WO2018155384A1 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
WO2018155384A1
WO2018155384A1 PCT/JP2018/005760 JP2018005760W WO2018155384A1 WO 2018155384 A1 WO2018155384 A1 WO 2018155384A1 JP 2018005760 W JP2018005760 W JP 2018005760W WO 2018155384 A1 WO2018155384 A1 WO 2018155384A1
Authority
WO
WIPO (PCT)
Prior art keywords
shunt
sound
shunt sound
intensity
blood flow
Prior art date
Application number
PCT/JP2018/005760
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 中島
祐介 曽我
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019501312A priority Critical patent/JPWO2018155384A1/en
Publication of WO2018155384A1 publication Critical patent/WO2018155384A1/en
Priority to JP2022045690A priority patent/JP7290768B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the present invention relates to a detection device, and more particularly, to a technical field of a detection device that detects a blood flow using a shunt sound.
  • At least one of sound, vibration of the blood circuit and blood pressure is converted into an electric signal, and the electric signal is converted into a frequency-sound pressure system by frequency analysis.
  • An apparatus that extracts only a frequency band in which a frequency component is present and performs pulse measurement has been proposed (see Patent Document 1).
  • shunt formation site A blood vessel in the vicinity of a shunt (hereinafter referred to as “shunt formation site” as appropriate) is often narrowed due to, for example, blood coagulation.
  • doctors and nurses for example, auscultate shunt sounds (that is, noise generated when blood flows from arteries to veins) or measure the blood flow volume at the shunt formation site by echo examination.
  • auscultate shunt sounds that is, noise generated when blood flows from arteries to veins
  • echo examination measures the blood flow volume at the shunt formation site by echo examination.
  • the state of the formation site is grasped and evaluated.
  • auscultating the shunt sound the evaluation of the state of the shunt part varies for each auscultator, and objective evaluation is difficult.
  • echo inspection it is necessary to acquire a certain level of technology.
  • the present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a detection device capable of detecting a blood flow rate from a shunt sound.
  • the detection apparatus includes a first acquisition unit that acquires shunt sound information indicating a shunt sound of a shunt formation portion of a living body to be measured, and the shunt formation based on the intensity of the shunt sound based on the shunt sound information.
  • the detection apparatus includes a first acquisition unit that acquires shunt sound information indicating a shunt sound of a shunt formation part of a living body that is a measurement target, and a shunt formation part based on the intensity of the shunt sound based on the shunt sound information. And a calculating means for calculating the blood flow volume.
  • the detection device it is possible to detect the blood flow volume at the shunt formation site from the shunt sound. In particular, according to the detection device, it is possible to objectively detect the blood flow volume in the shunt forming region without depending on the operator of the detection device.
  • the second acquisition unit that acquires the reference information indicating the relationship between the intensity of the shunt sound and the blood flow volume
  • the calculation unit includes the intensity of the shunt sound and the reference information based on the shunt sound information. Based on the above, the blood flow volume at the shunt forming site is calculated. According to this aspect, the blood flow rate at the shunt forming site can be detected relatively easily.
  • the calculation unit includes an analysis unit that performs predetermined analysis processing on the shunt sound information to obtain data indicating a time change for each frequency of the sound. According to this aspect, the intensity of the shunt sound can be obtained relatively easily.
  • the calculation means may specify the intensity of the shunt sound based on data corresponding to a predetermined frequency band among the data. If comprised in this way, the influence of environmental noise etc. can be suppressed, for example.
  • the calculation means may specify the intensity of the shunt sound based on data corresponding to a predetermined period among the data.
  • This predetermined period may be a period corresponding to the systole. If comprised in this way, the influence of an arrhythmia can be suppressed, for example.
  • the first acquisition unit acquires shunt sound information indicating a shunt sound having a frequency equal to or lower than a predetermined frequency among the shunt sounds of the shunt formation site. According to this aspect, for example, the influence of environmental noise or the like can be suppressed.
  • FIG. 1 is a block diagram illustrating the configuration of the detection apparatus according to the embodiment.
  • the detection apparatus 1 includes a shunt sound input unit 11, an audio signal analysis processing unit 12, an intensity parameter calculation unit 13, a blood flow rate estimation unit 14, and a blood flow rate estimated value display unit 15.
  • the shunt sound input unit 11 receives an analog signal indicating the sound of the measurement target shunt forming portion detected by the electronic stethoscope 20 (that is, the sound including the shunt sound).
  • the shunt sound input unit 11 performs analog-digital conversion on the input analog signal at a predetermined sampling frequency Fs to calculate a shunt sound waveform.
  • the shunt sound input unit 11 may be formed integrally with the electronic stethoscope 20.
  • the audio signal analysis processing unit 12, the intensity parameter calculation unit 13, and the blood flow estimation unit 14 constitute a calculation unit.
  • the audio signal analysis processing unit 12 performs N-point short-time Fourier transform on the value x (n) of the time n of the shunt sound waveform calculated by the shunt sound input unit 11 in units of length N frames ( Refer to the following formula).
  • the audio signal analysis processing unit 12 cuts out the frame having the length N using the window function w (k) having the length N.
  • the audio signal analysis processing unit 12 performs logarithmic transformation on the shunt sound waveform that has been subjected to the short-time Fourier transform, and calculates a time-frequency analysis waveform PLlog [n, k].
  • the time-frequency analysis waveform PLlog [n, k] is expressed by the following equation.
  • the intensity parameter calculation unit 13 extracts data corresponding to a predetermined frequency band and corresponding to a predetermined period from the time-frequency analysis waveform PLlog [n, k] to obtain the intensity of the shunt sound.
  • the predetermined frequency band and the predetermined period will be described with reference to FIG.
  • FIG. 2 is a diagram illustrating an example of the analysis processing result of the shunt sound signal (that is, the time-frequency analysis waveform PLlog [n, k]).
  • the sound detected by the electronic stethoscope 20 includes environmental noise and noise such as harmonics resulting from stenosis in addition to the shunt sound resulting from the shunt formation site.
  • the shunt sound is detected as a sound having a relatively low frequency band such as 100 to 500 hertz. Therefore, in this embodiment, in order to reduce the influence of noise, for example, a frequency band of 100 to 300 Hertz is set as the predetermined frequency band (see “target band” in FIG. 2A).
  • the systole in order to emphasize the shunt sound caused by the shunt formation site synchronized with the heartbeat, and to reduce the influence of the time variation of the diastole due to arrhythmia, the systole is set as the predetermined period. Has been set (see FIG. 2B).
  • one heartbeat section is detected from the time change of the volume based on the time-frequency analysis waveform PLlog [n, k], and the first half of the detected one heartbeat section and / or the volume in one heartbeat section. Is set to 100%, for example, a volume period of 80 to 100%.
  • the intensity parameter calculation unit 13 obtains the intensity of the shunt sound by the following formula.
  • “r1”, “r2”, “t1”, and “t2” are “lower limit frequency of target band”, “upper limit frequency of target band”, “start time of systole”, and “systole period”, respectively. End time ”.
  • the blood flow rate estimation unit 14 estimates the blood flow rate at the shunt formation site based on the intensity of the shunt sound obtained by the intensity parameter calculation unit 13 and the reference information that defines the relationship between the intensity of the shunt sound and the blood flow rate. .
  • reference information will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a diagram showing a concept of detecting shunt sound and blood flow.
  • FIG. 4 is a diagram illustrating an example of the relationship between the intensity of the shunt sound and the blood flow volume.
  • a shunt is often formed in which the vein near the wrist and the brachial artery are anastomosed.
  • the blood flow in the brachial artery is measured as the blood flow in the shunt formation site.
  • the relationship between blood flow measured by echography and stenosis is relatively clear.
  • the blood flow rate of the brachial artery is detected by an echo device while detecting a shunt sound with an electronic stethoscope.
  • Measure. When the intensity of the shunt sound and the blood flow volume at the same time are associated with each other and plotted on a plane with the intensity of the shunt sound and the blood flow volume as axes, a result as shown in FIG. 4 is obtained, for example.
  • the reference information is stored in advance in, for example, the intensity parameter calculation unit 13.
  • the blood flow rate estimated value display unit 15 displays the blood flow rate estimated by the blood flow rate estimation unit 14. As shown in FIG. 4, there is a relatively strong correlation between the intensity of the shunt sound and the blood flow volume. For this reason, it can be said that the blood flow volume estimated by the blood flow volume estimation part 14 is comparatively high.
  • the “shunt sound input unit 11”, “speech signal analysis processing unit 12”, and “intensity parameter calculation unit 13” according to the embodiment are the “first acquisition unit”, “analysis unit”, and “second acquisition unit” according to the present invention. It is an example of “means”.
  • the said detection apparatus 1 is applicable not only to a human but to a dog and a cat, for example.
  • reference information that defines the relationship between the intensity of the shunt sound and the blood flow for the dog or cat, for example, may be stored in the intensity parameter calculation unit 13 in advance.
  • the intensity parameter calculation unit 13 may obtain the intensity of the shunt sound by the following formula.
  • T means “end time of one heartbeat interval”.
  • the intensity parameter calculation unit 13 extracts data corresponding to a predetermined frequency band from the time-frequency analysis waveform PLlog [n, k].
  • the shunt sound input unit 11 is provided with, for example, a band pass filter or a low pass filter. Then, the shunt sound input unit 11 performs analog-digital conversion on the sound corresponding to the predetermined frequency band among the sounds detected by the electronic stethoscope 20, and calculates a shunt sound waveform.
  • the analog-to-digital conversion is performed in the shunt sound input unit 11.
  • the analog-to-digital conversion is performed in the electronic stethoscope 20 or in another device different from the electronic stethoscope 20 and the detection device 1.
  • the generated sound ie, shunt sound waveform

Abstract

This detection device (1) is provided with: a first acquisition means (11) for acquiring shunt murmur information indicating a shunt murmur at a site of interest of a living body where a shunt is formed; and calculation means (12, 13, 14) for calculating the flow rate of blood at the site where the shunt is formed on the basis of the intensity of the shunt murmur based on the shunt murmur information.

Description

検出装置Detection device
 本発明は、検出装置に関し、特に、シャント音を利用して血流量を検出する検出装置の技術分野に関する。 The present invention relates to a detection device, and more particularly, to a technical field of a detection device that detects a blood flow using a shunt sound.
 この種の装置として、例えば、音、血液回路の振動及び血液の圧力のうち少なくとも1種類を電気信号に変換し、該電気信号を周波数解析により周波数-音圧系に変換した後、シャント音が有する周波数成分の存在する周波数帯域のみを抽出して、脈拍測定を行う装置が提案されている(特許文献1参照)。 As this type of device, for example, at least one of sound, vibration of the blood circuit and blood pressure is converted into an electric signal, and the electric signal is converted into a frequency-sound pressure system by frequency analysis. An apparatus that extracts only a frequency band in which a frequency component is present and performs pulse measurement has been proposed (see Patent Document 1).
特許第4257260号公報Japanese Patent No. 4257260
 例えば透析治療の際、手首付近の静脈と動脈とが吻合されたシャントが形成された上で、患者から血液が取り出される場合がある。シャント近傍の血管(以降、適宜“シャント形成部位”と称する)は、例えば血液凝固等により狭窄することが多い。このため、医師や看護師は、例えばシャント音(即ち、動脈から静脈に血液が流れ込む際に生じる雑音)を聴診したり、エコー検査によりシャント形成部位の血流量を測定したりすることにより、シャント形成部位の状態を把握・評価していることが多い。しかしながら、シャント音を聴診する場合、シャント部の状態の評価は聴診者毎にばらつきがあり、客観的な評価が困難である。また、エコー検査の場合、ある程度の技術の習得が必要である。 For example, during dialysis treatment, blood may be extracted from a patient after a shunt formed by anastomosis between a vein near the wrist and an artery is formed. A blood vessel in the vicinity of a shunt (hereinafter referred to as “shunt formation site” as appropriate) is often narrowed due to, for example, blood coagulation. For this reason, doctors and nurses, for example, auscultate shunt sounds (that is, noise generated when blood flows from arteries to veins) or measure the blood flow volume at the shunt formation site by echo examination. In many cases, the state of the formation site is grasped and evaluated. However, when auscultating the shunt sound, the evaluation of the state of the shunt part varies for each auscultator, and objective evaluation is difficult. In the case of echo inspection, it is necessary to acquire a certain level of technology.
 本発明は、例えば上記問題点に鑑みてなされたものであり、シャント音から血流量を検出できる検出装置を提供することを課題とする。 The present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a detection device capable of detecting a blood flow rate from a shunt sound.
 本発明の検出装置は、測定対象である生体のシャント形成部位のシャント音を示すシャント音情報を取得する第1取得手段と、前記シャント音情報に基づくシャント音の強度に基づいて、前記シャント形成部位の血流量を算出する算出手段と、を備える。 The detection apparatus according to the present invention includes a first acquisition unit that acquires shunt sound information indicating a shunt sound of a shunt formation portion of a living body to be measured, and the shunt formation based on the intensity of the shunt sound based on the shunt sound information. Calculating means for calculating the blood flow volume of the part.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
実施例に係る検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the detection apparatus which concerns on an Example. シャント音信号の解析処理結果の一例を示す図である。It is a figure which shows an example of the analysis result of a shunt sound signal. シャント音及び血流量の検出概念を示す図である。It is a figure which shows the detection concept of shunt sound and a blood flow rate. シャント音の強度と血流量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the intensity | strength of shunt sound and a blood flow rate.
 本発明の検出装置に係る実施形態を説明する。 Embodiments according to the detection apparatus of the present invention will be described.
 実施形態の検出装置は、測定対象である生体のシャント形成部位のシャント音を示すシャント音情報を取得する第1取得手段と、該シャント音情報に基づくシャント音の強度に基づいて、シャント形成部位の血流量を算出する算出手段と、を備える。 The detection apparatus according to the embodiment includes a first acquisition unit that acquires shunt sound information indicating a shunt sound of a shunt formation part of a living body that is a measurement target, and a shunt formation part based on the intensity of the shunt sound based on the shunt sound information. And a calculating means for calculating the blood flow volume.
 本願発明者の研究によれば、シャント音の強度とシャント形成部位の血流量との間には、比較的強い相関があることが判明している。従って、当該検出装置によれば、シャント音から、シャント形成部位の血流量を検出することができる。特に、当該検出装置によれば、当該検出装置の操作者によらずに客観的にシャント形成部位の血流量を検出することができる。 According to the inventor's research, it has been found that there is a relatively strong correlation between the intensity of the shunt sound and the blood flow volume at the shunt formation site. Therefore, according to the detection device, it is possible to detect the blood flow volume at the shunt formation site from the shunt sound. In particular, according to the detection device, it is possible to objectively detect the blood flow volume in the shunt forming region without depending on the operator of the detection device.
 実施形態の検出装置の一態様では、シャント音の強度と血流量との関係を示す参照情報を取得する第2取得手段を備え、算出手段は、シャント音情報に基づくシャント音の強度及び参照情報に基づいて、シャント形成部位の血流量を算出する。この態様によれば、比較的容易にして、シャント形成部位の血流量を検出することができる。 In one aspect of the detection apparatus of the embodiment, the second acquisition unit that acquires the reference information indicating the relationship between the intensity of the shunt sound and the blood flow volume is provided, and the calculation unit includes the intensity of the shunt sound and the reference information based on the shunt sound information. Based on the above, the blood flow volume at the shunt forming site is calculated. According to this aspect, the blood flow rate at the shunt forming site can be detected relatively easily.
 実施形態の検出装置の他の態様では、算出手段は、シャント音情報に所定の解析処理を施して、音の周波数毎の時間変化を示すデータを得る解析手段を有する。この態様によれば、比較的容易にしてシャント音の強度を求めることができる。 In another aspect of the detection apparatus according to the embodiment, the calculation unit includes an analysis unit that performs predetermined analysis processing on the shunt sound information to obtain data indicating a time change for each frequency of the sound. According to this aspect, the intensity of the shunt sound can be obtained relatively easily.
 この態様では、算出手段は、上記データのうち所定周波数帯域に該当するデータに基づいてシャント音の強度を特定してよい。このように構成すれば、例えば環境ノイズ等の影響を抑制することができる。 In this aspect, the calculation means may specify the intensity of the shunt sound based on data corresponding to a predetermined frequency band among the data. If comprised in this way, the influence of environmental noise etc. can be suppressed, for example.
 この態様では、算出手段は、上記データのうち所定期間に該当するデータに基づいてシャント音の強度を特定してよい。この所定期間は、収縮期に相当する期間であってよい。このように構成すれば、例えば不整脈の影響を抑制することができる。 In this aspect, the calculation means may specify the intensity of the shunt sound based on data corresponding to a predetermined period among the data. This predetermined period may be a period corresponding to the systole. If comprised in this way, the influence of an arrhythmia can be suppressed, for example.
 実施形態の検出装置の他の態様では、第1取得手段は、シャント形成部位のシャント音のうち所定周波数以下のシャント音を示すシャント音情報を取得する。この態様によれば、例えば環境ノイズ等の影響を抑制することができる。 In another aspect of the detection apparatus of the embodiment, the first acquisition unit acquires shunt sound information indicating a shunt sound having a frequency equal to or lower than a predetermined frequency among the shunt sounds of the shunt formation site. According to this aspect, for example, the influence of environmental noise or the like can be suppressed.
 本発明の検出装置に係る実施例について説明する。先ず、実施例に係る検出装置の構成について、図1を参照して説明する。図1は、実施例に係る検出装置の構成を示すブロック図である。 Embodiments relating to the detection apparatus of the present invention will be described. First, the configuration of the detection apparatus according to the embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating the configuration of the detection apparatus according to the embodiment.
 図1において、検出装置1は、シャント音入力部11、音声信号解析処理部12、強度パラメータ演算部13、血流量推定部14及び血流量推定値表示部15を備えて構成されている。 1, the detection apparatus 1 includes a shunt sound input unit 11, an audio signal analysis processing unit 12, an intensity parameter calculation unit 13, a blood flow rate estimation unit 14, and a blood flow rate estimated value display unit 15.
 次に、検出装置1の各構成要素について説明する。シャント音入力部11には、電子聴診器20により検出された測定対象のシャント形成部位の音(即ち、シャント音を含む音)を示すアナログ信号が入力される。シャント音入力部11は、入力されたアナログ信号に対して、所定のサンプリング周波数Fsでアナログデジタル変換を施し、シャント音波形を算出する。尚、シャント音入力部11は、電子聴診器20と一体として形成されていてよい。 Next, each component of the detection apparatus 1 will be described. The shunt sound input unit 11 receives an analog signal indicating the sound of the measurement target shunt forming portion detected by the electronic stethoscope 20 (that is, the sound including the shunt sound). The shunt sound input unit 11 performs analog-digital conversion on the input analog signal at a predetermined sampling frequency Fs to calculate a shunt sound waveform. Note that the shunt sound input unit 11 may be formed integrally with the electronic stethoscope 20.
 音声信号解析処理部12、強度パラメータ演算部13及び血流量推定部14は、算出部を構成している。音声信号解析処理部12は、シャント音入力部11により算出されたシャント音波形の時刻nの値x(n)に対して、長さNのフレーム単位で、Nポイント短時間フーリエ変換を施す(下記式参照)。ここで、音声信号解析処理部12は、長さNの窓関数w(k)を用いて、上記長さNのフレームを切り出す。 The audio signal analysis processing unit 12, the intensity parameter calculation unit 13, and the blood flow estimation unit 14 constitute a calculation unit. The audio signal analysis processing unit 12 performs N-point short-time Fourier transform on the value x (n) of the time n of the shunt sound waveform calculated by the shunt sound input unit 11 in units of length N frames ( Refer to the following formula). Here, the audio signal analysis processing unit 12 cuts out the frame having the length N using the window function w (k) having the length N.
Figure JPOXMLDOC01-appb-M000001
 “k=0…N-1”は、サンプリング周波数FsのN等分を単位とした、周波数の位置(高さ)を意味する。
Figure JPOXMLDOC01-appb-M000001
“K = 0... N−1” means the frequency position (height) in units of N equal parts of the sampling frequency Fs.
 音声信号解析処理部12は、短時間フーリエ変換が施されたシャント音波形に対し、対数変換を施し、時間周波数解析波形PLog[n,k]を算出する。時間周波数解析波形PLog[n,k]は、下記式により表される。 The audio signal analysis processing unit 12 performs logarithmic transformation on the shunt sound waveform that has been subjected to the short-time Fourier transform, and calculates a time-frequency analysis waveform PLlog [n, k]. The time-frequency analysis waveform PLlog [n, k] is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
 強度パラメータ演算部13は、時間周波数解析波形PLog[n,k]から、所定の周波数帯域に該当し、且つ、所定期間に該当するデータを抽出して、シャント音の強度を求める。ここで、所定の周波数帯域及び所定期間について、図2を参照して説明する。図2は、シャント音信号の解析処理結果(即ち、時間周波数解析波形PLog[n,k])の一例を示す図である。
Figure JPOXMLDOC01-appb-M000002
The intensity parameter calculation unit 13 extracts data corresponding to a predetermined frequency band and corresponding to a predetermined period from the time-frequency analysis waveform PLlog [n, k] to obtain the intensity of the shunt sound. Here, the predetermined frequency band and the predetermined period will be described with reference to FIG. FIG. 2 is a diagram illustrating an example of the analysis processing result of the shunt sound signal (that is, the time-frequency analysis waveform PLlog [n, k]).
 透析を安全に効率よく行うためにはシャント形成部位に十分な血流量が必要である。電子聴診器20により検出された音には、シャント形成部位に起因するシャント音以外に、環境ノイズや、例えば狭窄に起因する高調音等のノイズが含まれる。 In order to perform dialysis safely and efficiently, sufficient blood flow is required at the shunt formation site. The sound detected by the electronic stethoscope 20 includes environmental noise and noise such as harmonics resulting from stenosis in addition to the shunt sound resulting from the shunt formation site.
 ノイズは、例えば400~800ヘルツ等の周波数帯域に現れることが多い(図2(a)の点線円で囲んだ部分参照)。他方で、シャント音は、例えば100~500ヘルツ等の比較的低い周波数帯域の音として検出される。そこで、本実施例では、ノイズの影響を低減するために、例えば100~300ヘルツの周波数帯域が、上記所定の周波数帯域として設定されている(図2(a)の“対象帯域”参照)。 Noise often appears in a frequency band such as 400 to 800 hertz (see the portion surrounded by a dotted circle in FIG. 2A). On the other hand, the shunt sound is detected as a sound having a relatively low frequency band such as 100 to 500 hertz. Therefore, in this embodiment, in order to reduce the influence of noise, for example, a frequency band of 100 to 300 Hertz is set as the predetermined frequency band (see “target band” in FIG. 2A).
 加えて、本実施例では、心拍に同期したシャント形成部位に起因するシャント音を強調するために、また不整脈による拡張期の時間変動の影響を低減するために、収縮期が、上記所定期間として設定されている(図2(b)参照)。ここで、収縮期は、時間周波数解析波形PLog[n,k]に基づく音量の時間変化から1心拍区間を検出し、該検出された1心拍区間の前半、及び/又は、1心拍区間における音量の最大値を100%として、例えば80~100%の音量の期間、として設定される。 In addition, in this embodiment, in order to emphasize the shunt sound caused by the shunt formation site synchronized with the heartbeat, and to reduce the influence of the time variation of the diastole due to arrhythmia, the systole is set as the predetermined period. Has been set (see FIG. 2B). Here, in the systole, one heartbeat section is detected from the time change of the volume based on the time-frequency analysis waveform PLlog [n, k], and the first half of the detected one heartbeat section and / or the volume in one heartbeat section. Is set to 100%, for example, a volume period of 80 to 100%.
 具体的には、強度パラメータ演算部13は、下記式により、シャント音の強度を求める。下記式において、“r1”、“r2”、“t1”及び“t2”は、夫々、「対象帯域の下限周波数」、「対象帯域の上限周波数」、「収縮期の開始時刻」及び「収縮期の終了時刻」を意味する。 Specifically, the intensity parameter calculation unit 13 obtains the intensity of the shunt sound by the following formula. In the following equation, “r1”, “r2”, “t1”, and “t2” are “lower limit frequency of target band”, “upper limit frequency of target band”, “start time of systole”, and “systole period”, respectively. End time ”.
Figure JPOXMLDOC01-appb-M000003
 血流量推定部14は、強度パラメータ演算部13により求められたシャント音の強度と、シャント音の強度及び血流量の関係を規定する参照情報とに基づいて、シャント形成部位の血流量を推定する。ここで、参照情報について、図3及び図4を参照して説明を加える。図3は、シャント音及び血流量の検出概念を示す図である。図4は、シャント音の強度と血流量との関係の一例を示す図である。
Figure JPOXMLDOC01-appb-M000003
The blood flow rate estimation unit 14 estimates the blood flow rate at the shunt formation site based on the intensity of the shunt sound obtained by the intensity parameter calculation unit 13 and the reference information that defines the relationship between the intensity of the shunt sound and the blood flow rate. . Here, reference information will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing a concept of detecting shunt sound and blood flow. FIG. 4 is a diagram illustrating an example of the relationship between the intensity of the shunt sound and the blood flow volume.
 対象がヒトである場合、図3に示すように、手首付近の静脈と上腕動脈とが吻合されたシャントが形成されることが多い。この場合、エコー検査では、シャント形成部位の血流量として、上腕動脈の血流量が測定される。エコー検査により測定された血流量と狭窄との関係は、比較的明らかになっている。 When the subject is a human, as shown in FIG. 3, a shunt is often formed in which the vein near the wrist and the brachial artery are anastomosed. In this case, in the echo examination, the blood flow in the brachial artery is measured as the blood flow in the shunt formation site. The relationship between blood flow measured by echography and stenosis is relatively clear.
 手首付近の静脈と上腕動脈とが吻合されたシャントが形成される場合を一例に挙げると、図3に示すように、電子聴診器によりシャント音を検出しつつ、エコー装置により上腕動脈の血流量を測定する。同時刻のシャント音の強度及び血流量を対応付けて、シャント音の強度と血流量とを軸とする平面上にプロットすると、例えば図4に示すような結果を得られる。この結果に基づく、例えば近似直線“y=ax+b”が、本実施例に係る「参照情報」の一例である。尚、参照情報は、例えば強度パラメータ演算部13に予め格納されている。 As an example of the case where a shunt is formed in which the vein near the wrist and the brachial artery are anastomosed, as shown in FIG. 3, the blood flow rate of the brachial artery is detected by an echo device while detecting a shunt sound with an electronic stethoscope. Measure. When the intensity of the shunt sound and the blood flow volume at the same time are associated with each other and plotted on a plane with the intensity of the shunt sound and the blood flow volume as axes, a result as shown in FIG. 4 is obtained, for example. For example, an approximate straight line “y = ax + b” based on this result is an example of “reference information” according to the present embodiment. The reference information is stored in advance in, for example, the intensity parameter calculation unit 13.
 血流量推定値表示部15は、血流量推定部14により推定された血流量を表示する。図4に示すように、シャント音の強度と血流量との間には比較的強い相関がある。このため、血流量推定部14により推定される血流量は、比較的精度が高いと言える。 The blood flow rate estimated value display unit 15 displays the blood flow rate estimated by the blood flow rate estimation unit 14. As shown in FIG. 4, there is a relatively strong correlation between the intensity of the shunt sound and the blood flow volume. For this reason, it can be said that the blood flow volume estimated by the blood flow volume estimation part 14 is comparatively high.
 実施例に係る「シャント音入力部11」、「音声信号解析処理部12」及び「強度パラメータ演算部13」は、本発明に係る「第1取得手段」、「解析手段」及び「第2取得手段」の一例である。 The “shunt sound input unit 11”, “speech signal analysis processing unit 12”, and “intensity parameter calculation unit 13” according to the embodiment are the “first acquisition unit”, “analysis unit”, and “second acquisition unit” according to the present invention. It is an example of “means”.
 尚、当該検出装置1は、ヒトに限らず、例えば犬や猫にも適用可能である。当該検出装置1を、例えば犬や猫に適用する場合には、例えば犬や猫についてのシャント音の強度と血流量との関係を規定する参照情報を予め強度パラメータ演算部13に格納すればよい。 In addition, the said detection apparatus 1 is applicable not only to a human but to a dog and a cat, for example. When the detection apparatus 1 is applied to, for example, a dog or a cat, reference information that defines the relationship between the intensity of the shunt sound and the blood flow for the dog or cat, for example, may be stored in the intensity parameter calculation unit 13 in advance. .
 <第1変形例>
 上述の実施例では、シャント音の強度を求める際に、時間周波数解析波形PLog[n,k]の所定の周波数帯域(例えば100~300ヘルツ)に該当し、且つ、収縮期に該当するデータを用いている。しかしながら、時間周波数解析波形PLog[n,k]の所定の周波数帯域(例えば100~300ヘルツ)に該当するデータを用いてシャント音の強度が求められてもよい。
<First Modification>
In the above-described embodiment, when the intensity of the shunt sound is obtained, data corresponding to a predetermined frequency band (for example, 100 to 300 hertz) of the time-frequency analysis waveform PLlog [n, k] and corresponding to the systole is obtained. Used. However, the intensity of the shunt sound may be obtained using data corresponding to a predetermined frequency band (for example, 100 to 300 hertz) of the time-frequency analysis waveform PLlog [n, k].
 具体的には、強度パラメータ演算部13は、下記式により、シャント音の強度を求めてよい。下記式において、“T”は、「1心拍区間の終了時刻」を意味する。 Specifically, the intensity parameter calculation unit 13 may obtain the intensity of the shunt sound by the following formula. In the following formula, “T” means “end time of one heartbeat interval”.
Figure JPOXMLDOC01-appb-M000004
 <第2変形例>
 上述の実施例では、強度パラメータ演算部13により、時間周波数解析波形PLog[n,k]から所定の周波数帯域に該当するデータが抽出される。本変形例では、シャント音入力部11に、例えばバンドパスフィルタやローパスフィルタが設けられている。そして、シャント音入力部11は、電子聴診器20により検出された音のうち、所定の周波数帯域に該当する音に対してアナログデジタル変換を施して、シャント音波形を算出する。
Figure JPOXMLDOC01-appb-M000004
<Second Modification>
In the above-described embodiment, the intensity parameter calculation unit 13 extracts data corresponding to a predetermined frequency band from the time-frequency analysis waveform PLlog [n, k]. In this modification, the shunt sound input unit 11 is provided with, for example, a band pass filter or a low pass filter. Then, the shunt sound input unit 11 performs analog-digital conversion on the sound corresponding to the predetermined frequency band among the sounds detected by the electronic stethoscope 20, and calculates a shunt sound waveform.
 <第3変形例>
 上述の実施例では、シャント音入力部11においてアナログデジタル変換が行われるが、例えば電子聴診器20において、或いは、電子聴診器20及び検出装置1とは異なる他の機器において、アナログデジタル変換が施された音(即ち、シャント音波形)が、シャント音入力部11に入力されてよい。
<Third Modification>
In the above-described embodiment, the analog-to-digital conversion is performed in the shunt sound input unit 11. For example, the analog-to-digital conversion is performed in the electronic stethoscope 20 or in another device different from the electronic stethoscope 20 and the detection device 1. The generated sound (ie, shunt sound waveform) may be input to the shunt sound input unit 11.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う検出装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or concept of the invention that can be read from the claims and the entire specification. It is included in the technical scope of the present invention.
 1…検出装置、11…シャント音入力部、12…音声信号解析処理部、13…強度パラメータ演算部、14…血流量推定部、15…血流量推定値表示部、20…電子聴診器 DESCRIPTION OF SYMBOLS 1 ... Detection apparatus, 11 ... Shunt sound input part, 12 ... Audio | voice signal analysis process part, 13 ... Intensity parameter calculation part, 14 ... Blood flow volume estimation part, 15 ... Blood flow volume estimated value display part, 20 ... Electronic stethoscope

Claims (7)

  1.  測定対象である生体のシャント形成部位のシャント音を示すシャント音情報を取得する第1取得手段と、
     前記シャント音情報に基づくシャント音の強度に基づいて、前記シャント形成部位の血流量を算出する算出手段と、
     を備えることを特徴とする検出装置。
    First acquisition means for acquiring shunt sound information indicating a shunt sound of a shunt formation site of a living body to be measured;
    A calculation means for calculating a blood flow volume of the shunt formation site based on the intensity of the shunt sound based on the shunt sound information;
    A detection apparatus comprising:
  2.  シャント音の強度と血流量との関係を示す参照情報を取得する第2取得手段を備え、
     前記算出手段は、前記シャント音情報に基づくシャント音の強度及び前記参照情報に基づいて、前記シャント形成部位の血流量を算出する
     ことを特徴とする請求項1に記載の検出装置。
    A second acquisition means for acquiring reference information indicating a relationship between the intensity of the shunt sound and the blood flow;
    The detection device according to claim 1, wherein the calculation unit calculates a blood flow rate of the shunt formation site based on a shunt sound intensity based on the shunt sound information and the reference information.
  3.  前記算出手段は、前記シャント音情報に所定の解析処理を施して、音の周波数毎の時間変化を示すデータを得る解析手段を有することを特徴とする請求項1又は2に記載の検出装置。 3. The detection apparatus according to claim 1, wherein the calculation means includes analysis means for obtaining data indicating a time change for each sound frequency by performing predetermined analysis processing on the shunt sound information.
  4.  前記算出手段は、前記データのうち所定周波数帯域に該当するデータに基づいてシャント音の強度を特定することを特徴とする請求項3に記載の検出装置。 4. The detection device according to claim 3, wherein the calculation means specifies the intensity of the shunt sound based on data corresponding to a predetermined frequency band among the data.
  5.  前記算出手段は、前記データのうち所定期間に該当するデータに基づいてシャント音の強度を特定することを特徴とする請求項3又は4に記載の検出装置。 The detection device according to claim 3 or 4, wherein the calculation means specifies the intensity of the shunt sound based on data corresponding to a predetermined period of the data.
  6.  前記所定期間は、収縮期に相当する期間であることを特徴とする請求項5に記載の検出装置。 6. The detection apparatus according to claim 5, wherein the predetermined period is a period corresponding to a systole.
  7.  前記第1取得手段は、前記シャント形成部位のシャント音のうち所定周波数以下のシャント音を示すシャント音情報を取得することを特徴とする請求項1又は2に記載の検出装置。 The detection device according to claim 1 or 2, wherein the first acquisition means acquires shunt sound information indicating a shunt sound having a frequency equal to or lower than a predetermined frequency among the shunt sounds of the shunt forming portion.
PCT/JP2018/005760 2017-02-22 2018-02-19 Detection device WO2018155384A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019501312A JPWO2018155384A1 (en) 2017-02-22 2018-02-19 Detection device
JP2022045690A JP7290768B2 (en) 2017-02-22 2022-03-22 detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031090 2017-02-22
JP2017-031090 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018155384A1 true WO2018155384A1 (en) 2018-08-30

Family

ID=63253675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005760 WO2018155384A1 (en) 2017-02-22 2018-02-19 Detection device

Country Status (2)

Country Link
JP (2) JPWO2018155384A1 (en)
WO (1) WO2018155384A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000580A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine
JP2020000579A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine
JP2020000578A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine
JP2020000581A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052490A (en) * 1996-05-02 1998-02-24 Hagiwara Denki Kk Monitoring device for flowing blood on shunt forming site
JP2005040518A (en) * 2003-07-25 2005-02-17 Toin Gakuen Access trouble detection system in dialysis
WO2009125811A1 (en) * 2008-04-09 2009-10-15 旭化成株式会社 Blood pressure estimating device and blood pressure estimating method
JP2010179054A (en) * 2009-02-09 2010-08-19 Ideal Star Inc Probe gauze for dialysis patient and usage of probe gauze for dialysis patient
WO2016139802A1 (en) * 2015-03-05 2016-09-09 パイオニア株式会社 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083378B2 (en) * 1991-10-28 2000-09-04 徹 新里 Monitoring device for blood flow status at shunt formation site
US6746408B2 (en) * 2001-05-29 2004-06-08 Transonic Systems Inc. Method of blood flow measurement in arterio-venous hemodialysis shunts by indicator dilution
JP6027210B2 (en) 2015-10-28 2016-11-16 パイオニア株式会社 Blood pressure estimation apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052490A (en) * 1996-05-02 1998-02-24 Hagiwara Denki Kk Monitoring device for flowing blood on shunt forming site
JP2005040518A (en) * 2003-07-25 2005-02-17 Toin Gakuen Access trouble detection system in dialysis
WO2009125811A1 (en) * 2008-04-09 2009-10-15 旭化成株式会社 Blood pressure estimating device and blood pressure estimating method
JP2010179054A (en) * 2009-02-09 2010-08-19 Ideal Star Inc Probe gauze for dialysis patient and usage of probe gauze for dialysis patient
WO2016139802A1 (en) * 2015-03-05 2016-09-09 パイオニア株式会社 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium

Also Published As

Publication number Publication date
JPWO2018155384A1 (en) 2019-12-19
JP7290768B2 (en) 2023-06-13
JP2022091851A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7290768B2 (en) detector
CN103313662B (en) System, the stethoscope of the risk of instruction coronary artery disease
CA2624718C (en) Method and system for high-resolution extraction of quasi-periodic signals
He et al. Evaluation of the correlation between blood pressure and pulse transit time
CN110141196B (en) Peripheral arterial vessel elasticity evaluation system based on double-triangle blood flow model
JP5521906B2 (en) Blood pressure estimation device
JP6522327B2 (en) Pulse wave analyzer
WO2019048961A1 (en) Diagnosis of pathologies using infrasonic signatures
CA2623270C (en) Signal processing for pulse oximetry
JP6129166B2 (en) Method and apparatus for detecting arterial occlusion / resumption and system for measuring systolic blood pressure
Jang et al. Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter
JP6647831B2 (en) Signal processing device, imaging device, and signal processing method
Cosoli et al. Heart Rate assessment by means of a novel approach applied to signals of different nature
JP6467044B2 (en) Shunt sound analysis device, shunt sound analysis method, computer program, and recording medium
Zhang et al. A novel respiratory rate estimation method for sound-based wearable monitoring systems
Thiyagaraja et al. Smart phone monitoring of second heart sound split
WO2019188768A1 (en) Device and method for analyzing shunt murmur, and computer program and storage medium
Koutsiana et al. Detecting fetal heart sounds by means of fractal dimension analysis in the wavelet domain
Beckmann et al. Reproducibility of photoplethysmography-based local pulse transit time measurement
He et al. A low-pass differentiation filter based on the 2nd-order B-spline wavelet for calculating augmentation index
RU2644299C1 (en) Oscillographic method of measuring arterial pressure
Alqaraawi et al. Towards efficient heart rate variability estimation in artifact-induced Photoplethysmography signals
JP4257260B2 (en) Pulse measurement device using shunt sound
JP2020076923A5 (en)
Kim et al. Development of a photoplethysmographic method using a CMOS image sensor for smartphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501312

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758054

Country of ref document: EP

Kind code of ref document: A1