WO2018154895A1 - Linear motor control system - Google Patents

Linear motor control system Download PDF

Info

Publication number
WO2018154895A1
WO2018154895A1 PCT/JP2017/042564 JP2017042564W WO2018154895A1 WO 2018154895 A1 WO2018154895 A1 WO 2018154895A1 JP 2017042564 W JP2017042564 W JP 2017042564W WO 2018154895 A1 WO2018154895 A1 WO 2018154895A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
control system
voltage
motor control
mover
Prior art date
Application number
PCT/JP2017/042564
Other languages
French (fr)
Japanese (ja)
Inventor
修平 永田
渉 初瀬
鈴木 尚礼
小山 昌喜
Original Assignee
日立オートモティブシステムズ株式会社
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社, 株式会社日立産機システム filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018154895A1 publication Critical patent/WO2018154895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a linear motor control system having a linear motor, a compressor equipped with the linear motor, and a control device for controlling the equipment.
  • Patent Document 1 discloses a current waveform that creates an alternating current waveform of a first alternating current (comparison current) that serves as a reference for a drive current based on the operating state of a linear vibration motor for a linear vibration motor that supports a mover as a spring.
  • a motor drive control device including a control unit that controls so as to be small is disclosed. It is described that the control unit adjusts the drive current to be the resonance drive frequency of the linear vibration motor.
  • Patent Document 1 uses a control method that adjusts the drive current to the resonance drive frequency of the linear vibration motor. Therefore, although it is necessary to generate the minimum necessary current value as the command value from the viewpoint of high-efficiency driving, the current value in the resonance driving state is a friction caused by time-varying loads and mechanical variations. Since it depends on the variation of the load and the like, there is a possibility that the calculation becomes complicated. On the other hand, in the control method for generating the voltage waveform as the command value, the calculation process can be simplified. ) And the non-linearity of the motor characteristics, the harmonic component of the drive frequency is superimposed on the current waveform. When the harmonic component is superimposed on the current waveform, there is a risk of increasing motor loss or increasing electromagnetic noise in the motor unit. Therefore, the present invention provides a linear motor control system that can improve drive efficiency and vibration noise characteristics.
  • a linear motor control system includes a field element having one end connected to an elastic body and having a permanent magnet, and an armature having a winding wound around a magnetic pole.
  • a linear motor control system comprising: a fundamental wave extraction unit that separates an alternating current flowing through the winding detected by the current detection unit into a fundamental wave component and a harmonic component; and the harmonic A harmonic attenuation unit that outputs a harmonic attenuation voltage capable of attenuating the wave component, and controlling the alternating voltage applied to the winding based on the fundamental wave component of the alternating current and the harmonic attenuation voltage.
  • FIG. 2 is a history diagram of gas compression force in a steady operation state of the compressor shown in FIG. 1. It is a characteristic view which shows the mover position dependence of the thrust constant of the compressor shown in FIG. It is a characteristic view which shows the mover position dependence of the detent force of the compressor shown in FIG. It is a control block diagram in electric current command control in a compressor. It is a figure which shows the relationship between an alternating current frequency in a constant current condition, and a needle
  • a compressor will be described as an example of equipment constituting the linear motor control system, but it is needless to say that the apparatus is not limited to the compressor.
  • Embodiments of the present invention will be described below with reference to the drawings. Similar components are denoted by the same reference numerals, and redundant description is omitted.
  • the various components of the present invention do not necessarily have to be independent of each other.
  • One component is composed of a plurality of members, a plurality of components are composed of one member, and one component is separated from another. And a part of a certain component and a part of another component are allowed to overlap.
  • FIG. 1 is a longitudinal sectional view in the axial direction of a compressor 1 according to a first embodiment of the present invention.
  • the compressor 1 includes an armature 2 and a mover 3 having, for example, a plate-shaped permanent magnet 3a.
  • the mover 3 may be referred to as a field element.
  • the armature 2 includes a magnetic pole 4, a winding 6 wound around each of the magnetic poles 4, and a bridge 7.
  • the magnetic pole 4 is made of, for example, laminated electromagnetic steel plates, and can generate an electromagnetic force for reciprocating the permanent magnet 3a of the mover 3 by energizing an alternating current to the winding 6 which is an example of a supply unit. It is configured as follows. As an example, the compressor 1 shown in FIG.
  • the 1 has two pairs of magnetic poles 4 that are opposed to each other so as to sandwich the mover 3 with a gap on both sides of the mover 3 in the axial direction (vertical direction).
  • the magnetic poles 4 having a pair and forming a pair of these two pairs are spaced apart at an interval defined by the bridge 7 along the axial direction (vertical direction).
  • the permanent magnet 3 a is alternately attracted to each pair of the magnetic poles 4. Reciprocates.
  • the case where the movable element 3 reciprocates in the vertical direction will be described as an example, but the direction of the reciprocating movement is not limited to the vertical direction.
  • the movable element 3 may be configured to reciprocate in the horizontal direction, or the movable element 3 may be configured to reciprocate in a direction having an arbitrary angle with respect to the vertical direction.
  • a general term for the direction in which the mover 3 reciprocates is referred to as an axial direction.
  • the bridge 7 is formed of, for example, a magnetic material, and the bridge 7 serves as a magnetic path. Therefore, the coils 6 wound around the two sets of magnetic poles 4 spaced apart in the axial direction are connected in series by wiring. It can be configured. Further, when the bridge 7 is formed of a nonmagnetic material, the bridge 7 is configured to magnetically separate two sets of magnetic poles 4 spaced apart in the axial direction from each other. The coil 6 wound around can be connected in parallel by wiring. That is, the coils 6 wound around the two sets of magnetic poles 4 may be wired so that they can be energized in series, or may be wired in parallel.
  • the wiring is not particularly limited, but in FIG. As an example, a configuration is shown in which a bridge 7 is formed of a non-magnetic material, and coils 6 wound around two sets of magnetic poles 4 are connected in parallel by wiring.
  • the mover 3 has a plate-shaped permanent magnet 3 a, one end is fixed to the piston 12, and the other end is connected to the resonance spring 14.
  • the shape and number of the permanent magnets 3a can be appropriately designed according to the device to be applied, and are not limited to a flat plate shape.
  • the movable element 3 may have a cylindrical shape or a columnar shape, and a plurality of permanent magnets 3 a may be arranged on the outer peripheral surface of the movable element 3.
  • a piston 12 is connected to one end of the armature 3 in the direction of relative reciprocation between the armature 2 and the armature 3.
  • the piston 12 can reciprocate while sliding with the inner surface of the cylinder block 11 in the cylinder 11 a of the cylinder block 11 in accordance with the reciprocating motion of the mover 3.
  • a region surrounded by the piston 12, the inner surface of the cylinder block 11, and the cylinder head 13 in the cylinder 11a becomes a compression chamber in which fluid is compressed and expanded.
  • the cylinder head 13 facing the end surface of the piston 12 is connected to the end surface of the cylinder block 11, and the gas in the cylinder 11a is repeatedly compressed and discharged as the piston 12 reciprocates.
  • the cylinder head 13 is provided with a suction hole (not shown) through which the gas flowing into the cylinder 11a passes and a discharge hole (not shown) through which the gas flowing out of the cylinder 11a passes.
  • These suction holes and discharge holes are provided with check valves.
  • a resonance spring 14 is connected to the other end of the mover 3 in the direction of relative reciprocation of the armature 2 and the mover 3, and the restoring force of the resonance spring 14 is movable along with the reciprocation of the mover 3. It is configured to act on the child 3.
  • the mover 3 reciprocates in the vertical direction (axial direction)
  • the reciprocation matches the resonance frequency determined by the mass of the reciprocating object including the mover 3 and the spring constant of the resonance spring 14, the compressor The energy efficiency as 1 can be maintained high.
  • the armature 2 is stationary in the vertical direction (axial direction) and the mover 3 is reciprocated along the vertical direction (axial direction), but is not limited thereto.
  • the armature 2 may reciprocate along the vertical direction (axial direction), and the movable element 3 may be stationary in the vertical direction (axial direction), and the armature 2 and the movable element 3 may have different speeds. It is good also as a structure which reciprocates along a perpendicular direction (axial direction). In any case, it is preferable to connect one end of the resonance spring 14 to an object that moves along the vertical direction (axial direction).
  • the movable element 3 as a field element may be stationary, and the armature 2 may reciprocate in parallel with the cylinder block 11 in the axial direction of the movable element 3.
  • one end of the support member is connected and fixed to the side connected to the resonance spring 14 of the mover 3 as a field element, and the other end of the support member is grounded (fixed to the ground or floor) or installed.
  • the mover (field element) 3 functions as a stator, and the armature 2 and the cylinder block 11 reciprocate in a direction parallel to the axial direction of the mover (field element) 3.
  • the frequency of the electromagnetic excitation force Felec is equal to the frequency of the AC magnetic field supplied to the mover 3, and the frequency of the electromagnetic excitation force Felec can be manipulated by the frequency of the alternating current applied to the winding 6.
  • the resonance frequency ⁇ n at no load is given by the following equation (1) when the attenuation coefficient is negligibly small.
  • the steady operation state can mean a state in which the vibration amplitude and vibration frequency of the mover 3 are kept substantially constant for a predetermined time or longer, for example, for 5 seconds or longer. Further, in the case where an elastic body other than a spring is used, the spring constant Ks can be replaced with the magnitude of the restoring force when the elastic body is deformed by a unit length.
  • the gas spring component Fr refers to a restoring force component proportional to the vibration amplitude of the mover 3 in the gas compression force Fgas.
  • the gas spring component Fr is given by the following equation (2), where X is the amount of movement of the piston 12 in the stroke direction.
  • Equation (2) can be regarded as an extraction of the first-order term relating to the stroke movement amount X of the piston 12 with respect to the gas compression force Fgas.
  • the gas compression force Fgas will be described in detail.
  • the gas compression force Fgas is determined by the product of the differential pressure inside and outside the cylinder 11a and the cross-sectional area of the cylinder 11a (cross-sectional area in a plane perpendicular to the vertical direction).
  • the outside of the cylinder 11a is the suction pressure.
  • FIG. 2 is a history diagram of the gas compression force Fgas in the steady operation state of the compressor 1 shown in FIG. That is, it is a history of the gas compression force Fgas in a steady operation state in which the suction and discharge of gas are repeated in the cylinder 11a.
  • the horizontal axis is the position x of the mover 3
  • the top dead center direction is a positive direction.
  • the top dead center is the lowest position of the piston 12 in the cylinder 11 a during compression, that is, the position where the piston 12 is closest to the cylinder head 13.
  • the position of “0” in the mover position x indicates a state in which the permanent magnet 3a constituting the mover 3 is located between the two sets of magnetic poles 4 that are spaced apart from each other in the axial direction (intermediate portion).
  • the vertical axis represents the gas compression force Fgas.
  • the history of the gas compression force Fgas can be classified into four processes of “suction process”, “compression process”, “discharge process”, and “expansion process”.
  • the “suction process” is a process in which gas is sucked into the cylinder 11a, and the load on the compressor 1 is small.
  • the “compression process” is a process of compressing the gas in the cylinder 11a to the discharge pressure, and is a section where the load increases.
  • the “discharge process” is a process of discharging the gas in the compressed cylinder 11a.
  • the “expansion process” is a process in which the piston 12 at the top dead center moves toward the bottom dead center, and is a section in which the load decreases.
  • the gas spring constant Kgas is considered.
  • the gas spring constant Kgas is a value obtained by differentiating the gas compression force Fgas by the movement amount X of the piston 12 in the stroke direction (change amount of the position x of the mover 3) as shown in the following equation (3). *
  • each of the “compression process” and the “expansion process” is a section in which the load increases and decreases as the piston 12 moves along the vertical direction (axial direction), and thus the gas spring constant Kgas is a relatively large value. It becomes.
  • the gas spring constant Kgas becomes a periodic variable that varies while the piston 12 reciprocates once.
  • the resonance frequency ⁇ L in the presence of the gas compression load has the influence of the gas spring constant Kgas on the resonance frequency ⁇ n at the time of no load shown in the above formula (1) when the effect of the damping force is ignored. This can be expressed by the following formula (4).
  • the resonance frequency ⁇ L is also a variable that changes according to the position of the piston 12. Therefore, in order to resonate the piston 12 strictly, it is necessary to change the frequency of the electromagnetic excitation force Felec according to the position of the piston 12 (nonlinearity of the gas compression force and the electromagnetic excitation force with respect to the stroke movement amount).
  • nonlinear characteristics of the gas compression force Fgas and the electromagnetic excitation force Felec that are external forces acting on the mover 3 with respect to the stroke movement amount X will be described. As shown in FIG.
  • the gas compression force Fgas includes a higher-order component with respect to the stroke movement amount X (change amount of the position x of the mover 3) in addition to the gas spring component Fr described above. This is also clear from the fact that the gas compression force Fgas is not proportional to the stroke movement amount X. This means that the external force (gas compression force Fgas) acting on the mover 3 includes higher-order frequency components other than the fundamental frequency.
  • the electromagnetic excitation force Felec is obtained as the sum of the excitation thrust Fi and the detent force Fd that are substantially proportional to the alternating current applied to the winding 6.
  • the excitation thrust Fi is a force generated by the interaction between the magnetic field generated by applying an alternating current to the winding 6 and the permanent magnet 3 a constituting the mover 3.
  • the detent force Fd is a force generated by attracting the permanent magnet 3 a to the magnetic pole 4 regardless of whether or not an alternating current is applied (applied) to the winding 6.
  • the excitation thrust Fi is substantially proportional to the alternating current applied to the winding 6, and this proportionality constant is referred to as a thrust constant.
  • the thrust constant will be described.
  • FIG. 3 is a characteristic diagram showing the dependency of the thrust constant of the compressor 1 shown in FIG. 1 on the position of the mover, and schematically shows the relationship between the stroke movement amount X of the mover 3 and the thrust constant.
  • the horizontal axis is the position x of the mover 3
  • the vertical axis is the thrust constant.
  • the position of “0” in the mover position x indicates a state in which the permanent magnet 3a constituting the mover 3 is located between the two sets of magnetic poles 4 that are spaced apart from each other in the axial direction (intermediate portion).
  • the thrust constant decreases as the mover 3 approaches the end of the armature 2 as shown in FIG. Is large, it is necessary to increase the current value of the alternating current applied to the winding 6. Therefore, in order to generate the electromagnetic excitation force Felec having a sine wave shape, the current waveform needs to be distorted from the sine wave shape. This means that higher-order components are included in the current waveform.
  • FIG. 4 is a characteristic diagram showing the mover position dependence of the detent force of the compressor 1 shown in FIG.
  • the horizontal axis of FIG. 4 is the position x of the mover 3, and the state in which the permanent magnet 3a constituting the mover 3 is positioned between two sets of magnetic poles (intermediate part) spaced apart from each other in the axial direction.
  • reference position “0” one direction along the axial direction of the mover 3 (for example, the direction in which the mover 3 goes downward in FIG. 1) is positive, and the other direction (the opposite direction: movable in FIG. 1).
  • the case where the child 3 is directed negative is shown.
  • the permanent magnet 3a constituting the mover 3 is based on a state in which the permanent magnet 3a is positioned between two sets of magnetic poles (intermediate part) spaced apart from each other in the axial direction.
  • the position is “0”, and one direction along the axial direction of the mover (for example, the direction in which the mover 3 faces downward in FIG. 1) is positive, and the other direction (the opposite direction: the mover 3 in FIG. 1). This is a case where the negative direction is the upward direction.
  • the permanent magnet 3a constituting the mover 3 is positioned between two sets of magnetic poles that are spaced apart from each other in the axial direction (intermediate).
  • the detent force Fd is “0” because the permanent magnet 3a is located farthest from both the upper magnetic pole 4 and the lower magnetic pole 4.
  • the lower end side of the permanent magnet 3a approaches the lower magnetic pole 4 to generate a positive detent force Fd.
  • the positive detent force Fd peaks, and then the mover 3 further moves.
  • the decant force Fd turns negative. Therefore, the profile of the detent force Fd with respect to the mover position x is nonlinear as shown in FIG. That is, the detent force Fd increases as the permanent magnet 3a approaches the magnetic pole 4, but begins to decrease at a certain approach distance.
  • the relationship between the stroke movement amount X of the mover 3 (the displacement amount of the position x of the mover 3) and the detent force Fd is as shown in FIG. From FIG. 4, the detent force Fd is a non-linear function with respect to the stroke movement amount X (the displacement amount of the position x of the mover 3), and when the piston 12 reciprocates in a sinusoidal manner, the detent force Fd has a higher-order frequency component. Is assumed to be included.
  • the time variation waveform of the stroke movement amount X due to the non-linear characteristics of the external force acting on the mover 3 as described above, when the compressor 1 is driven, the time variation waveform of the stroke movement amount X, the current waveform of the alternating current applied to the winding 6, or the voltage of the alternating voltage It can be seen that the waveform may include higher order frequency components of the drive frequency.
  • Compressor drive control The drive control of the compressor 1 will be described.
  • motor drive control methods are roughly divided into current command control for controlling the applied current to the winding to have a predetermined command waveform and voltage command control for controlling the applied voltage to the winding to have a predetermined command waveform. can do.
  • voltage command control is used as an example of the drive control method. First, each control method will be described below.
  • FIG. 5 shows a control block diagram in the current command control in the compressor.
  • the compressor 1 high-efficiency driving is realized when the mover 3 is driven at the resonance frequency ⁇ L as described above. Therefore, it is necessary to perform frequency control so that the frequency ⁇ I of the alternating current applied to the winding 6 becomes the resonance frequency ⁇ L.
  • FIG. 6 is a diagram showing the relationship between the alternating current frequency ⁇ I and the mover stroke under a constant current condition.
  • the stroke change of 3 is shown.
  • the constant current condition indicates that the effective value of the alternating current applied to the winding 6 is a constant value without being time-dependent.
  • the horizontal axis in FIG. 6 is the frequency ⁇ I of the alternating current, and the vertical axis is the stroke amount of the mover 3.
  • the electromagnetic excitation force Felec which is an external force acting on the mover 3 has a constant value when the thrust constant is constant with respect to the stroke of the mover 3.
  • Felec which is an external force acting on the mover 3
  • the thrust constant varies somewhat with respect to the stroke of the mover 3, it is assumed here that the thrust constant is constant.
  • the stroke amount of the mover 3 is a parameter related to the discharge flow rate of the compression medium, and thus control is important.
  • the stroke amount of the mover 3 becomes excessively large, the piston 12 may collide with the cylinder head 13. Therefore, it is necessary to control the stroke amount of the mover 3 according to the discharge flow rate of the compression medium required by the system or equipment connected to the compressor 1.
  • the control block in current command control includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a current control unit 54, a voltage conversion unit 55, and an inverter 56.
  • the current value I flowing through the winding 6 detected by the current detection unit is input to the position estimation unit 52, the frequency control unit 53, and the current control unit 54, respectively.
  • the position estimation unit 52 calculates the above equation (5) using the input current value I and the alternating voltage V applied to the winding 6, and outputs the estimated position x ⁇ of the mover 3 to the stroke control unit 51. To do.
  • the stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the stroke command x ** is output to the current control unit 54.
  • X ** is a command stroke amplitude value of the mover 3.
  • the stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the control according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1 is executed.
  • the current control unit 54 generates a current value corresponding to the stroke of the mover 3 as a current command value I * for the stroke command x ** (required stroke amount) input from the stroke control unit 51. That is, the current control unit 54 calculates a current command value I * corresponding to the commanded stroke amount, and the current amount actually applied to the winding 6 via the inverter 56 is the calculated current command value I. Control to approach * .
  • the current control unit 54 outputs the generated current command value I * to the voltage conversion unit 55.
  • the voltage conversion unit 55 inputs the current command value I * from the current control unit 54, the voltage is finally applied to the motor terminal or the winding 6, so the current command value I * is output as the output voltage command value. Convert to v.
  • the voltage conversion unit 55 outputs the converted output voltage command value v to the inverter 56.
  • the frequency control unit 53 executes control to adjust the frequency ⁇ I of the input current value I (alternating current) to the resonance frequency ⁇ L according to the operating state each time. To do. That is, the frequency control unit 53 adjusts the frequency ⁇ I of the current value I (alternating current) input so as to be the resonance frequency ⁇ L, and outputs it to the current control unit 54.
  • FIG. 7 shows a control block diagram in the voltage command control in the compressor. A difference from the control block in the current command control shown in FIG. 5 described above is that a voltage control unit 57 is provided instead of the current control unit 54 and the voltage conversion unit 55.
  • FIG. 8 is a diagram showing the relationship between the alternating voltage frequency ⁇ v and the mover stroke under a constant voltage condition.
  • the stroke change of 3 is shown.
  • the constant voltage condition indicates that the effective value of the alternating voltage applied to the winding 6 is a constant value without depending on time.
  • the horizontal axis in FIG. 8 represents the frequency ⁇ v of the alternating voltage, and the vertical axis represents the stroke amount of the mover 3.
  • a circuit equation in the compressor 1 is considered.
  • the alternating voltage applied to the winding 6 is V
  • the current flowing through the winding 6 is I
  • the inductance of the winding 6 is L
  • the electrical resistance is R
  • the position of the mover 3 is x
  • the thrust constant is K
  • the time is t.
  • an induced voltage K generated by the movement of the mover 3 rather than a voltage drop RI due to resistance or an induced electromotive force L (dI / dt) due to inductance.
  • dx / dt is dominant among the components of the alternating voltage V.
  • the speed (dx / dt) of the mover 3 can be regarded as substantially constant under the condition where the alternating voltage V is constant. This means that the voltage command control substantially approximates the speed control of the mover 3.
  • the position x of the mover 3 can be represented by a sine wave as in the following formula (6).
  • the control of the speed (dx / dt) of the mover 3 can be approximated to the control of the vibration amplitude (stroke amount) X0 of the mover 3. This means that the stroke amount of the mover 3 is substantially constant under the condition where the alternating voltage V is constant.
  • the control block in the voltage command control includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a voltage control unit 57, and an inverter 56.
  • the current value I flowing through the winding 6 detected by the current detection unit is input to the position estimation unit 52, the frequency control unit 53, and the voltage control unit 57, respectively.
  • the position estimation unit 52 calculates the above equation (5) using the input current value I and the alternating voltage V applied to the winding 6, and outputs the estimated position x ⁇ of the mover 3 to the stroke control unit 51. To do.
  • the stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the stroke command x ** is output to the current control unit 54.
  • X ** is a command stroke amplitude value of the mover 3.
  • the stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the control according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1 is executed.
  • the voltage control unit 57 generates a voltage value corresponding to the stroke of the mover 3 as an output voltage command value v with respect to the stroke command x ** (required stroke amount) input from the stroke control unit 51. That is, the voltage control unit 57 calculates the output voltage command value v corresponding to the commanded stroke amount, and the voltage actually applied to the winding 6 via the inverter 56 is the calculated output voltage command value v. Control to approach. Voltage control unit 57 outputs generated output voltage command value v to inverter 56.
  • the frequency control unit 53 uses the input current value I (alternating current) to adjust the frequency ⁇ v of the alternating voltage V so as to be the resonance frequency ⁇ L by the above equation (5), and outputs it to the voltage control unit 57. .
  • FIG. 9 is a diagram illustrating an example of a voltage waveform and a current waveform during voltage command control.
  • the horizontal axis in FIG. 9 is time, and the vertical axis is voltage value / current value.
  • a waveform when a sinusoidal command is output as a voltage command waveform is shown.
  • the actual voltage waveform (broken line in FIG. 9) becomes a sinusoidal waveform as commanded by voltage control.
  • the current waveform is a waveform as shown by a solid line in FIG.
  • the current waveform includes a higher-order frequency component of the drive frequency due to the nonlinear characteristic of the external force acting on the mover 3 described above.
  • the current of the higher-order frequency component increases the amount of eddy current loss generated in the laminated electromagnetic steel sheet constituting the magnetic pole 4 of the motor unit, and can be a factor that deteriorates the motor efficiency. Can be.
  • FIG. 10 is a block diagram of the control device shown in FIG.
  • the control device 5 includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a voltage control unit 57, a fundamental wave extraction unit 58, a current control unit (harmonic attenuation unit) 59, and An inverter 56 is provided.
  • a current value I flowing through the winding 6 detected by a current detection unit is input to the fundamental wave extraction unit 58.
  • the fundamental wave extraction unit 58 separates the input current value I into a fundamental wave component (fundamental wave) and a high frequency component (harmonic wave).
  • the fundamental wave extraction unit 58 outputs the separated fundamental waves to the position estimation unit 52, the frequency control unit 53, and the voltage control unit 57, respectively. Further, the fundamental wave extraction unit 58 outputs the separated harmonics to the current control unit (harmonic attenuation unit) 59.
  • the fundamental wave is a drive frequency component of the compressor 1.
  • a fundamental wave extraction method for example, a time-domain signal is converted into a frequency-domain signal by Fourier transform, and then a corresponding frequency-domain signal is extracted.
  • the present Example shows the structure which outputs the fundamental wave isolate
  • the current value I flowing through the winding 6 detected by the current detection unit may be input to the fundamental wave extraction unit 58 and the position estimation unit 52.
  • the position estimation unit 52 may be configured to input a signal including the fundamental wave component of the current value I and its higher order components.
  • the position estimation unit 52 calculates the above equation (5) using the fundamental wave input from the fundamental wave extraction unit 58 and the alternating voltage V applied to the winding 6 to obtain the estimated position x ⁇ of the mover 3. Output to the stroke controller 51.
  • the equation (5) is a differential equation showing the relationship between the voltage value V of the alternating voltage, the current value I of the alternating current, and the position x of the mover 3, and the voltage value V and the current value I (here, the basic value) If the fundamental wave input from the wave extraction unit 58 is given, the position x of the mover 3 (the estimated position x ⁇ of the mover 3) can be obtained.
  • the voltage value V a detected value of the alternating voltage V applied to the winding 6 may be used, and an output voltage command value v described later may be used as the voltage value V.
  • the stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the stroke command x ** is output to the voltage control unit 57. That is, the stroke control unit 51 performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute. In this embodiment, the stroke control unit 51 calculates the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52.
  • the stroke control unit 51 converts the stroke of the mover 3 into the stroke command x * based on the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52.
  • the stroke command x ** may be obtained by PI control so as to approach.
  • the stroke of the mover 3 is determined based on the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52.
  • a configuration may be employed in which the stroke command x ** is determined so as to be close to the stroke command x * .
  • the frequency control unit 53 determines the frequency ⁇ v * of the voltage waveform to be generated based on the fundamental wave input from the fundamental wave extraction unit 58. That is, the frequency control unit 53 performs control so that the frequency ⁇ v of the alternating voltage approaches the resonance frequency ⁇ L, and outputs the frequency ⁇ v * of the voltage waveform to the voltage control unit 57.
  • the frequency control unit 53 uses, for example, the phase relationship between the alternating current I flowing through the winding 6 (here, the fundamental wave input from the fundamental wave extracting unit 58), the alternating voltage V, and the position x of the mover 3.
  • the alternating current I and the alternating voltage V have the same phase, and the position x of the mover 3 Is in a relationship that the phase is delayed by 90 ° with respect to the current I. Based on such a relationship, it is possible to control the drive frequency by estimating the phase relationship during loading and controlling the phase of the output voltage V.
  • the frequency controller 53 simply assumes a configuration in which the phase difference between the fundamental wave component (fundamental wave) of the current value I and the phase difference between the output voltage V is close to zero.
  • phase of the output voltage V may be controlled using the relationship between the phase of the position estimated value x ⁇ of the mover 3 and the phase difference between the output voltage V.
  • control for bringing the phase difference between the phase of the fundamental wave component (fundamental wave) of the current value I and the output voltage V close to zero may use other feedback control such as PI control or PID control.
  • controlling the phase of the output voltage V is substantially equivalent to controlling the frequency ⁇ v of the output voltage V.
  • phase of the output voltage V in order to advance the phase of the output voltage V, it can be achieved by performing positive feedback (increasing the frequency) with respect to the frequency ⁇ v of the output voltage V, and in order to delay the phase of the output voltage V, This can be achieved by performing negative feedback (decreasing the frequency) with respect to the frequency ⁇ v of the output voltage V.
  • the voltage control unit 57 outputs the output voltage amplitude (command voltage amplitude V *) based on the command frequency ⁇ v * of the output voltage V input from the frequency control unit 53 and the stroke command value x ** input from the stroke control unit 51 . ).
  • the circuit equation in the compressor 1 shown in the above equation (5) is used.
  • the command voltage amplitude V * is set to the command stroke amplitude.
  • value X ** it determines like following Formula (8).
  • the command voltage amplitude V * (output voltage) is calculated by using the current value I (fundamental wave input from the fundamental wave extraction unit 58) using the above equation (5). (Amplitude) may be determined.
  • the current control unit (harmonic attenuation unit) 59 inputs the high frequency component (harmonic) separated by the fundamental wave extraction unit 58 and determines a voltage correction amount for bringing the high frequency component (harmonic) close to zero. And output as a harmonic attenuation voltage. Specifically, the voltage correction amount is calculated from the high frequency component of the current value I separated by the fundamental wave extraction unit 58 based on the circuit equation in the compressor 1 shown in the above equation (5).
  • the command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57 and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 are added, and the inverter 56 is used as the output voltage command value v. And an alternating voltage is applied to the winding 6 by the inverter 56.
  • the output voltage command value v generated by the control device 5 of the present embodiment it is easy to execute “stroke control” and “frequency control” in parallel, and further, a current control unit (harmonic attenuation unit). ) 59, voltage correction for attenuating the higher-order frequency component of the drive frequency in the current waveform is executed, so that the alternating current flowing in the winding 6 is prevented from including the higher-order frequency component of the drive frequency. Can do.
  • FIG. 11 is a diagram showing a modification of the block diagram of the control device shown in FIG.
  • the control device 5 shown in FIG. 11 is different from the control device shown in FIG. 10 in that the estimated position x ⁇ of the mover 3 is input from the position estimation unit 52 to the frequency control unit 53.
  • the frequency control unit 53 configuring the control device 5 illustrated in FIG. 11 includes the fundamental wave of the current value I separated by the fundamental wave extraction unit 58, the alternating voltage V, and the position of the mover 3 input from the position estimation unit 52. Based on at least two of the estimated values x ⁇ , the frequency ⁇ v * of the voltage waveform to be generated is determined by the above equation (5).
  • FIG. 12 is a block diagram of the control device according to the second embodiment according to another embodiment of the present invention.
  • the position estimation unit 52a has a command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and a harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59.
  • V * output voltage amplitude
  • V * output voltage amplitude
  • the added output voltage command value v is input to obtain the estimated position value x ⁇ of the mover 3.
  • the configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment.
  • symbol is attached
  • the position estimation unit 52a configuring the control device 5a of the present embodiment includes the fundamental wave input from the fundamental wave extraction unit 58 and the command voltage amplitude V * (output from the voltage control unit 57a.
  • the output voltage command value v obtained by adding the output voltage amplitude) and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 is input, and the above-described equation (5) is calculated to obtain the mover. 3 is obtained, and the obtained estimated position x ⁇ of the mover 3 is output to the stroke controller 51a.
  • the stroke control unit 51a obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the stroke command x ** is output to the voltage controller 57a. That is, the stroke control unit 51a performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute.
  • the circuit equation in the compressor 1 shown in the above equation (5) is used.
  • the command voltage amplitude V * is set to the command stroke amplitude.
  • the above equation (8) is calculated using the value X ** to determine the command voltage amplitude V * (output voltage amplitude).
  • the position estimation unit 52a of the present embodiment includes the command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and the current control unit.
  • V * output voltage amplitude
  • the above-described first embodiment is used. In comparison, the position estimation accuracy of the mover 3 is improved.
  • the output voltage command value v generated by the control device 5a of the present embodiment it is easy to execute “stroke control” and “frequency control” in parallel, and further, a current control unit (harmonic attenuation unit). ) 59, voltage correction for attenuating the higher-order frequency component of the drive frequency in the current waveform is executed, so that the alternating current flowing in the winding 6 is prevented from including the higher-order frequency component of the drive frequency. Can do.
  • FIG. 13 is a diagram showing a modification of the block diagram of the control device shown in FIG.
  • the control device 5a shown in FIG. 12 is different from the control device shown in FIG. 12 in that the estimated position x ⁇ of the mover 3 is input to the frequency control unit 53 from the position estimation unit 52a.
  • the frequency control unit 53 constituting the control device 5a shown in FIG. 13 includes the fundamental wave of the current value I separated by the fundamental wave extraction unit 58, the alternating voltage V, and the position of the mover 3 input from the position estimation unit 52. Based on at least two of the estimated values x ⁇ , the frequency ⁇ v * of the voltage waveform to be generated is determined by the above equation (5).
  • FIG. 14 is a block diagram of the control device according to the third embodiment according to another embodiment of the present invention.
  • the current control unit (harmonic attenuation unit) 59b calculates the high frequency component (harmonic) separated by the fundamental wave extraction unit 58 and the estimated position x ⁇ of the mover 3 obtained by the position estimation unit 52.
  • This is different from the first embodiment shown in FIG. 10 described above in that it is configured to input and determine the harmonic attenuation voltage as a voltage correction amount.
  • the configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment.
  • symbol is attached
  • the current control unit (harmonic attenuation unit) 59 b that constitutes the control device 5 b of this embodiment includes the high-frequency component (harmonic) and the position of the current value I separated by the fundamental wave extraction unit 58.
  • the estimated position x ⁇ of the mover 3 obtained by the estimation unit 52 is input.
  • the current control unit (harmonic attenuation unit) 59b sets a voltage correction amount for bringing the high frequency component of the current value I close to zero. Determined and output as harmonic attenuation voltage.
  • the current control unit (harmonic attenuation unit) 59 determines the voltage correction amount in consideration of only items related to the current value I in the circuit equation of the compressor 1 of Formula (5). It is configured.
  • the current control unit (harmonic attenuation unit) is also considered in consideration of the induced voltage K (dx / dt) involving the position (velocity) of the mover 3. ) 59b determines the voltage correction amount. Therefore, the voltage correction amount for making the high frequency component of the current value I approach zero can be determined with higher accuracy than in the first embodiment.
  • the output voltage V generated by the control device 5b of the present embodiment it is easy to execute “stroke control” and “frequency control” in parallel, and further, the current waveform has a higher-order frequency component of the drive frequency. Therefore, it is possible to suppress the alternating current flowing through the winding 6 from including a higher-order frequency component of the drive frequency.
  • FIG. 15 is a block diagram of the control device according to the fourth embodiment according to another embodiment of the present invention.
  • the position estimation unit 52a has a command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and a harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59.
  • the fundamental voltage extraction unit 58 separates the point where the added output voltage command value v is input and the position estimation value x ⁇ of the mover 3 is obtained and the current control unit (harmonic attenuation unit) 59c.
  • the high frequency component (harmonic) and the estimated position x ⁇ of the mover 3 obtained by the position estimation unit 52 are input, and the harmonic attenuation voltage as the voltage correction amount is determined.
  • the configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment.
  • symbol is attached
  • the position estimation unit 52a constituting the control device 5c of the present embodiment includes the fundamental wave input from the fundamental wave extraction unit 58 and the command voltage amplitude V * (output from the voltage control unit 57a.
  • the output voltage command value v obtained by adding the output voltage amplitude) and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 is input, and the above-described equation (5) is calculated to obtain the mover. 3 is obtained, and the obtained estimated position x ⁇ of the mover 3 is output to the stroke controller 51a.
  • the stroke control unit 51a obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ⁇ of the mover 3 input from the position estimation unit 52 as the stroke command x **.
  • the stroke command x ** is output to the voltage controller 57a. That is, the stroke control unit 51a performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute.
  • the voltage control unit 57a outputs the output voltage amplitude (command voltage amplitude V * based on the command frequency ⁇ v * of the output voltage V input from the frequency control unit 53 and the stroke command value x ** input from the stroke control unit 51a . ).
  • the circuit equation in the compressor 1 shown in the above equation (5) is used.
  • the command voltage amplitude V * is set to the command stroke amplitude.
  • the above equation (8) is calculated using the value X ** to determine the command voltage amplitude V * (output voltage amplitude).
  • the current control unit (harmonic attenuation unit) 59c inputs the high frequency component (harmonic) of the current value I separated by the fundamental wave extraction unit 58 and the estimated position x ⁇ of the mover 3 obtained by the position estimation unit 52a. To do. Based on the high frequency component (harmonic) of the current value I and the estimated position x ⁇ of the mover 3, the current control unit (harmonic attenuation unit) 59b sets a voltage correction amount for bringing the high frequency component of the current value I close to zero. Determined and output as harmonic attenuation voltage.
  • the position estimation unit 52a of the present embodiment includes the command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and the current control unit.
  • V * output voltage amplitude
  • the above-described first embodiment is used. In comparison, the position estimation accuracy of the mover 3 is improved.
  • the current control unit (harmonic attenuation unit) 59c of the present embodiment has high accuracy obtained by the position estimation unit 52a in addition to the high frequency component (harmonic) of the current value I separated by the fundamental wave extraction unit 58. Since the voltage correction amount for determining the high frequency component of the current value I to be close to zero is determined based on the estimated position x ⁇ of the mover 3, the high frequency component of the current value I is brought closer to zero with higher accuracy. Therefore, the voltage correction amount can be determined.
  • the output voltage V generated by the control device 5c of the present embodiment it is easy to execute “stroke control” and “frequency control” in parallel, and further, the current waveform has a higher-order frequency component of the drive frequency. Therefore, it is possible to suppress the alternating current flowing through the winding 6 from including a higher-order frequency component of the drive frequency.
  • the present embodiment in addition to the effects of the first embodiment, it is possible to improve the position estimation accuracy of the mover, and the current value I in consideration of the estimated position of the mover with high accuracy. Therefore, the voltage correction amount for bringing the high frequency component of the current value I closer to zero can be determined with higher accuracy.
  • the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments described above is an air conditioner including a heat exchanger that functions as a condenser or an evaporator. It can be applied to a compressor for pressure feeding.
  • the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments is applied to a compressor that compresses a working fluid in order to adjust the vehicle height in the air suspension. it can.
  • the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments described above is a compressor that pumps liquid refrigerant in a refrigerator having a condenser and an evaporator. Is also applicable.
  • the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments can be applied to a refrigeration air conditioner such as a cryostat or an air conditioner.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided is a linear motor control system capable of improving driving efficiency and vibration noise characteristics. The linear motor control system is provided with: a device provided with a mover 3 and an armature 2 and relatively reciprocating the mover 3 and the armature 2 in the axial direction, said mover 3 having one end connected to an elastic body 14 and having a permanent magnet 3a, said armature 2 having a winding 6 wound around a magnetic pole 4; and a control device 5 for controlling alternating voltage applied to the winding 6 on the basis of alternating current flowing through the winding 6 and detected by a current detection unit. The control device 5 has a fundamental wave extraction unit 58 and a current control unit 59 (harmonic attenuation unit) and controls the alternating voltage applied to the winding 6 on the basis of the fundamental wave component of the alternating current and harmonic attenuation voltage, said fundamental wave extraction unit 58 separating the alternating current flowing through the winding 6 and detected by the current detection unit into the fundamental wave component and a harmonic component, said current control unit 59 outputting the harmonic attenuation voltage capable of attenuating the harmonic component.

Description

リニアモータ制御システムLinear motor control system
 本発明は、リニアモータとリニアモータを搭載した圧縮機及び機器を制御する制御装置を有するリニアモータ制御システムに関する。 The present invention relates to a linear motor control system having a linear motor, a compressor equipped with the linear motor, and a control device for controlling the equipment.
 弾性体の共振周波数を利用してモータの往復動を実現する技術として、特許文献1に記載される技術が知られている。 
 特許文献1には、可動子をばね支持したリニア振動モータについて、リニア振動モータの動作状態に基づいて駆動電流の基準となる第1の交流電流(比較電流)の交流電流波形を作成する電流波形生成部、リニア振動モータに供給される駆動電流を検出する電流検出部、及び第1の交流電流(比較電流)と電流検出部の出力である第2の交流電流波形(瞬時値)との差分が小さくなるよう制御する制御部を備えるモータ駆動制御装置が開示されている。制御部は、駆動電流がリニア振動モータの共振駆動周波数となるよう調整する旨記載されている。
As a technique for realizing a reciprocating motion of a motor using a resonance frequency of an elastic body, a technique described in Patent Document 1 is known.
Patent Document 1 discloses a current waveform that creates an alternating current waveform of a first alternating current (comparison current) that serves as a reference for a drive current based on the operating state of a linear vibration motor for a linear vibration motor that supports a mover as a spring. The generator, the current detector for detecting the drive current supplied to the linear vibration motor, and the difference between the first alternating current (comparison current) and the second alternating current waveform (instantaneous value) that is the output of the current detector A motor drive control device including a control unit that controls so as to be small is disclosed. It is described that the control unit adjusts the drive current to be the resonance drive frequency of the linear vibration motor.
特開2004-56994号公報JP 2004-56994 A
 しかしながら、特許文献1に記載される技術においては、駆動電流をリニア振動モータの共振駆動周波数に調整する制御方式を用いている。そのため、指令値として必要最小限の電流値を生成することが高効率駆動の観点で必要であるものの、共振駆動状態での電流値は時間的に変動する負荷や機械的なバラつきに起因する摩擦負荷のバラつきなどによって左右されるため、演算が複雑化する虞がある。また、一方、電圧波形を指令値として生成する制御方式にあっては、演算処理を簡易化できるものの、電圧波形を正弦波状に指令値として生成した場合,負荷の非線形性(負荷の時間的変動)やモータ特性の非線形性より、電流波形に駆動周波数の高調波成分が重畳する。高調波成分が電流波形に重畳すると、モータ損失の増大或はモータ部における電磁騒音の増大を招く虞がある。 
 そこで、本発明は、駆動効率及び振動騒音特性を向上し得るリニアモータ制御システムを提供する。
However, the technique described in Patent Document 1 uses a control method that adjusts the drive current to the resonance drive frequency of the linear vibration motor. Therefore, although it is necessary to generate the minimum necessary current value as the command value from the viewpoint of high-efficiency driving, the current value in the resonance driving state is a friction caused by time-varying loads and mechanical variations. Since it depends on the variation of the load and the like, there is a possibility that the calculation becomes complicated. On the other hand, in the control method for generating the voltage waveform as the command value, the calculation process can be simplified. ) And the non-linearity of the motor characteristics, the harmonic component of the drive frequency is superimposed on the current waveform. When the harmonic component is superimposed on the current waveform, there is a risk of increasing motor loss or increasing electromagnetic noise in the motor unit.
Therefore, the present invention provides a linear motor control system that can improve drive efficiency and vibration noise characteristics.
 上記課題を解決するため、本発明に係るリニアモータ制御システムは、一端が弾性体に接続され永久磁石を有する界磁子と、磁極に捲回される巻線を有する電機子を備え、前記界磁子と電機子を相対的に軸方向に往復運動させる機器と、電流検出部により検出された前記巻線を流れる交番電流に基づき、前記巻線に印加する交番電圧を制御する制御装置と、を備えるリニアモータ制御システムであって、前記制御装置は、前記電流検出部により検出された前記巻線を流れる交番電流を、基本波成分と高調波成分に分離する基本波抽出部と、前記高調波成分を減衰し得る高調波減衰電圧を出力する高調波減衰部と、を有し、交番電流の基本波成分及び高調波減衰電圧に基づき、前記巻線に印加する交番電圧を制御することを特徴とする。 In order to solve the above problems, a linear motor control system according to the present invention includes a field element having one end connected to an elastic body and having a permanent magnet, and an armature having a winding wound around a magnetic pole. A device for reciprocating the magnetic element and the armature in the axial direction, and a control device for controlling the alternating voltage applied to the winding based on the alternating current flowing through the winding detected by the current detection unit; A linear motor control system comprising: a fundamental wave extraction unit that separates an alternating current flowing through the winding detected by the current detection unit into a fundamental wave component and a harmonic component; and the harmonic A harmonic attenuation unit that outputs a harmonic attenuation voltage capable of attenuating the wave component, and controlling the alternating voltage applied to the winding based on the fundamental wave component of the alternating current and the harmonic attenuation voltage. Features.
 本発明によれば、駆動効率及び振動騒音特性を向上し得るリニアモータ制御システムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the linear motor control system which can improve a drive efficiency and a vibration noise characteristic.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施例に係る実施例1の圧縮機の軸方向における縦断面図である。It is a longitudinal cross-sectional view in the axial direction of the compressor of Example 1 which concerns on one Example of this invention. 図1に示す圧縮機の定常運転状態におけるガス圧縮力の履歴図である。FIG. 2 is a history diagram of gas compression force in a steady operation state of the compressor shown in FIG. 1. 図1に示す圧縮機の推力定数の可動子位置依存性を示す特性図である。It is a characteristic view which shows the mover position dependence of the thrust constant of the compressor shown in FIG. 図1に示す圧縮機のディテント力の可動子位置依存性を示す特性図である。It is a characteristic view which shows the mover position dependence of the detent force of the compressor shown in FIG. 圧縮機における電流指令制御における制御ブロック線図である。It is a control block diagram in electric current command control in a compressor. 電流一定条件における交番電流周波数と可動子ストロークの関係を示す図である。It is a figure which shows the relationship between an alternating current frequency in a constant current condition, and a needle | mover stroke. 圧縮機における電圧指令制御における制御ブロック線図である。It is a control block diagram in the voltage command control in a compressor. 電圧一定条件における交番電圧周波数と可動子ストロークの関係を示す図である。It is a figure which shows the relationship between an alternating voltage frequency and a needle | mover stroke in voltage constant conditions. 電圧指令制御時における電圧波形と電流波形の一例を示す図である。It is a figure which shows an example of the voltage waveform at the time of voltage command control, and a current waveform. 図1に示す制御装置のブロック線図である。It is a block diagram of the control apparatus shown in FIG. 図10に示す制御装置のブロック線図の変形例を示す図である。It is a figure which shows the modification of the block diagram of the control apparatus shown in FIG. 本発明の他の実施例に係る実施例2の制御装置のブロック線図である。It is a block diagram of the control apparatus of Example 2 which concerns on the other Example of this invention. 図12に示す制御装置のブロック線図の変形例を示す図である。It is a figure which shows the modification of the block diagram of the control apparatus shown in FIG. 本発明の他の実施例に係る実施例3の制御装置のブロック線図である。It is a block diagram of the control apparatus of Example 3 which concerns on the other Example of this invention. 本発明の他の実施例に係る実施例4の制御装置のブロック線図である。It is a block diagram of the control apparatus of Example 4 which concerns on the other Example of this invention.
 本明細書では、リニアモータ制御システムを構成する機器として圧縮機を一例に挙げ説明するが、圧縮機に限定されないことは言うまでもない。 
 以下、本発明の実施例について図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、重複する説明を省略する。 
 本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。
In the present specification, a compressor will be described as an example of equipment constituting the linear motor control system, but it is needless to say that the apparatus is not limited to the compressor.
Embodiments of the present invention will be described below with reference to the drawings. Similar components are denoted by the same reference numerals, and redundant description is omitted.
The various components of the present invention do not necessarily have to be independent of each other. One component is composed of a plurality of members, a plurality of components are composed of one member, and one component is separated from another. And a part of a certain component and a part of another component are allowed to overlap.
 図1は、本発明の一実施例に係る実施例1の圧縮機1の軸方向における縦断面図である。圧縮機1は、電機子2、及び、例えば平板形状の永久磁石3aを有する可動子3を備える。なお、以下では、可動子3を界磁子と称する場合もある。 
 電機子2は、磁極4、磁極4それぞれに捲回される巻線6、及びブリッジ7を有する。
磁極4は、例えば、積層した電磁鋼板からなり、供給部の一例である巻線6に交番電流を通電することにより、可動子3の永久磁石3aを往復運動させる電磁力を発生させることができるよう構成されている。図1に示す圧縮機1は、その一例として、可動子3の軸方向(鉛直方向)に対し、その両側に空隙を介して可動子3を挟むよう対向配置される対をなす磁極4を二組有し、これら二組の対をなす磁極4は軸方向(鉛直方向)に沿ってブリッジ7により規定される間隔にて離間している。二組の対をなす磁極4に捲回される巻線6へ交番電流を制御装置5により通電することにより、永久磁石3aが各対をなす磁極4に交互に引き付けられることで、可動子3が往復運動する。なお、以下では、可動子3が鉛直方向に往復運動する場合を一例として説明するが、往復運動の方向は鉛直方向に限られるものではない。例えば、可動子3が水平方向に往復運動するよう構成しても良く、また、鉛直方向に対し任意の角度を有する方向に可動子3が往復運動する構成としても良い。これら、可動子3が往復運動する方向の総称として軸方向と称する。
FIG. 1 is a longitudinal sectional view in the axial direction of a compressor 1 according to a first embodiment of the present invention. The compressor 1 includes an armature 2 and a mover 3 having, for example, a plate-shaped permanent magnet 3a. Hereinafter, the mover 3 may be referred to as a field element.
The armature 2 includes a magnetic pole 4, a winding 6 wound around each of the magnetic poles 4, and a bridge 7.
The magnetic pole 4 is made of, for example, laminated electromagnetic steel plates, and can generate an electromagnetic force for reciprocating the permanent magnet 3a of the mover 3 by energizing an alternating current to the winding 6 which is an example of a supply unit. It is configured as follows. As an example, the compressor 1 shown in FIG. 1 has two pairs of magnetic poles 4 that are opposed to each other so as to sandwich the mover 3 with a gap on both sides of the mover 3 in the axial direction (vertical direction). The magnetic poles 4 having a pair and forming a pair of these two pairs are spaced apart at an interval defined by the bridge 7 along the axial direction (vertical direction). By applying an alternating current to the winding 6 wound around the two pairs of magnetic poles 4 by the control device 5, the permanent magnet 3 a is alternately attracted to each pair of the magnetic poles 4. Reciprocates. In the following, the case where the movable element 3 reciprocates in the vertical direction will be described as an example, but the direction of the reciprocating movement is not limited to the vertical direction. For example, the movable element 3 may be configured to reciprocate in the horizontal direction, or the movable element 3 may be configured to reciprocate in a direction having an arbitrary angle with respect to the vertical direction. A general term for the direction in which the mover 3 reciprocates is referred to as an axial direction.
 ブリッジ7は、例えば磁性体にて形成され、ブリッジ7は磁路となることから、軸方向に離間し配される2組の磁極4に捲回されるコイル6を直列に配線にて接続する構成とすることができる。また、ブリッジ7を非磁性体にて形成した場合、ブリッジ7は軸方向に離間し配される2組の磁極4を相互に磁気的に分離する構成となることから、これら2組の磁極4に捲回されるコイル6を並列に配線にて接続する構成とすることができる。すなわち、2組の磁極4に捲回されるコイル6を直列に通電可能に配線しても良く、または並列に配線しても良く、配線に関しては特に限定されるものではないが、図1では、一例として、ブリッジ7を非磁性体にて形成し、2組の磁極4に捲回されるコイル6を並列に配線にて接続する構成を示している。 The bridge 7 is formed of, for example, a magnetic material, and the bridge 7 serves as a magnetic path. Therefore, the coils 6 wound around the two sets of magnetic poles 4 spaced apart in the axial direction are connected in series by wiring. It can be configured. Further, when the bridge 7 is formed of a nonmagnetic material, the bridge 7 is configured to magnetically separate two sets of magnetic poles 4 spaced apart in the axial direction from each other. The coil 6 wound around can be connected in parallel by wiring. That is, the coils 6 wound around the two sets of magnetic poles 4 may be wired so that they can be energized in series, or may be wired in parallel. The wiring is not particularly limited, but in FIG. As an example, a configuration is shown in which a bridge 7 is formed of a non-magnetic material, and coils 6 wound around two sets of magnetic poles 4 are connected in parallel by wiring.
 可動子3は、平板形状の永久磁石3aを有し、一端がピストン12に固定され、他端が共振バネ14に接続されている。永久磁石3aの形状や個数は、適用する装置に応じて適宜設計でき、平板形状に限定されるものではない。例えば、可動子3を円筒形状或は円柱形状とし、永久磁石3aを可動子3の外周面に複数枚配置する構成としても良い。 
 電機子2及び可動子3の相対往復運動の方向において、可動子3の一端側にはピストン12が接続されている。このため、可動子3の往復運動に伴って、シリンダブロック11のシリンダ11a内において、ピストン12がシリンダブロック11の内面と摺動しつつ往復動可能である。シリンダ11a内のピストン12、シリンダブロック11の内面及びシリンダヘッド13で囲まれた領域は、流体が圧縮及び膨張される圧縮室となる。
The mover 3 has a plate-shaped permanent magnet 3 a, one end is fixed to the piston 12, and the other end is connected to the resonance spring 14. The shape and number of the permanent magnets 3a can be appropriately designed according to the device to be applied, and are not limited to a flat plate shape. For example, the movable element 3 may have a cylindrical shape or a columnar shape, and a plurality of permanent magnets 3 a may be arranged on the outer peripheral surface of the movable element 3.
A piston 12 is connected to one end of the armature 3 in the direction of relative reciprocation between the armature 2 and the armature 3. For this reason, the piston 12 can reciprocate while sliding with the inner surface of the cylinder block 11 in the cylinder 11 a of the cylinder block 11 in accordance with the reciprocating motion of the mover 3. A region surrounded by the piston 12, the inner surface of the cylinder block 11, and the cylinder head 13 in the cylinder 11a becomes a compression chamber in which fluid is compressed and expanded.
 シリンダブロック11の端面には、ピストン12の端面に対向するシリンダヘッド13が接続しており、ピストン12の往復運動に伴って、シリンダ11a内のガスは圧縮、吐出を繰り返す。そのための構成としてシリンダヘッド13には、シリンダ11a内へ流入するガスが通過する吸入穴(図示せず)と、シリンダ11a外へ流出するガスが通過する吐出穴(図示せず)が設けられており、これら吸入穴及び吐出穴には逆止弁が設けられている。 The cylinder head 13 facing the end surface of the piston 12 is connected to the end surface of the cylinder block 11, and the gas in the cylinder 11a is repeatedly compressed and discharged as the piston 12 reciprocates. As a configuration for this purpose, the cylinder head 13 is provided with a suction hole (not shown) through which the gas flowing into the cylinder 11a passes and a discharge hole (not shown) through which the gas flowing out of the cylinder 11a passes. These suction holes and discharge holes are provided with check valves.
 電機子2及び可動子3の相対往復運動の方向において、可動子3の他端側には共振ばね14が接続されており、可動子3の往復運動に伴って共振ばね14による復元力が可動子3に作用するよう構成されている。可動子3が鉛直方向(軸方向)に往復運動する場合、可動子3を含む往復運動する物体の質量及び共振ばね14のばね定数などで定まる共振周波数に一致した往復運動であれば、圧縮機1としてのエネルギー効率を高く維持することができる。 A resonance spring 14 is connected to the other end of the mover 3 in the direction of relative reciprocation of the armature 2 and the mover 3, and the restoring force of the resonance spring 14 is movable along with the reciprocation of the mover 3. It is configured to act on the child 3. When the mover 3 reciprocates in the vertical direction (axial direction), if the reciprocation matches the resonance frequency determined by the mass of the reciprocating object including the mover 3 and the spring constant of the resonance spring 14, the compressor The energy efficiency as 1 can be maintained high.
 本実施例では、電機子2が鉛直方向(軸方向)において静止し、可動子3が鉛直方向(軸方向)に沿って往復運動する構成を示すが、これに限られるものでは無い。例えば、電機子2が鉛直方向(軸方向)に沿って往復運動し、可動子3が鉛直方向(軸方向)において静止する構成としても良く、また、電機子2及び可動子3が互いに異なる速度で鉛直方向(軸方向)に沿って往復運動する構成としても良い。何れの場合においても、鉛直方向(軸方向)に沿って移動する物体に共振ばね14の一端を接続することが好ましい。 
 或いは、界磁子としての可動子3が静止し、電機子2がシリンダブロック11と共に可動子3の軸方向に平行に往復運動する構成としても良い。この場合、例えば、界磁子としての可動子3のうち、共振ばね14と接続される側に支持部材の一端を接続固定し、支持部材の他端を接地(地面或いは床に固定)又は設置台上に固定する。これにより、可動子(界磁子)3は固定子として機能し、電機子2及びシリンダブロック11が、可動子(界磁子)3の軸方向に平行な方向に往復運動する。
In the present embodiment, the armature 2 is stationary in the vertical direction (axial direction) and the mover 3 is reciprocated along the vertical direction (axial direction), but is not limited thereto. For example, the armature 2 may reciprocate along the vertical direction (axial direction), and the movable element 3 may be stationary in the vertical direction (axial direction), and the armature 2 and the movable element 3 may have different speeds. It is good also as a structure which reciprocates along a perpendicular direction (axial direction). In any case, it is preferable to connect one end of the resonance spring 14 to an object that moves along the vertical direction (axial direction).
Alternatively, the movable element 3 as a field element may be stationary, and the armature 2 may reciprocate in parallel with the cylinder block 11 in the axial direction of the movable element 3. In this case, for example, one end of the support member is connected and fixed to the side connected to the resonance spring 14 of the mover 3 as a field element, and the other end of the support member is grounded (fixed to the ground or floor) or installed. Secure on the table. Thereby, the mover (field element) 3 functions as a stator, and the armature 2 and the cylinder block 11 reciprocate in a direction parallel to the axial direction of the mover (field element) 3.
 (共振周波数) 
 以下では、圧縮機1の動作状態が、無負荷の定常運転状態の場合、及び有負荷の定常運転状態の場合のそれぞれについて、共振ばね14の一端に接続される物体である可動子3の共振周波数がどのように決定されるかを説明する。
(Resonance frequency)
In the following description, the resonance of the mover 3 that is an object connected to one end of the resonance spring 14 in each of the case where the operation state of the compressor 1 is a no-load steady operation state and a loaded steady operation state. It will be described how the frequency is determined.
 [無負荷負の運転状態の場合] 
 次に圧縮機1の駆動方法について説明する。可動子3に作用する主な力として、巻線6に交番電流を通電することで発生する電磁加振力Felec、共振ばね14による復元力Fspring、シリンダ11a内外のガスの差圧によるガス圧縮力Fgasが挙げられる。 
 ガス圧縮力Fgasを無視する場合、すなわち、圧縮機1として負荷の無い運転条件(無負荷条件)においては、可動子3の質量M及び共振ばね14のばね定数Ksにより定まる共振周波数が電磁加振力Felecの周波数と一致したときに共振状態となる。このとき、他の駆動周波数と比較して小さい電磁加振力Felec、すなわち、実効値の小さな交番電流にて可動子3を往復運動させることが可能となる。ここで,電磁加振力Felecの周波数は可動子3に供給する交流磁界の周波数に等しく、電磁加振力Felecの周波数は、巻線6に印加する交番電流の周波数によって操作することができる。
[In the case of no-load negative operation]
Next, a method for driving the compressor 1 will be described. As main forces acting on the mover 3, an electromagnetic excitation force Felec generated by applying an alternating current to the winding 6, a restoring force Fspring by the resonance spring 14, and a gas compression force due to a differential pressure between the gas inside and outside the cylinder 11 a Fgas is mentioned.
When the gas compression force Fgas is ignored, that is, when the compressor 1 has no load (unloaded condition), the resonance frequency determined by the mass M of the mover 3 and the spring constant Ks of the resonance spring 14 is electromagnetically excited. Resonance occurs when the frequency matches the frequency of the force Felec. At this time, it becomes possible to reciprocate the movable element 3 with an electromagnetic excitation force Felec, which is smaller than other drive frequencies, that is, with an alternating current having a small effective value. Here, the frequency of the electromagnetic excitation force Felec is equal to the frequency of the AC magnetic field supplied to the mover 3, and the frequency of the electromagnetic excitation force Felec can be manipulated by the frequency of the alternating current applied to the winding 6.
 無負荷時の共振周波数ωnは、減衰係数が無視できるほど小さい場合、次式(1)で与えられる。  The resonance frequency ωn at no load is given by the following equation (1) when the attenuation coefficient is negligibly small. *
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、定常運転状態とは、可動子3の振動振幅及び振動周波数が所定時間以上略一定に、例えば、5秒間以上略一定に保たれた状態をいうことができる。また、ばね定数Ksは、ばね以外の弾性体を用いる場合においては、この弾性体が単位長さ変形した場合の復元力の大きさと置き換えることができる。 The steady operation state can mean a state in which the vibration amplitude and vibration frequency of the mover 3 are kept substantially constant for a predetermined time or longer, for example, for 5 seconds or longer. Further, in the case where an elastic body other than a spring is used, the spring constant Ks can be replaced with the magnitude of the restoring force when the elastic body is deformed by a unit length.
 [有負荷且つ定常運転状態の場合] 
 ガス圧縮力Fgasを考える場合、ガス圧縮力Fgasに含まれるガスばね成分Frによって、共振周波数は無負荷条件の場合の値から乖離する。ガスばね成分Frとは、ガス圧縮力Fgasのうち、可動子3の振動振幅に比例する復元力の成分を指す。ガスばね成分Frはピストン12のストローク方向の移動量をXとすると、次式(2)で与えられる。
[In the case of load and steady operation]
When considering the gas compression force Fgas, the resonance frequency deviates from the value in the no-load condition due to the gas spring component Fr included in the gas compression force Fgas. The gas spring component Fr refers to a restoring force component proportional to the vibration amplitude of the mover 3 in the gas compression force Fgas. The gas spring component Fr is given by the following equation (2), where X is the amount of movement of the piston 12 in the stroke direction.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 右辺Xの係数はガスばね定数Kgasであり、ガスの吐出圧力や吸入圧力、シリンダ径やガスの物性によって変化する。式(2)は、ガス圧縮力Fgasに関して、ピストン12のストローク移動量Xに関する一次の項を抜粋したものと捉えることができる。ここでガス圧縮力Fgasについて詳細に説明する。 The coefficient of the right side X is the gas spring constant Kgas, which varies depending on the gas discharge pressure, suction pressure, cylinder diameter, and gas physical properties. Equation (2) can be regarded as an extraction of the first-order term relating to the stroke movement amount X of the piston 12 with respect to the gas compression force Fgas. Here, the gas compression force Fgas will be described in detail.
 ガス圧縮力Fgasは、シリンダ11a内外の差圧とシリンダ11aの横断面の面積(鉛直方向に対し垂直な面における断面積)との積により定まる。ここでは、シリンダ11a外が吸入圧力であるとする。図2は、図1に示す圧縮機1の定常運転状態におけるガス圧縮力Fgasの履歴図である。すなわち、シリンダ11a内においてガスの吸入と吐出を繰り返す定常運転状態でのガス圧縮力Fgasの履歴である。図2において、横軸は可動子3の位置xであり、上死点方向を正の向きとしている。なお、ここで上死点とは、圧縮時におけるシリンダ11a内におけるピストン12の最下方位置、すなわち、ピストン12が最もシリンダヘッド13に近い位置である。可動子位置xにおける「0」の位置は、可動子3を構成する永久磁石3aが軸方向に相互に離間し配される2組の磁極4の間(中間部)に位置する状態を示す。縦軸はガス圧縮力Fgasである。このガス圧縮力Fgasの履歴は「吸入工程」「圧縮工程」「吐出工程」「膨張工程」の4つの工程に分類することができる。 The gas compression force Fgas is determined by the product of the differential pressure inside and outside the cylinder 11a and the cross-sectional area of the cylinder 11a (cross-sectional area in a plane perpendicular to the vertical direction). Here, it is assumed that the outside of the cylinder 11a is the suction pressure. FIG. 2 is a history diagram of the gas compression force Fgas in the steady operation state of the compressor 1 shown in FIG. That is, it is a history of the gas compression force Fgas in a steady operation state in which the suction and discharge of gas are repeated in the cylinder 11a. In FIG. 2, the horizontal axis is the position x of the mover 3, and the top dead center direction is a positive direction. Here, the top dead center is the lowest position of the piston 12 in the cylinder 11 a during compression, that is, the position where the piston 12 is closest to the cylinder head 13. The position of “0” in the mover position x indicates a state in which the permanent magnet 3a constituting the mover 3 is located between the two sets of magnetic poles 4 that are spaced apart from each other in the axial direction (intermediate portion). The vertical axis represents the gas compression force Fgas. The history of the gas compression force Fgas can be classified into four processes of “suction process”, “compression process”, “discharge process”, and “expansion process”.
 「吸入工程」は、シリンダ11a内にガスが吸入される工程であり、圧縮機1としての負荷は小さい。「圧縮工程」は、シリンダ11a内のガスを吐出圧力にまで圧縮する工程であり、負荷が増大する区間となる。「吐出工程」は、圧縮されたシリンダ11a内のガスを吐出する工程である。「膨張工程」は、上死点にあるピストン12が下死点に向けて移動する工程であり、負荷が減少する区間となる。 The “suction process” is a process in which gas is sucked into the cylinder 11a, and the load on the compressor 1 is small. The “compression process” is a process of compressing the gas in the cylinder 11a to the discharge pressure, and is a section where the load increases. The “discharge process” is a process of discharging the gas in the compressed cylinder 11a. The “expansion process” is a process in which the piston 12 at the top dead center moves toward the bottom dead center, and is a section in which the load decreases.
 ここで、ガスばね定数Kgasについて考える。ガスばね定数Kgasは、以下の式(3)に示す通り、ガス圧縮力Fgasをピストン12のストローク方向の移動量X(可動子3の位置xの変化量)で微分した値である。  Here, the gas spring constant Kgas is considered. The gas spring constant Kgas is a value obtained by differentiating the gas compression force Fgas by the movement amount X of the piston 12 in the stroke direction (change amount of the position x of the mover 3) as shown in the following equation (3). *
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そのため、「吸入工程」及び「吐出工程」では値は小さなものとなり、工程中に、圧力損失における負荷脈動がなければ略ゼロとなる。一方、「圧縮工程」及び「膨張工程」はそれぞれ、ピストン12の鉛直方向(軸方向)に沿った移動に伴い負荷がそれぞれ増大及び減少する区間であるため、ガスばね定数Kgasが比較的大きな値となる。このようにガスばね定数Kgasはピストン12が一往復する間に変動する周期変数となる。 Therefore, the values in the “suction process” and “discharge process” are small, and are substantially zero if there is no load pulsation due to pressure loss during the process. On the other hand, each of the “compression process” and the “expansion process” is a section in which the load increases and decreases as the piston 12 moves along the vertical direction (axial direction), and thus the gas spring constant Kgas is a relatively large value. It becomes. Thus, the gas spring constant Kgas becomes a periodic variable that varies while the piston 12 reciprocates once.
 このように、ガス圧縮負荷が存在する場合における共振周波数ωLは、減衰力の効果を無視する場合、上述の式(1)に示す無負荷時の共振周波数ωnに、ガスばね定数Kgasの影響を加味する次式(4)で表すことができる。 As described above, the resonance frequency ωL in the presence of the gas compression load has the influence of the gas spring constant Kgas on the resonance frequency ωn at the time of no load shown in the above formula (1) when the effect of the damping force is ignored. This can be expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ガスばね定数Kgasはピストン12の位置に応じて変化する変数のため、共振周波数ωLもピストン12の位置に応じて変化する変数となる。そのため、厳密にピストン12を共振させるには、電磁加振力Felecの周波数をピストン12の位置に応じて変化させる必要がある
 (ガス圧縮力及び電磁加振力のストローク移動量に対する非線形性) 
 次に可動子3に作用する外力であるガス圧縮力Fgas及び電磁加振力Felecのストローク移動量Xに対する非線形特性について説明する。 
 ガス圧縮力Fgasには図2に示したように、上述のガスばね成分Frの他に、ストローク移動量X(可動子3の位置xの変化量)に関して高次の成分も含まれている。これは、ガス圧縮力Fgasがストローク移動量Xに比例しない事実からも明らかである。これは、可動子3に作用する外力(ガス圧縮力Fgas)に、基本波周波数以外の高次の周波数成分が含まれることを意味する。 
 電磁加振力Felecは、巻線6に印加する交番電流に略比例する励磁推力Fiとディテント力Fdの和で求められる。ここで、励磁推力Fiは、巻線6に交番電流が印加されることで発生する磁界と可動子3を構成する永久磁石3aとの相互作用によって発生する力である。また、ディテント力Fdは、巻線6への交番電流の通電(印加)の有無にかかわらず、永久磁石3aが磁極4に吸引されることによって発生する力である。
Since the gas spring constant Kgas is a variable that changes according to the position of the piston 12, the resonance frequency ωL is also a variable that changes according to the position of the piston 12. Therefore, in order to resonate the piston 12 strictly, it is necessary to change the frequency of the electromagnetic excitation force Felec according to the position of the piston 12 (nonlinearity of the gas compression force and the electromagnetic excitation force with respect to the stroke movement amount).
Next, nonlinear characteristics of the gas compression force Fgas and the electromagnetic excitation force Felec that are external forces acting on the mover 3 with respect to the stroke movement amount X will be described.
As shown in FIG. 2, the gas compression force Fgas includes a higher-order component with respect to the stroke movement amount X (change amount of the position x of the mover 3) in addition to the gas spring component Fr described above. This is also clear from the fact that the gas compression force Fgas is not proportional to the stroke movement amount X. This means that the external force (gas compression force Fgas) acting on the mover 3 includes higher-order frequency components other than the fundamental frequency.
The electromagnetic excitation force Felec is obtained as the sum of the excitation thrust Fi and the detent force Fd that are substantially proportional to the alternating current applied to the winding 6. Here, the excitation thrust Fi is a force generated by the interaction between the magnetic field generated by applying an alternating current to the winding 6 and the permanent magnet 3 a constituting the mover 3. The detent force Fd is a force generated by attracting the permanent magnet 3 a to the magnetic pole 4 regardless of whether or not an alternating current is applied (applied) to the winding 6.
 励磁推力Fiは上述のとおり、巻線6に印加する交番電流に略概ね比例するが、この比例定数を推力定数と称する。ここで推力定数について説明する。可動子3のストローク移動量Xが大きい場合、永久磁石3aと電機子2の相互作用によって発生する電磁力が弱まるため、可動子3のストローク移動量Xが大きい領域では推力定数が小さくなる。図3は図1に示す圧縮機1の推力定数の可動子位置依存性を示す特性図であり、可動子3のストローク移動量Xと推力定数の関係を概略的に示したものである。図3において、横軸は可動子3の位置xであり、縦軸は推力定数である。可動子位置xにおける「0」の位置は、可動子3を構成する永久磁石3aが軸方向に相互に離間し配される2組の磁極4の間(中間部)に位置する状態を示す。一定の励磁推力Fiを発生させることを想定した場合、図3に示すように、可動子3が電機子2の端部に接近するほど推力定数は小さくなるため、可動子3のストローク移動量Xが大きい場合、巻線6に印加する交番電流の電流値を大きくする必要がある。そのため、正弦波形状の電磁加振力Felecを発生させるためには、電流波形を正弦波形状から歪んだ形状にする必要がある。これは、電流波形に高次成分を含ませることになることを意味している。 As described above, the excitation thrust Fi is substantially proportional to the alternating current applied to the winding 6, and this proportionality constant is referred to as a thrust constant. Here, the thrust constant will be described. When the stroke movement amount X of the mover 3 is large, the electromagnetic force generated by the interaction between the permanent magnet 3a and the armature 2 is weakened. Therefore, the thrust constant becomes small in the region where the stroke movement amount X of the mover 3 is large. FIG. 3 is a characteristic diagram showing the dependency of the thrust constant of the compressor 1 shown in FIG. 1 on the position of the mover, and schematically shows the relationship between the stroke movement amount X of the mover 3 and the thrust constant. In FIG. 3, the horizontal axis is the position x of the mover 3, and the vertical axis is the thrust constant. The position of “0” in the mover position x indicates a state in which the permanent magnet 3a constituting the mover 3 is located between the two sets of magnetic poles 4 that are spaced apart from each other in the axial direction (intermediate portion). Assuming that a constant excitation thrust Fi is generated, the thrust constant decreases as the mover 3 approaches the end of the armature 2 as shown in FIG. Is large, it is necessary to increase the current value of the alternating current applied to the winding 6. Therefore, in order to generate the electromagnetic excitation force Felec having a sine wave shape, the current waveform needs to be distorted from the sine wave shape. This means that higher-order components are included in the current waveform.
 次にディテント力Fdについて説明する。図4は、図1に示す圧縮機1のディテント力の可動子位置依存性を示す特性図である。図4の横軸は可動子3の位置xであり、可動子3を構成する永久磁石3aが軸方向に相互に離間し配される2組の磁極の間(中間部)に位置する状態を基準位置「0」とし、可動子3の軸方向に沿って一の方向(例えば、図1において可動子3が下方へ向かう方向)を正、他の方向(反対側の方向:図1において可動子3が上方へ向かう方向)を負とした場合を示している。また、図4の縦軸はディテント力Fdであり、可動子3を構成する永久磁石3aが軸方向に相互に離間し配される2組の磁極の間(中間部)に位置する状態を基準位置「0」とし、可動子の軸方向に沿って一の方向(例えば、図1において可動子3が下方へ向かう方向)を正、他の方向(反対側の方向:図1において可動子3が上方へ向かう方向)を負とした場合を示している。 Next, the detent force Fd will be described. FIG. 4 is a characteristic diagram showing the mover position dependence of the detent force of the compressor 1 shown in FIG. The horizontal axis of FIG. 4 is the position x of the mover 3, and the state in which the permanent magnet 3a constituting the mover 3 is positioned between two sets of magnetic poles (intermediate part) spaced apart from each other in the axial direction. With reference position “0”, one direction along the axial direction of the mover 3 (for example, the direction in which the mover 3 goes downward in FIG. 1) is positive, and the other direction (the opposite direction: movable in FIG. 1). The case where the child 3 is directed negative is shown. In addition, the vertical axis in FIG. 4 is the detent force Fd, and the permanent magnet 3a constituting the mover 3 is based on a state in which the permanent magnet 3a is positioned between two sets of magnetic poles (intermediate part) spaced apart from each other in the axial direction. The position is “0”, and one direction along the axial direction of the mover (for example, the direction in which the mover 3 faces downward in FIG. 1) is positive, and the other direction (the opposite direction: the mover 3 in FIG. 1). This is a case where the negative direction is the upward direction.
 図4に示すように、横軸(可動子位置x)の正側の領域において、可動子3を構成する永久磁石3aが軸方向に相互に離間し配される2組の磁極の間(中間部)に位置する状態では、永久磁石3aは上側の磁極4及び下側の磁極4の何れからも最も離れた位置にあることからディテント力Fdは「0」となる。その後、可動子3が軸方向に沿って下方に移動すると永久磁石3aの下端側が、下側の磁極4に近づくことで正のディテント力Fdが発生する。更に、可動子3が軸方向に沿って下方に移動し永久磁石3aの略中央部が、下側の磁極4の位置に到達すると正のディテント力Fdはピークとなり、その後、更に可動子3が軸方向に沿って下方に移動し永久磁石3aが下側の磁極4の位置から外れるとディカント力Fdは負に転じる。従って、ディテント力Fdの可動子位置xに対するプロファイルは、図4に示すように非線形となる。すなわち、ディテント力Fdは永久磁石3aが磁極4に接近するほど大きくなるが、ある接近距離をピークに減少し始める。そのため、可動子3のストローク移動量X(可動子3の位置xの変位量)とディテント力Fdの関係は図4のようになる。図4より、ディテント力Fdは、ストローク移動量X(可動子3の位置xの変位量)に関して非線形関数であり、ピストン12が正弦波状に往復運動した場合、ディテント力Fdに高次の周波数成分が含まれることが推測される。 As shown in FIG. 4, in the region on the positive side of the horizontal axis (mover position x), the permanent magnet 3a constituting the mover 3 is positioned between two sets of magnetic poles that are spaced apart from each other in the axial direction (intermediate). In this state, the detent force Fd is “0” because the permanent magnet 3a is located farthest from both the upper magnetic pole 4 and the lower magnetic pole 4. Thereafter, when the mover 3 moves downward along the axial direction, the lower end side of the permanent magnet 3a approaches the lower magnetic pole 4 to generate a positive detent force Fd. Further, when the mover 3 moves downward along the axial direction and the substantially central portion of the permanent magnet 3a reaches the position of the lower magnetic pole 4, the positive detent force Fd peaks, and then the mover 3 further moves. When the magnet moves downward along the axial direction and the permanent magnet 3a moves away from the position of the lower magnetic pole 4, the decant force Fd turns negative. Therefore, the profile of the detent force Fd with respect to the mover position x is nonlinear as shown in FIG. That is, the detent force Fd increases as the permanent magnet 3a approaches the magnetic pole 4, but begins to decrease at a certain approach distance. Therefore, the relationship between the stroke movement amount X of the mover 3 (the displacement amount of the position x of the mover 3) and the detent force Fd is as shown in FIG. From FIG. 4, the detent force Fd is a non-linear function with respect to the stroke movement amount X (the displacement amount of the position x of the mover 3), and when the piston 12 reciprocates in a sinusoidal manner, the detent force Fd has a higher-order frequency component. Is assumed to be included.
 以上に示した可動子3に作用する外力の非線形特性により、圧縮機1の駆動時において、ストローク移動量Xの時間変化波形、巻線6に印加される交番電流の電流波形または交番電圧の電圧波形に、駆動周波数の高次の周波数成分が含まれ得ることが理解できる。 Due to the non-linear characteristics of the external force acting on the mover 3 as described above, when the compressor 1 is driven, the time variation waveform of the stroke movement amount X, the current waveform of the alternating current applied to the winding 6, or the voltage of the alternating voltage It can be seen that the waveform may include higher order frequency components of the drive frequency.
 (圧縮機の駆動制御) 
 圧縮機1の駆動制御について説明する。一般にモータの駆動制御方式として、巻線への印加電流が所定の指令波形となるよう制御する電流指令制御と、巻線への印加電圧が所定の指令波形となる制御する電圧指令制御に大別することができる。本実施例では駆動制御方式として電圧指令制御を一例として用いるが、先ずは以下にそれぞれの制御方式について説明する。
(Compressor drive control)
The drive control of the compressor 1 will be described. Generally, motor drive control methods are roughly divided into current command control for controlling the applied current to the winding to have a predetermined command waveform and voltage command control for controlling the applied voltage to the winding to have a predetermined command waveform. can do. In this embodiment, voltage command control is used as an example of the drive control method. First, each control method will be described below.
 [電流指令制御] 
 電流指令制御では、巻線6に印加する交番電流の電流値の制御を行う。上述のように、励磁推力Fiは巻線6に印加する交番電流に略比例するため、電流指令制御はモータ推力を間接的に制御しているといえる。図5に、圧縮機における電流指令制御における制御ブロック線図を示す。圧縮機1においては、上述のように可動子3を共振周波数ωLで駆動したときに、高効率な駆動が実現される。そのため、巻線6に印加する交番電流の周波数ωIが共振周波数ωLとなるように周波数制御を行う必要がある。
[Current command control]
In the current command control, the current value of the alternating current applied to the winding 6 is controlled. As described above, since the excitation thrust Fi is substantially proportional to the alternating current applied to the winding 6, it can be said that the current command control indirectly controls the motor thrust. FIG. 5 shows a control block diagram in the current command control in the compressor. In the compressor 1, high-efficiency driving is realized when the mover 3 is driven at the resonance frequency ωL as described above. Therefore, it is necessary to perform frequency control so that the frequency ωI of the alternating current applied to the winding 6 becomes the resonance frequency ωL.
 図6は、電流一定条件における交番電流周波数ωIと可動子ストロークの関係を示す図であり、電流一定条件の下で、巻線6に印加する交番電流の周波数ωIを変化させたときの可動子3のストローク変化を示している。ここで電流一定条件とは、巻線6に印加する交番電流の実効値が時間依存せずに一定値であることを指す。図6の横軸は交番電流の周波数ωIであり、縦軸は可動子3のストローク量である。一定電流条件下では、可動子3に作用する外力である電磁加振力Felecは、推力定数が可動子3のストロークに対して一定である場合、一定値となる。実際は図3に示すように、推力定数は可動子3のストロークに対して多少変化するものの、ここでは、推力定数が一定と仮定する。 
 交番電流の周波数ωIが共振周波数ωLとなるときを考えると、電磁加振力Felecによる共振が発生するため、可動子3のストローク量が急激に増大する。圧縮機1のような往復動圧縮機においては、可動子3のストローク量は圧縮媒体の吐出流量に関連するパラメータであるため、その制御が重要である。また、可動子3のストローク量が過剰に大きくなると、ピストン12がシリンダヘッド13に衝突する虞が生じる。そのため、可動子3のストローク量を、圧縮機1に接続するシステムまたは機器にて要求される圧縮媒体の吐出流量に応じて制御する必要がある。 
 ここで、圧縮機1における回路方程式を考える。巻線6に印加する交番電圧をV、巻線6に流れる電流をI、巻線6のインダクタンスをL、電気抵抗をR、可動子3の位置をx、推力定数をK、時間をtとすると、以下の式(5)が成立する。 
FIG. 6 is a diagram showing the relationship between the alternating current frequency ωI and the mover stroke under a constant current condition. The mover when the frequency ωI of the alternating current applied to the winding 6 is changed under the constant current condition. The stroke change of 3 is shown. Here, the constant current condition indicates that the effective value of the alternating current applied to the winding 6 is a constant value without being time-dependent. The horizontal axis in FIG. 6 is the frequency ωI of the alternating current, and the vertical axis is the stroke amount of the mover 3. Under a constant current condition, the electromagnetic excitation force Felec, which is an external force acting on the mover 3, has a constant value when the thrust constant is constant with respect to the stroke of the mover 3. Actually, as shown in FIG. 3, although the thrust constant varies somewhat with respect to the stroke of the mover 3, it is assumed here that the thrust constant is constant.
Considering the case where the frequency ωI of the alternating current becomes the resonance frequency ωL, resonance due to the electromagnetic excitation force Felec occurs, so that the stroke amount of the mover 3 increases rapidly. In a reciprocating compressor such as the compressor 1, the stroke amount of the mover 3 is a parameter related to the discharge flow rate of the compression medium, and thus control is important. Further, if the stroke amount of the mover 3 becomes excessively large, the piston 12 may collide with the cylinder head 13. Therefore, it is necessary to control the stroke amount of the mover 3 according to the discharge flow rate of the compression medium required by the system or equipment connected to the compressor 1.
Here, a circuit equation in the compressor 1 is considered. The alternating voltage applied to the winding 6 is V, the current flowing through the winding 6 is I, the inductance of the winding 6 is L, the electrical resistance is R, the position of the mover 3 is x, the thrust constant is K, and the time is t. Then, the following formula (5) is established.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図5に示すように、電流指令制御における制御ブロックは、ストローク制御部51、位置推定部52、周波数制御部53、電流制御部54、電圧変換部55、及びインバータ56から構成されている。 
 電流検出部(図1及び図5において図示せず)にて検出された巻線6を流れる電流値Iは、位置推定部52、周波数制御部53、及び電流制御部54へそれぞれ入力される。
As shown in FIG. 5, the control block in current command control includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a current control unit 54, a voltage conversion unit 55, and an inverter 56.
The current value I flowing through the winding 6 detected by the current detection unit (not shown in FIGS. 1 and 5) is input to the position estimation unit 52, the frequency control unit 53, and the current control unit 54, respectively.
 位置推定部52は、入力された電流値I及び巻線6に印加される交番電圧Vを用いて上記式(5)を演算し、可動子3の推定位置x^をストローク制御部51へ出力する。 
 ストローク制御部51は、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求め、求めたストローク指令x**を電流制御部54へ出力する。ここで、ストローク指令x**は、x**=X**sin(ωI・t+φ)で表される。X**は可動子3の指令ストローク振幅値である。ストローク制御部51が、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求めることにより、上述の圧縮機1に接続するシステムまたは機器にて要求される圧縮媒体の吐出流量(負荷)に応じた制御が実行される。
The position estimation unit 52 calculates the above equation (5) using the input current value I and the alternating voltage V applied to the winding 6, and outputs the estimated position x ^ of the mover 3 to the stroke control unit 51. To do.
The stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The stroke command x ** is output to the current control unit 54. Here, the stroke command x ** is represented by x ** = X ** sin (ωI · t + φ). X ** is a command stroke amplitude value of the mover 3. The stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The control according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1 is executed.
 電流制御部54は、ストローク制御部51より入力されるストローク指令x**(必要ストローク量)に対して、その可動子3のストロークに応じた電流値を電流指令値Iとして生成する。すなわち、電流制御部54は、指令されたストローク量に相当する電流指令値Iを算出し、実際にインバータ56を介して巻線6に印加される電流量がその算出された電流指令値Iに近づくように制御する。電流制御部54は、生成した電流指令値Iを電圧変換部55へ出力する。 
 電圧変換部55は、電流制御部54より電流指令値Iを入力すると、最終的にモータ端子または巻線6に印加されるのは電圧であるため、電流指令値Iを出力電圧指令値vに変換する。電圧変換部55は、変換後の出力電圧指令値vをインバータ56へ出力する。
The current control unit 54 generates a current value corresponding to the stroke of the mover 3 as a current command value I * for the stroke command x ** (required stroke amount) input from the stroke control unit 51. That is, the current control unit 54 calculates a current command value I * corresponding to the commanded stroke amount, and the current amount actually applied to the winding 6 via the inverter 56 is the calculated current command value I. Control to approach * . The current control unit 54 outputs the generated current command value I * to the voltage conversion unit 55.
When the voltage conversion unit 55 inputs the current command value I * from the current control unit 54, the voltage is finally applied to the motor terminal or the winding 6, so the current command value I * is output as the output voltage command value. Convert to v. The voltage conversion unit 55 outputs the converted output voltage command value v to the inverter 56.
 一方、高効率に圧縮機1を駆動するためには、上述のとおり、交番電流の周波数ωIが共振周波数ωLに合わせる必要がある。共振周波数ωLは上述のとおり、圧縮するガスのガスばね成分Frに依存するため、ピストン12のストローク量やシリンダ11aへのガス吸入圧力、ガス吐出圧力などの諸条件によって変化し得る。よって、高効率に圧縮機1を駆動するために、周波数制御部53は、入力された電流値I(交番電流)の周波数ωIをその都度、運転状態に応じた共振周波数ωLに合わせる制御を実行する。すなわち、周波数制御部53は、共振周波数ωLとなるよう入力された電流値I(交番電流)の周波数ωIを調整し、電流制御部54へ出力する。 On the other hand, in order to drive the compressor 1 with high efficiency, the frequency ωI of the alternating current needs to be matched with the resonance frequency ωL as described above. Since the resonance frequency ωL depends on the gas spring component Fr of the gas to be compressed as described above, the resonance frequency ωL can change depending on various conditions such as the stroke amount of the piston 12, the gas suction pressure to the cylinder 11a, and the gas discharge pressure. Therefore, in order to drive the compressor 1 with high efficiency, the frequency control unit 53 executes control to adjust the frequency ωI of the input current value I (alternating current) to the resonance frequency ωL according to the operating state each time. To do. That is, the frequency control unit 53 adjusts the frequency ωI of the current value I (alternating current) input so as to be the resonance frequency ωL, and outputs it to the current control unit 54.
 以上から、圧縮機駆動の際は「ストローク制御」と「周波数制御」を平行して実行する必要があるが、図6に示した通り、交番電流の周波数ωIを僅かに変化させると、可動子3のストローク量が大きく変化してしまうため制御が難しく、制御の収束性が悪いことが懸念される。 From the above, when the compressor is driven, it is necessary to execute “stroke control” and “frequency control” in parallel, but if the frequency ωI of the alternating current is slightly changed as shown in FIG. Since the stroke amount of No. 3 changes greatly, there is a concern that control is difficult and the convergence of the control is poor.
 [電圧指令制御] 
 電圧指令制御では、巻線6に印加する交番電圧の電圧値の制御を行う。図7に圧縮機における電圧指令制御における制御ブロック線図を示す。上述の図5に示した電流指令制御における制御ブロックと異なる点は、電流制御部54及び電圧変換部55に代えて、電圧制御部57を有する点にある。
[Voltage command control]
In the voltage command control, the voltage value of the alternating voltage applied to the winding 6 is controlled. FIG. 7 shows a control block diagram in the voltage command control in the compressor. A difference from the control block in the current command control shown in FIG. 5 described above is that a voltage control unit 57 is provided instead of the current control unit 54 and the voltage conversion unit 55.
 図8は、電圧一定条件における交番電圧周波数ωvと可動子ストロークの関係を示す図であり、電圧一定条件の下で、巻線6に印加する交番電圧の周波数ωvを変化させたときの可動子3のストローク変化を示している。ここで電圧一定条件とは、巻線6に印加する交番電圧の実効値が時間依存せずに一定値であることを指す。図8の横軸は交番電圧の周波数ωvであり、縦軸は可動子3のストローク量を示す。 FIG. 8 is a diagram showing the relationship between the alternating voltage frequency ωv and the mover stroke under a constant voltage condition. The mover when the frequency ωv of the alternating voltage applied to the winding 6 is changed under the constant voltage condition. The stroke change of 3 is shown. Here, the constant voltage condition indicates that the effective value of the alternating voltage applied to the winding 6 is a constant value without depending on time. The horizontal axis in FIG. 8 represents the frequency ωv of the alternating voltage, and the vertical axis represents the stroke amount of the mover 3.
 ここで、圧縮機1における回路方程式を考える。巻線6に印加する交番電圧をV、巻線6に流れる電流をI、巻線6のインダクタンスをL、電気抵抗をR、可動子3の位置をx、推力定数をK、時間をtとすると、上述の式(5)が成立する。 
 一般的に、モータ効率が良いように設計されたモータにおいては、抵抗による電圧降下RIや、インダクタンスによる誘導起電力L(dI/dt)よりも、可動子3の移動によって発生する誘起電圧K(dx/dt)が交番電圧Vの成分の中で支配的となる。そのため、交番電圧Vが一定の条件下では可動子3の速度(dx/dt)が略一定とみなすことができる。これは電圧指令制御が実質的に可動子3の速度制御に近似することを意味する。ここで可動子3の位置xが次式(6)のような正弦波で表すことができるとする。 
Here, a circuit equation in the compressor 1 is considered. The alternating voltage applied to the winding 6 is V, the current flowing through the winding 6 is I, the inductance of the winding 6 is L, the electrical resistance is R, the position of the mover 3 is x, the thrust constant is K, and the time is t. Then, the above equation (5) is established.
In general, in a motor designed to have good motor efficiency, an induced voltage K (generated by the movement of the mover 3 rather than a voltage drop RI due to resistance or an induced electromotive force L (dI / dt) due to inductance. dx / dt) is dominant among the components of the alternating voltage V. Therefore, the speed (dx / dt) of the mover 3 can be regarded as substantially constant under the condition where the alternating voltage V is constant. This means that the voltage command control substantially approximates the speed control of the mover 3. Here, it is assumed that the position x of the mover 3 can be represented by a sine wave as in the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このとき、可動子3の速度(dx/dt)は次式(7)となる。 At this time, the speed (dx / dt) of the mover 3 is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 よって交番電圧の周波数ωvを大きく変化させない限りは、可動子3の速度(dx/dt)の制御は、可動子3の振動振幅(ストローク量)X0の制御に略近似できる。これは交番電圧Vが一定の条件下では可動子3のストローク量が略一定であることを意味する。 Therefore, unless the frequency ωv of the alternating voltage is largely changed, the control of the speed (dx / dt) of the mover 3 can be approximated to the control of the vibration amplitude (stroke amount) X0 of the mover 3. This means that the stroke amount of the mover 3 is substantially constant under the condition where the alternating voltage V is constant.
 以上の回路方程式、式(5)~式(7)より明らかな通り、電圧一定条件において巻線6に印加する交番電圧Vの周波数ωvを変化させたときの可動子3のストローク変化は、図5に示した電流一定条件のときと比較して緩やかとなり、図8に示すようになる。なお、交番電圧Vの周波数ωvに応じて可動子3のストローク量が増加するか減少するかについては、運転条件やモータパラメータに依存するため、この限りではない。 
 以上から、電圧指令制御においては、交番電圧の周波数ωvを変化させても、電流指令制御のときとは異なり、可動子3のストローク量が大きく変化することはない。よって、「ストローク制御」と「周波数制御」を平行して実行することが容易となる。
As is clear from the above circuit equations (5) to (7), the change in stroke of the mover 3 when the frequency ωv of the alternating voltage V applied to the winding 6 is changed under a constant voltage condition is shown in FIG. Compared with the constant current condition shown in FIG. It should be noted that whether the stroke amount of the mover 3 increases or decreases according to the frequency ωv of the alternating voltage V depends on operating conditions and motor parameters, and is not limited to this.
From the above, in the voltage command control, even if the frequency ωv of the alternating voltage is changed, unlike the current command control, the stroke amount of the mover 3 does not change greatly. Therefore, it becomes easy to execute “stroke control” and “frequency control” in parallel.
 図7に示すように、電圧指令制御における制御ブロックは、ストローク制御部51、位置推定部52、周波数制御部53、電圧制御部57、及びインバータ56から構成されている。 
 電流検出部(図1及び図7において図示せず)にて検出された巻線6を流れる電流値Iは、位置推定部52、周波数制御部53、及び電圧制御部57へそれぞれ入力される。
As shown in FIG. 7, the control block in the voltage command control includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a voltage control unit 57, and an inverter 56.
The current value I flowing through the winding 6 detected by the current detection unit (not shown in FIGS. 1 and 7) is input to the position estimation unit 52, the frequency control unit 53, and the voltage control unit 57, respectively.
 位置推定部52は、入力された電流値I及び巻線6に印加される交番電圧Vを用いて上記式(5)を演算し、可動子3の推定位置x^をストローク制御部51へ出力する。 
 ストローク制御部51は、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求め、求めたストローク指令x**を電流制御部54へ出力する。ここで、ストローク指令x**は、x**=X**sin(ωv・t+φ)で表される。X**は可動子3の指令ストローク振幅値である。ストローク制御部51が、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求めることにより、上述の圧縮機1に接続するシステムまたは機器にて要求される圧縮媒体の吐出流量(負荷)に応じた制御が実行される。
The position estimation unit 52 calculates the above equation (5) using the input current value I and the alternating voltage V applied to the winding 6, and outputs the estimated position x ^ of the mover 3 to the stroke control unit 51. To do.
The stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The stroke command x ** is output to the current control unit 54. Here, the stroke command x ** is expressed by x ** = X ** sin (ωv · t + φ). X ** is a command stroke amplitude value of the mover 3. The stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The control according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1 is executed.
 電圧制御部57は、ストローク制御部51より入力されるストローク指令x**(必要ストローク量)に対して、その可動子3のストロークに応じた電圧値を出力電圧指令値vとして生成する。すなわち、電圧制御部57は、指令されたストローク量に相当する出力電圧指令値vを算出し、実際にインバータ56を介して巻線6に印加される電圧がその算出された出力電圧指令値vに近づくように制御する。電圧制御部57は、生成した出力電圧指令値vをインバータ56へ出力する。 
 周波数制御部53は、入力された電流値I(交番電流)を用いて上述の式(5)により、共振周波数ωLとなるよう交番電圧Vの周波数ωvを調整し、電圧制御部57へ出力する。
The voltage control unit 57 generates a voltage value corresponding to the stroke of the mover 3 as an output voltage command value v with respect to the stroke command x ** (required stroke amount) input from the stroke control unit 51. That is, the voltage control unit 57 calculates the output voltage command value v corresponding to the commanded stroke amount, and the voltage actually applied to the winding 6 via the inverter 56 is the calculated output voltage command value v. Control to approach. Voltage control unit 57 outputs generated output voltage command value v to inverter 56.
The frequency control unit 53 uses the input current value I (alternating current) to adjust the frequency ωv of the alternating voltage V so as to be the resonance frequency ωL by the above equation (5), and outputs it to the voltage control unit 57. .
 次に、電圧指令制御時における電流波形について説明する。図9は、電圧指令制御時における電圧波形と電流波形の一例を示す図である。図9の横軸は時間であり、縦軸は電圧値・電流値である。ここでは代表的に、電圧指令波形として正弦波状の指令を出した場合の波形を示している。電圧指令制御の場合、電圧制御によって実際の電圧波形(図9中破線)は指令通り、正弦波状の波形となる。一方、電流波形は上述した可動子3に作用する外力の非線形特性により、電流波形に駆動周波数の高次の周波数成分を含む結果となるため、図9中実線のような波形となる。このように高次の周波数成分の電流は、モータ部の磁極4を構成する積層電磁鋼板にて発生する渦電流損失量を増加させ、モータ効率を悪化させる要因となり得ると共に振動騒音増加の悪化要因となり得る。 Next, the current waveform during voltage command control will be described. FIG. 9 is a diagram illustrating an example of a voltage waveform and a current waveform during voltage command control. The horizontal axis in FIG. 9 is time, and the vertical axis is voltage value / current value. Here, as a typical example, a waveform when a sinusoidal command is output as a voltage command waveform is shown. In the case of voltage command control, the actual voltage waveform (broken line in FIG. 9) becomes a sinusoidal waveform as commanded by voltage control. On the other hand, the current waveform is a waveform as shown by a solid line in FIG. 9 because the current waveform includes a higher-order frequency component of the drive frequency due to the nonlinear characteristic of the external force acting on the mover 3 described above. As described above, the current of the higher-order frequency component increases the amount of eddy current loss generated in the laminated electromagnetic steel sheet constituting the magnetic pole 4 of the motor unit, and can be a factor that deteriorates the motor efficiency. Can be.
 (制御装置5の構成) 
 図10は、図1に示す制御装置のブロック線図である。図10に示すように、制御装置5は、ストローク制御部51、位置推定部52、周波数制御部53、電圧制御部57、基本波抽出部58、電流制御部(高調波減衰部)59、及びインバータ56を備える。 
 電流検出部(図1及び図5において図示せず)にて検出された巻線6を流れる電流値Iは、基本波抽出部58に入力される。基本波抽出部58は、入力された電流値Iを基本波成分(基本波)と高周波成分(高調波)とに分離する。そして、基本波抽出部58は、分離した基本波を、位置推定部52、周波数制御部53、及び電圧制御部57へそれぞれ出力する。また、基本波抽出部58は、分離した高調波を電流制御部(高調波減衰部)59へ出力する。ここで基本波とは、圧縮機1の駆動周波数成分である。基本波抽出の方法としては、例えば、フーリエ変換により時間領域の信号を周波数領域の信号に変換した後に、該当する周波数域の信号を抽出する。なお、本実施例では、基本波抽出部58により分離された基本波を位置推定部52へ出力する構成を示すが、必ずしもこれに限られるものではない。例えば、電流検出部にて検出された巻線6を流れる電流値Iを、基本波抽出部58及び位置推定部52へ入力するよう構成しても良い。すなわち、位置推定部52へ電流値Iの基本波成分及びその高次成分を含んだ信号を入力する構成としても良い。
(Configuration of control device 5)
FIG. 10 is a block diagram of the control device shown in FIG. As shown in FIG. 10, the control device 5 includes a stroke control unit 51, a position estimation unit 52, a frequency control unit 53, a voltage control unit 57, a fundamental wave extraction unit 58, a current control unit (harmonic attenuation unit) 59, and An inverter 56 is provided.
A current value I flowing through the winding 6 detected by a current detection unit (not shown in FIGS. 1 and 5) is input to the fundamental wave extraction unit 58. The fundamental wave extraction unit 58 separates the input current value I into a fundamental wave component (fundamental wave) and a high frequency component (harmonic wave). Then, the fundamental wave extraction unit 58 outputs the separated fundamental waves to the position estimation unit 52, the frequency control unit 53, and the voltage control unit 57, respectively. Further, the fundamental wave extraction unit 58 outputs the separated harmonics to the current control unit (harmonic attenuation unit) 59. Here, the fundamental wave is a drive frequency component of the compressor 1. As a fundamental wave extraction method, for example, a time-domain signal is converted into a frequency-domain signal by Fourier transform, and then a corresponding frequency-domain signal is extracted. In addition, although the present Example shows the structure which outputs the fundamental wave isolate | separated by the fundamental wave extraction part 58 to the position estimation part 52, it is not necessarily restricted to this. For example, the current value I flowing through the winding 6 detected by the current detection unit may be input to the fundamental wave extraction unit 58 and the position estimation unit 52. In other words, the position estimation unit 52 may be configured to input a signal including the fundamental wave component of the current value I and its higher order components.
 位置推定部52は、基本波抽出部58より入力される基本波、及び巻線6に印加される交番電圧Vを用いて上記式(5)を演算し、可動子3の推定位置x^をストローク制御部51へ出力する。上述の通り、式(5)は交番電圧の電圧値Vと交番電流の電流値I、可動子3の位置xの関係を示す微分方程式であり、電圧値Vと電流値I(ここでは、基本波抽出部58より入力される基本波)が与えられれば、可動子3の位置x(可動子3の推定位置x^)を求めることができる。電圧値Vは巻線6に印加される交番電圧Vの検出値を用いても良く、また、電圧値Vとして後述する出力電圧指令値vを用いても良い。 The position estimation unit 52 calculates the above equation (5) using the fundamental wave input from the fundamental wave extraction unit 58 and the alternating voltage V applied to the winding 6 to obtain the estimated position x ^ of the mover 3. Output to the stroke controller 51. As described above, the equation (5) is a differential equation showing the relationship between the voltage value V of the alternating voltage, the current value I of the alternating current, and the position x of the mover 3, and the voltage value V and the current value I (here, the basic value) If the fundamental wave input from the wave extraction unit 58 is given, the position x of the mover 3 (the estimated position x ^ of the mover 3) can be obtained. As the voltage value V, a detected value of the alternating voltage V applied to the winding 6 may be used, and an output voltage command value v described later may be used as the voltage value V.
 ストローク制御部51は、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求め、求めたストローク指令x**を電圧制御部57へ出力する。すなわち、ストローク制御部51は、圧縮機1に接続されるシステム又は機器にて要求される圧縮媒体の吐出流量(負荷)に応じて決定されるストローク量に、可動子3のストロークを近付ける制御を実行する。なお、本実施例では、ストローク制御部51が、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として電圧制御部57へ出力する構成を示すが、必ずしもこれに限られるものではない。例えば、ストローク制御部51が、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^に基づき、可動子3のストロークをストローク指令xに近付けるようPI制御によりストローク指令x**を求めても良い。また、PID制御等その他のフィードバック制御を用いて、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^に基づき、可動子3のストロークをストローク指令xに近付けるようストローク指令x**を求める構成としても良い。 The stroke control unit 51 obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The stroke command x ** is output to the voltage control unit 57. That is, the stroke control unit 51 performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute. In this embodiment, the stroke control unit 51 calculates the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52. Although a configuration in which x ** is output to the voltage control unit 57 is shown, the configuration is not necessarily limited thereto. For example, the stroke control unit 51 converts the stroke of the mover 3 into the stroke command x * based on the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52. The stroke command x ** may be obtained by PI control so as to approach. Further, using other feedback control such as PID control, the stroke of the mover 3 is determined based on the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52. A configuration may be employed in which the stroke command x ** is determined so as to be close to the stroke command x * .
 周波数制御部53は、基本波抽出部58より入力される基本波に基づき、生成する電圧波形の周波数ωvを決定する。すなわち、周波数制御部53は、交番電圧の周波数ωvが共振周波数ωLに近づくよう制御を実行し、電圧波形の周波数ωvを電圧制御部57へ出力する。周波数制御部53は、例えば、巻線6に流れる交番電流I(ここでは、基本波抽出部58より入力される基本波)と交番電圧V、可動子3の位置xの位相関係を用いる。共振運転時において無負荷時においては、可動子3に作用する摩擦減衰力、及びモータのインダクタンス成分の影響を無視すれば、交番電流Iと交番電圧Vは同位相となり、可動子3の位置xは電流Iに対して90°位相が遅れる関係にある。このような関係に基づき、負荷時における位相関係を推測し、出力電圧Vの位相を制御することで、駆動周波数の制御を行うことができる。例えば、本実施例では簡易的に、周波数制御部53にて、電流値Iの基本波成分(基本波)の位相と出力電圧Vの位相差をゼロに近付ける構成を想定しているが、可動子3に作用する摩擦減衰力、及びモータのインダクタンス成分の影響を考慮した演算を実行する構成としても良い。また、可動子3の位置推定値x^の位相と出力電圧Vの位相差の関係を用いて出力電圧Vの位相を制御する構成としても良い。なお、電流値Iの基本波成分(基本波)の位相と出力電圧Vの位相差をゼロに近付ける制御などは、例えば、PI制御、PID制御等その他のフィードバック制御を用いれば良い。  このように、出力電圧Vの位相を制御することは、実質的に出力電圧Vの周波数ωvを制御することと同等である。例えば、出力電圧Vの位相を進めるためには、出力電圧Vの周波数ωvに対して正のフィードバックを行う(周波数を大きくする)ことで達成でき、出力電圧Vの位相を遅延させるためには、出力電圧Vの周波数ωvに対して負のフィードバックを行う(周波数を小さくする)ことで達成できる。 The frequency control unit 53 determines the frequency ωv * of the voltage waveform to be generated based on the fundamental wave input from the fundamental wave extraction unit 58. That is, the frequency control unit 53 performs control so that the frequency ωv of the alternating voltage approaches the resonance frequency ωL, and outputs the frequency ωv * of the voltage waveform to the voltage control unit 57. The frequency control unit 53 uses, for example, the phase relationship between the alternating current I flowing through the winding 6 (here, the fundamental wave input from the fundamental wave extracting unit 58), the alternating voltage V, and the position x of the mover 3. If the influence of the frictional damping force acting on the mover 3 and the inductance component of the motor is ignored during no load during resonance operation, the alternating current I and the alternating voltage V have the same phase, and the position x of the mover 3 Is in a relationship that the phase is delayed by 90 ° with respect to the current I. Based on such a relationship, it is possible to control the drive frequency by estimating the phase relationship during loading and controlling the phase of the output voltage V. For example, in the present embodiment, it is assumed that the frequency controller 53 simply assumes a configuration in which the phase difference between the fundamental wave component (fundamental wave) of the current value I and the phase difference between the output voltage V is close to zero. A configuration may be adopted in which the calculation is performed in consideration of the influence of the frictional damping force acting on the child 3 and the inductance component of the motor. Further, the phase of the output voltage V may be controlled using the relationship between the phase of the position estimated value x ^ of the mover 3 and the phase difference between the output voltage V. Note that control for bringing the phase difference between the phase of the fundamental wave component (fundamental wave) of the current value I and the output voltage V close to zero may use other feedback control such as PI control or PID control. As described above, controlling the phase of the output voltage V is substantially equivalent to controlling the frequency ωv of the output voltage V. For example, in order to advance the phase of the output voltage V, it can be achieved by performing positive feedback (increasing the frequency) with respect to the frequency ωv of the output voltage V, and in order to delay the phase of the output voltage V, This can be achieved by performing negative feedback (decreasing the frequency) with respect to the frequency ωv of the output voltage V.
 電圧制御部57は、周波数制御部53より入力される出力電圧Vの指令周波数ωv、及びストローク制御部51より入力されるストローク指令値x**に基づき、出力電圧振幅(指令電圧振幅V)を決定する。具体的には、上述の式(5)に示した圧縮機1における回路方程式を用いる。本実施例では、上述のとおり、可動子3の移動によって発生する誘起電圧K(dx/dt)が交番電圧Vの成分の中で支配的であるとから、指令電圧振幅Vを指令ストローク振幅値X**を用いて次式(8)のように決定する。  The voltage control unit 57 outputs the output voltage amplitude (command voltage amplitude V *) based on the command frequency ωv * of the output voltage V input from the frequency control unit 53 and the stroke command value x ** input from the stroke control unit 51 . ). Specifically, the circuit equation in the compressor 1 shown in the above equation (5) is used. In the present embodiment, as described above, since the induced voltage K (dx / dt) generated by the movement of the mover 3 is dominant among the components of the alternating voltage V, the command voltage amplitude V * is set to the command stroke amplitude. Using value X ** , it determines like following Formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 但し、更なる高精度化を目的に、上述の式(5)を用いて電流値I(基本波抽出部58より入力される基本波)を用いた演算により、指令電圧振幅V(出力電圧振幅)を決定しても良い。 However, for the purpose of further increasing accuracy, the command voltage amplitude V * (output voltage) is calculated by using the current value I (fundamental wave input from the fundamental wave extraction unit 58) using the above equation (5). (Amplitude) may be determined.
 電流制御部(高調波減衰部)59は、基本波抽出部58により分離された高周波成分(高調波)を入力し、当該高周波成分(高調波)をゼロに近付けるための電圧補正量を決定し、高調波減衰電圧として出力する。具体的には、上述の式(5)に示した圧縮機1における回路方程式に基づき、基本波抽出部58により分離された電流値Iの高周波成分から電圧補正量を算出する。 
 電圧制御部57より出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算され、出力電圧指令値vとしてインバータ56に入力され、インバータ56により巻線6に交番電圧が印加される。
The current control unit (harmonic attenuation unit) 59 inputs the high frequency component (harmonic) separated by the fundamental wave extraction unit 58 and determines a voltage correction amount for bringing the high frequency component (harmonic) close to zero. And output as a harmonic attenuation voltage. Specifically, the voltage correction amount is calculated from the high frequency component of the current value I separated by the fundamental wave extraction unit 58 based on the circuit equation in the compressor 1 shown in the above equation (5).
The command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57 and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 are added, and the inverter 56 is used as the output voltage command value v. And an alternating voltage is applied to the winding 6 by the inverter 56.
 本実施例の制御装置5により生成された出力電圧指令値vによると、「ストローク制御」と「周波数制御」を平行して実行することが容易であり、更に、電流制御部(高調波減衰部)59によって電流波形に駆動周波数の高次の周波数成分を減衰させる電圧補正が実行されることから、巻線6に流れる交番電流に駆動周波数の高次の周波数成分が含まれることを抑制することができる。 According to the output voltage command value v generated by the control device 5 of the present embodiment, it is easy to execute “stroke control” and “frequency control” in parallel, and further, a current control unit (harmonic attenuation unit). ) 59, voltage correction for attenuating the higher-order frequency component of the drive frequency in the current waveform is executed, so that the alternating current flowing in the winding 6 is prevented from including the higher-order frequency component of the drive frequency. Can do.
 図11は、図10に示す制御装置のブロック線図の変形例を示す図である。図11に示す制御装置5では、位置推定部52より可動子3の推定位置x^が周波数制御部53へ入力される構成とした点が、図10に示す制御装置と異なる。図11に示す制御装置5を構成する周波数制御部53は、基本波抽出部58により分離された電流値Iの基本波、交番電圧V、及び位置推定部52より入力される可動子3の位置推定値x^のうち、少なくとも2つに基づき、上述の式(5)により、生成する電圧波形の周波数ωvを決定する。 FIG. 11 is a diagram showing a modification of the block diagram of the control device shown in FIG. The control device 5 shown in FIG. 11 is different from the control device shown in FIG. 10 in that the estimated position x ^ of the mover 3 is input from the position estimation unit 52 to the frequency control unit 53. The frequency control unit 53 configuring the control device 5 illustrated in FIG. 11 includes the fundamental wave of the current value I separated by the fundamental wave extraction unit 58, the alternating voltage V, and the position of the mover 3 input from the position estimation unit 52. Based on at least two of the estimated values x ^, the frequency ωv * of the voltage waveform to be generated is determined by the above equation (5).
 以上の通り本実施例によれば、駆動効率及び振動騒音特性を向上し得るリニアモータ制御システムを提供することが可能となる。 As described above, according to this embodiment, it is possible to provide a linear motor control system that can improve drive efficiency and vibration noise characteristics.
 図12は、本発明の他の実施例に係る実施例2の制御装置のブロック線図である。本実施例では、位置推定部52aが、電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vを入力し、可動子3の位置推定値x^を求める構成とした点が、上述の図10に示す実施例1と異なる。図1に示した圧縮機1の構成は実施例1と同様である。以下では、実施例1と同様の構成要素に同一の符号を付し、重複する説明を省略する。 FIG. 12 is a block diagram of the control device according to the second embodiment according to another embodiment of the present invention. In the present embodiment, the position estimation unit 52a has a command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and a harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59. The difference from the first embodiment shown in FIG. 10 described above is that the added output voltage command value v is input to obtain the estimated position value x ^ of the mover 3. The configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment. Below, the same code | symbol is attached | subjected to the component similar to Example 1, and the overlapping description is abbreviate | omitted.
 図12に示すように、本実施例の制御装置5aを構成する位置推定部52aは、基本波抽出部58より入力される基本波、及び電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vを入力し、上述の式(5)を演算することで可動子3の推定位置x^を求め、求めた可動子3の推定位置x^をストローク制御部51aへ出力する。 As shown in FIG. 12, the position estimation unit 52a configuring the control device 5a of the present embodiment includes the fundamental wave input from the fundamental wave extraction unit 58 and the command voltage amplitude V * (output from the voltage control unit 57a. The output voltage command value v obtained by adding the output voltage amplitude) and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 is input, and the above-described equation (5) is calculated to obtain the mover. 3 is obtained, and the obtained estimated position x ^ of the mover 3 is output to the stroke controller 51a.
 ストローク制御部51aは、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求め、求めたストローク指令x**を電圧制御部57aへ出力する。すなわち、ストローク制御部51aは、圧縮機1に接続されるシステム又は機器にて要求される圧縮媒体の吐出流量(負荷)に応じて決定されるストローク量に、可動子3のストロークを近付ける制御を実行する。 The stroke control unit 51a obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The stroke command x ** is output to the voltage controller 57a. That is, the stroke control unit 51a performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute.
 電圧制御部57aは、周波数制御部53より入力される出力電圧Vの指令周波数ωv、及びストローク制御部51aより入力されるストローク指令値x**に基づき、出力電圧振幅(指令電圧振幅V)を決定する。具体的には、上述の式(5)に示した圧縮機1における回路方程式を用いる。本実施例では、上述のとおり、可動子3の移動によって発生する誘起電圧K(dx/dt)が交番電圧Vの成分の中で支配的であるとから、指令電圧振幅Vを指令ストローク振幅値X**を用いて上述の式(8)を演算し、指令電圧振幅V(出力電圧振幅)を決定する。 The voltage control unit 57a, command frequency ωv of the output voltage V inputted from the frequency control unit 53 *, and on the basis of the stroke command value x ** inputted from the stroke control unit 51a, the output voltage amplitude (the command voltage amplitude V * ). Specifically, the circuit equation in the compressor 1 shown in the above equation (5) is used. In the present embodiment, as described above, since the induced voltage K (dx / dt) generated by the movement of the mover 3 is dominant among the components of the alternating voltage V, the command voltage amplitude V * is set to the command stroke amplitude. The above equation (8) is calculated using the value X ** to determine the command voltage amplitude V * (output voltage amplitude).
 このように、本実施例の位置推定部52aは、基本波抽出部58より入力される基本波に加え、電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vに基づき、可動子3の推定位置x^を求める構成であることから、上述の実施例1に比べ、可動子3の位置推定精度が向上する。 Thus, in addition to the fundamental wave input from the fundamental wave extraction unit 58, the position estimation unit 52a of the present embodiment includes the command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and the current control unit. (Harmonic attenuation unit) Since the estimated position x ^ of the mover 3 is obtained based on the output voltage command value v obtained by adding the harmonic attenuation voltage output from the 59, the above-described first embodiment is used. In comparison, the position estimation accuracy of the mover 3 is improved.
 本実施例の制御装置5aにより生成された出力電圧指令値vによると、「ストローク制御」と「周波数制御」を平行して実行することが容易であり、更に、電流制御部(高調波減衰部)59によって電流波形に駆動周波数の高次の周波数成分を減衰させる電圧補正が実行されることから、巻線6に流れる交番電流に駆動周波数の高次の周波数成分が含まれることを抑制することができる。 According to the output voltage command value v generated by the control device 5a of the present embodiment, it is easy to execute “stroke control” and “frequency control” in parallel, and further, a current control unit (harmonic attenuation unit). ) 59, voltage correction for attenuating the higher-order frequency component of the drive frequency in the current waveform is executed, so that the alternating current flowing in the winding 6 is prevented from including the higher-order frequency component of the drive frequency. Can do.
 図13は、図12に示す制御装置のブロック線図の変形例を示す図である。図12に示す制御装置5aでは、位置推定部52aより可動子3の推定位置x^が周波数制御部53へ入力される構成とした点が、図12に示す制御装置と異なる。図13に示す制御装置5aを構成する周波数制御部53は、基本波抽出部58により分離された電流値Iの基本波、交番電圧V、及び位置推定部52より入力される可動子3の位置推定値x^のうち、少なくとも2つに基づき、上述の式(5)により、生成する電圧波形の周波数ωvを決定する。 FIG. 13 is a diagram showing a modification of the block diagram of the control device shown in FIG. The control device 5a shown in FIG. 12 is different from the control device shown in FIG. 12 in that the estimated position x ^ of the mover 3 is input to the frequency control unit 53 from the position estimation unit 52a. The frequency control unit 53 constituting the control device 5a shown in FIG. 13 includes the fundamental wave of the current value I separated by the fundamental wave extraction unit 58, the alternating voltage V, and the position of the mover 3 input from the position estimation unit 52. Based on at least two of the estimated values x ^, the frequency ωv * of the voltage waveform to be generated is determined by the above equation (5).
 以上の通り本実施例によれば、実施例1の効果に加え、可動子の位置推定精度を向上することが可能となる。 As described above, according to the present embodiment, in addition to the effects of the first embodiment, it is possible to improve the position estimation accuracy of the mover.
 図14は、本発明の他の実施例に係る実施例3の制御装置のブロック線図である。本実施例では、電流制御部(高調波減衰部)59bが、基本波抽出部58により分離された高周波成分(高調波)と位置推定部52により求められた可動子3の推定位置x^を入力し、電圧補正量としての高調波減衰電圧を決定する構成とした点が、上述の図10に示す実施例1と異なる。図1に示した圧縮機1の構成は実施例1と同様である。以下では、実施例1と同様の構成要素に同一の符号を付し、重複する説明を省略する。 FIG. 14 is a block diagram of the control device according to the third embodiment according to another embodiment of the present invention. In the present embodiment, the current control unit (harmonic attenuation unit) 59b calculates the high frequency component (harmonic) separated by the fundamental wave extraction unit 58 and the estimated position x ^ of the mover 3 obtained by the position estimation unit 52. This is different from the first embodiment shown in FIG. 10 described above in that it is configured to input and determine the harmonic attenuation voltage as a voltage correction amount. The configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment. Below, the same code | symbol is attached | subjected to the component similar to Example 1, and the overlapping description is abbreviate | omitted.
 図14に示すように、本実施例の制御装置5bを構成する電流制御部(高調波減衰部)59bは、基本波抽出部58により分離された電流値Iの高周波成分(高調波)と位置推定部52により求められた可動子3の推定位置x^を入力する。電流制御部(高調波減衰部)59bは、電流値Iの高周波成分(高調波)及び可動子3の推定位置x^に基づき、電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定し、高調波減衰電圧として出力する。 
 上述の実施例1では、式(5)の圧縮機1における回路方程式において、電流値Iが関与する項目のみを考慮して、電流制御部(高調波減衰部)59が電圧補正量を決定する構成としている。これに対し本実施例では、式(5)の回路方程式において、可動子3の位置(速度)が関与する誘起電圧K(dx/dt)をも考慮して、電流制御部(高調波減衰部)59bが電圧補正量を決定する構成としている。従って、実施例1に比して、より高精度に電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定することができる。
As shown in FIG. 14, the current control unit (harmonic attenuation unit) 59 b that constitutes the control device 5 b of this embodiment includes the high-frequency component (harmonic) and the position of the current value I separated by the fundamental wave extraction unit 58. The estimated position x ^ of the mover 3 obtained by the estimation unit 52 is input. Based on the high frequency component (harmonic) of the current value I and the estimated position x ^ of the mover 3, the current control unit (harmonic attenuation unit) 59b sets a voltage correction amount for bringing the high frequency component of the current value I close to zero. Determined and output as harmonic attenuation voltage.
In the first embodiment described above, the current control unit (harmonic attenuation unit) 59 determines the voltage correction amount in consideration of only items related to the current value I in the circuit equation of the compressor 1 of Formula (5). It is configured. On the other hand, in the present embodiment, in the circuit equation of Expression (5), the current control unit (harmonic attenuation unit) is also considered in consideration of the induced voltage K (dx / dt) involving the position (velocity) of the mover 3. ) 59b determines the voltage correction amount. Therefore, the voltage correction amount for making the high frequency component of the current value I approach zero can be determined with higher accuracy than in the first embodiment.
 本実施例の制御装置5bにより生成された出力電圧Vによると、「ストローク制御」と「周波数制御」を平行して実行することが容易であり、更に電流波形に駆動周波数の高次の周波数成分を減衰させる電圧補正が実行されることから、巻線6に流れる交番電流に駆動周波数の高次の周波数成分が含まれることを抑制することができる。 According to the output voltage V generated by the control device 5b of the present embodiment, it is easy to execute “stroke control” and “frequency control” in parallel, and further, the current waveform has a higher-order frequency component of the drive frequency. Therefore, it is possible to suppress the alternating current flowing through the winding 6 from including a higher-order frequency component of the drive frequency.
 以上の通り本実施例によれば、実施例1の効果に加え、実施例1に比して、より高精度に電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定することが可能となる。 As described above, according to the present embodiment, in addition to the effects of the first embodiment, it is possible to determine the voltage correction amount for bringing the high frequency component of the current value I closer to zero with higher accuracy than the first embodiment. It becomes possible.
 図15は、本発明の他の実施例に係る実施例4の制御装置のブロック線図である。本実施例では、位置推定部52aが、電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vを入力し、可動子3の位置推定値x^を求める構成とした点、及び、電流制御部(高調波減衰部)59cが、基本波抽出部58により分離された高周波成分(高調波)と位置推定部52により求められた可動子3の推定位置x^を入力し、電圧補正量としての高調波減衰電圧を決定する構成とした点が、上述の図10に示す実施例1と異なる。図1に示した圧縮機1の構成は実施例1と同様である。以下では、実施例1と同様の構成要素に同一の符号を付し、重複する説明を省略する。 FIG. 15 is a block diagram of the control device according to the fourth embodiment according to another embodiment of the present invention. In the present embodiment, the position estimation unit 52a has a command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and a harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59. The fundamental voltage extraction unit 58 separates the point where the added output voltage command value v is input and the position estimation value x ^ of the mover 3 is obtained and the current control unit (harmonic attenuation unit) 59c. The high frequency component (harmonic) and the estimated position x ^ of the mover 3 obtained by the position estimation unit 52 are input, and the harmonic attenuation voltage as the voltage correction amount is determined. Different from Example 1 shown in FIG. The configuration of the compressor 1 shown in FIG. 1 is the same as that of the first embodiment. Below, the same code | symbol is attached | subjected to the component similar to Example 1, and the overlapping description is abbreviate | omitted.
 図15に示すように、本実施例の制御装置5cを構成する位置推定部52aは、基本波抽出部58より入力される基本波、及び電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vを入力し、上述の式(5)を演算することで可動子3の推定位置x^を求め、求めた可動子3の推定位置x^をストローク制御部51aへ出力する。 As shown in FIG. 15, the position estimation unit 52a constituting the control device 5c of the present embodiment includes the fundamental wave input from the fundamental wave extraction unit 58 and the command voltage amplitude V * (output from the voltage control unit 57a. The output voltage command value v obtained by adding the output voltage amplitude) and the harmonic attenuation voltage output from the current control unit (harmonic attenuation unit) 59 is input, and the above-described equation (5) is calculated to obtain the mover. 3 is obtained, and the obtained estimated position x ^ of the mover 3 is output to the stroke controller 51a.
 ストローク制御部51aは、負荷に応じて設定されるストローク指令xと位置推定部52より入力される可動子3の推定位置x^との差分(偏差)をストローク指令x**として求め、求めたストローク指令x**を電圧制御部57aへ出力する。すなわち、ストローク制御部51aは、圧縮機1に接続されるシステム又は機器にて要求される圧縮媒体の吐出流量(負荷)に応じて決定されるストローク量に、可動子3のストロークを近付ける制御を実行する。 The stroke control unit 51a obtains the difference (deviation) between the stroke command x * set according to the load and the estimated position x ^ of the mover 3 input from the position estimation unit 52 as the stroke command x **. The stroke command x ** is output to the voltage controller 57a. That is, the stroke control unit 51a performs control to bring the stroke of the mover 3 close to the stroke amount determined according to the discharge flow rate (load) of the compression medium required by the system or equipment connected to the compressor 1. Execute.
 電圧制御部57aは、周波数制御部53より入力される出力電圧Vの指令周波数ωv、及びストローク制御部51aより入力されるストローク指令値x**に基づき、出力電圧振幅(指令電圧振幅V)を決定する。具体的には、上述の式(5)に示した圧縮機1における回路方程式を用いる。本実施例では、上述のとおり、可動子3の移動によって発生する誘起電圧K(dx/dt)が交番電圧Vの成分の中で支配的であるとから、指令電圧振幅Vを指令ストローク振幅値X**を用いて上述の式(8)を演算し、指令電圧振幅V(出力電圧振幅)を決定する。 The voltage control unit 57a outputs the output voltage amplitude (command voltage amplitude V * based on the command frequency ωv * of the output voltage V input from the frequency control unit 53 and the stroke command value x ** input from the stroke control unit 51a . ). Specifically, the circuit equation in the compressor 1 shown in the above equation (5) is used. In the present embodiment, as described above, since the induced voltage K (dx / dt) generated by the movement of the mover 3 is dominant among the components of the alternating voltage V, the command voltage amplitude V * is set to the command stroke amplitude. The above equation (8) is calculated using the value X ** to determine the command voltage amplitude V * (output voltage amplitude).
 電流制御部(高調波減衰部)59cは、基本波抽出部58により分離された電流値Iの高周波成分(高調波)と位置推定部52aにより求められた可動子3の推定位置x^を入力する。電流制御部(高調波減衰部)59bは、電流値Iの高周波成分(高調波)及び可動子3の推定位置x^に基づき、電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定し、高調波減衰電圧として出力する。 The current control unit (harmonic attenuation unit) 59c inputs the high frequency component (harmonic) of the current value I separated by the fundamental wave extraction unit 58 and the estimated position x ^ of the mover 3 obtained by the position estimation unit 52a. To do. Based on the high frequency component (harmonic) of the current value I and the estimated position x ^ of the mover 3, the current control unit (harmonic attenuation unit) 59b sets a voltage correction amount for bringing the high frequency component of the current value I close to zero. Determined and output as harmonic attenuation voltage.
 このように、本実施例の位置推定部52aは、基本波抽出部58より入力される基本波に加え、電圧制御部57aより出力された指令電圧振幅V(出力電圧振幅)と電流制御部(高調波減衰部)59より出力された高調波減衰電圧とが加算された出力電圧指令値vに基づき、可動子3の推定位置x^を求める構成であることから、上述の実施例1に比べ、可動子3の位置推定精度が向上する。 Thus, in addition to the fundamental wave input from the fundamental wave extraction unit 58, the position estimation unit 52a of the present embodiment includes the command voltage amplitude V * (output voltage amplitude) output from the voltage control unit 57a and the current control unit. (Harmonic attenuation unit) Since the estimated position x ^ of the mover 3 is obtained based on the output voltage command value v obtained by adding the harmonic attenuation voltage output from the 59, the above-described first embodiment is used. In comparison, the position estimation accuracy of the mover 3 is improved.
 また、本実施例の電流制御部(高調波減衰部)59cは、基本波抽出部58により分離された電流値Iの高周波成分(高調波)に加え、位置推定部52aにより求められた高精度の可動子3の推定位置x^に基づき、電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定する構成であることから、より高精度に電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定することができる。 Further, the current control unit (harmonic attenuation unit) 59c of the present embodiment has high accuracy obtained by the position estimation unit 52a in addition to the high frequency component (harmonic) of the current value I separated by the fundamental wave extraction unit 58. Since the voltage correction amount for determining the high frequency component of the current value I to be close to zero is determined based on the estimated position x ^ of the mover 3, the high frequency component of the current value I is brought closer to zero with higher accuracy. Therefore, the voltage correction amount can be determined.
 本実施例の制御装置5cにより生成された出力電圧Vによると、「ストローク制御」と「周波数制御」を平行して実行することが容易であり、更に電流波形に駆動周波数の高次の周波数成分を減衰させる電圧補正が実行されることから、巻線6に流れる交番電流に駆動周波数の高次の周波数成分が含まれることを抑制することができる。 According to the output voltage V generated by the control device 5c of the present embodiment, it is easy to execute “stroke control” and “frequency control” in parallel, and further, the current waveform has a higher-order frequency component of the drive frequency. Therefore, it is possible to suppress the alternating current flowing through the winding 6 from including a higher-order frequency component of the drive frequency.
 以上の通り本実施例によれば、実施例1の効果に加え、可動子の位置推定精度を向上することが可能となると共に、高精度な可動子の推定位置をも考慮して電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定する構成であることから、より高精度に電流値Iの高周波成分をゼロに近付けるための電圧補正量を決定することが可能となる。 As described above, according to the present embodiment, in addition to the effects of the first embodiment, it is possible to improve the position estimation accuracy of the mover, and the current value I in consideration of the estimated position of the mover with high accuracy. Therefore, the voltage correction amount for bringing the high frequency component of the current value I closer to zero can be determined with higher accuracy.
 なお、上述の実施例1乃至実施例4においてリニアモータ制御システムの一例として示した圧縮機1(リニア圧縮機)は、凝縮器又は蒸発器として機能する熱交換器を備える空気調和器において、冷媒を圧送するための圧縮機に適用できる。 
 また、上述の実施例1乃至実施例4においてリニアモータ制御システムの一例として示した圧縮機1(リニア圧縮機)は、エアサスペンションにおいて車高を調整するために作動流体を圧縮する圧縮機に適用できる。 
 更にまた、上述の実施例1乃至実施例4においてリニアモータ制御システムの一例として示した圧縮機1(リニア圧縮機)は、凝縮器及び蒸発器を有する冷蔵庫において、液冷媒を圧送する圧縮機にも適用可能である。 
 更にまた、上述の実施例1乃至実施例4においてリニアモータ制御システムの一例として示した圧縮機1(リニア圧縮機)は、冷凍空調機としての、例えば、クライオスタット、エアコン等にも適用できる。
The compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments described above is an air conditioner including a heat exchanger that functions as a condenser or an evaporator. It can be applied to a compressor for pressure feeding.
The compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments is applied to a compressor that compresses a working fluid in order to adjust the vehicle height in the air suspension. it can.
Furthermore, the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments described above is a compressor that pumps liquid refrigerant in a refrigerator having a condenser and an evaporator. Is also applicable.
Furthermore, the compressor 1 (linear compressor) shown as an example of the linear motor control system in the first to fourth embodiments can be applied to a refrigeration air conditioner such as a cryostat or an air conditioner.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
1・・・圧縮機,2・・・電機子,3・・・可動子(界磁子),3a・・・永久磁石,4・・・磁極,5,5a,5b,5c・・・制御装置,6・・・巻線,7・・・ブリッジ7,11・・・シリンダブロック,11a・・・シリンダ,12・・・ピストン,13・・・シリンダヘッド,14・・・共振ばね,51,51a・・・ストローク制御部,52,52a・・・位置推定部,53・・・周波数制御部,54・・・電流制御部,55・・・電圧変換部,56・・・インバータ,57,57a・・・電圧制御部,58・・・基本波抽出部,59,59b,59c・・・電流制御部(高調波減衰部) DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Armature, 3 ... Movable element (field element), 3a ... Permanent magnet, 4 ... Magnetic pole, 5, 5a, 5b, 5c ... Control Device: 6 ... Winding, 7 ... Bridge 7, 11 ... Cylinder block, 11a ... Cylinder, 12 ... Piston, 13 ... Cylinder head, 14 ... Resonant spring, 51 , 51a... Stroke controller, 52, 52a ... position estimator, 53 ... frequency controller, 54 ... current controller, 55 ... voltage converter, 56 ... inverter, 57 , 57a ... voltage control unit, 58 ... fundamental wave extraction unit, 59, 59b, 59c ... current control unit (harmonic attenuation unit)

Claims (17)

  1.  一端が弾性体に接続され永久磁石を有する界磁子と、磁極に捲回される巻線を有する電機子を備え、前記界磁子と電機子を相対的に軸方向に往復運動させる機器と、
     電流検出部により検出された前記巻線を流れる交番電流に基づき、前記巻線に印加する交番電圧を制御する制御装置と、を備えるリニアモータ制御システムであって、
     前記制御装置は、
     前記電流検出部により検出された前記巻線を流れる交番電流を、基本波成分と高調波成分に分離する基本波抽出部と、
     前記高調波成分を減衰し得る高調波減衰電圧を出力する高調波減衰部と、を有し、
     交番電流の基本波成分及び高調波減衰電圧に基づき、前記巻線に印加する交番電圧を制御することを特徴とするリニアモータ制御システム。
    A device having one end connected to an elastic body and having a permanent magnet, and an armature having a winding wound around a magnetic pole, and reciprocating the field element and the armature relatively in the axial direction; ,
    A controller for controlling an alternating voltage applied to the winding based on an alternating current flowing through the winding detected by a current detection unit, and a linear motor control system comprising:
    The control device includes:
    A fundamental wave extraction unit that separates an alternating current flowing through the winding detected by the current detection unit into a fundamental wave component and a harmonic component;
    A harmonic attenuation unit that outputs a harmonic attenuation voltage capable of attenuating the harmonic component, and
    A linear motor control system that controls an alternating voltage applied to the winding based on a fundamental wave component and a harmonic attenuation voltage of an alternating current.
  2.  請求項1に記載のリニアモータ制御システムにおいて、
     前記制御装置は、
     前記交番電流の基本波成分の周波数が共振周波数に近づくよう制御し、交番電圧の周波数を出力する周波数制御部を有することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 1,
    The control device includes:
    A linear motor control system comprising a frequency control unit that controls the frequency of the fundamental wave component of the alternating current to approach the resonance frequency and outputs the frequency of the alternating voltage.
  3.  請求項2に記載のリニアモータ制御システムにおいて、
     前記共振周波数は、前記界磁子と前記電機子との間に作用する外力及び前記界磁子の質量に基づき定まる周波数であることを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 2,
    The linear motor control system according to claim 1, wherein the resonance frequency is a frequency determined based on an external force acting between the field element and the armature and a mass of the field element.
  4.  請求項3に記載のリニアモータ制御システムにおいて、
     前記制御装置は、
     少なくとも前記交番電流の基本波成分又は前記電流検出部により検出された前記巻線を流れる交番電流に基づき、前記界磁子の位置を推定する位置推定部と、
     負荷に応じて設定される界磁子の第1ストローク指令と前記位置推定部により推定された界磁子の推定位置との差分を、第2ストローク指令として出力するストローク制御部と、を備え、
     前記第2ストローク指令及び前記周波数制御部から出力される交番電圧の周波数に基づき、前記巻線に印加する交番電圧を制御することを特徴とするリニアモータ制御システム。
    In the linear motor control system according to claim 3,
    The control device includes:
    A position estimation unit that estimates the position of the field element based on at least a fundamental wave component of the alternating current or an alternating current flowing through the winding detected by the current detection unit;
    A stroke control unit that outputs, as a second stroke command, a difference between the first stroke command of the field element set according to the load and the estimated position of the field element estimated by the position estimation unit;
    A linear motor control system that controls an alternating voltage applied to the winding based on the second stroke command and the frequency of the alternating voltage output from the frequency control unit.
  5.  請求項4に記載のリニアモータ制御システムにおいて、
     前記制御装置は、
     前記ストローク制御部から出力される第2ストローク指令と前記周波数制御部から出力される交番電圧の周波数に基づき、出力電圧振幅を決定する電圧制御部を有し、
     決定された出力電圧振幅に基づき、前記巻線に印加する交番電圧を制御することを特徴とするリニアモータ制御システム。
    In the linear motor control system according to claim 4,
    The control device includes:
    A voltage control unit for determining an output voltage amplitude based on the second stroke command output from the stroke control unit and the frequency of the alternating voltage output from the frequency control unit;
    A linear motor control system that controls an alternating voltage applied to the winding based on the determined output voltage amplitude.
  6.  請求項5に記載のリニアモータ制御システムにおいて、
     前記制御装置は、
     前記巻線に交番電圧を印加するインバータを有し、
     前記電圧制御部により決定された出力電圧振幅と前記高調波減衰部より出力された高調波減衰電圧とを加算することにより生成される出力電圧指令値を、前記インバータへ出力することを特徴とするリニアモータ制御システム。
    In the linear motor control system according to claim 5,
    The control device includes:
    An inverter for applying an alternating voltage to the winding;
    An output voltage command value generated by adding the output voltage amplitude determined by the voltage control unit and the harmonic attenuation voltage output from the harmonic attenuation unit is output to the inverter. Linear motor control system.
  7.  請求項6に記載のリニアモータ制御システムにおいて、
     前記周波数制御部は、前記交番電流の基本波成分及び前記位置推定部により推定された界磁子の推定位置に基づき、交番電圧の周波数を出力することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 6,
    The frequency control unit outputs a frequency of an alternating voltage based on a fundamental wave component of the alternating current and an estimated position of a field element estimated by the position estimating unit.
  8.  請求項6に記載のリニアモータ制御システムにおいて、
     前記位置推定部は、前記電圧制御部により決定された出力電圧振幅と前記高調波減衰部より出力された高調波減衰電圧とを加算することにより生成される出力電圧指令値と、前記交番電流の基本波成分又は前記電流検出部により検出された前記巻線を流れる交番電流とに基づき、前記界磁子の位置を推定することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 6,
    The position estimation unit includes an output voltage command value generated by adding the output voltage amplitude determined by the voltage control unit and the harmonic attenuation voltage output from the harmonic attenuation unit, and the alternating current. A linear motor control system that estimates a position of the field element based on a fundamental wave component or an alternating current flowing through the winding detected by the current detection unit.
  9.  請求項8に記載のリニアモータ制御システムにおいて、
     前記周波数制御部は、前記交番電流の基本波成分及び前記位置推定部により推定された界磁子の推定位置に基づき、交番電圧の周波数を出力することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 8, wherein
    The frequency control unit outputs a frequency of an alternating voltage based on a fundamental wave component of the alternating current and an estimated position of a field element estimated by the position estimating unit.
  10.  請求項6に記載のリニアモータ制御システムにおいて、
     前記高調波減衰部は、前記基本波抽出部により分離された高調波成分と前記位置推定部により推定された界磁子の推定位置とに基づき、前記高調波成分を減衰し得る高調波減衰電圧を出力することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 6,
    The harmonic attenuation unit is a harmonic attenuation voltage capable of attenuating the harmonic component based on the harmonic component separated by the fundamental wave extraction unit and the estimated position of the field element estimated by the position estimation unit. A linear motor control system characterized by
  11.  請求項10に記載のリニアモータ制御システムにおいて、
     前記位置推定部は、前記電圧制御部により決定された出力電圧振幅と前記高調波減衰部より出力された高調波減衰電圧とを加算することにより生成される出力電圧指令値と、前記交番電流の基本波成分又は前記電流検出部により検出された前記巻線を流れる交番電流とに基づき、前記界磁子の位置を推定することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 10,
    The position estimation unit includes an output voltage command value generated by adding the output voltage amplitude determined by the voltage control unit and the harmonic attenuation voltage output from the harmonic attenuation unit, and the alternating current. A linear motor control system that estimates a position of the field element based on a fundamental wave component or an alternating current flowing through the winding detected by the current detection unit.
  12.  請求項6に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 6,
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
  13.  請求項7に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    In the linear motor control system according to claim 7,
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
  14.  請求項8に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 8, wherein
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
  15.  請求項9に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    In the linear motor control system according to claim 9,
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
  16.  請求項10に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 10,
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
  17.  請求項11に記載のリニアモータ制御システムにおいて、
     前記界磁子は可動子であり、前記電機子に対し軸方向に往復運動することを特徴とするリニアモータ制御システム。
    The linear motor control system according to claim 11,
    The linear motor control system, wherein the field element is a mover and reciprocates in an axial direction with respect to the armature.
PCT/JP2017/042564 2017-02-23 2017-11-28 Linear motor control system WO2018154895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-031995 2017-02-23
JP2017031995A JP6800041B2 (en) 2017-02-23 2017-02-23 Linear motor control system

Publications (1)

Publication Number Publication Date
WO2018154895A1 true WO2018154895A1 (en) 2018-08-30

Family

ID=63253187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042564 WO2018154895A1 (en) 2017-02-23 2017-11-28 Linear motor control system

Country Status (2)

Country Link
JP (1) JP6800041B2 (en)
WO (1) WO2018154895A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760188A (en) * 1993-06-16 1995-03-07 Ykk Kk Method and apparatus for controlling resonance frequency of self-excited vibration type parts feeder
JP2001286185A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Drive device of linear compressor
JP2004056994A (en) * 2002-05-31 2004-02-19 Matsushita Electric Ind Co Ltd Device for driving and controlling motor
JP2015119632A (en) * 2013-12-19 2015-06-25 エルジー エレクトロニクス インコーポレイティド Controller and control method of linear compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760188A (en) * 1993-06-16 1995-03-07 Ykk Kk Method and apparatus for controlling resonance frequency of self-excited vibration type parts feeder
JP2001286185A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Drive device of linear compressor
JP2004056994A (en) * 2002-05-31 2004-02-19 Matsushita Electric Ind Co Ltd Device for driving and controlling motor
JP2015119632A (en) * 2013-12-19 2015-06-25 エルジー エレクトロニクス インコーポレイティド Controller and control method of linear compressor

Also Published As

Publication number Publication date
JP6800041B2 (en) 2020-12-16
JP2018137945A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR100587795B1 (en) Linear motor controller
EP2215361B1 (en) Reciprocating compressor
CN106337793B (en) Method and system for protecting resonant linear compressor
US9350221B2 (en) Spring-less buried magnet linear-resonant motor
EP3186509B1 (en) Linear compressor, and apparatus and method for controlling a linear compressor
JP2005344708A (en) Reciprocating compressor and its drive mechanism as well as control method
KR20130087862A (en) Apparatus and method for controlling compressor, and refrigerator having the same
EP2535586B1 (en) Machine including compressor controlling apparatus and method
EP3163078B1 (en) Linear compressor and method for controlling the same
EP2620722B1 (en) Apparatus for controlling compressor and refrigerator having the same
US7816873B2 (en) Linear compressor
KR20180087800A (en) Apparatus for controlling linear compressor
US20180202430A1 (en) Apparatus for controlling linear compressor
WO2018154895A1 (en) Linear motor control system
JPH09126147A (en) Drive device for linear compressor
US10309392B2 (en) Compressor and method for controlling a compressor
CN111836961B (en) Linear compressor and linear compressor control system
US9091272B2 (en) Apparatus and method for controlling a compressor
JP6803715B2 (en) Equipment and compressors with movers connected to elastic bodies
Park et al. Modeling of non-linear analysis of dynamic characteristics of linear compressor
JP2010048150A (en) Vibration compressor
KR101677647B1 (en) A linear compressor, apparatus and method for controlling a linear compressor
KR20180085595A (en) Apparatus for controlling linear compressor
KR101190070B1 (en) Apparatus for controlling reciprecating compressor and method the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897491

Country of ref document: EP

Kind code of ref document: A1