device 42 supplies the reducing agent to the exhaust line G4. Then, the SCR reactor 41 in the exhaust line G4 removes and reduces NOx in the exhaust gas by promoting the reaction between the reducing agent from the reducing agent supply device 42 and the exhaust gas heated to a predetermined reaction temperature or higher. To do.
  • control device 15 detects the exhaust gas temperature raising device 14 when the engine speed reaches the dangerous speed range. Stop operation.
  • FIG. 2 is a time chart showing the operation of the SCR denitration apparatus.
  • the engine control method includes a process of increasing the temperature of exhaust gas from the engine main body 11 and performing a denitration process of exhaust gas when the ship is at least in an air pollutant emission restricted sea area, And a step of stopping the process of increasing the temperature of the exhaust gas when the rotation speed enters a preset dangerous rotation speed range.
  • the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water.
  • the gas valve 51 is opened, and the exhaust gas is denitrated.
  • the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output. That is, when the current engine speed Ne1 is equal to or lower than the lower limit value NeL of the dangerous speed range A, a command value for increasing the engine speed Ne1 to an engine speed Ne2 higher than the upper limit value NeU of the dangerous speed range A is set. Is output.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Further, the control device 15 increases the engine speed by performing control such as increasing the fuel input amount based on the command value. At time t2, the engine speed reaches the lower limit value NeL and enters the dangerous speed range A. At this time, since the operation of the exhaust gas temperature raising device 14 is stopped, the combustion of the engine body 11 The state is stable, the engine speed rapidly increases, and passes through the dangerous speed range A at time t3. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
  • the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t4, the engine speed reaches the target engine speed Ne2.
  • the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped.
  • the extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
  • the engine body 11 As described above, in the marine diesel engine of the first embodiment, the engine body 11, the SCR denitration device 13 provided in the exhaust line G4 of the exhaust gas discharged from the engine body 11, and the exhaust gas flowing into the SCR denitration device 13
  • the exhaust gas temperature raising device 14 that raises the temperature of the exhaust gas and the operation of the exhaust gas temperature raising device 14 are controlled, and the operation of the exhaust gas temperature raising device 14 is stopped when the engine speed is in the preset dangerous speed range A.
  • Device 15
  • the combustion state of the engine body 11 is stabilized by stopping the operation of the exhaust gas temperature raising device 14, so that the engine speed can be increased appropriately and quickly. It is possible to escape from the dangerous speed range A.
  • the temperature of the exhaust gas does not rapidly decrease because the heat capacity of the SCR denitration device 13 is large, and the SCR denitration device 13 appropriately performs the denitration treatment of the exhaust gas. Can be implemented. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
  • the operation of the exhaust gas temperature increasing device 14 is performed when the command value is input. To stop. Accordingly, since the operation of the exhaust gas temperature raising device 14 is stopped when the command value is input, the operation of the exhaust gas temperature raising device 14 can be stopped before the engine speed reaches the dangerous speed range A, and the engine The combustion state of the main body 11 can be set to a stable state, and the engine speed can be appropriately increased to quickly exit the dangerous speed range A.
  • the control device 15 starts the operation of the exhaust gas temperature raising device 14 when the current engine rotational speed passes through the dangerous rotational speed range A. Therefore, the SCR denitration device 13 can appropriately perform the denitration treatment of the exhaust gas with the stop state of the exhaust gas temperature raising device 14 as the shortest period.
  • the operation of the exhaust gas temperature raising device 14 is controlled to stop when the engine speed is in the preset dangerous speed range A. Therefore, when the engine speed enters the dangerous speed range A, the combustion state of the engine body 11 can be made stable and the dangerous speed range A can be quickly exited.
  • FIG. 3 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the second embodiment.
  • the basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above.
  • the members having the same reference numerals are given the detailed descriptions thereof.
  • the control device 15 operates the exhaust gas temperature raising device 14 (14 ⁇ / b> A) when the current engine speed reaches the dangerous speed range A. Like to stop.
  • the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water.
  • the gas valve 51 is opened, and the exhaust gas is denitrated.
  • the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output.
  • the control device 15 increases the engine speed by performing control such as increasing the fuel injection amount based on this command value.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51 at the same time when the engine rotation speed reaches the lower limit value of the dangerous rotation speed range A.
  • the combustion state is stable and the engine speed can be quickly increased.
  • the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t14, the engine speed reaches the target engine speed.
  • the navigation area of the ship goes out of the ECA (regulated sea area) (OFF)
  • the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped.
  • the extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 when the current engine speed reaches the dangerous speed range A. Therefore, when the engine speed reaches the dangerous engine speed range A, the operation of the exhaust gas temperature raising device 14 can be surely stopped, the combustion state of the engine body 11 is stabilized, and the engine speed is appropriately set. By increasing, the dangerous rotational speed range A can be quickly exited.
  • FIG. 4 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the third embodiment.
  • the basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above.
  • the members having the same reference numerals are given the detailed descriptions thereof.
  • the control device 15 adds a preset margin value B to the lower limit value of the dangerous speed range A and the lower limit value of the dangerous speed range A.
  • a lower limit value of a lower dangerous speed range A is set, and when the current engine speed reaches the lower limit value, the operation of the exhaust gas temperature raising device 14 (14A) is stopped.
  • the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water.
  • the gas valve 51 is opened, and the exhaust gas is denitrated.
  • the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output.
  • the control device 15 increases the engine speed by performing control such as increasing the fuel injection amount based on the command value.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Then, at the time t23 when the predetermined time T2 has elapsed, the engine speed reaches the dangerous speed range A.
  • the predetermined time T2, that is, the margin value B is preferably set in consideration of a control delay or the like.
  • the engine body 11 although the engine speed is in the dangerous speed range A, since the operation of the exhaust gas temperature raising device 14 is stopped at this time, the combustion state is stable and the engine speed can be quickly increased. Rises and exits the critical rotational speed range A at time t24. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
  • the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t25, the engine speed reaches the target engine speed.
  • the navigation area of the ship goes out of the ECA (regulated sea area) (OFF)
  • the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped.
  • the extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
  • the lower limit value of the dangerous speed range A lower than the lower limit value of the dangerous speed range A obtained by adding the margin value B to the lower limit value of the dangerous speed range A.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 (14A) when the current engine speed reaches the margin lower limit value. Accordingly, the operation of the exhaust gas temperature raising device 14 can be stopped before the rotational speed of the engine body 11 reaches the dangerous rotational speed range A, the combustion state of the engine body 11 is stabilized, and the engine rotational speed is appropriately set. By increasing, the dangerous rotational speed range A can be quickly exited.
  • FIG. 5 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the fourth embodiment.
  • the basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above.
  • the members having the same reference numerals are given the detailed descriptions thereof.
  • the control device 15 detects the exhaust gas after elapse of a predetermined time T3 set in advance after the current engine speed passes through the dangerous speed range A. The operation of the temperature raising device 14 (14A) is stopped.
  • the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water.
  • the gas valve 51 is opened, and the exhaust gas is denitrated.
  • the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output.
  • the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Further, the control device 15 increases the engine speed by performing control such as increasing the fuel input amount based on the command value. At time t32, the engine speed falls within the dangerous speed range A. At this time, since the operation of the exhaust gas temperature raising device 14 is stopped, the combustion state of the engine body 11 is stable, The engine speed quickly increases, and passes through the dangerous speed range A at time t33. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
  • the control device 15 causes the exhaust gas temperature raising device at time t34 when a predetermined time T3 has passed after passing through the dangerous speed range A. 14 starts and the extraction gas valve 51 is opened. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t35, the engine speed reaches the target engine speed.
  • the navigation area of the ship goes out of the ECA (regulated sea area) (OFF)
  • the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped.
  • the extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
  • the control device 15 detects the exhaust gas temperature raising device after a predetermined time T3 elapses after the current engine speed passes through the dangerous speed range A. 14 starts. Accordingly, the exhaust gas temperature raising device 14 is operated after the engine rotational speed completely passes through the dangerous rotational speed range A, so that the safety of the engine main body 11 can be ensured and the exhaust gas denitration by the SCR denitration device 13 is achieved. Processing can be performed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A marine diesel engine provided with: an engine body (11); an SCR denitration device (13) provided in an exhaust line (G4) for exhaust gas discharged from the engine body (11); an exhaust gas temperature increasing device (14) for increasing the temperature of the exhaust gas that flows into the SCR denitration device (13); and a control device (15) which controls the operation of the exhaust gas temperature increasing device (14) and which, when the engine rotational speed is in a dangerous rotational speed range (A) set in advance, stops the operation of the exhaust gas temperature increasing device (14).

Description

舶用ディーゼルエンジン並びにエンジン制御装置及び方法Marine diesel engine and engine control apparatus and method
 本発明は、選択式触媒還元(SCR:Selective Catalytic Reduction)脱硝装置を備える舶用ディーゼルエンジンに関するものである。 The present invention relates to a marine diesel engine equipped with a selective catalytic reduction (SCR) denitration device.
 船舶に搭載される主機としての舶用ディーゼルエンジンは、排ガス中に窒素酸化物(NOx)を含むことから、このNOxを低減する装置を備えている。このNOxを低減する装置として、SCR脱硝装置がある。このSCR脱硝装置は、窒素酸化物を還元する作用を有する還元剤を排気管内に供給し、排ガス中の窒素酸化物と還元剤との反応を促進させることで、排ガス中の窒素酸化物を除去、低減するものである。但し、このSCR脱硝装置が触媒により排ガス中の窒素酸化物を効率良く除去するために、排ガス温度を所定の反応温度以上に維持する必要がある。 A marine diesel engine as a main engine mounted on a marine vessel includes a device for reducing this NOx because nitrogen oxide (NOx) is contained in exhaust gas. As an apparatus for reducing this NOx, there is an SCR denitration apparatus. This SCR denitration device removes nitrogen oxides in the exhaust gas by supplying a reducing agent that has the effect of reducing nitrogen oxides into the exhaust pipe and promoting the reaction between the nitrogen oxides in the exhaust gas and the reducing agent. , To reduce. However, in order for the SCR denitration apparatus to efficiently remove nitrogen oxides in the exhaust gas by the catalyst, it is necessary to maintain the exhaust gas temperature at a predetermined reaction temperature or higher.
特許第5781290号公報Japanese Patent No. 5781290 実用新案登録第317346号公報Utility Model Registration No. 317346
 上述した特許文献1では、バーナを用いて排ガスの温度を上げたり、エンジンの排気ポートから排出された直後の高温の排ガスに還元剤を含む水溶液を噴霧したりすることで、排ガスの温度を所定の反応温度以上に維持している。そのため、コストアップにつながるおそれがある。 In Patent Document 1 described above, the temperature of the exhaust gas is predetermined by raising the temperature of the exhaust gas using a burner or spraying an aqueous solution containing a reducing agent on the high-temperature exhaust gas immediately after being discharged from the exhaust port of the engine. The reaction temperature is maintained at or above. For this reason, there is a risk of increasing the cost.
 また、舶用ディーゼルエンジンは、運転が開始されると回転数が増加する。このとき、エンジンは、回転機械であって共振などが発生するため、所定の回転数域での長時間の運転が禁止される危険回転数域(Barred Range、Critical Speed)が存在する。このことは、上記特許文献2に記載されている。そのため、船舶は、エンジン回転数が危険回転数域に到達すると、短時間で回転数を増加させることで迅速に危険回転数域を抜け出すことが求められる。 Also, the marine diesel engine will increase in rotational speed when it starts operation. At this time, since the engine is a rotating machine and resonance or the like occurs, there is a dangerous rotational speed range (Barred Range, Critical Speed) in which long-time operation in a predetermined rotational speed range is prohibited. This is described in Patent Document 2 above. Therefore, when the engine speed reaches the dangerous speed range, the ship is required to quickly exit the dangerous speed range by increasing the rotational speed in a short time.
 本発明は上述した課題を解決するものであり、排ガスの脱硝処理とエンジンの安定した駆動との両立を図る舶用ディーゼルエンジン並びにエンジン制御装置及び方法を提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide a marine diesel engine, an engine control device, and a method for achieving both denitration treatment of exhaust gas and stable engine driving.
 上記の目的を達成するための本発明の舶用ディーゼルエンジンは、エンジン本体と、前記エンジン本体から排出される排ガスの排気ラインに設けられる脱硝装置と、前記脱硝装置に流入する排ガスを昇温する排ガス温度上昇装置と、前記排ガス温度上昇装置の作動を制御すると共にエンジン回転数が予め設定された危険回転数域にあるときに前記排ガス温度上昇装置の作動を停止する制御装置と、を備えることを特徴とするものである。 In order to achieve the above object, a marine diesel engine according to the present invention includes an engine main body, a denitration device provided in an exhaust line for exhaust gas discharged from the engine main body, and an exhaust gas that raises the temperature of exhaust gas flowing into the denitration device. A temperature raising device, and a control device for controlling the operation of the exhaust gas temperature raising device and stopping the operation of the exhaust gas temperature raising device when the engine speed is in a preset dangerous speed range. It is a feature.
 従って、制御装置が排ガス温度上昇装置を作動すると、エンジンからの排ガスの温度が上昇し、脱硝装置が排ガスの脱硝処理を実施する。そして、制御装置は、エンジン回転数が危険回転数域に入ると、排ガス温度上昇装置の作動を停止する。ここで、排ガス温度上昇装置の作動を停止しても、脱硝装置の熱容量が大きいために排ガスの温度が急激に低下することはなく、脱硝装置は、排ガスの脱硝処理を適切に実施することができる。また、排ガス温度上昇装置の作動を停止すると、エンジン本体の燃焼状態が安定することから、制御装置は、エンジン回転数を適切に増加し、迅速に危険回転数域を抜け出すことができる。その結果、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 Therefore, when the control device operates the exhaust gas temperature raising device, the temperature of the exhaust gas from the engine rises, and the denitration device performs the denitration treatment of the exhaust gas. Then, the control device stops the operation of the exhaust gas temperature raising device when the engine speed enters the dangerous speed range. Here, even if the operation of the exhaust gas temperature raising device is stopped, the temperature of the exhaust gas does not rapidly decrease due to the large heat capacity of the denitration device, and the denitration device can appropriately perform the denitration treatment of the exhaust gas. it can. Further, when the operation of the exhaust gas temperature raising device is stopped, the combustion state of the engine body is stabilized, so that the control device can appropriately increase the engine speed and quickly exit the dangerous speed range. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
 本発明の舶用ディーゼルエンジンでは、前記制御装置は、前記危険回転数域を超えてエンジン回転数を上昇させる指令値が入力されると、前記指令値の入力時に前記排ガス温度上昇装置の作動を停止することを特徴としている。 In the marine diesel engine of the present invention, the control device stops the operation of the exhaust gas temperature raising device when the command value is input when the command value for increasing the engine speed exceeding the dangerous speed range is input. It is characterized by doing.
 従って、指令値が入力されて排ガス温度上昇装置の作動を停止することから、エンジンの回転数が危険回転数域に到達する前に排ガス温度上昇装置の作動を停止することができ、エンジン本体の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域を抜け出すことができる。 Therefore, since the command value is input to stop the operation of the exhaust gas temperature raising device, the operation of the exhaust gas temperature raising device can be stopped before the engine speed reaches the dangerous speed range. By setting the combustion state to a stable state and appropriately increasing the engine speed, it is possible to quickly get out of the dangerous speed range.
 本発明の舶用ディーゼルエンジンでは、前記制御装置は、現在のエンジン回転数が前記危険回転数域に到達したときに前記排ガス温度上昇装置の作動を停止することを特徴としている。 In the marine diesel engine of the present invention, the control device stops the operation of the exhaust gas temperature raising device when the current engine speed reaches the dangerous speed range.
 従って、エンジン回転数が危険回転数域に到達したときに排ガス温度上昇装置の作動を停止することから、エンジンの回転数が危険回転数域に到達したときに確実に排ガス温度上昇装置の作動を停止することができ、エンジン本体の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域を抜け出すことができる。 Therefore, since the operation of the exhaust gas temperature raising device is stopped when the engine speed reaches the dangerous speed range, the operation of the exhaust gas temperature raising device is surely performed when the engine speed reaches the dangerous speed range. The engine can be stopped, the combustion state of the engine body can be made stable, the engine speed can be increased appropriately, and the dangerous speed range can be quickly exited.
 本発明の舶用ディーゼルエンジンでは、前記危険回転数域の下限値に予め設定された余裕値を加算した前記危険回転数域の下限値より低い前記危険回転数域の余裕下限値が設定され、前記制御装置は、現在のエンジン回転数が前記余裕下限値に到達したときに前記排ガス温度上昇装置の作動を停止することを特徴としている。 In the marine diesel engine of the present invention, a margin lower limit value of the dangerous rotational speed range lower than the lower limit value of the dangerous rotational speed range obtained by adding a preset margin value to the lower limit value of the dangerous rotational speed range is set, The control device is characterized in that the operation of the exhaust gas temperature raising device is stopped when the current engine speed reaches the margin lower limit value.
 従って、エンジン回転数が余裕下限値に到達したときに排ガス温度上昇装置の作動を停止することから、エンジンの回転数が危険回転数域に到達する前に排ガス温度上昇装置の作動を停止することができ、エンジン本体の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域を抜け出すことができる。 Therefore, since the operation of the exhaust gas temperature raising device is stopped when the engine speed reaches the margin lower limit value, the operation of the exhaust gas temperature raising device is stopped before the engine speed reaches the dangerous speed range. Therefore, the combustion state of the engine body can be made stable, the engine speed can be increased appropriately, and the dangerous speed range can be quickly exited.
 本発明の舶用ディーゼルエンジンでは、前記制御装置は、現在のエンジン回転数が前記危険回転数域を抜けたときに前記排ガス温度上昇装置の作動を開始することを特徴としている。 In the marine diesel engine of the present invention, the control device starts the operation of the exhaust gas temperature raising device when the current engine speed passes through the dangerous speed range.
 従って、エンジン回転数が危険回転数域を抜けると排ガス温度上昇装置の作動を開始することから、排ガス温度上昇装置の停止状態を最短期間として、脱硝装置が排ガスの脱硝処理を適切に実施することができる。 Therefore, since the operation of the exhaust gas temperature raising device starts when the engine speed passes through the dangerous rotational speed range, the denitration device should appropriately perform the denitration treatment of the exhaust gas with the stop state of the exhaust gas temperature raising device as the shortest period. Can do.
 本発明の舶用ディーゼルエンジンでは、前記制御装置は、現在のエンジン回転数が前記危険回転数域を抜けてから予め設定された所定時間の経過後に前記排ガス温度上昇装置の作動を開始することを特徴としている。 In the marine diesel engine of the present invention, the control device starts the operation of the exhaust gas temperature raising device after a predetermined time elapses after the current engine speed passes through the dangerous speed range. It is said.
 従って、エンジン回転数が危険回転数域を抜けてから所定時間の経過後に排ガス温度上昇装置の作動を開始することから、エンジン回転数が完全に危険回転数域を抜けてから排ガス温度上昇装置を作動することとなり、エンジン本体の安全性を確保することができると共に、脱硝装置による排ガスの脱硝処理を適切に実施することができる。 Therefore, since the operation of the exhaust gas temperature riser starts after a lapse of a predetermined time after the engine speed has passed the dangerous speed range, the exhaust gas temperature riser must be turned on after the engine speed has completely passed the dangerous speed range. Thus, the safety of the engine body can be ensured, and the denitration treatment of the exhaust gas by the denitration apparatus can be appropriately performed.
 また、本発明のエンジン制御装置は、エンジン本体と、前記エンジン本体から排出される排ガスの排気ラインに設けられる脱硝装置と、前記脱硝装置に流入する排ガスを昇温する排ガス温度上昇装置と、を備える舶用ディーゼルエンジンにおいて、前記排ガス温度上昇装置の作動を制御すると共にエンジン回転数が予め設定された危険回転数域にあるときに前記排ガス温度上昇装置の作動を停止する、ことを特徴とするものである。 The engine control device of the present invention includes an engine main body, a denitration device provided in an exhaust line of exhaust gas discharged from the engine main body, and an exhaust gas temperature raising device that raises the temperature of exhaust gas flowing into the denitration device. In the marine diesel engine provided, the operation of the exhaust gas temperature raising device is controlled, and the operation of the exhaust gas temperature raising device is stopped when the engine rotational speed is in a preset dangerous rotational speed range. It is.
 従って、排ガス温度上昇装置を作動すると、エンジンからの排ガスの温度が上昇し、脱硝装置が排ガスの脱硝処理を実施する。そして、エンジン回転数が危険回転数域に入ると、排ガス温度上昇装置の作動を停止する。ここで、排ガス温度上昇装置の作動を停止しても、脱硝装置の熱容量が大きいために排ガスの温度が急激に低下することはなく、脱硝装置が排ガスの脱硝処理を適切に実施することができる。また、排ガス温度上昇装置の作動を停止すると、エンジン本体の燃焼状態が安定することから、エンジン回転数を適切に増加し、迅速に危険回転数域を抜け出すことができる。その結果、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 Therefore, when the exhaust gas temperature raising device is operated, the temperature of the exhaust gas from the engine rises, and the denitration device performs the denitration treatment of the exhaust gas. When the engine speed enters the dangerous speed range, the operation of the exhaust gas temperature raising device is stopped. Here, even if the operation of the exhaust gas temperature raising device is stopped, the temperature of the exhaust gas does not rapidly decrease due to the large heat capacity of the denitration device, and the denitration device can appropriately perform the denitration treatment of the exhaust gas. . Further, when the operation of the exhaust gas temperature raising device is stopped, the combustion state of the engine body is stabilized, so that the engine speed can be appropriately increased and the dangerous speed range can be quickly exited. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
 また、本発明のエンジン制御方法は、船舶が少なくとも大気汚染物質放出規制海域にあるときにエンジンからの排ガスの温度を上昇させる処理を実施すると共に排ガスの脱硝処理を実施する工程と、エンジン回転数が予め設定された危険回転数域に入ると排ガスの温度を上昇させる処理を停止する工程と、を備えることを特徴とするものである。 In addition, the engine control method of the present invention includes a process of increasing the temperature of exhaust gas from the engine and a denitration process of exhaust gas when the ship is at least in an air pollutant emission restricted area, and an engine speed. And a step of stopping the process of raising the temperature of the exhaust gas when entering the preset dangerous rotation speed range.
 従って、エンジン回転数が危険回転数域に入った際に、排ガス温度上昇装置の作動を停止すると、エンジンの燃焼状態が安定することから、エンジン回転数を適切に増加し、迅速に危険回転数域を抜け出すことができる。その結果、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 Therefore, if the exhaust gas temperature riser stops operating when the engine speed enters the dangerous speed range, the combustion state of the engine stabilizes, so the engine speed is increased appropriately and the dangerous speed is quickly increased. You can get out of the area. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
 本発明の舶用ディーゼルエンジン並びにエンジン制御装置及び方法によれば、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 According to the marine diesel engine and the engine control device and method of the present invention, it is possible to achieve both denitration treatment of exhaust gas and stable driving of the engine.
図1は、第1実施形態の舶用ディーゼルエンジンを表す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a marine diesel engine according to the first embodiment. 図2は、SCR脱硝装置の作動を表すタイムチャートである。FIG. 2 is a time chart showing the operation of the SCR denitration apparatus. 図3は、第2実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。FIG. 3 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the second embodiment. 図4は、第3実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。FIG. 4 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the third embodiment. 図5は、第4実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。FIG. 5 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the fourth embodiment.
 以下に添付図面を参照して、本発明に係る舶用ディーゼルエンジン並びにエンジン制御装置及び方法の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 DETAILED DESCRIPTION Exemplary embodiments of a marine diesel engine, an engine control device, and a method according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.
[第1実施形態]
 図1は、第1実施形態の舶用ディーゼルエンジンを表す概略構成図である。
[First Embodiment]
FIG. 1 is a schematic configuration diagram illustrating a marine diesel engine according to the first embodiment.
 第1実施形態にて、図1に示すように、舶用ディーゼルエンジン10は、エンジン本体11と、過給機12と、SCR脱硝装置13と、排ガス温度上昇装置14と、制御装置15とを備えている。 In the first embodiment, as shown in FIG. 1, the marine diesel engine 10 includes an engine body 11, a supercharger 12, an SCR denitration device 13, an exhaust gas temperature raising device 14, and a control device 15. ing.
 エンジン本体11は、プロペラ軸を介して推進用プロペラを駆動回転させる推進用の機関(主機関)である。このエンジン本体11は、ユニフロー掃排気式のディーゼルエンジンであって、2ストロークディーゼルエンジンであり、シリンダ内の吸排気の流れを下方から上方への一方向とし、排気の残留を無くすようにしたものである。エンジン本体11は、ピストンが上下移動する複数のシリンダ(燃焼室)21と、各シリンダ21に連通する掃気トランク22と、各シリンダ21に連通する排気マニホールド(排気静圧管)23とを備えている。そして、各シリンダ21と掃気トランク22との間に掃気ポート24が設けられ、各シリンダ21と排気マニホールド23との間に排気ポート25が設けられている。そして、エンジン本体11は、掃気トランク22に給気ラインG1が連結され、排気マニホールド23に排気ラインG2が連結されている。 The engine body 11 is a propulsion engine (main engine) that drives and rotates the propeller for propulsion via the propeller shaft. This engine body 11 is a uniflow scavenging exhaust type diesel engine, which is a two-stroke diesel engine, in which the flow of intake and exhaust in the cylinder is unidirectional from the bottom to the top so as to eliminate the residual exhaust. It is. The engine body 11 includes a plurality of cylinders (combustion chambers) 21 in which pistons move up and down, a scavenging trunk 22 that communicates with each cylinder 21, and an exhaust manifold (exhaust static pressure pipe) 23 that communicates with each cylinder 21. . A scavenging port 24 is provided between each cylinder 21 and the scavenging trunk 22, and an exhaust port 25 is provided between each cylinder 21 and the exhaust manifold 23. In the engine body 11, the air supply line G <b> 1 is connected to the scavenging trunk 22, and the exhaust line G <b> 2 is connected to the exhaust manifold 23.
 舶用ディーゼルエンジン10は、過給機12を備えている。過給機12は、コンプレッサ31とタービン32とが回転軸33により一体に回転するように連結されて構成されている。コンプレッサ31は、吸入側に吸入口G3が接続され、吐出側に給気ラインG1が接続されている。タービン32は、流入側に排気ラインG2が接続され、排出側に排気ラインG4が接続されている。そのため、タービン32は、排気マニホールド23から排気ラインG2に排出された排ガスにより回転し、タービン32の回転が回転軸33により伝達されてコンプレッサ31が回転する。コンプレッサ31は、吸入口G3から取り込んだ空気を圧縮して給気ラインG1から掃気トランク22に供給する。 The marine diesel engine 10 includes a supercharger 12. The supercharger 12 is configured by connecting a compressor 31 and a turbine 32 so as to rotate integrally with a rotary shaft 33. The compressor 31 has a suction port G3 connected to the suction side and an air supply line G1 connected to the discharge side. The turbine 32 has an exhaust line G2 connected to the inflow side and an exhaust line G4 connected to the exhaust side. Therefore, the turbine 32 is rotated by the exhaust gas discharged from the exhaust manifold 23 to the exhaust line G2, and the rotation of the turbine 32 is transmitted by the rotary shaft 33, so that the compressor 31 rotates. The compressor 31 compresses the air taken in from the suction port G3 and supplies the compressed air to the scavenging trunk 22 from the air supply line G1.
 SCR脱硝装置13は、排気ラインG4に設けられている。SCR脱硝装置13は、SCR反応器41と、還元剤供給装置42とから構成されている。SCR脱硝装置13は、窒素酸化物(NOx)を還元する作用を有する還元剤を排気ラインG4に供給し、還元剤が供給された排ガスをNOxと還元剤との反応を促進させることで、排ガス中のNOxを除去、低減するものである。そのため、排気ラインG4におけるSCR反応器41より排ガスの流れ方向の上流側に還元剤供給装置42が設けられている。この還元剤供給装置42は、排気ラインG4における流路全面の下流側に向けて還元剤を供給することで、この還元剤を排ガスが流れる排気ラインG4内で拡散することができる。なお、還元剤としては、例えば、アンモニア水、気体のアンモニア、尿素水などを用いることができる。 The SCR denitration device 13 is provided in the exhaust line G4. The SCR denitration device 13 includes an SCR reactor 41 and a reducing agent supply device 42. The SCR denitration device 13 supplies a reducing agent having an action of reducing nitrogen oxides (NOx) to the exhaust line G4, and promotes the reaction between the NOx and the reducing agent in the exhaust gas to which the reducing agent is supplied. It is intended to remove and reduce NOx contained therein. Therefore, a reducing agent supply device 42 is provided upstream of the SCR reactor 41 in the exhaust line G4 in the exhaust gas flow direction. The reducing agent supply device 42 can diffuse the reducing agent in the exhaust line G4 through which exhaust gas flows by supplying the reducing agent toward the downstream side of the entire flow path in the exhaust line G4. In addition, as a reducing agent, ammonia water, gaseous ammonia, urea water etc. can be used, for example.
 上述した過給機12のタービン32は、流入側にエンジン本体11からの排気ラインG2の下流側が接続され、排出側にタービン32を回転した排ガスを排出する排気ラインG4、つまり、SCR脱硝装置13が連結されている。この排気ラインG4は、図示しない煙突(ファンネル)に連結されている。 The turbine 32 of the supercharger 12 described above is connected to the downstream side of the exhaust line G2 from the engine body 11 on the inflow side, and the exhaust line G4 that discharges exhaust gas that has rotated the turbine 32 on the discharge side, that is, the SCR denitration device 13. Are connected. The exhaust line G4 is connected to a chimney (funnel) (not shown).
 SCR脱硝装置13は、触媒により排ガス中のNOxを効率良く除去するために、排ガス温度を所定の反応温度以上に維持する必要がある。排ガス温度上昇装置14は、過給機12のタービン32に流入する排ガスの一部を抽気するものである。排ガス温度上昇装置14は、抽ガスラインG5と、抽ガス弁51とから構成されている。抽ガスラインG5は、基端部が排気ラインG2におけるタービン32より上流側に接続され、先端部が排気ラインG4におけるタービン32より下流側でSCR脱硝装置13より上流側に接続されている。抽ガス弁51は、抽ガスラインG5に設けられている。 The SCR denitration apparatus 13 needs to maintain the exhaust gas temperature at a predetermined reaction temperature or higher in order to efficiently remove NOx in the exhaust gas by the catalyst. The exhaust gas temperature raising device 14 extracts a part of the exhaust gas flowing into the turbine 32 of the supercharger 12. The exhaust gas temperature raising device 14 includes an extraction gas line G5 and an extraction gas valve 51. The extraction gas line G5 has a proximal end connected to the upstream side of the turbine 32 in the exhaust line G2, and a distal end connected to the upstream side of the SCR denitration device 13 on the downstream side of the turbine 32 in the exhaust line G4. The extraction gas valve 51 is provided in the extraction gas line G5.
 そのため、抽ガス弁51を開放すると、排気ラインG2からタービン32に流入する排ガス量が減少してタービン回転数が低下する。タービン回転数が低下すると、タービン32に回転軸33を介して一体に連結されたコンプレッサ31の回転数が低下し、過給圧が低下することで給気ラインG1からエンジン本体11の各シリンダ21に供給される空気量が減少する。すると、エンジン本体11の空燃比が小さくなって燃焼温度が上昇し、排ガスの温度も上昇する。 Therefore, when the extraction gas valve 51 is opened, the amount of exhaust gas flowing into the turbine 32 from the exhaust line G2 decreases, and the turbine speed decreases. When the turbine rotational speed decreases, the rotational speed of the compressor 31 that is integrally connected to the turbine 32 via the rotary shaft 33 decreases, and the supercharging pressure decreases, so that each cylinder 21 of the engine body 11 from the supply line G1. The amount of air supplied to is reduced. Then, the air-fuel ratio of the engine body 11 is reduced, the combustion temperature is increased, and the exhaust gas temperature is also increased.
 なお、排ガス温度上昇装置14は、抽ガスラインG5と抽ガス弁51から構成されるものに限定されるものではない。例えば、排ガス温度上昇装置14Aは、過給機12のコンプレッサ31からエンジン本体11に供給される空気の一部を抽気するものである。排ガス温度上昇装置14Aは、抽気ラインG6と、抽気弁52とから構成されている。抽気ラインG6は、基端部が給気ラインG1に接続され、先端部が大気に開放されている。抽気弁52は、抽気ラインG6に設けられている。そのため、抽気弁52を開放すると、コンプレッサ31から給気ラインG1を通してエンジン本体11の各シリンダ21に供給される空気量が減少する。すると、エンジン本体11の空燃比が小さくなって燃焼温度が上昇し、排ガスの温度も上昇する。 Note that the exhaust gas temperature raising device 14 is not limited to the one constituted by the extraction gas line G5 and the extraction gas valve 51. For example, the exhaust gas temperature raising device 14 </ b> A extracts a part of the air supplied from the compressor 31 of the supercharger 12 to the engine body 11. The exhaust gas temperature raising device 14 </ b> A includes an extraction line G <b> 6 and an extraction valve 52. The bleed line G6 has a base end connected to the air supply line G1 and a distal end open to the atmosphere. The bleed valve 52 is provided in the bleed line G6. Therefore, when the bleed valve 52 is opened, the amount of air supplied from the compressor 31 to each cylinder 21 of the engine body 11 through the air supply line G1 decreases. Then, the air-fuel ratio of the engine body 11 is reduced, the combustion temperature is increased, and the exhaust gas temperature is also increased.
 また、その他の排ガス温度上昇装置としては、例えば、エンジン本体11に設けられた排気弁(図示略)の開閉タイミングを制御する制御装置、エンジン本体11に設けられた燃料噴射弁(図示略)の噴射量を制御したり、噴射タイミングを制御する制御装置などを適用してもよい。 Other exhaust gas temperature raising devices include, for example, a control device that controls the opening / closing timing of an exhaust valve (not shown) provided in the engine body 11, and a fuel injection valve (not shown) provided in the engine body 11. You may apply the control apparatus etc. which control injection quantity or control injection timing.
 給気ラインG1は、エアクーラ(冷却器)61が設けられている。エアクーラ61は、コンプレッサ31により圧縮されて高温となった空気と冷却水とを熱交換することで、空気を冷却するものである。 The air supply line G <b> 1 is provided with an air cooler (cooler) 61. The air cooler 61 cools the air by exchanging heat between the air compressed by the compressor 31 and the high temperature and the cooling water.
 船舶は、操縦ハンドル71を操作することで、前進及び後進、停止、航行速度を切り替えることができる。前進側から、航行モードとしてナビゲーション・フル・アヘッド(Navigation Full Ahead:航海(常用)速力での前進全速)、港湾内航行モードとしてフル・アヘッド(Full Ahead:港内速力での前進全速回転数)、ハーフ・アヘッド(Half Ahead:港内速力での前進半速回転数)、スロー・アヘッド(Slow Ahead:港内速力での前進微速回転数)、デッド・スロー・アヘッド(Dead Slow Ahead:港内速力での前進最微速回転数)、主機停止がある。そして、主機停止から後進側に、デッド・スロー・アスターン(Dead Slow Astern:港湾速力での後進最微速回転数)、スロー・アスターン(Slow Astern:港湾速力での後進微速回転数)、ハーフ・アスターン(Half Astern:港湾速力での後進半速回転数)、フル・アスターン(Full Astern:後進全速回転数)がある。乗員は、操縦ハンドル71を各位置に切り替えることで、船舶の前進、後進、停止、航行速度を切り替えることができる。 The ship can switch forward, reverse, stop, and navigation speed by operating the steering handle 71. From the advancing side, navigation full ahead (Navigation Full Ahead: full forward speed at voyage (regular) speed), and full ahead (full Ahead: full forward speed at port speed) Half Ahead (Half Ahead: Half-speed forward speed at harbor speed), Slow Ahead (Slow Ahead: Forward speed at harbor speed), Dead Slow Ahead (Advance at harbor speed) There is a main engine stop. Then, from the main engine stop to the reverse side, Dead Slow Astern (Dead Slow Astern: reverse speed at the port speed), Slow Astern (Slow Astern: reverse speed at the port speed), Half Astern (Half Astern: reverse half speed rotation speed at port speed) and Full Astern (full reverse rotation speed). The occupant can switch forward, reverse, stop, and navigation speed of the ship by switching the steering handle 71 to each position.
 制御装置15は、この操縦ハンドル71が接続されており、操縦ハンドル71からの信号(要求負荷)に基づいてエンジン本体11を制御する。例えば、制御装置15は、操縦ハンドル71からの信号に基づいてエンジン本体11における燃料投入量、燃料噴射タイミング、排気弁の開閉タイミングなどを調整し、エンジン回転数を所定回転数に調整することで、船舶の航行速度を調整することができる。 The control device 15 is connected to the steering handle 71 and controls the engine body 11 based on a signal (required load) from the steering handle 71. For example, the control device 15 adjusts the fuel injection amount, fuel injection timing, exhaust valve opening / closing timing, etc. in the engine body 11 based on a signal from the steering handle 71, and adjusts the engine speed to a predetermined speed. The navigation speed of the ship can be adjusted.
 また、船舶が航行するとき、排ガス中のNOxやSOx及びPMについて、一般海域よりも厳しい大気汚染物質放出規制海域(NOx-ECA)が設定されている。制御装置15は、現在の船舶の運航海域がNOxの排出量を規制するこのNOx-ECAであれば、SCR脱硝装置13及び排ガス温度上昇装置14(14A)を作動させる。この場合、乗員が操作スイッチ(図示略)により制御装置15にSCR脱硝装置13及び排ガス温度上昇装置14を作動させる信号を入力してもよいし、制御装置15が現在の航行位置に基づいて自動的にSCR脱硝装置13及び排ガス温度上昇装置14を作動させてもよい。また、SCR脱硝装置13及び排ガス温度上昇装置14の作動停止についても同様である。 In addition, when ships navigate, NOx-ECA, which is stricter than general sea areas, is set for NOx, SOx and PM in exhaust gas. The control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 (14A) if the current operating area of the ship is this NOx-ECA that regulates NOx emission. In this case, the occupant may input a signal for operating the SCR denitration device 13 and the exhaust gas temperature raising device 14 to the control device 15 by an operation switch (not shown), or the control device 15 automatically operates based on the current navigation position. Alternatively, the SCR denitration device 13 and the exhaust gas temperature raising device 14 may be operated. The same applies to the operation stop of the SCR denitration device 13 and the exhaust gas temperature raising device 14.
 即ち、制御装置15は、現在の船舶の運航海域がNOx-ECA(NOx規制海域)外であれば、SCR脱硝装置13及び排ガス温度上昇装置14の作動を停止する。つまり、還元剤供給装置42による排気ラインG4への還元剤の供給を停止すると共に、抽ガス弁51を閉止して抽ガスラインG5を遮断する。または、抽気弁52を閉止して抽気ラインG6を遮断する。一方、制御装置15は、現在の船舶の運航海域がNOx-ECA(NOx規制海域)内であれば、SCR脱硝装置13及び排ガス温度上昇装置14を作動する。つまり、還元剤供給装置42による排気ラインG4への還元剤の供給を開始すると共に、抽ガス弁51を開放して抽ガスラインG5を流通可能とする。または、抽気弁52を開放して抽気ラインG6を流通可能とする。 That is, the control device 15 stops the operation of the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operation area of the ship is outside the NOx-ECA (NOx regulation sea area). That is, the supply of the reducing agent to the exhaust line G4 by the reducing agent supply device 42 is stopped, and the extraction gas valve 51 is closed to shut off the extraction gas line G5. Alternatively, the extraction valve 52 is closed and the extraction line G6 is shut off. On the other hand, the control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operating area of the ship is within the NOx-ECA (NOx regulated sea area). That is, the supply of the reducing agent to the exhaust line G4 by the reducing agent supply device 42 is started, and the extraction gas valve 51 is opened to allow the extraction gas line G5 to flow. Alternatively, the extraction valve 52 is opened so that the extraction line G6 can be distributed.
 このように現在の船舶の運航海域がNOx-ECA内にあるとき、SCR脱硝装置13及び排ガス温度上昇装置14を作動することで、排ガス中のNOxを除去、低減しているものの、このとき、排ガス温度が上昇するためにエンジン本体11の燃焼状態が若干悪化している。一方で、舶用ディーゼルエンジン10は、回転数が増加するときにエンジン本体11に共振などが発生するため、所定の回転数域での長時間の運転が禁止される危険回転数域が存在する。本実施形態にて、制御装置15は、船舶がNOx-ECA内にあって、SCR脱硝装置13及び排ガス温度上昇装置14,14Aが作動しているとき、エンジン回転数が危険回転数域に到達すると、排ガス温度上昇装置14,14Aの作動を停止する。 As described above, when the current operating area of the ship is in the NOx-ECA, the SCR denitration device 13 and the exhaust gas temperature raising device 14 are operated to remove and reduce NOx in the exhaust gas. Since the exhaust gas temperature rises, the combustion state of the engine body 11 is slightly deteriorated. On the other hand, since marine diesel engine 10 generates resonance in engine body 11 when the rotational speed increases, there is a dangerous rotational speed range in which long-time operation in a predetermined rotational speed range is prohibited. In the present embodiment, the control device 15 determines that the engine speed reaches the dangerous speed range when the ship is in the NOx-ECA and the SCR denitration device 13 and the exhaust gas temperature raising devices 14 and 14A are operating. Then, the operation of the exhaust gas temperature raising devices 14, 14A is stopped.
 具体的に、制御装置15は、操縦ハンドル71の操作により、この操縦ハンドル71から危険回転数域を超えてエンジン回転数を上昇させる指令値が入力されると、この指令値の入力時に排ガス温度上昇装置14,14Aの作動を停止する。そして、制御装置15は、現在のエンジン回転数が危険回転数域を抜けたときに排ガス温度上昇装置14,14Aの作動を開始する。 Specifically, when a command value for increasing the engine speed exceeding the dangerous speed range is input from the control handle 71 by the operation of the control handle 71, the control device 15 detects the exhaust gas temperature when the command value is input. The operation of the lifting devices 14, 14A is stopped. Then, the control device 15 starts the operation of the exhaust gas temperature raising devices 14 and 14A when the current engine rotational speed passes through the dangerous rotational speed range.
 そのため、エンジン本体11は、エンジン回転数を検出する回転数センサ72が設けられている。回転数センサ72は、制御装置15に接続されており、検出するエンジン回転数を制御装置15に出力する。 Therefore, the engine body 11 is provided with a rotation speed sensor 72 for detecting the engine rotation speed. The rotational speed sensor 72 is connected to the control device 15 and outputs the detected engine rotational speed to the control device 15.
 以下、第1実施形態の舶用ディーゼルエンジン10の作動について説明する。 Hereinafter, the operation of the marine diesel engine 10 of the first embodiment will be described.
 図1に示すように、エンジン本体11は、掃気トランク22からシリンダ21内に燃焼用気体が供給されると、ピストン(図示略)によってこの燃焼用気体が圧縮され、この高温の燃焼用気体に対して燃料が噴射されることで自然着火し、燃焼する。そして、発生した燃焼ガスは、排ガスとして排気マニホールド23から排気ラインG2に排出される。エンジン本体11から排出された排ガスは、過給機12におけるタービン32を回転した後、排気ラインG4に排出され、この排気ラインG4から外部に排出される。 As shown in FIG. 1, when combustion gas is supplied from the scavenging trunk 22 into the cylinder 21, the engine main body 11 compresses the combustion gas by a piston (not shown) and converts the combustion gas into the high-temperature combustion gas. In contrast, the fuel is injected and spontaneously ignites and burns. The generated combustion gas is discharged as exhaust gas from the exhaust manifold 23 to the exhaust line G2. The exhaust gas discharged from the engine body 11 rotates the turbine 32 in the supercharger 12, and then is discharged to the exhaust line G4, and is discharged to the outside from the exhaust line G4.
 過給機12は、タービン32が排ガスにより回転すると、タービン32の回転が回転軸33によりコンプレッサ31に伝達されて回転する。コンプレッサ31は、吸入口G3から取り込んだ空気を圧縮し、給気ラインG1から掃気トランク22に供給する。このとき、給気ラインG1から掃気トランク22に供給される空気は、エアクーラ61により冷却される。 When the turbine 32 is rotated by exhaust gas, the turbocharger 12 is rotated by the rotation of the turbine 32 being transmitted to the compressor 31 through the rotating shaft 33. The compressor 31 compresses the air taken in from the suction port G3 and supplies the compressed air to the scavenging trunk 22 from the air supply line G1. At this time, the air supplied to the scavenging trunk 22 from the air supply line G <b> 1 is cooled by the air cooler 61.
 また、制御装置15は、現在の船舶の運航海域がECA外であれば、SCR脱硝装置13及び排ガス温度上昇装置14の作動を停止する。一方、制御装置15は、現在の船舶の運航海域がNOx-ECA内であれば、SCR脱硝装置13及び排ガス温度上昇装置14を作動する。まず、排ガス温度上昇装置14が作動すると、抽ガス弁51が開放されて排気ラインG2からタービン32に流入する排ガス量が減少し、給気ラインG1からエンジン本体11に供給される空気量が減少することで排ガスの温度が上昇する。または、排ガス温度上昇装置14Aが作動すると、抽気弁52が開放されて給気ラインG1からエンジン本体11に供給される空気量が減少することで排ガスの温度も上昇する。次に、SCR脱硝装置13が作動すると、還元剤供給装置42が排気ラインG4へ還元剤を供給する。すると、排気ラインG4のSCR反応器41は、還元剤供給装置42からの還元剤と所定の反応温度以上に昇温された排ガスとの反応を促進させることで、排ガス中のNOxを除去、低減する。 Further, the control device 15 stops the operation of the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current navigation area of the ship is outside the ECA. On the other hand, the control device 15 operates the SCR denitration device 13 and the exhaust gas temperature raising device 14 if the current operating area of the ship is within the NOx-ECA. First, when the exhaust gas temperature raising device 14 is operated, the extraction gas valve 51 is opened, the amount of exhaust gas flowing into the turbine 32 from the exhaust line G2 is reduced, and the amount of air supplied from the supply line G1 to the engine body 11 is reduced. By doing so, the temperature of the exhaust gas rises. Alternatively, when the exhaust gas temperature raising device 14A is activated, the extraction valve 52 is opened, and the amount of air supplied from the supply line G1 to the engine body 11 is reduced, so that the temperature of the exhaust gas also rises. Next, when the SCR denitration device 13 operates, the reducing agent supply device 42 supplies the reducing agent to the exhaust line G4. Then, the SCR reactor 41 in the exhaust line G4 removes and reduces NOx in the exhaust gas by promoting the reaction between the reducing agent from the reducing agent supply device 42 and the exhaust gas heated to a predetermined reaction temperature or higher. To do.
 更に、制御装置15は、船舶がECA内にあって、SCR脱硝装置13及び排ガス温度上昇装置14が作動しているとき、エンジン回転数が危険回転数域に到達すると、排ガス温度上昇装置14の作動を停止する。 Further, when the ship is in the ECA and the SCR denitration device 13 and the exhaust gas temperature raising device 14 are operating, the control device 15 detects the exhaust gas temperature raising device 14 when the engine speed reaches the dangerous speed range. Stop operation.
 ここで、SCR脱硝装置13及び排ガス温度上昇装置14の制御について説明する。図2は、SCR脱硝装置の作動を表すタイムチャートである。 Here, control of the SCR denitration device 13 and the exhaust gas temperature raising device 14 will be described. FIG. 2 is a time chart showing the operation of the SCR denitration apparatus.
 第1実施形態のエンジン制御方法は、船舶が少なくとも大気汚染物質放出規制海域にあるときにエンジン本体11からの排ガスの温度を上昇させる処理を実施すると共に排ガスの脱硝処理を実施する工程と、エンジン回転数が予め設定された危険回転数域に入ると排ガスの温度を上昇させる処理を停止する工程とを備える。 The engine control method according to the first embodiment includes a process of increasing the temperature of exhaust gas from the engine main body 11 and performing a denitration process of exhaust gas when the ship is at least in an air pollutant emission restricted sea area, And a step of stopping the process of increasing the temperature of the exhaust gas when the rotation speed enters a preset dangerous rotation speed range.
 図1及び図2に示すように、船舶の運航海域がECA(規制海域)内である(ON)とき、SCR脱硝装置13が作動(ON)すると共に、排ガス温度上昇装置14を作動して抽ガス弁51が開放されており、排ガスの脱硝処理が実施されている。そして、時間t1にて、操縦ハンドル71が操作され、危険回転数域Aを超えてエンジン回転数を上昇させる指令値が出力される。即ち、現在のエンジン回転数Ne1が危険回転数域Aの下限値NeL以下であるとき、このエンジン回転数Ne1から危険回転数域Aの上限値NeUより高いエンジン回転数Ne2まで上昇させる指令値が出力される。 As shown in FIGS. 1 and 2, when the operating area of the ship is within the ECA (regulated sea area) (ON), the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water. The gas valve 51 is opened, and the exhaust gas is denitrated. At time t1, the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output. That is, when the current engine speed Ne1 is equal to or lower than the lower limit value NeL of the dangerous speed range A, a command value for increasing the engine speed Ne1 to an engine speed Ne2 higher than the upper limit value NeU of the dangerous speed range A is set. Is output.
 制御装置15は、時間t1にて、この指令値が入力すると、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止する。また、制御装置15は、この指令値に基づいて燃料投入量を増加するなどの制御を実施することで、エンジン回転数を上昇させる。そして、時間t2にて、エンジン回転数が下限値NeLに到達して危険回転数域Aに入るものの、このとき、排ガス温度上昇装置14の作動が停止していることから、エンジン本体11の燃焼状態は安定しており、迅速にエンジン回転数が上昇し、時間t3にて、危険回転数域Aを抜ける。また、エンジン回転数が危険回転数域Aに存在する期間T1は、排ガスの温度上昇処理が停止しているものの、早期に排気ガスの温度が低下することはなく、排ガスの脱硝処理が継続して実施される。 When the command value is input at time t1, the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Further, the control device 15 increases the engine speed by performing control such as increasing the fuel input amount based on the command value. At time t2, the engine speed reaches the lower limit value NeL and enters the dangerous speed range A. At this time, since the operation of the exhaust gas temperature raising device 14 is stopped, the combustion of the engine body 11 The state is stable, the engine speed rapidly increases, and passes through the dangerous speed range A at time t3. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
 そして、この時間t3にて、エンジン回転数が危険回転数域Aの上限値NeUを抜けると、制御装置15は、排ガス温度上昇装置14の作動を開始して抽ガス弁51を開放する。すると、排ガス温度上昇装置14により再び排気ガスの温度上昇処理が開始され、排ガスの脱硝処理が継続して実施される。その後、時間t4にて、エンジン回転数が目標となるエンジン回転数Ne2に到達する。そして、時間t5にて、船舶の運航海域がECA(規制海域)外にでる(OFF)と、SCR脱硝装置13の作動を停止(OFF)すると共に、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止し、排ガスの脱硝処理が終了する。 Then, at this time t3, when the engine speed exceeds the upper limit value NeU of the dangerous speed range A, the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t4, the engine speed reaches the target engine speed Ne2. At time t5, when the navigation area of the ship goes out of the ECA (regulated sea area) (OFF), the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped. The extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
 このように第1実施形態の舶用ディーゼルエンジンにあっては、エンジン本体11と、エンジン本体11から排出される排ガスの排気ラインG4に設けられるSCR脱硝装置13と、SCR脱硝装置13に流入する排ガスを昇温する排ガス温度上昇装置14と、排ガス温度上昇装置14の作動を制御すると共にエンジン回転数が予め設定された危険回転数域Aにあるときに排ガス温度上昇装置14の作動を停止する制御装置15とを備えている。 As described above, in the marine diesel engine of the first embodiment, the engine body 11, the SCR denitration device 13 provided in the exhaust line G4 of the exhaust gas discharged from the engine body 11, and the exhaust gas flowing into the SCR denitration device 13 The exhaust gas temperature raising device 14 that raises the temperature of the exhaust gas and the operation of the exhaust gas temperature raising device 14 are controlled, and the operation of the exhaust gas temperature raising device 14 is stopped when the engine speed is in the preset dangerous speed range A. Device 15.
 従って、エンジン回転数が危険回転数域Aに入ると、排ガス温度上昇装置14の作動を停止することで、エンジン本体11の燃焼状態が安定することから、エンジン回転数を適切に増加させ、迅速に危険回転数域Aを抜け出すことができる。このとき、排ガス温度上昇装置14の作動を停止しても、SCR脱硝装置13の熱容量が大きいために排ガスの温度が急激に低下することはなく、SCR脱硝装置13は、排ガスの脱硝処理を適切に実施することができる。その結果、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 Therefore, when the engine speed falls within the dangerous speed range A, the combustion state of the engine body 11 is stabilized by stopping the operation of the exhaust gas temperature raising device 14, so that the engine speed can be increased appropriately and quickly. It is possible to escape from the dangerous speed range A. At this time, even if the operation of the exhaust gas temperature raising device 14 is stopped, the temperature of the exhaust gas does not rapidly decrease because the heat capacity of the SCR denitration device 13 is large, and the SCR denitration device 13 appropriately performs the denitration treatment of the exhaust gas. Can be implemented. As a result, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
 第1実施形態の舶用ディーゼルエンジンでは、制御装置15は、危険回転数域Aを超えてエンジン回転数を上昇させる指令値が入力されると、この指令値の入力時に排ガス温度上昇装置14の作動を停止する。従って、指令値の入力時に排ガス温度上昇装置14の作動を停止することから、エンジンの回転数が危険回転数域Aに到達する前に排ガス温度上昇装置14の作動を停止することができ、エンジン本体11の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域Aを抜け出すことができる。 In the marine diesel engine of the first embodiment, when a command value for increasing the engine speed exceeding the dangerous speed range A is input to the control device 15, the operation of the exhaust gas temperature increasing device 14 is performed when the command value is input. To stop. Accordingly, since the operation of the exhaust gas temperature raising device 14 is stopped when the command value is input, the operation of the exhaust gas temperature raising device 14 can be stopped before the engine speed reaches the dangerous speed range A, and the engine The combustion state of the main body 11 can be set to a stable state, and the engine speed can be appropriately increased to quickly exit the dangerous speed range A.
 第1実施形態の舶用ディーゼルエンジンでは、制御装置15は、現在のエンジン回転数が危険回転数域Aを抜けたときに排ガス温度上昇装置14の作動を開始する。従って、排ガス温度上昇装置14の停止状態を最短期間として、SCR脱硝装置13が排ガスの脱硝処理を適切に実施することができる。 In the marine diesel engine of the first embodiment, the control device 15 starts the operation of the exhaust gas temperature raising device 14 when the current engine rotational speed passes through the dangerous rotational speed range A. Therefore, the SCR denitration device 13 can appropriately perform the denitration treatment of the exhaust gas with the stop state of the exhaust gas temperature raising device 14 as the shortest period.
 また、第1実施形態のエンジン制御装置にあっては、エンジン回転数が予め設定された危険回転数域Aにあるときに排ガス温度上昇装置14の作動を停止するように制御している。従って、エンジン回転数が危険回転数域Aに入ったときに、エンジン本体11の燃焼状態を安定状態として迅速に危険回転数域Aを抜け出すことができる。 Further, in the engine control apparatus of the first embodiment, the operation of the exhaust gas temperature raising device 14 is controlled to stop when the engine speed is in the preset dangerous speed range A. Therefore, when the engine speed enters the dangerous speed range A, the combustion state of the engine body 11 can be made stable and the dangerous speed range A can be quickly exited.
 また、第1実施形態のエンジン制御方法にあっては、船舶がECA内にあるときにエンジン本体11からの排ガスの温度を上昇させる処理を実施すると共に排ガスの脱硝処理を実施する工程と、エンジン回転数が予め設定された危険回転数域Aに入ると排ガスの温度を上昇させる処理を停止する工程とを備えている。従って、排ガスの脱硝処理とエンジンの安定した駆動との両立を図ることができる。 Further, in the engine control method of the first embodiment, the process of increasing the temperature of the exhaust gas from the engine body 11 when the ship is in the ECA and the process of denitrating the exhaust gas, the engine And a step of stopping the process of increasing the temperature of the exhaust gas when the rotational speed enters a preset dangerous rotational speed range A. Therefore, it is possible to achieve both denitration treatment of exhaust gas and stable engine driving.
[第2実施形態]
 図3は、第2実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。なお、本実施形態の舶用ディーゼルエンジンの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、図1を用いて説明すると共に、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 3 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the second embodiment. The basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above. The members having the same reference numerals are given the detailed descriptions thereof.
 第2実施形態の舶用ディーゼルエンジンにて、図1に示すように、制御装置15は、現在のエンジン回転数が危険回転数域Aに到達したときに、排ガス温度上昇装置14(14A)の作動を停止するようにしている。 In the marine diesel engine of the second embodiment, as shown in FIG. 1, the control device 15 operates the exhaust gas temperature raising device 14 (14 </ b> A) when the current engine speed reaches the dangerous speed range A. Like to stop.
 図1及び図3に示すように、船舶の運航海域がECA(規制海域)内である(ON)とき、SCR脱硝装置13が作動(ON)すると共に、排ガス温度上昇装置14を作動して抽ガス弁51が開放されており、排ガスの脱硝処理が実施されている。そして、時間t11にて、操縦ハンドル71が操作され、危険回転数域Aを超えてエンジン回転数を上昇させる指令値が出力される。制御装置15は、時間t11にて、この指令値が入力すると、この指令値に基づいて燃料投入量を増加するなどの制御を実施することで、エンジン回転数を上昇させる。 As shown in FIGS. 1 and 3, when the operating area of the ship is within the ECA (regulated sea area) (ON), the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water. The gas valve 51 is opened, and the exhaust gas is denitrated. At time t11, the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output. When this command value is input at time t11, the control device 15 increases the engine speed by performing control such as increasing the fuel injection amount based on this command value.
 時間t12にて、制御装置15は、エンジン回転数が危険回転数域Aの下限値に到達すると同時に、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止する。エンジン本体11は、エンジン回転数が危険回転数域Aに入るものの、このとき、排ガス温度上昇装置14の作動が停止していることから、燃焼状態は安定しており、迅速にエンジン回転数が上昇し、時間t13にて、危険回転数域Aを抜ける。また、エンジン回転数が危険回転数域Aに存在する期間T1は、排ガスの温度上昇処理が停止しているものの、早期に排気ガスの温度が低下することはなく、排ガスの脱硝処理が継続して実施される。 At time t12, the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51 at the same time when the engine rotation speed reaches the lower limit value of the dangerous rotation speed range A. In the engine body 11, although the engine speed is in the dangerous speed range A, since the operation of the exhaust gas temperature raising device 14 is stopped at this time, the combustion state is stable and the engine speed can be quickly increased. Rises and exits the critical rotational speed range A at time t13. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
 そして、この時間t13にて、エンジン回転数が危険回転数域Aを抜けると、制御装置15は、排ガス温度上昇装置14の作動を開始して抽ガス弁51を開放する。すると、排ガス温度上昇装置14により再び排気ガスの温度上昇処理が開始され、排ガスの脱硝処理が継続して実施される。その後、時間t14にて、エンジン回転数が目標となるエンジン回転数に到達する。そして、時間t15にて、船舶の運航海域がECA(規制海域)外にでる(OFF)と、SCR脱硝装置13の作動を停止(OFF)すると共に、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止し、排ガスの脱硝処理が終了する。 Then, at this time t13, when the engine speed passes through the dangerous speed range A, the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t14, the engine speed reaches the target engine speed. At time t15, when the navigation area of the ship goes out of the ECA (regulated sea area) (OFF), the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped. The extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
 このように第2実施形態の舶用ディーゼルエンジンにあっては、制御装置15は、現在のエンジン回転数が危険回転数域Aに到達したときに排ガス温度上昇装置14の作動を停止する。従って、エンジンの回転数が危険回転数域Aに到達したときに確実に排ガス温度上昇装置14の作動を停止することができ、エンジン本体11の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域Aを抜け出すことができる。 Thus, in the marine diesel engine of the second embodiment, the control device 15 stops the operation of the exhaust gas temperature raising device 14 when the current engine speed reaches the dangerous speed range A. Therefore, when the engine speed reaches the dangerous engine speed range A, the operation of the exhaust gas temperature raising device 14 can be surely stopped, the combustion state of the engine body 11 is stabilized, and the engine speed is appropriately set. By increasing, the dangerous rotational speed range A can be quickly exited.
[第3実施形態]
 図4は、第3実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。なお、本実施形態の舶用ディーゼルエンジンの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、図1を用いて説明すると共に、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 4 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the third embodiment. The basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above. The members having the same reference numerals are given the detailed descriptions thereof.
 第3実施形態の舶用ディーゼルエンジンにて、図1に示すように、制御装置15は、危険回転数域Aの下限値に予め設定された余裕値Bを加算した危険回転数域Aの下限値より低い危険回転数域Aの余裕下限値を設定し、現在のエンジン回転数が余裕下限値に到達したときに、排ガス温度上昇装置14(14A)の作動を停止するようにしている。 In the marine diesel engine of the third embodiment, as shown in FIG. 1, the control device 15 adds a preset margin value B to the lower limit value of the dangerous speed range A and the lower limit value of the dangerous speed range A. A lower limit value of a lower dangerous speed range A is set, and when the current engine speed reaches the lower limit value, the operation of the exhaust gas temperature raising device 14 (14A) is stopped.
 図1及び図4に示すように、船舶の運航海域がECA(規制海域)内である(ON)とき、SCR脱硝装置13が作動(ON)すると共に、排ガス温度上昇装置14を作動して抽ガス弁51が開放されており、排ガスの脱硝処理が実施されている。そして、時間t21にて、操縦ハンドル71が操作され、危険回転数域Aを超えてエンジン回転数を上昇させる指令値が出力される。制御装置15は、時間t21にて、この指令値が入力すると、この指令値に基づいて燃料投入量を増加するなどの制御を実施することで、エンジン回転数を上昇させる。 As shown in FIGS. 1 and 4, when the operating area of the ship is within the ECA (regulated sea area) (ON), the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water. The gas valve 51 is opened, and the exhaust gas is denitrated. At time t21, the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output. When this command value is input at time t21, the control device 15 increases the engine speed by performing control such as increasing the fuel injection amount based on the command value.
 時間t22にて、制御装置15は、エンジン回転数が危険回転数域Aの余裕下限値に到達すると、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止する。そして、所定時間T2が経過した時間t23にて、エンジン回転数が危険回転数域Aに到達する。この所定時間T2、つまり、余裕値Bは、制御遅れなどを考慮して設定することが好ましい。エンジン本体11は、エンジン回転数が危険回転数域Aに入るものの、このとき、排ガス温度上昇装置14の作動が停止していることから、燃焼状態は安定しており、迅速にエンジン回転数が上昇し、時間t24にて、危険回転数域Aを抜ける。また、エンジン回転数が危険回転数域Aに存在する期間T1は、排ガスの温度上昇処理が停止しているものの、早期に排気ガスの温度が低下することはなく、排ガスの脱硝処理が継続して実施される。 At time t22, when the engine speed reaches the margin lower limit value of the dangerous speed range A, the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Then, at the time t23 when the predetermined time T2 has elapsed, the engine speed reaches the dangerous speed range A. The predetermined time T2, that is, the margin value B is preferably set in consideration of a control delay or the like. In the engine body 11, although the engine speed is in the dangerous speed range A, since the operation of the exhaust gas temperature raising device 14 is stopped at this time, the combustion state is stable and the engine speed can be quickly increased. Rises and exits the critical rotational speed range A at time t24. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
 そして、この時間t24にて、エンジン回転数が危険回転数域Aを抜けると、制御装置15は、排ガス温度上昇装置14の作動を開始して抽ガス弁51を開放する。すると、排ガス温度上昇装置14により再び排気ガスの温度上昇処理が開始され、排ガスの脱硝処理が継続して実施される。その後、時間t25にて、エンジン回転数が目標となるエンジン回転数に到達する。そして、時間t26にて、船舶の運航海域がECA(規制海域)外に出る(OFF)と、SCR脱硝装置13の作動を停止(OFF)すると共に、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止し、排ガスの脱硝処理が終了する。 And at this time t24, when the engine speed passes through the dangerous speed range A, the control device 15 starts the operation of the exhaust gas temperature raising device 14 and opens the extraction gas valve 51. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t25, the engine speed reaches the target engine speed. At time t26, when the navigation area of the ship goes out of the ECA (regulated sea area) (OFF), the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped. The extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
 このように第3実施形態の舶用ディーゼルエンジンにあっては、危険回転数域Aの下限値に余裕値Bを加算した危険回転数域Aの下限値より低い危険回転数域Aの余裕下限値を設定し、制御装置15は、現在のエンジン回転数が余裕下限値に到達したときに、排ガス温度上昇装置14(14A)の作動を停止する。従って、エンジン本体11の回転数が危険回転数域Aに到達する前に排ガス温度上昇装置14の作動を停止することができ、エンジン本体11の燃焼状態を安定状態とし、エンジン回転数を適切に増加して迅速に危険回転数域Aを抜け出すことができる。 As described above, in the marine diesel engine of the third embodiment, the lower limit value of the dangerous speed range A lower than the lower limit value of the dangerous speed range A obtained by adding the margin value B to the lower limit value of the dangerous speed range A. The control device 15 stops the operation of the exhaust gas temperature raising device 14 (14A) when the current engine speed reaches the margin lower limit value. Accordingly, the operation of the exhaust gas temperature raising device 14 can be stopped before the rotational speed of the engine body 11 reaches the dangerous rotational speed range A, the combustion state of the engine body 11 is stabilized, and the engine rotational speed is appropriately set. By increasing, the dangerous rotational speed range A can be quickly exited.
[第4実施形態]
 図5は、第4実施形態の舶用ディーゼルエンジンにおけるSCR脱硝装置の作動を表すタイムチャートである。なお、本実施形態の舶用ディーゼルエンジンの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、図1を用いて説明すると共に、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Fourth Embodiment]
FIG. 5 is a time chart showing the operation of the SCR denitration device in the marine diesel engine of the fourth embodiment. The basic configuration of the marine diesel engine of the present embodiment is substantially the same as that of the first embodiment described above, and will be described with reference to FIG. 1 and has the same functions as those of the first embodiment described above. The members having the same reference numerals are given the detailed descriptions thereof.
 第4実施形態の舶用ディーゼルエンジンにて、図1に示すように、制御装置15は、現在のエンジン回転数が危険回転数域Aを抜けてから予め設定された所定時間T3の経過後に、排ガス温度上昇装置14(14A)の作動を停止するようにしている。 In the marine diesel engine of the fourth embodiment, as shown in FIG. 1, the control device 15 detects the exhaust gas after elapse of a predetermined time T3 set in advance after the current engine speed passes through the dangerous speed range A. The operation of the temperature raising device 14 (14A) is stopped.
 図1及び図5に示すように、船舶の運航海域がECA(規制海域)内である(ON)とき、SCR脱硝装置13が作動(ON)すると共に、排ガス温度上昇装置14を作動して抽ガス弁51が開放されており、排ガスの脱硝処理が実施されている。そして、時間t31にて、操縦ハンドル71が操作され、危険回転数域Aを超えてエンジン回転数を上昇させる指令値が出力される。 As shown in FIGS. 1 and 5, when the operating area of the ship is within the ECA (regulated sea area) (ON), the SCR denitration device 13 is activated (ON) and the exhaust gas temperature raising device 14 is activated to extract the water. The gas valve 51 is opened, and the exhaust gas is denitrated. At time t31, the steering handle 71 is operated, and a command value for increasing the engine speed exceeding the dangerous speed range A is output.
 制御装置15は、時間t31にて、この指令値が入力すると、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止する。また、制御装置15は、この指令値に基づいて燃料投入量を増加するなどの制御を実施することで、エンジン回転数を上昇させる。そして、時間t32にて、エンジン回転数が危険回転数域Aに入るものの、このとき、排ガス温度上昇装置14の作動が停止していることから、エンジン本体11の燃焼状態は安定しており、迅速にエンジン回転数が上昇し、時間t33にて、危険回転数域Aを抜ける。また、エンジン回転数が危険回転数域Aに存在する期間T1は、排ガスの温度上昇処理が停止しているものの、早期に排気ガスの温度が低下することはなく、排ガスの脱硝処理が継続して実施される。 When the command value is input at time t31, the control device 15 stops the operation of the exhaust gas temperature raising device 14 and closes the extraction gas valve 51. Further, the control device 15 increases the engine speed by performing control such as increasing the fuel input amount based on the command value. At time t32, the engine speed falls within the dangerous speed range A. At this time, since the operation of the exhaust gas temperature raising device 14 is stopped, the combustion state of the engine body 11 is stable, The engine speed quickly increases, and passes through the dangerous speed range A at time t33. Further, during the period T1 in which the engine speed is in the dangerous engine speed range A, the exhaust gas temperature rise process is stopped, but the exhaust gas temperature does not decrease early, and the exhaust gas denitration process continues. Implemented.
 そして、この時間t33にて、エンジン回転数が危険回転数域Aを抜けると、制御装置15は、危険回転数域Aを抜けてから所定時間T3が経過した時間t34にて、排ガス温度上昇装置14の作動を開始して抽ガス弁51を開放する。すると、排ガス温度上昇装置14により再び排気ガスの温度上昇処理が開始され、排ガスの脱硝処理が継続して実施される。その後、時間t35にて、エンジン回転数が目標となるエンジン回転数に到達する。そして、時間t36にて、船舶の運航海域がECA(規制海域)外にでる(OFF)と、SCR脱硝装置13の作動を停止(OFF)すると共に、排ガス温度上昇装置14の作動を停止して抽ガス弁51を閉止し、排ガスの脱硝処理が終了する。 Then, when the engine speed passes through the dangerous speed range A at this time t33, the control device 15 causes the exhaust gas temperature raising device at time t34 when a predetermined time T3 has passed after passing through the dangerous speed range A. 14 starts and the extraction gas valve 51 is opened. Then, the exhaust gas temperature increasing device 14 starts the exhaust gas temperature increasing process again, and the exhaust gas denitration process is continued. Thereafter, at time t35, the engine speed reaches the target engine speed. At time t36, when the navigation area of the ship goes out of the ECA (regulated sea area) (OFF), the operation of the SCR denitration device 13 is stopped (OFF) and the operation of the exhaust gas temperature raising device 14 is stopped. The extraction gas valve 51 is closed, and the exhaust gas denitration processing is completed.
 このように第4実施形態の舶用ディーゼルエンジンにあっては、制御装置15は、現在のエンジン回転数が危険回転数域Aを抜けてから予め設定された所定時間T3の経過後に排ガス温度上昇装置14の作動を開始する。従って、エンジン回転数が完全に危険回転数域Aを抜けてから排ガス温度上昇装置14を作動することとなり、エンジン本体11の安全性を確保することができると共に、SCR脱硝装置13による排ガスの脱硝処理を適切に実施することができる。 As described above, in the marine diesel engine of the fourth embodiment, the control device 15 detects the exhaust gas temperature raising device after a predetermined time T3 elapses after the current engine speed passes through the dangerous speed range A. 14 starts. Accordingly, the exhaust gas temperature raising device 14 is operated after the engine rotational speed completely passes through the dangerous rotational speed range A, so that the safety of the engine main body 11 can be ensured and the exhaust gas denitration by the SCR denitration device 13 is achieved. Processing can be performed appropriately.
 10 舶用ディーゼルエンジン
 11 エンジン本体
 12 過給機
 13 SCR脱硝装置
 14 排ガス温度上昇装置
 15 制御装置
 21 シリンダ
 22 掃気トランク
 23 排気マニホールド
 31 コンプレッサ
 32 タービン
 41 SCR反応器
 42 還元剤供給装置
 51 抽ガス弁
 52 抽気弁
 61 エアクーラ
 G1 給気ライン
 G2,G4 排気ライン
 G3 吸入口
 G5 抽ガスライン
 G6 抽気ライン
DESCRIPTION OF SYMBOLS 10 Marine diesel engine 11 Engine main body 12 Supercharger 13 SCR denitration device 14 Exhaust gas temperature raising device 15 Control device 21 Cylinder 22 Scavenging trunk 23 Exhaust manifold 31 Compressor 32 Turbine 41 SCR reactor 42 Reducing agent supply device 51 Extraction gas valve 52 Extraction Valve 61 Air cooler G1 Supply line G2, G4 Exhaust line G3 Inlet G5 Extraction gas line G6 Extraction line

Claims (8)

  1.  エンジン本体と、
     前記エンジン本体から排出される排ガスの排気ラインに設けられる脱硝装置と、
     前記脱硝装置に流入する排ガスを昇温する排ガス温度上昇装置と、
     前記排ガス温度上昇装置の作動を制御すると共にエンジン回転数が予め設定された危険回転数域にあるときに前記排ガス温度上昇装置の作動を停止する制御装置と、
     を備えることを特徴とする舶用ディーゼルエンジン。
    The engine body,
    A denitration device provided in an exhaust line of exhaust gas discharged from the engine body;
    An exhaust gas temperature raising device for raising the temperature of the exhaust gas flowing into the denitration device;
    A control device for controlling the operation of the exhaust gas temperature raising device and stopping the operation of the exhaust gas temperature raising device when the engine speed is in a preset dangerous speed range;
    A marine diesel engine comprising:
  2.  前記制御装置は、前記危険回転数域を超えてエンジン回転数を上昇させる指令値が入力されると、前記指令値の入力時に前記排ガス温度上昇装置の作動を停止することを特徴とする請求項1に記載の舶用ディーゼルエンジン。 The control device, when a command value for increasing the engine speed exceeding the dangerous speed range is input, stops the operation of the exhaust gas temperature increasing device when the command value is input. The marine diesel engine according to 1.
  3.  前記制御装置は、現在のエンジン回転数が前記危険回転数域に到達したときに前記排ガス温度上昇装置の作動を停止することを特徴とする請求項1に記載の舶用ディーゼルエンジン。 The marine diesel engine according to claim 1, wherein the control device stops the operation of the exhaust gas temperature raising device when a current engine speed reaches the dangerous speed range.
  4.  前記危険回転数域の下限値に予め設定された余裕値を加算した前記危険回転数域の下限値より低い前記危険回転数域の余裕下限値が設定され、前記制御装置は、現在のエンジン回転数が前記余裕下限値に到達したときに前記排ガス温度上昇装置の作動を停止することを特徴とする請求項1に記載の舶用ディーゼルエンジン。 A margin lower limit value of the dangerous rotational speed range lower than the lower limit value of the dangerous rotational speed range obtained by adding a preset margin value to the lower limit value of the dangerous rotational speed range is set, and the control device is configured to 2. The marine diesel engine according to claim 1, wherein when the number reaches the margin lower limit value, the operation of the exhaust gas temperature raising device is stopped.
  5.  前記制御装置は、現在のエンジン回転数が前記危険回転数域を抜けたときに前記排ガス温度上昇装置の作動を開始することを特徴とする請求項1から請求項4のいずれか一項に記載の舶用ディーゼルエンジン。 5. The control device according to claim 1, wherein the control device starts the operation of the exhaust gas temperature raising device when a current engine speed passes through the dangerous speed range. 6. Marine diesel engine.
  6.  前記制御装置は、現在のエンジン回転数が前記危険回転数域を抜けてから予め設定された所定時間の経過後に前記排ガス温度上昇装置の作動を開始することを特徴とする請求項1から請求項4のいずれか一項に記載の舶用ディーゼルエンジン。 2. The control device according to claim 1, wherein the control device starts the operation of the exhaust gas temperature raising device after a predetermined time elapses after the current engine speed passes through the dangerous speed range. 4. The marine diesel engine according to any one of 4 above.
  7.  エンジン本体と、
     前記エンジン本体から排出される排ガスの排気ラインに設けられる脱硝装置と、
     前記脱硝装置に流入する排ガスを昇温する排ガス温度上昇装置と、
     を備える舶用ディーゼルエンジンにおいて、
     前記排ガス温度上昇装置の作動を制御すると共にエンジン回転数が予め設定された危険回転数域にあるときに前記排ガス温度上昇装置の作動を停止する、
     ことを特徴とするエンジン制御装置。
    The engine body,
    A denitration device provided in an exhaust line of exhaust gas discharged from the engine body;
    An exhaust gas temperature raising device for raising the temperature of the exhaust gas flowing into the denitration device;
    A marine diesel engine comprising:
    Controlling the operation of the exhaust gas temperature raising device and stopping the operation of the exhaust gas temperature raising device when the engine speed is in a preset dangerous speed range,
    An engine control device characterized by that.
  8.  船舶が少なくとも大気汚染物質放出規制海域にあるときにエンジンからの排ガスの温度を上昇させる処理を実施すると共に排ガスの脱硝処理を実施する工程と、
     エンジン回転数が予め設定された危険回転数域に入ると排ガスの温度を上昇させる処理を停止する工程と、
     を備えることを特徴とするエンジン制御方法。
    A process of increasing the temperature of the exhaust gas from the engine when the ship is at least in an air pollutant emission restricted area and performing a denitration process of the exhaust gas; and
    A step of stopping the process of increasing the temperature of the exhaust gas when the engine speed enters a preset dangerous speed range;
    An engine control method comprising:
PCT/JP2018/005937 2017-02-24 2018-02-20 Marine diesel engine, and engine control device and method WO2018155420A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880009202.9A CN110312856B (en) 2017-02-24 2018-02-20 Marine diesel engine, engine control device, and method
KR1020197021971A KR102194357B1 (en) 2017-02-24 2018-02-20 Marine diesel engine and engine control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033666 2017-02-24
JP2017033666A JP6734796B2 (en) 2017-02-24 2017-02-24 Marine diesel engine and engine control device and method

Publications (1)

Publication Number Publication Date
WO2018155420A1 true WO2018155420A1 (en) 2018-08-30

Family

ID=63253891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005937 WO2018155420A1 (en) 2017-02-24 2018-02-20 Marine diesel engine, and engine control device and method

Country Status (4)

Country Link
JP (1) JP6734796B2 (en)
KR (1) KR102194357B1 (en)
CN (1) CN110312856B (en)
WO (1) WO2018155420A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199192B2 (en) * 2018-10-09 2023-01-05 株式会社ジャパンエンジンコーポレーション Marine SCR system
JP2022134608A (en) * 2021-03-03 2022-09-15 ヤマハ発動機株式会社 Ship steering system and ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021438A (en) * 2010-07-13 2012-02-02 Hitachi Zosen Corp System and method for controlling turbocharger
JP2015113774A (en) * 2013-12-12 2015-06-22 日産自動車株式会社 Control device of engine
JP2017186999A (en) * 2016-04-08 2017-10-12 三井造船株式会社 Marine engine system and marine vessel

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647131B2 (en) * 1988-04-27 1997-08-27 マツダ株式会社 Intake device for turbocharged diesel engine
JPH06255593A (en) * 1993-03-01 1994-09-13 Toyota Motor Corp Control device for aircraft internal combustion engine
DE19749400C2 (en) * 1997-11-07 2001-11-29 Siemens Ag Process for reducing the NOX content in the exhaust gas of a diesel engine
JP2000230415A (en) * 1999-02-08 2000-08-22 Honda Motor Co Ltd Noise prevention control device for bypass exhaust path for internal combustion engine
JP2005330870A (en) * 2004-05-19 2005-12-02 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP4788697B2 (en) * 2007-10-15 2011-10-05 マツダ株式会社 Control device for engine with two-stage turbocharger
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
JP5395709B2 (en) * 2010-03-09 2014-01-22 ヤンマー株式会社 Engine exhaust gas treatment system
JP5995400B2 (en) * 2010-10-14 2016-09-21 三菱重工業株式会社 Marine exhaust gas denitration equipment
JP5781290B2 (en) 2010-11-02 2015-09-16 日立造船株式会社 Exhaust gas purification device
JP5795731B2 (en) * 2011-12-16 2015-10-14 川崎重工業株式会社 Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method
JP5972626B2 (en) * 2012-03-27 2016-08-17 株式会社日立ニコトランスミッション Hybrid propulsion device and system
FR3000991B1 (en) * 2013-01-15 2016-05-13 Renault Sa SYSTEM FOR TREATING EXHAUST GAS FROM AN ENGINE ON A MOTOR VEHICLE AND ITS CONTROL METHOD.
JP6302226B2 (en) * 2013-12-04 2018-03-28 川崎重工業株式会社 Engine system
KR101490959B1 (en) * 2013-12-12 2015-02-12 현대자동차 주식회사 Control mehtod of turbochager

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021438A (en) * 2010-07-13 2012-02-02 Hitachi Zosen Corp System and method for controlling turbocharger
JP2015113774A (en) * 2013-12-12 2015-06-22 日産自動車株式会社 Control device of engine
JP2017186999A (en) * 2016-04-08 2017-10-12 三井造船株式会社 Marine engine system and marine vessel

Also Published As

Publication number Publication date
KR20190094472A (en) 2019-08-13
CN110312856B (en) 2021-12-07
KR102194357B1 (en) 2020-12-23
JP6734796B2 (en) 2020-08-05
JP2018138775A (en) 2018-09-06
CN110312856A (en) 2019-10-08

Similar Documents

Publication Publication Date Title
EP2525057B1 (en) Exhaust-gas denitration system, ship equipped therewith, and method for controlling exhaust-gas denitration system
KR101497844B1 (en) Maritime exhaust gas denitration device
JP6309190B2 (en) Internal combustion engine, ship and method of operating internal combustion engine
JP6016954B2 (en) Exhaust gas denitration system, ship equipped with the same, and control method of exhaust gas denitration system
CN112443374A (en) Engine system for ship
KR101628114B1 (en) Engine control system for controlling exhaust gas flow
JP5709100B2 (en) Denitration device for internal combustion engine and ship
WO2018155420A1 (en) Marine diesel engine, and engine control device and method
JP2005264735A (en) Engine with supercharger
US9587547B2 (en) Engine system for controlling exhaust gas flow
JP2011144765A (en) Marine exhaust gas denitration device
KR20180053391A (en) EGR system
JP5964467B2 (en) Exhaust gas denitration system, ship equipped with the same, and control method of exhaust gas denitration system
US9422883B2 (en) Increased exhaust temperature warm-up for a rapid light-off of a close-coupled diesel oxidation catalyst
KR101897708B1 (en) A two-stroke internal combustion engine with a scr reactor located downstream of the exhaust gas receiver
JP7055705B2 (en) Marine internal combustion engine
JP5908636B1 (en) Ship engine system and control method thereof
KR20170123017A (en) Engine of vehicle
CN108884794B (en) EGR system and method for operating ship
JP7201345B2 (en) marine internal combustion engine
JP2006112273A (en) Internal combustion engine
JP7131983B2 (en) marine internal combustion engine
JP2007138768A (en) Exhaust emission control device of internal combustion engine
JP2007138731A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021971

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758441

Country of ref document: EP

Kind code of ref document: A1