JP2005344708A - Reciprocating compressor and its drive mechanism as well as control method - Google Patents

Reciprocating compressor and its drive mechanism as well as control method Download PDF

Info

Publication number
JP2005344708A
JP2005344708A JP2005137796A JP2005137796A JP2005344708A JP 2005344708 A JP2005344708 A JP 2005344708A JP 2005137796 A JP2005137796 A JP 2005137796A JP 2005137796 A JP2005137796 A JP 2005137796A JP 2005344708 A JP2005344708 A JP 2005344708A
Authority
JP
Japan
Prior art keywords
frequency
compressor
input power
load
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137796A
Other languages
Japanese (ja)
Inventor
Konchi Cho
根値 張
Hitsushu Cho
弼洙 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020040073172A external-priority patent/KR20050115807A/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005344708A publication Critical patent/JP2005344708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0806Resonant frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0401Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0402Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0404Frequency of the electric current

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reciprocating compressor drive mechanism and its control method for controlling the frequency of an input power source so that the operating frequency of a compressor follows a resonance frequency which is varied with a load fluctuation applied to the compressor. <P>SOLUTION: A reciprocating compressor has an inverter for adjusting the frequency of the input power source. The frequency of the input power source is set to be a value corresponding to the resonance frequency by the inverter. The resonance frequency is set to be a range of 60-90% of the frequency of a service power source. The reciprocating compressor according to this invention also has a control part for controlling the frequency of the input power source so that the operating frequency of the compressor follows the resonance frequency which is varied with the operation of the compressor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、往復動圧縮機に関し、より詳細には、圧縮機の稼動周波数が、圧縮機に印加される負荷変動に基づいて可変する共振周波数と等しくなるように入力電源の周波数を制御し、かつ、低負荷状態において効率が向上する往復動圧縮機の駆動装置及び制御方法に関する。   The present invention relates to a reciprocating compressor, and more specifically, controls the frequency of an input power source so that the operating frequency of the compressor becomes equal to a resonance frequency that varies based on a load variation applied to the compressor, In addition, the present invention relates to a reciprocating compressor drive device and control method that improve efficiency in a low load state.

一般に、空気調和機や冷蔵庫などに用いられて冷媒を圧縮する圧縮機には、ピストンの往復移動により圧縮室の容積変化を生じさせて冷媒を圧縮する往復動圧縮機がある。さらに、この往復動圧縮機は、駆動手段として回転型モーターを採用する方式のものと通常のリニアモーターを採用する方式のものとに分類される。   In general, compressors used in air conditioners, refrigerators, and the like to compress refrigerant include a reciprocating compressor that compresses refrigerant by causing a volume change of a compression chamber by reciprocating movement of a piston. Furthermore, this reciprocating compressor is classified into a type employing a rotary motor as a driving means and a type employing a normal linear motor.

なかでも、通常のリニアモーターを採用する往復動圧縮機は、圧縮室を往復移動するピストンが、直線運動をするリニアモーターの可動子と直結するように構成されている。また、ピストンは、弾性を有する共振スプリングにより支持されている。かかる往復動圧縮機では、リニアモーターに交流電源が印加されるとき、入力電源の周波数に応じて可動子が直線往復移動し、この可動子の直線往復移動によってピストンが往復移動しつつ冷媒の圧縮がなされる。ここで、共振スプリングは、ピストンの移動を容易にして往復移動を円滑にする加振力を発揮する。   Especially, the reciprocating compressor which employ | adopts a normal linear motor is comprised so that the piston which reciprocates in a compression chamber may be directly connected with the needle | mover of the linear motor which carries out a linear motion. The piston is supported by an elastic resonance spring. In such a reciprocating compressor, when an AC power supply is applied to the linear motor, the mover linearly reciprocates according to the frequency of the input power supply, and the piston reciprocates due to the linear reciprocation of the mover to compress the refrigerant. Is made. Here, the resonance spring exhibits an excitation force that facilitates the movement of the piston and makes the reciprocating movement smooth.

なお、通常の圧縮機において、ピストンの移動は、圧縮機の共振周波数(固有振動数)とピストンの稼動周波数とが一致するときに増加し、したがって、圧縮機の効率を向上すべく、常用電源の周波数と圧縮機の共振周波数とを一致させるようと試みてきた。すなわち、圧縮機の圧縮能力を向上させるためには、圧縮機の共振周波数を、常用電源周波数に応じて調節することが重要である。圧縮機の共振周波数は、ピストン及びリニアモーターの可動子を含む可動部の質量、共振スプリングの弾性力などによって決定されるので、これら条件を変えることによって調節すると良い。   In a normal compressor, the movement of the piston increases when the resonance frequency (natural frequency) of the compressor and the operating frequency of the piston coincide with each other. Therefore, in order to improve the efficiency of the compressor, Attempts have been made to match the frequency of the compressor with the resonance frequency of the compressor. That is, in order to improve the compression capability of the compressor, it is important to adjust the resonance frequency of the compressor according to the normal power supply frequency. Since the resonance frequency of the compressor is determined by the mass of the movable part including the piston and the mover of the linear motor, the elastic force of the resonance spring, and the like, it may be adjusted by changing these conditions.

しかしながら、かかる従来の往復動圧縮機は、共振周波数を電源周波数と一致させた状態で、周波数の高い常用電源(通常、60Hz)を入力電源としてそのまま使用しているため、圧縮機の動作速度が速くなり、圧縮機の能力可変範囲をより低い範囲に拡大し難くなり、かつ、モーターの鉄損及び機械的摩擦損失などによって効率が低減するという欠点があった。   However, since such a conventional reciprocating compressor uses a high-frequency service power source (usually 60 Hz) as an input power source in a state where the resonance frequency matches the power frequency, the operating speed of the compressor is high. There is a drawback that it becomes faster, it becomes difficult to expand the variable range of the compressor capacity to a lower range, and the efficiency is reduced due to iron loss and mechanical friction loss of the motor.

また、従来の往復動圧縮機は、圧縮機の動作中に負荷が変動する際にピストンに加えられるガスの圧力変化などにより共振周波数が変ることがあり、この共振周波数の変化によって共振周波数と稼動周波数間に不一致が生じ、圧縮機の効率が低下する欠点もあった。   In addition, in a conventional reciprocating compressor, when the load fluctuates during the operation of the compressor, the resonance frequency may change due to a change in the pressure of the gas applied to the piston. There is also a disadvantage that the frequency is not consistent and the efficiency of the compressor is lowered.

本発明は、上記事情に鑑みてなされたものであり、その目的は、圧縮機の共振周波数を常用電源周波数よりも低く設定し、圧縮機に印加される入力電源の周波数を共振周波数と一致させることによって、圧縮機の能力可変範囲をより拡大する他に、圧縮機が常用電源の周波数よりも低い周波数範囲で共振されるようにして圧縮機効率を向上させた往復動圧縮機の駆動装置及び制御方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to set the resonance frequency of the compressor to be lower than the normal power supply frequency and to match the frequency of the input power supply applied to the compressor with the resonance frequency. Thus, in addition to further expanding the capacity variable range of the compressor, a reciprocating compressor drive device that improves the compressor efficiency by allowing the compressor to resonate in a frequency range lower than the frequency of the normal power supply, and It is to provide a control method.

本発明の他の目的は、圧縮機の稼動周波数を、圧縮機に印加される負荷の変動に基づいて可変する共振周波数と一致させることによって、圧縮機の効率をより向上させられる往復動圧縮機の駆動装置及び制御方法を提供することにある。   Another object of the present invention is to provide a reciprocating compressor capable of further improving the efficiency of the compressor by matching the operating frequency of the compressor with a resonance frequency that is variable based on a change in load applied to the compressor. It is in providing the drive device and control method of this.

上記目的を達成すべく、本発明に係る往復動圧縮機は、電源を受信し、該受信した電源の周波数を調節して圧縮機に入力するインバータを有する往復動圧縮機において、前記圧縮機の共振周波数が前記受信した電源の常用周波数よりも低く、入力電源の周波数が前記共振周波数に相応することを特徴とする。   In order to achieve the above object, a reciprocating compressor according to the present invention is a reciprocating compressor having an inverter that receives power and adjusts the frequency of the received power to be input to the compressor. The resonance frequency is lower than the normal frequency of the received power supply, and the frequency of the input power supply corresponds to the resonance frequency.

前記共振周波数は、前記受信した電源の常用周波数の60〜90%の範囲であることを特徴とする。   The resonance frequency is in a range of 60 to 90% of a normal frequency of the received power supply.

また、前記往復動圧縮機は、前記圧縮機の動作を制御する制御部をさらに備え、前記制御部は、前記圧縮機の稼動周波数が、前記圧縮機の作動によって変わる共振周波数を追従するように、前記入力電源の周波数を制御することを特徴とする。   In addition, the reciprocating compressor further includes a control unit that controls the operation of the compressor, and the control unit is configured so that an operating frequency of the compressor follows a resonance frequency that varies depending on the operation of the compressor. The frequency of the input power supply is controlled.

また、前記制御部は、前記入力電源の周波数と前記圧縮機の稼動周波数間の位相差を判断し、この位相差に相当する補正値によって前記入力電源の周波数を増加させたり減少させるように前記インバータを制御することを特徴とする。   Further, the control unit determines a phase difference between the frequency of the input power source and the operating frequency of the compressor, and increases or decreases the frequency of the input power source according to a correction value corresponding to the phase difference. It is characterized by controlling an inverter.

また、前記往復動圧縮機は、圧縮機内部に設置されるピストンと、前記入力電源の周波数を検出する電流検出部と、前記ピストンの変位を検出して前記稼動周波数を判断する変位検出部と、さらにを備えることを特徴とする。   The reciprocating compressor includes a piston installed in the compressor, a current detection unit that detects the frequency of the input power source, and a displacement detection unit that detects the displacement of the piston and determines the operating frequency. , And further.

また、前記往復動圧縮機は、前記圧縮機に印加される負荷を検出する負荷検出部をさらに備え、前記制御部は、前記負荷検出部により検出された負荷が一般負荷の場合、前記入力電源の周波数が前記共振周波数と等しくなるように前記インバータを制御し、前記検出された負荷が前記一般負荷よりも高い場合、前記入力電源周波数が前記共振周波数よりも大きくなるように前記インバータを制御することを特徴とする。   The reciprocating compressor further includes a load detection unit that detects a load applied to the compressor, and the control unit includes the input power source when the load detected by the load detection unit is a general load. The inverter is controlled so that the frequency of the power supply is equal to the resonance frequency, and when the detected load is higher than the general load, the inverter is controlled so that the input power supply frequency is higher than the resonance frequency. It is characterized by that.

また、本発明による往復動圧縮機は、前記圧縮機に入力される電源の周波数を調節するインバータと、前記圧縮機の稼動周波数を、判断された前記稼動周波数と前記入力電源の周波数間の位相差に基づいて前記入力電源の周波数と一致させるように前記インバータを制御する制御部と、を備えることを特徴とする。   The reciprocating compressor according to the present invention includes an inverter that adjusts a frequency of a power source input to the compressor, and an operating frequency of the compressor between a determined operating frequency and a frequency of the input power source. And a control unit that controls the inverter so as to match the frequency of the input power supply based on a phase difference.

また、本発明による往復動圧縮機の駆動装置は、前記圧縮機に印加される入力電源の周波数を調節するインバータと、前記圧縮機に印加される負荷を検出する負荷検出部と、前記負荷検出部により検出された負荷が一般負荷の場合、前記入力電源の周波数が前記圧縮機の共振周波数と等しくなるように前記インバータを制御し、前記検出された負荷が前記一般負荷よりも大きい場合、前記入力電源の周波数が前記共振周波数よりも大きくなるように前記インバータを制御する制御部と、を備えることを特徴とする。   The reciprocating compressor driving apparatus according to the present invention includes an inverter that adjusts a frequency of an input power supply applied to the compressor, a load detection unit that detects a load applied to the compressor, and the load detection. When the load detected by the unit is a general load, the inverter is controlled so that the frequency of the input power source is equal to the resonance frequency of the compressor, and when the detected load is larger than the general load, And a control unit that controls the inverter so that the frequency of the input power supply is higher than the resonance frequency.

また、本発明による往復動圧縮機の駆動装置は、ピストンと、圧縮機に印加される入力電源の周波数を調節するインバータと、前記入力電源の周波数を検出する電流検出部と、前記ピストンの変位を検出することによって前記圧縮機の稼動周波数を判断する変位検出部と、前記稼動周波数が前記圧縮機の動作によって変わる共振周波数を追従するようにすべく、前記入力電源周波数と前記稼動周波数間の位相差を判断し、この判断された位相差に基づいて前記入力電源の周波数を増減させるように前記インバータを制御する制御部と、を備えることを特徴とする。   The reciprocating compressor driving device according to the present invention includes a piston, an inverter for adjusting a frequency of an input power source applied to the compressor, a current detecting unit for detecting the frequency of the input power source, and a displacement of the piston. A displacement detection unit that determines the operating frequency of the compressor by detecting the noise, and the operating frequency between the input power supply frequency and the operating frequency so that the operating frequency follows a resonance frequency that varies depending on the operation of the compressor. A control unit that determines a phase difference and controls the inverter to increase or decrease the frequency of the input power source based on the determined phase difference.

また、本発明による往復動圧縮機の制御方法は、圧縮機に印加される負荷が、高負荷か一般負荷か判断し、前記圧縮機に印加される負荷が一般負荷の場合、前記圧縮機の共振周波数と同じ周波数を有する電源を前記圧縮機に印加し、前記圧縮機に印加される負荷が高負荷の場合、前記往復動圧縮機の共振周波数よりも大きい周波数を有する電源を前記圧縮機に印加することを特徴とする。   The reciprocating compressor control method according to the present invention determines whether the load applied to the compressor is a high load or a general load, and when the load applied to the compressor is a general load, When a power source having the same frequency as the resonance frequency is applied to the compressor and the load applied to the compressor is a high load, a power source having a frequency higher than the resonance frequency of the reciprocating compressor is supplied to the compressor. It is characterized by applying.

また、本発明による往復動圧縮機の制御方法は、インバータを有する往復動圧縮機の制御方法において、入力電源の周波数と前記圧縮機の稼動周波数間の位相差を判断し、前記位相差に相当する補正値に従って前記入力電源の周波数を増加させたり減少させるように前記インバータを制御することを特徴とする。   The reciprocating compressor control method according to the present invention is a reciprocating compressor control method having an inverter, wherein the phase difference between the frequency of the input power source and the operating frequency of the compressor is determined and corresponds to the phase difference. The inverter is controlled so as to increase or decrease the frequency of the input power supply according to the correction value.

本発明による往復動圧縮機は、圧縮機の共振周波数を常用電源の周波数よりも低く設定し、圧縮機の入力電源周波数が共振周波数に相応するようにしたため、圧縮機の能力可変範囲をより低い範囲に拡大し、圧縮機が常用電源の周波数よりも低い周波数範囲で共振するようにし、結果として圧縮機の効率を向上することが可能になる。特に、運転比率の高い一般負荷状態における圧縮機の効率を向上させたため、最上の圧縮機効率が得られる。   In the reciprocating compressor according to the present invention, the resonance frequency of the compressor is set lower than the frequency of the normal power supply, and the input power supply frequency of the compressor corresponds to the resonance frequency, so that the variable capacity range of the compressor is lower. It is possible to expand the range so that the compressor resonates in a frequency range lower than the frequency of the utility power supply, and as a result, the efficiency of the compressor can be improved. In particular, since the efficiency of the compressor in a general load state with a high operation ratio is improved, the highest compressor efficiency can be obtained.

また、本発明は、圧縮機の動作中に負荷の変動により共振周波数に変化が生じても、この共振周波数の変化を稼動周波数が追従するように入力電源の周波数を制御して共振状態が維持されるようにしたため、圧縮機の効率を極大化することが可能になる。   In addition, the present invention maintains the resonance state by controlling the frequency of the input power supply so that the operating frequency follows the change in the resonance frequency even when the resonance frequency changes due to the load fluctuation during the operation of the compressor. As a result, the efficiency of the compressor can be maximized.

以下、本発明による好ましい実施形態を、添付図面に基づき詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明による往復動圧縮機は、図1に示すように、上部容器10aと下部容器10bとが結合されてなる密閉容器10を備える。また、この往復動圧縮機は、シリンダーブロック21、ピストン22及びシリンダーヘッド23を含む圧縮装置20と、この圧縮装置20を駆動させる駆動手段であって、可動子31及び内・外固定子32,33を含むリニアモーター30とをさらに備える。圧縮装置20とリニアモーター30は、密閉容器10内部に一つのセットとして設置される。   As shown in FIG. 1, the reciprocating compressor according to the present invention includes a hermetic container 10 in which an upper container 10a and a lower container 10b are combined. The reciprocating compressor includes a compression device 20 including a cylinder block 21, a piston 22 and a cylinder head 23, and driving means for driving the compression device 20, including a mover 31, an inner / outer stator 32, And a linear motor 30 including 33. The compression device 20 and the linear motor 30 are installed as one set inside the sealed container 10.

圧縮装置20のシリンダーブロック21は、圧縮室24を形成するシリンダー部21aと、このシリンダー部21aの下側の外周から外側に延設され、リニアモーター30の外固定子33を支持する支持部21bと、を含む。このシリンダーブロック21は、支持部21bの下端が複数の緩衝部材25を介して下部容器10bの内面と離隔された状態で支持される。   The cylinder block 21 of the compression device 20 includes a cylinder portion 21 a that forms a compression chamber 24, and a support portion 21 b that extends outward from the lower outer periphery of the cylinder portion 21 a and supports the outer stator 33 of the linear motor 30. And including. The cylinder block 21 is supported in a state in which the lower end of the support portion 21b is separated from the inner surface of the lower container 10b via a plurality of buffer members 25.

ピストン22は、シリンダーブロック21の圧縮室24内に上下に往復移動可能に設置される。そして、シリンダーヘッド23は、吸入室23aと吐出室23bを備え、シリンダーブロック21の下端に設置される。また、シリンダーヘッド23の吸入室23a側には、吸入バルブプレートを有する吸入口23cが形成され、シリンダーヘッド23の吐出室23b側には、吐出バルブプレートを有する吐出口23dが形成される。参照符号11は、外部吸入管、12は、吸入室23aに接続される吸入管、13は、吐出室23b側に接続され、かつ、密閉容器10の外部に延在する吐出配管をそれぞれ示す。   The piston 22 is installed in the compression chamber 24 of the cylinder block 21 so as to reciprocate up and down. The cylinder head 23 includes a suction chamber 23 a and a discharge chamber 23 b and is installed at the lower end of the cylinder block 21. A suction port 23c having a suction valve plate is formed on the suction chamber 23a side of the cylinder head 23, and a discharge port 23d having a discharge valve plate is formed on the discharge chamber 23b side of the cylinder head 23. Reference numeral 11 denotes an external suction pipe, 12 denotes a suction pipe connected to the suction chamber 23 a, and 13 denotes a discharge pipe connected to the discharge chamber 23 b side and extending to the outside of the sealed container 10.

ピストン22を動作させるリニアモーター30は、可動子31がシリンダー部21aの内側に配置され、内・外固定子32,33がシリンダー部21aの外側に配置されるように設置される。可動子31は、円筒形状を有し、ピストン22と共に上下に直線移動するように、その上端の上側固定部31aがピストン22の上部外面に結合される。また、可動子31は、上側固定部31aの下端に取り付けられるマグネット35を有する。このマグネット35は、外固定子33との相互作用により可動子31を上下に往復移動させる。   The linear motor 30 that operates the piston 22 is installed such that the mover 31 is disposed inside the cylinder portion 21a and the inner and outer stators 32 and 33 are disposed outside the cylinder portion 21a. The mover 31 has a cylindrical shape, and an upper fixed portion 31 a at the upper end thereof is coupled to the upper outer surface of the piston 22 so as to move linearly up and down together with the piston 22. Moreover, the needle | mover 31 has the magnet 35 attached to the lower end of the upper side fixing | fixed part 31a. The magnet 35 reciprocates the mover 31 up and down by the interaction with the outer stator 33.

内固定子32と外固定子33はぞれぞれ円筒形状を有し、可動子31の内側と外側にそれぞれ配置される。内固定子32は、シリンダー部21aの外面に固定されて、可動子31の上下往復移動を案内すると同時に、外固定子33から可動子31のマグネット35を通る磁束の流れを円滑にする機能を担う。外固定子33は、可動子31のマグネット35との電磁気的相互作用のための励磁コイル34を備え、下端がシリンダーブロック21の支持部21bに支持され、上端が固定フレーム36により支持される。   The inner stator 32 and the outer stator 33 each have a cylindrical shape, and are respectively disposed on the inner side and the outer side of the movable member 31. The inner stator 32 is fixed to the outer surface of the cylinder portion 21a and guides the reciprocating movement of the mover 31. At the same time, the inner stator 32 has a function of smoothing the flow of magnetic flux from the outer stator 33 through the magnet 35 of the mover 31. Bear. The outer stator 33 includes an exciting coil 34 for electromagnetic interaction with the magnet 35 of the mover 31, the lower end is supported by the support portion 21 b of the cylinder block 21, and the upper end is supported by the fixed frame 36.

また、本発明の往復動圧縮機は、可動子31から上方に離隔するように固定フレーム36上に設置され、多重の板スプリングからなる共振スプリング37を備える。この共振スプリング37は、中心部がピストン22の上端に結合され、外側端部が固定フレーム36から上方に延在するスプリング支持部38に結合される。この共振スプリング37は、その弾性により加振力を生成させることによって、ピストン22の運動力を向上させる。   Further, the reciprocating compressor of the present invention is provided on the fixed frame 36 so as to be spaced upward from the mover 31 and includes a resonance spring 37 composed of multiple plate springs. The resonance spring 37 has a center portion coupled to the upper end of the piston 22 and an outer end portion coupled to a spring support portion 38 extending upward from the fixed frame 36. The resonance spring 37 improves the motion force of the piston 22 by generating an excitation force by its elasticity.

また、共振スプリング37の上側には、可動子31から上方に延在して可動子31とピストン22の往復動作に追従して往復移動するセンサーコア41と、このセンサーコア41の移動距離を感知する変位検出センサー42とが設置される。   Further, on the upper side of the resonance spring 37, a sensor core 41 extending upward from the movable element 31 and reciprocatingly following the reciprocating movement of the movable element 31 and the piston 22, and a movement distance of the sensor core 41 are detected. The displacement detection sensor 42 is installed.

このように構成される往復動圧縮機は、外固定子33の励磁コイル34に交流電源が印加されると外固定子32に磁場が形成され、この磁場の極性が周期的に変化しつつマグネット35が結合された可動子31の上下往復移動がなされる。この可動子31が往復移動するにつれてピストン22が往復運動して圧縮動作がなされ、冷媒の吸入及び吐出が可能になる。   In the reciprocating compressor configured as described above, when an AC power is applied to the excitation coil 34 of the outer stator 33, a magnetic field is formed in the outer stator 32, and the polarity of the magnetic field changes periodically while the magnet is changed. The movable element 31 to which the 35 is coupled is reciprocated up and down. As the movable element 31 reciprocates, the piston 22 reciprocates to perform a compression operation, and refrigerant can be sucked and discharged.

この圧縮動作中に、ピストン22の稼動周波数と圧縮機の共振周波数(固有振動数)とが一致すると圧縮機の共振がなされ、これにより、ピストン22及び可動子31の運動力が増大し、圧縮機の効率も向上する。したがって、従来の往復動圧縮機では、常用電源周波数と圧縮機の共振周波数とが一致するように制御してきた。これに対し、本実施形態の往復動圧縮機では、圧縮機の共振周波数を常用電源周波数よりも低い値に設定し、かつ、往復動圧縮機に供給される入力電源の周波数が、常用電源周波数よりも低い共振周波数に対応するように制御する。   During this compression operation, when the operating frequency of the piston 22 matches the resonance frequency (natural frequency) of the compressor, the resonance of the compressor is performed, thereby increasing the kinetic force of the piston 22 and the mover 31 and compressing the compression. The efficiency of the machine is also improved. Therefore, the conventional reciprocating compressor has been controlled so that the normal power supply frequency matches the resonance frequency of the compressor. In contrast, in the reciprocating compressor of this embodiment, the resonance frequency of the compressor is set to a value lower than the normal power supply frequency, and the frequency of the input power supplied to the reciprocating compressor is the normal power supply frequency. Control is made so as to correspond to a lower resonance frequency.

例えば、常用電源周波数が60Hzである場合には、圧縮機の共振周波数を50Hz程度に設定し、圧縮機の入力電源周波数も50Hz程度にする。ここで、圧縮機の共振周波数と入力電源の周波数が低すぎると、むしろ効率が低下してしまうので、常用電源周波数が60Hzなら、共振周波数及び入力電源の周波数は、常用電源周波数の60〜90%の範囲に該当する35〜55Hz程度に設定することが好ましい。   For example, when the normal power supply frequency is 60 Hz, the resonance frequency of the compressor is set to about 50 Hz, and the input power supply frequency of the compressor is also set to about 50 Hz. Here, if the resonance frequency of the compressor and the frequency of the input power supply are too low, the efficiency is rather lowered. Therefore, if the normal power supply frequency is 60 Hz, the resonance frequency and the frequency of the input power supply are 60 to 90 of the normal power supply frequency. It is preferable to set to about 35 to 55 Hz corresponding to the% range.

このような構成は、従来の往復動圧縮機に比べて能力可変範囲をより低い範囲まで拡大することによって、上述の構成を有する圧縮機が採用される冷却システムの負荷変動による圧縮能力の変化幅を広くすると同時に、圧縮機の効率を向上させるためのものである。また、圧縮機が常用電源周波数よりも低い範囲で共振するというのは、圧縮機が通常の低負荷、低速運転状態(以下、“一般負荷状態”という。)でより効率よく動作することを意味する。したがって、一般負荷状態で圧縮機が常用電源周波数よりも低い稼動周波数で動作することによって、モーターの鉄手や機械的な摩擦損失を従来よりも減らすことができる。   Such a configuration expands the variable variable range to a lower range as compared with the conventional reciprocating compressor, thereby changing the range of change in the compression capability due to the load fluctuation of the cooling system in which the compressor having the above configuration is adopted. This is to increase the efficiency of the compressor at the same time. In addition, the fact that the compressor resonates in a range lower than the normal power supply frequency means that the compressor operates more efficiently in a normal low load and low speed operation state (hereinafter referred to as “general load state”). To do. Therefore, by operating the compressor at an operating frequency lower than the normal power supply frequency in a general load state, it is possible to reduce the motor iron hand and mechanical friction loss as compared with the conventional case.

図2は、図1に示す往復動圧縮機における駆動装置の制御ブロック図である。同図に示すように、駆動装置は、交流電源50から往復動圧縮機に供給される電源の電圧及び周波数を調節するインバータ51と、電流センサー52から送られてきた情報に基づいて入力電源周波数を検出する電流検出部53と、を備える。また、駆動装置は、圧縮機内部の変位検出センサー42から送られてきた情報に基づいてピストン22及び可動子31の稼動周波数を検出する変位検出部54と、圧縮機の温度、吐出及び吸入圧力などを感知するか、その圧縮機が採用される冷却システムの負荷を感知することによって圧縮機にかかる負荷を検出する負荷検出部55と、往復動圧縮機に印加される入力電源周波数を制御すべく、電流検出部53、変位検出部54、負荷検出部55等により検出された情報に基づいてインバータ51を制御する制御部56と、をさらに備える。   FIG. 2 is a control block diagram of a driving device in the reciprocating compressor shown in FIG. As shown in the figure, the drive unit has an inverter 51 for adjusting the voltage and frequency of the power supplied from the AC power supply 50 to the reciprocating compressor, and the input power frequency based on the information sent from the current sensor 52. And a current detection unit 53 for detecting. Further, the drive device includes a displacement detector 54 that detects the operating frequency of the piston 22 and the mover 31 based on information sent from the displacement detection sensor 42 inside the compressor, and the temperature, discharge, and suction pressure of the compressor. Or a load detection unit 55 that detects a load applied to the compressor by sensing a load of a cooling system in which the compressor is used, and an input power frequency applied to the reciprocating compressor is controlled. Therefore, the control part 56 which further controls the inverter 51 based on the information detected by the electric current detection part 53, the displacement detection part 54, the load detection part 55 grade | etc., Is further provided.

次に、上記本発明の一実施形態による往復動圧縮機の圧縮動作及び効率的な動作制御のための制御方法について説明する。   Next, a control method for the compression operation and efficient operation control of the reciprocating compressor according to the embodiment of the present invention will be described.

交流電源50から60Hzの周波数を有する電源が印加されて圧縮機が起動するとき、常用電源が、インバータ51により圧縮機の共振周波数に相当する周波数を有する入力電源に転換する。すなわち、インバータ51から圧縮機に印加される入力電源の周波数は、共振周波数に相当する50Hz程度となる。したがって、圧縮機は、一般負荷状態(低負荷状態)でピストン22が50Hz前後の稼動周波数で往復移動しながら圧縮動作を行う。すなわち、圧縮機は、常用電源の周波数よりも低い周波数範囲で共振し、圧縮機において運転比率の高い一般負荷状態の運転でより高い効率を発揮できるようになる。   When a power source having a frequency of 60 Hz is applied from the AC power source 50 to start the compressor, the normal power source is converted by the inverter 51 into an input power source having a frequency corresponding to the resonance frequency of the compressor. That is, the frequency of the input power applied from the inverter 51 to the compressor is about 50 Hz corresponding to the resonance frequency. Therefore, the compressor performs a compression operation while the piston 22 reciprocates at an operating frequency of about 50 Hz in a general load state (low load state). That is, the compressor resonates in a frequency range lower than the frequency of the normal power supply, and the compressor can exhibit higher efficiency in the operation in the general load state where the operation ratio is high.

また、上記のような圧縮動作中に、圧縮機の制御部56は、負荷検出部55から送られてきた情報に基づいて、圧縮機にかかる負荷が一般負荷か高負荷か判断する。一般負荷の場合に、制御部56は、入力電源の周波数が圧縮機の共振周波数に相応するようにインバータ51を制御する。   Further, during the compression operation as described above, the compressor control unit 56 determines whether the load applied to the compressor is a general load or a high load based on the information sent from the load detection unit 55. In the case of a general load, the control unit 56 controls the inverter 51 so that the frequency of the input power supply corresponds to the resonance frequency of the compressor.

また、このように一般負荷状態で運転がなされる時に、制御部56は、圧縮機に印加される負荷変動によって共振周波数が変化しても、入力電源の周波数が常に共振周波数に相応するようにインバータ51を制御し、これにより、圧縮機は共振状態を続いて維持し、圧縮機の最適効率を達成することができる。すなわち、圧縮機の稼動中にはピストン22及び可動子31を含む稼動部の質量と共振スプリングの弾性は固定されるが、負荷の変動によってピストン22に加えられるガスの圧力などが変化することから共振周波数の変化が生じるため、本発明では、制御部56の制御を通じて入力電源周波数を共振周波数の変化に従って変化させ、最適化した圧縮機の効率を続いて維持するようにしている。   Further, when the operation is performed in the general load state as described above, the control unit 56 ensures that the frequency of the input power supply always corresponds to the resonance frequency even if the resonance frequency changes due to the load fluctuation applied to the compressor. By controlling the inverter 51, the compressor can continue to maintain the resonance state and achieve the optimum efficiency of the compressor. That is, while the compressor is in operation, the mass of the operating part including the piston 22 and the mover 31 and the elasticity of the resonance spring are fixed, but the pressure of the gas applied to the piston 22 changes due to load fluctuations. Since the resonance frequency is changed, in the present invention, the input power supply frequency is changed according to the change of the resonance frequency through the control of the control unit 56, and the optimized compressor efficiency is continuously maintained.

このような制御部56による制御は、図3に示すように行われる。すなわち、入力電源の周波数が共振周波数を追従するようにすべく、変位検出部54は、ピストン22の変位を感知することによって圧縮機の稼動周波数を検出し(ステップS61)、電流検出部53は、入力電源の周波数を検出する(ステップS62)。各検出部53,54により検出された情報に基づいて、制御部56は、稼動周波数と入力電源周波数との位相差を検出し(ステップS63)、検出された位相差が“0”か或いは“0”より大きいか判断する(ステップS64,ステップS65)。これは、位相差の存在有無と大きさを判断するために行われる。ここで、入力電源周波数と稼動周波数とが一致すると、圧縮機が共振状態にあると言える。したがって、制御部56は、位相差が“0”の場合には、入力電源周波数がそのまま維持されるようにインバータ51を制御する(ステップS66)。一方、位相差が“0”よりも大きい場合には、位相差に該当する補正値を計算することによって入力電源周波数を増加させるようにインバータ51を制御し(ステップS67)、位相差が“0”よりも小さい場合にも、同様に、位相差に該当する補正値を計算することによって入力電源周波数を減少させるようにインバータ51を制御する(ステップS68)。このようにして算定された入力電源周波数と稼動周波数間の位相差に基づいて、制御部56は、入力電源周波数を増加させたり減少させるように制御することによって、負荷変動によって共振周波数に変化が生じても入力電源周波数(または、稼動周波数)が共振周波数を追従するように制御し、最上の圧縮機効率が発揮されるようにする。   Such control by the control unit 56 is performed as shown in FIG. That is, the displacement detector 54 detects the operating frequency of the compressor by sensing the displacement of the piston 22 so that the frequency of the input power source follows the resonance frequency (step S61), and the current detector 53 The frequency of the input power supply is detected (step S62). Based on the information detected by the detection units 53 and 54, the control unit 56 detects a phase difference between the operating frequency and the input power supply frequency (step S63), and the detected phase difference is “0” or “ It is determined whether it is greater than 0 "(step S64, step S65). This is performed to determine the presence / absence and magnitude of the phase difference. Here, if the input power frequency matches the operating frequency, it can be said that the compressor is in a resonance state. Therefore, when the phase difference is “0”, the control unit 56 controls the inverter 51 so that the input power supply frequency is maintained as it is (step S66). On the other hand, when the phase difference is larger than “0”, the inverter 51 is controlled to increase the input power supply frequency by calculating a correction value corresponding to the phase difference (step S67), and the phase difference is “0”. Similarly, when it is smaller than "", the inverter 51 is controlled so as to decrease the input power supply frequency by calculating the correction value corresponding to the phase difference (step S68). Based on the phase difference between the input power supply frequency and the operating frequency calculated in this way, the control unit 56 controls the input power supply frequency to increase or decrease, so that the resonance frequency is changed due to load fluctuation. Even if it occurs, control is performed so that the input power supply frequency (or operating frequency) follows the resonance frequency, so that the highest compressor efficiency is exhibited.

一方、負荷検出部55が、圧縮機に印加された負荷が一般負荷よりも高く、この圧縮機が高負荷状態にあると判定すると、制御部56は、共振周波数よりも高い入力電源周波数が圧縮機に印加されて圧縮機の能力が向上するようにインバータ51を制御する。すなわち、本発明による往復動圧縮機は、一般負荷の場合、共振周波数が入力電源周波数と一致するように制御することによって圧縮機効率を極大化し、高負荷の場合、圧縮機の効率が低下しないような範囲内で充分なる圧縮能力を発揮できるように制御する。このような制御は、通常の圧縮機が高負荷状態で運転される場合よりも一般負荷状態で運転される場合が多いので、運転比率の高い一般負荷状態における効率を極大化させることによって、全体的な圧縮機効率の向上を図るためのものである。   On the other hand, when the load detection unit 55 determines that the load applied to the compressor is higher than the general load and the compressor is in a high load state, the control unit 56 compresses the input power source frequency higher than the resonance frequency. The inverter 51 is controlled so that the capacity of the compressor is improved by being applied to the machine. That is, the reciprocating compressor according to the present invention maximizes the compressor efficiency by controlling the resonance frequency so as to coincide with the input power supply frequency in the case of a general load, and does not decrease the efficiency of the compressor in the case of a high load. In such a range, control is performed so that sufficient compression capacity can be exhibited. Such a control is often operated in a general load state rather than a normal compressor operated in a high load state, so by maximizing the efficiency in a general load state with a high operation ratio, This is intended to improve the efficiency of the compressor.

本発明の一実施形態による往復動圧縮機を示す断面図である。It is sectional drawing which shows the reciprocating compressor by one Embodiment of this invention. 図1に示す往復動圧縮機における駆動装置の制御ブロック図である。It is a control block diagram of the drive device in the reciprocating compressor shown in FIG. 図1に示す往復動圧縮機の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the reciprocating compressor shown in FIG.

符号の説明Explanation of symbols

10 密閉容器
20 圧縮装置
30 リニアモーター
42 変位検出センサー
50 常用電源
51 インバータ
53 電流検出部
54 変位検出部
55 負荷検出部
56 制御部
DESCRIPTION OF SYMBOLS 10 Airtight container 20 Compression apparatus 30 Linear motor 42 Displacement detection sensor 50 Common power supply 51 Inverter 53 Current detection part 54 Displacement detection part 55 Load detection part 56 Control part

Claims (15)

電源を受信し、該受信した電源の周波数を調節して圧縮機に入力するインバータを有する往復動圧縮機において、
前記圧縮機の共振周波数が前記受信した電源の常用周波数よりも低く、
入力電源の周波数が前記共振周波数に相応することを特徴とする往復動圧縮機。
In a reciprocating compressor having an inverter that receives a power supply, adjusts the frequency of the received power supply and inputs the power to the compressor,
The resonance frequency of the compressor is lower than the normal frequency of the received power supply;
A reciprocating compressor characterized in that a frequency of an input power source corresponds to the resonance frequency.
前記共振周波数は、前記受信した電源の常用周波数の60〜90%の範囲であることを特徴とする請求項1に記載の往復動圧縮機。   The reciprocating compressor according to claim 1, wherein the resonance frequency is in a range of 60 to 90% of a normal frequency of the received power supply. 前記圧縮機の動作を制御する制御部をさらに備え、
前記制御部は、前記圧縮機の稼動周波数が、前記圧縮機の作動によって変わる共振周波数を追従するように、前記入力電源の周波数を制御することを特徴とする請求項2に記載の往復動圧縮機。
A control unit for controlling the operation of the compressor;
The reciprocating compression according to claim 2, wherein the control unit controls the frequency of the input power supply so that an operating frequency of the compressor follows a resonance frequency that varies depending on an operation of the compressor. Machine.
前記制御部は、前記入力電源の周波数と前記圧縮機の稼動周波数間の位相差を判断し、この位相差に相当する補正値によって前記入力電源の周波数を増加させたり減少させるように前記インバータを制御することを特徴とする請求項3に記載の往復動圧縮機。   The control unit determines a phase difference between the frequency of the input power source and the operating frequency of the compressor, and controls the inverter to increase or decrease the frequency of the input power source according to a correction value corresponding to the phase difference. The reciprocating compressor according to claim 3, wherein the reciprocating compressor is controlled. 圧縮機内部に設置されるピストンと、
前記入力電源の周波数を検出する電流検出部と、
前記ピストンの変位を検出して前記稼動周波数を判断する変位検出部と、をさらに備えることを特徴とする請求項4に記載の往復動圧縮機。
A piston installed inside the compressor;
A current detector for detecting the frequency of the input power supply;
The reciprocating compressor according to claim 4, further comprising a displacement detection unit that detects a displacement of the piston and determines the operating frequency.
前記圧縮機に印加される負荷を検出する負荷検出部をさらに備え、
前記制御部は、前記負荷検出部により検出された負荷が一般負荷の場合、前記入力電源の周波数が前記共振周波数と等しくなるように前記インバータを制御し、前記検出された負荷が前記一般負荷よりも高い場合、前記入力電源周波数が前記共振周波数よりも大きくなるように前記インバータを制御することを特徴とする請求項5に記載の往復動圧縮機。
A load detecting unit for detecting a load applied to the compressor;
When the load detected by the load detection unit is a general load, the control unit controls the inverter so that the frequency of the input power supply is equal to the resonance frequency, and the detected load is greater than the general load. The reciprocating compressor according to claim 5, wherein the inverter is controlled so that the input power source frequency is higher than the resonance frequency when the frequency is higher.
前記圧縮機に入力される電源の周波数を調節するインバータと、
前記圧縮機の稼動周波数を、判断された前記稼動周波数と前記入力電源の周波数間の位相差に基づいて前記入力電源の周波数と一致させるように前記インバータを制御する制御部と、
を含むことを特徴とする往復動圧縮機。
An inverter for adjusting a frequency of a power source input to the compressor;
A control unit that controls the inverter so that the operating frequency of the compressor matches the frequency of the input power source based on the phase difference between the determined operating frequency and the frequency of the input power source;
The reciprocating compressor characterized by including.
前記制御部は、前記位相差に相当する補正値に従って前記入力電源の周波数を増加させたり減少させるように前記インバータを制御し、前記稼動周波数が、前記圧縮機の作動によって変わる前記圧縮機の共振周波数を追従するようにすることを特徴とする請求項7に記載の往復動圧縮機。   The control unit controls the inverter to increase or decrease the frequency of the input power source according to a correction value corresponding to the phase difference, and the operating frequency changes according to the operation of the compressor. The reciprocating compressor according to claim 7, wherein the frequency follows the frequency. 往復動圧縮機を駆動する駆動装置において、
前記圧縮機に印加される入力電源の周波数を調節するインバータと、
前記圧縮機に印加される負荷を検出する負荷検出部と、
前記負荷検出部により検出された負荷が一般負荷の場合、前記入力電源の周波数が前記圧縮機の共振周波数と等しくなるように前記インバータを制御し、前記検出された負荷が前記一般負荷よりも大きい場合、前記入力電源の周波数が前記共振周波数よりも大きくなるように前記インバータを制御する制御部と、
を備えることを特徴とする往復動圧縮機の駆動装置。
In the drive device for driving the reciprocating compressor,
An inverter that adjusts the frequency of the input power applied to the compressor;
A load detector for detecting a load applied to the compressor;
When the load detected by the load detector is a general load, the inverter is controlled so that the frequency of the input power source is equal to the resonance frequency of the compressor, and the detected load is larger than the general load. A control unit that controls the inverter so that the frequency of the input power supply is greater than the resonance frequency;
A drive device for a reciprocating compressor, comprising:
ピストンと、
圧縮機に印加される入力電源の周波数を調節するインバータと、
前記入力電源の周波数を検出する電流検出部と、
前記ピストンの変位を検出することによって前記圧縮機の稼動周波数を判断する変位検出部と、
前記稼動周波数が前記圧縮機の動作によって変わる共振周波数を追従するようにすべく、前記入力電源周波数と前記稼動周波数間の位相差を判断し、この判断された位相差に基づいて前記入力電源の周波数を増減させるように前記インバータを制御する制御部と、
を備えることを特徴とする往復動圧縮機の駆動装置。
A piston,
An inverter for adjusting the frequency of the input power applied to the compressor;
A current detector for detecting the frequency of the input power supply;
A displacement detector that determines the operating frequency of the compressor by detecting the displacement of the piston;
A phase difference between the input power source frequency and the operating frequency is determined so that the operating frequency follows a resonance frequency that varies depending on the operation of the compressor, and the input power source A controller that controls the inverter to increase or decrease the frequency;
A drive device for a reciprocating compressor, comprising:
圧縮機に印加される負荷が、高負荷か一般負荷か判断し、
前記圧縮機に印加される負荷が一般負荷の場合、前記圧縮機の共振周波数と同じ周波数を有する電源を前記圧縮機に印加し、
前記圧縮機に印加される負荷が高負荷の場合、前記往復動圧縮機の共振周波数よりも大きい周波数を有する電源を前記圧縮機に印加することを特徴とする往復動圧縮機の制御方法。
Determine whether the load applied to the compressor is high load or general load,
When the load applied to the compressor is a general load, a power source having the same frequency as the resonance frequency of the compressor is applied to the compressor,
A control method for a reciprocating compressor, wherein a power having a frequency larger than a resonance frequency of the reciprocating compressor is applied to the compressor when a load applied to the compressor is a high load.
インバータを有する往復動圧縮機の制御方法において、
入力電源の周波数と前記圧縮機の稼動周波数間の位相差を判断し、
前記位相差に相当する補正値に従って前記入力電源の周波数を増加させたり減少させるように前記インバータを制御することを特徴とする往復動圧縮機の制御方法。
In a control method of a reciprocating compressor having an inverter,
Determine the phase difference between the frequency of the input power source and the operating frequency of the compressor;
A control method for a reciprocating compressor, wherein the inverter is controlled to increase or decrease the frequency of the input power supply according to a correction value corresponding to the phase difference.
前記制御部は、前記判断した位相差が“0”の場合、前記入力電源の周波数を維持することを特徴とする請求項4に記載の往復動圧縮機。   The reciprocating compressor according to claim 4, wherein the control unit maintains the frequency of the input power supply when the determined phase difference is “0”. 前記共振周波数が、前記ピストンに加えられるガスの圧力によって変化することを特徴とする請求項5に記載の往復動圧縮機。   The reciprocating compressor according to claim 5, wherein the resonance frequency varies depending on a pressure of a gas applied to the piston. 圧縮機の共振周波数よりも大きい周波数を有する電源を入力し、
前記入力電源を前記圧縮機の共振周波数に調節し、
前記調節された電源をもって前記圧縮機を駆動することを特徴とする往復動圧縮機の制御方法。
Input a power supply having a frequency larger than the resonance frequency of the compressor,
Adjusting the input power supply to the resonant frequency of the compressor;
A control method for a reciprocating compressor, wherein the compressor is driven by the adjusted power source.
JP2005137796A 2004-06-04 2005-05-10 Reciprocating compressor and its drive mechanism as well as control method Pending JP2005344708A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040040994 2004-06-04
KR1020040073172A KR20050115807A (en) 2004-06-04 2004-09-13 Reciprocating compressor, drive device of reciprocating compressor and control medhod of reciprocating compressor

Publications (1)

Publication Number Publication Date
JP2005344708A true JP2005344708A (en) 2005-12-15

Family

ID=34939524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137796A Pending JP2005344708A (en) 2004-06-04 2005-05-10 Reciprocating compressor and its drive mechanism as well as control method

Country Status (3)

Country Link
US (1) US20050271526A1 (en)
EP (1) EP1607631A3 (en)
JP (1) JP2005344708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511959A (en) * 2011-03-15 2014-05-19 ワールプール,ソシエダッド アノニマ Operating system for resonant linear compressor, operating method of resonant linear compressor and resonant linear compressor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
BRPI0400108B1 (en) 2004-01-22 2017-03-28 Empresa Brasileira De Compressores S A - Embraco linear compressor and control method of a linear compressor
US7408310B2 (en) * 2005-04-08 2008-08-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
KR100761268B1 (en) * 2006-01-06 2007-09-28 엘지전자 주식회사 Driving control apparatus and method for reciprocating compressor
CA2872297C (en) 2006-09-28 2016-10-11 Smith & Nephew, Inc. Portable wound therapy system
KR101507605B1 (en) * 2007-10-24 2015-04-01 엘지전자 주식회사 linear compressor
KR100964368B1 (en) * 2007-10-31 2010-06-17 엘지전자 주식회사 Method for controlling Motor of air conditioner and motor controller of the same
CN101868203B (en) 2007-11-21 2014-10-22 史密夫及内修公开有限公司 Wound dressing
WO2010109832A1 (en) * 2009-03-26 2010-09-30 三菱電機株式会社 Refrigerator
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
JP6276251B2 (en) 2012-03-20 2018-02-07 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Operation control of decompression therapy system based on dynamic determination of duty cycle threshold
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
CA2975561C (en) * 2012-11-26 2019-07-09 Moog Inc. Methods and system for controlling a linear motor for a deep well oil pump
US20140230463A1 (en) * 2013-02-15 2014-08-21 GM Global Technology Operations LLC Method for controlling a compressor of a thermal storage heat pump system
WO2016103032A1 (en) 2014-12-22 2016-06-30 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
JP6591668B2 (en) * 2016-05-27 2019-10-16 株式会社日立製作所 Linear motor system and compressor
KR20200068436A (en) * 2018-12-05 2020-06-15 엘지전자 주식회사 Linear compressor and method for controlling linear compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3021873C2 (en) * 1980-06-11 1982-11-25 Heinrich Dipl.-Ing. 6368 Bad Vilbel Dölz Electrically driven vibrating compressor
GB2109590B (en) * 1981-11-12 1985-08-21 Standard Telephones Cables Ltd Motor control system
US4514991A (en) * 1983-10-17 1985-05-07 Carrier Corporation Variable speed drive motor system with inverter control
US4706470A (en) * 1985-05-16 1987-11-17 Sawafuji Electric Co., Ltd. System for controlling compressor operation
JPH02145679U (en) * 1989-05-16 1990-12-11
KR0176909B1 (en) * 1996-05-08 1999-10-01 구자홍 Driving device of a linear compressor
TW353707B (en) * 1997-09-26 1999-03-01 Nat Science Council Control device for linear compressor
KR100301500B1 (en) * 1998-11-28 2001-09-22 구자홍 Resonance frequency control apparatus and method for inverter refrigerator
JP3511018B2 (en) * 2001-05-18 2004-03-29 松下電器産業株式会社 Linear compressor drive
BR0112336B1 (en) * 2001-05-25 2010-07-13 reciprocal compressor.
KR100451233B1 (en) * 2002-03-16 2004-10-02 엘지전자 주식회사 Driving control method for reciprocating compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511959A (en) * 2011-03-15 2014-05-19 ワールプール,ソシエダッド アノニマ Operating system for resonant linear compressor, operating method of resonant linear compressor and resonant linear compressor

Also Published As

Publication number Publication date
US20050271526A1 (en) 2005-12-08
EP1607631A2 (en) 2005-12-21
EP1607631A3 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP2005344708A (en) Reciprocating compressor and its drive mechanism as well as control method
JP4662991B2 (en) Linear compressor
CN106605061B (en) Linear compressor and apparatus and method for controlling the same
KR20090042160A (en) Reciprocating compressor
KR20130087862A (en) Apparatus and method for controlling compressor, and refrigerator having the same
US8562312B2 (en) Linear motor and reciprocating compressor employing the same
JP3762469B2 (en) Linear compressor drive unit
US8430642B2 (en) Controlling apparatus for linear compressor
KR101495185B1 (en) Apparatus for controlling linear compressor and method the same
KR101299548B1 (en) Apparatus for controlling compressor and method of the same
JP2008511792A (en) Linear compressor
KR100690153B1 (en) Linear compressor
KR100690164B1 (en) Control method for a linear compressor
US20080213108A1 (en) Linear Compressor
KR102350512B1 (en) Apparatus and method for controlling compressor
KR100373098B1 (en) Linear compressor and operating control method thereof
CN111271244B (en) Linear compressor and control method thereof
KR20050115807A (en) Reciprocating compressor, drive device of reciprocating compressor and control medhod of reciprocating compressor
KR100648818B1 (en) Linear compressor
KR100588718B1 (en) Linear compressor
KR100648787B1 (en) Linear compressor
KR100756721B1 (en) Controlling apparatus for linear compressor
KR100588719B1 (en) Controlling apparatus of linear compressor and its method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715