WO2018154926A1 - Power storage sheet and battery - Google Patents

Power storage sheet and battery Download PDF

Info

Publication number
WO2018154926A1
WO2018154926A1 PCT/JP2017/044555 JP2017044555W WO2018154926A1 WO 2018154926 A1 WO2018154926 A1 WO 2018154926A1 JP 2017044555 W JP2017044555 W JP 2017044555W WO 2018154926 A1 WO2018154926 A1 WO 2018154926A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
sheet
electricity storage
power storage
conductive sheet
Prior art date
Application number
PCT/JP2017/044555
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 近藤
充 吉岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018154926A1 publication Critical patent/WO2018154926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage sheet and a battery including the same.
  • Patent Document 1 describes a power storage device having flexibility.
  • the power storage device described in Patent Document 1 describes a power storage device including a flexible substrate, a positive electrode lead and a negative electrode lead provided on the substrate, and a plurality of power storage elements mounted on the substrate. Yes.
  • the power storage device described in Patent Document 1 when the substrate is bent, the lead may be peeled off from the power storage element. For this reason, the power storage device described in Patent Document 1 has a problem of low reliability.
  • the main object of the present invention is to provide an electricity storage sheet having excellent reliability.
  • a power storage sheet includes a first conductive sheet, a second conductive sheet, and a plurality of all solid state power storage elements. At least one main surface of the first conductive sheet has conductivity. The second conductive sheet is opposed to the first conductive sheet. At least one main surface of the second conductive sheet has conductivity. The plurality of all-solid-state electricity storage elements are arranged at intervals between at least one direction between the first conductive sheet and the second conductive sheet.
  • the all-solid power storage element has an all-solid electrolyte layer, a first electrode, and a second electrode. The all solid electrolyte layer has first and second main surfaces.
  • the first electrode is provided on the first main surface.
  • the first electrode is electrically connected to the conductive main surface of the first conductive sheet.
  • the second electrode is provided on the second main surface.
  • the second electrode is electrically connected to the conductive main surface of the second conductive sheet.
  • the all-solid electricity storage element is sandwiched between the first and second conductive sheets. For this reason, when the electricity storage sheet is bent or curved, the all-solid electricity storage element is difficult to peel from the first and second conductive sheets. Therefore, the electricity storage sheet according to the present invention has excellent reliability despite having flexibility.
  • At least one of the ridge line portion and the corner portion of the all solid electricity storage element has a rectangular parallelepiped shape having a chamfered shape or a rounded shape.
  • the all solid state electricity storage element preferably has a longest side length of 1 mm or less.
  • a plurality of all solid state electricity storage elements may be arranged at intervals in a matrix along one direction and another direction different from the one direction.
  • a plurality of all-solid electricity storage elements may be laminated between the first conductive sheet and the second conductive sheet.
  • the electricity storage sheet according to the present invention may further include a conductive sheet disposed between the laminated all solid electricity storage elements.
  • the battery according to the present invention includes the power storage sheet according to the present invention and an exterior body that houses the power storage sheet.
  • the electricity storage sheet may be wound and accommodated in the exterior body.
  • an electricity storage sheet having excellent reliability can be provided.
  • FIG. 1 is a schematic plan view of the electricity storage sheet according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic perspective view of the all-solid-state electricity storage element according to the first embodiment.
  • FIG. 4 is a schematic perspective view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic perspective view of the battery according to the first embodiment.
  • FIG. 6 is a schematic exploded perspective view of the battery according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of the electricity storage sheet according to the second embodiment.
  • FIG. 8 is a schematic cross-sectional view of a power storage sheet according to the third embodiment.
  • FIG. 1 is a schematic plan view of the electricity storage sheet according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • the electricity storage sheet 1 includes a rectangular first conductive sheet 20 having flexibility, a second rectangular conductive sheet 30 having flexibility, and a plurality of all-solid electricity storage elements 10.
  • the first conductive sheet 20 is not particularly limited as long as at least one main surface is conductive.
  • the first conductive sheet 20 may be composed of, for example, a single conductive film, or a laminate of an insulating film made of resin or the like and a conductive film formed on the insulating film. It may be.
  • the second conductive sheet 30 is opposed to the first conductive sheet 20. Specifically, the second conductive sheet 30 is opposed in the z-axis direction (thickness direction of the electricity storage sheet 1) that is the thickness direction of the first and second conductive sheets 20, 30.
  • the second conductive sheet 30 is not particularly limited as long as at least one main surface is conductive.
  • the second conductive sheet 30 may be composed of, for example, a single conductive film, or a laminate of an insulating film made of resin or the like and a conductive film formed on the insulating film. It may be.
  • first and second conductive sheets 20 and 30 for example, a conductive tape in which a highly conductive metal foil is sandwiched between adhesive conductive resin sheets is preferably used.
  • a plurality of all-solid-state power storage elements 10 are arranged between the first conductive sheet 20 and the second conductive sheet 30.
  • the plurality of all-solid-state power storage elements 10 are sandwiched between the first conductive sheet 20 and the second conductive sheet 30.
  • the plurality of all-solid-state electricity storage elements 10 are arranged at intervals along at least one direction.
  • the plurality of all solid state power storage elements 10 are arranged in a matrix along one direction (x-axis direction) and another direction (y-axis direction) different from the one direction. They are spaced apart from each other.
  • one of the x-axis direction and the y-axis direction and the long side of the all-solid storage element 10 are parallel, and the other side and the short side of the all-solid storage element 10 are parallel.
  • a plurality of all solid state power storage elements 10 having the same shape and the same size will be described.
  • the present invention is not limited to this configuration.
  • a plurality of all-solid-state electricity storage elements included in the electricity-storage sheet may include all-solid-state electricity storage elements having shapes different from those of other all-solid-state electricity storage elements, or all-solid-state electricity storage elements having different sizes.
  • the plurality of all solid state power storage elements may have different shapes or different sizes.
  • the all-solid-state electricity storage element 10 disposed between the first conductive sheet 20 and the second conductive sheet 30 has a rectangular parallelepiped shape as shown in FIGS.
  • the all-solid-state electricity storage element 10 has a rectangular parallelepiped shape in which the dimension in the length direction L is longer than the dimension in the width direction W.
  • the dimension in the length direction L of the all-solid-state electricity storage element 10 is preferably 1.1 to 5 times the dimension in the width direction W, and more preferably 1.5 to 3 times.
  • the dimension in the length direction L of the all-solid-state power storage element 10 is twice the dimension in the width direction W.
  • the “cuboid” includes a rectangular parallelepiped shape in which at least one of the ridge line portion and the corner portion is chamfered or rounded, and a shape in which at least one of the ridge line portion and the corner portion is chamfered or rounded. It is assumed that a rectangular parallelepiped shape is included.
  • the ridge line portion and the corner portion of the all-solid-state electricity storage element 10 have a rounded shape.
  • the dimensions of the all-solid-state electricity storage element 10 are not particularly limited, but the length of the longest side is preferably 30 mm or less, preferably 3.2 mm or less, and more preferably 1 mm or less. In this case, the all solid state power storage element 10 is not easily damaged.
  • the all-solid power storage element 10 is not particularly limited as long as it is a power storage element in which all the constituent elements are solid.
  • the all-solid power storage element 10 has an all-solid electrolyte layer 11 made of an all-solid electrolyte, a first electrode 12, and a second electrode 13.
  • the first electrode 12 is disposed on one main surface (first main surface) of the all solid electrolyte layer 11, while the second electrode 13 is the other main surface (first surface) of the all solid electrolyte layer 11. 2 main surface).
  • the all solid electrolyte layer 11 is sandwiched between the first electrode 12 and the second electrode 13 facing each other.
  • One of the first and second electrodes 12 and 13 constitutes a positive electrode, and the other constitutes a negative electrode.
  • the first electrode 12 constitutes a negative electrode
  • the second electrode 13 constitutes a positive electrode
  • the first electrode 12 has a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector is not particularly limited as long as it has electronic conductivity, and can be composed of carbon, an oxide, composite oxide, metal, or the like with high electron conductivity.
  • the negative electrode current collector can be made of, for example, Pt, Au, Ag, Al, Cu, stainless steel, ITO (indium tin oxide), or the like.
  • the negative electrode active material layer is provided on the negative electrode current collector.
  • the negative electrode active material layer is composed of a sintered body including negative electrode active material particles, solid electrolyte particles, and conductive particles.
  • MO X M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, V, and Mo. 0.9 ⁇ X ⁇ 3.0
  • graphite-lithium compound, lithium alloy, lithium-containing phosphate compound having NASICON type structure, lithium-containing phosphate compound having olivine type structure, lithium containing spinel type structure An oxide etc. are mentioned.
  • Li Y MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, V, and Mo. 0.9 ⁇ X ⁇ 3.
  • a compound represented by 0, 2.0 ⁇ Y ⁇ 4.0) can also be suitably used.
  • Specific examples of lithium alloys preferably used include Li—Al.
  • Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • lithium-containing phosphate compound having an olivine structure that is preferably used include Li 3 FePO 4 and the like.
  • lithium-containing oxide having a spinel structure that is preferably used include Li 4 Cu 5 O 12 and the like. Only one kind of these negative electrode active materials may be used, or a plurality of kinds may be mixed and used.
  • the solid electrolyte preferably used include a lithium-containing phosphate compound having a NASICON structure, an oxide solid electrolyte having a perovskite structure, and an oxide solid electrolyte having a garnet-type or garnet-like structure.
  • a lithium-containing phosphate compound having preferably NASICON structure used Li x M y (PO 4 ) 3 (0.9 ⁇ x ⁇ 1.9,1.9 ⁇ y ⁇ 2.1, M is, Ti, And at least one selected from the group consisting of Ge, Al, Ga and Zr).
  • lithium-containing phosphate compound having a NASICON structure that is preferably used include, for example, Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxide solid electrolyte having a perovskite structure preferably used include La 0.55 Li 0.35 TiO 3 and the like.
  • oxide solid electrolyte having a garnet-type or garnet-type similar structure preferably used include Li 7 La 3 Zr 2 O 12 . Only one of these solid electrolytes may be used, or a plurality of types may be mixed and used.
  • What is preferably used as the conductive particles contained in the negative electrode active material layer is composed of, for example, a metal such as Ag, Au, Pt, or Pd, carbon, a compound having electronic conductivity, or a mixture thereof. be able to. Further, these conductive materials may be included in a state where the surfaces of the positive electrode active material particles and the like are coated.
  • the first electrode may be composed of a negative electrode active material layer.
  • the first electrode may be made of metallic lithium.
  • the second electrode 13 is opposed to the first electrode 12 with the all solid electrolyte layer 11 in between.
  • the second electrode 13 has a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is provided on the positive electrode current collector.
  • the second electrode 13 is arranged so that the positive electrode active material layer faces the negative electrode active material layer.
  • the positive electrode current collector is not particularly limited as long as it has electron conductivity, and can be composed of carbon, an oxide, a complex oxide, a metal, or the like with high electron conductivity.
  • the positive electrode current collector can be made of, for example, Pt, Au, Ag, Al, Cu, stainless steel, ITO (indium tin oxide), or the like.
  • the positive electrode active material layer is composed of a sintered body including positive electrode active material particles, solid electrolyte particles, and conductive particles.
  • the positive electrode active material preferably used include, for example, a lithium-containing phosphate compound having a NASICON structure, a lithium-containing phosphate compound having an olivine structure, a lithium-containing layered oxide, and a lithium-containing oxide having a spinel structure. Thing etc. are mentioned.
  • Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like.
  • lithium-containing phosphoric acid compound having an olivine structure that is preferably used include Li 3 FePO 4 , LiCoPO 4 , LiMnPO 4, and the like.
  • Specific examples of the lithium-containing layered oxide preferably used include LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • Specific examples of the lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 . Only one kind of these positive electrode active materials may be used, or a plurality of kinds may be mixed and used.
  • Examples of those preferably used as the solid electrolyte contained in the positive electrode active material layer include those similar to those preferably used as the solid electrolyte contained in the negative electrode active material layer.
  • conductive particles contained in the positive electrode active material layer include those similar to those preferably used as the conductive particles contained in the negative electrode active material layer described above.
  • the second electrode may be composed of a positive electrode active material layer.
  • the all solid electrolyte layer 11 is disposed between the first electrode 12 and the second electrode 13.
  • each of the first and second electrodes 12 and 13 is directly joined to the all solid electrolyte layer 11.
  • the first electrode 12, the all solid electrolyte layer 11, and the second electrode 13 are integrally sintered.
  • the all-solid power storage element 10 is an integrally sintered body of the first electrode 12, the all-solid electrolyte layer 11, and the second electrode 13.
  • the all solid electrolyte layer 11 is composed of a sintered body of solid electrolyte particles.
  • the solid electrolyte preferably used include a lithium-containing phosphate compound having a NASICON structure, an oxide solid electrolyte having a perovskite structure, and an oxide solid electrolyte having a garnet-type or garnet-like structure.
  • the lithium-containing phosphate compound having preferably NASICON structure used Li x M y (PO 4 ) 3 (0.9 ⁇ x ⁇ 1.9,1.9 ⁇ y ⁇ 2.1, M is, Ti, And at least one selected from the group consisting of Ge, Al, Ga and Zr).
  • lithium-containing phosphate compound having a NASICON structure that is preferably used include, for example, Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxide solid electrolyte having a perovskite structure preferably used include La0 . 55 Li 0.35 TiO 3 or the like.
  • oxide solid electrolyte having a garnet-type or garnet-type similar structure preferably used include Li 7 La 3 Zr 2 O 12 . Only one of these solid electrolytes may be used, or a plurality of types may be mixed and used.
  • a plurality of all-solid-state electricity storage elements 10 are arranged between the first and second conductive sheets 20 and 30. Specifically, each of the first electrodes 12 of the plurality of all-solid-state power storage elements 10 is electrically connected to the conductive main surface of the first conductive sheet 20. Each of the second electrodes 13 of the plurality of all-solid-state power storage elements 10 is electrically connected to the conductive main surface of the second conductive sheet 30.
  • the plurality of all-solid electricity storage elements 10 are held between the first and second conductive sheets 20 and 30. For this reason, when the electricity storage sheet 1 is bent or curved, the all-solid electricity storage element 10 is difficult to peel from the first and second conductive sheets 20 and 30. Therefore, although the electrical storage sheet 1 has flexibility, it has excellent reliability.
  • the plurality of all-solid-state power storage elements 10 are arranged in a matrix and spaced apart from each other along one direction and a direction different from the one direction. For this reason, the electricity storage sheet 1 has flexibility in both one direction (x-axis direction) and the other direction (y-axis direction).
  • the difference between the length along the x-axis direction and the length along the y-axis direction of the all-solid-state power storage element 10 is small. Is preferred. It is preferable to reduce a difference between an interval between all solid state energy storage elements 10 adjacent in the x-axis direction and an interval between all solid state energy storage elements 10 adjacent in the y axis direction.
  • the length along the winding direction of the all-solid electricity storage element 10 is preferably equal to or less than the length along the axial direction of the all-solid electricity storage element 10. It is preferable that the interval between all solid state power storage elements 10 adjacent in the winding direction is equal to or greater than the interval between all solid state power storage elements 10 adjacent in the axial direction.
  • the ridge line portion and the corner portion of the all-solid-state electricity storage element 10 are rounded. In this case, the electricity storage sheet 1 can be more easily bent.
  • the length in the length direction L of the all-solid electricity storage element 10 is L1, and all solids adjacent in one direction (x-axis direction) of the electricity storage sheet 1 are used.
  • L01 / L1 is preferably 0.1 or more, and more preferably 0.5 or more.
  • L02 / L2 Is preferably 0.1 or more, and more preferably 0.5 or more.
  • L01 / L1 and L02 / L2 are each preferably 3 or less, more preferably 2 or less, and even more preferably 1 or less. From the same viewpoint, when the thickness of the all-solid-state electricity storage element 10 is T1, T1 / L01 and T1 / L02 are each preferably 0.5 or more and 3 or less, and preferably 1 or more and 2 or less. Further preferred.
  • the capacity of the electricity storage sheet 1 can be freely changed by changing the number of all solid electricity storage elements 10 to be arranged or changing the capacity of the all solid electricity storage elements 10.
  • the electricity storage sheet 1 may have a polygonal shape other than a rectangular shape, or may have a circular shape, an elliptical shape, an oval shape, or the like.
  • the battery 2 includes an exterior body 3.
  • a power storage sheet 1 is accommodated in the exterior body 3.
  • the electricity storage sheet 1 may be accommodated in the exterior body 3 in any form. Since the electricity storage sheet 1 has flexibility, it can be accommodated in the exterior body 3 as a wound body, for example, or it can be accommodated in the exterior body 3 in a folded state, for example. You can also. Further, a laminate of a plurality of power storage sheets 1 may be accommodated in the exterior body 3.
  • both the main surfaces of the first and second conductive sheets 20 and 30 are conductive, it is preferable to wind the power storage sheet 1 and the separator in a stacked state. By doing so, it can suppress that the 1st conductive sheet 20 and the 2nd conductive sheet 30 short-circuit.
  • the exterior body 3 includes a positive electrode terminal 3 a connected to the second conductive sheet 30 and a negative electrode terminal 3 b connected to the first conductive sheet 20.
  • the exterior body 3 is filled with resin.
  • the exterior body 3 and the electricity storage sheet 1 are fixed by this resin. For this reason, for example, even if an impact or vibration is applied to the battery 2, the all-solid power storage element 10 is prevented from being damaged due to collision between the all-solid power storage elements 10 included in the power storage sheet 1.
  • the electricity storage sheet 1 has excellent reliability. For this reason, the battery 2 is also less likely to have a reduced capacity even when an impact or vibration is applied, and has excellent reliability.
  • the exterior body 3 has a cylindrical shape with both ends closed has been described.
  • the exterior body 3 is not limited to this shape.
  • the exterior body 3 may have a rectangular parallelepiped shape.
  • the battery according to the present invention may be a cylindrical battery, a button-type battery, a rectangular parallelepiped battery, or the like.
  • the battery according to the present invention may be a primary battery or a secondary battery.
  • FIG. 7 is a schematic cross-sectional view of the electricity storage sheet according to the second embodiment.
  • the resin layer 40 is provided between the all solid electricity storage elements 10 adjacent in one direction (x-axis direction) and the other direction (y-axis direction). In this case, when the electricity storage sheet 1 is bent, it is possible to prevent the adjacent all solid electricity storage elements 10 from contacting each other. For this reason, it can suppress that the electrical storage sheet 1a short-circuits. Therefore, the reliability of the electricity storage sheet 1 can be further improved.
  • the present invention is not limited to this.
  • the resin layer 40 should just be provided so that adjacent all-solid-state electrical storage element 10 may not contact.
  • a gap may be provided in the central portion in the length direction or L direction of the resin layer 40.
  • the resin layer 40 may be provided so as to surround each of the all solid state power storage elements 10 in a plan view.
  • a non-conductor insulator containing paper, elastomer, inorganic material, or the like may be used.
  • FIG. 8 is a schematic cross-sectional view of a power storage sheet 1b according to the third embodiment.
  • the present invention is not limited to this configuration.
  • the electricity storage sheet 1 b shown in FIG. 8 a plurality of all solid electricity storage elements 10 are laminated between the first conductive sheet 20 and the second conductive sheet 30.
  • a conductive sheet 50 is further provided between the stacked all solid state power storage elements 10.
  • the voltage can be changed freely.
  • electrical storage sheet 1a electrical storage sheet 1b: electrical storage sheet 2: battery 3: exterior body 3a: positive electrode terminal 3b: negative electrode terminal 10: all solid storage element 11: all solid electrolyte layer 12: first electrode 13: second Electrode 20: First conductive sheet 30: Second conductive sheet 40: Resin layer 50: Conductive sheet

Abstract

The present invention provides a power storage sheet that exhibits superior reliability. This power storage sheet is provided with a first conductive sheet 20, a second conductive sheet 30, and a plurality of all-solid-state power storage elements 10. The second conductive sheet 30 is disposed so as to face the first conductive sheet 20. The plurality of all-solid-state power storage elements 10 are arranged between the first conductive sheet 20 and the second conductive sheet 30 so as to be apart from each other at a certain interval at least in one direction. Each of the all-solid-state power storage elements 10 has an all-solid-state electrolyte layer 11, a first electrode 12, and a second electrode 13. The first electrode 12 is electrically connected to a conductive main surface of the first conductive sheet 20. The second electrode 13 is electrically connected to a conductive main surface of the second conductive sheet 30.

Description

蓄電シート及び電池Electric storage sheet and battery
 本発明は、蓄電シート及びそれを備える電池に関する。 The present invention relates to a power storage sheet and a battery including the same.
 例えば、特許文献1には、可撓性を有する蓄電装置が記載されている。特許文献1に記載の蓄電装置は、可撓性を有する基板と、基板上に設けられた正極リード及び負極リードと、基板上に実装された複数の蓄電素子とを有する蓄電装置が記載されている。 For example, Patent Document 1 describes a power storage device having flexibility. The power storage device described in Patent Document 1 describes a power storage device including a flexible substrate, a positive electrode lead and a negative electrode lead provided on the substrate, and a plurality of power storage elements mounted on the substrate. Yes.
特開2013-239435号公報JP 2013-239435 A
 特許文献1に記載の蓄電装置では、基板が曲がった際に蓄電素子からリードが剥離したりする場合がある。このため、特許文献1に記載の蓄電装置には、信頼性が低いという問題がある。 In the power storage device described in Patent Document 1, when the substrate is bent, the lead may be peeled off from the power storage element. For this reason, the power storage device described in Patent Document 1 has a problem of low reliability.
 本発明の主な目的は、優れた信頼性を有する蓄電シートを提供することにある。 The main object of the present invention is to provide an electricity storage sheet having excellent reliability.
 本発明に係る蓄電シートは、第1の導電性シートと、第2の導電性シートと、複数の全固体蓄電エレメントとを備える。第1の導電性シートは、少なくとも一の主面が導電性を有する。第2の導電性シートは、第1の導電性シートと対向している。第2の導電性シートは、少なくとも一の主面が導電性を有する。複数の全固体蓄電エレメントは、第1の導電性シートと第2の導電性シートとの間において、少なくとも一の方向に沿って相互に間隔をおいて配されている。全固体蓄電エレメントは、全固体電解質層と、第1の電極と、第2の電極とを有する。全固体電解質層は、第1及び第2の主面を有する。第1の電極は、第1の主面の上に設けられている。第1の電極は、第1の導電性シートの導電性を有する主面に電気的に接続されている。第2の電極は、第2の主面の上に設けられている。第2の電極は、第2の導電性シートの導電性を有する主面に電気的に接続されている。 A power storage sheet according to the present invention includes a first conductive sheet, a second conductive sheet, and a plurality of all solid state power storage elements. At least one main surface of the first conductive sheet has conductivity. The second conductive sheet is opposed to the first conductive sheet. At least one main surface of the second conductive sheet has conductivity. The plurality of all-solid-state electricity storage elements are arranged at intervals between at least one direction between the first conductive sheet and the second conductive sheet. The all-solid power storage element has an all-solid electrolyte layer, a first electrode, and a second electrode. The all solid electrolyte layer has first and second main surfaces. The first electrode is provided on the first main surface. The first electrode is electrically connected to the conductive main surface of the first conductive sheet. The second electrode is provided on the second main surface. The second electrode is electrically connected to the conductive main surface of the second conductive sheet.
 本発明に係る蓄電シートでは、全固体蓄電エレメントが第1及び第2の導電性シートにより挟持されている。このため、蓄電シートが屈曲したり湾曲したりした際に、全固体蓄電エレメントが第1及び第2の導電性シートから剥離し難い。従って、本発明に係る蓄電シートは、可撓性を有するにも関わらず、優れた信頼性を有する。 In the electricity storage sheet according to the present invention, the all-solid electricity storage element is sandwiched between the first and second conductive sheets. For this reason, when the electricity storage sheet is bent or curved, the all-solid electricity storage element is difficult to peel from the first and second conductive sheets. Therefore, the electricity storage sheet according to the present invention has excellent reliability despite having flexibility.
 本発明に係る蓄電シートでは、全固体蓄電エレメントの稜線部及び角部の少なくとも一方が面取り状又は丸められた形状を有する直方体状であることが好ましい。 In the electricity storage sheet according to the present invention, it is preferable that at least one of the ridge line portion and the corner portion of the all solid electricity storage element has a rectangular parallelepiped shape having a chamfered shape or a rounded shape.
 本発明に係る蓄電シートでは、全固体蓄電エレメントが、最長辺の長さが1mm以下であることが好ましい。 In the electricity storage sheet according to the present invention, the all solid state electricity storage element preferably has a longest side length of 1 mm or less.
 本発明に係る蓄電シートでは、複数の全固体蓄電エレメントが、一の方向と、一の方向とは異なる他の方向とに沿ってマトリクス状に相互に間隔をおいて配されていてもよい。 In the electricity storage sheet according to the present invention, a plurality of all solid state electricity storage elements may be arranged at intervals in a matrix along one direction and another direction different from the one direction.
 本発明に係る蓄電シートでは、第1の導電性シートと第2の導電性シートとの間に、複数の全固体蓄電エレメントが積層されていてもよい。 In the electricity storage sheet according to the present invention, a plurality of all-solid electricity storage elements may be laminated between the first conductive sheet and the second conductive sheet.
 本発明に係る蓄電シートでは、積層された全固体蓄電エレメントの間に配された導電性シートをさらに備えていてもよい。 The electricity storage sheet according to the present invention may further include a conductive sheet disposed between the laminated all solid electricity storage elements.
 本発明に係る電池は、本発明に係る蓄電シートと、蓄電シートを収容している外装体とを備えている。 The battery according to the present invention includes the power storage sheet according to the present invention and an exterior body that houses the power storage sheet.
本発明に係る電池では、蓄電シートが巻回されて外装体に収容されていてもよい。 In the battery according to the present invention, the electricity storage sheet may be wound and accommodated in the exterior body.
 本発明によれば、優れた信頼性を有する蓄電シートを提供することができる。 According to the present invention, an electricity storage sheet having excellent reliability can be provided.
図1は、第1の実施形態に係る蓄電シートの模式的平面図である。FIG. 1 is a schematic plan view of the electricity storage sheet according to the first embodiment. 図2は、図1の線II-IIにおける模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図3は、第1の実施形態に係る全固体蓄電エレメントの模式的斜視図である。FIG. 3 is a schematic perspective view of the all-solid-state electricity storage element according to the first embodiment. 図4は、図3の線IV-IVにおける模式的斜視図である。FIG. 4 is a schematic perspective view taken along line IV-IV in FIG. 図5は、第1の実施形態に係る電池の模式的斜視図である。FIG. 5 is a schematic perspective view of the battery according to the first embodiment. 図6は、第1の実施形態に係る電池の模式的分解斜視図である。FIG. 6 is a schematic exploded perspective view of the battery according to the first embodiment. 図7は、第2の実施形態に係る蓄電シートの模式的断面図である。FIG. 7 is a schematic cross-sectional view of the electricity storage sheet according to the second embodiment. 図8は、第3の実施形態に係る蓄電シートの模式的断面図である。FIG. 8 is a schematic cross-sectional view of a power storage sheet according to the third embodiment.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1は、第1の実施形態に係る蓄電シートの模式的平面図である。図2は、図1の線II-IIにおける模式的断面図である。
(First embodiment)
FIG. 1 is a schematic plan view of the electricity storage sheet according to the first embodiment. FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
 蓄電シート1は、可撓性を有する矩形状の第1の導電性シート20と、可撓性を有する矩形状の第2の導電性シート30と、複数の全固体蓄電エレメント10とを備える。 The electricity storage sheet 1 includes a rectangular first conductive sheet 20 having flexibility, a second rectangular conductive sheet 30 having flexibility, and a plurality of all-solid electricity storage elements 10.
 第1の導電性シート20は、少なくとも一の主面が、導電性をしているシートであれば、特に限定されない。第1の導電性シート20は、例えば、1枚の導電膜により構成されていてもよいし、樹脂等からなる絶縁膜と、絶縁膜の上に形成された導電膜との積層体により構成されていてもよい。 The first conductive sheet 20 is not particularly limited as long as at least one main surface is conductive. The first conductive sheet 20 may be composed of, for example, a single conductive film, or a laminate of an insulating film made of resin or the like and a conductive film formed on the insulating film. It may be.
 第2の導電性シート30は、第1の導電性シート20と対向している。具体的には、第2の導電性シート30は、第1及び第2の導電性シート20、30の厚み方向であるz軸方向(蓄電シート1の厚み方向)において対向している。 The second conductive sheet 30 is opposed to the first conductive sheet 20. Specifically, the second conductive sheet 30 is opposed in the z-axis direction (thickness direction of the electricity storage sheet 1) that is the thickness direction of the first and second conductive sheets 20, 30.
 第2の導電性シート30は、少なくとも一の主面が、導電性をしているシートであれば、特に限定されない。第2の導電性シート30は、例えば、1枚の導電膜により構成されていてもよいし、樹脂等からなる絶縁膜と、絶縁膜の上に形成された導電膜との積層体により構成されていてもよい。 The second conductive sheet 30 is not particularly limited as long as at least one main surface is conductive. The second conductive sheet 30 may be composed of, for example, a single conductive film, or a laminate of an insulating film made of resin or the like and a conductive film formed on the insulating film. It may be.
 第1、第2の導電性シート20、30としては、例えば、導電性が高い金属箔を粘着性を有する導電性樹脂シートで狭持した導電性テープなどが好ましく用いられる。 As the first and second conductive sheets 20 and 30, for example, a conductive tape in which a highly conductive metal foil is sandwiched between adhesive conductive resin sheets is preferably used.
 第1の導電性シート20と第2の導電性シート30との間には、複数の全固体蓄電エレメント10が配されている。複数の全固体蓄電エレメント10は、第1の導電性シート20と第2の導電性シート30とにより挟持されている。 Between the first conductive sheet 20 and the second conductive sheet 30, a plurality of all-solid-state power storage elements 10 are arranged. The plurality of all-solid-state power storage elements 10 are sandwiched between the first conductive sheet 20 and the second conductive sheet 30.
 複数の全固体蓄電エレメント10は、少なくとも一の方向に沿って相互に間隔をおいて配されている。本実施形態では、具体的には、複数の全固体蓄電エレメント10は、一の方向(x軸方向)と、一の方向とは異なる他の方向(y軸方向)とに沿ってマトリクス状に相互に間隔をおいて配されている。本実施形態では、x軸方向とy軸方向とのうちの一方と、全固体蓄電エレメント10の長辺とが平行であり、他方と、全固体蓄電エレメント10の短辺とが平行である。 The plurality of all-solid-state electricity storage elements 10 are arranged at intervals along at least one direction. In the present embodiment, specifically, the plurality of all solid state power storage elements 10 are arranged in a matrix along one direction (x-axis direction) and another direction (y-axis direction) different from the one direction. They are spaced apart from each other. In the present embodiment, one of the x-axis direction and the y-axis direction and the long side of the all-solid storage element 10 are parallel, and the other side and the short side of the all-solid storage element 10 are parallel.
 尚、本実施形態では、同一の形状及び同一の大きさの複数の全固体蓄電エレメント10が配されている例について説明する。但し、本発明はこの構成に限定されない。本発明においては、蓄電シートに含まれる複数の全固体蓄電エレメントに、他の全固体蓄電エレメントとは異なる形状を有する全固体蓄電エレメントや、異なる大きさの全固体蓄電エレメントが含まれていてもよい。また、例えば、複数の全固体蓄電エレメントは、互いに異なる形状であったり、異なる大きさであったりしてもよい。 In the present embodiment, an example in which a plurality of all solid state power storage elements 10 having the same shape and the same size are arranged will be described. However, the present invention is not limited to this configuration. In the present invention, a plurality of all-solid-state electricity storage elements included in the electricity-storage sheet may include all-solid-state electricity storage elements having shapes different from those of other all-solid-state electricity storage elements, or all-solid-state electricity storage elements having different sizes. Good. In addition, for example, the plurality of all solid state power storage elements may have different shapes or different sizes.
 第1の導電性シート20と第2の導電性シート30との間に配された全固体蓄電エレメント10は、図3及び図4に示すように、直方体状である。具体的には、本実施形態では、全固体蓄電エレメント10は、長さ方向Lにおける寸法が、幅方向Wにおける寸法よりも長い直方体状である。全固体蓄電エレメント10の長さ方向Lにおける寸法は、幅方向Wにおける寸法の1.1倍以上5倍以下であることが好ましく、1.5倍以上3倍以下であることがより好ましい。具体的には、本実施形態では、全固体蓄電エレメント10の長さ方向Lにおける寸法が、幅方向Wにおける寸法の2倍である。 The all-solid-state electricity storage element 10 disposed between the first conductive sheet 20 and the second conductive sheet 30 has a rectangular parallelepiped shape as shown in FIGS. Specifically, in the present embodiment, the all-solid-state electricity storage element 10 has a rectangular parallelepiped shape in which the dimension in the length direction L is longer than the dimension in the width direction W. The dimension in the length direction L of the all-solid-state electricity storage element 10 is preferably 1.1 to 5 times the dimension in the width direction W, and more preferably 1.5 to 3 times. Specifically, in this embodiment, the dimension in the length direction L of the all-solid-state power storage element 10 is twice the dimension in the width direction W.
 なお、本発明において、「直方体状」には、稜線部及び角部の少なくとも一方が面取り状又は丸められた形状である直方体状、稜線部及び角部の少なくとも一方が面取り状又は丸められた形状である直方体状が含まれるものとする。 In the present invention, the “cuboid” includes a rectangular parallelepiped shape in which at least one of the ridge line portion and the corner portion is chamfered or rounded, and a shape in which at least one of the ridge line portion and the corner portion is chamfered or rounded. It is assumed that a rectangular parallelepiped shape is included.
 本実施形態では、具体的には、全固体蓄電エレメント10の稜線部及び角部が丸められた形状を有している。 In the present embodiment, specifically, the ridge line portion and the corner portion of the all-solid-state electricity storage element 10 have a rounded shape.
 全固体蓄電エレメント10の寸法は、特に限定されないが、最長辺の長さが30mm以下であることが好ましく、3.2mm以下であることが好ましく、1mm以下であることがさらに好ましい。この場合、全固体蓄電エレメント10が破損しにくい。 The dimensions of the all-solid-state electricity storage element 10 are not particularly limited, but the length of the longest side is preferably 30 mm or less, preferably 3.2 mm or less, and more preferably 1 mm or less. In this case, the all solid state power storage element 10 is not easily damaged.
 全固体蓄電エレメント10は、全ての構成要素が固体である蓄電エレメントであれば特に限定されない。 The all-solid power storage element 10 is not particularly limited as long as it is a power storage element in which all the constituent elements are solid.
 図4に示すように、本実施形態では、全固体蓄電エレメント10は、全固体電解質からなる全固体電解質層11と、第1の電極12と、第2の電極13とを有している。第1の電極12が全固体電解質層11の一方の主面(第1の主面)の上に配されている一方、第2の電極13が全固体電解質層11の他方の主面(第2の主面)の上に配されている。換言すれば、全固体電解質層11は、互いに対向している第1の電極12と第2の電極13とにより挟持されている。 As shown in FIG. 4, in this embodiment, the all-solid power storage element 10 has an all-solid electrolyte layer 11 made of an all-solid electrolyte, a first electrode 12, and a second electrode 13. The first electrode 12 is disposed on one main surface (first main surface) of the all solid electrolyte layer 11, while the second electrode 13 is the other main surface (first surface) of the all solid electrolyte layer 11. 2 main surface). In other words, the all solid electrolyte layer 11 is sandwiched between the first electrode 12 and the second electrode 13 facing each other.
 なお、第1及び第2の電極12,13のうちの一方が正極を構成しており、他方が負極を構成している。以下、本実施形態では、第1の電極12が負極を構成しており、第2の電極13が正極を構成している例について説明する。 One of the first and second electrodes 12 and 13 constitutes a positive electrode, and the other constitutes a negative electrode. Hereinafter, in the present embodiment, an example in which the first electrode 12 constitutes a negative electrode and the second electrode 13 constitutes a positive electrode will be described.
 第1の電極12は、負極集電体と、負極活物質層とを有する。負極集電体は、電子伝導性を有していれば、特に限定されることはなく、炭素や電子伝導性の高い酸化物や複合酸化物、金属等により構成することができる。負極集電体は、例えば、Pt、Au、Ag、Al、Cu、ステンレス、ITO(酸化インジウムスズ)等により構成することができる。 The first electrode 12 has a negative electrode current collector and a negative electrode active material layer. The negative electrode current collector is not particularly limited as long as it has electronic conductivity, and can be composed of carbon, an oxide, composite oxide, metal, or the like with high electron conductivity. The negative electrode current collector can be made of, for example, Pt, Au, Ag, Al, Cu, stainless steel, ITO (indium tin oxide), or the like.
 負極活物質層は、負極集電体の上に設けられている。本実施形態では、負極活物質層は、負極活物質粒子と固体電解質粒子と、導電性粒子とを含む焼結体により構成されている。好ましく用いられる負極活物質の具体例としては、例えば、MO(Mは、Ti,Si,Sn,Cr,Fe,Nb,V及びMoからなる群より選ばれた少なくとも一種である。0.9≦X≦3.0)で表される化合物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、スピネル型構造を有するリチウム含有酸化物等が挙げられる。MOで表される化合物は酸素の一部をPやSiで置換してもよいし、Liを含んでもよい。すなわち、負極活物質として、LiMO(Mは、Ti,Si,Sn,Cr,Fe,Nb,V及びMoからなる群より選ばれた少なくとも一種である。0.9≦X≦3.0、2.0≦Y≦4.0)で表される化合物も好適に用いることができる。好ましく用いられるリチウム合金の具体例としては、Li-Al等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFePO等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiCu12等が挙げられる。これらの負極活物質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The negative electrode active material layer is provided on the negative electrode current collector. In the present embodiment, the negative electrode active material layer is composed of a sintered body including negative electrode active material particles, solid electrolyte particles, and conductive particles. As a specific example of the negative electrode active material preferably used, for example, MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, V, and Mo. 0.9 ≦ X ≦ 3.0), graphite-lithium compound, lithium alloy, lithium-containing phosphate compound having NASICON type structure, lithium-containing phosphate compound having olivine type structure, lithium containing spinel type structure An oxide etc. are mentioned. In the compound represented by MO X , part of oxygen may be substituted with P or Si, or Li may be included. That is, as the negative electrode active material, Li Y MO X (M is at least one selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, V, and Mo. 0.9 ≦ X ≦ 3. A compound represented by 0, 2.0 ≦ Y ≦ 4.0) can also be suitably used. Specific examples of lithium alloys preferably used include Li—Al. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphate compound having an olivine structure that is preferably used include Li 3 FePO 4 and the like. Specific examples of the lithium-containing oxide having a spinel structure that is preferably used include Li 4 Cu 5 O 12 and the like. Only one kind of these negative electrode active materials may be used, or a plurality of kinds may be mixed and used.
 好ましく用いられる固体電解質の具体例としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物固体電解質、ガーネット型若しくはガーネット型類似構造を有する酸化物固体電解質等が挙げられる。好ましく用いられるナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(0.9≦x≦1.9、1.9≦y≦2.1、Mは、Ti,Ge,Al,Ga及びZrからなる群より選ばれた少なくとも一種)が挙げられる。好ましく用いられるナシコン構造を有するリチウム含有リン酸化合物の具体例としては、例えば、Li1.4Al0.4Ge1.6(PO、Li1.2Al0.2Ti1.8(PO等が挙げられる。好ましく用いられるペロブスカイト構造を有する酸化物固体電解質の具体例としては、La0.55Li0.35TiO等が挙げられる。好ましく用いられるガーネット型若しくはガーネット型類似構造を有する酸化物固体電解質の具体例としては、LiLaZr12等が挙げられる。これらの固体電解質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 Specific examples of the solid electrolyte preferably used include a lithium-containing phosphate compound having a NASICON structure, an oxide solid electrolyte having a perovskite structure, and an oxide solid electrolyte having a garnet-type or garnet-like structure. As the lithium-containing phosphate compound having preferably NASICON structure used, Li x M y (PO 4 ) 3 (0.9 ≦ x ≦ 1.9,1.9 ≦ y ≦ 2.1, M is, Ti, And at least one selected from the group consisting of Ge, Al, Ga and Zr). Specific examples of the lithium-containing phosphate compound having a NASICON structure that is preferably used include, for example, Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like. Specific examples of the oxide solid electrolyte having a perovskite structure preferably used include La 0.55 Li 0.35 TiO 3 and the like. Specific examples of the oxide solid electrolyte having a garnet-type or garnet-type similar structure preferably used include Li 7 La 3 Zr 2 O 12 . Only one of these solid electrolytes may be used, or a plurality of types may be mixed and used.
 負極活物質層に含まれる導電性粒子として好ましく用いられるものとしては、例えば、Ag,Au,Pt,Pdなどの金属、炭素、電子伝導性を有する化合物、またはそれらを組み合わせた混合物等により構成することができる。また、これらの導電性を有した物質が正極活物質粒子などの表面に被覆された状態で含まれてもよい。 What is preferably used as the conductive particles contained in the negative electrode active material layer is composed of, for example, a metal such as Ag, Au, Pt, or Pd, carbon, a compound having electronic conductivity, or a mixture thereof. be able to. Further, these conductive materials may be included in a state where the surfaces of the positive electrode active material particles and the like are coated.
 なお、第1の電極において負極集電体を設ける必要は必ずしもない。例えば、負極活物質層により第1の電極を構成してもよい。例えば、金属リチウムにより第1の電極を構成してもよい。 Note that it is not always necessary to provide the negative electrode current collector in the first electrode. For example, the first electrode may be composed of a negative electrode active material layer. For example, the first electrode may be made of metallic lithium.
 第2の電極13は、全固体電解質層11を介して、第1の電極12と対向している。第2の電極13は、正極集電体と、正極活物質層とを有する。正極活物質層は、正極集電体の上に設けられている。第2の電極13は、正極活物質層が、負極活物質層と対向するように配されている。正極集電体は、電子伝導性を有していれば、特に限定されることはなく、炭素や電子伝導性の高い酸化物や複合酸化物、金属等により構成することができる。正極集電体は、例えば、Pt、Au、Ag、Al、Cu、ステンレス、ITO(酸化インジウムスズ)等により構成することができる。 The second electrode 13 is opposed to the first electrode 12 with the all solid electrolyte layer 11 in between. The second electrode 13 has a positive electrode current collector and a positive electrode active material layer. The positive electrode active material layer is provided on the positive electrode current collector. The second electrode 13 is arranged so that the positive electrode active material layer faces the negative electrode active material layer. The positive electrode current collector is not particularly limited as long as it has electron conductivity, and can be composed of carbon, an oxide, a complex oxide, a metal, or the like with high electron conductivity. The positive electrode current collector can be made of, for example, Pt, Au, Ag, Al, Cu, stainless steel, ITO (indium tin oxide), or the like.
 正極活物質層は、正極活物質粒子と、固体電解質粒子と、導電性粒子とを含む焼結体により構成されている。好ましく用いられる正極活物質の具体例としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、スピネル型構造を有するリチウム含有酸化物等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li(PO等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、LiFePO、LiCoPO、LiMnPO等が挙げられる。好ましく用いられるリチウム含有層状酸化物の具体例としては、LiCoO,LiCo1/3Ni1/3Mn1/3等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn,LiNi0.5Mn1.5等が挙げられる。これらの正極活物質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The positive electrode active material layer is composed of a sintered body including positive electrode active material particles, solid electrolyte particles, and conductive particles. Specific examples of the positive electrode active material preferably used include, for example, a lithium-containing phosphate compound having a NASICON structure, a lithium-containing phosphate compound having an olivine structure, a lithium-containing layered oxide, and a lithium-containing oxide having a spinel structure. Thing etc. are mentioned. Specific examples of the lithium-containing phosphoric acid compound having a NASICON structure that is preferably used include Li 3 V 2 (PO 4 ) 3 and the like. Specific examples of the lithium-containing phosphoric acid compound having an olivine structure that is preferably used include Li 3 FePO 4 , LiCoPO 4 , LiMnPO 4, and the like. Specific examples of the lithium-containing layered oxide preferably used include LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . Specific examples of the lithium-containing oxide having a spinel structure preferably used include LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 . Only one kind of these positive electrode active materials may be used, or a plurality of kinds may be mixed and used.
 正極活物質層に含まれる固体電解質として好ましく用いられるものとしては、上述の負極活物質層に含まれる固体電解質として好ましく用いられるものと同様のものを例示することができる。 Examples of those preferably used as the solid electrolyte contained in the positive electrode active material layer include those similar to those preferably used as the solid electrolyte contained in the negative electrode active material layer.
 正極活物質層に含まれる導電性粒子の具体例としては、上述の負極活物質層に含まれる導電性粒子として好ましく用いられるものと同様のものを例示することができる。 Specific examples of the conductive particles contained in the positive electrode active material layer include those similar to those preferably used as the conductive particles contained in the negative electrode active material layer described above.
 なお、第2の電極において正極集電体を設ける必要は必ずしもない。例えば、正極活物質層により第2の電極を構成してもよい。 Note that it is not always necessary to provide a positive electrode current collector in the second electrode. For example, the second electrode may be composed of a positive electrode active material layer.
 第1の電極12と第2の電極13との間には、全固体電解質層11が配されている。本実施形態では、第1及び第2の電極12、13のそれぞれは、全固体電解質層11と直接接合されている。詳細には、第1の電極12、全固体電解質層11及び第2の電極13は、一体焼結されたものである。換言すれば、全固体蓄電エレメント10は、第1の電極12と、全固体電解質層11と、第2の電極13との一体焼結体である。 The all solid electrolyte layer 11 is disposed between the first electrode 12 and the second electrode 13. In the present embodiment, each of the first and second electrodes 12 and 13 is directly joined to the all solid electrolyte layer 11. Specifically, the first electrode 12, the all solid electrolyte layer 11, and the second electrode 13 are integrally sintered. In other words, the all-solid power storage element 10 is an integrally sintered body of the first electrode 12, the all-solid electrolyte layer 11, and the second electrode 13.
 全固体電解質層11は、固体電解質粒子の焼結体により構成されている。好ましく用いられる固体電解質の具体例としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物固体電解質、ガーネット型若しくはガーネット型類似構造を有する酸化物固体電解質等が挙げられる。好ましく用いられるナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(0.9≦x≦1.9、1.9≦y≦2.1、Mは、Ti,Ge,Al,Ga及びZrからなる群より選ばれた少なくとも一種)が挙げられる。好ましく用いられるナシコン構造を有するリチウム含有リン酸化合物の具体例としては、例えば、Li1.4Al0.4Ge1.6(PO、Li1.2Al0.2Ti1.8(PO等が挙げられる。好ましく用いられるペロブスカイト構造を有する酸化物固体電解質の具体例としては、La0.55Li0.35TiO等が挙げられる。好ましく用いられるガーネット型若しくはガーネット型類似構造を有する酸化物固体電解質の具体例としては、LiLaZr12等が挙げられる。これらの固体電解質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 The all solid electrolyte layer 11 is composed of a sintered body of solid electrolyte particles. Specific examples of the solid electrolyte preferably used include a lithium-containing phosphate compound having a NASICON structure, an oxide solid electrolyte having a perovskite structure, and an oxide solid electrolyte having a garnet-type or garnet-like structure. As the lithium-containing phosphate compound having preferably NASICON structure used, Li x M y (PO 4 ) 3 (0.9 ≦ x ≦ 1.9,1.9 ≦ y ≦ 2.1, M is, Ti, And at least one selected from the group consisting of Ge, Al, Ga and Zr). Specific examples of the lithium-containing phosphate compound having a NASICON structure that is preferably used include, for example, Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like. Specific examples of the oxide solid electrolyte having a perovskite structure preferably used include La0 . 55 Li 0.35 TiO 3 or the like. Specific examples of the oxide solid electrolyte having a garnet-type or garnet-type similar structure preferably used include Li 7 La 3 Zr 2 O 12 . Only one of these solid electrolytes may be used, or a plurality of types may be mixed and used.
 図2に示すように、第1及び第2の導電性シート20、30の間には、複数の全固体蓄電エレメント10が配されている。具体的には、複数の全固体蓄電エレメント10の第1の電極12のそれぞれは、第1の導電性シート20の導電性を有する主面に電気的に接続されている。複数の全固体蓄電エレメント10の第2の電極13のそれぞれは、第2の導電性シート30の導電性を有する主面に電気的に接続されている。 As shown in FIG. 2, a plurality of all-solid-state electricity storage elements 10 are arranged between the first and second conductive sheets 20 and 30. Specifically, each of the first electrodes 12 of the plurality of all-solid-state power storage elements 10 is electrically connected to the conductive main surface of the first conductive sheet 20. Each of the second electrodes 13 of the plurality of all-solid-state power storage elements 10 is electrically connected to the conductive main surface of the second conductive sheet 30.
 以上説明したように、本実施形態では、蓄電シート1では、第1及び第2の導電性シート20、30により複数の全固体蓄電エレメント10が狭持されている。このため、蓄電シート1が屈曲したり湾曲したりした際に、全固体蓄電エレメント10が第1及び第2の導電性シート20、30から剥離し難い。従って、蓄電シート1は、可撓性を有するにも関わらず、優れた信頼性を有する。 As described above, in the present embodiment, in the electricity storage sheet 1, the plurality of all-solid electricity storage elements 10 are held between the first and second conductive sheets 20 and 30. For this reason, when the electricity storage sheet 1 is bent or curved, the all-solid electricity storage element 10 is difficult to peel from the first and second conductive sheets 20 and 30. Therefore, although the electrical storage sheet 1 has flexibility, it has excellent reliability.
 また、本実施形態では、複数の全固体蓄電エレメント10が、一の方向と、一の方向とは異なる方向とに沿ってマトリクス状に相互に間隔をおいて配されている。このため、蓄電シート1は、一の方向(x軸方向)と、他の方向(y軸方向)との両方に対して可撓性を有する。 Further, in the present embodiment, the plurality of all-solid-state power storage elements 10 are arranged in a matrix and spaced apart from each other along one direction and a direction different from the one direction. For this reason, the electricity storage sheet 1 has flexibility in both one direction (x-axis direction) and the other direction (y-axis direction).
 例えば、x軸方向とy軸方向とで可撓性を同程度にする場合には、全固体蓄電エレメント10のx軸方向に沿った長さとy軸方向に沿った長さとの差が小さいことが好ましい。x軸方向において隣り合う全固体蓄電エレメント10間の間隔と、y軸方向において隣り合う全固体蓄電エレメント10間の間隔との差を小さくすることが好ましい。 For example, when the flexibility is approximately the same in the x-axis direction and the y-axis direction, the difference between the length along the x-axis direction and the length along the y-axis direction of the all-solid-state power storage element 10 is small. Is preferred. It is preferable to reduce a difference between an interval between all solid state energy storage elements 10 adjacent in the x-axis direction and an interval between all solid state energy storage elements 10 adjacent in the y axis direction.
 例えば、蓄電シート1を巻回する場合には、全固体蓄電エレメント10の巻回方向に沿った長さが、全固体蓄電エレメント10の軸方向に沿った長さ以下であることが好ましい。巻回方向において隣り合う全固体蓄電エレメント10間の間隔が、軸方向において隣り合う全固体蓄電エレメント10間の間隔以上であることが好ましい。 For example, when the electricity storage sheet 1 is wound, the length along the winding direction of the all-solid electricity storage element 10 is preferably equal to or less than the length along the axial direction of the all-solid electricity storage element 10. It is preferable that the interval between all solid state power storage elements 10 adjacent in the winding direction is equal to or greater than the interval between all solid state power storage elements 10 adjacent in the axial direction.
 本実施形態では、全固体蓄電エレメント10の稜線部及び角部が丸められた形状を有している。この場合、蓄電シート1をより曲げやすくすることができる。 In the present embodiment, the ridge line portion and the corner portion of the all-solid-state electricity storage element 10 are rounded. In this case, the electricity storage sheet 1 can be more easily bent.
 尚、蓄電シート1の可撓性をより高める観点からは、全固体蓄電エレメント10の長さ方向Lにおける長さをL1とし、蓄電シート1の一の方向(x軸方向)において隣り合う全固体蓄電エレメント10の間隔をL01としたときに、L01/L1が0.1以上であることが好ましく、0.5以上であることがさらに好ましい。同様に、全固体蓄電エレメント10の幅方向における長さをL2とし、蓄電シート1の他の方向(y軸方向)において隣り合う全固体蓄電エレメント10の間隔をL02としたときに、L02/L2が0.1以上であることが好ましく、0.5以上であることがさらに好ましい。但し、L01/L1やL02/L2が大きすぎると、単位面積当たりに占める全固体蓄電エレメント10の面積割合が小さくなりすぎる。このため、単位面積当たりのエネルギー密度が低くなりすぎる場合がある。従って、L01/L1及びL02/L2は、それぞれ、3以下であることが好ましく、2以下であることがより好ましく、1以下であることがさらに好ましい。同様の観点から、全固体蓄電エレメント10の厚みをT1としたときに、T1/L01及びT1/L02が、それぞれ、0.5以上3以下であることが好ましく、1以上2以下であることがさらに好ましい。 From the viewpoint of further increasing the flexibility of the electricity storage sheet 1, the length in the length direction L of the all-solid electricity storage element 10 is L1, and all solids adjacent in one direction (x-axis direction) of the electricity storage sheet 1 are used. When the interval between the storage elements 10 is L01, L01 / L1 is preferably 0.1 or more, and more preferably 0.5 or more. Similarly, when the length in the width direction of the all-solid-state electricity storage element 10 is L2, and the interval between all-solid-state electricity storage elements 10 adjacent in the other direction (y-axis direction) of the electricity storage sheet 1 is L02, L02 / L2 Is preferably 0.1 or more, and more preferably 0.5 or more. However, if L01 / L1 and L02 / L2 are too large, the area ratio of the all-solid-state electricity storage element 10 per unit area becomes too small. For this reason, the energy density per unit area may become too low. Therefore, L01 / L1 and L02 / L2 are each preferably 3 or less, more preferably 2 or less, and even more preferably 1 or less. From the same viewpoint, when the thickness of the all-solid-state electricity storage element 10 is T1, T1 / L01 and T1 / L02 are each preferably 0.5 or more and 3 or less, and preferably 1 or more and 2 or less. Further preferred.
 また、蓄電シート1では、配置する全固体蓄電エレメント10の個数を異ならせたり、全固体蓄電エレメント10の容量を変化させたりすることにより、蓄電シート1の容量を自由に変化させることができる。 Further, in the electricity storage sheet 1, the capacity of the electricity storage sheet 1 can be freely changed by changing the number of all solid electricity storage elements 10 to be arranged or changing the capacity of the all solid electricity storage elements 10.
 本実施形態では、蓄電シート1が矩形状である例について説明したが、本発明はこれに限定されない。蓄電シート1は、例えば、矩形状以外の多角形状であってもよいし、円形状、楕円形状、長円形状等であってもよい。 In the present embodiment, the example in which the power storage sheet 1 is rectangular has been described, but the present invention is not limited to this. For example, the electricity storage sheet 1 may have a polygonal shape other than a rectangular shape, or may have a circular shape, an elliptical shape, an oval shape, or the like.
 次に、本実施形態において説明した蓄電シート1を用いた電池2について、図5及び図6を参照しながら説明する。 Next, the battery 2 using the electricity storage sheet 1 described in the present embodiment will be described with reference to FIGS.
 電池2は、外装体3を備えている。外装体3には、蓄電シート1が収容されている。蓄電シート1は、どのような形態で外装体3内に収容されていてもよい。蓄電シート1は、可撓性を有するため、例えば、巻回体として外装体3内に収容することもできるし、例えば、九十九折状にされた状態で外装体3内に収容することもできる。また、複数枚の蓄電シート1の積層体を外装体3内に収容してもよい。 The battery 2 includes an exterior body 3. A power storage sheet 1 is accommodated in the exterior body 3. The electricity storage sheet 1 may be accommodated in the exterior body 3 in any form. Since the electricity storage sheet 1 has flexibility, it can be accommodated in the exterior body 3 as a wound body, for example, or it can be accommodated in the exterior body 3 in a folded state, for example. You can also. Further, a laminate of a plurality of power storage sheets 1 may be accommodated in the exterior body 3.
 なお、第1及び第2の導電性シート20,30のそれぞれの両主面が導電性を有する場合には、蓄電シート1とセパレータとを積層した状態で巻回することが好ましい。そうすることにより第1の導電性シート20と第2の導電性シート30とが短絡することを抑制することができる。 In addition, when both the main surfaces of the first and second conductive sheets 20 and 30 are conductive, it is preferable to wind the power storage sheet 1 and the separator in a stacked state. By doing so, it can suppress that the 1st conductive sheet 20 and the 2nd conductive sheet 30 short-circuit.
 外装体3は、第2の導電性シート30と接続された正極端子3aと、第1の導電性シート20と接続された負極端子3bとを備えている。 The exterior body 3 includes a positive electrode terminal 3 a connected to the second conductive sheet 30 and a negative electrode terminal 3 b connected to the first conductive sheet 20.
 外装体3内には、樹脂が充填されている。この樹脂によって外装体3と蓄電シート1とが固定されている。このため、例えば、電池2に衝撃や振動が加わったとしても蓄電シート1に含まれる全固体蓄電エレメント10同士が衝突等することにより全固体蓄電エレメント10が破損することが抑制されている。 The exterior body 3 is filled with resin. The exterior body 3 and the electricity storage sheet 1 are fixed by this resin. For this reason, for example, even if an impact or vibration is applied to the battery 2, the all-solid power storage element 10 is prevented from being damaged due to collision between the all-solid power storage elements 10 included in the power storage sheet 1.
 上述のように、蓄電シート1は、優れた信頼性を有している。このため、電池2も、衝撃や振動が加わった際にも容量が低下しにくく、優れた信頼性を有している。 As described above, the electricity storage sheet 1 has excellent reliability. For this reason, the battery 2 is also less likely to have a reduced capacity even when an impact or vibration is applied, and has excellent reliability.
 なお、本実施形態では、外装体3の両端が閉口された円筒状である例について説明した。但し、本発明において、外装体3は、この形状に限定されない。例えば、外装体3は、直方体状であってもよい。すなわち、本発明に係る電池は、円柱状の電池、ボタン型の電池、直方体状の電池等であってもよい。 In the present embodiment, an example in which the exterior body 3 has a cylindrical shape with both ends closed has been described. However, in the present invention, the exterior body 3 is not limited to this shape. For example, the exterior body 3 may have a rectangular parallelepiped shape. That is, the battery according to the present invention may be a cylindrical battery, a button-type battery, a rectangular parallelepiped battery, or the like.
 本発明に係る電池は、一次電池であってもよいし、二次電池であってもよい。 The battery according to the present invention may be a primary battery or a secondary battery.
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2の実施形態)
 図7は、第2の実施形態に係る蓄電シートの模式的断面図である。
(Second Embodiment)
FIG. 7 is a schematic cross-sectional view of the electricity storage sheet according to the second embodiment.
 蓄電シート1aでは、一の方向(x軸方向)及び他の方向(y軸方向)において隣り合う全固体蓄電エレメント10同士の間に、樹脂層40が設けられている。この場合、蓄電シート1を湾曲させた場合に、隣り合う全固体蓄電エレメント10が接触することを抑制することができる。このため、蓄電シート1aが短絡することを抑制することができる。よって、蓄電シート1の信頼性をさらに向上させることができる。 In the electricity storage sheet 1a, the resin layer 40 is provided between the all solid electricity storage elements 10 adjacent in one direction (x-axis direction) and the other direction (y-axis direction). In this case, when the electricity storage sheet 1 is bent, it is possible to prevent the adjacent all solid electricity storage elements 10 from contacting each other. For this reason, it can suppress that the electrical storage sheet 1a short-circuits. Therefore, the reliability of the electricity storage sheet 1 can be further improved.
 尚、本実施形態では、隣り合う全固体蓄電エレメント10同士の間に、樹脂が充填されている例について説明した。しかし、本発明はこれに限定されない。樹脂層40は、隣り合う全固体蓄電エレメント10同士が接触しないように設けられていればよい。例えば、樹脂層40の長さ方向又はL方向における中央部に、空隙が設けられていてもよい。また、平面視において、全固体蓄電エレメント10のそれぞれを囲むように樹脂層40が設けられていてもよい。また、樹脂層40の代わりに、紙、エラストマ、無機物等を含む非伝導体絶縁物を用いてもよい。 In the present embodiment, the example in which the resin is filled between the adjacent all-solid-state electricity storage elements 10 has been described. However, the present invention is not limited to this. The resin layer 40 should just be provided so that adjacent all-solid-state electrical storage element 10 may not contact. For example, a gap may be provided in the central portion in the length direction or L direction of the resin layer 40. Further, the resin layer 40 may be provided so as to surround each of the all solid state power storage elements 10 in a plan view. Further, in place of the resin layer 40, a non-conductor insulator containing paper, elastomer, inorganic material, or the like may be used.
 (第3の実施形態)
 図8は、第3の実施形態における蓄電シート1bの模式的断面図である。
(Third embodiment)
FIG. 8 is a schematic cross-sectional view of a power storage sheet 1b according to the third embodiment.
 第1の実施形態では、第1の導電性シート20と、第2の導電性シート30との間には、全固体蓄電エレメント10の厚み方向(T方向)に、全固体蓄電エレメント10が一つのみ設けられている例について説明した。しかし、本発明はこの構成に限定されない。図8に示す蓄電シート1bでは、第1の導電性シート20と、第2の導電性シート30との間に、複数の全固体蓄電エレメント10が積層されている。積層された複数の全固体蓄電エレメント10の間には、導電性シート50がさらに設けられている。 In the first embodiment, between the first conductive sheet 20 and the second conductive sheet 30, there is one all-solid power storage element 10 in the thickness direction (T direction) of the all-solid power storage element 10. An example in which only one is provided has been described. However, the present invention is not limited to this configuration. In the electricity storage sheet 1 b shown in FIG. 8, a plurality of all solid electricity storage elements 10 are laminated between the first conductive sheet 20 and the second conductive sheet 30. A conductive sheet 50 is further provided between the stacked all solid state power storage elements 10.
 尚、本実施形態では、積層された複数の全固体蓄電エレメント10の間に導電性シート50が設けられている例について説明したが、本発明はこれに限定されない。積層された複数の全固体蓄電エレメント10は、厚み方向(T方向)において直接接続されていてもよい。 In addition, although this embodiment demonstrated the example in which the electroconductive sheet 50 was provided between the laminated | stacked several all-solid-state electrical storage element 10, this invention is not limited to this. The plurality of stacked all solid state power storage elements 10 may be directly connected in the thickness direction (T direction).
第3の実施形態に係る蓄電シート1bのように、複数の全固体蓄電エレメント10を厚み方向(T方向)に積層した蓄電シートでは、全固体蓄電エレメント10の積層数を異ならせることにより、定格電圧を自由に変更することができる。 In the electricity storage sheet in which a plurality of all-solid-state electricity storage elements 10 are laminated in the thickness direction (T direction) like the electricity-storage sheet 1b according to the third embodiment, The voltage can be changed freely.
1  :蓄電シート
1a :蓄電シート
1b :蓄電シート
2  :電池
3  :外装体
3a :正極端子
3b :負極端子
10 :全固体蓄電エレメント
11 :全固体電解質層
12 :第1の電極
13 :第2の電極
20 :第1の導電性シート
30 :第2の導電性シート
40 :樹脂層
50 :導電性シート
1: electrical storage sheet 1a: electrical storage sheet 1b: electrical storage sheet 2: battery 3: exterior body 3a: positive electrode terminal 3b: negative electrode terminal 10: all solid storage element 11: all solid electrolyte layer 12: first electrode 13: second Electrode 20: First conductive sheet 30: Second conductive sheet 40: Resin layer 50: Conductive sheet

Claims (8)

  1.  少なくとも一の主面が導電性を有する第1の導電性シートと、
     前記第1の導電性シートと対向しており、少なくとも一の主面が導電性を有する第2の導電性シートと、
     前記第1の導電性シートと前記第2の導電性シートとの間において、少なくとも一の方向に沿って相互に間隔をおいて配された複数の全固体蓄電エレメントと、
     を備え、
     前記全固体蓄電エレメントは、
     第1及び第2の主面を有する全固体電解質層と、
     前記第1の主面の上に設けられており、前記第1の導電性シートの導電性を有する主面に電気的に接続された第1の電極と、
     前記第2の主面の上に設けられており、前記第2の導電性シートの導電性を有する主面に電気的に接続された第2の電極と、
     を有する、蓄電シート。
    A first conductive sheet having at least one principal surface conductive;
    A second conductive sheet facing the first conductive sheet and having at least one principal surface conductive;
    Between the first conductive sheet and the second conductive sheet, a plurality of all-solid-state electricity storage elements that are spaced apart from each other along at least one direction;
    With
    The all solid state power storage element is:
    An all solid electrolyte layer having first and second major surfaces;
    A first electrode provided on the first main surface and electrically connected to the main surface having conductivity of the first conductive sheet;
    A second electrode provided on the second main surface and electrically connected to the main surface having conductivity of the second conductive sheet;
    A power storage sheet.
  2.  前記全固体蓄電エレメントの稜線部及び角部の少なくとも一方が面取り状又は丸められた形状を有する直方体状である、請求項1に記載の蓄電シート。 2. The electricity storage sheet according to claim 1, wherein at least one of a ridge line portion and a corner portion of the all solid electricity storage element is a rectangular parallelepiped shape having a chamfered shape or a rounded shape.
  3.  前記全固体蓄電エレメントが、最長辺の長さが1mm以下である、請求項1又は2に記載の蓄電シート。 The power storage sheet according to claim 1 or 2, wherein the all solid state power storage element has a longest side length of 1 mm or less.
  4.  前記複数の全固体蓄電エレメントが、前記一の方向と、前記一の方向とは異なる他の方向とに沿ってマトリクス状に相互に間隔をおいて配されている、請求項1~3のいずれか一項に記載の蓄電シート。 The plurality of all-solid-state power storage elements are arranged in a matrix and spaced from each other along the one direction and another direction different from the one direction. The electricity storage sheet according to claim 1.
  5.  前記第1の導電性シートと前記第2の導電性シートとの間に、複数の前記全固体蓄電エレメントが積層されている、請求項1~4のいずれか一項に記載の蓄電シート。 The electricity storage sheet according to any one of claims 1 to 4, wherein a plurality of the all-solid electricity storage elements are laminated between the first electrically conductive sheet and the second electrically conductive sheet.
  6.  前記積層された全固体蓄電エレメントの間に配された導電性シートをさらに備える、請求項5に記載の蓄電シート。 The power storage sheet according to claim 5, further comprising a conductive sheet disposed between the stacked all solid power storage elements.
  7.  請求項1~6のいずれか一項に記載の蓄電シートと、
     前記蓄電シートを収容している外装体と、
     を備える、電池。
    The electricity storage sheet according to any one of claims 1 to 6,
    An exterior body containing the electricity storage sheet;
    A battery comprising:
  8.  前記蓄電シートが巻回されて前記外装体に収容されている、請求項7に記載の電池。 The battery according to claim 7, wherein the electricity storage sheet is wound and accommodated in the exterior body.
PCT/JP2017/044555 2017-02-23 2017-12-12 Power storage sheet and battery WO2018154926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031850 2017-02-23
JP2017-031850 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018154926A1 true WO2018154926A1 (en) 2018-08-30

Family

ID=63252940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044555 WO2018154926A1 (en) 2017-02-23 2017-12-12 Power storage sheet and battery

Country Status (1)

Country Link
WO (1) WO2018154926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7343419B2 (en) 2020-02-14 2023-09-12 本田技研工業株式会社 Solid state battery cells and solid state battery modules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283055A (en) * 1992-03-30 1993-10-29 Ricoh Co Ltd Battery system
JP2000195482A (en) * 1998-12-25 2000-07-14 Kyocera Corp Sheet-shaped battery
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2002198016A (en) * 2000-12-26 2002-07-12 Sharp Corp Thin secondary cell
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2011513895A (en) * 2008-02-25 2011-04-28 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Flexible thin film lithium ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283055A (en) * 1992-03-30 1993-10-29 Ricoh Co Ltd Battery system
JP2000195482A (en) * 1998-12-25 2000-07-14 Kyocera Corp Sheet-shaped battery
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2002198016A (en) * 2000-12-26 2002-07-12 Sharp Corp Thin secondary cell
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2011513895A (en) * 2008-02-25 2011-04-28 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Flexible thin film lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7343419B2 (en) 2020-02-14 2023-09-12 本田技研工業株式会社 Solid state battery cells and solid state battery modules

Similar Documents

Publication Publication Date Title
WO2012164642A1 (en) Bipolar all-solid-state battery
JP6640690B2 (en) Electrode structure, secondary battery, battery pack and vehicle
WO2020256023A1 (en) Secondary battery
JP6780765B2 (en) Storage sheet and battery
JP7207524B2 (en) solid state battery
KR102508381B1 (en) All-solid-state secondary battery and its manufacturing method
CN111554863A (en) All-solid-state battery laminate
WO2019167857A1 (en) All-solid battery and manufacturing method therefor
JP6295819B2 (en) All solid state secondary battery
JP2015018670A (en) Bipolar battery
WO2018154926A1 (en) Power storage sheet and battery
WO2018154927A1 (en) String-like battery
US11594762B2 (en) All solid storage element laminate and battery
US20210265667A1 (en) Solid state battery
JP5429304B2 (en) Solid battery module
US6541155B2 (en) Bicell battery apparatus
WO2018155157A1 (en) Power storage sheet and battery
JP2021125299A (en) All-solid battery
JP5093666B2 (en) Lithium battery
JP6323166B2 (en) All solid state secondary battery
JP7375832B2 (en) solid state battery
WO2024009963A1 (en) Solid-state battery
US20230207979A1 (en) Battery
US20230207980A1 (en) Battery
KR20220169402A (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP