WO2018154992A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018154992A1
WO2018154992A1 PCT/JP2018/000530 JP2018000530W WO2018154992A1 WO 2018154992 A1 WO2018154992 A1 WO 2018154992A1 JP 2018000530 W JP2018000530 W JP 2018000530W WO 2018154992 A1 WO2018154992 A1 WO 2018154992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
invisible
light emitter
emitter
Prior art date
Application number
PCT/JP2018/000530
Other languages
French (fr)
Japanese (ja)
Inventor
教和 方志
義幸 月崎
直之 麻野
杉山 健
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2018154992A1 publication Critical patent/WO2018154992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 A display device that displays an image using ultraviolet light as a light source is known (for example, Patent Document 1).
  • Patent Document 1 only uses ultraviolet light to excite phosphors to emit light, and does not use ultraviolet light for other purposes.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a more versatile display device.
  • a display device includes an invisible light source that is provided on a mounting surface of a substrate and irradiates invisible light in a direction intersecting the mounting surface, and a light emitting body that absorbs the invisible light and emits visible light. And a support portion that supports the light emitter in a switchable manner between a first position where the light emitter faces the mounting surface and a second position in which the light emitter is different from the invisible light source in the intersecting direction.
  • FIG. 1 is a schematic diagram showing a main configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram illustrating a circuit configuration example of the light source substrate and the control circuit according to the first embodiment.
  • FIG. 3 is a schematic view illustrating a case where a light emitter is interposed between a light source and a user.
  • FIG. 4 is a schematic view illustrating a case where no light emitter is interposed between the light source and the user.
  • FIG. 5 is a schematic diagram illustrating a circuit configuration example of the light source substrate, the control circuit, and the detection unit according to the second embodiment.
  • FIG. 6 is a schematic diagram illustrating a circuit configuration example of the light source substrate and the control circuit according to the third embodiment.
  • FIG. 1 is a schematic diagram illustrating a main configuration of a display device 1 according to a first embodiment of the present invention.
  • the display device 1 includes a light source substrate 10, a support unit 60, and a control unit 11 (see FIG. 2).
  • the light source substrate 10 is provided with an invisible light source (for example, a light source 40) that emits invisible light IVL (see FIGS. 3 and 4) having a predetermined wavelength. That is, the light source 40 is provided on the mounting surface 15 of the substrate (the light source substrate 10), and emits invisible light in a wavelength band including a predetermined wavelength in a direction intersecting the mounting surface 15, preferably in a vertical direction.
  • the upper side of the light source substrate 10 is illustrated as the mounting surface 15 side.
  • the invisible light IVL is invisible light for human beings, and is light having a wavelength excluding, for example, purple-red visible light (wavelength: 380 [nm] -750 [nm]).
  • FIG. 2 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10 and the control unit 11 according to the first embodiment.
  • the light source substrate 10 has a plurality of light sources 40 arranged in a two-dimensional array (for example, in a matrix).
  • the plurality of invisible light sources (light sources 40) are arranged in a two-dimensional array on the substrate (light source substrate 10).
  • the arrangement direction of the two-dimensional arrangement of the plurality of light sources 40 will be described as the X direction and the Y direction orthogonal to the X direction. That is, the mounting surface 15 is along the XY plane. Further, the vertical direction of the mounting surface 15 is the Z direction.
  • the light sources 40a, 40b, 40c, and 40d may be referred to as the light sources 40 when they are not particularly distinguished.
  • the light source substrate 10 has a source driver 100 and a gate driver 200.
  • the control unit 11 controls the operations of the source driver 100 and the gate driver 200 based on, for example, a video signal supplied from an external host integrated circuit (IC) 90.
  • IC external host integrated circuit
  • the control unit 11, which is an IC supplies control signals to the source driver 100 and the gate driver 200, and controls them to operate in synchronization with each other.
  • the source driver 100 is an IC that outputs a voltage applied to each light source 40.
  • the gate driver 200 is an IC that outputs a gate voltage to be applied to a thin film transistor (TFT) element provided in each light source 40.
  • TFT thin film transistor
  • the source driver 100 and the gate driver 200 are described as separate components mounted on the light source substrate 10, but both of them may be incorporated in one IC or formed directly on the substrate. It may be configured by a configured circuit.
  • Signal lines (for example, the first signal line 110 and the second signal line 120) are connected to the source driver 100.
  • the signal line is shared by the light sources 40 arranged along the extending direction (for example, the Y direction) of the first signal line 110.
  • the gate driver 200 is connected with scanning lines (for example, the first scanning line 210 and the second scanning line 250), the light emission control line 220, and the reset line 230.
  • the scanning lines are connected to a plurality of light sources 40 arranged along the extending direction of the first scanning lines 210 (for example, the X direction).
  • the light emission control line 220 and the reset line 230 are connected to a plurality of light sources 40 sandwiched between the first scanning line 210 and the second scanning line 250.
  • the extending direction of the light emission control line 220 and the reset line 230 is the same as the extending direction (for example, the X direction) of the first scanning line 210 and the second scanning line 250.
  • the light emission control line 220 and the reset line 230 are connected to the reset switch 31.
  • the light source substrate 10 has a high potential line 300.
  • a predetermined voltage for example, 10 [V]
  • a power supply line 310 is connected to the high potential line 300.
  • a plurality of light sources 40 arranged along the extending direction of the power line 310 (for example, the Y direction) are connected to the power line 310. Electric power for light emission from a light source element 371 of each light source 40 (for example, an organic light emitting diode (OLED)) is sent from a power source (not shown) via a power line 310.
  • OLED organic light emitting diode
  • the light source element 371 may include another light source driven by direct current, such as a light emitting diode that does not use an organic compound.
  • the light emitter of the light source element 371 may be a thin film obtained by vapor deposition or crystal growth, or may not be a thin film.
  • a light source element that is not a thin film for example, a light source element using a bulk semiconductor may be used.
  • the control unit 11 includes a gradation detection unit 111 and a timing control unit 112.
  • the gradation detector 111 detects a gradation signal Vdisp for each light source 40.
  • the timing control unit 112 based on the gradation signal Vdisp and the gradation for each light source 40 of the gradation signal Vdisp detected by the gradation detection unit 111, the initialization light emission control signal xasw1, the light emission control signal (for example, The control signals including the first light emission control signal xasw2-1, the second light emission control signal xasw2-2), the light emission control signal BG, and the reset control signal RG are generated.
  • the source driver 100 outputs voltages (for example, the first voltage Vsig1 and the second voltage Vsig2) corresponding to the emission intensity of each light source 40 based on the gradation signal Vdisp input from the control unit 11.
  • the source driver 100 also includes transistors (for example, a first initialization signal control switch 101, a second initialization signal control switch 102, a first voltage control switch 103, and a second voltage control) for controlling the operation of each light source 40. Switch 104).
  • the first initialization signal control switch 101 In the first initialization signal control switch 101, one of the source and drain (first terminal) is connected to the first signal line 110, and the other (second terminal) is supplied with the initialization voltage Vini.
  • the initialization light emission control signal xasw1 is input to the gate (third terminal) of the first initialization signal control switch 101.
  • the initialization voltage Vini is applied to the first signal line 110.
  • the initialization voltage Vini is, for example, 1.27V.
  • the first voltage control switch 103 In the first voltage control switch 103, one of a source and a drain (first terminal) is connected to the first signal line 110, and the other (second terminal) is supplied with the first voltage Vsig1.
  • the first light emission control signal xasw2-1 is input to the gate (third terminal) of the first voltage control switch 103.
  • the first voltage control switch 103 When the first light emission control signal xasw2-1 is applied to the gate of the first voltage control switch 103, the first voltage control switch 103 is turned on, and the first voltage Vsig1 is applied to the first signal line 110.
  • the gate driver 200 includes a reset control switch 235.
  • the reset control switch 235 is a transistor, for example. In the reset control switch 235, one of the source and the drain (first terminal) is connected to the reset line 230, and the reset voltage Vrst is supplied to the other (second terminal).
  • the reset control signal RG is input to the gate (third terminal) of the reset control switch 235. When the reset control signal RG is applied to the gate of the reset control switch 235, the reset control switch 235 becomes conductive, and the reset voltage Vrst is applied to the reset line 230.
  • the reset voltage Vrst is, for example, ⁇ 3V.
  • the light source 40a includes a switch 331, a driving transistor 341, a light source element 371, a storage capacitor 351, and an additional capacitor 361.
  • the switch 331 has one of a source and a drain (first terminal) connected to the first signal line 110.
  • the gate (third terminal) of the switch 331 is connected to the first scanning line 210.
  • the switch 331 is a TFT element, for example.
  • One of the source and drain (first terminal) of the driving transistor 341 is connected to the anode of the light source element 371 and the other (second terminal) is connected to the reset line 230.
  • the gate (third terminal) of the driving transistor 341 is connected to the other of the source and drain of the switch 331 (second terminal).
  • a storage capacitor 351 is connected between one of the source and drain (first terminal) and the gate (third terminal) of the driving transistor 341.
  • An additional capacitor 361 is connected to one of the source and drain (first terminal) of the driving transistor 341 between the low potential supply line (for example, the low potential line GND) or the high potential line 300. Is done. Note that the additional capacitor 361 includes the source or drain of the driving transistor 341 (first terminal) and a low potential supply line (for example, the low potential line GND) and the source or drain of the driving transistor 341. (First terminal) and the high potential line 300 may be provided.
  • the gate driver 200 outputs scanning signals (for example, the first scanning signal SG1 and the second scanning signal SG2).
  • scanning signals for example, the first scanning signal SG1 and the second scanning signal SG2.
  • the switch 331 becomes conductive.
  • the first voltage Vsig1 is applied from the source driver 100 to the first signal line 110 when the switch 331 is conductive, the first voltage Vsig1 is applied to the gate (third terminal) of the drive transistor 341.
  • the driving transistor 341 controls the current value supplied to the light source element 371 according to the gate voltage. In parallel with the application of a voltage to the gate (third terminal) of the driving transistor 341, charges are accumulated in the storage capacitor 351. A voltage is applied to the gate (third terminal) of the driving transistor 341 for a certain period even after the switch 331 becomes non-conductive due to the electric charge stored in the storage capacitor 351, and the conductive state of the driving transistor 341 is maintained. Be drunk.
  • the additional capacitor 361 connected to one of the source and the drain (first terminal) of the driving transistor 341 has a capacity division with the storage capacitor 351 so that the gate of the driving transistor 341 according to the voltage of the first voltage Vsig1 (third Terminal) and one of a source and a drain (first terminal). For example, by making the capacitance of the additional capacitor 361 larger than the capacitance of the storage capacitor 351, between the gate (third terminal) of the driving transistor 341 and one of the source and drain (first terminal).
  • the voltage setting range can be widened.
  • the cathode of the light source element 371 is connected to a low potential supply line (for example, a low potential line GND).
  • a low potential supply line for example, a low potential line GND.
  • the configuration related to the light source 40a has been described above as an example, but the other light sources 40b, 40c, and 40d illustrated in FIG.
  • different gradation signals Vdisp are supplied to the plurality of light sources 40 arranged in the X direction.
  • the first voltage Vsig1 is supplied to the light source 40a
  • the second voltage Vsig2 is supplied to the light source 40b.
  • the plurality of light sources 40 arranged in the Y direction are driven at different timings.
  • the light sources 40a and 40b are driven according to the output timing of the first scanning signal SG1, and the light sources 40c and 40d receive the second scanning signal SG2 output at a timing different from the first scanning signal SG1. It is driven according to the output timing.
  • the plurality of light sources 40 arranged in the Y direction share a signal line, but voltages supplied in accordance with the respective drive timings are individually controlled.
  • the light source 40b includes a switch 332, a drive transistor 342, a light source element 372, a storage capacitor 352, and an additional capacitor 362.
  • the light source 40 c includes a switch 333, a driving transistor 343, a light source element 373, a storage capacitor 353, and an additional capacitor 363.
  • the light source 40d includes a switch 334, a drive transistor 344, a light source element 374, a storage capacitor 354, and an additional capacitor 364. These specific configurations are the same as those of the switch 331, the drive transistor 341, the light source element 371, the storage capacitor 351, and the additional capacitor 361 of the light source 40a.
  • the switch 332 has one of the source and the drain (first terminal) connected to the second signal line 120.
  • the switch 333 has a gate (third terminal) connected to the second scanning line 250.
  • the switch 334 has one of a source and a drain (first terminal) connected to the second signal line 120 and a gate (third terminal) connected to the second scanning line 250.
  • the second signal line 120 there are a second initialization signal control switch 102 and a second voltage control switch 104.
  • the relationship between the second signal line 120 and the second initialization signal control switch 102 and the second voltage control switch 104 is the relationship between the first signal line 110 and the first initialization signal control switch 101 and the first voltage control switch 103. It is the same.
  • the voltage output to the second signal line 120 is the second voltage Vsig2.
  • the light emission control signal applied to the second voltage control switch 104 is the second light emission control signal xasw2-2.
  • the reset switch 31 is a transistor that controls the electrical connection between the other of the sources or drains (second terminals) of the drive transistors 341, 342, 343, and 344 and the power supply line 310.
  • the gate (third terminal) of the reset switch 31 is connected to the light emission control line 220.
  • the reset switch 31 becomes conductive.
  • the reset voltage Vrst may be a potential of a low potential supply line (for example, the low potential line GND).
  • the equivalent circuit diagram shown in FIG. 2 is an example, and a different circuit may be adopted.
  • the reset switch 31 may be provided for each light source 40.
  • the correspondence relationship between the source and drain and the first terminal and the second terminal described above is merely an example, and can be appropriately switched according to the specific circuit configuration of the source driver 100, the gate driver 200, and the light source 40. It is.
  • the specific position where the circuit which comprises the display apparatus 1, such as the control part 11, is provided is arbitrary.
  • it may be mounted on a flexible substrate including wiring that transmits the gradation signal Vdisp, or may be mounted on the light source substrate 10.
  • the light source elements 371, 372, 373, and 374 in Embodiment 1 irradiate ultraviolet light.
  • the light source elements 371, 372, 373, and 374 irradiate, for example, near ultraviolet light (wavelength: 200 [nm] to 380 [nm]) during light emission.
  • the ultraviolet light emitted from the light source elements 371, 372, 373, and 374 has a wavelength (for example, UV-A (wavelength: 315 [nm] -380 [nm]) that has less influence on a living body such as a human. )) UV light is desirable.
  • the support 60 is provided with a light emitter 50 (for example, the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B) that emits light by absorbing the invisible light IVL.
  • the support unit 60 includes a light emitter support unit 61 and a rotation support unit 62.
  • the light emitter support 61 is a lattice-shaped member having slits along the Y direction, for example.
  • a first light emitter 50R, a second light emitter 50G, and a third light emitter 50B are provided in the slit.
  • the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are periodically arranged along the X direction.
  • the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B may be collectively referred to as the light emitter 50 in some cases.
  • the plurality of light emitters 50 are arranged along an array in at least one direction (X direction) of the two-dimensional array, and the mounting surface 15 of the substrate (light source substrate 10).
  • the position of the plurality of light emitters 50 arranged in one direction in the vertical direction corresponds to the position of the invisible light source (light source 40) arranged in one direction (X direction).
  • the specific structure of the support part 60 which supports the light-emitting body 50 is not restricted to this.
  • a plate-like substrate having translucency may be adopted. In this case, the light emitter 50 is disposed on one surface side of the light-transmitting plate-like substrate.
  • the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are phosphors that contain pigments that emit visible light of different colors by photoluminescence in response to irradiation with invisible light IVL.
  • the first light emitter 50R absorbs ultraviolet light and emits red visible light VLR when irradiated with ultraviolet light.
  • the second light emitter 50G absorbs ultraviolet light and emits green visible light VLG when irradiated with ultraviolet light.
  • the third light emitter 50B absorbs ultraviolet light and emits blue visible light VLB when irradiated with ultraviolet light.
  • the pigment of the first light emitter 50R include Y 2 O 3 : Eu 3+ .
  • Examples of the pigment of the second light emitter 50G include LaPO 4 : Ce 3+ and Tb 3+ .
  • Examples of the pigment of the third light emitter 50B include (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ .
  • the specific composition of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B is not limited to this, and the wavelength of the invisible light IVL from the invisible light source (light source 40) that functions as excitation light; Any phosphor can be appropriately used as the light emitter 50 as long as the phosphor is suitable for the difference between the wavelengths of visible light VLR, VLG, and VLB emitted from the light emitter 50 by absorbing the invisible light IVL.
  • the fluorescent material has a difference (Stokes shift) between the maximum excitation wavelength of the invisible light IVL emitted from the invisible light source (light source 40) and the wavelength of the visible light VLR, VLG, VLB emitted from the light emitter 50 that has the maximum efficiency. It is desirable to select based on this. Further, the color and the number of colors of visible light emitted from the light emitter 50 can be changed as appropriate.
  • the rotation support part 62 is a member that rotatably supports the light emitter support part 61, for example, as shown in FIG. Specifically, the rotation support part 62 is a light emitter support part via a rotation shaft 63 provided on the light emitter support part 61 side of the light source substrate 10 and the light emitter support part 61 provided to face each other. 61 is connected. In addition, the back side of the rotation support part 62 is fixed to the light source substrate 10. Thereby, the light emitter support portion 61 can change the rotation angle of the light emitter 50 with respect to the light source substrate 10 by rotating about the rotation shaft 63. As described above, the support unit 60 includes the first position PA (see FIG.
  • the light emitter 50 faces the mounting surface 15 of the substrate (light source substrate 10) and the light emitter 50 in an invisible light source in the direction perpendicular to the mounting surface 15.
  • the light emitter 50 is supported so as to be switchable to a second position PB (see FIG. 4) at a position different from the (light source 40).
  • FIG. 3 is a schematic view illustrating the case where the light emitter 50 is interposed between the light source 40 and the user. 3 and 4, a user who visually recognizes an image is schematically illustrated as an eye E.
  • the light emitter 50 is located at the first position PA, the light emitter 50 is interposed between the light source 40 and the user.
  • the invisible light IVL from the light source 40 is absorbed, and the light emitter 50 emits visible light VLR, VLG, and VLB.
  • the user can visually recognize an image output by visible light VLR, VLG, and VLB.
  • FIG. 4 is a schematic view illustrating the case where the light emitter 50 is not interposed between the light source 40 and the user.
  • the light emitter 50 is located at the second position PB, the light emitter 50 is not interposed between the light source 40 and the user.
  • the user visually recognizes the image output by the invisible light IVL, but cannot directly view the invisible light IVL.
  • the image output by the invisible light IVL is converted into visible light and viewed.
  • the conversion device 70 has a phosphor provided separately from the light emitter 50 and absorbs the invisible light IVL from the light source 40 to emit visible light VL, thereby visually recognizing an image output by the invisible light IVL. enable.
  • the conversion device 70 includes, for example, an image sensor having sensitivity to invisible light IVL (for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor) and a display panel that displays and outputs an image captured by the image sensor.
  • an image sensor having sensitivity to invisible light IVL for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor
  • a display panel that displays and outputs an image captured by the image sensor.
  • the light receiving surface of the image sensor is directed to the display device 1.
  • the image output by the invisible light IVL is captured by the image sensor.
  • the image sensor outputs a captured image to the display panel.
  • the display panel displays and outputs the captured image with visible light.
  • a display panel is provided on the opposite side of the light receiving surface of the image sensor.
  • the conversion device 70 may have a light emitter that absorbs the invisible light IVL and emits visible light VL on the same principle as the light emitter 50.
  • the structural unit of the pixel in the display device 1 is arbitrary.
  • a predetermined region including one each of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B arranged in the X direction may be used as a pixel.
  • One or more light sources 40 arranged in the Y direction are included in the predetermined area.
  • a plurality of pixels may share the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B that are continuous in the Y direction.
  • the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are continuous, but the intensity of the invisible light IVL emitted from the plurality of light sources 40 arranged in the Y direction by the control unit 11 is individually set. Since it is controllable, a part of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B corresponding to each position of the plurality of light sources 40 arranged in the Y direction can be handled as individual pixels. .
  • a plurality of first light emitters 50R, second light emitters 50G, and third light emitters 50B may be provided in accordance with the arrangement of one or more light sources 40 arranged in the Y direction. That is, the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B may be arranged in a matrix.
  • the distance between the light source substrate 10 and the light emitter support portion 61 illustrated in FIGS. 1, 3, and 4 is merely schematic, and the light source substrate 10 and the light emitter support portion 61 in the actual display device 1. It does not indicate the interval.
  • the light emitter support 61 may be closer to the light source substrate 10 or may be further separated as necessary.
  • the display device 1 can perform RGB color display at the first position PA.
  • the second position PB although it is monochrome display, it is possible to display at a resolution three times that of the first position PA.
  • a display output form of an image using the invisible light IVL a form in the case where the light emitter 50 is the first position PA and a form in the case where it is the second position PB can be provided.
  • the conversion device 70 is owned. It is possible to display and output an image that is visible only to the user who is viewing.
  • a more versatile display device 1 can be provided.
  • the invisible light IVL irradiated by the light source elements 371, 372, 373, and 374 of the light source 40 is ultraviolet light
  • the invisible light IVL is not limited to ultraviolet light.
  • the invisible light IVL may be infrared light.
  • the light source elements 371, 372, 373, and 374 are replaced with light source elements that emit infrared light (for example, IRLED: InfraRed Light Emitting Diode).
  • the light emitter 50 is replaced with one that absorbs infrared light and emits visible light VLR, VLG, and VLB.
  • the conversion device 70 enables an image output by infrared light to be visually recognized, such as a night vision device.
  • the invisible light IVL in this case is infrared light that is visible with the conversion device 70 functioning as a night vision device.
  • a photomultiplier tube is employed in the conversion device 70 that functions as a night vision device, instead of the above-described imaging element.
  • the photomultiplier tube is, for example, a micro channel plate (MCP) type photomultiplier tube or a dynode type photomultiplier tube.
  • the conversion device 70 functioning as a night vision device may be a thermography.
  • the wavelength of the infrared light is arbitrary, and is appropriately set within a wavelength range longer than 750 [nm], for example.
  • the invisible light IVL infrared light that can be visually recognized by the night vision device, it becomes easier to visually recognize the image of the invisible light IVL even at a greater distance.
  • Embodiment 2 Next, a display device according to Embodiment 2 of the present invention will be described.
  • the same components as those of the display device 1 of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 5 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10, the control unit 11A, and the detection unit 80 according to the second embodiment.
  • the display device according to the second embodiment includes a detection unit 80 in addition to the configuration of the display device 1 according to the first embodiment.
  • the detecting unit 80 detects whether the position of the light emitter 50 is the first position PA or the second position PB.
  • the detection unit 80 is an optical switch having a light emitting unit 81 and a light receiving unit 82, for example.
  • the ray of light from the light emitting part 81 to the light receiving part 82 is shielded by the rotation angle of the light emitter support part 61 where the position of the light emitter 50 is either the first position PA or the second position PB. It is provided so as to be opened at the rotation angle of the light emitter support portion 61. Accordingly, the detection unit 80 can detect whether the position of the light emitter 50 is the first position PA or the second position PB based on whether or not the light detection unit 82 detects light.
  • the light receiving unit 82 performs output Ssig indicating whether or not light is detected.
  • the output of the light receiving unit 82 is input to the switching unit 113 of the control unit 11A.
  • the control unit 11A of the second embodiment has a function of switching display output contents according to the position of the light emitter 50 in addition to the function of the control unit 11 of the first embodiment.
  • the control unit 11A includes a switching unit 113.
  • the switching unit 113 determines from the output of the light receiving unit 82 whether the position of the light emitter 50 is the first position PA or the second position PB.
  • the control unit 11 ⁇ / b> A controls the plurality of light sources 40 provided on the light source substrate 10 according to the position of the light emitter 50.
  • the first gradation signal Vdisp1 of the image (visible light image) output and visually recognized by the light emission of the light emitter 50 and the first image (invisible light image) that can be visually recognized by using the conversion device 70 are used.
  • the two gradation signal Vdisp2 is input from the host integrated circuit 90A as an individual display image.
  • the switching unit 113 treats the first gradation signal Vdisp1 as the gradation signal Vdisp, and a plurality of light sources provided on the light source substrate 10 The intensity of light emitted from 40 is made to correspond to the display output content of the visible light image.
  • the switching unit 113 treats the second gradation signal Vdisp2 as the gradation signal Vdisp, and sets the plurality of light sources provided on the light source substrate 10.
  • the intensity of light emitted from the light source 40 is made to correspond to the display output content of the invisible light image.
  • the relationship between the pixel and the light source 40 may change depending on whether the position of the light emitter 50 is the first position PA or the second position PB.
  • the predetermined region including the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B arranged in the X direction is one.
  • the light emitter 50 is located at the second position PB, another region including one or more light sources 40 that is not limited to the light source 40 included in the predetermined region is set, and the other region is set as one pixel. It may be a pixel.
  • the display output content can be changed depending on whether the position of the light emitter 50 is the first position PA or the second position PB.
  • Embodiment 3 Next, a display device according to Embodiment 3 of the present invention will be described.
  • the same components as those of the display device 1 of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 6 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10B and the control unit 11 according to the third embodiment.
  • the light source substrate 10B of the display device of Embodiment 3 is provided with a mixture of light sources 40 that emit invisible light IVL having different wavelengths.
  • the light source elements 373B and 374B of the light sources 40C and 40D shown in FIG. 6 emit invisible light IVL having a wavelength different from that of the light source elements 371 and 372 of the light sources 40a and 40b. More specifically, for example, the light source elements 371 and 372 emit ultraviolet light, and the light source elements 373B and 374B emit infrared light.
  • the light sources 40 that irradiate the invisible light IVL having different wavelengths are alternately arranged along at least one direction (for example, the Y direction).
  • the light sources 40C and 40D are included.
  • invisible light IVL emitted by some of the plurality of light sources 40 causes the light emitter 50 to emit light, but invisible light IVL with different wavelengths emitted by other light sources 40 other than the some of the light sources 40 is emitted. Does not cause the light emitter 50 to emit light.
  • ultraviolet light emitted from the light source elements 371 and 372 excites the light emitter 50 to emit light, but infrared light emitted from the light source elements 373B and 374B does not excite the light emitter 50 and does not emit light.
  • the gradation signal Vdisp of the third embodiment includes a light emission pattern of a light source 40 (for example, light sources 40a and 40b) for a visible light image and a light emission pattern of a light source 40 (for example, light sources 40C and 40D) for an invisible light image. Including both. That is, in the third embodiment, the visible light image and the invisible light image are not displayed selectively, but the image for one frame includes both the visible light image and the invisible light image.
  • a light emission pattern of a light source 40 for example, light sources 40a and 40b
  • a light emission pattern of a light source 40 for example, light sources 40C and 40D
  • the visible light image is provided to a user who does not have the conversion device 70 in a visible state and the invisible light IVL that forms the invisible light image.
  • An invisible light image is provided to a user who has a conversion device 70 (for example, a night vision device) corresponding to the wavelength of.
  • the position of the light emitter 50 is the second position PB, an invisible light image is provided to a user having the conversion device 70 (for example, a night vision device).
  • the light sources 40 that irradiate the invisible light IVL having different wavelengths are arranged alternately along the Y direction, but this is only an arrangement of the light sources 40 that irradiate the invisible light IVL having different wavelengths. It is an example of a pattern and is not limited to this.
  • the light sources 40 that irradiate the invisible light IVL with different wavelengths may be arranged alternately along the X direction, or may be arranged in a staggered manner.
  • the ultraviolet light and infrared light which were illustrated above are the examples of the combination of the invisible light IVL of a different wavelength to the last, and it is not restricted to this, You may change suitably one or both of this combination.
  • a visible light image is provided in a visible state to a user who does not have the conversion device 70, and the conversion device 70 (for example, darkness) corresponding to the wavelength of the invisible light IVL constituting the invisible light image is provided.
  • An invisible light image can be provided to a user having a viewing device.
  • the specific structure regarding the position change of the light-emitting body 50 by the support part 60 can be changed suitably.
  • the operation of the light emitter support portion 61 is not limited to the rotation described with reference to FIG. 1 but may be a linear motion such as a slide.
  • the invisible light source that is configured to irradiate the invisible light IVL according to the power supply like the light source 40 is not limited to the configuration including the OLED as described above, for example, a light emitting diode that does not use an organic compound, etc.
  • the structure provided with another light source may be sufficient.
  • the light source 40 may include a light source element that is AC driven.
  • An invisible light source that is provided on the mounting surface of the substrate and irradiates invisible light in a direction intersecting the mounting surface, a light emitter that absorbs the invisible light and emits visible light, and the light emitter on the mounting surface
  • a display device comprising: a first position that opposes; and a support portion that supports the light emitter so that the light emitter can be switched to a second position that is different from the invisible light source in the intersecting direction.
  • the invisible light is ultraviolet light. Display device.
  • the invisible light is infrared light. Display device.
  • the invisible light source has a light emitting diode.
  • the phosphor is a phosphor.
  • the plurality of invisible light sources are arranged in a two-dimensional array on the substrate and are at the first position, the plurality of light emitters are arranged along an array in at least one direction of the two-dimensional array and intersect. In the direction, the position of the light emitter corresponds to the position of the invisible light source.
  • Display device When the plurality of invisible light sources are arranged in a two-dimensional array on the substrate and are at the first position, the plurality of light emitters are arranged along an array in at least one direction of the two-dimensional array and intersect. In the direction, the position of the light emitter corresponds to the position of the invisible light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device provided with: an invisible light source, provided on the mounting surface of a substrate, for radiating an invisible light in a direction that intersects the mounting surface; an illuminant for absorbing the invisible light and emitting a visible light; and a support part for supporting the illuminant so as to be switchable between a first position where the illuminant faces the mounting surface and a second position where the illuminant is at a different position than the invisible light source in the intersecting direction.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 紫外光を光源として画像を表示する表示装置が知られている(例えば特許文献1)。 A display device that displays an image using ultraviolet light as a light source is known (for example, Patent Document 1).
特開2008-145548号公報JP 2008-145548 A
 しかしながら、特許文献1に記載の表示装置は、蛍光体を励起して発光させるために紫外光を用いているにすぎず、紫外光を他の用途に用いるものでなかった。 However, the display device described in Patent Document 1 only uses ultraviolet light to excite phosphors to emit light, and does not use ultraviolet light for other purposes.
 本発明は、上記の課題に鑑みてなされたもので、より多用途な表示装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a more versatile display device.
 本発明の一態様による表示装置は、基板の実装面に設けられて、前記実装面に交差する方向に不可視光を照射する不可視光源と、前記不可視光を吸収して可視光を発光する発光体と、前記発光体が前記実装面に対向する第1位置と、前記交差する方向において前記発光体が前記不可視光源と異なる位置にある第2位置とに切り替え可能に前記発光体を支持する支持部とを備える。 A display device according to an embodiment of the present invention includes an invisible light source that is provided on a mounting surface of a substrate and irradiates invisible light in a direction intersecting the mounting surface, and a light emitting body that absorbs the invisible light and emits visible light. And a support portion that supports the light emitter in a switchable manner between a first position where the light emitter faces the mounting surface and a second position in which the light emitter is different from the invisible light source in the intersecting direction. With.
図1は、本発明の実施形態1の表示装置の主要構成を示す概略図である。FIG. 1 is a schematic diagram showing a main configuration of a display device according to Embodiment 1 of the present invention. 図2は、実施形態1の光源基板及び制御回路の回路構成例を示す概略図である。FIG. 2 is a schematic diagram illustrating a circuit configuration example of the light source substrate and the control circuit according to the first embodiment. 図3は、光源とユーザとの間に発光体が介在する場合を例示する模式図である。FIG. 3 is a schematic view illustrating a case where a light emitter is interposed between a light source and a user. 図4は、光源とユーザとの間に発光体が介在しない場合を例示する模式図である。FIG. 4 is a schematic view illustrating a case where no light emitter is interposed between the light source and the user. 図5は、実施形態2の光源基板、制御回路及び検知部の回路構成例を示す概略図である。FIG. 5 is a schematic diagram illustrating a circuit configuration example of the light source substrate, the control circuit, and the detection unit according to the second embodiment. 図6は、実施形態3の光源基板及び制御回路の回路構成例を示す概略図である。FIG. 6 is a schematic diagram illustrating a circuit configuration example of the light source substrate and the control circuit according to the third embodiment.
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate modifications while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part in comparison with actual aspects for the sake of clarity of explanation, but are merely examples, and the interpretation of the present invention is not limited. It is not limited. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.
(実施形態1)
 図1は、本発明の実施形態1の表示装置1の主要構成を示す概略図である。表示装置1は、光源基板10、支持部60、制御部11(図2参照)を備える。光源基板10には、所定波長の不可視光IVL(図3、図4参照)を照射する不可視光源(例えば、光源40)が設けられている。すなわち、光源40は、基板(光源基板10)の実装面15に設けられて、実装面15に交差する方向、好ましくは垂直方向に所定波長を含む波長帯の不可視光を照射する。図1では、光源基板10の上側を実装面15側として図示している。なお、不可視光IVLとは、人間にとっての不可視光であり、例えば紫-赤の可視光(波長:380[nm]-750[nm])を除く波長の光である。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a main configuration of a display device 1 according to a first embodiment of the present invention. The display device 1 includes a light source substrate 10, a support unit 60, and a control unit 11 (see FIG. 2). The light source substrate 10 is provided with an invisible light source (for example, a light source 40) that emits invisible light IVL (see FIGS. 3 and 4) having a predetermined wavelength. That is, the light source 40 is provided on the mounting surface 15 of the substrate (the light source substrate 10), and emits invisible light in a wavelength band including a predetermined wavelength in a direction intersecting the mounting surface 15, preferably in a vertical direction. In FIG. 1, the upper side of the light source substrate 10 is illustrated as the mounting surface 15 side. The invisible light IVL is invisible light for human beings, and is light having a wavelength excluding, for example, purple-red visible light (wavelength: 380 [nm] -750 [nm]).
 図2は、実施形態1の光源基板10及び制御部11の回路構成例を示す概略図である。光源基板10は、二次元配列(例えば、マトリクス状)に配置された複数の光源40を有する。このように、複数の不可視光源(光源40)は、基板(光源基板10)上に二次元配列で配置されている。以下、複数の光源40の二次元配列の配列方向は、X方向と、X方向と直交するY方向として説明する。すなわち、実装面15は、X-Y平面に沿う。また、実装面15の垂直方向は、Z方向である。なお、光源40a,40b,40c,40dを特に区別しない場合、光源40と記載することがある。図2では、X方向×Y方向=2×2となるよう配置された4つの光源40a,40b,40c,40dを例示しているが、光源40の数及び配置はこれに限られるものでなく、適宜変更可能である。 FIG. 2 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10 and the control unit 11 according to the first embodiment. The light source substrate 10 has a plurality of light sources 40 arranged in a two-dimensional array (for example, in a matrix). As described above, the plurality of invisible light sources (light sources 40) are arranged in a two-dimensional array on the substrate (light source substrate 10). Hereinafter, the arrangement direction of the two-dimensional arrangement of the plurality of light sources 40 will be described as the X direction and the Y direction orthogonal to the X direction. That is, the mounting surface 15 is along the XY plane. Further, the vertical direction of the mounting surface 15 is the Z direction. Note that the light sources 40a, 40b, 40c, and 40d may be referred to as the light sources 40 when they are not particularly distinguished. In FIG. 2, four light sources 40a, 40b, 40c, and 40d are arranged so that X direction × Y direction = 2 × 2, but the number and arrangement of the light sources 40 are not limited thereto. These can be changed as appropriate.
 光源基板10は、ソースドライバ100及びゲートドライバ200を有する。制御部11は、例えば外部のホスト集積回路(IC:Integrated Circuit)90から供給された映像信号に基づいて、ソースドライバ100及びゲートドライバ200の動作を制御する。例えばICである制御部11は、ソースドライバ100及びゲートドライバ200に対してそれぞれ制御信号を供給し、これらが互いに同期して動作するように制御する。 The light source substrate 10 has a source driver 100 and a gate driver 200. The control unit 11 controls the operations of the source driver 100 and the gate driver 200 based on, for example, a video signal supplied from an external host integrated circuit (IC) 90. For example, the control unit 11, which is an IC, supplies control signals to the source driver 100 and the gate driver 200, and controls them to operate in synchronization with each other.
 ソースドライバ100は、各光源40に印加する電圧を出力するICである。ゲートドライバ200は、各光源40に備えられた薄膜トランジスタ(TFT:Thin Film Transistor)素子に印加するゲート電圧を出力するICである。なお、図2ではソースドライバ100及びゲートドライバ200が光源基板10上に実装された個別の構成として記載されているが、両者が1つのICに組み込まれていてもよいし、基板上に直接形成された回路によって構成されたものであってもよい。 The source driver 100 is an IC that outputs a voltage applied to each light source 40. The gate driver 200 is an IC that outputs a gate voltage to be applied to a thin film transistor (TFT) element provided in each light source 40. In FIG. 2, the source driver 100 and the gate driver 200 are described as separate components mounted on the light source substrate 10, but both of them may be incorporated in one IC or formed directly on the substrate. It may be configured by a configured circuit.
 ソースドライバ100には、信号線(例えば、第1信号線110、第2信号線120)が接続される。信号線は、第1信号線110の延設方向(例えば、Y方向)に沿って並ぶ光源40で共有される。 Signal lines (for example, the first signal line 110 and the second signal line 120) are connected to the source driver 100. The signal line is shared by the light sources 40 arranged along the extending direction (for example, the Y direction) of the first signal line 110.
 ゲートドライバ200には、走査線(例えば、第1走査線210、第2走査線250)、発光制御線220、リセット線230が接続される。走査線は、第1走査線210の延設方向(例えば、X方向)に沿って並ぶ複数の光源40に接続される。発光制御線220及びリセット線230は、第1走査線210と第2走査線250とに挟まれる複数の光源40に接続される。発光制御線220及びリセット線230の延設方向は、第1走査線210及び第2走査線250の延設方向(例えば、X方向)と同方向である。発光制御線220及びリセット線230は、リセットスイッチ31に接続されている。 The gate driver 200 is connected with scanning lines (for example, the first scanning line 210 and the second scanning line 250), the light emission control line 220, and the reset line 230. The scanning lines are connected to a plurality of light sources 40 arranged along the extending direction of the first scanning lines 210 (for example, the X direction). The light emission control line 220 and the reset line 230 are connected to a plurality of light sources 40 sandwiched between the first scanning line 210 and the second scanning line 250. The extending direction of the light emission control line 220 and the reset line 230 is the same as the extending direction (for example, the X direction) of the first scanning line 210 and the second scanning line 250. The light emission control line 220 and the reset line 230 are connected to the reset switch 31.
 光源基板10は、高電位線300を有する。高電位線300には、低電位線GNDとの間の電位差が電位PVDDとなるように所定電圧(例えば、10[V])が印加されている。高電位線300には、電源線310が接続される。電源線310には、電源線310の延設方向(例えば、Y方向)に沿って並ぶ複数の光源40が接続される。各光源40の光源素子371(例えば、有機発光ダイオード(OLED:Organic Light Emitting Diode))が発光するための電力が図示しない電源より電源線310を介して送られる。 The light source substrate 10 has a high potential line 300. A predetermined voltage (for example, 10 [V]) is applied to the high potential line 300 so that the potential difference from the low potential line GND becomes the potential PVDD. A power supply line 310 is connected to the high potential line 300. A plurality of light sources 40 arranged along the extending direction of the power line 310 (for example, the Y direction) are connected to the power line 310. Electric power for light emission from a light source element 371 of each light source 40 (for example, an organic light emitting diode (OLED)) is sent from a power source (not shown) via a power line 310.
 なお、下記光源素子371として、OLEDを用いる光源素子について説明するが、本実施の形態はこれに限定されない。光源素子371として、例えば有機化合物を利用しない発光ダイオード等、直流で駆動される他の光源を備える構成であってもよい。また、光源素子371の発光体は、蒸着法や結晶成長して得られた薄膜であってもよいし、薄膜でなくてもよい。薄膜でない光源素子として、例えばバルクの半導体を用いた光源素子であってもよい。 In addition, although the light source element using OLED is demonstrated as the following light source element 371, this Embodiment is not limited to this. The light source element 371 may include another light source driven by direct current, such as a light emitting diode that does not use an organic compound. The light emitter of the light source element 371 may be a thin film obtained by vapor deposition or crystal growth, or may not be a thin film. As a light source element that is not a thin film, for example, a light source element using a bulk semiconductor may be used.
 制御部11は、階調検出部111と、タイミング制御部112とを備えている。階調検出部111は、各光源40毎に階調信号Vdispを検出する。タイミング制御部112は、階調信号Vdispと、この階調検出部111によって検出された階調信号Vdispの各光源40毎の階調に基づき、初期化発光制御信号xasw1、発光制御信号(例えば、第1発光制御信号xasw2-1、第2発光制御信号xasw2-2)、発光制御信号BG及びリセット制御信号RGを含む各制御信号を生成する。 The control unit 11 includes a gradation detection unit 111 and a timing control unit 112. The gradation detector 111 detects a gradation signal Vdisp for each light source 40. The timing control unit 112, based on the gradation signal Vdisp and the gradation for each light source 40 of the gradation signal Vdisp detected by the gradation detection unit 111, the initialization light emission control signal xasw1, the light emission control signal (for example, The control signals including the first light emission control signal xasw2-1, the second light emission control signal xasw2-2), the light emission control signal BG, and the reset control signal RG are generated.
 ソースドライバ100は、制御部11から入力された階調信号Vdispに基づき、各光源40の発光強度に対応した電圧(例えば、第1電圧Vsig1、第2電圧Vsig2)を出力する。また、ソースドライバ100は、各光源40の動作を制御するためのトランジスタ(例えば、第1初期化信号制御スイッチ101、第2初期化信号制御スイッチ102、第1電圧制御スイッチ103、第2電圧制御スイッチ104)を有する。 The source driver 100 outputs voltages (for example, the first voltage Vsig1 and the second voltage Vsig2) corresponding to the emission intensity of each light source 40 based on the gradation signal Vdisp input from the control unit 11. The source driver 100 also includes transistors (for example, a first initialization signal control switch 101, a second initialization signal control switch 102, a first voltage control switch 103, and a second voltage control) for controlling the operation of each light source 40. Switch 104).
 以下、図2に例示されている4つの光源40a,40b,40c,40dのうち、光源40aに関する構成を例として説明する。 Hereinafter, the configuration relating to the light source 40a among the four light sources 40a, 40b, 40c, and 40d illustrated in FIG. 2 will be described as an example.
 第1初期化信号制御スイッチ101は、ソース又はドレインの一方(第1の端子)が第1信号線110に接続され、他方(第2の端子)に初期化電圧Viniが供給される。また、第1初期化信号制御スイッチ101のゲート(第3の端子)には、初期化発光制御信号xasw1が入力される。第1初期化信号制御スイッチ101のゲートに初期化発光制御信号xasw1が印加されると、第1初期化信号制御スイッチ101が導通状態となり、第1信号線110に初期化電圧Viniが印加される。初期化電圧Viniは、例えば1.27Vである。 In the first initialization signal control switch 101, one of the source and drain (first terminal) is connected to the first signal line 110, and the other (second terminal) is supplied with the initialization voltage Vini. The initialization light emission control signal xasw1 is input to the gate (third terminal) of the first initialization signal control switch 101. When the initialization light emission control signal xasw1 is applied to the gate of the first initialization signal control switch 101, the first initialization signal control switch 101 becomes conductive, and the initialization voltage Vini is applied to the first signal line 110. . The initialization voltage Vini is, for example, 1.27V.
 第1電圧制御スイッチ103は、ソース又はドレインの一方(第1の端子)が第1信号線110に接続され、他方(第2の端子)に第1電圧Vsig1が供給される。また、第1電圧制御スイッチ103のゲート(第3の端子)には、第1発光制御信号xasw2-1が入力される。第1電圧制御スイッチ103のゲートに第1発光制御信号xasw2-1が印加されると、第1電圧制御スイッチ103が導通状態となり、第1信号線110に第1電圧Vsig1が印加される。 In the first voltage control switch 103, one of a source and a drain (first terminal) is connected to the first signal line 110, and the other (second terminal) is supplied with the first voltage Vsig1. The first light emission control signal xasw2-1 is input to the gate (third terminal) of the first voltage control switch 103. When the first light emission control signal xasw2-1 is applied to the gate of the first voltage control switch 103, the first voltage control switch 103 is turned on, and the first voltage Vsig1 is applied to the first signal line 110.
 ゲートドライバ200は、リセット制御スイッチ235を備える。リセット制御スイッチ235は、例えばトランジスタである。リセット制御スイッチ235は、ソース又はドレインの一方(第1の端子)がリセット線230に接続され、他方(第2の端子)にリセット電圧Vrstが供給される。また、リセット制御スイッチ235のゲート(第3の端子)には、リセット制御信号RGが入力される。リセット制御スイッチ235のゲートにリセット制御信号RGが印加されると、リセット制御スイッチ235が導通状態となり、リセット線230にリセット電圧Vrstが印加される。リセット電圧Vrstは、例えば-3Vである。 The gate driver 200 includes a reset control switch 235. The reset control switch 235 is a transistor, for example. In the reset control switch 235, one of the source and the drain (first terminal) is connected to the reset line 230, and the reset voltage Vrst is supplied to the other (second terminal). The reset control signal RG is input to the gate (third terminal) of the reset control switch 235. When the reset control signal RG is applied to the gate of the reset control switch 235, the reset control switch 235 becomes conductive, and the reset voltage Vrst is applied to the reset line 230. The reset voltage Vrst is, for example, −3V.
 光源40aは、スイッチ331、駆動トランジスタ341、光源素子371、蓄積容量351及び付加容量361を有する。 The light source 40a includes a switch 331, a driving transistor 341, a light source element 371, a storage capacitor 351, and an additional capacitor 361.
 スイッチ331は、ソース又はドレインの一方(第1の端子)が第1信号線110に接続される。また、スイッチ331のゲート(第3の端子)は、第1走査線210に接続される。スイッチ331は、例えばTFT素子である。 The switch 331 has one of a source and a drain (first terminal) connected to the first signal line 110. The gate (third terminal) of the switch 331 is connected to the first scanning line 210. The switch 331 is a TFT element, for example.
 駆動トランジスタ341のソース又はドレインの一方(第1の端子)が光源素子371の陽極に接続され、他方(第2の端子)がリセット線230に接続される。また、駆動トランジスタ341のゲート(第3の端子)は、スイッチ331のソース又はドレインの他方(第2の端子)に接続される。 One of the source and drain (first terminal) of the driving transistor 341 is connected to the anode of the light source element 371 and the other (second terminal) is connected to the reset line 230. The gate (third terminal) of the driving transistor 341 is connected to the other of the source and drain of the switch 331 (second terminal).
 駆動トランジスタ341のソース又はドレインの一方(第1の端子)とゲート(第3の端子)との間には、蓄積容量351が接続される。また、駆動トランジスタ341のソース又はドレインの一方(第1の端子)には、低電位供給線(例えば、低電位線GND)との間、又は高電位線300との間に付加容量361が接続される。なお、付加容量361は、駆動トランジスタ341のソース又はドレインの一方(第1の端子)と低電位供給線(例えば、低電位線GND)との間、及び、駆動トランジスタ341のソース又はドレインの一方(第1の端子)と高電位線300との間に設けられていてもよい。 A storage capacitor 351 is connected between one of the source and drain (first terminal) and the gate (third terminal) of the driving transistor 341. An additional capacitor 361 is connected to one of the source and drain (first terminal) of the driving transistor 341 between the low potential supply line (for example, the low potential line GND) or the high potential line 300. Is done. Note that the additional capacitor 361 includes the source or drain of the driving transistor 341 (first terminal) and a low potential supply line (for example, the low potential line GND) and the source or drain of the driving transistor 341. (First terminal) and the high potential line 300 may be provided.
 ゲートドライバ200は、走査信号(例えば、第1走査信号SG1、第2走査信号SG2)を出力する。ゲートドライバ200から、第1走査線210に第1走査信号SG1が印加されると、スイッチ331が導通状態となる。スイッチ331が導通状態の場合に、ソースドライバ100から第1信号線110に第1電圧Vsig1が印加されると、駆動トランジスタ341のゲート(第3の端子)に第1電圧Vsig1が印加される。 The gate driver 200 outputs scanning signals (for example, the first scanning signal SG1 and the second scanning signal SG2). When the first scanning signal SG1 is applied from the gate driver 200 to the first scanning line 210, the switch 331 becomes conductive. When the first voltage Vsig1 is applied from the source driver 100 to the first signal line 110 when the switch 331 is conductive, the first voltage Vsig1 is applied to the gate (third terminal) of the drive transistor 341.
 駆動トランジスタ341は、光源素子371に供給する電流値を、ゲート電圧に応じて制御する。駆動トランジスタ341のゲート(第3の端子)に電圧が印加されるのと並行して、蓄積容量351に電荷が蓄積される。蓄積容量351に蓄積された電荷により、スイッチ331が非導通状態となった後も、一定期間は駆動トランジスタ341のゲート(第3の端子)に電圧が印加され、駆動トランジスタ341の導通状態が保たれる。 The driving transistor 341 controls the current value supplied to the light source element 371 according to the gate voltage. In parallel with the application of a voltage to the gate (third terminal) of the driving transistor 341, charges are accumulated in the storage capacitor 351. A voltage is applied to the gate (third terminal) of the driving transistor 341 for a certain period even after the switch 331 becomes non-conductive due to the electric charge stored in the storage capacitor 351, and the conductive state of the driving transistor 341 is maintained. Be drunk.
 駆動トランジスタ341のソース又はドレインの一方(第1の端子)に接続された付加容量361は、蓄積容量351との容量分割により第1電圧Vsig1の電圧に応じて駆動トランジスタ341のゲート(第3の端子)とソース又はドレインの一方(第1の端子)との間の電圧を設定する役割を持つ。例えば、付加容量361の静電容量を蓄積容量351の静電容量よりも大きくすることで、駆動トランジスタ341のゲート(第3の端子)とソース又はドレインの一方(第1の端子)との間の電圧の設定範囲を広くすることができる。 The additional capacitor 361 connected to one of the source and the drain (first terminal) of the driving transistor 341 has a capacity division with the storage capacitor 351 so that the gate of the driving transistor 341 according to the voltage of the first voltage Vsig1 (third Terminal) and one of a source and a drain (first terminal). For example, by making the capacitance of the additional capacitor 361 larger than the capacitance of the storage capacitor 351, between the gate (third terminal) of the driving transistor 341 and one of the source and drain (first terminal). The voltage setting range can be widened.
 光源素子371の陰極は、低電位供給線(例えば、低電位線GND)に接続される。駆動トランジスタ341が導通状態の場合に、リセットスイッチ31が導通状態となれば、駆動トランジスタ341のゲート電圧に応じて光源素子371に電流が流れ、光源素子371が発光する。 The cathode of the light source element 371 is connected to a low potential supply line (for example, a low potential line GND). When the drive transistor 341 is in a conductive state and the reset switch 31 is in a conductive state, a current flows through the light source element 371 in accordance with the gate voltage of the drive transistor 341, and the light source element 371 emits light.
 以上、光源40aに関する構成を例として説明したが、図2に例示する他の光源40b,40c,40dについても同様の仕組みで動作する。ただし、X方向に並ぶ複数の光源40にはそれぞれ異なる階調信号Vdispが供給される。具体例を挙げると、光源40aには第1電圧Vsig1が供給され、光源40bには第2電圧Vsig2が供給される。また、Y方向に並ぶ複数の光源40は、それぞれ異なるタイミングで駆動される。具体例を挙げると、光源40a,40bは、第1走査信号SG1の出力タイミングに応じて駆動され、光源40c,40dは、第1走査信号SG1と異なるタイミングに出力される第2走査信号SG2の出力タイミングに応じて駆動される。なお、Y方向に並ぶ複数の光源40は、信号線を共有するが、それぞれの駆動タイミングに応じて供給される電圧は個別に制御される。 The configuration related to the light source 40a has been described above as an example, but the other light sources 40b, 40c, and 40d illustrated in FIG. However, different gradation signals Vdisp are supplied to the plurality of light sources 40 arranged in the X direction. As a specific example, the first voltage Vsig1 is supplied to the light source 40a, and the second voltage Vsig2 is supplied to the light source 40b. The plurality of light sources 40 arranged in the Y direction are driven at different timings. As a specific example, the light sources 40a and 40b are driven according to the output timing of the first scanning signal SG1, and the light sources 40c and 40d receive the second scanning signal SG2 output at a timing different from the first scanning signal SG1. It is driven according to the output timing. Note that the plurality of light sources 40 arranged in the Y direction share a signal line, but voltages supplied in accordance with the respective drive timings are individually controlled.
 なお、光源40bは、スイッチ332、駆動トランジスタ342、光源素子372、蓄積容量352及び付加容量362を有する。また、光源40cは、スイッチ333、駆動トランジスタ343、光源素子373、蓄積容量353及び付加容量363を有する。また、光源40dは、スイッチ334、駆動トランジスタ344、光源素子374、蓄積容量354及び付加容量364を有する。これらの具体的構成は、光源40aのスイッチ331、駆動トランジスタ341、光源素子371、蓄積容量351及び付加容量361と同様である。ただし、スイッチ332は、ソース又はドレインの一方(第1の端子)が第2信号線120に接続される。また、スイッチ333は、ゲート(第3の端子)が第2走査線250に接続される。また、スイッチ334は、ソース又はドレインの一方(第1の端子)が第2信号線120に接続され、ゲート(第3の端子)が第2走査線250に接続される。 The light source 40b includes a switch 332, a drive transistor 342, a light source element 372, a storage capacitor 352, and an additional capacitor 362. The light source 40 c includes a switch 333, a driving transistor 343, a light source element 373, a storage capacitor 353, and an additional capacitor 363. The light source 40d includes a switch 334, a drive transistor 344, a light source element 374, a storage capacitor 354, and an additional capacitor 364. These specific configurations are the same as those of the switch 331, the drive transistor 341, the light source element 371, the storage capacitor 351, and the additional capacitor 361 of the light source 40a. However, the switch 332 has one of the source and the drain (first terminal) connected to the second signal line 120. The switch 333 has a gate (third terminal) connected to the second scanning line 250. The switch 334 has one of a source and a drain (first terminal) connected to the second signal line 120 and a gate (third terminal) connected to the second scanning line 250.
 また、第2信号線120に関する構成として、第2初期化信号制御スイッチ102、第2電圧制御スイッチ104がある。第2信号線120と第2初期化信号制御スイッチ102及び第2電圧制御スイッチ104との関係は、第1信号線110と第1初期化信号制御スイッチ101及び第1電圧制御スイッチ103との関係と同様である。ただし、第2信号線120に出力される電圧は、第2電圧Vsig2である。また、第2電圧制御スイッチ104に印加される発光制御信号は、第2発光制御信号xasw2-2である。各光源40が個別に駆動されることで、1フレーム分の画像が出力される。 Also, as a configuration related to the second signal line 120, there are a second initialization signal control switch 102 and a second voltage control switch 104. The relationship between the second signal line 120 and the second initialization signal control switch 102 and the second voltage control switch 104 is the relationship between the first signal line 110 and the first initialization signal control switch 101 and the first voltage control switch 103. It is the same. However, the voltage output to the second signal line 120 is the second voltage Vsig2. The light emission control signal applied to the second voltage control switch 104 is the second light emission control signal xasw2-2. By driving each light source 40 individually, an image for one frame is output.
 リセットスイッチ31は、駆動トランジスタ341,342,343,344のソース又はドレインの他方(第2の端子)と、電源線310との間の電気的接続を制御するトランジスタである。リセットスイッチ31のゲート(第3の端子)は、発光制御線220に接続される。ゲートドライバ200より、発光制御線220に発光制御信号BGが印加されると、リセットスイッチ31が導通状態となる。 The reset switch 31 is a transistor that controls the electrical connection between the other of the sources or drains (second terminals) of the drive transistors 341, 342, 343, and 344 and the power supply line 310. The gate (third terminal) of the reset switch 31 is connected to the light emission control line 220. When the light emission control signal BG is applied from the gate driver 200 to the light emission control line 220, the reset switch 31 becomes conductive.
 リセットスイッチ31が非導通状態、リセット制御スイッチ235が導通状態であれば、駆動トランジスタ341,342,343,344のソース又はドレインの他方(第2の端子)がリセット線230に接続される。リセット電圧Vrstは、低電位供給線(例えば、低電位線GND)の電位であってもよい。 If the reset switch 31 is non-conductive and the reset control switch 235 is conductive, the other (second terminal) of the source or drain of the drive transistors 341, 342, 343, 344 is connected to the reset line 230. The reset voltage Vrst may be a potential of a low potential supply line (for example, the low potential line GND).
 なお、図2に示す等価回路図は一例であり、異なる回路を採用してもよい。例えば、各光源40に対してそれぞれリセットスイッチ31を設けた構成としてもよい。また、上述したソース及びドレインと第1の端子及び第2の端子との対応関係は、あくまで例であり、ソースドライバ100、ゲートドライバ200、光源40の具体的な回路構成に応じて適宜入れ替え可能である。 The equivalent circuit diagram shown in FIG. 2 is an example, and a different circuit may be adopted. For example, the reset switch 31 may be provided for each light source 40. The correspondence relationship between the source and drain and the first terminal and the second terminal described above is merely an example, and can be appropriately switched according to the specific circuit configuration of the source driver 100, the gate driver 200, and the light source 40. It is.
 制御部11等、表示装置1を構成する回路が設けられる具体的な位置は任意である。例えば、階調信号Vdispを伝送する配線を含むフレキシブル基板上に実装されていてもよいし、光源基板10上に実装されていてもよい。 The specific position where the circuit which comprises the display apparatus 1, such as the control part 11, is provided is arbitrary. For example, it may be mounted on a flexible substrate including wiring that transmits the gradation signal Vdisp, or may be mounted on the light source substrate 10.
 実施形態1における光源素子371,372,373,374は、紫外光を照射する。具体的には、光源素子371,372,373,374は、例えば発光時に近紫外光(波長:200[nm]-380[nm])を照射する。より具体的には、光源素子371,372,373,374が照射する紫外光は、ヒト等の生体に対する影響がより少ない波長(例えば、UV-A(波長:315[nm]-380[nm]))の紫外光であることが望ましい。 The light source elements 371, 372, 373, and 374 in Embodiment 1 irradiate ultraviolet light. Specifically, the light source elements 371, 372, 373, and 374 irradiate, for example, near ultraviolet light (wavelength: 200 [nm] to 380 [nm]) during light emission. More specifically, the ultraviolet light emitted from the light source elements 371, 372, 373, and 374 has a wavelength (for example, UV-A (wavelength: 315 [nm] -380 [nm]) that has less influence on a living body such as a human. )) UV light is desirable.
 支持部60には、不可視光IVLを吸収して発光する発光体50(例えば、第1発光体50R、第2発光体50G及び第3発光体50B)が設けられている。具体的には、支持部60は、発光体支持部61と、回動支持部62とを有する。発光体支持部61は、例えばY方向に沿うスリットを有する格子状の部材である。スリットには、第1発光体50R、第2発光体50G及び第3発光体50Bが設けられている。第1発光体50R、第2発光体50G及び第3発光体50Bは、X方向に沿って周期的に配置されている。第1発光体50R、第2発光体50G及び第3発光体50Bを総称して発光体50と記載することがある。図1に例示するように、第1位置である場合に複数の発光体50が二次元配列のうち少なくとも一方向(X方向)の配列に沿って並び、基板(光源基板10)の実装面15の垂直方向において一方向に並ぶ複数の発光体50の位置と一方向(X方向)に並ぶ不可視光源(光源40)の位置とが対応する。なお、発光体50を支持する支持部60の具体的構成はこれに限られるものでない。例えば、発光体支持部61に代えて、透光性を有する板状の基板を採用してもよい。この場合、透光性を有する板状の基板の一面側に発光体50が配置される。 The support 60 is provided with a light emitter 50 (for example, the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B) that emits light by absorbing the invisible light IVL. Specifically, the support unit 60 includes a light emitter support unit 61 and a rotation support unit 62. The light emitter support 61 is a lattice-shaped member having slits along the Y direction, for example. A first light emitter 50R, a second light emitter 50G, and a third light emitter 50B are provided in the slit. The first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are periodically arranged along the X direction. The first light emitter 50R, the second light emitter 50G, and the third light emitter 50B may be collectively referred to as the light emitter 50 in some cases. As illustrated in FIG. 1, in the first position, the plurality of light emitters 50 are arranged along an array in at least one direction (X direction) of the two-dimensional array, and the mounting surface 15 of the substrate (light source substrate 10). The position of the plurality of light emitters 50 arranged in one direction in the vertical direction corresponds to the position of the invisible light source (light source 40) arranged in one direction (X direction). In addition, the specific structure of the support part 60 which supports the light-emitting body 50 is not restricted to this. For example, instead of the light emitter support 61, a plate-like substrate having translucency may be adopted. In this case, the light emitter 50 is disposed on one surface side of the light-transmitting plate-like substrate.
 第1発光体50R、第2発光体50G、第3発光体50Bは、不可視光IVLの照射に応じ、フォトルミネセンスによってそれぞれ異なる色の可視光を発する顔料を含む蛍光体である。実施形態1の場合、第1発光体50Rは、紫外光が照射されると紫外光を吸収して赤色の可視光VLRを発光する。また、第2発光体50Gは、紫外光が照射されると紫外光を吸収して緑色の可視光VLGを発光する。また、第3発光体50Bは、紫外光が照射されると紫外光を吸収して青色の可視光VLBを発光する。第1発光体50Rの顔料として、例えば、Y:Eu3+が挙げられる。第2発光体50Gの顔料として、例えば、LaPO:Ce3+,Tb3+が挙げられる。第3発光体50Bの顔料として、(Sr,Ba,Ca)(POCl:Eu2+が挙げられる。第1発光体50R、第2発光体50G及び第3発光体50Bの具体的組成はこれに限られるものでなく、励起光として機能する不可視光源(光源40)からの不可視光IVLの波長と、発光体50が不可視光IVLを吸収して発する可視光VLR,VLG,VLBの波長との間の差が適当となる蛍光物質であれば、発光体50として適宜利用することができる。蛍光物質は、不可視光源(光源40)が照射する不可視光IVLの最大励起波長と発光体50が発する可視光VLR,VLG,VLBの波長のうち最大効率となる波長との差(ストークスシフト)に基づいて選定されることが望ましい。また、発光体50が発する可視光の色及び色数は適宜変更可能である。 The first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are phosphors that contain pigments that emit visible light of different colors by photoluminescence in response to irradiation with invisible light IVL. In the first embodiment, the first light emitter 50R absorbs ultraviolet light and emits red visible light VLR when irradiated with ultraviolet light. Further, the second light emitter 50G absorbs ultraviolet light and emits green visible light VLG when irradiated with ultraviolet light. Further, the third light emitter 50B absorbs ultraviolet light and emits blue visible light VLB when irradiated with ultraviolet light. Examples of the pigment of the first light emitter 50R include Y 2 O 3 : Eu 3+ . Examples of the pigment of the second light emitter 50G include LaPO 4 : Ce 3+ and Tb 3+ . Examples of the pigment of the third light emitter 50B include (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ . The specific composition of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B is not limited to this, and the wavelength of the invisible light IVL from the invisible light source (light source 40) that functions as excitation light; Any phosphor can be appropriately used as the light emitter 50 as long as the phosphor is suitable for the difference between the wavelengths of visible light VLR, VLG, and VLB emitted from the light emitter 50 by absorbing the invisible light IVL. The fluorescent material has a difference (Stokes shift) between the maximum excitation wavelength of the invisible light IVL emitted from the invisible light source (light source 40) and the wavelength of the visible light VLR, VLG, VLB emitted from the light emitter 50 that has the maximum efficiency. It is desirable to select based on this. Further, the color and the number of colors of visible light emitted from the light emitter 50 can be changed as appropriate.
 回動支持部62は、例えば図1に示すように、発光体支持部61を回動可能に支持する部材である。具体的には、回動支持部62は、対向するよう設けられた光源基板10と発光体支持部61のうち発光体支持部61側に設けられた回動軸63を介して発光体支持部61と連結されている。また、回動支持部62は、背面側が光源基板10に固定されている。これによって、発光体支持部61は、回動軸63を回動中心として回動することで、光源基板10に対する発光体50の回動角度を変えることができる。このように、支持部60は、発光体50が基板(光源基板10)の実装面15に対向する第1位置PA(図3参照)と、実装面15の垂直方向において発光体50が不可視光源(光源40)と異なる位置にある第2位置PB(図4参照)とに切り替え可能に発光体50を支持する。 The rotation support part 62 is a member that rotatably supports the light emitter support part 61, for example, as shown in FIG. Specifically, the rotation support part 62 is a light emitter support part via a rotation shaft 63 provided on the light emitter support part 61 side of the light source substrate 10 and the light emitter support part 61 provided to face each other. 61 is connected. In addition, the back side of the rotation support part 62 is fixed to the light source substrate 10. Thereby, the light emitter support portion 61 can change the rotation angle of the light emitter 50 with respect to the light source substrate 10 by rotating about the rotation shaft 63. As described above, the support unit 60 includes the first position PA (see FIG. 3) where the light emitter 50 faces the mounting surface 15 of the substrate (light source substrate 10) and the light emitter 50 in an invisible light source in the direction perpendicular to the mounting surface 15. The light emitter 50 is supported so as to be switchable to a second position PB (see FIG. 4) at a position different from the (light source 40).
 図3は、光源40とユーザとの間に発光体50が介在する場合を例示する模式図である。図3及び図4では、画像を視認するユーザを模式的に目Eとして図示している。発光体50が第1位置PAに位置する場合、光源40とユーザとの間に発光体50が介在する。この場合、光源40からの不可視光IVLを吸収して発光体50が可視光VLR,VLG,VLBを発する。ユーザは、可視光VLR,VLG,VLBによって出力される画像を視認することができる。 FIG. 3 is a schematic view illustrating the case where the light emitter 50 is interposed between the light source 40 and the user. 3 and 4, a user who visually recognizes an image is schematically illustrated as an eye E. When the light emitter 50 is located at the first position PA, the light emitter 50 is interposed between the light source 40 and the user. In this case, the invisible light IVL from the light source 40 is absorbed, and the light emitter 50 emits visible light VLR, VLG, and VLB. The user can visually recognize an image output by visible light VLR, VLG, and VLB.
 図4は、光源40とユーザとの間に発光体50が介在しない場合を例示する模式図である。発光体50が第2位置PBに位置する場合、光源40とユーザとの間に発光体50が介在しない。この場合、ユーザは、不可視光IVLによって出力される画像を視認することになるが、不可視光IVLを直接見ることはできないので、例えば図4に例示するように、別途用意された変換装置70を介して不可視光IVLによって出力される画像を可視光に変換して視認する。変換装置70は、発光体50とは別途に設けられた蛍光体を有し、光源40からの不可視光IVLを吸収して可視光VLを発することで、不可視光IVLによって出力される画像を視認可能にする。具体的には、変換装置70は、例えば不可視光IVLに対する感度を有する撮像素子(例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等)と、当該撮像素子による撮像画像を表示出力する表示パネルとを有する。変換装置70は、使用時に撮像素子の受光面が表示装置1に向けられる。不可視光IVLによって出力される画像は、撮像素子によって撮像される。撮像素子は、撮像画像を表示パネルに出力する。表示パネルは、撮像画像を可視光で表示出力する。より具体的には、変換装置70は、例えば、表示パネルが撮像素子の受光面の反対側に設けられている。これによって、ユーザは、ファインダーを通すように変換装置70を挟んで表示装置1を視認することで、不可視光IVLによって出力される画像を可視光に変換して視認することができる。変換装置70は、発光体50と同様の原理で不可視光IVLを吸収して可視光VLを発光する発光体を有していてもよい。 FIG. 4 is a schematic view illustrating the case where the light emitter 50 is not interposed between the light source 40 and the user. When the light emitter 50 is located at the second position PB, the light emitter 50 is not interposed between the light source 40 and the user. In this case, the user visually recognizes the image output by the invisible light IVL, but cannot directly view the invisible light IVL. For example, as illustrated in FIG. The image output by the invisible light IVL is converted into visible light and viewed. The conversion device 70 has a phosphor provided separately from the light emitter 50 and absorbs the invisible light IVL from the light source 40 to emit visible light VL, thereby visually recognizing an image output by the invisible light IVL. enable. Specifically, the conversion device 70 includes, for example, an image sensor having sensitivity to invisible light IVL (for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor) and a display panel that displays and outputs an image captured by the image sensor. Have. When the conversion device 70 is used, the light receiving surface of the image sensor is directed to the display device 1. The image output by the invisible light IVL is captured by the image sensor. The image sensor outputs a captured image to the display panel. The display panel displays and outputs the captured image with visible light. More specifically, in the conversion device 70, for example, a display panel is provided on the opposite side of the light receiving surface of the image sensor. Accordingly, the user can visually recognize the image output by the invisible light IVL by visually recognizing the display device 1 with the conversion device 70 interposed therebetween so as to pass through the viewfinder. The conversion device 70 may have a light emitter that absorbs the invisible light IVL and emits visible light VL on the same principle as the light emitter 50.
 なお、表示装置1における画素の構成単位は任意である。例えば、X方向に並ぶ第1発光体50R、第2発光体50G及び第3発光体50Bを1つずつ含む所定領域を画素としてもよい。当該所定領域内には、Y方向に並ぶ1以上の光源40が含まれる。Y方向に連続する第1発光体50R、第2発光体50G及び第3発光体50Bを複数の画素が共有してもよい。この場合、第1発光体50R、第2発光体50G及び第3発光体50Bは連続しているが、制御部11によってY方向に並ぶ複数の光源40から発せられる不可視光IVLの強度を個別に制御可能であることから、Y方向に並ぶ複数の光源40の各々の位置に対応する第1発光体50R、第2発光体50G及び第3発光体50Bの一部分を個別の画素として扱うことができる。また、Y方向に並ぶ1以上の光源40の配置に応じて、第1発光体50R、第2発光体50G及び第3発光体50Bを複数設けてもよい。すなわち、第1発光体50R、第2発光体50G及び第3発光体50Bは、マトリクス状に配置されていてもよい。 In addition, the structural unit of the pixel in the display device 1 is arbitrary. For example, a predetermined region including one each of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B arranged in the X direction may be used as a pixel. One or more light sources 40 arranged in the Y direction are included in the predetermined area. A plurality of pixels may share the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B that are continuous in the Y direction. In this case, the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B are continuous, but the intensity of the invisible light IVL emitted from the plurality of light sources 40 arranged in the Y direction by the control unit 11 is individually set. Since it is controllable, a part of the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B corresponding to each position of the plurality of light sources 40 arranged in the Y direction can be handled as individual pixels. . A plurality of first light emitters 50R, second light emitters 50G, and third light emitters 50B may be provided in accordance with the arrangement of one or more light sources 40 arranged in the Y direction. That is, the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B may be arranged in a matrix.
 また、図1、図3及び図4で例示された光源基板10と発光体支持部61との間隔はあくまで模式的なものであり、実際の表示装置1における光源基板10と発光体支持部61との間隔を示すものでない。発光体支持部61は、光源基板10により近接していてもよいし、必要に応じてより離してもよい。 Further, the distance between the light source substrate 10 and the light emitter support portion 61 illustrated in FIGS. 1, 3, and 4 is merely schematic, and the light source substrate 10 and the light emitter support portion 61 in the actual display device 1. It does not indicate the interval. The light emitter support 61 may be closer to the light source substrate 10 or may be further separated as necessary.
 表示装置1では、第1位置PAではRGBのカラー表示が可能である。一方、第2位置PBでは、モノクロ表示ではあるが、第1位置PAよりも3倍の解像度で表示が可能である。 The display device 1 can perform RGB color display at the first position PA. On the other hand, at the second position PB, although it is monochrome display, it is possible to display at a resolution three times that of the first position PA.
 実施形態1によれば、不可視光IVLを用いた画像の表示出力の形態として、発光体50が第1位置PAである場合の形態と第2位置PBである場合の形態を設けることができる。これによって、発光体50が第1位置PAである場合には誰でも視認可能な画像を表示出力することができるとともに、発光体50が第2位置PBである場合には変換装置70を所有しているユーザのみ視認可能な画像を表示出力することができる。このように、実施形態1によれば、より多用途な表示装置1を提供することができる。 According to the first embodiment, as a display output form of an image using the invisible light IVL, a form in the case where the light emitter 50 is the first position PA and a form in the case where it is the second position PB can be provided. As a result, when the light emitter 50 is at the first position PA, an image that can be visually recognized by anyone can be displayed and output, and when the light emitter 50 is at the second position PB, the conversion device 70 is owned. It is possible to display and output an image that is visible only to the user who is viewing. Thus, according to the first embodiment, a more versatile display device 1 can be provided.
 以上、光源40の光源素子371,372,373,374が照射する不可視光IVLが紫外光である場合について例示したが、不可視光IVLは紫外光に限られない。例えば、不可視光IVLは、赤外光であってもよい。この場合、光源素子371,372,373,374は、赤外光を照射する光源素子(例えば、IRLED:InfraRed Light Emitting Diode)に置換される。また、発光体50は、赤外光を吸収して可視光VLR,VLG,VLBを発するものに置換される。また、変換装置70は、例えば暗視装置のように、赤外光によって出力される画像を視認可能にするものとなる。言い換えれば、この場合の不可視光IVLは、暗視装置として機能する変換装置70で視認可能な赤外光である。暗視装置として機能する変換装置70は、上記の撮像素子に代えて、例えば光電子増倍管が採用される。光電子増倍管は、例えばマイクロチャンネルプレート(MCP:Micro Channel Plate)型光電子増倍管又はダイノード型光電子増倍管である。暗視装置として機能する変換装置70は、サーモグラフィーであってもよい。赤外光の波長は任意であり、例えば750[nm]より長波長の範囲内で適宜設定される。 As described above, the case where the invisible light IVL irradiated by the light source elements 371, 372, 373, and 374 of the light source 40 is ultraviolet light is exemplified, but the invisible light IVL is not limited to ultraviolet light. For example, the invisible light IVL may be infrared light. In this case, the light source elements 371, 372, 373, and 374 are replaced with light source elements that emit infrared light (for example, IRLED: InfraRed Light Emitting Diode). Further, the light emitter 50 is replaced with one that absorbs infrared light and emits visible light VLR, VLG, and VLB. Further, the conversion device 70 enables an image output by infrared light to be visually recognized, such as a night vision device. In other words, the invisible light IVL in this case is infrared light that is visible with the conversion device 70 functioning as a night vision device. For example, a photomultiplier tube is employed in the conversion device 70 that functions as a night vision device, instead of the above-described imaging element. The photomultiplier tube is, for example, a micro channel plate (MCP) type photomultiplier tube or a dynode type photomultiplier tube. The conversion device 70 functioning as a night vision device may be a thermography. The wavelength of the infrared light is arbitrary, and is appropriately set within a wavelength range longer than 750 [nm], for example.
 不可視光IVLを暗視装置で視認可能な赤外光とすることで、より遠方でも不可視光IVLの画像を視認しやすくなる。 By making the invisible light IVL infrared light that can be visually recognized by the night vision device, it becomes easier to visually recognize the image of the invisible light IVL even at a greater distance.
(実施形態2)
 次に、本発明の実施形態2の表示装置について説明する。表示装置の説明に際して、実施形態1の表示装置1と同様の構成については同じ符号を付して説明を省略する。
(Embodiment 2)
Next, a display device according to Embodiment 2 of the present invention will be described. In the description of the display device, the same components as those of the display device 1 of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図5は、実施形態2の光源基板10、制御部11A及び検知部80の回路構成例を示す概略図である。図5に示すように、実施形態2の表示装置は、実施形態1の表示装置1の構成に加えて、検知部80を備える。 FIG. 5 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10, the control unit 11A, and the detection unit 80 according to the second embodiment. As illustrated in FIG. 5, the display device according to the second embodiment includes a detection unit 80 in addition to the configuration of the display device 1 according to the first embodiment.
 検知部80は、発光体50の位置が第1位置PAと第2位置PBのいずれであるかを検知する。具体的には、検知部80は、例えば発光部81と受光部82とを有する光学スイッチである。発光部81から受光部82への光の射線は、発光体50の位置が第1位置PA又は第2位置PBのいずれか一方となる発光体支持部61の回動角度で遮蔽され、他方となる発光体支持部61の回動角度で開放されるよう設けられる。これによって、検知部80は、受光部82による光の検知の有無によって、発光体50の位置が第1位置PAと第2位置PBのいずれであるかを検知することができる。受光部82は、光の検知の有無を示す出力Ssigを行う。受光部82の出力は、制御部11Aの切替部113に入力される。 The detecting unit 80 detects whether the position of the light emitter 50 is the first position PA or the second position PB. Specifically, the detection unit 80 is an optical switch having a light emitting unit 81 and a light receiving unit 82, for example. The ray of light from the light emitting part 81 to the light receiving part 82 is shielded by the rotation angle of the light emitter support part 61 where the position of the light emitter 50 is either the first position PA or the second position PB. It is provided so as to be opened at the rotation angle of the light emitter support portion 61. Accordingly, the detection unit 80 can detect whether the position of the light emitter 50 is the first position PA or the second position PB based on whether or not the light detection unit 82 detects light. The light receiving unit 82 performs output Ssig indicating whether or not light is detected. The output of the light receiving unit 82 is input to the switching unit 113 of the control unit 11A.
 実施形態2の制御部11Aは、実施形態1の制御部11の機能に加えて、発光体50の位置に応じて表示出力内容を切り替える機能を有する。具体的には、制御部11Aは、切替部113を有する。切替部113は、受光部82の出力から、発光体50の位置が第1位置PAと第2位置PBのいずれであるかを判別する。制御部11Aは、発光体50の位置に応じて光源基板10に設けられた複数の光源40を制御する。 The control unit 11A of the second embodiment has a function of switching display output contents according to the position of the light emitter 50 in addition to the function of the control unit 11 of the first embodiment. Specifically, the control unit 11A includes a switching unit 113. The switching unit 113 determines from the output of the light receiving unit 82 whether the position of the light emitter 50 is the first position PA or the second position PB. The control unit 11 </ b> A controls the plurality of light sources 40 provided on the light source substrate 10 according to the position of the light emitter 50.
 実施形態2では、発光体50の発光によって出力されて視認される画像(可視光画像)の第1階調信号Vdisp1と、変換装置70を用いることで視認可能な画像(不可視光画像)の第2階調信号Vdisp2とが個別の表示画像としてホスト集積回路90Aから入力されている。切替部113は、受光部82の出力が示す発光体50の位置が第1位置PAである場合、第1階調信号Vdisp1を階調信号Vdispとして扱い、光源基板10に設けられた複数の光源40から発せられる光の強弱を可視光画像の表示出力内容に対応させる。また、切替部113は、受光部82の出力が示す発光体50の位置が第2位置PBである場合、第2階調信号Vdisp2を階調信号Vdispとして扱い、光源基板10に設けられた複数の光源40から発せられる光の強弱を不可視光画像の表示出力内容に対応させる。 In the second embodiment, the first gradation signal Vdisp1 of the image (visible light image) output and visually recognized by the light emission of the light emitter 50 and the first image (invisible light image) that can be visually recognized by using the conversion device 70 are used. The two gradation signal Vdisp2 is input from the host integrated circuit 90A as an individual display image. When the position of the light emitter 50 indicated by the output of the light receiving unit 82 is the first position PA, the switching unit 113 treats the first gradation signal Vdisp1 as the gradation signal Vdisp, and a plurality of light sources provided on the light source substrate 10 The intensity of light emitted from 40 is made to correspond to the display output content of the visible light image. In addition, when the position of the light emitter 50 indicated by the output of the light receiving unit 82 is the second position PB, the switching unit 113 treats the second gradation signal Vdisp2 as the gradation signal Vdisp, and sets the plurality of light sources provided on the light source substrate 10. The intensity of light emitted from the light source 40 is made to correspond to the display output content of the invisible light image.
 なお、実施形態2では、発光体50の位置が第1位置PAと第2位置PBのいずれであるかに応じて画素と光源40との関係が変化してもよい。例えば、実施形態2では、発光体50が第1位置PAに位置する場合、X方向に並ぶ第1発光体50R、第2発光体50G及び第3発光体50Bを1つずつ含む所定領域を1つの画素とし、発光体50が第2位置PBに位置する場合、この所定領域に含まれる光源40に限られない1つ以上の光源40を含む別の領域を設定し、別の領域を1つの画素としてもよい。 In the second embodiment, the relationship between the pixel and the light source 40 may change depending on whether the position of the light emitter 50 is the first position PA or the second position PB. For example, in the second embodiment, when the light emitter 50 is located at the first position PA, the predetermined region including the first light emitter 50R, the second light emitter 50G, and the third light emitter 50B arranged in the X direction is one. When the light emitter 50 is located at the second position PB, another region including one or more light sources 40 that is not limited to the light source 40 included in the predetermined region is set, and the other region is set as one pixel. It may be a pixel.
 実施形態2によれば、発光体50の位置が第1位置PAと第2位置PBのいずれであるかに応じて表示出力内容を変化させることができる。 According to the second embodiment, the display output content can be changed depending on whether the position of the light emitter 50 is the first position PA or the second position PB.
(実施形態3)
 次に、本発明の実施形態3の表示装置について説明する。表示装置の説明に際して、実施形態1の表示装置1と同様の構成については同じ符号を付して説明を省略する。
(Embodiment 3)
Next, a display device according to Embodiment 3 of the present invention will be described. In the description of the display device, the same components as those of the display device 1 of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図6は、実施形態3の光源基板10B及び制御部11の回路構成例を示す概略図である。実施形態3の表示装置の光源基板10Bには、異なる波長の不可視光IVLを照射する光源40が混在して設けられている。具体例を挙げると、図6に示す光源40C,40Dの光源素子373B,374Bは、光源40a,40bの光源素子371,372とは異なる波長の不可視光IVLを照射する。より具体的には、例えば光源素子371,372は紫外光を照射し、光源素子373B,374Bは赤外光を照射する。このように、実施形態3では、異なる波長の不可視光IVLを照射する光源40が少なくとも一方向(例えば、Y方向)に沿って互い違いに並ぶ。実施形態3で光源40と纏めて記載している場合、光源40C,40Dが含まれる。 FIG. 6 is a schematic diagram illustrating a circuit configuration example of the light source substrate 10B and the control unit 11 according to the third embodiment. The light source substrate 10B of the display device of Embodiment 3 is provided with a mixture of light sources 40 that emit invisible light IVL having different wavelengths. As a specific example, the light source elements 373B and 374B of the light sources 40C and 40D shown in FIG. 6 emit invisible light IVL having a wavelength different from that of the light source elements 371 and 372 of the light sources 40a and 40b. More specifically, for example, the light source elements 371 and 372 emit ultraviolet light, and the light source elements 373B and 374B emit infrared light. As described above, in the third embodiment, the light sources 40 that irradiate the invisible light IVL having different wavelengths are alternately arranged along at least one direction (for example, the Y direction). When describing collectively with the light source 40 in Embodiment 3, the light sources 40C and 40D are included.
 実施形態3では、複数の光源40のうち一部のものが照射する不可視光IVLは発光体50を発光させるが、当該一部のものを除く他の光源40が照射する波長の異なる不可視光IVLは発光体50を発光させない。例えば光源素子371,372から発せられる紫外光は発光体50を励起して発光させるが、光源素子373B,374Bから発せられる赤外光は発光体50を励起せず、発光させない。 In the third embodiment, invisible light IVL emitted by some of the plurality of light sources 40 causes the light emitter 50 to emit light, but invisible light IVL with different wavelengths emitted by other light sources 40 other than the some of the light sources 40 is emitted. Does not cause the light emitter 50 to emit light. For example, ultraviolet light emitted from the light source elements 371 and 372 excites the light emitter 50 to emit light, but infrared light emitted from the light source elements 373B and 374B does not excite the light emitter 50 and does not emit light.
 実施形態3の階調信号Vdispは、可視光画像のための光源40(例えば、光源40a,40b)の発光パターンと不可視光画像のための光源40(例えば、光源40C,40D等)の発光パターンの両方を含んでいる。すなわち、実施形態3では、可視光画像と不可視光画像とを択一的に表示するのでなく、1フレーム分の画像に可視光画像と不可視光画像の両方が含まれている。 The gradation signal Vdisp of the third embodiment includes a light emission pattern of a light source 40 (for example, light sources 40a and 40b) for a visible light image and a light emission pattern of a light source 40 (for example, light sources 40C and 40D) for an invisible light image. Including both. That is, in the third embodiment, the visible light image and the invisible light image are not displayed selectively, but the image for one frame includes both the visible light image and the invisible light image.
 実施形態3では、発光体50の位置が第1位置PAである場合、変換装置70を有しないユーザに対して可視光画像を視認可能な状態で提供するとともに不可視光画像を構成する不可視光IVLの波長に対応した変換装置70(例えば、暗視装置)を有するユーザに対して不可視光画像を提供する。また、実施形態3では、発光体50の位置が第2位置PBである場合、変換装置70(例えば、暗視装置)を有するユーザに対して不可視光画像を提供する。 In the third embodiment, when the position of the light emitter 50 is the first position PA, the visible light image is provided to a user who does not have the conversion device 70 in a visible state and the invisible light IVL that forms the invisible light image. An invisible light image is provided to a user who has a conversion device 70 (for example, a night vision device) corresponding to the wavelength of. Further, in the third embodiment, when the position of the light emitter 50 is the second position PB, an invisible light image is provided to a user having the conversion device 70 (for example, a night vision device).
 なお、図6を参照した説明では、異なる波長の不可視光IVLを照射する光源40がY方向に沿って互い違いに並んでいるが、これはあくまで異なる波長の不可視光IVLを照射する光源40の配置パターンの一例であってこれに限られるものでない。例えば、異なる波長の不可視光IVLを照射する光源40は、X方向に沿って互い違いに並んでいてもよいし、千鳥状に配置されていてもよい。また、上記で例示した紫外光と赤外光はあくまで異なる波長の不可視光IVLの組み合わせの例であってこれに限られるものでなく、この組み合わせの一方又は両方を適宜変更してよい。 In the description with reference to FIG. 6, the light sources 40 that irradiate the invisible light IVL having different wavelengths are arranged alternately along the Y direction, but this is only an arrangement of the light sources 40 that irradiate the invisible light IVL having different wavelengths. It is an example of a pattern and is not limited to this. For example, the light sources 40 that irradiate the invisible light IVL with different wavelengths may be arranged alternately along the X direction, or may be arranged in a staggered manner. Moreover, the ultraviolet light and infrared light which were illustrated above are the examples of the combination of the invisible light IVL of a different wavelength to the last, and it is not restricted to this, You may change suitably one or both of this combination.
 実施形態3によれば、変換装置70を有しないユーザに対して可視光画像を視認可能な状態で提供するとともに不可視光画像を構成する不可視光IVLの波長に対応した変換装置70(例えば、暗視装置)を有するユーザに対して不可視光画像を提供することができる。 According to the third embodiment, a visible light image is provided in a visible state to a user who does not have the conversion device 70, and the conversion device 70 (for example, darkness) corresponding to the wavelength of the invisible light IVL constituting the invisible light image is provided. An invisible light image can be provided to a user having a viewing device.
 なお、支持部60による発光体50の位置変更に関する具体的な構成は適宜変更可能である。具体的には、発光体支持部61の動作は、図1を参照して説明した回動に限られるものでなく、スライド等の直動であってもよい。 In addition, the specific structure regarding the position change of the light-emitting body 50 by the support part 60 can be changed suitably. Specifically, the operation of the light emitter support portion 61 is not limited to the rotation described with reference to FIG. 1 but may be a linear motion such as a slide.
 また、光源40のように電力供給に応じて不可視光IVLを照射する構成である不可視光源は、上述のようにOLEDを備える構成に限られるものでなく、例えば有機化合物を利用しない発光ダイオード等、他の光源を備える構成であってもよい。あるいは、光源40として、交流駆動される光源素子を備えていてもよい。 Further, the invisible light source that is configured to irradiate the invisible light IVL according to the power supply like the light source 40 is not limited to the configuration including the OLED as described above, for example, a light emitting diode that does not use an organic compound, etc. The structure provided with another light source may be sufficient. Alternatively, the light source 40 may include a light source element that is AC driven.
 また、本実施形態において述べた態様によりもたらされる他の作用効果について本明細書記載から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。 In addition, other functions and effects brought about by the aspects described in the present embodiment, which are apparent from the description of the present specification, or can be appropriately conceived by those skilled in the art, are naturally understood to be brought about by the present invention. .
 また、本発明は、以下のように記載することができる。 Further, the present invention can be described as follows.
 1.基板の実装面に設けられて、前記実装面に交差する方向に不可視光を照射する不可視光源と、前記不可視光を吸収して可視光を発光する発光体と、前記発光体が前記実装面に対向する第1位置と、前記交差する方向において前記発光体が前記不可視光源と異なる位置にある第2位置とに切り替え可能に前記発光体を支持する支持部と
 を備える表示装置。
1. An invisible light source that is provided on the mounting surface of the substrate and irradiates invisible light in a direction intersecting the mounting surface, a light emitter that absorbs the invisible light and emits visible light, and the light emitter on the mounting surface A display device comprising: a first position that opposes; and a support portion that supports the light emitter so that the light emitter can be switched to a second position that is different from the invisible light source in the intersecting direction.
 2.前記不可視光は、紫外光である1.の表示装置。 2. The invisible light is ultraviolet light. Display device.
 3.前記不可視光は、赤外光である1.の表示装置。 3. The invisible light is infrared light. Display device.
 4.前記不可視光源は、発光ダイオードを有する1.乃至3.の表示装置。 4. The invisible light source has a light emitting diode. To 3. Display device.
 5.前記発光体は、蛍光体である1.乃至4.の表示装置。 5. The phosphor is a phosphor. To 4. Display device.
 6.複数の前記不可視光源が前記基板上に二次元配列で配置され、前記第1位置である場合に複数の前記発光体が前記二次元配列のうち少なくとも一方向の配列に沿って並び、前記交差する方向において前記発光体の位置と前記不可視光源の位置とが対応する1.乃至5.の表示装置。 6. When the plurality of invisible light sources are arranged in a two-dimensional array on the substrate and are at the first position, the plurality of light emitters are arranged along an array in at least one direction of the two-dimensional array and intersect. In the direction, the position of the light emitter corresponds to the position of the invisible light source. To 5. Display device.
1  表示装置
10 光源基板
11 制御部
40 光源
50 発光体
50R 第1発光体
50G 第2発光体
50B 第3発光体
60 支持部
61 発光体支持部
62 回動支持部
63 回動軸
371,372,373,374,373B,374B 光源素子
IVL 不可視光
PA 第1位置
PB 第2位置
VL,VLR,VLG,VLB 可視光
DESCRIPTION OF SYMBOLS 1 Display apparatus 10 Light source board | substrate 11 Control part 40 Light source 50 Light emitter 50R 1st light emitter 50G 2nd light emitter 50B 3rd light emitter 60 Support part 61 Light emitter support part 62 Rotation support part 63 Rotation shaft 371,372 373, 374, 373B, 374B Light source element IVL Invisible light PA First position PB Second position VL, VLR, VLG, VLB Visible light

Claims (6)

  1.  基板の実装面に設けられて、前記実装面に交差する方向に不可視光を照射する不可視光源と、
     前記不可視光を吸収して可視光を発光する発光体と、
     前記発光体が前記実装面に対向する第1位置と、前記交差する方向において前記発光体が前記不可視光源と異なる位置にある第2位置とに切り替え可能に前記発光体を支持する支持部と
     を備える表示装置。
    An invisible light source that is provided on the mounting surface of the substrate and that emits invisible light in a direction intersecting the mounting surface;
    A light emitter that absorbs the invisible light and emits visible light;
    A support portion that supports the light emitter so as to be switchable between a first position where the light emitter faces the mounting surface and a second position where the light emitter is different from the invisible light source in the intersecting direction. A display device provided.
  2.  前記不可視光は、紫外光である
     請求項1に記載の表示装置。
    The display device according to claim 1, wherein the invisible light is ultraviolet light.
  3.  前記不可視光は、赤外光である
     請求項1に記載の表示装置。
    The display device according to claim 1, wherein the invisible light is infrared light.
  4.  前記不可視光源は、発光ダイオードを有する
     請求項1乃至請求項3のいずれか一項に記載の表示装置。
    The display device according to claim 1, wherein the invisible light source includes a light emitting diode.
  5.  前記発光体は、蛍光体である
     請求項1乃至請求項4のいずれか一項に記載の表示装置。
    The display device according to claim 1, wherein the light emitter is a phosphor.
  6.  複数の前記不可視光源が前記基板上に二次元配列で配置され、
     前記第1位置である場合に複数の前記発光体が前記二次元配列のうち少なくとも一方向の配列に沿って並び、前記交差する方向において前記発光体の位置と前記不可視光源の位置とが対応する
     請求項1乃至請求項5のいずれか一項に記載の表示装置。
    A plurality of the invisible light sources are arranged in a two-dimensional array on the substrate;
    In the case of the first position, the plurality of light emitters are arranged along at least one direction of the two-dimensional array, and the position of the light emitter and the position of the invisible light source correspond to each other in the intersecting direction. The display device according to any one of claims 1 to 5.
PCT/JP2018/000530 2017-02-27 2018-01-11 Display device WO2018154992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034997 2017-02-27
JP2017034997 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018154992A1 true WO2018154992A1 (en) 2018-08-30

Family

ID=63253772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000530 WO2018154992A1 (en) 2017-02-27 2018-01-11 Display device

Country Status (1)

Country Link
WO (1) WO2018154992A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199975A (en) * 1989-01-27 1990-08-08 Sony Corp Display device
JPH10124178A (en) * 1996-10-15 1998-05-15 Olympus Optical Co Ltd Electronic main terminal, method for processing the same, and its medium
JP2008071509A (en) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd Light irradiation device and storage device equipped with light irradiation device
JP2008186777A (en) * 2007-01-31 2008-08-14 Seiko Instruments Inc Lighting system and display equipped with the same
JP2009181955A (en) * 2008-01-31 2009-08-13 Samsung Electronics Co Ltd Wavelength conversion member, light source assembly including the same, and liquid crystal display
JP2011527093A (en) * 2008-07-07 2011-10-20 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Light radiation device
JP2012009155A (en) * 2010-06-22 2012-01-12 Asahi Rubber Inc Wavelength conversion cover, lighting system using wavelength conversion cover, and illumination color conversion method of lighting system using wavelength conversion cover
WO2016204139A1 (en) * 2015-06-16 2016-12-22 三菱電機株式会社 Headlight device and lighting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199975A (en) * 1989-01-27 1990-08-08 Sony Corp Display device
JPH10124178A (en) * 1996-10-15 1998-05-15 Olympus Optical Co Ltd Electronic main terminal, method for processing the same, and its medium
JP2008071509A (en) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd Light irradiation device and storage device equipped with light irradiation device
JP2008186777A (en) * 2007-01-31 2008-08-14 Seiko Instruments Inc Lighting system and display equipped with the same
JP2009181955A (en) * 2008-01-31 2009-08-13 Samsung Electronics Co Ltd Wavelength conversion member, light source assembly including the same, and liquid crystal display
JP2011527093A (en) * 2008-07-07 2011-10-20 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Light radiation device
JP2012009155A (en) * 2010-06-22 2012-01-12 Asahi Rubber Inc Wavelength conversion cover, lighting system using wavelength conversion cover, and illumination color conversion method of lighting system using wavelength conversion cover
WO2016204139A1 (en) * 2015-06-16 2016-12-22 三菱電機株式会社 Headlight device and lighting device

Similar Documents

Publication Publication Date Title
JP6151753B2 (en) Light emitting device and display device including the same
US20150054815A1 (en) Driving method of organic el display device and organic el display device
CN108649059A (en) A kind of array substrate, display device and its driving method
US20190073944A1 (en) Micro light emitting diode display panel and driving method thereof
WO2019062213A1 (en) Electronic terminal and display screen
US20080303982A1 (en) Double-sided organic light emitting display and driving method thereof
TWI428887B (en) Display device and electronic product
WO2017107290A1 (en) Oled display device and source driver
JP2011118341A (en) Organic electroluminescence display device
US20150015543A1 (en) Display
JP2001075524A (en) Display device
WO2020196789A1 (en) Display device
CN1608281A (en) Energy sensing light emitting diode display
US20170277356A1 (en) Display
JP2009500650A (en) Electroluminescent display device
WO2021192547A1 (en) Display device
CN109643509A (en) Display device and electronic device
KR20080045464A (en) Light emission device and display device
KR102284357B1 (en) Transparent crystal display device
KR20110131206A (en) Thin displays having spatially variable backlights
WO2018154992A1 (en) Display device
US10644070B2 (en) Component for detecting electromagnetic radiation
CN110716345B (en) Chip mounting substrate, display device, and method for manufacturing chip mounting substrate
US11892726B2 (en) Image display method and image display device
US10333034B2 (en) Phosphor and light emitting device and backlight module including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP