WO2018155119A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2018155119A1
WO2018155119A1 PCT/JP2018/003334 JP2018003334W WO2018155119A1 WO 2018155119 A1 WO2018155119 A1 WO 2018155119A1 JP 2018003334 W JP2018003334 W JP 2018003334W WO 2018155119 A1 WO2018155119 A1 WO 2018155119A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
unit
gas
sensor
region
Prior art date
Application number
PCT/JP2018/003334
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 西尾
七田 貴史
上木 正聡
井上 剛
貴之 熊崎
青山 惠哉
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2018155119A1 publication Critical patent/WO2018155119A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a gas sensor that detects the concentration of a specific gas component contained in a gas to be measured.
  • Patent Document 1 a technique in which NO in the exhalation is converted to NO 2 by a catalyst, and then this NO 2 is detected by a sensor element.
  • a conversion unit that performs pretreatment using a catalyst and a detection unit that includes a sensor element are formed separately, and are integrated into a single unit. Then, by providing heaters (heating resistors) separately for the conversion unit and the sensor element, the conversion unit and the sensor element are heated and stably operated.
  • an object of the present invention is to provide a gas sensor that includes a single heater to improve the detection accuracy of a specific gas component, and can realize downsizing and power saving.
  • the gas sensor of the present invention is provided with a first chamber for introducing the gas to be measured therein, and the first gas contained in the gas to be measured introduced into the first chamber.
  • An adjustment unit including a conversion unit that converts a gas component into a second gas component, and a second chamber for introducing the gas to be measured that has passed through the adjustment unit are provided therein, and the second gas component
  • a sensor unit having a detection unit whose electrical characteristics change according to the concentration of the ceramic unit, a ceramic wiring board in which the detection unit is arranged and at least a part of the sensor unit is housed in the sensor unit, the conversion unit, And a single heater for heating the detection unit, and in the region of the ceramic wiring board where the detection unit is arranged, in the thickness direction of itself At least one through hole is formed, and the through hole is filled with a heat transfer material having a higher thermal conductivity than the ceramic material constituting the ceramic wiring board, and the adjustment unit, the heater, and
  • the adjustment unit, the sensor unit, and the heater are configured such that
  • the adjustment unit and the sensor unit need only be heated with a single heater, so that the configuration of the gas sensor can be simplified and the size of the gas sensor can be reduced compared to the case where the heaters are provided separately for both units. Can be realized. Also, the adjustment unit and the heater, and the sensor unit and the heater are respectively thermally coupled, and at least a part of the heater overlaps with the region when viewed in the extending direction of the through hole. For this reason, between at least one of the units and the heater, the heat of the heater is easily transferred to the unit through a region (that is, a heat transfer material) having a higher thermal conductivity than the surrounding ceramic wiring board. Both units can be reliably heated with low power with a single heater. *
  • the specific component can be detected stably, and the detection accuracy of the specific component can be improved.
  • the thermal conductivity of the region can be easily controlled, and the amount of heat of the heater transmitted to both units can be easily adjusted.
  • the adjustment unit and the sensor unit can be easily controlled to different temperatures. In order to heat both units with a lower power with a single heater, it is preferable to provide a plurality of through holes.
  • the thickness of the region may be smaller than the thickness of the ceramic wiring board adjacent to the region. According to this gas sensor, since the thermal conductivity of the region is further increased, both units can be reliably heated with lower power with a single heater.
  • the main component of the ceramic material may be zirconia. Since zirconia has a low thermal conductivity among ceramic materials, the heat of the heater is preferentially transmitted to areas with high thermal conductivity, and heat dissipation can be further suppressed in the direction of the surface of the ceramic wiring board, saving power. Can be realized even more. *
  • the heat transfer material may be nonconductive. According to this gas sensor, since the non-conductive material has a high thermal conductivity, the heat of the heater is preferentially transmitted to the region having a high thermal conductivity, and the heat is dissipated in the direction of the surface of the ceramic wiring board. Further suppression can be achieved, and further power saving can be realized.
  • the present invention it is possible to obtain a gas sensor that can improve the accuracy of detection of a specific gas component and can achieve downsizing and power saving.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a partial section perspective view of a gas sensor concerning an embodiment of the present invention. It is a schematic diagram which shows the heat-transfer path
  • FIG. 1 is an exploded perspective view of a gas sensor 1 according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along the line AA of FIG. 1
  • FIG. 3 is a partial sectional perspective view of the gas sensor 1
  • FIG. It is a schematic diagram which shows a heat transfer path
  • the gas sensor 1 includes an adjustment unit 10, a sensor unit 20, a pipe-shaped gas flow pipe 40, and a plate-shaped ceramic wiring substrate 50, and is formed in a box shape as a whole. *
  • the adjustment unit 10 is formed in a substantially rectangular box shape with a flange and a metal case 12 having an upper surface (a surface facing upward in FIG. 1) and an adhesive (not shown) attached to the flange of the case 12.
  • the ceramic substrate 50 closes the opening of the case 12 by fixing the flange of the case 12 and the outer peripheral portion of the lower surface of the ceramic wiring substrate 50 to the frame of the packing 13 via an adhesive (not shown).
  • the internal space of the case 12 forms the first chamber C1.
  • a pipe-like inlet 12a and outlet 12b that serve as piping connection ports protrude from the lower surface of the case 12 so as to be spaced apart from each other, and the inlet 12a and outlet 12b communicate with the first chamber C1.
  • a conversion unit 14 having a rectangular parallelepiped shape and porous and permeable to gas is disposed, and the surface of the first chamber C1 is disposed on the surface of the conversion unit 14.
  • a sealing material 14a made of inorganic fiber (for example, alumina fiber) that seals the gap with the wall surface is provided.
  • the 1st gas component contained in the to-be-measured gas G is converted into the 2nd gas component, Then, from the outlet 12b It is discharged outside the adjustment unit 10.
  • the conversion unit 14 includes a catalyst such as zeolite supporting Pt that converts the first gas component (specifically NO) contained in the exhaled breath G into the second gas component (specifically NOx 2 ).
  • the sensor unit 20 includes a metal case 22 having the same or similar shape as the case 12 and having an open bottom surface, a rectangular frame-shaped packing 23 stacked on the flange of the case 22, and a sensor element unit housed in the case 22. 24, an adhesive layer 26 for bonding the sensor element portion 24 to a predetermined position (a recessed portion 50r described later) of the ceramic wiring substrate 50, and the ceramic wiring substrate 50.
  • the flange of the case 22 and the outer peripheral portion of the upper surface of the ceramic wiring board 50 are fixed to the frame of the packing 23 via an adhesive (not shown), so that the ceramic wiring board 50 closes the opening of the case 22.
  • the internal space of the case 22 forms the second chamber C2. *
  • the sensor element portion 24 has a substantially rectangular plate shape, and as shown in FIG. 2, a detection portion 24a is disposed on the upper surface (surface facing upward in FIG. 1) side of the base portion 24c, and a single surface is formed on the lower surface side of the base portion 24c.
  • One heater 24b is disposed, and the detection unit 24a and the heater 24b are integrated with each other on the top and bottom of the base unit 24c.
  • a recess 50r is formed in the center of the upper surface of the ceramic wiring substrate 50, and the sensor element portion 24 is arranged so that the heater 24b side is in contact with the recess 50r through the adhesive layer 26.
  • a pipe-like inlet 22a and outlet 22b that serve as connection ports for piping protrude from the upper surface of the case 22 apart from each other, and the inlet 22a and outlet 22b communicate with the second chamber C2.
  • the sensor element unit 24 is disposed between the inlet 22a and the outlet 22b in the second chamber C2 when viewed along the longitudinal direction of the ceramic wiring substrate 50, and the inlet 22a is connected to the outlet 12b through the gas flow pipe 40. Has been. Then, the gas G to be measured that has been converted to the second gas component through the adjustment unit 10 is introduced into the second chamber C2 from the inlet 22a through the gas flow pipe 40, and comes into contact with the detection unit 24a to be second. After the concentration of the gas component is measured, the gas component is discharged from the outlet 22b to the outside of the sensor unit 20. *
  • the detection unit 24a detects the concentration of the second gas component by detecting an electrical signal that changes in electrical characteristics according to the concentration of the second gas component.
  • the heater 24b heats the detection unit 24a to the operating temperature by energization heating.
  • the output terminal of the detector 24a and the energization terminal of the heater 24b are electrically connected to the ceramic wiring board 50 by wire bonding (not shown).
  • the base portion 24c can be configured using, for example, an insulating ceramic substrate.
  • the detection part 24a can be made into the NOx sensor element which consists of a well-known mixed potential type sensor provided with the solid electrolyte body and a pair of electrode, for example.
  • As the heater 24b for example, a heating resistor composed of a meandering conductive pattern formed on the surface of the base portion 24c can be adopted. *
  • the end portion 50e (left side in FIG. 1) of the ceramic substrate 50 is narrower than the cases 12 and 22, and extends to the outside of the cases 12 and 22 (left side in FIG. 1).
  • On the front and back surfaces there are a plurality of electrode pads 50p that are electrically connected to the detection unit 24a and the heater 24b through the wire bonding and wiring (lead conductor) formed on the surface of the ceramic wiring substrate 50.
  • the electric signal output from the detection unit 24 is output to the outside through the electrode pad 50p of the ceramic wiring substrate 50, and the heater 24b is energized and heated by the electric power supplied from the outside through the electrode pad 50p.
  • the sensor element unit 24 including the detection unit 24a is disposed in the central region 50A of the recess 50r of the ceramic wiring substrate 50. In the region 50A, a plurality of through-holes penetrating in the plate thickness direction (in FIG. 3, 4 ⁇ 8 ⁇ 32 in total) are formed, and each through-hole is filled with the heat transfer material 30. Yes.
  • the heat transfer material 30 has a higher thermal conductivity than the ceramic material constituting the ceramic wiring substrate 50.
  • the ceramic wiring board 50 is made of zirconia, and the main component of the ceramic material constituting the ceramic wiring board 50 is zirconia.
  • the ceramic wiring substrate 50 may contain zirconia as a main component and a ceramic material as a subcomponent.
  • the heat transfer material 30 is made of W (tungsten). W has higher thermal conductivity than zirconia. For this reason, the thermal conductivity in the region 50A is higher than the thermal conductivity in the ceramic wiring substrate 50 adjacent to the region 50A.
  • the ceramic wiring board 50 includes conductive members such as wiring (lead conductors), but these do not correspond to “a ceramic material constituting the ceramic wiring board 50”.
  • the heat transfer material 30 examples include metal materials such as Cu and W.
  • the heat transfer material 30 can be formed by filling a paste containing these materials into a through hole opened in a green sheet of an unfired ceramic wiring board 50 and firing the ceramic wiring board 50 at the same time. Further, the heat transfer material 30 can be formed in a cylindrical shape having a diameter of about 0.1 to 0.5 mm, for example, and the heat transfer materials 30 can be arranged at intervals of about 1 mm, for example.
  • the main component of the ceramic material constituting the ceramic wiring board 50 includes mullite and alumina in addition to zirconia. *
  • the sensor unit 20 and the heater 24 b are integrated by stacking and integrating the heater 24 b via the detection unit 24 a and the base unit 24 c in the sensor unit 20. It is thermally coupled like
  • the heater 24b completely overlaps the region 50A.
  • the adjustment unit 10 and the heater 24b are integrated as shown in the arrow H2 by the heater 24b being laminated and integrated with the conversion unit 14 in the adjustment unit 10 via the adhesive layer 26 and the region 50A. Thermally coupled.
  • the sensor unit 20 and the heater 24b are thermally coupled” means that any member constituting the sensor unit 20 and the heater 24b are coupled without interposing air (without a gap), thereby conducting heat conduction. Means that is possible. The same applies to the meaning of “adjustment unit 10 and heater 24b are thermally coupled”.
  • the adjustment unit 10 and the sensor unit 20 need only be heated by the single heater 24b, so that the gas sensor 1 can be reduced in size and power can be saved as compared with the case where the heaters are separately provided in both units. .
  • the sensor unit 20 and the heater 24b are integrated, the heat of the heater 24b arranged in the sensor unit 20 is easily transmitted to the detection unit 24a as indicated by an arrow H1 in FIG.
  • the sensor unit 20 and the adjustment unit 10 are thermally coupled via the region 50A, the heat of the heater 24b passes through the region 50A having a higher thermal conductivity than the surrounding ceramic wiring substrate 50 as indicated by the arrow in FIG. It is easily transmitted to the adjustment unit 10 (converter 14) through H2.
  • both units 10 and 20 can be reliably heated with low power by a single heater 24b.
  • the detection unit 24a of the sensor unit 20 can be heated to the operating temperature with the heater 24b in this way, the second gas component can be detected stably, and the detection accuracy can be improved.
  • the thermal conductivity of the region 50A can be easily controlled.
  • the heater 24b is plate-shaped, has a lower surface and an upper surface facing each other, the conversion unit 14 is disposed on the lower surface side, and the detection unit 24a is disposed on the upper surface side. Is arranged. Thereby, since the conversion unit 14 and the detection unit 24a are arranged on both surfaces of the heater 24b, the heat of the heater 24b can be transmitted to the conversion unit 14 and the detection unit 24a without waste, and further power saving can be realized. Further, a part of the constituent members for constituting the first chamber C1 of the adjustment unit 10 and a part of the constituent members for constituting the second chamber C2 of the sensor unit 20 are common ceramic members. Part 50r. Thereby, the number of parts of the gas sensor 1A can be reduced by the ceramic thin plate portion 50r which is a common member, and the gas sensor 1A can be further downsized. *
  • the thickness of the region 50A is thinner than the thickness of the ceramic wiring board 50 adjacent to the region 50A.
  • the thermal conductivity of the region 50A is further increased, both the units 10 and 20 can be reliably heated with lower power by the single heater 24b.
  • the main component of the ceramic material constituting the ceramic wiring substrate 50 (a component exceeding 50 mass% of the ceramic material) is zirconia. Since zirconia has a low thermal conductivity among ceramic materials, the heat of the heater 24b is preferentially transmitted to the region 50A having a high thermal conductivity, and heat dissipation in the direction of the plate surface of the ceramic wiring board 50 can be further suppressed. Power saving can be further realized.
  • a heater 24b may be provided on the adjustment unit 10 side.
  • the adjustment unit 10 and the heater 24b are thermally coupled as indicated by an arrow H2 by the heater 24b being laminated and integrated with the conversion unit 14 in the adjustment unit 10. is doing.
  • the heater 24b when viewed from the stacking direction (the direction in which the through hole extends), the heater 24b completely overlaps the region 50A. Therefore, the sensor unit 20 and the heater 24b are integrated by stacking and integrating the heater 24b with the detection portion 24a in the sensor unit 20 via the base portion 24c, the adhesive layer 26, and the region 50A. It is thermally coupled like *
  • the material of the heat-transfer material 30 is not limited to this.
  • a nonconductive material such as diamond or aluminum nitride may be used.
  • Non-conductive materials tend to have high thermal conductivity and are insulative, so there is no possibility of short circuit between the wirings of the ceramic wiring board 50 due to the installation of the heat transfer material 30.
  • the heat conductive material 30 is non-conductive, it is possible to heat both the adjustment unit 10 and the sensor unit 20 with lower power by the single heater 24b.
  • the gas sensor, the adjustment unit constituting the gas sensor, the shape of the sensor unit, and the like are not limited to the above embodiment.
  • the types of the conversion unit and the detection unit are not limited.
  • the shape, number and diameter of through holes and heat transfer materials are not limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a gas sensor, whereby detection accuracy of a specific gas component is improved by being provided with a single heater, and size reduction and power saving can be achieved. [Solution] This gas sensor is provided with: an adjustment unit 10 that is provided with a conversion section 14, which is provided with a first chamber C1, and which converts a first gas component into a second gas component; a sensor unit 20 that is provided with a detection section 24a, which is provided with a second chamber C2, and in which electrical characteristics change corresponding to the concentration of the second gas component; a ceramic wiring board 50, on which the detection section is disposed; and a single heater 24b. A through hole 30 is formed in a region 50A, in which the detection section is disposed, said region being a part of the ceramic wiring board, the through hole is filled with a heat transfer material having a high heat conductivity, and the gas sensor is formed by integrating the adjustment unit, the sensor unit, and the heater with each other in a mode wherein the adjustment unit and the heater are thermally coupled to each other, the sensor unit and the heater are thermally coupled to each other, and at least a part of the heater overlaps the region when viewed from the direction, in which the through hole extends.

Description

ガスセンサGas sensor
本発明は、被測定ガスに含まれる特定ガス成分の濃度を検知するガスセンサに関する。 The present invention relates to a gas sensor that detects the concentration of a specific gas component contained in a gas to be measured.
環境管理、プロセス管理、健康管理などで被測定ガス中のNOx濃度を測定することが必要とされている。 そこで、呼気中のNOをNOに触媒で変換した後、このNOをセンサ素子で検知する技術が知られている(特許文献1)。この技術では、触媒による前処理を行う変換部と、センサ素子を有する検知部とを、それぞれ別個に形成すると共に、これらを一体化して1つのユニットとして構成している。そして、変換部とセンサ素子とにヒータ(発熱抵抗体)をそれぞれ別個に設けることで、変換部及びセンサ素子を加熱して安定的に動作させている。 It is necessary to measure the NOx concentration in the gas to be measured for environmental management, process management, health management, and the like. Therefore, a technique is known in which NO in the exhalation is converted to NO 2 by a catalyst, and then this NO 2 is detected by a sensor element (Patent Document 1). In this technique, a conversion unit that performs pretreatment using a catalyst and a detection unit that includes a sensor element are formed separately, and are integrated into a single unit. Then, by providing heaters (heating resistors) separately for the conversion unit and the sensor element, the conversion unit and the sensor element are heated and stably operated.
米国特許出願公開第2015/0250408号明細書(図6B)US Patent Application Publication No. 2015/0250408 (FIG. 6B)
ところで、ヒータの消費電力の低減や、センサの小型化の観点からは、単一のヒータで変換部及び検知部を加熱することが考えられる。この場合、例えばセラミック配線基板に実装した検知部側にヒータを設け、ヒータの熱をセラミック配線基板越しに変換部へ伝えることで、変換部及び検知部をそれぞれ加熱することが想定される。 しかしながら、セラミックは熱伝導率が低いため、ヒータの熱をセラミック配線基板越しに変換部へ伝えるには、ヒータの熱量を多くする必要があり、ヒータの消費電力が増大してしまう。又、セラミックの熱伝導率が低いことから、板状のセラミック配線基板の熱は板面方向に散逸する傾向にあり、この点からもヒータの熱が外部の変換部へ伝わり難く、ヒータの消費電力の増大を招く。 そこで、本発明は、単一のヒータを備えて特定のガス成分の検知精度を向上させると共に、小型化及び省電力化を実現できるガスセンサを提供することを目的とする。 By the way, from the viewpoint of reducing the power consumption of the heater and reducing the size of the sensor, it is conceivable to heat the conversion unit and the detection unit with a single heater. In this case, for example, it is assumed that a heater is provided on the detection unit side mounted on the ceramic wiring board and the heat of the heater is transmitted to the conversion unit through the ceramic wiring substrate to heat the conversion unit and the detection unit. However, since ceramic has a low thermal conductivity, it is necessary to increase the amount of heat of the heater in order to transmit the heat of the heater to the conversion section through the ceramic wiring board, and the power consumption of the heater increases. In addition, since the thermal conductivity of ceramic is low, the heat of the plate-like ceramic wiring board tends to dissipate in the direction of the plate surface. From this point also, the heat of the heater is difficult to be transmitted to the external conversion section, and the consumption of the heater Increases power. Therefore, an object of the present invention is to provide a gas sensor that includes a single heater to improve the detection accuracy of a specific gas component, and can realize downsizing and power saving.
上記課題を解決するため、本発明のガスセンサは、自身の内部に被測定ガスを導入するための第1チャンバが設けられるとともに、前記第1チャンバに導入された該被測定ガスに含まれる第1ガス成分を第2ガス成分に変換する変換部を備える調整ユニットと、自身の内部に前記調整ユニットを通過した前記被測定ガスを導入するための第2チャンバが設けられるとともに、前記第2ガス成分の濃度に応じて電気的特性が変化する検知部を備えるセンサユニットと、前記検知部が配置され、前記センサユニットの内部に自身の少なくとも一部が収容されるセラミック配線基板と、前記変換部、及び、前記検知部を加熱するための単一のヒータと、を備え、前記セラミック配線基板のうちで前記検知部が配置される領域には、自身の板厚方向に貫通した少なくとも1つのスルーホールが形成され、前記スルーホールには、前記セラミック配線基板を構成するセラミック材料よりも熱伝導率が高い伝熱材がそれぞれ充填され、前記調整ユニットと前記ヒータ、及び、前記センサユニットと前記ヒータがそれぞれ熱結合し、かつ前記スルーホールの延びる方向から見たときに前記ヒータの少なくとも一部が前記領域と重なる形態で、前記調整ユニット、前記センサユニット、及び、前記ヒータが一体化されてなる。  In order to solve the above problems, the gas sensor of the present invention is provided with a first chamber for introducing the gas to be measured therein, and the first gas contained in the gas to be measured introduced into the first chamber. An adjustment unit including a conversion unit that converts a gas component into a second gas component, and a second chamber for introducing the gas to be measured that has passed through the adjustment unit are provided therein, and the second gas component A sensor unit having a detection unit whose electrical characteristics change according to the concentration of the ceramic unit, a ceramic wiring board in which the detection unit is arranged and at least a part of the sensor unit is housed in the sensor unit, the conversion unit, And a single heater for heating the detection unit, and in the region of the ceramic wiring board where the detection unit is arranged, in the thickness direction of itself At least one through hole is formed, and the through hole is filled with a heat transfer material having a higher thermal conductivity than the ceramic material constituting the ceramic wiring board, and the adjustment unit, the heater, and The adjustment unit, the sensor unit, and the heater are configured such that the sensor unit and the heater are respectively thermally coupled and at least a part of the heater overlaps the region when viewed from the extending direction of the through hole. Are integrated. *
このガスセンサによれば、単一のヒータで調整ユニットとセンサユニットとを加熱すればよいので、両ユニットにそれぞれ別個にヒータを設けた場合に比べ、ガスセンサの構成をシンプルにできると共に、ガスセンサの小型化を実現できる。 又、調整ユニットとヒータ、及び、センサユニットとヒータがそれぞれ熱結合し、かつスルーホールの延びる方向に見たときにヒータの少なくとも一部が上記領域と重なる。このため、両ユニットの少なくとも一方とヒータとの間で、ヒータの熱は、周囲のセラミック配線基板よりも熱伝導率が高い領域(即ち、伝熱材)を通って当該ユニットへ容易に伝わるので、単一のヒータで両ユニットを低電力で確実に加熱できる。  According to this gas sensor, the adjustment unit and the sensor unit need only be heated with a single heater, so that the configuration of the gas sensor can be simplified and the size of the gas sensor can be reduced compared to the case where the heaters are provided separately for both units. Can be realized. Also, the adjustment unit and the heater, and the sensor unit and the heater are respectively thermally coupled, and at least a part of the heater overlaps with the region when viewed in the extending direction of the through hole. For this reason, between at least one of the units and the heater, the heat of the heater is easily transferred to the unit through a region (that is, a heat transfer material) having a higher thermal conductivity than the surrounding ceramic wiring board. Both units can be reliably heated with low power with a single heater. *
又、このようにしてセンサユニットの検知部をヒータで動作温度に加熱することで、特定成分を安定して検知でき、特定成分の検知精度を向上させることができる。 さらに、スルーホール及び伝熱材の個数や直径を調整することで、領域の熱伝導率を容易に制御することができ、両ユニットへ伝わるヒータの熱量を容易に調整することができる。その結果、単一のヒータでも、調整ユニットとセンサユニットとを異なる温度に容易に制御することができる。なお、単一のヒータで両ユニットをより低電力で加熱するには、スルーホールを複数設けると良い。  In addition, by heating the detection unit of the sensor unit to the operating temperature in this way, the specific component can be detected stably, and the detection accuracy of the specific component can be improved. Furthermore, by adjusting the number and diameter of the through holes and the heat transfer material, the thermal conductivity of the region can be easily controlled, and the amount of heat of the heater transmitted to both units can be easily adjusted. As a result, even with a single heater, the adjustment unit and the sensor unit can be easily controlled to different temperatures. In order to heat both units with a lower power with a single heater, it is preferable to provide a plurality of through holes. *
本発明のガスセンサであって、前記領域の厚みは、該領域に隣接する前記セラミック配線基板の厚みよりも薄くなっているとよい。 このガスセンサによれば、領域の熱伝導率がさらに高くなるので、単一のヒータで両ユニットをより低電力で確実に加熱できる。  In the gas sensor of the present invention, the thickness of the region may be smaller than the thickness of the ceramic wiring board adjacent to the region. According to this gas sensor, since the thermal conductivity of the region is further increased, both units can be reliably heated with lower power with a single heater. *
本発明のガスセンサであって、前記セラミック材料の主成分がジルコニアであってもよい。 ジルコニアはセラミック材料の中でも熱伝導率が低いので、ヒータの熱が熱伝導率の高い領域により優先的に伝わり、セラミック配線基板の板面方向に熱が散逸することをさらに抑制でき、省電力化をより一層実現できる。  In the gas sensor according to the present invention, the main component of the ceramic material may be zirconia. Since zirconia has a low thermal conductivity among ceramic materials, the heat of the heater is preferentially transmitted to areas with high thermal conductivity, and heat dissipation can be further suppressed in the direction of the surface of the ceramic wiring board, saving power. Can be realized even more. *
本発明のガスセンサであって、前記伝熱材が非伝導性であってもよい。 このガスセンサによれば、非伝導性の材料は高い熱伝導率を有するので、ヒータの熱が熱伝導率の高い領域により優先的に伝わり、セラミック配線基板の板面方向に熱が散逸することをさらに抑制でき、省電力化をより一層実現できる。 In the gas sensor of the present invention, the heat transfer material may be nonconductive. According to this gas sensor, since the non-conductive material has a high thermal conductivity, the heat of the heater is preferentially transmitted to the region having a high thermal conductivity, and the heat is dissipated in the direction of the surface of the ceramic wiring board. Further suppression can be achieved, and further power saving can be realized.
この発明によれば、特定のガス成分の検知精度を向上させると共に、小型化及び省電力化を実現できるガスセンサが得られる。 According to the present invention, it is possible to obtain a gas sensor that can improve the accuracy of detection of a specific gas component and can achieve downsizing and power saving.
本発明の実施形態に係るガスセンサの分解斜視図である。It is a disassembled perspective view of the gas sensor which concerns on embodiment of this invention. 図1のA-A線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 本発明の実施形態に係るガスセンサの部分断面斜視図である。It is a partial section perspective view of a gas sensor concerning an embodiment of the present invention. 本発明の実施形態に係るガスセンサにおけるヒータからの伝熱経路を示す模式図である。It is a schematic diagram which shows the heat-transfer path | route from the heater in the gas sensor which concerns on embodiment of this invention. 本発明の実施形態に係るガスセンサの変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of the gas sensor concerning the embodiment of the present invention.
以下に、本発明を、図面を参照しながら詳細に説明する。図1は、本発明の実施形態におけるガスセンサ1の分解斜視図、図2は図1のA-A線に沿う断面図、図3はガスセンサ1の部分断面斜視図、図4はヒータ24bからの伝熱経路を示す模式図である。である。 図1において、ガスセンサ1は、調整ユニット10と、センサユニット20と、パイプ状のガス流通管40と、板状のセラミック配線基板50と、を備え、全体として箱状に形成されている。  Hereinafter, the present invention will be described in detail with reference to the drawings. 1 is an exploded perspective view of a gas sensor 1 according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a partial sectional perspective view of the gas sensor 1, and FIG. It is a schematic diagram which shows a heat transfer path | route. It is. 1, the gas sensor 1 includes an adjustment unit 10, a sensor unit 20, a pipe-shaped gas flow pipe 40, and a plate-shaped ceramic wiring substrate 50, and is formed in a box shape as a whole. *
調整ユニット10は、略矩形箱状でフランジを有し上面(図1の上方に向く面)が開口する金属製のケース12と、ケース12のフランジに接着剤(図示せず)を介して接着される矩形枠状のパッキン13と、ケース12内に収容される変換部14と、を有している。そして、パッキン13の枠体にケース12のフランジ及びセラミック配線基板50の下面の外周部分が接着剤(図示せず)を介して固着することで、ケース12の開口をセラミック基板50が閉塞し、ケース12の内部空間が第1チャンバC1を形成する。 ケース12の下面には、配管の接続口となるパイプ状のインレット12a及びアウトレット12bがそれぞれ離間して突出しており、インレット12a及びアウトレット12bは第1チャンバC1に連通している。  The adjustment unit 10 is formed in a substantially rectangular box shape with a flange and a metal case 12 having an upper surface (a surface facing upward in FIG. 1) and an adhesive (not shown) attached to the flange of the case 12. A rectangular frame-shaped packing 13 and a conversion portion 14 accommodated in the case 12. Then, the ceramic substrate 50 closes the opening of the case 12 by fixing the flange of the case 12 and the outer peripheral portion of the lower surface of the ceramic wiring substrate 50 to the frame of the packing 13 via an adhesive (not shown). The internal space of the case 12 forms the first chamber C1. A pipe-like inlet 12a and outlet 12b that serve as piping connection ports protrude from the lower surface of the case 12 so as to be spaced apart from each other, and the inlet 12a and outlet 12b communicate with the first chamber C1. *
第1チャンバC1におけるインレット12aとアウトレット12bとの間に、直方体形状をなすと共に、多孔質状をなしガスを透過可能な変換部14が配置され、変換部14の表面には第1チャンバC1の壁面との隙間をシールする無機繊維(例えば、アルミナ繊維)からなるシール材14aが設けられている。 そして、インレット12aから第1チャンバC1に導入された被測定ガスGが変換部14に接触し、被測定ガスGに含まれる第1ガス成分が第2ガス成分に変換された後、アウトレット12bから調整ユニット10の外部に排出される。変換部14は、呼気Gに含まれる第1ガス成分(具体的にはNO)を第2ガス成分(具体的にはNOx)に変換するPtを担持したゼオライト等の触媒を含む。  Between the inlet 12a and the outlet 12b in the first chamber C1, a conversion unit 14 having a rectangular parallelepiped shape and porous and permeable to gas is disposed, and the surface of the first chamber C1 is disposed on the surface of the conversion unit 14. A sealing material 14a made of inorganic fiber (for example, alumina fiber) that seals the gap with the wall surface is provided. And after the to-be-measured gas G introduced into the 1st chamber C1 from the inlet 12a contacts the conversion part 14, the 1st gas component contained in the to-be-measured gas G is converted into the 2nd gas component, Then, from the outlet 12b It is discharged outside the adjustment unit 10. The conversion unit 14 includes a catalyst such as zeolite supporting Pt that converts the first gas component (specifically NO) contained in the exhaled breath G into the second gas component (specifically NOx 2 ).
センサユニット20は、ケース12と同一もしくは類似形状で下面が開口する金属製のケース22と、ケース22のフランジに積層される矩形枠状のパッキン23と、ケース22内に収容されるセンサ素子部24と、センサ素子部24をセラミック配線基板50の所定位置(後述する凹部50r)に接着するための接着層26と、上記セラミック配線基板50と、を有している。そして、パッキン23の枠体にケース22のフランジ及びセラミック配線基板50の上面の外周部分が接着剤(図示せず)を介して固着されることで、ケース22の開口をセラミック配線基板50が閉塞し、ケース22の内部空間が第2チャンバC2を形成する。  The sensor unit 20 includes a metal case 22 having the same or similar shape as the case 12 and having an open bottom surface, a rectangular frame-shaped packing 23 stacked on the flange of the case 22, and a sensor element unit housed in the case 22. 24, an adhesive layer 26 for bonding the sensor element portion 24 to a predetermined position (a recessed portion 50r described later) of the ceramic wiring substrate 50, and the ceramic wiring substrate 50. The flange of the case 22 and the outer peripheral portion of the upper surface of the ceramic wiring board 50 are fixed to the frame of the packing 23 via an adhesive (not shown), so that the ceramic wiring board 50 closes the opening of the case 22. The internal space of the case 22 forms the second chamber C2. *
センサ素子部24は略矩形板状をなし、図2に示すように、ベース部24cの上面(図1の上方に向く面)側に検知部24aが配置され、ベース部24cの下面側に単一のヒータ24bが配置されており、検知部24aとヒータ24bがベース部24cの上下に積層された一体構造となっている。 セラミック配線基板50の上面の中央には凹部50rが形成され、凹部50rに接着層26を介してヒータ24b側が接するようにしてセンサ素子部24が配置されている。 ケース22の上面には、配管の接続口となるパイプ状のインレット22a及びアウトレット22bがそれぞれ離間して突出しており、インレット22a及びアウトレット22bは第2チャンバC2に連通している。  The sensor element portion 24 has a substantially rectangular plate shape, and as shown in FIG. 2, a detection portion 24a is disposed on the upper surface (surface facing upward in FIG. 1) side of the base portion 24c, and a single surface is formed on the lower surface side of the base portion 24c. One heater 24b is disposed, and the detection unit 24a and the heater 24b are integrated with each other on the top and bottom of the base unit 24c. A recess 50r is formed in the center of the upper surface of the ceramic wiring substrate 50, and the sensor element portion 24 is arranged so that the heater 24b side is in contact with the recess 50r through the adhesive layer 26. A pipe-like inlet 22a and outlet 22b that serve as connection ports for piping protrude from the upper surface of the case 22 apart from each other, and the inlet 22a and outlet 22b communicate with the second chamber C2. *
センサ素子部24は、セラミック配線基板50の長手方向に沿って見たときに、第2チャンバC2におけるインレット22aとアウトレット22bとの間に配置され、インレット22aはガス流通管40でアウトレット12bと接続されている。そして、調整ユニット10を通過して第2ガス成分に変換された被測定ガスGは、ガス流通管40を通ってインレット22aから第2チャンバC2に導入され、検知部24aに接触して第2ガス成分の濃度が測定された後、アウトレット22bからセンサユニット20の外部に排出される。  The sensor element unit 24 is disposed between the inlet 22a and the outlet 22b in the second chamber C2 when viewed along the longitudinal direction of the ceramic wiring substrate 50, and the inlet 22a is connected to the outlet 12b through the gas flow pipe 40. Has been. Then, the gas G to be measured that has been converted to the second gas component through the adjustment unit 10 is introduced into the second chamber C2 from the inlet 22a through the gas flow pipe 40, and comes into contact with the detection unit 24a to be second. After the concentration of the gas component is measured, the gas component is discharged from the outlet 22b to the outside of the sensor unit 20. *
検知部24aは第2ガス成分の濃度に応じて電気的特性が変化し、その変化した電気信号を検知することで第2ガス成分の濃度を検出する。又、ヒータ24bは通電加熱により、検知部24aを動作温度に加熱する。そして、検知部24aの出力端子、及びヒータ24bの通電端子はセラミック配線基板50に図示しないワイヤボンディングで電気的に接続されている。 ベース部24cは例えば絶縁性のセラミック基板を用いて構成することができる。又、検知部24aは、例えば固体電解質体と一対の電極を備えた公知の混成電位型センサからなるNOxセンサ素子とすることができる。ヒータ24bは例えばベース部24cの表面に形成されたミアンダ状の導電パターンからなる発熱抵抗体を採用することができる。  The detection unit 24a detects the concentration of the second gas component by detecting an electrical signal that changes in electrical characteristics according to the concentration of the second gas component. The heater 24b heats the detection unit 24a to the operating temperature by energization heating. The output terminal of the detector 24a and the energization terminal of the heater 24b are electrically connected to the ceramic wiring board 50 by wire bonding (not shown). The base portion 24c can be configured using, for example, an insulating ceramic substrate. Moreover, the detection part 24a can be made into the NOx sensor element which consists of a well-known mixed potential type sensor provided with the solid electrolyte body and a pair of electrode, for example. As the heater 24b, for example, a heating resistor composed of a meandering conductive pattern formed on the surface of the base portion 24c can be adopted. *
ここで、セラミック基板50の端部50e(図1の左側)はケース12、22よりも狭幅とされて、ケース12、22の外側(図1の左側)へ延びており、端部50eの表裏面には、検知部24a及びヒータ24bに対して上記ワイヤボンディング及びセラミック配線基板50の表面上に形成された配線(リード導体)を介して電気的に接続された、複数の電極パッド50pが配置されている。そして、検知部24から出力された電気信号はセラミック配線基板50の電極パッド50pを介して外部に出力され、電極パッド50pを介して外部から供給された電力によりヒータ24bが通電加熱する。  Here, the end portion 50e (left side in FIG. 1) of the ceramic substrate 50 is narrower than the cases 12 and 22, and extends to the outside of the cases 12 and 22 (left side in FIG. 1). On the front and back surfaces, there are a plurality of electrode pads 50p that are electrically connected to the detection unit 24a and the heater 24b through the wire bonding and wiring (lead conductor) formed on the surface of the ceramic wiring substrate 50. Has been placed. The electric signal output from the detection unit 24 is output to the outside through the electrode pad 50p of the ceramic wiring substrate 50, and the heater 24b is energized and heated by the electric power supplied from the outside through the electrode pad 50p. *
次に、図3、図4を参照し、本発明の特徴部分であるスルーホール及び伝熱材30について説明する。なお、図3、図4では煩雑を避けるためにスルーホールに符号を付していないが、伝熱材30の外縁部分が
スルーホールの壁面を表すであることはいうまでもない。 セラミック配線基板50の凹部50rの中央の領域50Aに検知部24aを含むセンサ素子部24が配置されている。そして、領域50Aには、自身の板厚方向に貫通した複数のスルーホール(図3では縦横4×8個で合計32個)が形成され、各スルーホールに伝熱材30がそれぞれ充填されている。 この伝熱材30は、セラミック配線基板50を構成するセラミック材料よりも熱伝導率が高い。例えば、本実施形態では、セラミック配線基板50はジルコニアから構成されており、セラミック配線基板50を構成するセラミック材料の主成分はジルコニアとなっている。なお、セラミック配線基板50は、ジルコニアを主成分としつつ、副成分としてセラミック材料が含有されていてもよい。また、伝熱材30はW(タングステン)からなる。Wはジルコニアよりも熱伝導率が高い。 このため、領域50Aにおける熱伝導率は、領域50Aに隣接するセラミック配線基板50における熱伝導率よりも高くなる。なお、セラミック配線基板50には配線(リード導体)等の導電部材も含まれるが、これらは「セラミック配線基板50を構成するセラミック材料」に相当しない。 
Next, with reference to FIG. 3 and FIG. 4, the through hole and the heat transfer material 30 which are characteristic portions of the present invention will be described. In FIGS. 3 and 4, reference numerals are not assigned to the through holes in order to avoid complications, but it goes without saying that the outer edge portion of the heat transfer material 30 represents the wall surface of the through holes. The sensor element unit 24 including the detection unit 24a is disposed in the central region 50A of the recess 50r of the ceramic wiring substrate 50. In the region 50A, a plurality of through-holes penetrating in the plate thickness direction (in FIG. 3, 4 × 8 × 32 in total) are formed, and each through-hole is filled with the heat transfer material 30. Yes. The heat transfer material 30 has a higher thermal conductivity than the ceramic material constituting the ceramic wiring substrate 50. For example, in the present embodiment, the ceramic wiring board 50 is made of zirconia, and the main component of the ceramic material constituting the ceramic wiring board 50 is zirconia. The ceramic wiring substrate 50 may contain zirconia as a main component and a ceramic material as a subcomponent. The heat transfer material 30 is made of W (tungsten). W has higher thermal conductivity than zirconia. For this reason, the thermal conductivity in the region 50A is higher than the thermal conductivity in the ceramic wiring substrate 50 adjacent to the region 50A. The ceramic wiring board 50 includes conductive members such as wiring (lead conductors), but these do not correspond to “a ceramic material constituting the ceramic wiring board 50”.
伝熱材30としては、Cu、Wといった金属材料が例示される。又、伝熱材30は、これらの材料を含むペーストを、未焼成のセラミック配線基板50のグリーンシートに開口したスルーホールに充填し、セラミック配線基板50と同時に焼成して形成することができる。 又、伝熱材30は例えば直径0.1~0.5mm程度の円柱状とすることができ、各伝熱材30は例えば1mm程度の間隔で配置することができる。 セラミック配線基板50を構成するセラミック材料の主成分としては、ジルコニアの他、ムライト、アルミナが挙げられる。  Examples of the heat transfer material 30 include metal materials such as Cu and W. The heat transfer material 30 can be formed by filling a paste containing these materials into a through hole opened in a green sheet of an unfired ceramic wiring board 50 and firing the ceramic wiring board 50 at the same time. Further, the heat transfer material 30 can be formed in a cylindrical shape having a diameter of about 0.1 to 0.5 mm, for example, and the heat transfer materials 30 can be arranged at intervals of about 1 mm, for example. The main component of the ceramic material constituting the ceramic wiring board 50 includes mullite and alumina in addition to zirconia. *
ここで、図4に示すように、センサユニット20とヒータ24bとは、ヒータ24bがセンサユニット20内の検知部24aとベース部24cを介して積層されて一体化されていることにより、矢印H1のように熱結合している。 一方、積層方向(スルーホールの延びる方向)から見たとき、ヒータ24bが領域50Aに完全に重なっている。このため、調整ユニット10とヒータ24bとは、ヒータ24bが調整ユニット10内の変換部14と、接着層26及び領域50Aを介して積層されて一体化されていることにより、矢印H2のように熱結合している。 なお、「センサユニット20とヒータ24bとが熱結合している」とは、センサユニット20を構成する何らかの部材とヒータ24bとが空気を挟まずに(隙間を介さずに)結合し、熱伝導が可能な状態になっていることをいう。「調整ユニット10とヒータ24bとが熱結合している」の意味も同様である。  Here, as shown in FIG. 4, the sensor unit 20 and the heater 24 b are integrated by stacking and integrating the heater 24 b via the detection unit 24 a and the base unit 24 c in the sensor unit 20. It is thermally coupled like On the other hand, when viewed from the stacking direction (the direction in which the through hole extends), the heater 24b completely overlaps the region 50A. For this reason, the adjustment unit 10 and the heater 24b are integrated as shown in the arrow H2 by the heater 24b being laminated and integrated with the conversion unit 14 in the adjustment unit 10 via the adhesive layer 26 and the region 50A. Thermally coupled. Note that “the sensor unit 20 and the heater 24b are thermally coupled” means that any member constituting the sensor unit 20 and the heater 24b are coupled without interposing air (without a gap), thereby conducting heat conduction. Means that is possible. The same applies to the meaning of “adjustment unit 10 and heater 24b are thermally coupled”. *
以上により、単一のヒータ24bで調整ユニット10とセンサユニット20とを加熱すればよいので、両ユニットにそれぞれ別個にヒータを設けた場合に比べ、ガスセンサ1の小型化及び省電力化を実現できる。 又、センサユニット20とヒータ24bが一体化されているので、センサユニット20内に配置されたヒータ24bの熱は図2の矢印H1のように検知部24aに容易に伝わる。 さらに、センサユニット20と調整ユニット10とは、領域50Aを介して熱結合しているため、ヒータ24bの熱は、周囲のセラミック配線基板50よりも熱伝導率が高い領域50Aを図4の矢印H2のように通って調整ユニット10(変換部14)へ容易に伝わる。その結果、単一のヒータ24bで両ユニット10、20を低電力で確実に加熱できる。 又、このようにしてセンサユニット20の検知部24aをヒータ24bで動作温度に加熱することで、第2ガス成分を安定して検知でき、検知精度を向上させることができる。  As described above, the adjustment unit 10 and the sensor unit 20 need only be heated by the single heater 24b, so that the gas sensor 1 can be reduced in size and power can be saved as compared with the case where the heaters are separately provided in both units. . Further, since the sensor unit 20 and the heater 24b are integrated, the heat of the heater 24b arranged in the sensor unit 20 is easily transmitted to the detection unit 24a as indicated by an arrow H1 in FIG. Further, since the sensor unit 20 and the adjustment unit 10 are thermally coupled via the region 50A, the heat of the heater 24b passes through the region 50A having a higher thermal conductivity than the surrounding ceramic wiring substrate 50 as indicated by the arrow in FIG. It is easily transmitted to the adjustment unit 10 (converter 14) through H2. As a result, both units 10 and 20 can be reliably heated with low power by a single heater 24b. In addition, by heating the detection unit 24a of the sensor unit 20 to the operating temperature with the heater 24b in this way, the second gas component can be detected stably, and the detection accuracy can be improved. *
又、ヒータ24bの熱が熱伝導率の高い領域50Aを介して板厚方向に伝わるので、セラミック配線基板50の板面方向に熱が散逸する割合が減少し、ヒータ24bの熱量を有効に利用して省電力化をより一層実現できる。 さらに、スルーホール及び伝熱材30の個数や直径を調整することで、領域50Aの熱伝導率を容易に制御することができ、例えば矢印H2によって調整ユニット10(変換部14)へ伝わるヒータ24bの熱量を容易に調整することができる。  Further, since the heat of the heater 24b is transmitted in the plate thickness direction through the region 50A having a high thermal conductivity, the rate of heat dissipation in the plate surface direction of the ceramic wiring board 50 is reduced, and the amount of heat of the heater 24b is effectively used. Thus, further power saving can be realized. Furthermore, by adjusting the number and diameter of the through holes and the heat transfer material 30, the thermal conductivity of the region 50A can be easily controlled. For example, the heater 24b transmitted to the adjustment unit 10 (converter 14) by the arrow H2. The amount of heat can be adjusted easily. *
なお、図2に示すように、本実施形態においては、ヒータ24bは板状であり、対向する下面と上面と、を有し、下面側に変換部14が配置され、上面側に検知部24aが配置されている。 これにより、ヒータ24bの両面に変換部14及び検知部24aがそれぞれ配置されるので、ヒータ24bの熱を変換部14及び検知部24aに無駄なく伝えることができ、省電力化をさらに実現できる。 又、調整ユニット10の第1チャンバC1を構成するための構成部材の一部と、センサユニット20の第2チャンバC2を構成するための構成部材の一部とは、共通の部材であるセラミック薄板部50rからなっている。 これにより、共通の部材であるセラミック薄板部50rによってガスセンサ1Aの部品点数を削減できると共に、ガスセンサ1Aをより小型化できる。  As shown in FIG. 2, in the present embodiment, the heater 24b is plate-shaped, has a lower surface and an upper surface facing each other, the conversion unit 14 is disposed on the lower surface side, and the detection unit 24a is disposed on the upper surface side. Is arranged. Thereby, since the conversion unit 14 and the detection unit 24a are arranged on both surfaces of the heater 24b, the heat of the heater 24b can be transmitted to the conversion unit 14 and the detection unit 24a without waste, and further power saving can be realized. Further, a part of the constituent members for constituting the first chamber C1 of the adjustment unit 10 and a part of the constituent members for constituting the second chamber C2 of the sensor unit 20 are common ceramic members. Part 50r. Thereby, the number of parts of the gas sensor 1A can be reduced by the ceramic thin plate portion 50r which is a common member, and the gas sensor 1A can be further downsized. *
本実施形態においては、領域50Aの厚みは、領域50Aに隣接するセラミック配線基板50の厚みよりも薄くなっている。これにより、領域50Aの熱伝導率がさらに高くなるので、単一のヒータ24bで両ユニット10、20をより低電力で確実に加熱できる。 さらに、本実施形態においては、セラミック配線基板50を構成するセラミック材料の主成分(セラミック材料のうち50質量%を超える成分)がジルコニアである。ジルコニアはセラミック材料の中でも熱伝導率が低いので、ヒータ24bの熱が熱伝導率の高い領域50Aにより優先的に伝わり、セラミック配線基板50の板面方向に熱が散逸することをさらに抑制でき、省電力化をより一層実現できる。  In the present embodiment, the thickness of the region 50A is thinner than the thickness of the ceramic wiring board 50 adjacent to the region 50A. Thereby, since the thermal conductivity of the region 50A is further increased, both the units 10 and 20 can be reliably heated with lower power by the single heater 24b. Furthermore, in this embodiment, the main component of the ceramic material constituting the ceramic wiring substrate 50 (a component exceeding 50 mass% of the ceramic material) is zirconia. Since zirconia has a low thermal conductivity among ceramic materials, the heat of the heater 24b is preferentially transmitted to the region 50A having a high thermal conductivity, and heat dissipation in the direction of the plate surface of the ceramic wiring board 50 can be further suppressed. Power saving can be further realized. *
本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。  It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention. *
例えば、図5に示すように、調整ユニット10側にヒータ24bを積層して設けてもよい。この場合、図4の場合と逆に、調整ユニット10とヒータ24bとは、ヒータ24bが調整ユニット10内の変換部14と積層されて一体化されていることにより、矢印H2のように熱結合している。 一方、積層方向(スルーホールの延びる方向)から見たとき、ヒータ24bが領域50Aに完全に重なっている。このためセンサユニット20とヒータ24bとは、ヒータ24bがセンサユニット20内の検知部24aと、ベース部24c、接着層26及び領域50Aを介して積層されて一体化されていることにより、矢印H1のように熱結合している。  For example, as shown in FIG. 5, a heater 24b may be provided on the adjustment unit 10 side. In this case, contrary to the case of FIG. 4, the adjustment unit 10 and the heater 24b are thermally coupled as indicated by an arrow H2 by the heater 24b being laminated and integrated with the conversion unit 14 in the adjustment unit 10. is doing. On the other hand, when viewed from the stacking direction (the direction in which the through hole extends), the heater 24b completely overlaps the region 50A. Therefore, the sensor unit 20 and the heater 24b are integrated by stacking and integrating the heater 24b with the detection portion 24a in the sensor unit 20 via the base portion 24c, the adhesive layer 26, and the region 50A. It is thermally coupled like *
また、上記実施形態では、伝熱材30として金属材料(具体的にはW)を用いたが、伝熱材30の材質はこれに限定されない。例えば、ダイヤモンドや窒化アルミニウム等の非伝導性の材質を用いるようにしても良い。非伝導性の材質は熱伝導率が高い傾向にあり、また、絶縁性であることから、伝熱材30の設置によってセラミック配線基板50の配線間の短絡が生じるおそれもない。このように、熱伝導材30が非伝導性である場合にも、単一のヒータ24bで調整ユニット10とセンサユニット20の双方をより低電力で加熱することが可能となる。  Moreover, in the said embodiment, although the metal material (specifically W) was used as the heat-transfer material 30, the material of the heat-transfer material 30 is not limited to this. For example, a nonconductive material such as diamond or aluminum nitride may be used. Non-conductive materials tend to have high thermal conductivity and are insulative, so there is no possibility of short circuit between the wirings of the ceramic wiring board 50 due to the installation of the heat transfer material 30. Thus, even when the heat conductive material 30 is non-conductive, it is possible to heat both the adjustment unit 10 and the sensor unit 20 with lower power by the single heater 24b. *
ガスセンサ、及びそれを構成する調整ユニット、センサユニットの形状等は上記実施形態に限定されない。変換部及び検知部の種類等も限定されない。 スルーホール及び伝熱材の形状、個数や直径も限定されない。 また、スルーホールの延びる方向から見たときに、ヒータ24bの少なくとも一部が領域50Aと重なればよく、重なりの割合は、ヒータ24bの発熱量や、調整ユニット10(変換部14)及びセンサユニット20(検知部24a)の制御温度によって変わる。但し、重なりの割合があまり小さいと、領域50Aを伝わる熱が少なくなるので、領域50Aの40%以上が重なることが好ましく、100%重なることがさらに好ましい。 The gas sensor, the adjustment unit constituting the gas sensor, the shape of the sensor unit, and the like are not limited to the above embodiment. The types of the conversion unit and the detection unit are not limited. The shape, number and diameter of through holes and heat transfer materials are not limited. Further, it is sufficient that at least a part of the heater 24b overlaps the region 50A when viewed from the direction in which the through hole extends, and the overlapping ratio is determined by the amount of heat generated by the heater 24b, the adjustment unit 10 (the conversion unit 14), and the sensor. It varies depending on the control temperature of the unit 20 (detector 24a). However, if the overlapping ratio is too small, the heat transmitted through the region 50A is reduced, so that 40% or more of the region 50A preferably overlaps, more preferably 100%.
1  ガスセンサ 10  調整ユニット 14  変換部 20  センサユニット 30  スルーホール、伝熱材 24a 検知部 24b ヒータ 50  セラミック配線基板 50A  領域 C1  第1チャンバ C2  第2チャンバ G  被測定ガス 1 gas sensor 10 adjustment unit 14 conversion unit 20 sensor unit 30 through hole, heat transfer material 24a detection unit 24b heater 50 ceramic wiring board 50A area C1, first chamber C2, second chamber G, gas to be measured

Claims (4)

  1. 自身の内部に被測定ガスを導入するための第1チャンバが設けられるとともに、前記第1チャンバに導入された該被測定ガスに含まれる第1ガス成分を第2ガス成分に変換する変換部を備える調整ユニットと、

     自身の内部に前記調整ユニットを通過した前記被測定ガスを導入するための第2チャンバが設けられるとともに、前記第2ガス成分の濃度に応じて電気的特性が変化する検知部を備えるセンサユニットと、

     前記検知部が配置され、前記センサユニットの内部に自身の少なくとも一部が収容されるセラミック配線基板と、

     前記変換部、及び、前記検知部を加熱するための単一のヒータと、

    を備え、

     前記セラミック配線基板のうちで前記検知部が配置される領域には、自身の板厚方向に貫通した少なくとも1つのスルーホールが形成され、前記スルーホールには、前記セラミック配線基板を構成するセラミック材料よりも熱伝導率が高い伝熱材がそれぞれ充填され、

     前記調整ユニットと前記ヒータ、及び、前記センサユニットと前記ヒータがそれぞれ熱結合し、かつ前記スルーホールの延びる方向から見たときに前記ヒータの少なくとも一部が前記領域と重なる形態で、前記調整ユニット、前記センサユニット、及び、前記ヒータが一体化されてなるガスセンサ。
    A conversion chamber configured to convert a first gas component contained in the measurement gas introduced into the first chamber into a second gas component; An adjustment unit comprising,

    A sensor unit provided with a detection unit in which a second chamber for introducing the gas to be measured that has passed through the adjustment unit is provided, and whose electrical characteristics change according to the concentration of the second gas component; ,

    A ceramic wiring board in which the detection unit is arranged and at least a part of itself is housed in the sensor unit;

    A single heater for heating the converter and the detector;

    With

    In the ceramic wiring substrate, at least one through hole penetrating in the plate thickness direction is formed in a region where the detection unit is arranged, and the ceramic material constituting the ceramic wiring substrate is formed in the through hole. Each of them is filled with a heat transfer material with a higher thermal conductivity than

    The adjustment unit is configured such that the adjustment unit and the heater, and the sensor unit and the heater are respectively thermally coupled, and at least a part of the heater overlaps the region when viewed from the extending direction of the through hole. A gas sensor in which the sensor unit and the heater are integrated.
  2. 請求項1に記載のガスセンサであって、

     前記領域の厚みは、該領域に隣接する前記セラミック配線基板の厚みよりも薄くなっているガスセンサ。
    The gas sensor according to claim 1,

    The thickness of the said area | region is a gas sensor thinner than the thickness of the said ceramic wiring board adjacent to this area | region.
  3. 請求項1又は2に記載のガスセンサであって、

     前記セラミック材料の主成分がジルコニアであるガスセンサ。
    The gas sensor according to claim 1 or 2,

    A gas sensor in which the main component of the ceramic material is zirconia.
  4. 請求項1~3のいずれか一項に記載のガスセンサであって、

     前記伝熱材が非伝導性であるガスセンサ。
    The gas sensor according to any one of claims 1 to 3,

    A gas sensor in which the heat transfer material is non-conductive.
PCT/JP2018/003334 2017-02-21 2018-02-01 Gas sensor WO2018155119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029829A JP2018136163A (en) 2017-02-21 2017-02-21 Gas sensor
JP2017-029829 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155119A1 true WO2018155119A1 (en) 2018-08-30

Family

ID=63252718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003334 WO2018155119A1 (en) 2017-02-21 2018-02-01 Gas sensor

Country Status (2)

Country Link
JP (1) JP2018136163A (en)
WO (1) WO2018155119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235174A1 (en) * 2018-06-06 2019-12-12 日本特殊陶業株式会社 Catalyst unit and exhalation sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300702A (en) * 1997-04-24 1998-11-13 Ngk Insulators Ltd Low-concentration nox measuring instrument
JP2005214933A (en) * 2004-02-02 2005-08-11 Shimadzu Corp Hydrogen sensor
WO2015134895A1 (en) * 2014-03-07 2015-09-11 Spirometrix, Inc. Respiratory monitor
WO2018008336A1 (en) * 2016-07-08 2018-01-11 日本特殊陶業株式会社 Gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300702A (en) * 1997-04-24 1998-11-13 Ngk Insulators Ltd Low-concentration nox measuring instrument
JP2005214933A (en) * 2004-02-02 2005-08-11 Shimadzu Corp Hydrogen sensor
WO2015134895A1 (en) * 2014-03-07 2015-09-11 Spirometrix, Inc. Respiratory monitor
WO2018008336A1 (en) * 2016-07-08 2018-01-11 日本特殊陶業株式会社 Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235174A1 (en) * 2018-06-06 2019-12-12 日本特殊陶業株式会社 Catalyst unit and exhalation sensor

Also Published As

Publication number Publication date
JP2018136163A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6635886B2 (en) Gas sensor
JP2008089474A (en) Sensor unit for thermal analysis equipment and method for manufacturing the same
CN108139254A (en) Mems flow sensor
JP3174059B2 (en) Heater device
JP2014182149A (en) Micro electrochemical sensor and method for actuating the same
JP6321767B1 (en) Exhalation sensor
WO2018155119A1 (en) Gas sensor
WO2018096892A1 (en) Gas sensor
WO2018160620A1 (en) Breath sensor
JP4469607B2 (en) A solid electrolyte sensor for determining the concentration of gas components in a gas mixture
US20180275116A1 (en) Gas sensor
EP3561497A1 (en) Gas sensor
CN1849500A (en) Heatable infrared sensor and infrared thermometer comprising such an infrared sensor
JPH08233664A (en) Heat detecting element
JP2004205520A (en) Fluid sensor element and use thereof
US9063020B2 (en) Method and device for measuring temperature having a separate structure for terminal areas arranged in unrestricted thermal contact with a process liquid
JP2018013355A (en) Gas sensor
JP5027942B2 (en) Manufacturing method of gas sensor
JP2004219232A (en) Gas sensor structure
US20180252667A1 (en) Gas sensor
JP3969564B2 (en) Flow sensor
CN201830474U (en) Rapidly heating ceramic heater
JP2005337852A (en) Substrate for gas sensor
JP2005515437A (en) Sensor element
JP2019078655A (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756559

Country of ref document: EP

Kind code of ref document: A1