WO2018154812A1 - モリブデンオキシスルフィド電極およびその利用 - Google Patents

モリブデンオキシスルフィド電極およびその利用 Download PDF

Info

Publication number
WO2018154812A1
WO2018154812A1 PCT/JP2017/029836 JP2017029836W WO2018154812A1 WO 2018154812 A1 WO2018154812 A1 WO 2018154812A1 JP 2017029836 W JP2017029836 W JP 2017029836W WO 2018154812 A1 WO2018154812 A1 WO 2018154812A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ions
molybdenum oxysulfide
nitrate ions
mos
Prior art date
Application number
PCT/JP2017/029836
Other languages
English (en)
French (fr)
Inventor
龍平 中村
亜梅 李
道平 何
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2019501019A priority Critical patent/JP6990454B2/ja
Publication of WO2018154812A1 publication Critical patent/WO2018154812A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode suitably used for a denitrification reaction, an electrode system provided with the electrode, and a denitrification method using them.
  • the physicochemical treatment technology includes an anion exchange method in which nitrate ions are captured by an anion exchange resin, and electricity that separates nitrate ions by flowing a direct current through a tank in which a cation exchange membrane and an anion exchange membrane are installed.
  • anion exchange method in which nitrate ions are captured by an anion exchange resin, and electricity that separates nitrate ions by flowing a direct current through a tank in which a cation exchange membrane and an anion exchange membrane are installed.
  • dialysis methods There are dialysis methods. However, since a waste liquid containing nitrate ions at a high concentration is generated, there is a problem in that the treatment is required.
  • Patent Document 1 methods for reducing nitric acid using an electrode catalyst such as a platinum electrode have been developed (for example, Patent Document 1 and Non-Patent Document 1).
  • an electrode catalyst such as a platinum electrode
  • An object of the present invention is to provide an electrode and an electrode system capable of reducing nitrate nitrogen stably and efficiently.
  • the present inventors reduced nitrate ions and nitrite ions by using an electrode containing molybdenum oxysulfide in the catalyst layer (also referred to as molybdenum oxysulfide electrode). It has been found that nitrogen oxides and even nitrogen can be efficiently decomposed, and an electrode system including the electrode has been found to be excellent in applications such as a denitrification system, thereby completing the present invention.
  • the present invention provides the following.
  • An electrode system comprising the electrode according to [1] and a reference electrode and / or a counter electrode.
  • the electrode system according to [2] which is a denitrification system.
  • the electrode according to [1] and the reference electrode and / or the counter electrode are immersed in a solution containing nitrate ion and / or nitrite ion, and a voltage is applied to the electrode according to [1] to apply nitrate ion and A denitrification method comprising performing a reduction reaction of nitrite ions.
  • nitrate ions and nitrite ions can be reduced to nitrous oxide and even nitrogen, so nitrate nitrogen can be reduced to the atmosphere as nitrogen, contributing to environmental conservation. can do.
  • the electrode of the present invention can reduce nitric acid and nitrous acid in a wide pH range and can function even in the presence of high-concentration carbonic acid, the pH and carbonic acid concentration of the waste liquid containing nitric acid and nitrous acid Therefore, the denitrification reaction can be performed by a simple operation.
  • the electrode system of the present invention can also be used in applications such as fuel cells.
  • FIG. 1 is a graph showing the results of electrochemical nitrate reduction using (1) Pt catalyst, (2) MoS 2 catalyst, and (3) MoS x O 2-x catalyst.
  • FIG. 2 is a diagram showing the generation of nitrogen molecules and ammonia accompanying the reduction reaction of nitrate ions.
  • FIG. 3 is a graph showing reaction products (D 2 , ND 3 , 15 N 2 O, 15 NO) of an electrochemical / nitrite reduction reaction using a MoS x O 2-x catalyst.
  • FIG. 4 is a graph showing the pH dependence of the reaction selectivity of N 2 O production in an electrochemical / nitrite reduction reaction using a MoS x O 2-x catalyst.
  • FIG. 5 is a graph showing the pH dependence of N 2 production in an electrochemical / nitrite reduction reaction using a MoS x O 2-x catalyst.
  • FIG. 6 shows the Raman spectra of molybdenum oxysulfide and MoS 2 .
  • the electrode of the present invention includes a catalyst layer containing molybdenum oxysulfide.
  • Molybdenum oxysulfide is represented by the general formula MoS x O 2-x , where 0 ⁇ x ⁇ 2, preferably 1 ⁇ x ⁇ 2, more preferably 1.2 ⁇ x ⁇ 1.8. More preferably, 1.5 ⁇ x ⁇ 1.6.
  • the molybdenum oxysulfide used in the electrode of the present invention is mainly composed of tetravalent Mo (Mo 4+ ), but other valences such as pentavalent and hexavalent Mo (Mo 5+ and Mo 6+ ) may be present. However, for the sake of convenience, when determining the value of x in MoS x O 2-x , it is assumed that Mo is tetravalent.
  • Molybdenum oxysulfide can be prepared by a known method.
  • molybdenum sulfide is synthesized by a hydrothermal reaction between a Mo source and a sulfur source, but a reagent containing an oxygen atom as a Mo source (for example, molybdate) and / or a reagent containing an oxygen atom as a sulfur source (for example, L-cysteine) can be similarly synthesized by a hydrothermal reaction.
  • the value of x can be adjusted to a desired value depending on the reaction ratio between the Mo source and the sulfur source.
  • MoS 2 molybdenum disulfide
  • oxygen atoms for example, plasma treatment
  • the electrode of the present invention can be produced by forming a catalyst layer containing molybdenum oxysulfide on an electrode substrate.
  • it can be produced by preparing a catalyst layer forming ink containing molybdenum oxysulfide and applying it to an electrode substrate.
  • the electrode substrate include a carbon material such as carbon, or a metal material such as gold (Au), platinum (Pt), silver (Ag), and palladium (Pd).
  • the size and thickness of the electrode substrate can be appropriately set.
  • the catalyst layer forming ink can be prepared, for example, by dispersing molybdenum oxysulfide in an electrolyte solution.
  • a polymer electrolyte As the electrolyte, a polymer electrolyte is preferable.
  • a substance having an acidic group such as a sulfonic acid group or a carboxylic acid group, and a fluorocarbon or hydrocarbon polymer main chain, such as NAFION (trademark) (tetrafluoroethylene and perfluoro [2 -(fluorosulfonylethoxy) propylvinyl ether]).
  • NAFION trademark
  • polymer compounds doped with inorganic acids such as phosphoric acid, organic / inorganic hybrid polymers partially substituted with proton conductive functional groups, and polymer matrix impregnated with phosphoric acid solution or sulfuric acid solution
  • Polymer electrolytes such as proton conductors can be used. Two or more kinds of polymer electrolytes may be mixed and used.
  • the concentration of molybdenum oxysulfide in the ink composition for forming a catalyst layer may be appropriately adjusted according to the coating method of the ink composition, and is usually 0.5% by mass to 25% by mass (the total amount of the ink composition is 100%). Mass%).
  • the medium for dissolving the electrolyte can be appropriately selected depending on the type of the electrolyte, and examples thereof include water and organic solvents such as alcohol.
  • the method for applying the catalyst layer forming ink composition to the electrode substrate surface is not particularly limited.
  • the ink composition may be applied directly to the substrate surface or applied to a transfer substrate. Examples include a method of transferring later. Specific methods for applying the ink composition include a dipping method, a screen printing method, a roll coating method, a spray method, a bar coater method, a doctor blade method, and the like.
  • the method for drying the applied ink composition is not particularly limited, and examples thereof include natural drying and a method of heating with a heater.
  • the electrode system of the present invention includes an electrode including a catalyst layer containing molybdenum oxysulfide, a counter electrode and / or a reference electrode.
  • a two-electrode system including the molybdenum oxysulfide electrode of the present invention and a counter electrode or a reference electrode may be used, or a three-electrode system including the molybdenum oxysulfide electrode of the present invention, a counter electrode and a reference electrode may be used.
  • Any counter electrode may be used as long as it can be generally used as a counter electrode.
  • a carbon electrode, a metal electrode, or a silver / silver chloride electrode can be used.
  • a silver / silver chloride electrode, a carbon electrode, a metal electrode, or the like can be used as the reference electrode.
  • the electrode system of the present invention can be used as a battery or an electrolytic cell.
  • it can be used as a fuel cell by combining a molybdenum oxysulfide electrode as a cathode and an appropriate anode electrode and electrolyte, but it is preferably used as an electrode catalyst, more preferably as an electrode catalyst for denitrification (nitric acid reduction). used.
  • a molybdenum oxysulfide electrode, a counter electrode and / or a reference electrode in a solution containing nitrate ions and / or nitrite ions, connecting them to a power source, and applying a voltage to the molybdenum oxysulfide electrode. Then, a reduction reaction of nitric acid and / or nitrous acid occurs on the surface of the catalyst layer of the molybdenum oxysulfide electrode.
  • the voltage applied to the molybdenum oxysulfide electrode is preferably 0 V to +0.2 V, more preferably +0.05 V to +0.15 V, particularly preferably relative to a reversible hydrogen electrode (RHE). Is about + 0.1V.
  • RHE reversible hydrogen electrode
  • nitric acid and / or nitrous acid can be efficiently reduced to nitrous oxide, which is the final intermediate of nitrogen generation.
  • the time for applying the voltage is appropriately adjusted according to the concentration of nitrate ions and / or nitrite ions.
  • the pH of the solution containing nitrate ions and / or nitrite ions is not particularly limited, and the molybdenum oxysulfide electrode can function in a wide pH range.
  • pH 3 to 7 is preferable, pH 4 to 6 is preferable, and pH 5 is particularly preferable. preferable.
  • pH 3 to 7 is preferable, pH 4 to 6 is preferable, and pH 5 is particularly preferable. preferable.
  • the temperature of the solution is not particularly limited, but is preferably 10 to 40 ° C., for example.
  • the solution containing nitrate ions and / or nitrite ions preferably contains an electrolyte such as NaCl or Na 2 SO 4 .
  • the electrode system of the present invention is a concentration sensor that measures the concentration of nitrate ions, a pH sensor, a neutralizer addition device, a pH buffer addition device, a diluent addition device, a stirring device, A separation membrane or the like may be included.
  • the Raman spectrum was measured by irradiating a 785 nm red laser at 0.1 mW using a laser Raman apparatus (Senterra, Bruker, Germany).
  • the X-ray photoelectron spectrum (XPS) was measured, and the value of x was calculated based on the values of the spectral intensity of Mo (3d) and spectral intensity of S (2p), and x was 1.5 to 1.6. .
  • XPS X-ray photoelectron spectrum
  • Mo molybdenum disulfide
  • FIG. 6 also shows the measurement results of the MoS 2 Raman spectrum.
  • a diluted Nafion solution (0.123 wt%) was prepared by mixing 50 ⁇ L of 10 wt% Nafion solution with 3 mL ultrapure water and 1 mL ethanol. Thereafter, 1.5 mg of MoS x O 2-x powder was dispersed in 202.5 ⁇ L of diluted Nafion solution and subjected to ultrasonic treatment for one hour to obtain a catalyst ink (a suspension containing the catalyst). 5 ⁇ L of the catalyst ink was applied to the surface of carbon paper or glassy carbon and dried at room temperature under vacuum conditions to obtain the target electrode catalyst.
  • Electrochemical measurement In the electrochemical measurement, a MoS x O 2-x electrode was used as a working electrode, a Pt wire and an Ag / AgCl (sat. KCl) electrode were used as a counter electrode and a reference electrode, respectively.
  • As the electrolyte and pH buffer 0.2 M Na 2 SO 4 aqueous solution and 0.1 M sodium phosphate (0.04 M NaH 2 PO 4 and 0.06 M Na 2 HPO 4 mixed solution) were used, respectively.
  • the pH of the electrolyte was adjusted using dilute sulfuric acid and sodium hydroxide.
  • Electrocatalytic activity Fig. 1 shows the results of electrochemical nitrate reduction reaction using MoS x O 2-x powder, MoS 2 powder, and Pt powder as electrode catalysts.
  • the pH of the solution was 7, and the concentration of nitrate ions was 0.1M.
  • the X-axis potential is based on a reversible hydrogen electrode (RHE).
  • RHE reversible hydrogen electrode
  • MoS x O 2-x molybdenum sulfide containing oxygen
  • N 2 molecular nitrogen
  • NO 2 - nitrite
  • N 2 O nitrous oxide
  • Figure 2 the final intermediate of nitric oxide by reducing
  • FIG. 4 shows the pH dependence of the selectivity of N 2 O production when nitrite reduction is performed with the electrode potential fixed at + 0.1V.
  • the production of N 2 O was strongly dependent on pH, and the selectivity reached a maximum value of 42% at pH 5.
  • N 2 which is a complete denitrification product was analyzed. Specifically, to secure the electrode potential to + 0.1 V, isotopically labeled 0.1M nitrite (15 NO 2 -) used as a substrate, a gas chromatography-mass spectrometry (GC / MS) 15 N 2 using Was detected (Fig. 5).
  • GC / MS gas chromatography-mass spectrometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明は効率よく硝酸及び亜硝酸を還元することのできる電極触媒を提供することを課題とし、モリブデンオキシスルフィドを含む触媒層を有する電極、およびそれを用いて硝酸イオンおよび/または亜硝酸イオンの還元反応を行う脱窒方法を提供する。

Description

モリブデンオキシスルフィド電極およびその利用
 本発明は脱窒反応に好適に使用される電極およびそれを備えた電極システム並びにそれらを利用した脱窒方法に関する。
 肥料や飼料などに含まれる硝酸態窒素(硝酸イオンおよび亜硝酸イオンを含む)は地下水などを通じて河川に流入し、湖沼や閉鎖性海域の富栄養化等の問題を引き起こす。
 硝酸態窒素含有廃水の処理方法として、生物学的処理と物理化学的処理がある。
 このうち、生物学的処理は古くから使用されており、溶存酸素のない嫌気状態で脱窒素菌により硝酸態窒素を窒素ガスに還元する方法であるが、脱窒素菌はpHや水温の影響を受けやすく反応速度が遅いという欠点がある。また、硝酸イオンや亜硝酸イオンが低濃度の廃液にしか適用できず、硝酸イオンや亜硝酸イオンが高濃度の廃液については、微生物処理が可能な濃度まで希釈しなければならず、処理量の増大及び処理設備の大型化につながるという問題もあった。
 また、物理化学的処理技術としては、陰イオン交換樹脂に硝酸イオンを捕捉させる陰イオン交換法、陽イオン交換膜と陰イオン交換膜を設置した槽に直流電流を流して硝酸イオンを分離する電気透析法等がある。しかし、高濃度に硝酸イオンを含む廃液が生じるため、その処理を必要とするという点で問題がある。
 そこで、白金電極などの電極触媒を用いて硝酸を還元する方法が開発されている(例えば、特許文献1及び非特許文献1)。しかしながら、電極が不安定であり、また、低pH域でしか十分な機能が発揮されないなどの問題があった。
特開2004-073926号公報
水環境学会誌  Vol. 28 (2005)  No. 4  P 263-268
 本発明は、安定かつ効率的に硝酸態窒素を還元することのできる電極および電極システムを提供することを課題とする。
 本発明者らは上記課題を解決するために鋭意検討した結果、モリブデンオキシスルフィドを触媒層に含む電極(モリブデンオキシスルフィド電極とも呼ぶ)を用いることにより硝酸イオンや亜硝酸イオンを還元して、亜酸化窒素さらには窒素まで効率よく分解できることを見出し、当該電極を含む電極システムが脱窒システムなどの用途に優れることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下を提供する。
[1]モリブデンオキシスルフィドを含む触媒層を有する電極。
[2][1]に記載の電極と、参照電極及び/又は対電極を含む、電極システム。
[3]脱窒システムである、[2]に記載の電極システム。
[4]硝酸イオンおよび/または亜硝酸イオンを含む溶液に[1]に記載の電極と参照電極及び/又は対電極を浸漬し、[1]に記載の電極に電圧を印加して硝酸イオンおよび/または亜硝酸イオンの還元反応を行うことを特徴とする、脱窒方法。
[5]硝酸イオンおよび/または亜硝酸イオンを含む溶液のpHが4~6である、[4]に記載の脱窒方法。
[6][1]に記載の電極に+0.05~+0.15V(可逆水素電極基準)の電圧が印加される、[4]又は[5]に記載の脱窒方法。
 本発明の電極システムを使用することにより、硝酸イオンや亜硝酸イオンを還元して、亜酸化窒素、さらには窒素まで還元できるので、硝酸態窒素を窒素として大気中に還元でき、環境保全に貢献することができる。また、本発明の電極は広いpH域で硝酸及び亜硝酸の還元を行うことができ、かつ、高濃度の炭酸存在下でも機能しうるので、硝酸や亜硝酸を含有する廃液のpHや炭酸濃度を予め調節する必要がなく、簡便な操作で脱窒反応を行うことができる。本発明の電極システムはまた、燃料電池などの用途にも使用しうる。
図1は、(1)Pt触媒、(2) MoS2触媒、(3) MoSxO2-x触媒を用いた電気化学的硝酸還元反応の結果を示すグラフである。 図2は、硝酸イオンの還元反応に伴う窒素分子ならびにアンモニア生成を示す図である。 図3は、MoSxO2-x触媒を用いた電気化学的・亜硝酸還元反応の反応生成物(D2,ND315N2O, 15NO)を示すグラフである。 図4は、MoSxO2-x触媒を用いた電気化学的・亜硝酸還元反応におけるN2O生成の反応選択率のpH依存性を示すグラフである。 図5は、MoSxO2-x触媒を用いた電気化学的・亜硝酸還元反応におけるN2生成のpH依存性を示すグラフである。 図6はモリブデンオキシスルフィドおよびMoS2のラマンスペクトルを示す図である。
 本発明の電極はモリブデンオキシスルフィドを含む触媒層を含む。
 モリブデンオキシスルフィドは、一般式MoSxO2-xで表され、ここで、0<x<2であり、好ましくは1<x<2であり、より好ましくは1.2<x<1.8であり、さらに好ましくは1.5≦x≦1.6である。
 なお、本発明の電極で使用されるモリブデンオキシスルフィドは、主には4価のMo(Mo4+)から構成されるが、それ以外の価数、例えば、5価や6価のMo(Mo5+,Mo6+)が存在していてもよい。但し、便宜上、MoSxO2-xのxの値を決定する際には、Moが4価であることを前提とする。
 モリブデンオキシスルフィドは、公知の方法で調製することができる。例えば、モリブデンスルフィドは、Mo源と硫黄源との水熱反応により合成されるが、Mo源として酸素原子を含む試薬(例えば、モリブデン酸塩)及び/又は硫黄源として酸素原子を含む試薬(例えばL-システイン)を用いて、同様に水熱反応により合成することができる。Mo源と硫黄源との反応比率等により、xの値を所望の値に調整することができる。また、一旦、二硫化モリブデン(MoS2)を得た後、酸素原子を導入するための処理(例えば、プラズマ処理)を行うことによっても得ることができる。なお、酸素原子が導入されたかは、ラマンスペクトルによってMo=Oの伸縮振動に帰属される吸収ピークを追跡することで確認できる。
 本発明の電極は電極用基材上にモリブデンオキシスルフィドを含む触媒層を形成させることで作製することができる。
 例えば、モリブデンオキシスルフィドを含む触媒層形成用インクを調製し、これを電極用基材上に塗布することで作製することができる。
 電極用基材としては、カーボンのような炭素材料、または金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)のような金属材料が挙げられる。電極用基材の大きさ、厚さは適宜設定可能である。
 触媒層形成用インクは例えば、モリブデンオキシスルフィドを電解質の溶液に分散させて調製することができる。
 電解質としては、高分子電解質が好ましい。その例としては、スルホン酸基やカルボン酸基などの酸性基を有し、フルオロカーボン系や炭化水素系の高分子主鎖を有する物質、例えば、ナフィオン(NAFION)(商標)(tetrafluoroethyleneとperfluoro[2-(fluorosulfonylethoxy)propylvinyl ether]の共重合体)などが挙げられる。
 その他にも、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などの高分子電解質を用いることができる。なお、高分子電解質を2種類以上混合して用いてもよい。
 触媒層形成用インク組成物中におけるモリブデンオキシスルフィドの濃度は、インク組成物の塗布方法等に合わせて適宜調整すればよく、通常、0.5質量%~25質量%(インク組成物全量を100質量%とする)である。 
 前記電解質を溶解させるための媒体は電解質の種類によって適宜選択でき、水や、アルコールなどの有機溶媒が例示される。
 触媒層形成用インク組成物の電極基材表面への塗布方法としては、特に制限はないが、例えば、インク組成物を、基材表面に直接塗布する方法、あるいは転写用の基材に塗布した後に転写する方法等が挙げられる。 
 インク組成物を塗布するための具体的な方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法、バーコーター法、ドクターブレード法などが挙げられる。塗布されたインク組成物を乾燥させる方法としては、特に限定されないが、例えば、自然乾燥やヒーターで加熱する方法などが挙げられる。
 本発明の電極システムは上記モリブデンオキシスルフィドを含む触媒層を含む電極と、対電極及び/又は参照電極を含む。本発明のモリブデンオキシスルフィド電極と対電極又は参照電極を含む2電極系でもよいし、本発明のモリブデンオキシスルフィド電極と対電極および参照電極を含む3電極系でもよい。
 対電極としては、対電極として一般的に使用できるものであればよいが、例えば、カーボン電極や、金属電極や、銀/塩化銀電極を用いることができる。
 また、参照電極も、銀/塩化銀電極やカーボン電極や、金属電極などを用いることができる。
 本発明の電極システムは電池や電解セルなどとして使用できる。例えば、モリブデンオキシスルフィド電極をカソードとし、適当なアノード電極と電解質と組み合わせることにより燃料電池としても使用できるが、好ましくは電極触媒として使用され、より好ましくは脱窒(硝酸還元)用の電極触媒として使用される。
 例えば、硝酸イオン及び/又は亜硝酸イオンを含む溶液中にモリブデンオキシスルフィド電極と、対電極及び/又は参照電極を配置し、これらを電源に接続し、モリブデンオキシスルフィド電極に電圧を印加することで、モリブデンオキシスルフィド電極の触媒層表面で硝酸及び/又は亜硝酸の還元反応が起こる。
 モリブデンオキシスルフィド電極に印加される電圧は、可逆水素電極(Reversible Hydrogen Electrode, RHE)に対して、好ましくは0V~+0.2Vであり、より好ましくは+0.05V~+0.15Vであり、特に好ましくは約+0.1Vである。この範囲の電位を印加することにより、硝酸及び/又は亜硝酸を窒素生成の最終中間体である亜酸化窒素まで効率よく還元することができる。
 電圧を印加する時間は硝酸イオン及び/又は亜硝酸イオンの濃度等に応じて適宜調整される。
 硝酸イオン及び/又は亜硝酸イオンを含む溶液のpHは特に制限されず、モリブデンオキシスルフィド電極は幅広いpH域で機能しうるが、例えば、pH3~7が好ましく、pH4~6が好ましく、pH5が特に好ましい。この範囲のpHに調整することにより、硝酸及び/又は亜硝酸を窒素生成の最終中間体である亜酸化窒素まで効率よく還元することができる。
 また、溶液の温度は特に制限されないが、例えば、10~40℃が好ましい。
 硝酸イオン及び/又は亜硝酸イオンを含む溶液はNaClやNa2SO4などの電解質を含むことが好ましい。
 なお、本発明の電極システム(例えば、脱窒システム)は硝酸イオンなどの濃度を測定する濃度センサーや、pHセンサー、中和剤添加装置、pH緩衝剤添加装置、希釈剤添加装置、撹拌装置、分離膜などを含んでもよい。
 以下、実施例を参照して本発明を具体的に説明するが、本発明の態様は以下の実施例には限定されない。
(1)触媒合成
 酸素を含む硫化モリブデン(モリブデンオキシスルフィド:MoSxO2-x)は、以下に述べる水熱合成法により作製した。まず、Mo源として、3mmolのモリブデン酸ナトリウム(Na2MoO4)を30mLの超純水に溶解させた。同時に、3mmolのL-システイン(C3H7NO2S)を30mLの超純水に溶解させ、硫黄源を調製した。2つの溶液を混合し、20分の撹拌を行った後、容積100mLのテフロン(商標)性水熱合成容器に入れ、200℃で水熱反応を行った。24時間の水熱反応後、水熱合成容器を自然放熱により室温まで冷却し、黒色の生成物を得た。黒色の粉末を超純水で3回、エタノールで1回洗浄し、洗浄後の粉末を、3時間、60℃で真空乾燥させることで、目的とするMoSxO2-x粉末を得た。
 得られたMoSxO2-x粉末について、ラマンスペクトルとXPSによって分析を行った。
 Mo=Oの存在は、ラマンスペクトルの測定により確認した(図6)。ラマンスペクトルはレーザーラマン装置(Senterra、Bruker社、ドイツ)を用い、0.1 mWで785nmの赤色レーザーを照射して測定した。
 X線光電子分光スペクトル(XPS)を測定し、Mo(3d)のスペクトル強度及びS(2p)のスペクトル強度の値に基づいて、xの値を算出したところ、xは、1.5~1.6であった。なお、xの算出において、Moは4価であることを前提とした。
 尚、二硫化モリブテン(MoS2:和光純薬工業(株))を参照触媒として用いた。図6では、MoS2のラマンスペクトルの測定結果も示す。
(2)電極触媒の作製
 10wt%のNafion溶液50μLを、3mLの超純水と1mLのエタノールと混合させることで、希薄Nafion溶液(0.123 wt%)を調製した。その後、1.5mgのMoSxO2-x粉末を202.5μLの希薄Nafion溶液に分散させ、一時間の超音波処理を行うことで触媒インク(触媒を含む懸濁液)を得た。5μLの触媒インクをカーボンペーパーまたはグラッシーカーボン表面に塗布し、真空条件下、室温で乾燥させることで目的とする電極触媒を得た。
(3)電気化学測定
 電気化学測定は、MoSxO2-x電極を作用極、Pt線ならびにAg/AgCl (sat. KCl)電極をそれぞれ対極、参照極として用いた。電解質とpH緩衝剤には、それぞれ0.2MのNa2SO4水溶液と0.1Mのリン酸ナトリウム(0.04MのNaH2PO4と0.06MのNa2HPO4混合液)を用いた。電解質のpHは、希薄硫酸と水酸化ナトリウムを用いて調整を行った。
結果
電極触媒活性
 MoSxO2-x粉末、MoS2粉末、ならびにPt粉末を電極触媒として用い、電気化学的硝酸還元反応を行った結果を図1に示す。溶液のpHは7、硝酸イオンの濃度は0.1Mとした。また、X軸の電位は、可逆水素電極(reversible hydrogen electrode、RHE)を基準としている。
 Ptを電極触媒として用いた際には、硝酸イオンの添加に伴う電流-電位曲線の変化は観測されなかった。この結果は、Ptは、プロトン還元による水素発生反応には高い活性を示すが、硝酸イオンの還元に対しては活性がないことを示している。また、MoS2を用いた際にも、硝酸イオンの添加に伴う電流-電位曲線の変化は観測されず、硝酸イオンの還元が進行していないことが分かる。一方で、酸素を含む硫化モリブデン(MoSxO2-x)を電極触媒として用いた際には、硝酸イオンの添加により0V付近から明確な還元電流の生成が観測された。この結果は、中性環境においても、MoSxO2-xが硝酸還元を触媒する能力を有していることを示している。
生成物分析
 硝酸イオンから窒素分子(N2)を生成するためには、亜硝酸(NO2 -)の還元による一酸化窒素(NO)の生成、そして最終中間体として亜酸化窒素(N2O)の生成を必要とする(図2)。N2Oを介したN2の生成は、NOの還元によるアンモニア(NH3)と競合するため、完全脱窒反応を駆動するためにはN2Oの選択的な生成が必要となる。
 そこで、選択的なN2O生成を促進する反応条件を特定することを目的とし、差動排気チャンバー付・電気化学質量分析システムを用い、反応生成物の電極電位依存性について検討を行った。
 図3に、MoSxO2-xを触媒として用い、15Nで標識した亜硝酸(15NO2 -)と重水(D2O)の電解により得られた反応生成物の電位依存性を示す。電極電位を+0.6Vから負方向に掃引することで15NOの減少と共に、15N2Oの生成が観測された。15N2Oの生成は、+0.1Vにおいて最大となり、電位を更に負方向に掃引することで減少し、アンモニア(15ND3)の生成が優先となった。この結果は、N2Oの選択的な生成には、+0.1Vが至適電位であることを示している。
 引き続き、15N2Oの生成を最大化するための至適pHの検討を行った。図4に、電極電位を+0.1Vに固定し、亜硝酸還元を行った際のN2O生成の選択性のpH依存性を示す。N2Oの生成はpHに強く依存し、pH5において選択性が最大値42%となった。
 電位とpHの最適条件を踏まえ、完全脱窒生成物であるN2の分析を行った。具体的には、電極電位を+0.1Vに固定し、同位体標識した0.1Mの亜硝酸(15NO2 -)を基質として用い、ガスクロマトグラフィー質量分析(GC/MS)を用い15N2の検出を行った(図5)。4時間の電解後、同位体標識された窒素分子(15N2)の生成が確認され、pH5において選択性が最大値3.2%となった。また、亜硝酸の濃度を0.1Mから0.5Mに高めることで、窒素分子の選択性は向上し、電解時間8時間後には12.6%となった。
 以上の結果は、MoSxO2-x粉末が中性領域において硝酸イオンを還元出来ること、そして電極の電位ならびにpHを調整することで、完全脱窒反応を触媒する能力があることを示している。

Claims (6)

  1. モリブデンオキシスルフィドを含む触媒層を有する電極。
  2. 請求項1に記載の電極と、参照電極及び/又は対電極を含む、電極システム。
  3. 脱窒システムである、請求項2に記載の電極システム。
  4. 硝酸イオンおよび/または亜硝酸イオンを含む溶液に請求項1に記載の電極と参照電極及び/又は対電極を浸漬し、請求項1に記載の電極に電圧を印加して硝酸イオンおよび/または亜硝酸イオンの還元反応を行うことを特徴とする、脱窒方法。
  5. 硝酸イオンおよび/または亜硝酸イオンを含む溶液のpHが4~6である、請求項4に記載の脱窒方法。
  6. 請求項1に記載の電極に+0.05~+0.15V(可逆水素電極基準)の電圧が印加される、請求項4又は5に記載の脱窒方法。
PCT/JP2017/029836 2017-02-22 2017-08-22 モリブデンオキシスルフィド電極およびその利用 WO2018154812A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501019A JP6990454B2 (ja) 2017-02-22 2017-08-22 モリブデンオキシスルフィド電極およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031072 2017-02-22
JP2017-031072 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018154812A1 true WO2018154812A1 (ja) 2018-08-30

Family

ID=63253620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029836 WO2018154812A1 (ja) 2017-02-22 2017-08-22 モリブデンオキシスルフィド電極およびその利用

Country Status (2)

Country Link
JP (1) JP6990454B2 (ja)
WO (1) WO2018154812A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668001A (zh) * 2021-07-27 2021-11-19 北京化工大学 析氢反应催化剂用于电催化硝酸根还原合成氨的方法
CN113713833A (zh) * 2021-09-15 2021-11-30 北京师范大学 钼氧硫化物/硫化镍/泡沫镍复合体及其制备方法和应用
WO2024083850A1 (en) 2022-10-18 2024-04-25 ETH Zürich Electrocatalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENJAMIN R. GARRETT ET AL.: "Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production", INORGANIC CHEMISTRY, vol. 55, no. 8, 18 April 2016 (2016-04-18), pages 3960 - 3966, XP055532932 *
E. SCMIDT ET AL.: "Amorphous molybdenum oxysulfide thin films and their physial characterization", THIN SOLID FILMS, vol. 260, no. 1, 1 May 1995 (1995-05-01), pages 21 - 25, XP004004875 *
HONGGUI WANG ET AL.: "Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite", SENSORS AND ACTUATORS B: CHEMIAL, vol. 220, 1 December 2015 (2015-12-01), pages 749 - 754, XP029263663 *
THOMAS F. JARAMLLO ET AL.: "Hydrogen Evolution on Supported Incomplete Cuba ne-type [Mo3S4]4+ Electrocatalysts", J. PHYS. CHEM. C, vol. 112, no. 45, 17 October 2008 (2008-10-17), pages 17492 - 17498, XP055532906 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668001A (zh) * 2021-07-27 2021-11-19 北京化工大学 析氢反应催化剂用于电催化硝酸根还原合成氨的方法
CN113713833A (zh) * 2021-09-15 2021-11-30 北京师范大学 钼氧硫化物/硫化镍/泡沫镍复合体及其制备方法和应用
WO2024083850A1 (en) 2022-10-18 2024-04-25 ETH Zürich Electrocatalyst

Also Published As

Publication number Publication date
JP6990454B2 (ja) 2022-02-03
JPWO2018154812A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
Kong et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst
Zhang et al. A direct urea microfluidic fuel cell with flow-through Ni-supported-carbon-nanotube-coated sponge as porous electrode
Raoof et al. Synthesis of ZSM-5 zeolite: Electrochemical behavior of carbon paste electrode modified with Ni (II)–zeolite and its application for electrocatalytic oxidation of methanol
Wang et al. Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells
CN101656314B (zh) 碳化钼在制备微生物燃料电池阳极中的应用
Rossi et al. Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy
Peljo et al. Oxygen reduction at a water-1, 2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine–A fuel cell approach
Tohidi et al. A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles
Weiss et al. Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
WO2018154812A1 (ja) モリブデンオキシスルフィド電極およびその利用
CN112264004B (zh) 基于钨酸盐的催化材料及其在水氧化产过氧化氢中的应用
Rajmohan et al. Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor
CN107364934A (zh) 电催化还原复合电极、制备方法及其应用
Ivanov et al. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells
Qu et al. Enhanced refractory organics removal by• OH and 1O2 generated in an electro-oxidation system with cathodic Fenton-like reaction
Ham et al. Selective conversion of N2 to NH3 on highly dispersed RuO2 using amphiphilic ionic liquid-anchored fibrous carbon structure
CN109136973A (zh) 一种非贵金属掺杂碳化钼析氢电极及其制备方法和应用
Wang et al. A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol
CN101362093B (zh) 燃料电池碳载铂复合催化剂及其制备方法
Yu et al. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7
Cheon et al. Performance of sulfite/FeIIIEDTA fuel cell: Power from waste in flue gas desulfurization process
Gong et al. Improved interfacial oxygen reduction by ethylenediamine tetraacetic acid in the cathode of microbial fuel cell
Zdolšek et al. Boosting electrocatalysis of oxygen reduction and evolution reactions with cost-effective cobalt and nitrogen-doped carbons prepared by simple carbonization of ionic liquids
Zerrouki et al. An investigation on polymer ion exchange membranes used as separators in low-energy microbial fuel cells
Shariatpannahi et al. Simultaneous saltwater desalination and power generation using an aluminum-powered cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897703

Country of ref document: EP

Kind code of ref document: A1