WO2018154790A1 - 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム - Google Patents
会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム Download PDFInfo
- Publication number
- WO2018154790A1 WO2018154790A1 PCT/JP2017/007568 JP2017007568W WO2018154790A1 WO 2018154790 A1 WO2018154790 A1 WO 2018154790A1 JP 2017007568 W JP2017007568 W JP 2017007568W WO 2018154790 A1 WO2018154790 A1 WO 2018154790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- journal
- accounting
- data
- reliability
- low
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 30
- 238000011156 evaluation Methods 0.000 claims abstract description 91
- 238000010801 machine learning Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 57
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 6
- 238000013473 artificial intelligence Methods 0.000 description 60
- 238000012937 correction Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- the present invention relates to an accounting processing apparatus, an accounting processing system, an accounting processing method, and an accounting processing program that take in transaction information and automatically perform journalizing.
- the description of the transaction is represented by dividing the description of the transaction content into morphemes and referring to the appearance frequency of one or more account items associated with each morpheme.
- Present an account The user can also correct the presented account item, and the corrected result is stored as a user rule for each user, and the account item corrected for the transaction content is presented from the next time.
- Patent Document 1 also describes that this correction result is accumulated, and a learned database is generated by machine learning of the appearance frequency of one or more account items associated with each morpheme.
- Patent Document 2 for registered users who own accounting software, refer to the past history of the registered user to extract journals of transactions described in vouchers and similar transactions, and depending on the frequency of use To present recommended journals.
- a journal with the largest number of users of all users (a large number of individuals and companies nationwide) is presented to the user as a recommended journal.
- Patent Document 1 when a new journal is generated or a journal is corrected on the user side, the database used for journaling is updated by the learning means, so that the result of the journal is increased as each user uses it. It is also described that it is optimized.
- the present invention has been made in order to solve such problems, and the object of the present invention is to easily find a journal error in automatic journal entry, and to efficiently improve the journal precision.
- An accounting processing apparatus, an accounting processing system, an accounting processing method, and an accounting processing program are provided.
- the accounting processing apparatus is an accounting processing apparatus that automatically journals account items according to transaction contents, and performs machine learning based on teacher data in advance, A journal AI that has learned to select an account according to the contents, and a journal evaluation unit that detects and outputs a low-reliability journal that is different from the teacher data for the journal journal AI results; Is provided.
- the journal evaluation unit may be able to determine the type of factor of the low reliability journal.
- the journal evaluation unit may be able to determine an error in bookkeeping as a factor of the low reliability journal.
- the journal evaluation unit may be capable of discriminating application of a predetermined journal rule predetermined as a factor of the low reliability journal.
- the journal evaluation unit may output the information on the low reliability journal to a visible display unit.
- the journal evaluation unit may output the information on the low reliability journal to the display unit as a table based on a confusion matrix.
- the journal evaluation unit outputs to the display unit as a table based on a mixed matrix composed of correct account items based on the journals of the teacher data and estimated account items based on the journals based on the journal AI. May be.
- the journal evaluation unit may output a list in which low-reliability journals are arranged for each account item as the low-reliability journal information.
- journal AI may be re-learned based on the low reliability journal output by the journal evaluation unit.
- the accounting processing system is connected to the accounting processing device described above and the accounting processing device via a communication network, and can transmit transaction data to the accounting processing device. And an information terminal capable of receiving the journal data generated by the accounting processing device.
- the information terminal can correct the received journal data and feed back the corrected journal data to the accounting processing device.
- the accounting processing device can feed back the corrected journal data. Based on this, the journal AI may be further learned.
- the accounting method is an accounting method for automatically translating account items according to transaction contents, and performs machine learning based on teacher data in advance.
- a journal evaluation step for outputting is an accounting method for automatically translating account items according to transaction contents, and performs machine learning based on teacher data in advance.
- the type of factor of the low reliability journal may be distinguishable.
- journal evaluation step it may be possible to determine application of a predetermined journal rule predetermined as a factor of the low reliability journal.
- the information on the low reliability journal may be output to a visible display unit.
- the information on the low reliability journal may be output to the display unit as a table based on a confusion matrix.
- the journal evaluation step outputs to the display unit as a table based on a mixed matrix composed of correct account items based on the journal entries of the teacher data and estimated account items based on journal entries based on the journal AI. May be.
- a list in which low-reliability journals are arranged for each account item may be output as the low-reliability journal information.
- the journal AI may be re-learned based on the low reliability journal output in the journal evaluation step.
- the accounting processing program according to the present invention causes a computer to perform the accounting processing method described above.
- journalizing learning routine which concerns on this embodiment.
- FIG. 1 is a system configuration diagram showing an accounting processing system including an accounting processing apparatus according to an embodiment of the present invention.
- an accounting processing system 1 includes an information terminal 3 on a user side and an accounting service provider side via a communication network 2 such as the Internet or a VPN (Virtual Private Network).
- the processing apparatus 10 is connected.
- the accounting processing apparatus 10 can be connected to a plurality of users via the communication network 2.
- the user is an expert such as a tax accountant and an accountant, or a corporation or an individual who directly performs accounting, and includes an information terminal 3 having at least an input unit 4 and a display unit 5.
- the information terminal 3 is a portable terminal such as a personal computer (hereinafter referred to as a PC), a smartphone, a tablet PC, and a mobile phone, and is a terminal capable of displaying at least web information.
- a PC personal computer
- smartphone a smartphone
- tablet PC a tablet PC
- mobile phone a terminal capable of displaying at least web information.
- the input unit 4 is, for example, a keyboard, a mouse, a touch panel, or the like that allows the user to manually input transaction details to be journalized, or a transaction that can be read on receipts or receipts with, for example, a scanner or camera It is.
- the display unit 5 is, for example, a display, and displays various data such as journal entries so as to be visible.
- the information terminal 3 configured as described above can transmit transaction data including transaction contents input at the input unit 4 to the accounting processing device 10, and can display data received from the accounting processing device 10 on the display unit 5. Can be displayed.
- an accounting processing service provider (hereinafter also simply referred to as a service provider) is an operator that provides accounting processing services by so-called cloud computing, and is a person who manages the accounting processing apparatus 10.
- the accounting processing apparatus 10 has one or a plurality of servers that execute accounting processing based on a program, and functionally mainly includes a transaction analysis unit 11, a numerical / vectorization unit 12, a journalizing unit 13, and a learning system 30. have.
- the transaction analysis unit 11 has a function of receiving transaction data sent from the user's information terminal 3, extracting information as a journal element from the transaction content of the transaction data, and generating journal element data.
- the journal elements include, for example, a date, an amount, a business partner, a description (however, including a product name), and a business source (including an address), and at least a date, an amount, and a description are extracted.
- journal elements are not limited to this.
- the quantity may be included as a journal element, and if information such as the name and number of people present is entered, The number of people may be included as a journal element.
- you may include the number (corporate number, establishment number) set in order to identify each company in a journal element.
- the digitizing / vectorizing unit 12 converts the journal element data generated by the transaction analyzing unit 11 into vector data suitable for journalizing.
- the journal element data is data composed of characters and numbers, and is digitized into a data format that is easily recognized by the journalizing unit 13 and vectorized to generate vector data.
- the journal unit 13 has a journal entry AI (Artificial Intelligence), and generates journal data from the vector data of the journal element using the journal entry AI.
- Journal AI performs machine learning using highly accurate journal data that has been implemented in the past by specialists such as tax accountants, companies, and industries in the learning system 30, and selects account items according to transaction details. This is an AI that specializes in journals.
- FIG. 2 a system configuration diagram showing a learning system for forming the journal entry AI is shown.
- the learning system 30 shown in the figure is composed of one or a plurality of servers (computers), and is functionally a numerical / vectorization unit 31, a learning unit 32, a journal evaluation unit 33, a display unit 34, a correction teacher data generation unit. 35.
- a learned model DB 36 is provided.
- a large number of journal element data and corresponding journal data are input to the learning system 30 as teacher data.
- highly accurate data previously journalized by a specialist or a company is used.
- a combination of journal element data and journal data held by these software and services may be acquired as teacher data.
- This teacher data is preferably selected according to the type of journal entry AI formed by the learning system 30. For example, when forming a journal entry AI for a general user such as a company or an individual whose past journal element data and journal data are scarce, various journal element data and journal data that do not limit the company or industry are taught. In the case of forming a journal AI for only individual companies or only for individual industries, journal element data and journal data actually journalized in the past in the company or industry are used as teacher data.
- Numeralization / vectorization unit 31 converts the input journal element data and journal data into vector data in the same manner as the vectorization of accounting processing apparatus 10 described above.
- the learning unit 32 performs machine learning on the relationship between combinations of vectorized journal element data and journal data, thereby determining the journal element data in a composite manner and outputting journal data in which an appropriate account item has been selected.
- a journal entry AI is formed.
- the journal evaluation unit 33 detects and outputs a low-reliability journal that is different from the teacher data for the result of journalizing AI formed in the learning unit 32. Specifically, the journal evaluation unit 33 first inputs the journal element data of the teacher data to the journal AI that has been learned by the learning unit 32 and executes the journal. Then, the journal data obtained by journalizing the journal element data of the teacher data by the journal AI formed by the learning unit 32 and the journal data in the teacher data are compared together. Even if the journal entry AI learned based on the teacher data re-journals the journal element data of the teacher data, not all the same journal entries as the teacher data are performed, and journal data different from the journal data of the teacher data is output. There are also cases. For example, if the journal data is inaccurate and the journal is unusual, or the journal element data is insufficient or unclear, the journal data differs from the teacher data. there is a possibility.
- the journal evaluation unit 33 detects a low-reliability journal having low so-called journal reliability in which an account item different from the journal data account in such teacher data is selected, and a journal including the detected low-trust journal. Output the results as journal evaluation data. Specifically, the journal evaluation unit 33 creates a confusion matrix as journal evaluation data, and calculates the number of matches and mismatches between the journal data account item in the teacher data and the journal data account item journalized by the journal AI. Output the data.
- the display unit 34 is a display of a PC connected to the learning system 30 via a wired or wireless connection or a communication network such as the Internet, and displays the journal evaluation data output by the journal evaluation unit 33. By displaying the journal evaluation data on the display unit 34, the service provider can check the learning status of the journal AI.
- the mixing matrix created by the journal evaluation unit 33 takes account items (correct account items) of journal data in the teacher data as the vertical axis, and account items (estimated account items) journalized by the journal entry AI.
- account items estimated account items
- the number of entries in the account item that matches the teacher data by the journal entry AI that is, the number of items in which the correct account item and the estimated account item match is entered in the diagonal column. In the other columns, the number of cases where the correct account item and the estimated account item are different is the number of low-reliability journals.
- journal entry AI For example, referring to the row in FIG. 3 where the correct account item is “benefit costs”, the estimated account item by the journal entry AI is correctly journaled as “benefit costs”, while there are 11111 cases.
- the journal evaluation unit 33 in the present embodiment performs a process of displaying a darker background color in a column where the number of low-reliability journals is larger than others.
- the journal AI sets “consumables costs” as “office supplies costs” and the number of low-reliability journals is 110, and “office supplies costs” is “consumables costs” as low-reliability journals.
- the number of columns that are 143, which is larger than the others, is darker than the other columns.
- the notation indicating the number of cases is not limited to the background color.
- journal evaluation unit 33 is a low-reliability factor in which journal entries differ from teacher data due to errors in clear bookkeeping among low-reliability journals, application of predetermined journal rules, and other factors. Can be discriminated.
- the journal evaluation unit 33 of the present embodiment has the correct account item “payment fee”, while the estimated account item “welfare expenses” (six cases) and “travel expenses”. “Transportation costs” (7 cases) etc. are classified as obvious errors in bookkeeping, and these numbers are underlined.
- the predetermined journal entry rule is a rule specific to a user such as an expert, a company or an industry.
- the cost of taking a bank balance certificate is correct in bookkeeping for both “payment fee” and “miscellaneous” accounts, but it is preset as a user-specific journal entry rule or In the case where both are permitted, the journal evaluation unit 33 indicates that the journal set by the user is included, so that the correct account “payment fee” in FIG. As shown in a column, the number is double underlined.
- the notation which shows the kind of factor different from teacher data is not restricted to an underline or a double underline, For example, you may make the color of a background color different from others (hereinafter the same).
- journal entry is different from the teacher data due to factors other than bookkeeping errors and a predetermined journal entry rule may be detected, and different notation may be applied.
- journal evaluation unit 33 can display a breakdown table of low reliability journals on the display unit 34 as shown in FIG. 4 in addition to the evaluation of the journal evaluation data based on the confusion matrix.
- a breakdown list of journal entries whose correct account item is "benefits expense” is displayed, and the percentage display is the probability (reliability, certainty) of the journal entry for the estimated account item on the horizontal axis.
- the journal elements are written.
- journal entry AI has a 32% probability of benefit expenses. It is judged that it is a conference fee with a probability of 67%, and the conference fee with the highest probability is selected as the estimated account item. It should be noted that the journal evaluation unit 33 displays the background color darker in the higher probability column.
- the journal evaluation unit 33 is a low-reliability journal whose journal entry is different from the teacher data due to an obvious bookkeeping error, application of a predetermined journal rule, or other factors.
- the type of reliability factor can be identified. For example, in the bottom line of FIG. 4, for the summary “taxi fee”, the correct account item is “welfare expenses”, and the journal entry AI determines that the probability of “travel expense” is the highest, and the estimated account item is “ “Travel expenses and transportation expenses” and taxi fare benefits are considered bookkeeping errors, and the date, amount, and description are underlined.
- all the descriptions are meal charges, but for example, a meal charge relationship of less than 5,000 yen per person may be benefits or a meeting fee. Due to the rules, the date, amount, and description are double underlined.
- the correction teacher data generation unit 35 generates correction teacher data for correcting the low reliability journal detected by the journal evaluation unit 33.
- the correction teacher data generation unit 35 is based on the confusion matrix table displayed on the display unit 34 or the breakdown table of the low-reliability journals, and the correction teacher data in the direction in which the journal AI does not issue the low-reliability journals. Is generated.
- the correction teacher data is data in which a combination of correct journal element data and corresponding journal data is intensively collected for each account item in which the low reliability journal is generated.
- the learning system 30 uses the corrected teacher data as the teacher data to perform learning in the learning unit 32 again, so that the journal AI tends to perform a correct journal, and the low-reliability journal is improved.
- the learned model DB 33 stores a learned journal AI in which the accuracy of the journal is equal to or higher than a certain level.
- the determination as to whether or not the accuracy of the journal entry AI is above a certain level may be made by the service provider based on the journal evaluation data displayed on the display unit 34, or the journal evaluation unit 33 may determine the journal evaluation.
- An accuracy determination function based on data is provided, and the determination may be made by the accuracy determination function.
- Judgment accuracy of the journal entry AI can be determined, for example, by the service provider from the above-mentioned confusion matrix table (FIG. 3), a list of low-reliability journal entries arranged for each account item (FIG. 4), etc. It is determined that the accuracy of the journal entry exceeds a certain level when the ratio (correct answer rate) and the total number of low-reliability journal entries in the account item are below a predetermined threshold.
- the journal AI stored in the learned model DB 33 is not limited to one, and it is most suitable for the user's industry and the user by inputting the journal element data and journal data specialized for the user's industry and the user alone.
- the journalized AI may be formed. Thereby, it is possible to realize a journal with higher accuracy for the user.
- journal entry unit 13 uses the journal entry AI formed as described above to select an appropriate account item for the journal element that is vector data, and transmits it to the user information terminal 3 as journal data. To do. If the journal element is a journal element that cannot be journaled by the journal entry AI, journal data that does not correspond to the account item is output.
- the information terminal 3 can display the journal data on the display unit 5 when it receives the journal data from the accounting apparatus 10.
- the feedback corrected journal data is sent to the learning system 30 and utilized as teacher data.
- users who can perform feedback may be limited to tax accountants and accountant professional users. That is, only the specific information terminal 3 has a feedback function, or the accounting processing apparatus 10 is set to accept only the feedback from the specific information terminal 3.
- FIG. 4 there is shown a flowchart representing a journal learning routine in the learning system 30.
- the journal learning flow will be described with reference to the flowchart of FIG.
- step S1 of the journal learning routine teacher data is input to the digitizing / vectorizing unit 31, and the digitizing / vectorizing unit 31 digitizes and vectorizes the teacher data to generate vector data.
- step S2 the learning unit 32 forms a journal AI in which the journal is machine-learned based on the vectorized teacher data (learning process).
- the journal evaluation unit 33 detects a low-reliability journal from the result of journalizing the teacher data by the journal AI, generates journal evaluation data using the confusion matrix as shown in FIG. 34 (journal evaluation process).
- step S4 the journal evaluation unit 33 or the service provider determines whether or not re-learning is necessary, that is, whether or not the accuracy of the journal is equal to or higher than a predetermined level based on the generated journal evaluation data. If the determination result is true (Yes), that is, if the journal accuracy is less than a certain level and relearning is necessary, the process proceeds to step S5.
- step S5 the correction teacher data generation unit 35 generates correction teacher data for correcting the low-reliability journal, and returns the routine as the next teacher data.
- step S4 determines whether the journal accuracy is above a certain level and relearning is not necessary. If the determination result in step S4 is false (No), that is, if the journal accuracy is above a certain level and relearning is not necessary, the process proceeds to step S6.
- step S6 the journal entry AI formed in step S2 is stored in the learned model DB 36, and the routine ends.
- the journal AI used in the journalizing unit 13 that performs automatic journaling in the accounting processing apparatus 10 is detected by the journal evaluation unit 33 as a low-reliability journal at the learning stage. .
- the journal evaluation unit 33 collectively detects and outputs the journal evaluation error as journal evaluation data and outputs it, thereby making it easier than the conventional method to find each journal error. Can be found. Since the low-reliability journal can be corrected collectively based on the journal evaluation data, the journal accuracy of the journal AI can be improved efficiently.
- journal evaluation unit 33 can easily grasp the cause of the low reliability journal by determining the type of the factor of the low reliability journal. In particular, by identifying bookkeeping errors, it is possible to grasp high-priority errors, and by re-learning journal entries AI based on this, it is easy to obtain high-precision journal entries AI that correct bookkeeping errors. Can be formed. In addition, by determining the application of a predetermined journal rule, it is possible to easily grasp the part to which the user-specific journal rule is applied, and by re-learning the journal AI based on this, it is determined for each company and each industry. It is possible to easily form a highly accurate journal entry AI suitable for the above.
- journal evaluation unit 33 displays the journal evaluation data on the display unit 34 so that the accuracy of the journal entry AI can be easily grasped from the display unit 34.
- this journal evaluation data includes a table based on a confusion matrix consisting of correct account items based on journal entries in the teacher data and estimated account items based on journal entries based on journal entries AI, and a list of low-reliability journals arranged for each account item.
- the accounting processing apparatus 10 that performs automatic journaling based on the journal entry AI learned by the learning system 30 and the accounting processing system 1 connected to the information terminal 3 of each user via the communication network 2 minimize the low-reliability journals. It is possible to provide the user with highly accurate automatic journals.
- the corrected journal data by each user is fed back to the accounting processing apparatus 10, and the journal AI is further learned by using the corrected journal data as teacher data, so that the accuracy of the journal AI can be further improved.
- the correction teacher data generation unit 35 in the learning system 30, after the journal evaluation data generated by the journal evaluation unit 33 is displayed on the display unit 34, the correction teacher data generation unit 35 generates the correction teacher data.
- the journal evaluation data is not necessarily displayed on the display unit 34.
- the correction teacher data generation unit 35 may automatically generate correction teacher data and perform relearning. As a result, the accuracy of the journal entry AI can be automatically improved to a certain level or higher.
- the journal evaluation unit 33 in the learning system 30 outputs the journal evaluation data to the display unit 34 that is a PC display.
- the display unit that is the output destination of the journal evaluation data is not limited to this. It is not something that can be done.
- the display unit may be a display of a mobile terminal such as a smartphone, a tablet PC, and a mobile phone, or the journal evaluation data is output as API or CSV data for linking with an external system and displayed on the display unit of the external device. May be.
- the display unit only needs to be able to display the journal evaluation data so as to be visible, and thus includes a paper medium on which the journal evaluation data is printed.
- the correction teacher data generation unit 35 generates correction teacher data for re-learning.
- Teacher evaluation data for re-learning may be generated by providing journal evaluation data so as to be fed back to other accounting processing software or cloud service that is the source of the teacher data via API, CSV, etc. .
- the learning system 30 generates and re-learns correction teacher data for each account item that has been subjected to low-reliability journals in the correction teacher data generation unit 35 for low-reliability journals,
- the low-reliability journal entry is improved in the journal entry AI
- the method for improving the low-reliability journal entry is not limited to this. For example, you may correct the parameter regarding the journal which the journal AI has directly.
- the low-reliability journal is indicated by the number of cases.
- the display format of the low-reliability journal is not limited to this, and may be, for example, a percentage display.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Technology Law (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
会計処理装置10にて自動仕訳を行う仕訳部13の仕訳AIにおいて、当該仕訳AIの学習システム30は、仕訳要素データとそれに対応する仕訳データからなる教師データに基づいて機械学習を行って仕訳AIを形成する学習部32と、この仕訳AIにより教師データの仕訳要素データを仕訳した結果に対し、教師データの仕訳データと異なる低信頼度仕訳を検出して仕訳評価データとして表示部34に出力する仕訳評価部33と、を少なくとも有する。
Description
本発明は取引の情報を取り込んで自動的に仕訳を行う会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラムに関する。
従来の会計処理としては、税理士や会計士、簿記担当者等が会計業務ソフトに、実際に行われた取引内容を入力し、取引内容から勘定科目を経験的に判断して仕訳の入力を行っていた。
このように、取引内容を人間が一件入力して仕訳を行うのでは作業効率が悪い上、仕訳の精度は担当者の経験に依存するところが大きく、仕訳の精度にばらつきが生じるという問題があった。
そこで、取引内容を含んだウェブ明細データや証憑データを、インターネット等を介して取り込み、これらのデータを解析して、取引内容に応じた特定の勘定科目に自動的に仕訳をする会計処理装置が開発されている(特許文献1、2参照)。
詳しくは、特許文献1に記載された技術では、取引内容の記載を形態素に分節し、各形態素に対応づけられた1又は複数の勘定科目の出現頻度を参照して、取引内容の記載が表す勘定科目を提示する。ユーザはこの提示された勘定科目を修正することもでき、修正された結果は、ユーザごとのユーザルールとして保存され、次回からは、その取引内容に対して修正された勘定科目が提示される。また、特許文献1では、この修正結果を蓄積して、各形態素に対応づけられた1又は複数の勘定科目の出現頻度の機械学習による学習済みデータベースを生成することも記載されている。
また、特許文献2に記載された技術では、会計ソフトを所有する登録ユーザについては、当該登録ユーザの過去履歴を参照して証憑記載の取引と類似取引の仕訳を抽出し、その使用頻度に応じて推奨仕訳を提示する。一方、非登録ユーザについては全ユーザ(全国多数の個人や企業)の使用人数が一番多い仕訳を推奨仕訳としてユーザに提示する。また、当該特許文献1では、新たな仕訳が生じたり、ユーザ側で仕訳を修正したりした場合には、学習手段により仕訳に用いるデータベースを更新することで、各ユーザが使い込むほど仕訳の結果が最適化されることも記載されている。
しかしながら、上記特許文献1、2では、自動的に仕訳した勘定科目をユーザに提示し、ユーザがそれを修正した場合に、その修正結果を次回以降の仕訳に反映させるよう学習を行っているが、このように提示された勘定科目に対しユーザが一つ一つ修正を行っていては、全般的にそのユーザに適した仕訳を行えるようになるまでに長い期間を要するという問題がある。また、ユーザの手で一つ一つ修正をしていては作業効率の向上が図られず、仕訳の精度もそのユーザに依存するという問題もある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、自動仕訳における仕訳の誤りを容易に発見することができ、効率的に仕訳精度を向上させることのできる会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラムを提供することにある。
上記した目的を達成するために、本発明に係る会計処理装置では、取引内容に応じた勘定科目を自動的に仕訳する会計処理装置であって、予め教師データに基づいた機械学習を行い、取引内容に応じた勘定科目を選定することを学習した仕訳AIと、前記仕訳AIが仕訳した結果に対し、前記教師データと異なる低信頼度仕訳を検出し出力する仕訳評価部と、
を備える。
を備える。
上記会計処理装置において、前記仕訳評価部は、前記低信頼度仕訳の要因の種類を判別可能でもよい。
特に、上記会計処理装置において、前記仕訳評価部は、前記仕訳評価部は、前記低信頼度仕訳の要因として簿記上の誤りを判別可能でもよい。
また、上記会計処理装置において、前記仕訳評価部は、前記仕訳評価部は、前記低信頼度仕訳の要因として予め定めた所定の仕訳ルールの適用を判別可能でもよい。
また、上記会計処理装置において、前記仕訳評価部は、前記低信頼度仕訳の情報を視認可能な表示部に出力してもよい。
また、上記会計処理装置において、前記仕訳評価部は、前記低信頼度仕訳の情報を混同行列に基づく表として前記表示部に出力してもよい。
また、上記会計処理装置において、前記仕訳評価部は、前記教師データの仕訳に基づく正解勘定科目と、前記仕訳AIによる仕訳に基づく推定勘定科目とからなる混合行列に基づく表として前記表示部に出力してもよい。
また、上記会計処理装置において、前記仕訳評価部は、前記低信頼度仕訳の情報として、勘定科目ごとに低信頼度仕訳を並べた一覧表を出力してもよい。
また、上記会計処理装置において、前記仕訳評価部により出力された低信頼度仕訳に基づき、前記仕訳AIを再学習させてもよい。
また、上記した目的を達成するために、本発明に係る会計処理システムでは、上述の会計処理装置と、前記会計処理装置と通信網を介して接続され、取引データを前記会計処理装置に送信可能であるとともに、前記会計処理装置にて生成された仕訳データを受信可能な情報端末と、を備える。
また、上記会計処理システムにおいて、前記情報端末は、受信した仕訳データを修正し、修正した仕訳データを前記会計処理装置にフィードバック可能であり、前記会計処理装置は、フィードバックされた修正した仕訳データに基づき前記仕訳AIをさらに学習させてもよい。
また、上記した目的を達成するために、本発明に係る会計処理方法では、取引内容に応じた勘定科目を自動的に仕訳する会計処理方法であって、予め教師データに基づいた機械学習を行い、取引内容に応じた勘定科目を選定することを学習した仕訳AIを形成する学習工程と、前記学習工程で形成した仕訳AIが仕訳した結果に対し、前記教師データと異なる低信頼度仕訳を検出し出力する仕訳評価工程と、を備える。
また、上記会計処理方法において、前記仕訳評価工程では、前記低信頼度仕訳の要因の種類を判別可能でもよい。
特に、上記会計処理方法において、前記仕訳評価工程では、前記低信頼度仕訳の要因として簿記上の誤りを判別可能でもよい。
また、上記会計処理方法において、前記仕訳評価工程では、前記低信頼度仕訳の要因として予め定めた所定の仕訳ルールの適用を判別可能でもよい。
また、上記会計処理方法において、前記仕訳評価工程では、前記低信頼度仕訳の情報を視認可能な表示部に出力してもよい。
また、上記会計処理方法において、前記仕訳評価工程では、前記低信頼度仕訳の情報を混同行列に基づく表として前記表示部に出力してもよい。
また、上記会計処理方法において、前記仕訳評価工程では、前記教師データの仕訳に基づく正解勘定科目と、前記仕訳AIによる仕訳に基づく推定勘定科目とからなる混合行列に基づく表として前記表示部に出力してもよい。
また、上記会計処理方法において、前記低信頼度仕訳の情報として、勘定科目ごとに低信頼度仕訳を並べた一覧表を出力してもよい。
また、上記会計処理方法において、前記仕訳評価工程により出力された低信頼度仕訳に基づき、前記仕訳AIを再学習させてもよい。
また、上記した目的を達成するために、本発明に係る会計処理プログラムでは、コンピュータに、上述の会計処理方法をさせる。
上記手段を用いる本発明によれば、自動仕訳における仕訳の誤りを容易に発見することができ、効率的に仕訳精度を向上させることができる。
以下、本発明の一実施形態を図面に基づき説明する。
図1は本発明の一実施形態に係る会計処理装置を含む会計処理システムを示すシステム構成図である。
図1に示すように、本実施形態に係る会計処理システム1は、インターネット、VPN(Virtual Private Network)等の通信網2を介して、ユーザ側の情報端末3と会計処理サービス提供者側の会計処理装置10とが接続されて構成されている。なお、説明の簡略化のため図1では一人のユーザのみを示しているが、会計処理装置10は通信網2を介して複数のユーザと接続可能である。
ユーザは、例えば税理士及び会計士等の専門家であったり、直接会計処理を行う法人や個人等であり、少なくとも入力部4と表示部5を有する情報端末3を備えている。
情報端末3は、例えばパーソナルコンピュータ(以下、PCという)や、スマートフォン、タブレットPC、及び携帯電話のような携帯端末であり、少なくともweb情報を表示可能な端末である。
入力部4は、例えばキーボード、マウス、タッチパネル等、仕訳の対象となる取引内容をユーザが手入力可能なもの、又は例えばスキャナ又はカメラ等で領収書やレシートに記載の取引内容を読み込み可能なものである。表示部5は、例えばディスプレイであり、仕訳結果等の各種データを視認可能に表示するものである。
このように構成された情報端末3は、入力部4にて入力された取引内容を含む取引データを会計処理装置10に送信可能であるとともに、会計処理装置10から受信したデータを表示部5にて表示可能である。
一方、会計処理サービス提供者(以下、単にサービス提供者ともいう)は、いわゆるクラウドコンピューティングにより会計処理サービスを提供する事業者であり、会計処理装置10を管理する者である。
会計処理装置10は、プログラムに基づき会計処理を実行する1又は複数のサーバを有し、機能的には主に取引解析部11、数値化・ベクトル化部12、仕訳部13、及び学習システム30を有している。
取引解析部11は、ユーザの情報端末3から送られる取引データを受信し、当該取引データの取引内容から仕訳要素となる情報を抽出して、仕訳要素データを生成する機能を有している。仕訳要素としては、例えば日付、金額、取引先、摘要(但し書き、商品名含む)、取引元(宛名含む)があり、少なくとも日付、金額、摘要を抽出する。
なお、仕訳要素はこれに限られるものではない。例えば、取引データに、購入品の数量が入力されている場合には数量を仕訳要素として含めてもよいし、同席者の名前や人数等の情報が入力されている場合には、同席者及び人数を仕訳要素として含めてもよい。また、各企業を特定するために設定された番号(法人番号、事業所番号)を仕訳要素に含めてもよい。
また数値化・ベクトル化部12は、取引解析部11にて生成された仕訳要素データに対して、仕訳に適したベクトルデータに変換する。仕訳要素データは、文字や数字からなるデータであり、これを仕訳部13にて認識しやすいデータ形式に数値化し、ベクトル化することでベクトルデータを生成する。
仕訳部13は、仕訳AI(Artificial Intelligence)を有しており、当該仕訳AIにより仕訳要素のベクトルデータから仕訳データを生成する。仕訳AIは、学習システム30にて、税理士等の専門家や各企業、各業界が過去に実施した精度の高い仕訳データを教師データとして機械学習を行い、取引内容に応じた勘定科目を選定することを学習した、仕訳に特化したAIである。
詳しくは、図2を参照すると上記仕訳AIを形成するための学習システムを示すシステム構成図が示されている。
同図に示す学習システム30は、1又は複数のサーバ(コンピュータ)からなり、機能的には数値化・ベクトル化部31、学習部32、仕訳評価部33、表示部34、修正教師データ生成部35、学習済モデルDB36を有している。当該学習システム30には、教師データとして、多数の仕訳要素データと、それに対応する仕訳データが入力される。この入力される仕訳要素データと仕訳データとの組み合わせは、過去に専門家や企業により仕訳された正確性の高いデータが用いられる。又は他の会計処理ソフトウェアやクラウドサービスと連携して、これらのソフトウェアやサービスが保有している仕訳要素データと仕訳データとの組み合わせを教師データとして取得してもよい。
この教師データは、学習システム30で形成する仕訳AIの種類に応じて選定されるのが好ましい。例えば、過去の仕訳要素データ及び仕訳データが乏しい設立間もない企業や個人等の一般ユーザ向けの仕訳AIを形成する場合には、企業や業界を限定しない種々の仕訳要素データ及び仕訳データを教師データとし、個別の企業のみ又は個別の業界のみを対象とした仕訳AIを形成する場合には、当該企業又は業界で過去に実際に仕訳した仕訳要素データ及び仕訳データを教師データとする。
数値化・ベクトル化部31は、上記会計処理装置10のベクトル化と同様に、入力された仕訳要素データ及び仕訳データをベクトルデータに変換する。
学習部32は、ベクトル化された仕訳要素データと仕訳データとの組み合わせの関係性を機械学習することで、仕訳要素データを複合的に判断し、適切な勘定科目を選択した仕訳データを出力する仕訳AIを形成する。
仕訳評価部33は、学習部32に形成された仕訳AIが仕訳した結果に対し、教師データと異なる低信頼度仕訳を検出し出力する。詳しくは、仕訳評価部33は、まず、学習部32での学習を終えた仕訳AIに対して、改めて教師データの仕訳要素データを入力して、仕訳を実行させる。そして、この学習部32にて形成された仕訳AIにより教師データの仕訳要素データを仕訳させた仕訳データと、教師データにおける仕訳データとをまとめて比較する。教師データに基づき学習した仕訳AIが、その教師データの仕訳要素データを改めて仕訳した場合でも、必ずしも全て教師データと同じ仕訳が行われるわけではなく、教師データの仕訳データと異なる仕訳データを出力する件も生じる。例えば、教師データの仕訳が不正確で通常と異なる特異な仕訳である件や、仕訳要素データの情報が不十分であったり不明確であったりする件等については、教師データと異なる仕訳を行う可能性がある。
仕訳評価部33では、このような教師データにおける仕訳データの勘定科目と異なる勘定科目を選定した、いわゆる仕訳の信頼度の低い低信頼度仕訳を検出し、この検出した低信頼度仕訳を含む仕訳結果を仕訳評価データとして出力する。具体的には、仕訳評価部33は、仕訳評価データとして、混同行列を作成し教師データにおける仕訳データの勘定科目と、仕訳AIが仕訳した仕訳データの勘定科目との一致及び不一致の数を算出したデータを出力する。
表示部34は、例えば当該学習システム30に有線若しくは無線接続、又はインターネット等の通信網を介して接続されたPCのディスプレイであり、仕訳評価部33にて出力された仕訳評価データを表示する。この表示部34にて仕訳評価データが表示されることで、サービス提供者が仕訳AIの学習状況を確認可能となる。
ここで、図3を参照すると、混同行列に基づく仕訳評価データの表示例が示されている。同図に示すように、仕訳評価部33により作成される混合行列は、教師データにおける仕訳データの勘定科目(正解勘定科目)を縦軸にとり、仕訳AIにより仕訳された勘定科目(推定勘定科目)を横軸にとる。仕訳AIにより教師データと一致する勘定科目に仕訳された数、即ち正解勘定科目と推定勘定科目が一致した件数が、対角線上の欄に記されている。その他の欄は、正解勘定科目と推定勘定科目が異なる件数であり、これらが低信頼度仕訳の数である。
例えば、図3において、正解勘定科目が「福利厚生費」の行を参照すると、仕訳AIによる推定勘定科目が正しく「福利厚生費」として仕訳された数は11111件であるのに対し、推定勘定科目が「支払手数料」として教師データと異なる仕訳がされた数が13件、「旅費交通費」は1件、「消耗品費」は50件、「会議費」は45件、「接待交際費」は21件、「仕入高」は3件、「事務用品費」は1件、「雑費」は3件あることが示されている。なお、「給与手当」、「新聞図書費」、「外注費」として教師データと異なる仕訳がされた数は0件である。
また、本実施形態における仕訳評価部33は、低信頼度仕訳の件数が他に比べて多い欄ほど濃い背景色で示す処理を行っている。例えば、図3では、仕訳AIが「消耗品費」を「事務用品費」として低信頼度仕訳している数が110件、「事務用品費」を「消耗品費」として低信頼度仕訳している数が143件と、他に比べて数の多い欄は背景色が他の欄に比べて濃く示されている。なお、件数の大小を示す表記は背景色の濃さに限られるものではない。
さらに、仕訳評価部33は、低信頼度仕訳のうち明らかな簿記としての誤りや、予め定めた所定の仕訳ルールの適用、その他の要因で教師データと異なる仕訳がされた、低信頼度の要因の種類を判別可能である。
例えば、本実施形態の仕訳評価部33は、図3に示すように、正解勘定科目が「支払手数料」であるのに対して、推定勘定科目が「福利厚生費」(6件)や「旅費交通費」(7件)等と仕訳されているのは簿記上明らかな誤りであると判別して、これらの件数には下線を付している。
また、所定の仕訳ルールとは、例えば専門家、企業又は業界等のユーザ固有のルールである。例えば銀行の残高証明書を取るときの費用は、「支払手数料」と「雑費」のどちらの勘定科目でも簿記的には正しいが、ユーザ固有の仕訳ルールとしてどちらにするか予め設定されている又はどちらでも許可するような場合、仕訳評価部33はユーザ設定がされている仕訳が含まれていることを示すため、図3の正解勘定科目「支払手数料」に対して推定勘定科目「雑費」である欄に示すように、件数に二重下線を付している。なお、教師データと異なる要因の種類を示す表記は下線や二重下線に限られるものではなく、例えば背景色の色を他と異なるようにしてもよい(以下同じ)。
また、この他にも、簿記的な誤り及び所定の仕訳ルール以外の要因で教師データと異なる仕訳である件も検出して、他と異なる表記を施してもよい。
さらに、仕訳評価部33は、混同行列に基づく仕訳評価データの評価の他にも、図4に示すように、低信頼度仕訳の内訳表を表示部34に表示することも可能である。
詳しくは、図4では、正解勘定科目が「福利厚生費」である仕訳案件の内訳一覧を表示しており、パーセント表示は横軸の推定勘定科目に対する仕訳の確率(信頼度、確実性)であり、右側の3つの欄には当該仕訳案件の仕訳要素(日付、金額、摘要)が記されている。
例えば、図4の最上行の日付「2015/12/30」、金額「12,520」円、摘要「A飲食店 役員打合せ」である仕訳要素に対し、仕訳AIは32%の確率で福利厚生費、67%の確率で会議費であると判断しており、最も確率の高い会議費を推定勘定科目として選定していることを示している。なお、仕訳評価部33は、確率の高い欄ほど背景色を濃くするよう表示している。
当該一覧表においても、仕訳評価部33は、低信頼度仕訳のうち明らかな簿記としての誤りや、予め定めた所定の仕訳ルールの適用、その他の要因で教師データと異なる仕訳がされた、低信頼度の要因の種類を判別可能である。例えば図4の最下行では、摘要「タクシー代」に対して、正解勘定科目が「福利厚生費」であり、仕訳AIは「旅費交通費」の確率が最も高いと判断し推定勘定科目を「旅費交通費」とした上で、タクシー代を福利厚生とするのは簿記的に誤りと判別し、日付、金額、摘要の記載に一重下線が付されている。また、図4の2行目から4行目に示すように、いずれも摘要が食事代であるのに対し、例えば1名あたり5,000円未満の食事代関係は福利厚生でも会議費でもよいとするルールが定められていることで、日付、金額、摘要の記載に二重下線が付される。
図2に戻り、修正教師データ生成部35は、仕訳評価部33にて検出した低信頼度仕訳を修正するための修正教師データを生成する。詳しくは、修正教師データ生成部35は、表示部34にて表示された混同行列の表や低信頼度仕訳の内訳の表に基づき、仕訳AIが低信頼度仕訳を出さない方向の修正教師データを生成する。例えば、修正教師データは、低信頼度仕訳が生じた勘定科目ごとに、正しい仕訳要素データとそれに対応する仕訳データの組み合わせを集中的に集めたデータとする。学習システム30は、この修正教師データを教師データとして再度学習部32での学習を行うことで、仕訳AIは正しい仕訳を行う傾向に向かうこととなり、低信頼度仕訳の改善が図られる。
学習済モデルDB33は、仕訳の精度が一定水準以上となった学習済みの仕訳AIを保存する。仕訳AIの仕訳の精度が一定水準以上となった否かの判別は、表示部34にて表示された仕訳評価データに基づきサービス提供者が判断してもよいし、仕訳評価部33が仕訳評価データに基づく精度判定機能を有しており、当該精度判定機能により判断してもよい。
仕訳AIの仕訳の精度の判断は、例えばサービス提供者が上述の混同行列の表(図3)や低信頼度仕訳を勘定科目ごとに並べた一覧表(図4)等から判別したり、各勘定科目における低信頼度仕訳の割合(正答率)や合計数が所定の閾値以下であるときに仕訳の精度が一定水準以上となったと判別したりすることとする。
学習済モデルDB33に保存される仕訳AIは1つに限られず、ユーザの業種やユーザ単体に特化した仕訳要素データと仕訳データを入力して学習させることで、ユーザの業種やユーザ単体に最適化された仕訳AIを形成してもよい。これにより、ユーザにとってより精度の高い仕訳を実現できる。
図1に戻り、仕訳部13は、上述のように形成された仕訳AIを用いて、ベクトルデータである仕訳要素に対して妥当な勘定科目を選択し、仕訳データとしてユーザの情報端末3に送信する。なお、仕訳AIによって仕訳できないような仕訳要素であった場合には、勘定科目の該当なしとする仕訳データを出力する。
情報端末3は、会計処理装置10からの仕訳データを受信すると表示部5に、その仕訳データを表示可能である。ユーザがこの仕訳データを確認し、当該仕訳データに対して修正を行ったり、新たな仕訳を生成したりした場合には、それらの情報が会計処理装置10にフィードバックされる。フィードバックされた修正仕訳データは、学習システム30に送られて、教師データとして活用される。なお、フィードバックによる仕訳AIの学習精度を維持すべく、フィードバックを行えるユーザを税理士や会計士の専門家ユーザに限定するようにしてもよい。つまり、特定の情報端末3にのみフィードバックの機能を持たせたり、会計処理装置10が特定の情報端末3からのフィードバックのみを受け付けるよう設定したりする。
図4を参照すると、上記学習システム30における仕訳学習ルーチンを表したフローチャートが示されており、以下、同図のフローチャートに沿って仕訳学習の流れについて説明する。
まず、仕訳学習ルーチンのステップS1では、数値化・ベクトル化部31に教師データが入力され、数値化・ベクトル化部31が教師データを数値化及びベクトル化してベクトルデータを生成する。
ステップS2では、学習部32において、ベクトル化された教師データに基づき仕訳を機械学習させた仕訳AIを形成する(学習工程)。
続くステップS3では、仕訳評価部33において、仕訳AIにより教師データを仕訳した結果から低信頼度仕訳を検出し、図3で示したような混同行列を用いた仕訳評価データを生成して表示部34に表示する(仕訳評価工程)。
ステップS4では、仕訳評価部33又はサービス提供者により、再学習が必要か否か、即ち生成した仕訳評価データに基づき仕訳の精度が予め定めた一定水準以上であるか否かを判別する。当該判別結果が真(Yes)である場合、即ち仕訳の精度が一定水準未満であり、再学習が必要である場合はステップS5に進む。
ステップS5では、修正教師データ生成部35において、低信頼度仕訳を修正するための修正教師データを生成し、次の教師データとして当該ルーチンをリターンする。
一方、上記ステップS4の判別結果が偽(No)である場合、即ち仕訳の精度が一定水準以上であり、再学習が不要である場合はステップS6に進む。
ステップS6では、上記ステップS2で形成された仕訳AIを学習済モデルDB36に保存して当該ルーチンを終了する。
以上のように、本実施形態における会計処理システム1では、会計処理装置10において自動仕訳を行う仕訳部13で用いる仕訳AIが、学習段階において仕訳評価部33により低信頼度仕訳を検出されている。このように仕訳AIによる仕訳結果の誤りを仕訳評価部33にて仕訳評価データとしてまとめて検出及び出力することで、従来のように一つ一つの仕訳の誤りを見つけるよりも容易に仕訳の誤りを発見することができる。そして、この仕訳評価データに基づきまとめて低信頼度仕訳の修正を行うこともできることから仕訳AIの仕訳精度を効率的に向上させることができる。
また、仕訳評価部33は、低信頼度仕訳の要因の種類を判別することで、低信頼度仕訳の要因を容易に把握することができる。特に、簿記上の誤りを判別することで、重要度の高い誤りを把握することができ、これに基づき仕訳AIを学習し直すことで、簿記上の誤りを修正した高精度の仕訳AIを容易に形成することができる。また、所定の仕訳ルールの適用を判別することで、ユーザ特有の仕訳ルールが適用されている部分を容易に把握することができ、これに基づき仕訳AIを学習し直すことで企業ごと、業界ごとに適した高精度の仕訳AIを容易に形成することができることとなる。
また、仕訳評価部33は、仕訳評価データを表示部34に表示することで、当該表示部34から仕訳AIの精度等を容易に把握することができる。
特に、この仕訳評価データを教師データの仕訳に基づく正解勘定科目と、仕訳AIによる仕訳に基づく推定勘定科目とからなる混同行列に基づく表や勘定科目ごとに低信頼度仕訳を並べた一覧表を出力することで、仕訳AIの精度をより容易に且つ明確に把握することができる。
また、学習システム30により学習した仕訳AIにより自動仕訳を行う会計処理装置10と、通信網2を介して各ユーザの情報端末3と接続された会計処理システム1は、低信頼度仕訳を最小限に抑えた高精度な自動仕訳をユーザに提供することができる。
さらに、各ユーザによる修正仕訳データが会計処理装置10にフィードバックされ、この修正仕訳データを教師データとしてさらに仕訳AIを学習させることで、仕訳AIの精度をより向上させることができる。
このようなことから、本実施形態における会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラムによれば、自動仕訳における仕訳の誤りを容易に発見することができ、効率的に仕訳精度を向上させることができる。
以上で本発明の実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。
上記実施形態では、学習システム30において、仕訳評価部33にて生成された仕訳評価データを表示部34に表示した上で、修正教師データ生成部35における修正教師データの生成を行っているが、必ずしも仕訳評価データを表示部34に表示しなくともよい。例えば、仕訳評価部33は、仕訳評価データに基づく精度判定機能も有していれば、仕訳評価データに基づき仕訳精度が一定水準に満たない場合には、図2にて点線矢印で示すように、自動的に修正教師データ生成部35にて修正教師データを生成して再学習を行うようにしてもよい。これにより、自動的に仕訳AIの精度を一定水準以上の精度に向上させることができる。
また、上記実施形態では、学習システム30における仕訳評価部33は、仕訳評価データをPCのディスプレイである表示部34に出力しているが、仕訳評価データの出力先である表示部はこれに限られるものではない。例えば、表示部はスマートフォン、タブレットPC、及び携帯電話のような携帯端末のディスプレイでもよいし、仕訳評価データを外部システムと連携するためのAPIやCSVデータとして出力し外部装置の表示部に表示させてもよい。また、表示部としては、仕訳評価データを視認可能に表示できるものであればよいことから、仕訳評価データを印刷した紙媒体も含まれる。
また、上記実施形態では、修正教師データ生成部35にて、再学習のための修正教師データを生成しているが、例えば、図2の一点鎖線矢印で示すように、仕訳評価部33からの仕訳評価データを、APIやCSV等を介して、教師データの元となる他の会計処理ソフトウェアやクラウドサービスにフィードバックするように提供することで、再学習のための教師データを生成してもよい。
なお、上記実施形態では、学習システム30において、低信頼度仕訳に対して、修正教師データ生成部35にて低信頼度仕訳した勘定科目ごとに修正教師データを生成して再学習させることで、仕訳AIにおける低信頼度仕訳の改善を行っているが、低信頼度仕訳の改善方法はこれに限られるものではない。例えば、仕訳AIが有する仕訳に関するパラメータを直接的に修正してもよい。
また、上記実施形態では、図3に示す混同行列の表では低信頼度仕訳を件数表示で示しているが、低信頼度仕訳の表示形式はこれに限られず、例えばパーセント表示としてもよい。
1 会計処理システム
2 通信網
3 読取装置
4 情報端末
11 取引解析部
12 数値化・ベクトル化部
13 仕訳部
30 学習システム
31 数値化・ベクトル化部
32 学習部
33 仕訳評価部
34 表示部
35 修正教師データ生成部
36 学習済モデルDB
2 通信網
3 読取装置
4 情報端末
11 取引解析部
12 数値化・ベクトル化部
13 仕訳部
30 学習システム
31 数値化・ベクトル化部
32 学習部
33 仕訳評価部
34 表示部
35 修正教師データ生成部
36 学習済モデルDB
Claims (21)
- 取引内容に応じた勘定科目を自動的に仕訳する会計処理装置であって、
予め教師データに基づいた機械学習を行い、取引内容に応じた勘定科目を選定することを学習した仕訳AIと、
前記仕訳AIが仕訳した結果に対し、前記教師データと異なる低信頼度仕訳を検出し出力する仕訳評価部と、
を備える会計処理装置。 - 前記仕訳評価部は、前記低信頼度仕訳の要因の種類を判別可能である請求項1に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の要因として簿記上の誤りを判別可能である請求項2に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の要因として予め定めた所定の仕訳ルールの適用を判別可能である請求項2又は3に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の情報を視認可能な表示部に出力する請求項1から4のいずれか一項に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の情報を混同行列に基づく表を出力する請求項1から5のいずれか一項に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の情報を、前記教師データの仕訳に基づく正解勘定科目と、前記仕訳AIによる仕訳に基づく推定勘定科目とからなる混合行列に基づく表として出力する請求項1から6のいずれか一項に記載の会計処理装置。
- 前記仕訳評価部は、前記低信頼度仕訳の情報として、勘定科目ごとに低信頼度仕訳を並べた一覧表を出力する請求項1から7のいずれ一項に記載の会計処理装置。
- 前記仕訳評価部により出力された低信頼度仕訳に基づき、前記仕訳AIを再学習させる請求項1から8のいずれか一項に記載の会計処理装置。
- 請求項1から9のいずれか一項に記載の会計処理装置と、
前記会計処理装置と通信網を介して接続され、取引データを前記会計処理装置に送信可能であるとともに、前記会計処理装置にて生成された仕訳データを受信可能な情報端末と、を備える会計処理システム。 - 前記情報端末は、受信した仕訳データを修正し、修正した仕訳データを前記会計処理装置にフィードバック可能であり、
前記会計処理装置は、フィードバックされた修正した仕訳データに基づき前記仕訳AIをさらに学習させる請求項10記載の会計処理システム。 - 取引内容に応じた勘定科目を自動的に仕訳する会計処理方法であって、
予め教師データに基づいた機械学習を行い、取引内容に応じた勘定科目を選定することを学習した仕訳AIを形成する学習工程と、
前記学習工程で形成した仕訳AIが仕訳した結果に対し、前記教師データと異なる低信頼度仕訳を検出し出力する仕訳評価工程と、
を備える会計処理方法。 - 前記仕訳評価工程では、前記低信頼度仕訳の要因の種類を判別可能である請求項12記載の会計処理方法。
- 前記仕訳評価工程では、前記低信頼度仕訳の要因として簿記上の誤りを判別可能である請求項13に記載の会計処理方法。
- 前記仕訳評価工程では、前記低信頼度仕訳の要因として予め定めた所定の仕訳ルールの適用を判別可能である請求項13又は14に記載の会計処理方法。
- 前記仕訳評価工程では、前記低信頼度仕訳の情報を視認可能な表示部に出力する請求項12から15のいずれか一項に記載の会計処理方法。
- 前記仕訳評価工程では、前記低信頼度仕訳の情報を混同行列に基づく表として前記表示部に出力する請求項12から16のいずれ一項に記載の会計処理方法。
- 前記仕訳評価工程では、前記教師データの仕訳に基づく正解勘定科目と、前記仕訳AIによる仕訳に基づく推定勘定科目とからなる混合行列に基づく表として前記表示部に出力する請求項12から17のいずれか一項に記載の会計処理方法。
- 前記仕訳評価工程では、前記低信頼度仕訳の情報として、勘定科目ごとに低信頼度仕訳を並べた一覧表を出力する請求項12から18のいずれ一項に記載の会計処理方法。
- 前記仕訳評価工程により出力された低信頼度仕訳に基づき、前記仕訳AIを再学習させる請求項12から19のいずれか一項に記載の会計処理方法。
- コンピュータに、請求項12から20のいずれか一項に記載の会計処理方法を実行させるための会計処理プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017511968A JP6261808B1 (ja) | 2017-02-27 | 2017-02-27 | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム |
PCT/JP2017/007568 WO2018154790A1 (ja) | 2017-02-27 | 2017-02-27 | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/007568 WO2018154790A1 (ja) | 2017-02-27 | 2017-02-27 | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018154790A1 true WO2018154790A1 (ja) | 2018-08-30 |
Family
ID=60989177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007568 WO2018154790A1 (ja) | 2017-02-27 | 2017-02-27 | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6261808B1 (ja) |
WO (1) | WO2018154790A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6395966B1 (ja) * | 2018-04-20 | 2018-09-26 | Tis株式会社 | 仕訳ルール作成支援装置、仕訳ルール作成支援方法、及び仕訳ルール作成支援プログラム |
JP7100513B2 (ja) * | 2018-06-29 | 2022-07-13 | 株式会社エヌケービー | 映像審査装置、コンピュータプログラム及び映像審査方法 |
US11407104B2 (en) | 2018-07-10 | 2022-08-09 | Fanuc Corporation | Tooth contact position adjustment amount estimation device, machine learning device, and robot system |
JP7060546B2 (ja) * | 2018-07-10 | 2022-04-26 | ファナック株式会社 | 歯当たり位置調整量推定装置、機械学習装置、ロボットシステム及び歯当たり位置調整量推定システム |
JP6854047B2 (ja) * | 2019-03-01 | 2021-04-07 | PwCあらた有限責任監査法人 | 分析装置、分析方法及びプログラム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016021147A (ja) * | 2014-07-14 | 2016-02-04 | フリー株式会社 | 会計処理装置、会計処理方法及び会計処理プログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017021062A (ja) * | 2015-07-07 | 2017-01-26 | 日本電信電話株式会社 | 音声認識誤り単語検出装置、方法及びプログラム |
-
2017
- 2017-02-27 WO PCT/JP2017/007568 patent/WO2018154790A1/ja active Application Filing
- 2017-02-27 JP JP2017511968A patent/JP6261808B1/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016021147A (ja) * | 2014-07-14 | 2016-02-04 | フリー株式会社 | 会計処理装置、会計処理方法及び会計処理プログラム |
Non-Patent Citations (2)
Title |
---|
"Inside Closure", NIHEMAK.HATENABLOG.COM, 19 January 2015 (2015-01-19), Retrieved from the Internet <URL:http://nihemak.hatenablog.com/entry/2015/01/19/173759> * |
"machine 1 earning", MONEY FORWARD, 30 August 2016 (2016-08-30), Retrieved from the Internet <URL:http://corp.moneyforward.com/service/20160830_machine-1earning> * |
Also Published As
Publication number | Publication date |
---|---|
JP6261808B1 (ja) | 2018-01-17 |
JPWO2018154790A1 (ja) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6261808B1 (ja) | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム | |
JP2018097813A (ja) | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム | |
JP6342583B1 (ja) | 自動仕訳装置、会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム | |
JP6871840B2 (ja) | 計算機及び文書識別方法 | |
JP6307745B2 (ja) | 会計処理システム | |
CN110648211B (zh) | 数据验证 | |
US8073751B2 (en) | Automated review and hold placement | |
Holt et al. | Extracting structured data from invoices | |
US9875486B2 (en) | Extracting product purchase information from electronic messages | |
JP6161229B1 (ja) | 自動仕訳システムおよび自動仕訳プログラム | |
EP3196811A1 (en) | Cognitive document reader | |
WO2018179411A1 (ja) | 会計処理システム及び会計処理方法 | |
JP2018173935A (ja) | 会計処理システム | |
JP6732325B1 (ja) | 会計処理システム、会計処理方法、会計処理プログラム | |
JPWO2020179055A1 (ja) | 証憑解析装置、会計処理システム、証憑解析方法、証憑解析プログラム | |
WO2016064679A1 (en) | Extracting product purchase information from electronic messages | |
JP2017033176A (ja) | 会計処理システム、会計処理方法、プログラム及び指導レポート | |
JP2018142301A (ja) | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム | |
JP6918328B2 (ja) | 情報入力装置及びマッチングシステム | |
WO2019146118A1 (ja) | 会計処理装置、会計処理システム、会計処理方法、会計処理プログラム | |
JP6981671B2 (ja) | 仕訳要素解析装置、会計処理装置、仕訳要素解析方法、仕訳要素解析プログラム | |
JP6683377B1 (ja) | 書類分類システム、書類分類装置、書類分類方法、書類分類プログラム | |
JP2015103035A (ja) | 名刺データベリファイシステム | |
JP2006252575A (ja) | 財務諸表自動入力装置及び財務諸表自動入力方法 | |
JP4356908B2 (ja) | 財務諸表自動入力装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017511968 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898040 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17898040 Country of ref document: EP Kind code of ref document: A1 |