WO2016139802A1 - Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium - Google Patents

Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium Download PDF

Info

Publication number
WO2016139802A1
WO2016139802A1 PCT/JP2015/056530 JP2015056530W WO2016139802A1 WO 2016139802 A1 WO2016139802 A1 WO 2016139802A1 JP 2015056530 W JP2015056530 W JP 2015056530W WO 2016139802 A1 WO2016139802 A1 WO 2016139802A1
Authority
WO
WIPO (PCT)
Prior art keywords
shunt
sound
shunt sound
volume
information
Prior art date
Application number
PCT/JP2015/056530
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 中島
真一 莪山
祐介 曽我
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2017503294A priority Critical patent/JPWO2016139802A1/en
Priority to PCT/JP2015/056530 priority patent/WO2016139802A1/en
Publication of WO2016139802A1 publication Critical patent/WO2016139802A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements

Definitions

  • the present invention relates to a technical field of a shunt sound analysis device, a shunt sound analysis method, a computer program, and a recording medium that analyze a shunt sound acquired from a measurement subject.
  • a device that analyzes a shunt sound acquired from a measurement subject and supports a doctor's diagnosis regarding shunt stenosis or the like.
  • an arrayed sound collection sensor is fixed to a measurement subject's arm and shunt sounds are acquired from a plurality of locations.
  • the acquired sample data and index samples including a variety of shunt stenosis sounds prepared in advance are provided.
  • a shunt sound analyzer for performing analysis by the STMEM method or the like.
  • the shunt sound analyzer for solving the above problems is based on the shunt sound information about the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired by the acquisition unit.
  • the shunt sound analysis method for solving the above problem is based on the shunt sound information acquired in the acquisition step, the acquisition step of acquiring shunt sound information about the shunt sound from the periphery of the measurement subject's shunt formation site, And an output step of outputting information indicating the degree of continuity of the shunt sound.
  • a computer program for solving the above-described problems is an acquisition step of acquiring shunt sound information related to a shunt sound from the periphery of a shunt formation site of the measurement subject, and the shunt sound information based on the shunt sound information acquired in the acquisition step. And causing the computer to execute an output step of outputting information indicating the degree of intermittentness in sound perception.
  • the recording medium for solving the above problem is recorded with the computer program described above.
  • production It is a graph which shows an example of the volume minimum value of one heartbeat section at the time of normal. It is a graph which shows an example of the sound volume minimum value of one heart beat section at the time of stenosis occurrence. It is a graph which shows an example of the volume attenuation rate of 1 heartbeat section at the time of normal. It is a graph which shows an example of the sound volume attenuation rate of 1 heartbeat area at the time of stenosis occurrence. It is a graph which shows an example of the volume analysis waveform at the time of distortion generation. It is a graph which shows an example of the volume analysis differential waveform at the time of distortion generation.
  • the shunt sound analysis apparatus is based on the shunt sound information acquired by the acquisition unit that acquires shunt sound information related to the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired by the acquisition unit.
  • Output means for outputting information indicating the degree of intermittentness of sound.
  • shunt sound information related to the shunt sound is first acquired from the periphery of the measurement subject's shunt formation region by the acquisition means.
  • the “shunt sound” is a blood flow sound acquired in the vicinity of a shunt formation site for taking blood out of the body, and is a sound synchronized with the pulse of the measurement subject.
  • the acquisition of the shunt sound may be performed using various sensors, and the acquisition method is not particularly limited.
  • the “shunt sound information” is information including various parameters related to the shunt sound, and includes, for example, temporal changes such as volume and frequency.
  • information indicating the degree of intermittentness of the shunt sound is output.
  • “information indicating the degree of intermittent” does not simply mean information indicating the degree to which the shunt sound is interrupted, but includes various parameters that cause an intermittent feeling that is used as an index when stenosis is diagnosed. It means complex information or information in which a plurality of parameters related to a sense of intermittentness are integrated. Note that the information indicating the degree of intermittentness is output, for example, in a digitized state or in a state visualized by a graph or chart.
  • the stenosis diagnosis can be easily performed without using the echo diagnosis or the like conventionally used for the stenosis diagnosis.
  • quantitative information independent of the skill and experience of a doctor who diagnoses stenosis can be obtained based on information indicating the degree of intermittent shunt sound.
  • the shunt sound analyzer As described above, according to the shunt sound analyzer according to the present embodiment, it is possible to favorably support the diagnosis of stenosis at a shunt formation site.
  • the output means includes volume information deriving means for deriving volume information indicating a change in volume of the shunt sound over time based on the shunt sound information.
  • the sound volume information deriving means based on the sound volume information derived by the sound volume information deriving means, it is possible to output information indicating the degree of shunt sound interruption.
  • the discontinuity of the shunt sound largely depends on the change in the volume of the shunt sound over time. Therefore, by using the derived volume information, more appropriate information can be output as information indicating the degree of intermittent shunt sound.
  • the output unit may include an extraction unit that extracts one-cycle volume information corresponding to one cycle of the shunt sound from the volume information.
  • volume information when the volume information is derived, one-period volume information corresponding to one period of the shunt sound (in other words, one period of the pulsation of the measured person) is extracted therefrom.
  • the volume change for example, volume change from the systole to the diastole
  • the output means calculates the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information, and the difference between the maximum value and the minimum value of the shunt sound at normal time.
  • a first digitizing means for digitizing the degree of intermittentness may be provided.
  • the minimum value for example, diastole volume
  • the maximum value for example, systolic volume
  • the volume change amount in one cycle is obtained.
  • the calculated volume change amount is compared with a previously stored volume change amount at the normal time, whereby the degree of intermittentness is quantified.
  • the volume change amount in one cycle tends to increase as the shunt sound intermittent degree increases. Therefore, when the calculated volume change amount is larger than the normal volume change amount, it may be output as a numerical value with a high degree of intermittentness. On the other hand, if the calculated volume change amount is smaller than the normal volume change amount, it may be output as a numerical value with a low degree of intermittentness.
  • the output means compares the minimum value of the shunt sound volume in the one-period sound volume information with the minimum value of the shunt sound in a normal state, and quantifies the degree of intermittentness. You may have a 2nd numerical conversion means.
  • the minimum value of the shunt sound volume (for example, the volume at the end of diastole) in the one-cycle volume information is extracted. Then, the extracted minimum value is compared with the previously stored minimum value at normal time, whereby the degree of intermittentness is digitized.
  • the minimum value of the sound volume in one cycle tends to decrease as the degree of intermittent shunt sound increases. Therefore, when the calculated minimum value is larger than the normal minimum value, it may be output as a numerical value with a low degree of intermittentness. On the other hand, if the calculated minimum value is smaller than the normal minimum value, it may be output as a numerical value with a high degree of intermittentness.
  • the output unit includes a third quantification unit that quantifies the degree of intermittence based on a slope from a maximum value to a minimum value of the shunt sound volume in the one-period sound volume information. You may have.
  • the slope from the maximum value to the minimum value of the shunt sound volume in the one-cycle sound volume information (in other words, the attenuation rate from the maximum value to the minimum value) is calculated. Based on the calculated slope, the degree of intermittentness is digitized.
  • the output means compares the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information with the difference between the maximum value and the minimum value of the shunt sound at normal time. And you may have the 4th digitization means which digitizes the said intermittent degree.
  • the maximum value and the minimum value of the shunt sound volume in the one-cycle volume information are extracted.
  • the maximum value and the minimum value can be extracted using, for example, a smoothed differential waveform.
  • the minimum value is subtracted from the extracted maximum value, and the volume change amount from the maximum value to the minimum value is obtained.
  • the calculated volume change amount is compared with a previously stored volume change amount at the normal time, whereby the degree of intermittentness is quantified.
  • the volume change amount from the maximum value to the minimum value increases (specifically, the change in the volume from the systole to the diastole). It has been found that there is a tendency for distortion to occur. Therefore, when the calculated volume change amount is larger than the normal volume change amount, it may be output as a numerical value with a high degree of intermittentness. On the other hand, if the calculated volume change amount is smaller than the normal volume change amount, it may be output as a numerical value with a low degree of intermittentness.
  • the output means derives distribution information that derives distribution information indicating the volume of the shunt sound over time for each frequency based on the shunt sound information.
  • the distribution information deriving means based on the distribution information derived by the distribution information deriving means, it is possible to output information indicating the degree of intermittent shunt sound.
  • the discontinuity of the shunt sound greatly depends on the distribution of the volume of the shunt sound for each frequency. Therefore, if the derived distribution information is used, more appropriate information can be output as information indicating the degree of intermittent shunt sound.
  • the output unit compares the amount of change of the frequency centroid with the passage of time indicated by the distribution information with the amount of change of the frequency centroid with the passage of time in normal time, You may have the 5th digitization means which digitizes the said intermittent degree.
  • the amount of change in the frequency center of gravity with the passage of time is calculated from the distribution information.
  • the amount of change in the frequency centroid can be calculated, for example, by subtracting the minimum centroid frequency from the maximum centroid frequency.
  • the calculated degree of change in the frequency centroid is compared with the amount of change in the frequency centroid at normal time stored in advance, whereby the degree of intermittence is digitized.
  • the amount of change in the frequency center of gravity tends to increase (specifically, the high-frequency component increases) as the degree of intermittent shunt sound increases. Therefore, when the calculated change amount of the frequency centroid is larger than the normal change amount of the frequency centroid, it may be output as a numerical value with a high degree of intermittentness. On the other hand, when the calculated change amount of the frequency centroid is smaller than the normal change amount of the frequency centroid, it may be output as a numerical value with a low degree of intermittentness.
  • the output means includes at least two types of the first to fifth digitizing means, and the first to fifth digitizing means digitize.
  • Each of the determined degrees of interruption is determined in an integrated manner, and information indicating the degree of interruption is output.
  • the digitized intermittent degree is determined by using different indexes, information indicating the more accurate intermittent degree can be output.
  • a predetermined weighting may be performed after normalizing the degree of intermittence digitized by each numerical means.
  • the information indicating the degree of discontinuity to be output for example, one value that emphasizes the audibility, one value that emphasizes the continuity of the waveform, or the discontinuity tendency and the waveform discontinuity tendency that suit the audibility. Two values are shown.
  • the shunt sound analysis method includes the acquisition step of acquiring shunt sound information related to the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired based on the shunt sound information acquired in the acquisition step. And an output step of outputting information indicating the degree of intermittentness in sound audibility.
  • the shunt sound analysis method According to the shunt sound analysis method according to the present embodiment, information indicating the degree of audibility of the shunt sound is output in the same manner as the shunt sound analysis apparatus according to the present embodiment described above. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the computer program obtains shunt sound information related to a shunt sound from the periphery of the measurement subject's shunt formation, and the shunt sound information based on the shunt sound information obtained in the acquisition step. And causing the computer to execute an output step of outputting information indicating the degree of audible discontinuity.
  • the computer program according to the present embodiment can cause the computer to execute each step of the shunt sound analysis method according to the present embodiment described above. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the recording medium according to the present embodiment records the above-described computer program.
  • the recording medium it is possible to output information indicating the degree of intermittent audibility of the shunt sound by executing the recorded computer program. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • FIG. 1 is a block diagram illustrating the overall configuration of the shunt sound analysis apparatus according to the embodiment.
  • the shunt sound analysis apparatus includes an audio signal input unit 110, an audio signal analysis unit 120, an individual difference input unit 130, a global feature extraction unit 140, and a local feature extraction unit 150. And an integrated determination unit 160 and a display unit 170.
  • the audio signal input unit 110 is configured by, for example, a vibration sensor or the like, and detects a shunt sound from a shunt formation site of the measurement subject.
  • the shunt sound detected by the audio signal input unit 110 is output to the audio signal analysis unit 120 as an audio signal.
  • the audio signal input unit 110 is a specific example of “acquisition unit”.
  • the audio signal analysis unit 120 performs time frequency analysis on the audio signal input from the audio signal input unit 110.
  • the analysis result by the audio signal analysis unit 120 is output to each of the global feature extraction unit 140 and the local feature extraction unit 150.
  • the individual difference input unit 130 calculates a parameter indicating a shunt sound unique to the measurement subject based on a volume waveform acquired from the measurement subject in advance.
  • the parameter unique to the measurement subject calculated by the individual difference input unit 130 is output to each of the global feature extraction unit 140 and the local feature extraction unit 150.
  • the global feature extraction unit 140 includes a global feature (specifically, a change amount of the frequency centroid, a change amount of the volume of the heartbeat interval, and a minimum volume value of the heartbeat interval) among the factors that generate the intermittent feeling of the shunt sound. ) And information indicating the degree of intermittentness is calculated based on each feature. Note that the global feature extraction unit 140 considers information unique to the measurement subject input from the individual difference input unit 130 when extracting the global feature. Information indicating the degree of intermittence calculated by the global feature extraction unit 140 is configured to be output to the integration determination unit 160, respectively.
  • the local feature extraction unit 150 extracts local features (specifically, the volume attenuation rate of one heartbeat interval and the distortion of the volume change) from the factors that generate the intermittent feeling of the shunt sound, and based on each feature. To calculate information indicating the intermittent degree.
  • the local feature extraction unit 150 considers information unique to the measurement subject input from the individual difference input unit 130 when extracting the local features.
  • Information indicating the degree of intermittence calculated by the local feature extraction unit 150 is configured to be output to the integration determination unit 160, respectively.
  • the integrated determination unit 160 comprehensively determines information indicating the degree of intermittent shunt sound input from the global feature extraction unit 140 and the local feature extraction unit 150, and calculates information indicating the possibility of stenosis at the shunt formation site. To do. Information indicating the possibility of stenosis calculated by the integrated determination unit 160 is output to the display unit 170.
  • the integrated determination unit 160 is a specific example of an “output unit”.
  • the display unit 170 is configured, for example, as a liquid crystal display or the like, and displays information indicating the possibility of stenosis (information indicating the degree of intermittent shunt sound) output from the integrated determination unit 160 to a user such as a doctor. It is configured to be able to present. Further, the display unit 170 displays any one of the above-described change amount of the frequency centroid, 1 volume change amount of the heartbeat interval, 1 volume minimum value of the heartbeat interval, 1 volume attenuation rate of the heartbeat interval, and distortion of the volume change. It may be presented visually.
  • FIG. 2 is a spectrogram (part 1) showing an example of the time-frequency waveform
  • FIG. 3 is a graph showing an example of the volume analysis waveform
  • FIG. 4 is a spectrogram (part 2) showing an example of a time-frequency waveform
  • FIG. 5 is a graph showing an example of a frequency centroid analysis waveform.
  • the audio signal analysis unit 120 performs time frequency analysis of the audio signal input from the audio signal input unit 110, and acquires a time frequency waveform.
  • the time frequency waveform indicates the power for each frequency of the shunt sound in time series.
  • the audio signal analysis unit 120 calculates the volume of the shunt sound from the time frequency waveform. Specifically, the audio signal analysis unit 120 calculates the shunt sound volume y (t) using the following formula (1).
  • f (n) is the frequency
  • p (n) is the power at the frequency f (n).
  • the volume analysis waveform calculated by the audio signal analysis unit 120 (that is, a waveform indicating the time change of the volume of the shunt sound) is a periodic waveform according to the pulsation of the measurement subject.
  • the volume analysis waveform is divided for each heartbeat interval, and then output to the global feature extraction unit 140 and the local feature extraction unit 150, and is used to extract the global feature and the local feature, respectively.
  • the audio signal analysis unit 120 further calculates the frequency centroid of the shunt sound from the time frequency waveform. Specifically, the audio signal analysis unit 120 calculates the frequency centroid g (t) of the shunt sound using the following formula (2).
  • the frequency centroid analysis waveform calculated by the audio signal analysis unit 120 corresponds to the pulsation of the measurement subject, similarly to the volume analysis waveform.
  • the frequency centroid analysis waveform is output to the global feature extraction unit 140, and is used to extract global features (specifically, changes in the frequency centroid).
  • FIG. 6 is a flowchart showing the operation of the individual difference input unit 130.
  • FIG. 7 is a histogram showing the distribution of the minimum value of the shunt sound accumulated from the past of the person to be measured
  • FIG. 8 is a histogram showing the distribution of the maximum value of the shunt sound accumulated from the past of the person to be measured. It is.
  • the individual difference input unit 130 calculates a parameter specific to the person to be measured from a previously acquired audio signal. Specifically, in the individual difference input unit 130, when an audio signal is acquired (step S101), a volume analysis waveform is acquired by volume analysis (step S102). The volume analysis waveform is divided in units of one heartbeat interval (step S103), and the maximum value and the minimum value in each interval are detected (step S104). The detected maximum value and minimum value are stored in the memory (step S105), and the most frequent value is determined from the histogram as the volume maximum value and volume minimum value of the measurement subject's unique shunt sound. (Step S106).
  • the minimum volume value of the shunt sound unique to the measured person is determined to be about 137.
  • the maximum volume value of the measurement subject's unique shunt sound is determined to be about 425.
  • the specific volume maximum value and volume minimum value of the measurement subject thus determined are used for individual difference correction of the volume of the shunt sound obtained as the volume analysis waveform.
  • the corrected volume Y (t) is y_ave, the maximum value y_max, the minimum value y_min, and the maximum value Y_max, the minimum value unique to the measurement subject, Y_max If the value is Y_min, it can be calculated using the following mathematical formula (3).
  • Y (t) y_ave + (y (t) ⁇ y_ave) ⁇ (y_max ⁇ y_min) / (Y_max ⁇ Y_min) (3)
  • native maximum value and minimum value for every to-be-measured person may be determined also about a frequency gravity center.
  • the individual difference correction of the frequency centroid can also be performed by the same method as the above-described individual difference correction of the volume.
  • FIG. 9 is a spectrogram showing an example of a time-frequency waveform of one heartbeat section at normal time
  • FIG. 10 is a graph showing an example of a frequency barycentric analysis waveform of one heartbeat section at normal time
  • FIG. 11 is a spectrogram showing an example of a time-frequency waveform of one heartbeat section when stenosis occurs
  • FIG. 12 is a graph showing an example of a frequency centroid analysis waveform of one heartbeat section when stenosis occurs.
  • the normal shunt sound is detected as a sound containing many low frequencies.
  • the minimum value of the frequency center of gravity of the shunt sound in a normal state is about 610 Hz, and the maximum value is about 700 Hz. Therefore, the amount of change in the frequency centroid of the shunt sound in a normal state (that is, the maximum value ⁇ minimum value) is about 90 Hz.
  • the shunt sound at the time of occurrence of stenosis (that is, a strong sense of intermittentness) is detected as a sound containing a lot of high frequency components as compared with the normal time.
  • the minimum value of the frequency centroid of the shunt sound when stenosis occurs is about 590 Hz, and the maximum value is about 740 Hz. Therefore, the amount of change in the frequency centroid of the shunt sound when stenosis occurs (that is, the maximum value ⁇ minimum value) is about 150 Hz.
  • FIG. 13 is a graph showing an example of the volume change amount in one heartbeat section at the normal time.
  • FIG. 14 is a graph showing an example of the volume change amount in one heartbeat interval when stenosis occurs.
  • the normal shunt sound in the normal shunt sound, the difference between the maximum value and the minimum value of the volume in one heartbeat interval is small. That is, the normal shunt sound has a relatively small volume change amount from the systole to the diastole.
  • the possibility of occurrence of stenosis depends on how much the volume change amount in one heart beat interval obtained from the sound volume analysis waveform is larger than the volume change amount in one heart beat interval at normal time. Can be suitably calculated.
  • FIG. 15 is a graph showing an example of the minimum volume value in one heartbeat section at normal time.
  • FIG. It is a graph which shows an example of the sound volume minimum value of one heart beat section at the time of stenosis occurrence.
  • the minimum value of the volume in one heartbeat section is relatively large. Specifically, the normal shunt sound is maintained at a relatively high volume even in the expansion period when the volume is low.
  • the minimum value of the volume in one heart beat section is larger than that in the normal state. Specifically, the shunt sound at the time of occurrence of stenosis increases to a value close to normal in the systolic volume, but the volume in the diastole is greatly attenuated.
  • the possibility of occurrence of stenosis depends on how small the minimum volume value in one heart beat interval obtained from the sound volume analysis waveform is compared with the minimum sound volume value in one heart beat interval at normal time. Can be suitably calculated.
  • FIG. 17 is a graph showing an example of the volume attenuation rate of one heartbeat section at normal time.
  • FIG. 18 is a graph showing an example of the volume attenuation rate of one heartbeat interval when stenosis occurs.
  • the normal shunt sound has a linear attenuation of sound volume in one heartbeat interval. Specifically, in a normal shunt sound, the gradient (attenuation rate) from the maximum value to the minimum value of the volume is constant.
  • the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be suitably calculated by using the volume attenuation rate in one heartbeat interval obtained from the volume analysis waveform.
  • the attenuation rate dr can be calculated using the following formula (4).
  • N is the number of data in one heartbeat interval
  • max and min are the maximum value and the minimum value of the volume in one heartbeat interval, respectively.
  • the attenuation rate dr is calculated as a smaller value with a larger deviation from 0.5, which is a linear attenuation rate indicated by a broken line in FIG. Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be suitably calculated depending on how much the calculated attenuation rate dr is smaller than 0.5.
  • FIG. 19 is a graph showing an example of a volume analysis waveform when distortion occurs.
  • FIG. 20 is a graph showing an example of a volume analysis differential waveform when distortion occurs.
  • the shunt sound when stenosis occurs may cause distortion in the change in volume from the end of systole to the beginning of diastole. Specifically, like the part surrounded by the broken line in the figure, the volume may increase temporarily after suddenly decreasing. Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be calculated based on the presence of the maximum value in the volume analysis waveform.
  • the maximum value in the volume analysis waveform can be easily detected by using a smoothed differential waveform of the volume analysis waveform. Specifically, it is possible to detect preferably by calculating the difference between the maximum value and the minimum value of the differential waveform of the volume analysis waveform.
  • the feature value extracted as the change amount of the frequency centroid which is a global feature
  • the feature value extracted as the volume change amount of one heartbeat interval is ⁇ 2
  • feature amount [rho 3 local features in a heart beat 4
  • Each of the direct quantities ⁇ 1 to ⁇ 5 is normalized (for example, adjusted so that the highest intermittent degree is 0 and the weakest case (ie, normal) is 100). Shall.
  • the integrated determination unit 160 calculates the intermittent degree by weighting the feature amounts ⁇ 1 to ⁇ 5 . Specifically, the discontinuity is calculated by using the following formula (5), with the weights corresponding to the feature quantities ⁇ 1 to ⁇ 5 being ⁇ 1 to ⁇ 5 .
  • the relationships of ⁇ 4, ⁇ 5> ⁇ 2> ⁇ 1, and ⁇ 3 may be satisfied with respect to the weights ⁇ 1 to ⁇ 5 .
  • the discontinuity obtained in this way is suitable for comparison with, for example, echo diagnosis.
  • Intermittent audibility ⁇ 1 ⁇ ⁇ 1 + ⁇ 2 ⁇ ⁇ 2 + ⁇ 3 ⁇ ⁇ 3 (6)
  • Intermittent by waveform ⁇ 4 ⁇ ⁇ 4 + ⁇ 5 ⁇ ⁇ 5 (7)
  • the degree of discontinuity obtained in this way is suitable, for example, when determining the progress of discontinuity (that is, stenosis) from changes over time in both audibility and waveform.
  • the feature amounts ⁇ 1 to ⁇ 5 may be output independently without performing the integrated determination by the integrated determination unit 160.
  • numerical values corresponding to the feature amounts ⁇ 1 to ⁇ 5 are separately displayed on the display unit 170 or displayed as a radar chart.
  • a doctor who is a user can perform stenosis diagnosis from a plurality of viewpoints using each of the feature amounts ⁇ 1 to ⁇ 5 .
  • a doctor or the like can make an integrated judgment and make a stenosis diagnosis.
  • the shunt sound analysis apparatus As described above, according to the shunt sound analysis apparatus according to the present embodiment, information indicating the degree of intermittentness is output as the analysis result of the shunt sound. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and shunt sound analysis accompanying such changes is possible.
  • a device, a shunt sound analysis method, a computer program, and a recording medium are also included in the technical scope of the present invention.

Abstract

A shunt murmur analysis device is provided with an acquiring means (110) for acquiring shunt murmur information relating to a shunt murmur from the area of a site where a shunt is formed in a measurement subject, and an output means (160) for outputting information indicating the degree of continuity of shunt murmur audibility on the basis of the shunt murmur information acquired by an acquiring unit. The outputted information indicating the degree of continuity quantitatively indicates the likelihood of stenosis at the shunt formation site. Consequently, the shunt murmur analysis device makes it possible to appropriately assist in diagnosing stenosis.

Description

シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体Shunt sound analysis device, shunt sound analysis method, computer program, and recording medium
 本発明は、被測定者から取得したシャント音を解析するシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体の技術分野に関する。 The present invention relates to a technical field of a shunt sound analysis device, a shunt sound analysis method, a computer program, and a recording medium that analyze a shunt sound acquired from a measurement subject.
 この種の装置として、被測定者から取得したシャント音を解析して、シャント狭窄等に関する医師の診断を支援する装置が知られている。例えば特許文献1では、アレイ状採音センサを被測定者の腕に固定して複数箇所からシャント音を取得し、取得したサンプルデータと、予め用意した多種多様なシャント狭窄音を含む指標サンプルとについて、STMEM法等による解析を行うシャント音解析装置が開示されている。 As this type of device, there is known a device that analyzes a shunt sound acquired from a measurement subject and supports a doctor's diagnosis regarding shunt stenosis or the like. For example, in Patent Document 1, an arrayed sound collection sensor is fixed to a measurement subject's arm and shunt sounds are acquired from a plurality of locations. The acquired sample data and index samples including a variety of shunt stenosis sounds prepared in advance are provided. Is disclosed a shunt sound analyzer for performing analysis by the STMEM method or the like.
特開2014-8263号公報JP 2014-8263 A
 しかしながら、上述した特許文献1に記載されているようなシャント音解析装置では、解析を行うに際し、予め膨大な量の指標サンプルを用意することが要求されてしまうだけでなく、被測定者固有の情報等が考慮されないために、正確な解析結果が得られないおそれがあるという技術的問題点が生ずる。また、解析処理も複雑であり、処理負荷が極めて大きくなってしまうという技術的問題点も生ずる。 However, in the shunt sound analyzer as described in Patent Document 1 described above, it is not only required to prepare an enormous amount of index samples in advance when performing the analysis, but is also specific to the person being measured. Since no information is taken into account, there is a technical problem that an accurate analysis result may not be obtained. Further, the analysis processing is complicated, and a technical problem that the processing load becomes extremely large also arises.
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、被測定者から取得したシャント音を解析して、シャント狭窄診断を好適に支援することが可能なシャント音解析装置を提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a shunt sound analysis device that can analyze a shunt sound acquired from a measurement subject and favorably support a diagnosis of shunt stenosis.
 上記課題を解決するためのシャント音解析装置は、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得手段と、前記取得部が取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力手段とを備える。 The shunt sound analyzer for solving the above problems is based on the shunt sound information about the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired by the acquisition unit. Output means for outputting information indicating the degree of intermittentness of the shunt sound.
 上記課題を解決するためのシャント音解析方法は、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程とを備える。 The shunt sound analysis method for solving the above problem is based on the shunt sound information acquired in the acquisition step, the acquisition step of acquiring shunt sound information about the shunt sound from the periphery of the measurement subject's shunt formation site, And an output step of outputting information indicating the degree of continuity of the shunt sound.
 上記課題を解決するためのコンピュータプログラムは、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程とをコンピュータに実行させる。 A computer program for solving the above-described problems is an acquisition step of acquiring shunt sound information related to a shunt sound from the periphery of a shunt formation site of the measurement subject, and the shunt sound information based on the shunt sound information acquired in the acquisition step. And causing the computer to execute an output step of outputting information indicating the degree of intermittentness in sound perception.
 上記課題を解決するための記録媒体は、上述したコンピュータプログラムが記録されている。 The recording medium for solving the above problem is recorded with the computer program described above.
実施例に係るシャント音解析装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the shunt sound analyzer which concerns on an Example. 時間周波数波形の一例を示すスペクトログラム(その1)である。It is a spectrogram (the 1) which shows an example of a time frequency waveform. 音量解析波形の一例を示すグラフである。It is a graph which shows an example of a sound volume analysis waveform. 時間周波数波形の一例を示すスペクトログラム(その2)である。It is a spectrogram (the 2) which shows an example of a time frequency waveform. 周波数重心解析波形の一例を示すグラフである。It is a graph which shows an example of a frequency gravity center analysis waveform. 個人差入力部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an individual difference input part. 被測定者の過去から蓄積されたシャント音の最小値の分布を示すヒストグラムである。It is a histogram which shows distribution of the minimum value of the shunt sound accumulate | stored from the past of a to-be-measured person. 被測定者の過去から蓄積されたシャント音の最大値の分布を示すヒストグラムである。It is a histogram which shows distribution of the maximum value of the shunt sound accumulate | stored from the past of a to-be-measured person. 正常時における1心拍区間の時間周波数波形の一例を示すスペクトログラムである。It is a spectrogram which shows an example of the time frequency waveform of one heartbeat area at the time of normal. 正常時における1心拍区間の周波数重心解析波形の一例を示すグラフである。It is a graph which shows an example of the frequency center-of-gravity analysis waveform of one heartbeat section at the normal time. 狭窄発生時における1心拍区間の時間周波数波形の一例を示すスペクトログラムである。It is a spectrogram which shows an example of the time-frequency waveform of 1 heartbeat area at the time of stenosis generation | occurrence | production. 狭窄発生時における1心拍区間の周波数重心解析波形の一例を示すグラフである。It is a graph which shows an example of the frequency center-of-gravity analysis waveform of one heartbeat section at the time of stenosis occurrence. 正常時における1心拍区間の音量変化量の一例を示すグラフである。It is a graph which shows an example of the volume variation | change_quantity of 1 heartbeat area at the time of normal. 狭窄発生時における1心拍区間の音量変化量の一例を示すグラフである。It is a graph which shows an example of the volume variation | change_quantity in 1 heartbeat area at the time of stenosis generation | occurrence | production. 正常時における1心拍区間の音量最小値の一例を示すグラフである。It is a graph which shows an example of the volume minimum value of one heartbeat section at the time of normal. 狭窄発生時における1心拍区間の音量最小値の一例を示すグラフである。It is a graph which shows an example of the sound volume minimum value of one heart beat section at the time of stenosis occurrence. 正常時における1心拍区間の音量減衰率の一例を示すグラフである。It is a graph which shows an example of the volume attenuation rate of 1 heartbeat section at the time of normal. 狭窄発生時における1心拍区間の音量減衰率の一例を示すグラフである。It is a graph which shows an example of the sound volume attenuation rate of 1 heartbeat area at the time of stenosis occurrence. 歪み発生時の音量解析波形の一例を示すグラフである。It is a graph which shows an example of the volume analysis waveform at the time of distortion generation. 歪み発生時の音量解析微分波形の一例を示すグラフである。It is a graph which shows an example of the volume analysis differential waveform at the time of distortion generation.
 <1>
 本実施形態に係るシャント音解析装置は、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得手段と、前記取得部が取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力手段とを備える。
<1>
The shunt sound analysis apparatus according to the present embodiment is based on the shunt sound information acquired by the acquisition unit that acquires shunt sound information related to the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired by the acquisition unit. Output means for outputting information indicating the degree of intermittentness of sound.
 本実施形態に係るシャント音解析装置の動作時には、先ず取得手段により、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報が取得される。なお、ここでの「シャント音」とは、血液を体外に取り出すためのシャント形成部位周辺において取得される血流音であり、被測定者の脈拍に同期した音である。シャント音の取得は各種センサを用いて行えばよく、その取得方法が特に限定されるものではない。また「シャント音情報」とは、シャント音に関する各種パラメータを含む情報であって、例えば音量や周波数等の時間変化などを含んでいる。 In the operation of the shunt sound analysis apparatus according to the present embodiment, shunt sound information related to the shunt sound is first acquired from the periphery of the measurement subject's shunt formation region by the acquisition means. Here, the “shunt sound” is a blood flow sound acquired in the vicinity of a shunt formation site for taking blood out of the body, and is a sound synchronized with the pulse of the measurement subject. The acquisition of the shunt sound may be performed using various sensors, and the acquisition method is not particularly limited. The “shunt sound information” is information including various parameters related to the shunt sound, and includes, for example, temporal changes such as volume and frequency.
 シャント音情報が取得されると、出力手段において各種解析が実行され、シャント音の聴感上の断続度合いを示す情報が出力される。ここでの「断続度合いを示す情報」とは、単にシャント音が途切れる程度を示す情報を意味するのではなく、狭窄を診断する際の指標とされる断続感が生じる原因となる各種パラメータを含む複合的な情報、或いは断続感に関連する複数のパラメータが統合された情報を意味している。なお、断続度合いを示す情報は、例えば数値化した状態、或いはグラフやチャートによって可視化された状態で出力される。 When the shunt sound information is acquired, various types of analysis are executed in the output means, and information indicating the degree of intermittentness of the shunt sound is output. Here, “information indicating the degree of intermittent” does not simply mean information indicating the degree to which the shunt sound is interrupted, but includes various parameters that cause an intermittent feeling that is used as an index when stenosis is diagnosed. It means complex information or information in which a plurality of parameters related to a sense of intermittentness are integrated. Note that the information indicating the degree of intermittentness is output, for example, in a digitized state or in a state visualized by a graph or chart.
 本願発明者の研究するところによれば、シャント形成部位に狭窄が生じていない場合には、シャント音は大きく連続した低い音となる傾向があるのに対し、狭窄が進行すると、シャント音が小さくなり、音の途切れや狭窄部位の乱流による高い音の成分が単独で又は複合的に表れてくることが判明している。よって、シャント音の断続度合いを示す情報を利用すれば、シャント形成部位に狭窄が生じているか否か、或いは狭窄の程度を容易且つ的確に診断することが可能となる。具体的には、従来から狭窄診断に利用されているエコー診断等を利用せずとも、容易に狭窄診断を行うことができる。また、シャント音の断続度合いを示す情報により、狭窄を診断する医師の技量や経験に左右されない定量的な診断が可能となる。 According to the study by the present inventor, when the stenosis does not occur in the shunt formation site, the shunt sound tends to be a large and continuous low sound, whereas when the stenosis progresses, the shunt sound becomes small. Therefore, it has been found that a high sound component due to sound interruption or turbulent flow in a constricted region appears alone or in combination. Therefore, if information indicating the degree of intermittent shunt sound is used, it is possible to easily and accurately diagnose whether or not a stenosis has occurred in a shunt formation site. Specifically, the stenosis diagnosis can be easily performed without using the echo diagnosis or the like conventionally used for the stenosis diagnosis. Moreover, quantitative information independent of the skill and experience of a doctor who diagnoses stenosis can be obtained based on information indicating the degree of intermittent shunt sound.
 以上説明したように、本実施形態に係るシャント音解析装置によれば、シャント形成部位の狭窄診断を好適に支援することが可能である。 As described above, according to the shunt sound analyzer according to the present embodiment, it is possible to favorably support the diagnosis of stenosis at a shunt formation site.
 <2>
 本実施形態に係るシャント音解析装置の一態様では、前記出力手段は、前記シャント音情報に基づいて、時間経過に対する前記シャント音の音量の変化を示す音量情報を導出する音量情報導出手段を有する。
<2>
In one aspect of the shunt sound analysis apparatus according to the present embodiment, the output means includes volume information deriving means for deriving volume information indicating a change in volume of the shunt sound over time based on the shunt sound information. .
 この態様によれば、音量情報導出手段によって導出された音量情報に基づいて、シャント音の断続度合いを示す情報を出力することが可能となる。ここで特に、本願発明者の研究するところによれば、シャント音の断続感は、時間経過に対するシャント音の音量の変化に大きく依存していることが判明している。よって、導出された音量情報を利用すれば、シャント音の断続度合いを示す情報として、より適切な情報を出力することが可能となる。 According to this aspect, based on the sound volume information derived by the sound volume information deriving means, it is possible to output information indicating the degree of shunt sound interruption. Here, in particular, according to the study by the present inventor, it has been found that the discontinuity of the shunt sound largely depends on the change in the volume of the shunt sound over time. Therefore, by using the derived volume information, more appropriate information can be output as information indicating the degree of intermittent shunt sound.
 <3>
 上述した音量情報導出手段を備える態様では、前記出力手段は、前記音量情報から前記シャント音の一周期に相当する一周期音量情報を抽出する抽出手段を有してもよい。
<3>
In the aspect including the volume information deriving unit described above, the output unit may include an extraction unit that extracts one-cycle volume information corresponding to one cycle of the shunt sound from the volume information.
 この場合、音量情報が導出されると、そこからシャント音の一周期(言い換えれば、被測定者の脈動の一周期)に相当する一周期音量情報が抽出される。このため、シャント音の一周期における音量変化(例えば、収縮期から拡張期にかけての音量変化)を好適に解析できる。従って、シャント音の断続度合いを示す情報として、より適切な情報を出力することが可能となる。 In this case, when the volume information is derived, one-period volume information corresponding to one period of the shunt sound (in other words, one period of the pulsation of the measured person) is extracted therefrom. For this reason, the volume change (for example, volume change from the systole to the diastole) in one cycle of the shunt sound can be suitably analyzed. Therefore, it is possible to output more appropriate information as information indicating the degree of intermittent shunt sound.
 <4>
 上述した抽出手段を備える態様では、前記出力手段は、前記一周期音量情報における前記シャント音の音量の最大値及び最小値の差分と、正常時におけるシャント音の最大値及び最小値の差分とを対比して、前記断続度合いを数値化する第1数値化手段を有してもよい。
<4>
In the aspect provided with the extraction means described above, the output means calculates the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information, and the difference between the maximum value and the minimum value of the shunt sound at normal time. In contrast, a first digitizing means for digitizing the degree of intermittentness may be provided.
 この場合、先ず一周期音量情報におけるシャント音の音量の最大値(例えば、収縮期の音量)から最小値(例えば、拡張期の音量)が減算され、一周期における音量変化量がされる。そして、算出された音量変化量が、予め記憶された正常時における音量変化量と対比されることで、断続度合いが数値化される。 In this case, first, the minimum value (for example, diastole volume) is subtracted from the maximum value (for example, systolic volume) of the shunt sound volume in the one-cycle volume information, and the volume change amount in one cycle is obtained. Then, the calculated volume change amount is compared with a previously stored volume change amount at the normal time, whereby the degree of intermittentness is quantified.
 本願発明者の研究するところによれば、シャント音の断続度合いが高まると、一周期における音量変化量が大きくなる傾向があることが判明している。よって、算出された音量変化量が、正常時の音量変化量より大きい場合には、断続度合いが高い数値として出力されればよい。一方で、算出された音量変化量が、正常時の音量変化量より小さい場合には、断続度合いが低い数値として出力されればよい。 According to a study by the inventors of the present application, it has been found that the volume change amount in one cycle tends to increase as the shunt sound intermittent degree increases. Therefore, when the calculated volume change amount is larger than the normal volume change amount, it may be output as a numerical value with a high degree of intermittentness. On the other hand, if the calculated volume change amount is smaller than the normal volume change amount, it may be output as a numerical value with a low degree of intermittentness.
 <5>
 或いは抽出手段を備える態様では、前記出力手段は、前記一周期音量情報における前記シャント音の音量の最小値と、正常時におけるシャント音の最小値とを対比して、前記断続度合いを数値化する第2数値化手段を有してもよい。
<5>
Alternatively, in an aspect including the extraction means, the output means compares the minimum value of the shunt sound volume in the one-period sound volume information with the minimum value of the shunt sound in a normal state, and quantifies the degree of intermittentness. You may have a 2nd numerical conversion means.
 この場合、先ず一周期音量情報におけるシャント音の音量の最小値(例えば、拡張末期の音量)が抽出される。そして、抽出された最小値が、予め記憶された正常時における最小値と対比されることで、断続度合いが数値化される。 In this case, first, the minimum value of the shunt sound volume (for example, the volume at the end of diastole) in the one-cycle volume information is extracted. Then, the extracted minimum value is compared with the previously stored minimum value at normal time, whereby the degree of intermittentness is digitized.
 本願発明者の研究するところによれば、シャント音の断続度合いが高まると、一周期における音量の最小値が小さくなる傾向があることが判明している。よって、算出された最小値が、正常時の最小値より大きい場合には、断続度合いが低い数値として出力されればよい。一方で、算出された最小値が、正常時の最小値より小さい場合には、断続度合いが高い数値として出力されればよい。 According to the research conducted by the inventors of the present application, it has been found that the minimum value of the sound volume in one cycle tends to decrease as the degree of intermittent shunt sound increases. Therefore, when the calculated minimum value is larger than the normal minimum value, it may be output as a numerical value with a low degree of intermittentness. On the other hand, if the calculated minimum value is smaller than the normal minimum value, it may be output as a numerical value with a high degree of intermittentness.
 <6>
 或いは抽出手段を備える態様では、前記出力手段は、前記一周期音量情報における前記シャント音の音量の最大値から最小値に至る傾きに基づいて、前記断続度合いを数値化する第3数値化手段を有してもよい。
<6>
Alternatively, in an aspect including an extraction unit, the output unit includes a third quantification unit that quantifies the degree of intermittence based on a slope from a maximum value to a minimum value of the shunt sound volume in the one-period sound volume information. You may have.
 この場合、先ず一周期音量情報におけるシャント音の音量の最大値から最小値に至る傾き(言い換えれば、音量が最大値となってから最小値に至るまでの減衰率)が算出される。そして、算出された傾きに基づいて、断続度合いが数値化される。 In this case, first, the slope from the maximum value to the minimum value of the shunt sound volume in the one-cycle sound volume information (in other words, the attenuation rate from the maximum value to the minimum value) is calculated. Based on the calculated slope, the degree of intermittentness is digitized.
 本願発明者の研究するところによれば、シャント音の断続度合いが高まると、収縮期から拡張期にかけての音量の減衰が急激になる傾向があることが判明している。よって、算出された傾きの変動が大きいほど、断続度合いが高い数値として出力されればよい。 According to the research conducted by the present inventors, it has been found that the attenuation of the volume from the systole to the diastole tends to become sharper when the intermittent degree of the shunt sound increases. Therefore, it is only necessary to output a numerical value with a higher degree of interruption as the calculated variation in inclination is larger.
 <7>
 或いは抽出手段を備える態様では、前記出力手段は、前記一周期音量情報における前記シャント音の音量の極大値及び極小値の差分と、正常時におけるシャント音の極大値及び極小値の差分とを対比して、前記断続度合いを数値化する第4数値化手段を有してもよい。
<7>
Alternatively, in an aspect including the extraction means, the output means compares the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information with the difference between the maximum value and the minimum value of the shunt sound at normal time. And you may have the 4th digitization means which digitizes the said intermittent degree.
 この場合、先ず一周期音量情報におけるシャント音の音量の極大値及び極小値が抽出される。極大値及び極小値は、例えば微分波形を平滑化したもの利用して抽出することができる。続いて、抽出された極大値から極小値が減算され、極大値から極小値までの音量変化量がされる。そして、算出された音量変化量が、予め記憶された正常時における音量変化量と対比されることで、断続度合いが数値化される。 In this case, first, the maximum value and the minimum value of the shunt sound volume in the one-cycle volume information are extracted. The maximum value and the minimum value can be extracted using, for example, a smoothed differential waveform. Subsequently, the minimum value is subtracted from the extracted maximum value, and the volume change amount from the maximum value to the minimum value is obtained. Then, the calculated volume change amount is compared with a previously stored volume change amount at the normal time, whereby the degree of intermittentness is quantified.
 本願発明者の研究するところによれば、シャント音の断続度合いが高まると、極大値から極小値までの音量変化量が大きくなる(具体的には、収縮期から拡張期にかけての音量の変化に歪みが生じる)傾向があることが判明している。よって、算出された音量変化量が、正常時の音量変化量より大きい場合には、断続度合いが高い数値として出力されればよい。一方で、算出された音量変化量が、正常時の音量変化量より小さい場合には、断続度合いが低い数値として出力されればよい。 According to the research conducted by the present inventor, when the intermittent level of the shunt sound increases, the volume change amount from the maximum value to the minimum value increases (specifically, the change in the volume from the systole to the diastole). It has been found that there is a tendency for distortion to occur. Therefore, when the calculated volume change amount is larger than the normal volume change amount, it may be output as a numerical value with a high degree of intermittentness. On the other hand, if the calculated volume change amount is smaller than the normal volume change amount, it may be output as a numerical value with a low degree of intermittentness.
 <8>
 本実施形態に係るシャント音解析装置の他の態様では、前記出力手段は、前記シャント音情報に基づいて、周波数ごとの時間経過に伴う前記シャント音の音量を示す分布情報を導出する分布情報導出手段を有する。
<8>
In another aspect of the shunt sound analysis apparatus according to the present embodiment, the output means derives distribution information that derives distribution information indicating the volume of the shunt sound over time for each frequency based on the shunt sound information. Have means.
 この態様によれば、分布情報導出手段によって導出された分布情報に基づいて、シャント音の断続度合いを示す情報を出力することが可能となる。ここで特に、本願発明者の研究するところによれば、シャント音の断続感は、周波数ごとのシャント音の音量の分布に大きく依存していることが判明している。よって、導出された分布情報を利用すれば、シャント音の断続度合いを示す情報として、より適切な情報を出力することが可能となる。 According to this aspect, based on the distribution information derived by the distribution information deriving means, it is possible to output information indicating the degree of intermittent shunt sound. In particular, according to the study by the present inventors, it has been found that the discontinuity of the shunt sound greatly depends on the distribution of the volume of the shunt sound for each frequency. Therefore, if the derived distribution information is used, more appropriate information can be output as information indicating the degree of intermittent shunt sound.
 <9>
 上述した分布情報導出手段を備える態様では、前記出力手段は、前記分布情報が示す時間経過に伴う周波数重心の変化量と、正常時における時間経過に伴う周波数重心の変化量とを対比して、前記断続度合いを数値化する第5数値化手段を有してもよい。
<9>
In the aspect including the distribution information deriving unit described above, the output unit compares the amount of change of the frequency centroid with the passage of time indicated by the distribution information with the amount of change of the frequency centroid with the passage of time in normal time, You may have the 5th digitization means which digitizes the said intermittent degree.
 この場合、先ず分布情報から時間経過に伴う周波数重心の変化量が算出される。周波数重心の変化量は、例えば最大重心周波数から最小重心周波数を減算することで算出できる。そして、算出された周波数重心の変化量が、予め記憶された正常時における周波数重心の変化量と対比されることで、断続度合いが数値化される。 In this case, first, the amount of change in the frequency center of gravity with the passage of time is calculated from the distribution information. The amount of change in the frequency centroid can be calculated, for example, by subtracting the minimum centroid frequency from the maximum centroid frequency. Then, the calculated degree of change in the frequency centroid is compared with the amount of change in the frequency centroid at normal time stored in advance, whereby the degree of intermittence is digitized.
 本願発明者の研究するところによれば、シャント音の断続度合いが高まると、周波数重心の変化量が大きくなる(具体的には、高周波成分が増加する)傾向があることが判明している。よって、算出された周波数重心の変化量が、正常時の周波数重心の変化量より大きい場合には、断続度合いが高い数値として出力されればよい。一方で、算出された周波数重心の変化量が、正常時の周波数重心の変化量より小さい場合には、断続度合いが低い数値として出力されればよい。 According to the research conducted by the present inventor, it has been found that the amount of change in the frequency center of gravity tends to increase (specifically, the high-frequency component increases) as the degree of intermittent shunt sound increases. Therefore, when the calculated change amount of the frequency centroid is larger than the normal change amount of the frequency centroid, it may be output as a numerical value with a high degree of intermittentness. On the other hand, when the calculated change amount of the frequency centroid is smaller than the normal change amount of the frequency centroid, it may be output as a numerical value with a low degree of intermittentness.
 <10>
 本実施形態に係るシャント音解析装置の他の態様では、前記出力手段は、前記第1から第5数値化手段を少なくとも2種類有しており、前記第1から第5数値化手段が数値化した前記断続度合いの各々を統合的に判定して、前記断続度合いを示す情報を出力する。
<10>
In another aspect of the shunt sound analysis apparatus according to the present embodiment, the output means includes at least two types of the first to fifth digitizing means, and the first to fifth digitizing means digitize. Each of the determined degrees of interruption is determined in an integrated manner, and information indicating the degree of interruption is output.
 この態様によれば、互いに異なる指標を利用して数値化された断続度合いが統合的に判定されるため、より正確な断続度合いを示す情報を出力することができる。統合的な判定する際には、例えば各数値化手段で数値化された断続度合いを正規化した上で、所定の重み付けを行えばよい。なお、出力される断続度合いを示す情報としては、例えば聴感に合うことを重視した1つの値、波形の断続性を重視した1つの値、或いは聴感に合った断続傾向と波形的な断続傾向を示す2つの値等が挙げられる。 According to this aspect, since the digitized intermittent degree is determined by using different indexes, information indicating the more accurate intermittent degree can be output. When integrated determination is performed, for example, a predetermined weighting may be performed after normalizing the degree of intermittence digitized by each numerical means. In addition, as the information indicating the degree of discontinuity to be output, for example, one value that emphasizes the audibility, one value that emphasizes the continuity of the waveform, or the discontinuity tendency and the waveform discontinuity tendency that suit the audibility. Two values are shown.
 <11>
 本実施形態に係るシャント音解析方法は、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程とを備える。
<11>
The shunt sound analysis method according to the present embodiment includes the acquisition step of acquiring shunt sound information related to the shunt sound from the periphery of the measurement subject's shunt formation site, and the shunt sound information acquired based on the shunt sound information acquired in the acquisition step. And an output step of outputting information indicating the degree of intermittentness in sound audibility.
 本実施形態に係るシャント音解析方法によれば、上述した本実施形態に係るシャント音解析装置と同様に、シャント音の聴感上の断続度合いを示す情報が出力される。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。 According to the shunt sound analysis method according to the present embodiment, information indicating the degree of audibility of the shunt sound is output in the same manner as the shunt sound analysis apparatus according to the present embodiment described above. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
 <12>
 本実施形態に係るコンピュータプログラムは、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程とをコンピュータに実行させる。
<12>
The computer program according to the present embodiment obtains shunt sound information related to a shunt sound from the periphery of the measurement subject's shunt formation, and the shunt sound information based on the shunt sound information obtained in the acquisition step. And causing the computer to execute an output step of outputting information indicating the degree of audible discontinuity.
 本実施形態に係るコンピュータプログラムによれば、コンピュータに上述した本実施形態に係るシャント音解析方法の各工程を実行させることができる。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。 The computer program according to the present embodiment can cause the computer to execute each step of the shunt sound analysis method according to the present embodiment described above. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
 <13>
 本実施形態に係る記録媒体は、上述したコンピュータプログラムが記録されている。
<13>
The recording medium according to the present embodiment records the above-described computer program.
 本実施形態に係る記録媒体によれば、記録されたコンピュータプログラムを実行させることで、シャント音の聴感上の断続度合いを示す情報が出力させることが可能である。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。 According to the recording medium according to the present embodiment, it is possible to output information indicating the degree of intermittent audibility of the shunt sound by executing the recorded computer program. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
 本実施形態に係るシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the shunt sound analysis apparatus, the shunt sound analysis method, the computer program, and the recording medium according to the present embodiment will be described in more detail in the following examples.
 以下では、図面を参照してシャント音解析装置の実施例について詳細に説明する。 Hereinafter, embodiments of the shunt sound analyzer will be described in detail with reference to the drawings.
 <装置構成>
 先ず、図1を参照して、本実施例に係るシャント音解析装置の全体構成について説明する。ここに図1は、実施例に係るシャント音解析装置の全体構成を示すブロック図である。
<Device configuration>
First, the overall configuration of the shunt sound analyzer according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating the overall configuration of the shunt sound analysis apparatus according to the embodiment.
 図1において、本実施例に係るシャント音解析装置は、音声信号入力部110と、音声信号解析部120と、個体差入力部130と、大局的特徴抽出部140と、局所的特徴抽出部150と、統合判定部160と、表示部170とを備えて構成されている。 In FIG. 1, the shunt sound analysis apparatus according to the present embodiment includes an audio signal input unit 110, an audio signal analysis unit 120, an individual difference input unit 130, a global feature extraction unit 140, and a local feature extraction unit 150. And an integrated determination unit 160 and a display unit 170.
 音声信号入力部110は、例えば振動センサ等により構成されており、被測定者のシャント形成部位からシャント音を検出する。音声信号入力部110で検出されたシャント音は、音声信号として音声信号解析部120へと出力される構成となっている。音声信号入力部110は、「取得部」の一具体例である。 The audio signal input unit 110 is configured by, for example, a vibration sensor or the like, and detects a shunt sound from a shunt formation site of the measurement subject. The shunt sound detected by the audio signal input unit 110 is output to the audio signal analysis unit 120 as an audio signal. The audio signal input unit 110 is a specific example of “acquisition unit”.
 音声信号解析部120は、音声信号入力部110から入力された音声信号に対して時間周波数解析を行う。音声信号解析部120による解析結果は、大局的特徴抽出部140及び局所的特徴抽出部150の各々に出力される構成となっている。 The audio signal analysis unit 120 performs time frequency analysis on the audio signal input from the audio signal input unit 110. The analysis result by the audio signal analysis unit 120 is output to each of the global feature extraction unit 140 and the local feature extraction unit 150.
 個体差入力部130は、予め被測定者から取得した音量波形に基づいて、被測定者固有のシャント音を示すパラメータを算出する。個体差入力部130で算出された被測定者固有のパラメータは、大局的特徴抽出部140及び局所的特徴抽出部150の各々に出力される構成となっている。 The individual difference input unit 130 calculates a parameter indicating a shunt sound unique to the measurement subject based on a volume waveform acquired from the measurement subject in advance. The parameter unique to the measurement subject calculated by the individual difference input unit 130 is output to each of the global feature extraction unit 140 and the local feature extraction unit 150.
 大局的特徴抽出部140は、シャント音の断続感を生む要因のうち、大局的特徴(具体的には、周波数重心の変化量、1心拍区間の音量変化量、及び1心拍区間の音量最小値)を抽出し、各特徴に基づいて断続度合いを示す情報を算出する。なお、大局的特徴抽出部140は、大局的特徴を抽出する際に、個体差入力部130から入力される被測定者固有の情報を考慮する。大局的特徴抽出部140において算出された断続度合いを示す情報は、それぞれ統合判定部160に出力される構成となっている。 The global feature extraction unit 140 includes a global feature (specifically, a change amount of the frequency centroid, a change amount of the volume of the heartbeat interval, and a minimum volume value of the heartbeat interval) among the factors that generate the intermittent feeling of the shunt sound. ) And information indicating the degree of intermittentness is calculated based on each feature. Note that the global feature extraction unit 140 considers information unique to the measurement subject input from the individual difference input unit 130 when extracting the global feature. Information indicating the degree of intermittence calculated by the global feature extraction unit 140 is configured to be output to the integration determination unit 160, respectively.
 局所的特徴抽出部150は、シャント音の断続感を生む要因のうち、局所的特徴(具体的には、1心拍区間の音量減衰率、及び音量変化の歪み)を抽出し、各特徴に基づいて断続度合いを示す情報を算出する。なお、局所的特徴抽出部150は、局所的特徴を抽出する際に、個体差入力部130から入力される被測定者固有の情報を考慮する。局所的特徴抽出部150において算出された断続度合いを示す情報は、それぞれ統合判定部160に出力される構成となっている。 The local feature extraction unit 150 extracts local features (specifically, the volume attenuation rate of one heartbeat interval and the distortion of the volume change) from the factors that generate the intermittent feeling of the shunt sound, and based on each feature. To calculate information indicating the intermittent degree. The local feature extraction unit 150 considers information unique to the measurement subject input from the individual difference input unit 130 when extracting the local features. Information indicating the degree of intermittence calculated by the local feature extraction unit 150 is configured to be output to the integration determination unit 160, respectively.
 統合判定部160は、大局的特徴抽出部140及び局所的特徴抽出部150から入力されたシャント音の断続度合いを示す情報を統合的に判定し、シャント形成部位における狭窄可能性を示す情報を算出する。統合判定部160において算出された狭窄可能性を示す情報は、表示部170に出力される構成となっている。統合判定部160は、「出力部」の一具体例である。 The integrated determination unit 160 comprehensively determines information indicating the degree of intermittent shunt sound input from the global feature extraction unit 140 and the local feature extraction unit 150, and calculates information indicating the possibility of stenosis at the shunt formation site. To do. Information indicating the possibility of stenosis calculated by the integrated determination unit 160 is output to the display unit 170. The integrated determination unit 160 is a specific example of an “output unit”.
 表示部170は、例えば液晶ディスプレイ等として構成されており、統合判定部160から出力された狭窄可能性を示す情報(シャント音の断続度合いを示す情報)を、例えば医師等の使用者に視覚的に提示することが可能に構成されている。また、表示部170は、上述した、周波数重心の変化量、1心拍区間の音量変化量、1心拍区間の音量最小値、1心拍区間の音量減衰率、及び音量変化の歪み、の何れかを視覚的に提示するようにしてもよい。 The display unit 170 is configured, for example, as a liquid crystal display or the like, and displays information indicating the possibility of stenosis (information indicating the degree of intermittent shunt sound) output from the integrated determination unit 160 to a user such as a doctor. It is configured to be able to present. Further, the display unit 170 displays any one of the above-described change amount of the frequency centroid, 1 volume change amount of the heartbeat interval, 1 volume minimum value of the heartbeat interval, 1 volume attenuation rate of the heartbeat interval, and distortion of the volume change. It may be presented visually.
 <動作説明>
 次に、本実施例に係るシャント音解析装置の動作について説明する。なお、以下では、本実施例に係るシャント音解析装置が有する各部位のうち、本実施例に特有な部位(即ち、音声信号解析部120、個体差入力部130、大局的特徴抽出部140、局所的特徴抽出部150、及び統合判定部160)の動作について詳細に説明する。
<Description of operation>
Next, the operation of the shunt sound analyzer according to the present embodiment will be described. In the following, among the parts of the shunt sound analysis apparatus according to the present embodiment, the parts specific to the present embodiment (that is, the sound signal analysis unit 120, the individual difference input unit 130, the global feature extraction unit 140, The operations of the local feature extraction unit 150 and the integration determination unit 160) will be described in detail.
 <音声信号解析部>
 先ず、図2から図5を参照して、音声信号解析部120の動作について具体的に説明する。ここに図2は、時間周波数波形の一例を示すスペクトログラム(その1)であり、図3は、音量解析波形の一例を示すグラフである。また図4は、時間周波数波形の一例を示すスペクトログラム(その2)であり、図5は、周波数重心解析波形の一例を示すグラフである。
<Audio signal analysis unit>
First, the operation of the audio signal analysis unit 120 will be specifically described with reference to FIGS. 2 to 5. FIG. 2 is a spectrogram (part 1) showing an example of the time-frequency waveform, and FIG. 3 is a graph showing an example of the volume analysis waveform. FIG. 4 is a spectrogram (part 2) showing an example of a time-frequency waveform, and FIG. 5 is a graph showing an example of a frequency centroid analysis waveform.
 図2において、音声信号解析部120は、音声信号入力部110から入力された音声信号の時間周波数解析を行い、時間周波数波形を取得する。時間周波数波形は、シャント音の周波数ごとのパワーを時系列で示すものである。音声信号解析部120は、時間周波数波形からシャント音の音量を算出する。具体的には、音声信号解析部120は、以下の数式(1)を用いて、シャント音の音量y(t)を算出する。 In FIG. 2, the audio signal analysis unit 120 performs time frequency analysis of the audio signal input from the audio signal input unit 110, and acquires a time frequency waveform. The time frequency waveform indicates the power for each frequency of the shunt sound in time series. The audio signal analysis unit 120 calculates the volume of the shunt sound from the time frequency waveform. Specifically, the audio signal analysis unit 120 calculates the shunt sound volume y (t) using the following formula (1).
Figure JPOXMLDOC01-appb-M000001
 なお、f(n)は周波数であり、p(n)は周波数f(n)におけるパワーである。
Figure JPOXMLDOC01-appb-M000001
Note that f (n) is the frequency, and p (n) is the power at the frequency f (n).
 図3に示すように、音声信号解析部120が算出した音量解析波形(即ち、シャント音の音量の時間変化を示す波形)は、被測定者の脈動に応じた周期的な波形となる。音量解析波形は、1心拍区間ごとに分割された後、大局的特徴抽出部140及び局所的特徴抽出部150に出力され、それぞれ大局的特徴及び局所的特徴の抽出に利用される。 As shown in FIG. 3, the volume analysis waveform calculated by the audio signal analysis unit 120 (that is, a waveform indicating the time change of the volume of the shunt sound) is a periodic waveform according to the pulsation of the measurement subject. The volume analysis waveform is divided for each heartbeat interval, and then output to the global feature extraction unit 140 and the local feature extraction unit 150, and is used to extract the global feature and the local feature, respectively.
 図4において、音声信号解析部120は更に、時間周波数波形からシャント音の周波数重心を算出する。具体的には、音声信号解析部120は、以下の数式(2)を用いて、シャント音の周波数重心g(t)を算出する。 In FIG. 4, the audio signal analysis unit 120 further calculates the frequency centroid of the shunt sound from the time frequency waveform. Specifically, the audio signal analysis unit 120 calculates the frequency centroid g (t) of the shunt sound using the following formula (2).
Figure JPOXMLDOC01-appb-M000002
 図5に示すように、音声信号解析部120が算出した周波数重心解析波形(即ち、シャント音の周波数重心の時間変化を示す波形)は、音量解析波形と同様に、被測定者の脈動に応じた周期的な波形となる。周波数重心解析波形は、大局的特徴抽出部140に出力され、大局的特徴(具体的には、周波数重心の変化)の抽出に利用される。
Figure JPOXMLDOC01-appb-M000002
As shown in FIG. 5, the frequency centroid analysis waveform calculated by the audio signal analysis unit 120 (that is, the waveform indicating the time change of the frequency centroid of the shunt sound) corresponds to the pulsation of the measurement subject, similarly to the volume analysis waveform. A periodic waveform. The frequency centroid analysis waveform is output to the global feature extraction unit 140, and is used to extract global features (specifically, changes in the frequency centroid).
 <個体差入力部>
 次に、図6から図8を参照して、個体差入力部130の動作について具体的に説明する。ここに図6は、個人差入力部130の動作を示すフローチャートである。また図7は、被測定者の過去から蓄積されたシャント音の最小値の分布を示すヒストグラムであり、図8は、被測定者の過去から蓄積されたシャント音の最大値の分布を示すヒストグラムである。
<Individual difference input unit>
Next, the operation of the individual difference input unit 130 will be specifically described with reference to FIGS. FIG. 6 is a flowchart showing the operation of the individual difference input unit 130. FIG. 7 is a histogram showing the distribution of the minimum value of the shunt sound accumulated from the past of the person to be measured, and FIG. 8 is a histogram showing the distribution of the maximum value of the shunt sound accumulated from the past of the person to be measured. It is.
 図6において、個体差入力部130は、予め取得した音声信号から被測定者固有のパラメータを算出する。具体的には、個体差入力部130では、音声信号が取得されると(ステップS101)、音量解析によって音量解析波形が取得される(ステップS102)。音量解析波形は1心拍区間単位で分割され(ステップS103)、各区間における最大値及び最小値が検出される(ステップS104)。検出された最大値及び最小値は、メモリに記憶され(ステップS105)、そのヒストグラムから最も頻度の高かった値が、その被測定者の固有のシャント音の音量最大値及び音量最小値として決定される(ステップS106)。 In FIG. 6, the individual difference input unit 130 calculates a parameter specific to the person to be measured from a previously acquired audio signal. Specifically, in the individual difference input unit 130, when an audio signal is acquired (step S101), a volume analysis waveform is acquired by volume analysis (step S102). The volume analysis waveform is divided in units of one heartbeat interval (step S103), and the maximum value and the minimum value in each interval are detected (step S104). The detected maximum value and minimum value are stored in the memory (step S105), and the most frequent value is determined from the histogram as the volume maximum value and volume minimum value of the measurement subject's unique shunt sound. (Step S106).
 図7及び図8において、最小値及び最大値の検出頻度が図に示すような分布となった場合、被測定者の固有のシャント音の音量最小値は約137と決定される。同様に、被測定者の固有のシャント音の音量最大値は約425と決定される。 7 and 8, when the detection frequency of the minimum value and the maximum value has a distribution as shown in the figure, the minimum volume value of the shunt sound unique to the measured person is determined to be about 137. Similarly, the maximum volume value of the measurement subject's unique shunt sound is determined to be about 425.
 このようにして決定された被測定者の固有の音量最大値及び音量最小値は、音量解析波形として得られるシャント音の音量の個人差補正に用いられる。補正音量Y(t)は、音量解析によって得られた音量y(t)の平均値をy_ave、最大値をy_max、最小値をy_minとし、被測定者の固有の音量の最大値をY_max、最小値をY_minとすると、以下の数式(3)を用いて算出できる。 The specific volume maximum value and volume minimum value of the measurement subject thus determined are used for individual difference correction of the volume of the shunt sound obtained as the volume analysis waveform. The corrected volume Y (t) is y_ave, the maximum value y_max, the minimum value y_min, and the maximum value Y_max, the minimum value unique to the measurement subject, Y_max If the value is Y_min, it can be calculated using the following mathematical formula (3).
  Y(t)=y_ave+(y(t)-y_ave)×(y_max-y_min)/(Y_max-Y_min) ・・・(3)
 なお、ここでの説明は省略するが、周波数重心についても被測定者ごとの固有の最大値及び最小値が決定されてもよい。周波数重心の個人差補正についても、上述した音量の個人差補正と同様の方法で行うことができる。
Y (t) = y_ave + (y (t) −y_ave) × (y_max−y_min) / (Y_max−Y_min) (3)
In addition, although description here is abbreviate | omitted, the intrinsic | native maximum value and minimum value for every to-be-measured person may be determined also about a frequency gravity center. The individual difference correction of the frequency centroid can also be performed by the same method as the above-described individual difference correction of the volume.
 <大局的特徴抽出部>
 次に、図9から図16を参照して、大局的特徴抽出部140の動作について具体的に説明する。なお、以下では、大局的特徴抽出部140で抽出可能な複数の特徴について、特徴別に断続度合いを算出する方法を説明する。
<Global Feature Extraction Unit>
Next, the operation of the global feature extraction unit 140 will be specifically described with reference to FIGS. 9 to 16. In the following, a method for calculating the degree of continuity for each of the features that can be extracted by the global feature extraction unit 140 will be described.
 <1心拍区間の周波数重心の変化量>
 先ず、図9から図12を参照して、1心拍区間の周波数重心の変化量に基づく断続度合いの算出方法について説明する。ここに図9は、正常時における1心拍区間の時間周波数波形の一例を示すスペクトログラムであり、図10は、正常時における1心拍区間の周波数重心解析波形の一例を示すグラフである。また図11は、狭窄発生時における1心拍区間の時間周波数波形の一例を示すスペクトログラムであり、図12は、狭窄発生時における1心拍区間の周波数重心解析波形の一例を示すグラフである。
<Change in the frequency center of gravity during one heartbeat interval>
First, with reference to FIG. 9 to FIG. 12, a method for calculating the degree of intermittence based on the amount of change in the frequency center of gravity in one heartbeat interval will be described. FIG. 9 is a spectrogram showing an example of a time-frequency waveform of one heartbeat section at normal time, and FIG. 10 is a graph showing an example of a frequency barycentric analysis waveform of one heartbeat section at normal time. FIG. 11 is a spectrogram showing an example of a time-frequency waveform of one heartbeat section when stenosis occurs, and FIG. 12 is a graph showing an example of a frequency centroid analysis waveform of one heartbeat section when stenosis occurs.
 図9及び図10において、正常時のシャント音は、低い周波数を多く含む音として検出される。図10を見ると分かるように、正常時のシャント音の周波数重心の最小値は約610Hzであり、最大値は約700Hzである。よって、正常時におけるシャント音の周波数重心の変化量(即ち、最大値-最小値)は約90Hzとなる。 9 and 10, the normal shunt sound is detected as a sound containing many low frequencies. As can be seen from FIG. 10, the minimum value of the frequency center of gravity of the shunt sound in a normal state is about 610 Hz, and the maximum value is about 700 Hz. Therefore, the amount of change in the frequency centroid of the shunt sound in a normal state (that is, the maximum value−minimum value) is about 90 Hz.
 図11及び図12において、狭窄発生時(即ち、断続感が強い)シャント音は、正常時と比べると、高周波成分を多く含む音として検出される。図12を見ると分かるように、狭窄発生時のシャント音の周波数重心の最小値は約590Hzであり、最大値は約740Hzである。よって、狭窄発生時におけるシャント音の周波数重心の変化量(即ち、最大値-最小値)は約150Hzとなる。 11 and 12, the shunt sound at the time of occurrence of stenosis (that is, a strong sense of intermittentness) is detected as a sound containing a lot of high frequency components as compared with the normal time. As can be seen from FIG. 12, the minimum value of the frequency centroid of the shunt sound when stenosis occurs is about 590 Hz, and the maximum value is about 740 Hz. Therefore, the amount of change in the frequency centroid of the shunt sound when stenosis occurs (that is, the maximum value−minimum value) is about 150 Hz.
 以上の結果から分かるように、正常時のシャント音と狭窄発生時のシャント音とでは、1心拍区間の周波数重心の変化量に明確な差が生ずる。よって、周波数重心解析によって得られた周波数重心の変化量を正常時の周波数重心の変化量と対比すれば、狭窄発生可能性(即ち、シャント音の断続度合い)を好適に算出できる。 As can be seen from the above results, there is a clear difference in the change in the frequency center of gravity in one heartbeat interval between the normal shunt sound and the shunt sound when stenosis occurs. Therefore, if the change amount of the frequency centroid obtained by the frequency centroid analysis is compared with the change amount of the frequency centroid at the normal time, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be suitably calculated.
 <1心拍区間の音量変化量>
 次に、図13及び図14を参照して、1心拍区間の音量変化量に基づく断続度合いの算出方法について説明する。ここに図13は、正常時における1心拍区間の音量変化量の一例を示すグラフである。また図14は、狭窄発生時における1心拍区間の音量変化量の一例を示すグラフである。
<Volume change in one heartbeat section>
Next, with reference to FIG. 13 and FIG. 14, a method for calculating the intermittent degree based on the volume change amount in one heartbeat interval will be described. FIG. 13 is a graph showing an example of the volume change amount in one heartbeat section at the normal time. FIG. 14 is a graph showing an example of the volume change amount in one heartbeat interval when stenosis occurs.
 図13において、正常時のシャント音では、1心拍区間における音量の最大値と最小値との差分が小さい。即ち、正常時のシャント音は、収縮期から拡張期にかけての音量変化量が比較的小さい。 In FIG. 13, in the normal shunt sound, the difference between the maximum value and the minimum value of the volume in one heartbeat interval is small. That is, the normal shunt sound has a relatively small volume change amount from the systole to the diastole.
 図14において、狭窄発生時のシャント音では、1心拍区間における音量の最大値と最小値との差分が、正常時と比べて大きい。即ち、狭窄発生時のシャント音は、収縮期から拡張期にかけての音量変化量が比較的大きい。 In FIG. 14, in the shunt sound at the time of occurrence of stenosis, the difference between the maximum value and the minimum value of the volume in one heartbeat section is larger than that in the normal state. That is, the shunt sound when stenosis occurs has a relatively large volume change amount from the systole to the diastole.
 従って、音量解析波形から得られた1心拍区間における音量変化量が、正常時の1心拍区間における音量変化量と比べてどの程度大きいかによって、狭窄発生可能性(即ち、シャント音の断続度合い)を好適に算出できる。 Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) depends on how much the volume change amount in one heart beat interval obtained from the sound volume analysis waveform is larger than the volume change amount in one heart beat interval at normal time. Can be suitably calculated.
 <1心拍区間の音量最小値>
 次に、図15及び図16を参照して、1心拍区間の音量最小値に基づく断続度合いの算出方法について説明する。ここに図15は正常時における1心拍区間の音量最小値の一例を示すグラフである。また図16は。狭窄発生時における1心拍区間の音量最小値の一例を示すグラフである。
<Minimum volume for one heartbeat section>
Next, with reference to FIG.15 and FIG.16, the calculation method of the intermittent degree based on the volume minimum value of 1 heartbeat area is demonstrated. FIG. 15 is a graph showing an example of the minimum volume value in one heartbeat section at normal time. FIG. It is a graph which shows an example of the sound volume minimum value of one heart beat section at the time of stenosis occurrence.
 図15において、正常時のシャント音では、1心拍区間における音量の最小値が比較的大きい。具体的には、正常時のシャント音は、音量が小さくなる拡張期においても、比較的音量が大きいまま維持される。 In FIG. 15, in the normal shunt sound, the minimum value of the volume in one heartbeat section is relatively large. Specifically, the normal shunt sound is maintained at a relatively high volume even in the expansion period when the volume is low.
 図16において、狭窄発生時のシャント音では、1心拍区間における音量の最小値が、正常時と比べて大きい。具体的には、狭窄発生時のシャント音は、収縮期の音量については正常時に近い値まで大きくなるが、拡張期の音量が大きく減衰してしまう。 In FIG. 16, in the shunt sound at the time of occurrence of stenosis, the minimum value of the volume in one heart beat section is larger than that in the normal state. Specifically, the shunt sound at the time of occurrence of stenosis increases to a value close to normal in the systolic volume, but the volume in the diastole is greatly attenuated.
 従って、音量解析波形から得られた1心拍区間における音量最小値が、正常時の1心拍区間における音量最小値と比べてどの程度小さいかによって、狭窄発生可能性(即ち、シャント音の断続度合い)を好適に算出できる。 Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) depends on how small the minimum volume value in one heart beat interval obtained from the sound volume analysis waveform is compared with the minimum sound volume value in one heart beat interval at normal time. Can be suitably calculated.
 <局所的特徴抽出部>
 次に、図17から図20を参照して、局所的特徴抽出部150の動作について具体的に説明する。なお、以下では、局所的特徴抽出部150で抽出可能な複数の特徴について、特徴別に断続度合いを算出する方法を説明する。
<Local feature extraction unit>
Next, the operation of the local feature extraction unit 150 will be specifically described with reference to FIGS. 17 to 20. In the following, a method for calculating the degree of intermittentness for each of the features that can be extracted by the local feature extraction unit 150 will be described.
 <1心拍区間の音量減衰率>
 先ず、図17及び図18を参照して、1心拍区間の音量減衰率に基づく断続度合いの算出方法について説明する。ここに図17は、正常時における1心拍区間の音量減衰率の一例を示すグラフである。また図18は、狭窄発生時における1心拍区間の音量減衰率の一例を示すグラフである。
<Volume attenuation rate in one heartbeat section>
First, with reference to FIG.17 and FIG.18, the calculation method of the intermittent degree based on the volume attenuation rate of 1 heartbeat area is demonstrated. FIG. 17 is a graph showing an example of the volume attenuation rate of one heartbeat section at normal time. FIG. 18 is a graph showing an example of the volume attenuation rate of one heartbeat interval when stenosis occurs.
 図17において、正常時のシャント音では、1心拍区間における音量の減衰が直線的である。具体的には、正常時のシャント音では、音量の最大値から最小値までの傾き(減衰率)が一定である。 Referring to FIG. 17, the normal shunt sound has a linear attenuation of sound volume in one heartbeat interval. Specifically, in a normal shunt sound, the gradient (attenuation rate) from the maximum value to the minimum value of the volume is constant.
 図18において、狭窄発生時のシャント音では、1心拍区間における音量の減衰が急激な部分が生じている。具体的には、狭窄発生時のシャント音では、収縮期末期から拡張期初期にかけて音量が著しく減少し、その後は比較的緩やかに減少する。このため、音量の最大値から最小値までの傾き(減衰率)は一定とならない。 In FIG. 18, in the shunt sound at the time of occurrence of stenosis, there is a portion where the volume is sharply attenuated in one heartbeat section. Specifically, in the shunt sound when stenosis occurs, the volume decreases significantly from the end of systole to the beginning of the diastole, and then decreases relatively slowly. For this reason, the gradient (attenuation rate) from the maximum value to the minimum value of the sound volume is not constant.
 従って、音量解析波形から得られた1心拍区間における音量減衰率を利用すれば、狭窄発生可能性(即ち、シャント音の断続度合い)を好適に算出できる。減衰率drは、以下の数式(4)を用いて算出することができる。 Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be suitably calculated by using the volume attenuation rate in one heartbeat interval obtained from the volume analysis waveform. The attenuation rate dr can be calculated using the following formula (4).
Figure JPOXMLDOC01-appb-M000003
 なお、Nは1心拍区間のデータ数であり、max及びminは、それぞれ1心拍区間内の音量の最大値及び最小値である。減衰率drは、図18中に破線で示す直線的な減衰率である0.5を基準として、そこからの乖離が大きいほど小さい値として算出される。よって、算出された減衰率drが0.5よりどの程度小さいかによって、狭窄発生可能性(即ち、シャント音の断続度合い)を好適に算出できる。
Figure JPOXMLDOC01-appb-M000003
Note that N is the number of data in one heartbeat interval, and max and min are the maximum value and the minimum value of the volume in one heartbeat interval, respectively. The attenuation rate dr is calculated as a smaller value with a larger deviation from 0.5, which is a linear attenuation rate indicated by a broken line in FIG. Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be suitably calculated depending on how much the calculated attenuation rate dr is smaller than 0.5.
 <音量変化の歪み>
 次に、図19及び図20を参照して、収縮期から拡張期にかけて発生する音量変化の歪みに基づく断続度合いの算出方法について説明する。ここに図19は、歪み発生時の音量解析波形の一例を示すグラフである。また図20は、歪み発生時の音量解析微分波形の一例を示すグラフである。
<Distortion of volume change>
Next, with reference to FIG. 19 and FIG. 20, a method for calculating the intermittent degree based on the distortion of the volume change that occurs from the systole to the diastole will be described. FIG. 19 is a graph showing an example of a volume analysis waveform when distortion occurs. FIG. 20 is a graph showing an example of a volume analysis differential waveform when distortion occurs.
 図19において、狭窄発生時のシャント音では、収縮期末期から拡張期初期にかけて、音量の変化に歪みが生じることがある。具体的には、図中の破線で囲った部分のように、音量が急激に低下した後、一時的に上昇することがある。よって、音量解析波形における極大値の存在によって、狭窄発生可能性(即ち、シャント音の断続度合い)を算出することができる。 Referring to FIG. 19, the shunt sound when stenosis occurs may cause distortion in the change in volume from the end of systole to the beginning of diastole. Specifically, like the part surrounded by the broken line in the figure, the volume may increase temporarily after suddenly decreasing. Therefore, the possibility of occurrence of stenosis (that is, the degree of intermittent shunt sound) can be calculated based on the presence of the maximum value in the volume analysis waveform.
 図20において、音量解析波形における極大値は、音量解析波形の微分波形を平滑化したものを用いることで容易に検出できる。具体的には、音量解析波形の微分波形の極大値と極小値との差分を算出すること好適に検出することができる。 In FIG. 20, the maximum value in the volume analysis waveform can be easily detected by using a smoothed differential waveform of the volume analysis waveform. Specifically, it is possible to detect preferably by calculating the difference between the maximum value and the minimum value of the differential waveform of the volume analysis waveform.
 <統合判定部>
 最後に、統合判定部160の動作について具体的に説明する。以下では、大局的特徴である周波数重心の変化量として抽出された特徴量をρ、1心拍区間の音量変化量として抽出された特徴量をρ、1心拍区間の音量最小値として抽出された特徴量をρ、局所的特徴である1心拍区間の音量減衰率として抽出された特徴量をρ、音量変化の歪みとして抽出された特徴量をρとして説明する。なお、各直量ρ~ρは、それぞれ正規化されている(例えば、断続度合いが最も強い場合が0、最も弱い場合(即ち、正常時)が100となるように調整されている)ものとする。
<Integrated judgment unit>
Finally, the operation of the integrated determination unit 160 will be specifically described. In the following, the feature value extracted as the change amount of the frequency centroid, which is a global feature, is extracted as ρ 1 , the feature value extracted as the volume change amount of one heartbeat interval is ρ 2 , and is extracted as the minimum sound volume value of one heartbeat interval. feature amount [rho 3, local features in a heart beat 4 the characteristic amount extracted as volume attenuation factor [rho sections, illustrating a feature quantity extracted as a distortion of the volume change as [rho 5. Each of the direct quantities ρ 1 to ρ 5 is normalized (for example, adjusted so that the highest intermittent degree is 0 and the weakest case (ie, normal) is 100). Shall.
 統合判定部160は、各特徴量ρ~ρに対して重み付けを行って断続度を算出する。具体的には、断続度は、各特徴量ρ~ρに対応する重みをω~ωとして、以下の数式(5)を用いて算出される。 The integrated determination unit 160 calculates the intermittent degree by weighting the feature amounts ρ 1 to ρ 5 . Specifically, the discontinuity is calculated by using the following formula (5), with the weights corresponding to the feature quantities ρ 1 to ρ 5 being ω 1 to ω 5 .
  断続度=ω×ρ+ω×ρ+ω×ρ+ω×ρ+ω×ρ ・・・(5)
 ここで、断続度を聴感に合うことを重視した1つの数値として出力する場合には、重みω~ωについてω1、ω2、ω3>>ω4、ω5の関係が成立するようにすればよい。このようにして得られる断続度は、例えば人工透析現場において当日の透析が可能か否かを判定するのに適している。
Intermittent degree = ω 1 × ρ 1 + ω 2 × ρ 2 + ω 3 × ρ 3 + ω 4 × ρ 4 + ω 5 × ρ 5 (5)
Here, when outputting a single number that emphasizes that fit the intermittency audibly, the weight omega 1 ~ omega 5 for ω1, ω2, ω3 >> ω4, may be such that the relationship of ω5 is established . The degree of discontinuity obtained in this way is suitable for determining whether dialysis on the day is possible, for example, at an artificial dialysis site.
 また、断続度を波形の断続性を重視した1つの数値として出力する場合には、重みω~ωについてω4、ω5>ω2>ω1、ω3の関係が成立するようにすればよい。このようにして得られる断続度は、例えばエコー診断との比較に適している。 Further, when the continuity is output as one numerical value that places importance on the continuity of the waveform, the relationships of ω4, ω5>ω2> ω1, and ω3 may be satisfied with respect to the weights ω 1 to ω 5 . The discontinuity obtained in this way is suitable for comparison with, for example, echo diagnosis.
 或いは、断続度を聴感に合うことを重視した数値及び波形の断続性を重視した数値の2つの値として出力する場合には、以下の数式(6)及び(7)を利用して別々に算出すればよい。 Alternatively, when outputting as two values, a numerical value that emphasizes the degree of continuity according to the sense of hearing and a numerical value that emphasizes the continuity of the waveform, it is calculated separately using the following formulas (6) and (7). do it.
  聴感による断続度=ω×ρ+ω×ρ+ω×ρ ・・・(6)
  波形による断続度=ω×ρ+ω×ρ ・・・(7)
 このようにして得られる断続度は、例えば聴感と波形との両方の経時変化から断続(即ち、狭窄)の進行具合を判定する場合に適している。
Intermittent audibility = ω 1 × ρ 1 + ω 2 × ρ 2 + ω 3 × ρ 3 (6)
Intermittent by waveform = ω 4 × ρ 4 + ω 5 × ρ 5 (7)
The degree of discontinuity obtained in this way is suitable, for example, when determining the progress of discontinuity (that is, stenosis) from changes over time in both audibility and waveform.
 なお、統合判定部160による統合的な判定を行わずに、各特徴量ρ~ρを単独で出力するようにしてもよい。この場合、表示部170には、例えば各特徴量ρ~ρに応じた数値が別々に表示されたり、レーダーチャートとして表示されたりする。これにより、ユーザである医師等は、各特徴量ρ~ρの各々を利用して複数の視点から狭窄診断を行うことができる。或いは、各特徴量ρ~ρの各々を用いて、医師等が自ら統合的な判断をして、狭窄診断を行うことができる。 Note that the feature amounts ρ 1 to ρ 5 may be output independently without performing the integrated determination by the integrated determination unit 160. In this case, for example, numerical values corresponding to the feature amounts ρ 1 to ρ 5 are separately displayed on the display unit 170 or displayed as a radar chart. Thereby, a doctor who is a user can perform stenosis diagnosis from a plurality of viewpoints using each of the feature amounts ρ 1 to ρ 5 . Alternatively, using each of the feature quantities ρ 1 to ρ 5 , a doctor or the like can make an integrated judgment and make a stenosis diagnosis.
 以上説明したように、本実施例に係るシャント音解析装置によれば、シャント音の解析結果として、断続度合いを示す情報が出力される。従って、シャント形成部位における狭窄診断を好適に支援することが可能である。 As described above, according to the shunt sound analysis apparatus according to the present embodiment, information indicating the degree of intermittentness is output as the analysis result of the shunt sound. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and shunt sound analysis accompanying such changes is possible. A device, a shunt sound analysis method, a computer program, and a recording medium are also included in the technical scope of the present invention.
 110 音声信号入力部
 120 音声信号解析部
 130 個体差入力部
 140 大局的特徴抽出部
 150 局所的特徴抽出部
 160 統合判定部
 170 表示部
DESCRIPTION OF SYMBOLS 110 Voice signal input part 120 Voice signal analysis part 130 Individual difference input part 140 Global feature extraction part 150 Local feature extraction part 160 Integrated determination part 170 Display part

Claims (13)

  1.  被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得手段と、
     前記取得部が取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力手段と
     を備えることを特徴とするシャント音解析装置。
    An acquisition means for acquiring shunt sound information related to the shunt sound from the periphery of the measurement subject's shunt formation site;
    A shunt sound analysis apparatus comprising: output means for outputting information indicating a degree of audibility of the shunt sound based on the shunt sound information acquired by the acquisition unit.
  2.  前記出力手段は、前記シャント音情報に基づいて、時間経過に対する前記シャント音の音量の変化を示す音量情報を導出する音量情報導出手段を有することを特徴とする請求項1に記載のシャント音解析装置。 The shunt sound analysis according to claim 1, wherein the output means includes volume information deriving means for deriving volume information indicating a change in volume of the shunt sound over time based on the shunt sound information. apparatus.
  3.  前記出力手段は、前記音量情報から前記シャント音の一周期に相当する一周期音量情報を抽出する抽出手段を有することを特徴とする請求項2に記載のシャント音解析装置。 3. The shunt sound analysis apparatus according to claim 2, wherein the output means includes extraction means for extracting one-period sound volume information corresponding to one period of the shunt sound from the sound volume information.
  4.  前記出力手段は、前記一周期音量情報における前記シャント音の音量の最大値及び最小値の差分と、正常時におけるシャント音の最大値及び最小値の差分とを対比して、前記断続度合いを数値化する第1数値化手段を有することを特徴とする請求項3に記載のシャント音解析装置。 The output means compares the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information with the difference between the maximum value and the minimum value of the shunt sound in a normal state, and calculates the intermittent degree The shunt sound analyzing apparatus according to claim 3, further comprising a first digitizing unit for converting the first shunt sound into a numerical value.
  5.  前記出力手段は、前記一周期音量情報における前記シャント音の音量の最小値と、正常時におけるシャント音の最小値とを対比して、前記断続度合いを数値化する第2数値化手段を有することを特徴とする請求項3に記載のシャント音解析装置。 The output means includes second numerical means for numerically expressing the degree of intermittentness by comparing the minimum value of the shunt sound volume in the one-period sound volume information with the minimum value of the shunt sound in a normal state. The shunt sound analyzer according to claim 3.
  6.  前記出力手段は、前記一周期音量情報における前記シャント音の音量の最大値から最小値に至る傾きに基づいて、前記断続度合いを数値化する第3数値化手段を有することを特徴とする請求項3に記載のシャント音解析装置。 The output means comprises third numerical means for numerically expressing the degree of intermittence based on a slope from a maximum value to a minimum value of the shunt sound volume in the one-period sound volume information. 3. The shunt sound analyzer according to 3.
  7.  前記出力手段は、前記一周期音量情報における前記シャント音の音量の極大値及び極小値の差分と、正常時におけるシャント音の極大値及び極小値の差分とを対比して、前記断続度合いを数値化する第4数値化手段を有することを特徴とする請求項3に記載のシャント音解析装置。 The output means compares the difference between the maximum value and the minimum value of the shunt sound volume in the one-period sound volume information with the difference between the maximum value and the minimum value of the shunt sound in a normal state, and calculates the intermittent degree as a numerical value. 4. The shunt sound analyzing apparatus according to claim 3, further comprising a fourth numerical means for converting into a fourth numerical value.
  8.  前記出力手段は、前記シャント音情報に基づいて、周波数ごとの時間経過に伴う前記シャント音の音量を示す分布情報を導出する分布情報導出手段を有することを特徴とする請求項1に記載のシャント音解析装置。 2. The shunt according to claim 1, wherein the output means includes distribution information deriving means for deriving distribution information indicating a volume of the shunt sound as time elapses for each frequency based on the shunt sound information. Sound analysis device.
  9.  前記出力手段は、前記分布情報が示す時間経過に伴う周波数重心の変化量と、正常時における時間経過に伴う周波数重心の変化量とを対比して、前記断続度合いを数値化する第5数値化手段を有することを特徴とする請求項8に記載のシャント音解析装置。 The output means compares the amount of change of the frequency centroid with the passage of time indicated by the distribution information with the amount of change of the frequency centroid with the passage of time in normal time, and quantifies the degree of intermittence. The shunt sound analysis apparatus according to claim 8, further comprising: means.
  10.  前記出力手段は、
     前記第1から第5数値化手段を少なくとも2種類有しており、
     前記第1から第5数値化手段が数値化した前記断続度合いの各々を統合的に判定して、前記断続度合いを示す情報を出力する
     ことを特徴とする請求項4から7及び9に記載のシャント音解析装置。
    The output means includes
    Having at least two kinds of the first to fifth digitizing means;
    10. The information according to claim 4, wherein each of the continuity levels digitized by the first to fifth digitizing means is determined in an integrated manner, and information indicating the continuity level is output. Shunt sound analyzer.
  11.  被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、
     前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程と
     を備えることを特徴とするシャント音解析方法。
    An acquisition step of acquiring shunt sound information related to the shunt sound from the measurement subject's shunt formation site,
    A shunt sound analysis method comprising: an output step of outputting information indicating a degree of audibility of the shunt sound based on the shunt sound information acquired in the acquisition step.
  12.  被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報を取得する取得工程と、
     前記取得工程で取得した前記シャント音情報に基づいて、前記シャント音の聴感上の断続度合いを示す情報を出力する出力工程と
     をコンピュータに実行させることを特徴とするコンピュータプログラム。
    An acquisition step of acquiring shunt sound information related to the shunt sound from the measurement subject's shunt formation site,
    A computer program that causes a computer to execute an output step of outputting information indicating the degree of audibility of the shunt sound on the basis of the shunt sound information acquired in the acquisition step.
  13.  請求項12に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体。 A recording medium in which the computer program according to claim 12 is recorded.
PCT/JP2015/056530 2015-03-05 2015-03-05 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium WO2016139802A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017503294A JPWO2016139802A1 (en) 2015-03-05 2015-03-05 Shunt sound analysis device, shunt sound analysis method, computer program, and recording medium
PCT/JP2015/056530 WO2016139802A1 (en) 2015-03-05 2015-03-05 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056530 WO2016139802A1 (en) 2015-03-05 2015-03-05 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium

Publications (1)

Publication Number Publication Date
WO2016139802A1 true WO2016139802A1 (en) 2016-09-09

Family

ID=56849252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056530 WO2016139802A1 (en) 2015-03-05 2015-03-05 Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium

Country Status (2)

Country Link
JP (1) JPWO2016139802A1 (en)
WO (1) WO2016139802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155384A1 (en) * 2017-02-22 2018-08-30 パイオニア株式会社 Detection device
WO2019188768A1 (en) * 2018-03-29 2019-10-03 パイオニア株式会社 Device and method for analyzing shunt murmur, and computer program and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233002A (en) * 2008-03-26 2009-10-15 Fukuda Denshi Co Ltd Shunt stenosis detecting device
JP2010029434A (en) * 2008-07-29 2010-02-12 Tom-Medic Co Ltd Vasoconstriction level determination program, recording medium, information terminal device, vasoconstriction level determination system and vasoconstriction level determination method
JP2014008263A (en) * 2012-06-29 2014-01-20 Univ Of Yamanashi Shunt constriction diagnostic support system and method, array shaped sound collection sensor device, and successive segmentation self organized map forming device, method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233002A (en) * 2008-03-26 2009-10-15 Fukuda Denshi Co Ltd Shunt stenosis detecting device
JP2010029434A (en) * 2008-07-29 2010-02-12 Tom-Medic Co Ltd Vasoconstriction level determination program, recording medium, information terminal device, vasoconstriction level determination system and vasoconstriction level determination method
JP2014008263A (en) * 2012-06-29 2014-01-20 Univ Of Yamanashi Shunt constriction diagnostic support system and method, array shaped sound collection sensor device, and successive segmentation self organized map forming device, method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155384A1 (en) * 2017-02-22 2018-08-30 パイオニア株式会社 Detection device
JPWO2018155384A1 (en) * 2017-02-22 2019-12-19 パイオニア株式会社 Detection device
JP7290768B2 (en) 2017-02-22 2023-06-13 エア・ウォーター・バイオデザイン株式会社 detector
WO2019188768A1 (en) * 2018-03-29 2019-10-03 パイオニア株式会社 Device and method for analyzing shunt murmur, and computer program and storage medium
JPWO2019188768A1 (en) * 2018-03-29 2021-04-08 パイオニア株式会社 Shunt sound analyzers and methods, computer programs and storage media
JP7175304B2 (en) 2018-03-29 2022-11-18 エア・ウォーター・バイオデザイン株式会社 SHUNT SOUND ANALYZER AND METHOD, COMPUTER PROGRAM AND STORAGE MEDIUM

Also Published As

Publication number Publication date
JPWO2016139802A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
CN109276241B (en) Pressure identification method and equipment
EP2793691B1 (en) Intrinsic frequency hemodynamic waveform analysis
CN103313662B (en) System, the stethoscope of the risk of instruction coronary artery disease
KR100954817B1 (en) System and method for testing blood vessel&#39;s health and stress through signal analysis of pluse wave
CN103479343B (en) Central aortic pressure detection system and method based on oscillating sphygmomanometer signals
US10004473B2 (en) Heart rate detection method and device using heart sound acquired from auscultation positions
JP2010029434A (en) Vasoconstriction level determination program, recording medium, information terminal device, vasoconstriction level determination system and vasoconstriction level determination method
WO2012163738A1 (en) Monitoring stenosis formation in an arteriovenous access
CN107979987A (en) Spectrum analysis method, apparatus and equipment and computer-readable recording medium
JP2017529192A (en) Method and apparatus for determining aortic valve opening
EP2249696A2 (en) Method and system for use in monitoring left ventricular dysfunction
IL189943A (en) Signal processing for pulse oximetry
JPWO2018155384A1 (en) Detection device
WO2016139802A1 (en) Shunt murmur analysis device, shunt murmur analysis method, computer program, and recording medium
Jazbinsek et al. Influence of different presentations of oscillometric data on automatic determination of systolic and diastolic pressures
JP5940725B1 (en) Vascular elasticity evaluation device
JP6467044B2 (en) Shunt sound analysis device, shunt sound analysis method, computer program, and recording medium
WO2015178439A2 (en) Device and method for supporting diagnosis of central/obstructive sleep apnea, and computer-readable medium having stored thereon program for supporting diagnosis of central/obstructive sleep apnea
TWI655930B (en) Measuring device, measuring method and recording medium
JP2019010529A (en) Shunt murmur analyzing device
JP7303921B2 (en) Shunt sound analysis device, shunt sound analysis method, computer program and recording medium
JP7175304B2 (en) SHUNT SOUND ANALYZER AND METHOD, COMPUTER PROGRAM AND STORAGE MEDIUM
JP2020199293A (en) Shunt murmur analyzing device
CN112932424B (en) Data acquisition method and system
KR102179511B1 (en) Swallowing diagnostic device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883969

Country of ref document: EP

Kind code of ref document: A1