WO2018153377A1 - 对序列测定反应进行控制的方法、装置和系统 - Google Patents

对序列测定反应进行控制的方法、装置和系统 Download PDF

Info

Publication number
WO2018153377A1
WO2018153377A1 PCT/CN2018/077387 CN2018077387W WO2018153377A1 WO 2018153377 A1 WO2018153377 A1 WO 2018153377A1 CN 2018077387 W CN2018077387 W CN 2018077387W WO 2018153377 A1 WO2018153377 A1 WO 2018153377A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
reaction
reagent
rotor
Prior art date
Application number
PCT/CN2018/077387
Other languages
English (en)
French (fr)
Inventor
吴平
颜钦
姜泽飞
周志良
Original Assignee
深圳市瀚海基因生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瀚海基因生物科技有限公司 filed Critical 深圳市瀚海基因生物科技有限公司
Publication of WO2018153377A1 publication Critical patent/WO2018153377A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q3/00Condition responsive control processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of sequence determination technology, in particular to a method and a sequence determination system and device for controlling a sequence determination reaction.
  • Sequencing includes the determination of nucleic acid sequences.
  • the current sequencing platforms on the market include a generation of sequencing platforms, second-generation sequencing platforms and three generations of sequencing platforms.
  • the platform for sequence sequencing based on biochemical reaction requires a biochemical reaction on the reaction device during the sequence determination.
  • a liquid route system is required to introduce different reagents together or sequentially onto a chip for reaction.
  • the liquid path system uses the first valve to switch the input/output reagents.
  • the first valve commercially available, due to its structural characteristics, inevitably occurs when different reagents are switched, different degrees of reagent crossover or mixing, that is, reagent cross-contamination.
  • Cross-contamination of reagents can affect the progress of the reaction, especially for reactions where the amount of reagents required for the reaction itself is small, such as single-molecule sequencing, where cross-contamination of the reagent is fatal.
  • Embodiments of the present invention aim to address at least one of the technical problems in the related art or at least provide a useful commercial choice.
  • the inventors made the present invention based on the following findings and assumptions regarding the resolution of the structure of the first valve.
  • the first valve on the market also known as injection valve, multi-position valve, rotary valve or rotary valve, is used as a component for sample collection, liquid injection or flow path conversion.
  • the composition generally includes a stator and a rotor, and an effective seal can be formed by the tight combination of the stator and the rotor.
  • the first valve has a common port, the common port is a port through which different flow paths of liquid enter or exit, the common port is provided on the stator and/or the rotor, and the stator and/or the rotor has one or more other ports.
  • the general configuration/standard configuration of the first valve is a multi-pass selection type, that is, during operation, only one port is in communication with the common port.
  • the communication between the common port and other ports generally requires communication through one or several common structures disposed on the rotor.
  • the common structure When there is liquid in the common structure, at least a part of the liquid in the common structure is inevitably brought to a place outside the common structure due to the rotation of the rotor, the relative movement of the sealing interface of the rotor and the stator connection, that is, the flow path conversion
  • it will inevitably bring the liquid of the first-class road liquid with the first-class road, and if the flow path is reversed in the subsequent direction, the liquid of the next-class road mixed with the first-class liquid will be brought to the lower flow path.
  • the liquid thus, even if it is mixed in a small amount, the cross-contamination generated is difficult to control and the influence is difficult to predict.
  • the inventor compares and analyzes the manual results and the results of the on-board measurement, repeatedly tests and views the various components of the device system, and based on the above-described splitting study of the structure of the first valve, determines the above, due to the flow path conversion public At least a portion of the liquid in the structure is incorporated into the next step, i.e., the next reaction, i.e., cross-contamination of the reagents, which adversely affects the sequence determination results.
  • the next reaction i.e., cross-contamination of the reagents
  • Embodiments of the present invention provide a method of controlling a sequence determination reaction, the sequence determination reaction comprising a first biochemical reaction, the first biochemical reaction being performed on a reaction device using a first reagent, using a sequence determination system
  • the sequencing reaction is controlled.
  • the sequence determination system includes a fluidic device that includes a valve body assembly and a drive assembly.
  • the valve body assembly includes a first valve and a second valve, the first valve being coupled to the reaction device, the first valve including a connectable stator and a rotor, the first valve having a common port,
  • the stator has a plurality of ports, and the rotor has a communication slot.
  • the common port and the at least one port are communicated through the communication slot by rotating the rotor, and the plurality of ports include a first port.
  • the second valve can be coupled to the first port, the first reagent, and/or the first buffer, the method comprising the steps of:
  • the first reagent enters the reaction device sequentially through the second valve and the first valve to perform the first biochemical reaction;
  • the first buffer is sequentially flowed through the second valve and the first valve by the drive assembly.
  • the first buffer before rotating the rotor, the first buffer is caused to flow into the first valve, so that the liquid in the communication tank is replaced by the first buffer before rotating the rotor, or before the rotor of the first valve is rotated,
  • the first buffer having no effect on the target sequence determination reaction replaces the first reagent in the communication tank, thereby avoiding the fact that the original reagent in the communication tank is brought to other positions of the connection interface between the stator and the rotor during the rotation of the rotor, thereby avoiding The risk of cross-contamination when switching between different reagents.
  • a sequence determining system controls a sequence determining reaction, the sequence determining reaction comprising a first biochemical reaction, the first biochemical reaction being carried out on a reaction device using a first reagent.
  • the sequence determination system includes a control device and a fluid device, the control device being coupled to the fluid device, the fluid device including a valve body assembly and a drive assembly.
  • the valve body assembly includes a first valve and a second valve, the first valve being coupled to the reaction device, the first valve including a connectable stator and a rotor, the first valve having a common port,
  • the stator has a plurality of ports, and the rotor has a communication slot.
  • the common port and the at least one port are communicated through the communication slot by rotating the rotor, and the plurality of ports include a first port.
  • the second valve may be connected to the first port, the first reagent and/or the first buffer, and the control device is configured to:
  • the first reagent enters the reaction device sequentially through the second valve and the first valve to perform the first biochemical reaction;
  • the first buffer is sequentially flowed through the second valve and the first valve by the drive assembly.
  • the first buffer before rotating the rotor, the first buffer is caused to flow into the first valve, so that the liquid in the communication tank is replaced by the first buffer before rotating the rotor, or before the rotor of the first valve rotates,
  • the first buffer having no influence on the target sequence determination reaction replaces the first reagent in the communication tank, thereby avoiding the original reagent in the communication groove being brought to other positions of the connection interface between the stator and the rotor during the rotation of the rotor, and further Avoid the risk of cross-contamination when switching between different reagents.
  • a computer readable storage medium for storing a program for execution by a computer, the method comprising executing the method of any of the above embodiments.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • FIG. 1 is a schematic flow chart of a method for controlling a sequence determination reaction according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a sequence determining system according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the relationship between a port, a communication groove, and a common port of the first valve according to the embodiment of the present invention
  • FIG. 4 is a schematic structural view of a valve body assembly according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a test platform according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a set of test data obtained by a test platform according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another set of test data obtained by a test platform according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of comparison of different test data obtained by a test platform according to an embodiment of the present invention.
  • FIG. 9 is another schematic flow chart of a method for controlling a sequence determination reaction according to an embodiment of the present invention.
  • Figure 10 is a functional block diagram of a sequence determination system according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection should be understood broadly, for example, it may be a fixed connection, a detachable connection, or an integral connection;
  • the mechanical connections may also be electrical connections or may communicate with each other; they may be directly connected or indirectly connected through an intermediate medium, and may be internal communication of two elements or an interaction relationship of two elements.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • Sequence determination is the same as nucleic acid sequence determination, including DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • the so-called “sequence determination reaction” is the same as the sequencing reaction.
  • one base or one specific type of base can be determined by one round of sequencing reaction, and the base is selected from at least one of A, T, C, G, and U.
  • the so-called round of sequencing reactions includes extension reactions (base extension), information collection (photographing/image acquisition), and cleave.
  • nucleotide analog is a substrate, also known as a terminator, which is an analog of A, T, C, G and/or U, which can follow the principle of base complementation and a specific type of base.
  • the base pairing while being able to terminate the next nucleotide/substrate binding to the template strand.
  • an embodiment of the present invention provides a method for controlling a sequence determination reaction, wherein the sequence determination reaction includes a first biochemical reaction, and the first biochemical reaction is performed on the reaction device 40 by using the first reagent 11
  • the sequencing system controls the sequence determination reaction.
  • the sequencing system includes a fluidic device 100 that includes a valve body assembly 10 and a drive assembly 50.
  • the valve body assembly 10 includes a first valve 20 and a second valve 30.
  • the first valve 20 is coupled to the reaction device 40.
  • the first valve 20 includes a connectable stator and a rotor.
  • the first valve 20 has a common port and has a plurality of stators.
  • the port has a communication slot 21 on the rotor.
  • the common port and the at least one port can communicate through the communication slot 21 by rotating the rotor.
  • the plurality of ports include the first port 22, and the second valve 30 can be connected to the first port 22 and the first reagent 11 And/or the first buffer 60, the method comprising the steps of:
  • the first port 22 is connected to the common port through the communication slot 21;
  • the second valve 30 is connected to the first reagent 11 and the first port 22;
  • the first reagent 11 is sequentially entered into the reaction device 40 through the second valve 30 and the first valve 20 to perform a first biochemical reaction;
  • the second valve 30 before rotating the rotor, the second valve 30 is connected to the first buffer 60 and the first port 22;
  • the first buffer is sequentially flowed through the second valve 30 and the first valve 20 by the driving assembly 50.
  • the first buffer liquid 60 is caused to flow into the first valve 20 before the rotor is rotated, so that the liquid in the communication tank 21 is replaced by the first buffer liquid 60 before the rotary rotor, or the rotor of the first valve 20 Before the rotation, the first buffer 16 in the communication tank 21 is replaced by the first buffer 60 having no influence on the target sequence measurement reaction, thereby avoiding the original reagent in the communication groove 21 being brought to the stator and the rotor during the rotation of the rotor. Connecting to other locations on the interface avoids the risk of cross-contamination when switching between different reagents.
  • reaction device 40 can be a chip and reaction device 40 carries a sample.
  • the reaction device 40 includes a first unit 41 and a second unit 42, each unit including a plurality of channels, which can be respectively typed in the channel of the first unit 41 and the channel of the second unit 42 respectively.
  • the sequence determination reaction, the sequence determination reaction in the channel of the first unit 41 and the sequence determination reaction in the channel of the second unit 42 are staggered, asynchronous, and mutually unaffected.
  • the fluid device 100 will deliver a reagent for the reaction to the first unit 41, at which point the same reagent will not be allowed to enter the second unit 42, and vice versa.
  • each unit is connected with a first valve 20.
  • the common port of the first valve 20 communicates with the corresponding unit such that the reagent output from the common port of the first valve 20 can enter the corresponding unit for biochemical reaction. In this way, the progress of the sequence determination can be accelerated.
  • the sample to be sequenced is immobilized on the surface of the channels of the first unit 41 and the second unit 42 of the reaction device 40 prior to performing the sequence determination reaction, and the sample to be sequenced is, for example, double-stranded. Or a single-stranded DNA strand.
  • the valve 20 and the reaction device 40 can be connected and connected by a hose, so that the hose can make the configuration of the liquid path more flexible.
  • the first valve 20 can employ a multi-way valve.
  • the second valve 30 can be a three-way valve, such as a three-way solenoid valve.
  • the normally closed port and the normally open port of the three-way solenoid valve are respectively connected with a reagent and a buffer to be added.
  • the first valve 20 can be a rotary valve, and as such, the method of controlling the sequencing reaction can be applied in a wide range of applications.
  • the common port is opened on the stator, the plurality of ports are disposed around the common port, and the common port is in communication with one end of the communication groove 21. In other embodiments, the common port is formed on the rotor and is located at one end of the communication groove 21.
  • step S11 is performed before step S12.
  • step S12 may be performed before step S11, or step S11 and step S12 may be simultaneously performed.
  • the so-called buffer is a solution which can maintain the liquid pH within a certain range to a certain extent, and is a weak acid, a weak base and/or a neutral solution.
  • the first buffer is a solution that does not affect the first biochemical reaction and/or other biochemical reactions of the sequencing reaction.
  • the sealing of the first valve 20 is substantially sealed by the end face between the stator and the rotor.
  • the liquid in the communication groove 21 may remain on the sealing surface between the stator and the rotor.
  • the first reagent 11 enters the reaction device 40 via the port 1, the communication tank 21, and the common port 0 as the first port 22.
  • the liquid 60 sequentially flows through the second valve and the first valve 20, thereby cleaning the first reagent 11 remaining in the communication tank 21, which greatly improves the situation of cross-contamination.
  • the second valve 30 may include one or more of the three-way valves V1-V8.
  • the first port 22 can include one or more of ports 1-8.
  • the first valve 20 is described by taking a rotary valve as an example.
  • test platform is used to evaluate the cross-contamination performance of the two rotary valves (hereinafter referred to as rotary valve A1 and rotary valve B1).
  • rotary valve A1 and rotary valve B1 select the adjacent ports 1, 2 and 8 as the test
  • port 1 is connected to the fluorescent reagent 1
  • port 2 and port 8 are the buffer
  • the reaction device flow cell has two parallel channels A and B
  • test The operation details are as follows:
  • n2-n1 can be regarded as a rotary valve switching from port 1 to port 2 (clockwise) and then to port 8 (reverse The cross-contamination caused by the process of hour hand), the increase of n2-n1, that is, the number of fluorescent dots must be the number of fluorescent dots detected when the fluorescent reagent 1 is mixed into the buffer entering through the port 8, so the value can be evaluated when the rotary valve is switched.
  • the severity of cross-contamination is the severity of cross-contamination.
  • Figure 6 shows the raw data of the 8 sets of tests. It can be seen that neither the rotary valve A1 nor the rotary valve B1 can avoid the cross-contamination of the reagent. Since the contamination occurs when the rotor is rotated, the fluorescent reagent 1 is introduced. Even if the communication slot 21 is switched to the port 2 for the rotary valve cleaning and then switched to the port 8, it is always impossible to prevent the fluorescent reagent 1 from being mixed into the buffer entering through the port 8 to cause contamination. Therefore, the ordinary cleaning process cannot be completely solved. problem. It should be noted that, in FIG. 6, in the histogram shown in the same test group, the left histogram represents the data of n1 before the rotation, and the histogram of the right represents the data of n2 after the rotation.
  • the second valve 30 before rotating the rotor, the second valve 30 is connected to the first buffer 60 and the first port 22, and the first buffer 60 is sequentially flowed through the second valve 30 and the first valve by the driving assembly 50. 20, can improve the above cross-contamination situation.
  • the second valve 30 is taken as an example of a three-way solenoid valve. The normally closed port and the normal opening of the three-way solenoid valve are respectively connected with the reagent and the buffer to be added.
  • the solenoid valve V1 is powered on (at this time, the port 1 is connected to the reagent 1), and after the reagent 1 is introduced into the rotary valve by the drive assembly 50, Immediately closing the solenoid valve V1 (at this time, the port 1 is connected to the buffer), and the reagent component 1 is used to clean the reagent 1 remaining in the communication tank 21 by a small amount of buffer (determining a specific amount according to the condition of the pipeline). After cleaning, when the rotor is switched and the different ports are switched, no reagent 1 remains on the end face of the rotary valve. Although the residual buffer is present, the buffer has no effect on the biochemical reaction, and this method can be greatly reduced or avoided. Cross-contamination of reagents due to rotation of the rotary valve.
  • FIG. 8 A comparison of n2-n1 before and after improvement is shown in Fig. 8.
  • Fig. 8 A comparison of n2-n1 before and after improvement is shown in Fig. 8.
  • Fig. 8 it can be seen that the method of the embodiment of the present invention makes the cross-contamination of the rotary valve very significantly improved compared to the previous rotary valves A1 and B1, and the method of the embodiment of the present invention eliminates the reagent from the source.
  • Cross-contamination is ideal for applications where micro-cross-contamination is very sensitive, such as single-molecule gene sequencer systems. It should be noted that, in Fig.
  • the left histogram shows the data of n1 before the rotation
  • the histogram of the right shows the data of n2 after the rotation.
  • the left histogram shows the improved n2-n1 data
  • the middle histogram shows the n2-n1 data of the front rotary valve A1.
  • the histogram shows the data of n2-n1 which improves the front rotary valve B1.
  • the sequence determination reaction includes a second biochemical reaction
  • the second biochemical reaction is performed on the reaction device 40 using the second reagent 12
  • the valve body assembly 10 includes a third valve 31, a plurality of ports. Including a second port 23, the third valve 31 can be connected to the second port 23, the second reagent 12 and/or the second buffer, and the method comprises the steps of:
  • the third valve 31 is connected to the second reagent 12 and the second port 23;
  • the second reagent 12 is sequentially entered into the reaction device 40 through the third valve 31 and the first valve 20 to perform a second biochemical reaction;
  • the third valve 31 is connected to the second buffer and the second port 23;
  • the second buffer is sequentially flowed through the third valve 31 and the first valve 20 by the driving assembly 50.
  • the method of the embodiments of the present invention can be applied to a plurality of different types of biochemical reactions in a sequence determination reaction, which expands the application range of the method of the embodiment of the present invention.
  • the second port 23 may include one or more of ports 1-8
  • the third valve 31 may include one or more of the three-way valves V1-V8. It should be noted that the second valve 30 and the third valve 31 should select different ones of the three-way valves V1-V8. The first port 22 and the second port 23 should select different ones of the ports 1-8.
  • the second buffer is a solution that does not affect the first biochemical reaction
  • the first buffer 60 is a solution that does not affect the second biochemical reaction.
  • the second buffer and the first buffer 60 are the same buffer.
  • the second buffer and the first buffer can also be selected as different buffers.
  • one of the ports 70 of the stator of the first valve 20 can be in air communication with the outside to facilitate the introduction of air to remove the fluid from the tubing.
  • step S16 is performed before step S17.
  • step S17 may be performed before step S16, or step S16 and step S17 may be simultaneously performed.
  • the first biochemical reaction comprises an extension reaction.
  • the extension reaction is based on base complementation, attaching a specific substrate to a sample to be sequenced, and using a detectable group carried on the substrate to determine the type of substrate on the binding to determine the sequence.
  • the detectable group includes a fluorophore that fluoresces under a laser of a particular wavelength.
  • the first reagent is referred to as a terminator reagent, ie, a reaction substrate, including A, T, C, and G base analogs.
  • the so-called base analog is a terminator.
  • the structure is A/T/C/G-terminating group-linking unit-emitting group, ie, the first reagent is a reagent comprising an A-terminating group-linking unit-emitting group (hereinafter referred to as A reagent) a reagent comprising a T-terminating group-linking unit-emitting group (hereinafter referred to as T reagent), a reagent comprising a C-terminating group-linking unit-emitting group (hereinafter referred to as C reagent) and/or containing G - a reagent for terminating a group - a linking unit - a luminescent group (hereinafter referred to as a G reagent).
  • the terminating group is a
  • the luminescent groups carried by the four terminators are of the same structure or emit detectable light of the same color when excited, and the four base analogs are respectively contained in different reagent bottles.
  • one of the A, T, C, and G terminators is sequentially added, and each of the four terminator reactions is referred to as one cycle.
  • the reagent bottle containing the different terminators is connected to the reaction device through a three-way valve and a first valve.
  • reagent 1 is an A reagent
  • reagent 2 is a T reagent
  • reagent 3 is a C reagent
  • reagent 4 is a G reagent.
  • the three-way valve V1 is energized, the three-way valve V2-V8 is closed, the port 1 is connected to the A reagent, the communication tank 21 is connected to the port 1 and the common port 0, and the drive assembly 50 is caused to pass the A reagent through the three-way valve V1 and The first valve 20 enters the reaction device 40 for reaction.
  • the three-way valve V1 Before the rotor is rotated, the three-way valve V1 is closed, the port 1 is connected to the buffer, and the drive assembly 50 causes the buffer to flow through the three-way valve V1 and the first valve 20.
  • the rotor is rotated so that the communication groove 21 is connected to the common port 0 and the corresponding port, and the above process is performed.
  • the second biochemical reaction comprises group excision.
  • the luminescent group on the terminator of the previous structure is removed and a terminator of another structure is added.
  • an excitation device such as a laser
  • the image forming device is used to take a photo. Fluorescence and image formation for sequence determination.
  • the luminescent group of the A reagent needs to be removed and then other reagents are added.
  • the reagent 5 is a reagent for excision (hereinafter referred to as a resection reagent).
  • the rotor After the photographing is completed, when the ablation reagent is added, the rotor is rotated, the communication tank 21 is connected to the port 5 and the common port 0, the three-way valve V5 is powered on, the three-way valves V1-V4 and V6-V8 are closed, and the port 5 is connected to the ablation reagent.
  • the driving assembly 50 causes the ablation reagent to enter the reaction device 40 through the three-way valve V5 and the first valve 20 to perform a cutting reaction. Before rotating the rotor, the three-way valve V5 is closed, the port 5 is connected to the buffer, and the driving assembly 50 allows the buffer to flow through. Three-way valve V5 and first valve 20.
  • the extension reaction is carried out using a ligase and/or a polymerase.
  • the second biochemical reaction comprises capping.
  • the so-called capping is primarily a group/bond exposed after removal of the protecting group.
  • the first biochemical reaction comprises an extension reaction
  • the second biochemical reaction comprises group excision, after the cleavable group is removed by light and/or chemical, the exposed group is a sulfhydryl group, by capping, such as by adding an alkane
  • the base reagent can protect the sulfhydryl group from oxidation.
  • the reagent 6 is a reagent added by capping (hereinafter referred to as a capping reagent).
  • a capping reagent When adding the capping reagent, rotate the rotor so that the communication groove 21 communicates with the port 6 and the common port 0, the three-way valve V6 is powered on, the three-way valves V1-V5 and V7-V8 are closed, and the port 6 is connected to the capping reagent, the drive assembly 50, the capping reagent is introduced into the reaction device 40 through the three-way valve V6 and the first valve 20 to perform a capping reaction. Before rotating the rotor, the three-way valve V6 is closed, the port 6 is connected to the buffer, and the driving assembly 50 causes the buffer to flow through. Three-way valve V6 and first valve 20.
  • the first reagent may include an agent that does not affect the biochemical reaction in the sequence determination, at which time, after the reagent enters the reaction device 40 via the second valve and the first valve 20, And before the rotor is rotated, it is not necessary to use the flushing or buffering liquid to flow through the second valve and the first valve 20, thus saving the time for the sequence determination reaction.
  • the drive assembly 50 includes a pump that communicates with the common port through the reaction device 40.
  • the pump and the buffer can be driven by the pump, and the control method is simple and easy.
  • the pump includes a first pump 51 and a second pump 52
  • the first pump 51 communicates with the common port of one of the first valves 20 through the first unit 41
  • the second pump 52 passes through the second unit 42 Communicating with the common port of the other first valve 20, using the first pump 51
  • the first reagent and the first buffer sequentially enter the first unit 41 through the second valve 30 and the first valve 20, and the first pump 52 is used to make the first
  • the reagent and first buffer enter the second unit 42 via the second valve 30 and the first valve 20 in sequence.
  • first pump 51 and the second pump 52 can be used to input the liquid of the first valve 20 to the first unit 41 and/or the second unit 42, respectively, for convenient operation.
  • first pump 51 and the second pump 52 are piped to the first unit 41 and the second unit 42, respectively, for example, by a hose.
  • the first pump 51 communicates with the common port of one of the first valves 20 through the first unit 41, and the second pump 52 communicates with the common port of the other first valve 20 through the second unit 42.
  • the first pump 51 is first
  • the unit 41 provides a negative pressure to cause the first unit 41 to acquire a first reagent and/or other agents (including buffers and/or other reagents) connected to the port of the first valve 20 for biochemical reaction and/or cleaning, in the first
  • the first pump 51 stops supplying the negative pressure.
  • What kind of liquid is introduced into the first unit 41 by the first pump 51 depends on: 1) which port the communication tank 21 is connected to; and 2) the port that is connected to the communication port 21 (hereinafter referred to as a communication port), which is connected to the communication port.
  • the three-way valve connects the fluid to which the communication port is connected.
  • the communication slot 21 communicates with the port 1
  • the three-way valve V1 connected to the port 1 causes the port 1 to communicate with the reagent 1.
  • the first pump 51 provides a negative pressure
  • the reagent 1 passes through the three-way valve V1 and the first A valve 20 enters the first unit 41.
  • the operation of the second pump 52 can be referred to as the operation of the first pump 51.
  • the drive assembly 50 further includes a fourth valve 53, a fifth valve 54, and a waste bottle 55.
  • the fourth valve 53 is connected between the first pump 51 and the first unit 41, and is also connected to the waste liquid bottle 55.
  • the fifth valve 54 is piped between the second pump 52 and the second unit 42 while also pipe connecting the waste bottle 55.
  • the first pump 51 communicates with the first unit 41 or the waste liquid bottle 55 via the fourth valve 53, so that the first pump 51 extracts the waste liquid in the first unit 41 that has completed the sequence determination reaction, and can inject the waste liquid into the waste liquid bottle 55.
  • the first pump 51 is caused to supply a negative pressure to the first unit 41 for the next time to perform a sequence determination reaction.
  • the fifth valve 54 is the same as the fourth 53 structure, and details are not described herein again.
  • the fourth valve 53 and the fifth valve 54 may each be a three-way valve.
  • fluid device 100 includes a control unit that electrically couples valve body assembly 10 and drive assembly 50 to control operation of valve body assembly 10 and drive assembly 50.
  • control unit electrically connects the first valve 20, the second valve 30, the third valve 31, and the drive assembly 50 to control the first valve 20, the second valve 30, the third valve 31, and the drive Component 50 operates.
  • the control unit may be a device including a single chip microcomputer, a computer processor, or a central control processor.
  • the control unit controls the first valve 20, the three-way valves V1-V8, and the driving assembly to operate, and the fluid device 100 is automatically operated to improve efficiency.
  • the plurality of ports are distributed in a circular shape, and the common port is concentrically arranged with the circle.
  • the plurality of ports and the common port and the circular concentric arrangement in a circular shape ensure the accuracy of the communication of the communication groove 21 with the corresponding port and the common port when the rotor is rotated.
  • the communication groove 21 is linear. In this way, the flow path of the agent liquid in the communication tank 21 can be reduced, thereby achieving rapid sequencing.
  • the linear communication grooves 21 can communicate the ports and the common ports at both ends of the communication groove 21 in a short path.
  • the line shape is a straight line.
  • a sequence determination system 300 controls a sequence determination reaction.
  • the sequence determination reaction includes a first biochemical reaction, and the first biochemical reaction is performed on the reaction device 40 using the first reagent 11.
  • the sequencing system 300 includes a control device 302 that is coupled to the fluid device 100 and a fluid device 100 that includes a valve body assembly 10 and a drive assembly 50.
  • the valve body assembly 10 includes a first valve 20 and a second valve 30.
  • the first valve 20 is coupled to the reaction device 40.
  • the first valve 20 includes a connectable stator and a rotor.
  • the first valve 20 has a common port and has a plurality of stators.
  • the port has a communication slot 21 on the rotor.
  • the common port and the at least one port can communicate through the communication slot 21 by rotating the rotor.
  • the plurality of ports include the first port 22, and the second valve 30 can be connected to the first port 22 and the first reagent 11 And/or the first buffer 60, the control device 302 is used to:
  • the second valve 30 is connected to the first reagent 11 and the first port 22;
  • the first reagent 11 is sequentially introduced into the reaction device 40 through the second valve 30 and the first valve 20 by the driving assembly 50 to perform a first biochemical reaction;
  • the second valve 30 Before rotating the rotor, the second valve 30 is connected to the first buffer 60 and the first port 22;
  • the first buffer 60 is sequentially passed through the second valve 30 and the first valve 20 by the drive assembly 50.
  • the first buffer liquid 60 is caused to flow into the first valve 20 before the rotor is rotated, so that the liquid in the communication tank 21 is replaced by the first buffer liquid 60 before the rotating rotor, or in the first valve.
  • the first buffer 16 in the communication tank 21 is replaced by the first buffer 60 having no influence on the target sequence measurement reaction, thereby avoiding the original reagent in the communication groove 21 being brought to the stator during the rotation of the rotor.
  • Other locations on the interface with the rotor avoid the risk of cross-contamination when switching between different reagents.
  • the sequencing reaction comprises a second biochemical reaction
  • the second biochemical reaction is carried out on the reaction device 40 using a second reagent 12
  • the valve body assembly 10 includes a third valve 31, and the plurality of ports includes a second port 23
  • the third valve 31 can be connected to the second port 23, the second reagent 12 and/or the second buffer, and the control device 302 is used to:
  • the third valve 31 is connected to the second reagent 12 and the second port 23;
  • the second reagent 12 is sequentially introduced into the reaction device 40 through the third valve 31 and the first valve 20 by the driving assembly 50 to perform a second biochemical reaction;
  • the third valve 31 is connected to the second buffer and the second port 23;
  • the second buffer is sequentially flowed through the third valve 31 and the first valve 20 by the drive assembly 50.
  • the first biochemical reaction comprises an extension reaction.
  • the second biochemical reaction comprises group excision.
  • the extension reaction is carried out using a ligase and/or a polymerase.
  • the second biochemical reaction comprises capping.
  • the drive assembly 50 includes a pump that communicates with the common port through the reaction device 40.
  • fluid device 100 includes a control unit that is coupled to a control unit that electrically couples valve body assembly 10 and drive assembly 50 to control operation of valve body assembly 10 and drive assembly 50.
  • control unit can receive control signals from the control device 302 and control the valve body assembly 10, the drive assembly 50, and other components of the fluid device 100 in accordance with the control signals. As such, this enables a portion of the functions of the control device 302 to be implemented by the control unit, reducing the load on the control device 302.
  • control unit and control device 302 can be integrated into one component, module, or device to increase the integration of the sequencing system 300 and reduce cost.
  • the plurality of ports are distributed in a circular shape and the common port is concentrically disposed with the circle.
  • the communication groove 21 is linear.
  • an embodiment of the present invention provides a device 302 for controlling a sequence determination reaction, and the device 302 includes:
  • a storage device 304 configured to store data, where the data includes a computer executable program
  • the processor 306 is configured to execute a computer executable program, and the executing the computer executable program comprises the method of performing any of the above embodiments.
  • a computer readable storage medium for storing a program for execution by a computer, the program comprising the method of any of the above embodiments.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • a "computer-readable storage medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with such an instruction execution system, apparatus, or device.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Sustainable Development (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

提供利用序列测定系统控制序列测定反应的方法,所述序列测定系统包括流体装置,所述流体装置包括阀体组件和驱动组件,所述阀体组件包括第一阀和第二阀,第一阀具有公共口,并包括定子和转子,定子上具有多个端口,转子上具有连通槽。

Description

对序列测定反应进行控制的方法、装置和系统 技术领域
本发明涉及序列测定技术领域,尤其涉及一种对序列测定反应进行控制的方法和序列测定系统和装置。
背景技术
序列测定,即测序,包括核酸序列的测定。目前市面上的测序平台包括一代测序平台、二代测序平台和三代测序平台。
利用基于生化反应进行序列测序的平台在序列测定的过程中,需要在反应装置上进行生化反应,例如需要利用液路系统将不同的试剂一起或先后引入到芯片上进行反应。目前,为使平台中的液路系统紧凑高效,液路系统均采用第一阀来切换输入/输出试剂。
目前市售的第一阀,由于其结构特点,在不同试剂切换时均不可避免的出现不同程度的试剂交叉或混入,即试剂交叉污染。试剂交叉污染会影响反应的进行,特别是对于那些反应本身所需的试剂量很小的反应,比如单分子测序,试剂的交叉污染是致命的。
因此,如何降低或者避免液路中的试剂交叉污染,成为待解决的问题。
发明内容
本发明实施方式旨在至少解决相关技术中存在的技术问题之一或者至少提供一种有用的商业选择。基于以下对第一阀的结构的拆分研究发现以及设想,发明人作出本发明。
目前市面上的第一阀,也称为进样阀、多位阀、旋转阀或回转阀,作为样品采集、液体进样或流路转换等的部件。其组成一般包括定子和转子,通过定子和转子的紧密结合,能够形成有效密封。
第一阀具有公共口,公共口为不同流路液体进或出都会经过的端口,公共口设在定子和/或转子上,定子和/或转子上具有一个或多个其它端口。通过转子的旋转,能够实现转子与定子通路的连接,从而连通了公共口与其他端口,以达到选择进样或分流的功能。第一阀的一般构型/标准构型为多通选择型,即在运行过程中,仅有一个端口与公共口连通。
公共口和其它端口的连通,一般需要通过设置在转子上的一个或几个公共结构来连 通。当该公共结构中有液体时,由于转子的旋转、转子和定子连接的密封界面的相对活动,不可避免地公共结构中的至少一部分液体会被带到公共结构之外的地方,即流路转换时,会不可避免的使下一流路液体中带有上一流路的液体,而后续若反方向流路转换,又会使混有上一流路液体的下一流路液体被带到下下流路的液体中;如此,即使微量混入,产生的交叉污染难以控制、影响难以预估。
发明人在对比分析手动结果以及上机测定的结果时,反复试验及查看装置系统的各个部件关联、以及基于以上对第一阀的结构的拆分研究,确定以上的、由于流路转换时公共结构中的至少一部分液体掺入到下一流路即下一反应过程,即试剂的交叉污染,对序列测定结果产生不利的难以预料的影响。为此,本发明实施方式提供一种对序列测定反应进行控制的方法和序列测定系统和控制装置。
本发明实施方式提供一种对序列测定反应进行控制的方法,所述序列测定反应包括第一生化反应,所述第一生化反应采用第一试剂在反应装置上进行,利用序列测定系统对所述序列测定反应进行控制。所述序列测定系统包括流体装置,所述流体装置包括阀体组件和驱动组件。所述阀体组件包括第一阀和第二阀,所述第一阀和所述反应装置连接,所述第一阀包括可连通的定子和转子,所述第一阀具有公共口,所述定子上具有多个端口,所述转子上具有连通槽,通过转动所述转子可以使所述公共口和至少一个所述端口通过所述连通槽连通,所述多个端口包括第一端口,所述第二阀可连接所述第一端口、所述第一试剂和/或第一缓冲液,所述方法包括步骤:
使所述第一端口通过所述连通槽和所述公共口连通;
使所述第二阀连通所述第一试剂和所述第一端口;
利用所述驱动组件使所述第一试剂依次经所述第二阀和所述第一阀进入所述反应装置,以进行所述第一生化反应;
在旋转所述转子之前,使所述第二阀连通所述第一缓冲液和所述第一端口;
利用所述驱动组件使所述第一缓冲液依次流经所述第二阀和所述第一阀。
上述方法中,在旋转转子前,使第一缓冲液流入第一阀,使得连通槽中的液体在旋转转子前被第一缓冲液替代,或者说,在第一阀的转子旋转之前,利用对目标序列测定反应无影响的第一缓冲液代替了连通槽中的第一试剂,避免了在转子旋转过程中连通槽中原有的试剂被带到定子和转子的连接界面的其它位置,进而回避了切换不同试剂时交叉污染的风险。
本发明实施方式的一种序列测定系统,对序列测定反应进行控制,所述序列测定反应包括第一生化反应,所述第一生化反应采用第一试剂在反应装置上进行。所述序列测定系统包括控制装置和流体装置,所述控制装置连接所述流体装置,所述流体装置包括 阀体组件和驱动组件。所述阀体组件包括第一阀和第二阀,所述第一阀和所述反应装置连接,所述第一阀包括可连通的定子和转子,所述第一阀具有公共口,所述定子上具有多个端口,所述转子上具有连通槽,通过转动所述转子可以使所述公共口和至少一个所述端口通过所述连通槽连通,所述多个端口包括第一端口,所述第二阀可连接所述第一端口、所述第一试剂和/或第一缓冲液,所述控制装置用于:
使所述第一端口通过所述连通槽和所述公共口连通;
使所述第二阀连通所述第一试剂和所述第一端口;
利用所述驱动组件使所述第一试剂依次经所述第二阀和所述第一阀进入所述反应装置,以进行所述第一生化反应;
在旋转所述转子之前,使所述第二阀连通所述第一缓冲液和所述第一端口;
利用所述驱动组件使所述第一缓冲液依次流经所述第二阀和所述第一阀。
上述序列测定系统中,在旋转转子前,使第一缓冲液流入第一阀,使得连通槽中的液体在旋转转子前被第一缓冲液替代,或者说,在第一阀的转子旋转之前,利用对目标序列测定反应无影响的第一缓冲液代替了连通槽中的第一试剂,避免了在转子旋转过程中连通槽中原有的试剂被带到定子和转子的连接界面的其它位置,进而回避了切换不同试剂时交叉污染的风险。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的对序列测定反应进行控制的方法的流程示意图;
图2是本发明实施方式的序列测定系统的结构示意图;
图3是本发明实施方式的第一阀的端口、连通槽和公共口的关系示意图;
图4是本发明实施方式的阀体组件的结构示意图;
图5是本发明实施方式的测试平台的结构示意图;
图6是本发明实施方式的测试平台所得到的一组测试数据的示意图;
图7是本发明实施方式的测试平台所得到的另一组测试数据的示意图;
图8是本发明实施方式的测试平台所得到的不同的测试数据的对比示意图;
图9是本发明实施方式的对序列测定反应进行控制的方法的另一流程示意图;
图10是本发明实施方式的序列测定系统的功能模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
本发明实施方式所称的“序列测定”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。所称的“序列测定反应”同测序反应。一般地,在核酸序列的测定中,通过一轮测序反应能够测定一个碱基或者一个特定类型的碱基,所称碱基选自A、T、C、G和U中的至少一种。在边合成边测序和/或边连接边测序的测序反应中,所称的一轮测序反应包括延伸反应(碱基延伸)、信息收集(拍照/图像采集)和基团切除(cleave)。所称的“核苷酸类似物”即底物,也称为终止子(terminator),为A、T、C、G和/或U的类似物,能够遵循碱基互补原则与特定类型的碱基配对、同时能够终止下一个核苷酸/底物结合到模板链上。
请参图1和图2,本发明实施方式提供一种对序列测定反应进行控制的方法,序列测定反应包括第一生化反应,第一生化反应采用第一试剂11在反应装置40上进行,利用序列测定系统对序列测定反应进行控制。
序列测定系统包括流体装置100,流体装置100包括阀体组件10和驱动组件50。
阀体组件10包括第一阀20和第二阀30,第一阀20和反应装置40连接,第一阀20包括可连通的定子和转子,第一阀20具有公共口,定子上具有多个端口,转子上具有连通槽21,通过旋转转子可以使公共口和至少一个端口通过连通槽21连通,多个端口包括第一端口22,第二阀30可连接第一端口22、第一试剂11和/或第一缓冲液60,方法包括步骤:
S11,使第一端口22通过连通槽21和公共口连通;
S12,使第二阀30连通第一试剂11和第一端口22;
S13,利用驱动组件50使第一试剂11依次经第二阀30和第一阀20进入反应装置40,以进行第一生化反应;
S14,在旋转转子之前,使第二阀30连通第一缓冲液60和第一端口22;
S15,利用驱动组件50使第一缓冲液依次流经第二阀30和第一阀20。
上述方法中,在旋转转子前,使第一缓冲液60流入第一阀20,使得连通槽21中的液体在旋转转子前被第一缓冲液60替代,或者说,在第一阀20的转子旋转之前,利用对目标序列测定反应无影响的第一缓冲液60代替了连通槽21中的第一试剂11,避免了在转子旋转过程中连通槽21中原有的试剂被带到定子和转子的连接界面的其它位置,进而回避了切换不同试剂时交叉污染的风险。
具体地,在某些实施方式中,反应装置40可为芯片,反应装置40承载有样品。请结合图2,反应装置40包括第一单元41和第二单元42,每个单元均包括多条通道(channel),可分别在第一单元41的通道和第二单元42的通道进行不同类型的序列测定反应,第一单元41的通道内的序列测定反应与第二单元42通道内的序列测定反应是错开的、不同步的、相互不影响的。例如,在需要对第一单元41上的样品进行生化反应时,流体装置100会向第一单元41输送反应用的试剂,此时,不会使相同试剂进入第二单元42,反之亦然。
在本发明实施方式中,请参图2,每个单元对应连接有一个第一阀20。具体地,第一阀20的公共口连通对应的单元,使得从第一阀20的公共口输出的试剂能够进入对应的单元进行生化反应。如此,可加快序列测定的进程。
在某些实施方式中,在进行序列测定反应前,反应装置40的第一单元41和第二单元42的通道的表面上已固定有待序列测定的样品,待序列测定的样品例如是具有双链或单链结构的DNA链。
第一试剂11与第二阀30之间、第一缓冲液60与第二阀30之间、端口与第二阀30之间、第二阀30与第一阀20之间和/或第一阀20与反应装置40之间可通过软管连 接及连通,如此,软管可使液路的配置更灵活。
在某些实施方式中,第一阀20可采用多通阀。第二阀30可采用三通阀,例如三通电磁阀,三通电磁阀的常闭口和常开口分别连接着需要加入的试剂和缓冲液。在某些实施方式中,第一阀20可为旋转阀,如此,对序列测定反应进行控制的方法的应用范围广。
在某些实施方式中,公共口开设在定子上,多个端口围绕公共口设置,且公共口与连通槽21的一端对应连通。在另一些实施方式中,公共口开设在转子上,且位于连通槽21的一端。
在本发明实施方式中,步骤S11在步骤S12之前实施,在其它实施方式中,步骤S12可在步骤S11之前实施,或步骤S11与步骤S12可同时实施。
所称的缓冲液为能一定程度维持液体pH在特定范围的溶液,为弱酸、弱碱和/或中性溶液。在某些实施方式中,第一缓冲液为不影响第一生化反应和/或序列测定反应的其它生化反应的溶液。
一般地,第一阀20的密封基本是靠定子和转子之间的端面密封,在旋转转子时,连通槽21内的剂液会在定子和转子之间的密封面有残留。如图3所示,在进行第一生化反应时,第一试剂11经作为第一端口22的端口1、连通槽21和公共口0进入反应装置40。而在需要进行其它生化反应时,在连通槽21内的第一试剂11没清洗时,当旋转转子从端口1转到端口2时,连通槽21内的第一试剂11会残留在端口1和端口2之间的区域上(如图3中的三角形区域),这些残留的第一试剂11会随着转子的旋转而污染经其它端口进入的其它试剂。所以,请参图2和图4,在定子的端口外连接有三通阀,在旋转转子前,使三通阀连通第一缓冲液11和第一端口22,和利用驱动组件50使第一缓冲液60依次流经第二阀和第一阀20,进而对连通槽21内残留的第一试剂11进行清洗,极大地改善了交叉污染的情况。可以理解,本发明示例中,第二阀30可包括三通阀V1-V8的一个或多个。第一端口22可包括端口1-8中的一个或多个。
以下以测试来说明改善前后的交叉污染性能。在这个测试中,第一阀20以旋转阀为例进行说明。
首先,选取市场上现有的两款旋转阀,并搭建测试平台如图5所示,利用测试平台评估两款旋转阀(下称旋转阀A1和旋转阀B1)的交叉污染性能。请结合图4,选择紧邻的端口1,2和8作为测试,端口1连接着荧光试剂1,端口2和端口8均是缓冲液,反应装置flow cell有两条平行的通道A和B,测试操作细节如下:
(1)选择反应装置flow cell的通道A,利用驱动组件50使荧光试剂1流过通道A,然后顺时针旋转转子,以切换端口,使连通槽21连通端口2和公共口0,利用驱动 组件50使过量的缓冲液经端口2进入旋转阀,保证旋转阀包括公共口0和连通槽21在内的液路内的荧光试剂1全部清洗干净;
(2)将液路切换到反应装置flow cell的通道B,先使用单分子荧光检测系统拍下通道B的背景,统计荧光点数n1;然后逆时针旋转转子,使连通槽21切换连通到端口8,即端口8和公共口0连通,利用驱动组件50使一定量的缓冲液经端口8进入旋转阀并流到反应装置flow cell的通道B,使用单分子荧光检测系统拍摄通道B同样的区域,统计荧光点数n2;
(3)由于经端口2和端口8进入旋转阀的是缓冲液,无荧光点,因此n2-n1即可视为旋转阀从端口1切换到端口2(顺时针)再切换到端口8(逆时针)的过程中引起的交叉污染,n2-n1即荧光点数的增加一定是荧光试剂1混合到经端口8进入的缓冲液中而被检测到的荧光点数,因此该数值可以评估旋转阀切换时的交叉污染严重程度。
图6所示是8组测试的原始数据,可以看到,无论是旋转阀A1还是旋转阀B1,都无法避免试剂的交叉污染,由于该污染发生在旋转转子时,因此通入荧光试剂1后,即使连通槽21切换到端口2进行旋转阀清洗后再切换到端口8,也始终无法避免荧光试剂1混合到经端口8进入的缓冲液而产生污染,因此,普通的清洗流程也无法彻底解决问题。需要说明的是,图6中,在同一个测试组别所示的柱状图中,左边的柱状图表示旋转前n1的数据,右边的柱状图表示旋转后n2的数据。
本发明实施方式中,在旋转转子前,使第二阀30连通第一缓冲液60和第一端口22,及利用驱动组件50使第一缓冲液60依次流经第二阀30和第一阀20,可改善上述交叉污染情况。具体地,请参图4,以第二阀30为三通电磁阀为例进行说明。三通电磁阀的常闭口和常开口分别连接着需要加入的试剂和缓冲液,举例说明,电磁阀V1上电(此时端口1连通试剂1),当试剂1被驱动组件50引入旋转阀之后,立马关闭电磁阀V1(此时端口1连通缓冲液),利用驱动组件50使小量的缓冲液(依据管路情况确定具体的量)清洗掉的连通槽21内残留有的试剂1,这样清洗之后,再旋转转子切换不同端口时已经不会再有试剂1残留在旋转阀的端面上,虽然残留的是缓冲液,但缓冲液对生化反应无影响,此方法可以大大降低或者说避免了由于旋转阀旋转引起的试剂交叉污染。
同样地,使用单分子荧光检测系统,评估改善后的交叉污染情况,原始数据如图7所示。改善前后的n2-n1的比较如图8所示。由图8所知,可以看出,相比于之前的旋转阀A1和B1,本发明实施方式的方法使得旋转阀的交叉污染得到非常明显的改善,本发明实施方式的方法从源头上杜绝试剂交叉污染,非常适合应用在对微量交叉污染非常敏感的场合,比如单分子基因测序仪系统。需要说明的是,图7中,在同 一个测试编号所示的柱状图中,左边的柱状图表示旋转前n1的数据,右边的柱状图表示旋转后n2的数据。图8中,在同一个测试组别所示的柱状图中,左边的柱状图表示改善后的n2-n1的数据,中间的柱状图表示改善前旋转阀A1的n2-n1的数据,右边的柱状图表示改善前旋转阀B1的n2-n1的数据。
在某些实施方式中,请参图9,序列测定反应包括第二生化反应,第二生化反应采用第二试剂12在反应装置40上进行,阀体组件10包括第三阀31,多个端口包括第二端口23,第三阀31可连接第二端口23、第二试剂12和/或第二缓冲液,方法包括步骤:
S16,旋转转子使连通槽21连通第二端口23和公共口;
S17,使第三阀31连通第二试剂12和第二端口23;
S18,利用驱动组件50使第二试剂12依次经第三阀31和第一阀20进入反应装置40,以进行第二生化反应;
S19,在旋转转子之前,使第三阀31连通第二缓冲液和第二端口23;
S20,利用驱动组件50使第二缓冲液依次流经第三阀31和第一阀20。
如此,本发明实施方式的方法可应用于在序列测定反应中需进行多个不同类型的生化反应,扩大了本发明实施方式的方法的应用范围。
具体地,在本发明示例中,请结合图4,第二端口23可包括端口1-8中的一个或多个,第三阀31可包括三通阀V1-V8中的一个或多个。需要指出的是,第二阀30和第三阀31应选择三通阀V1-V8中的不同阀。第一端口22和第二端口23应选择端口1-8中的不同端口。
需要说明的是,第二缓冲液为不影响第一生化反应的溶液,第一缓冲液60为不影响第二生化反应的溶液。
在本发明图2的示例中,第二缓冲液和第一缓冲液60为同一缓冲液。当然,第二缓冲液和第一缓冲液也可选择为不同的缓冲液。在一个例子中,第一缓冲液和第二缓冲液为同一种缓冲液,为“150mM HEPES、150mM NaCl、pH=7.0”的缓冲液,对序列测定反应不影响。
在某些实施方式中,第一阀20的定子的其中一个端口70可与外界空气连通,以方便引入空气对管路进行除剂液。
在本发明实施方式中,步骤S16在步骤S17之前实施,在其它实施方式中,步骤S17可在步骤S16之前实施,或步骤S16与步骤S17可同时实施。
在某些实施方式中,第一生化反应包括延伸反应。
具体地,延伸反应是基于碱基互补、将特定底物连接到待序列测定的样品上,以及利用底物上带有的可检测基团来测定结合上的底物的类型,以测定序列。在一个例子中, 可检测基团包括荧光基团,会在特定波长的激光下发出荧光。
在本发明实施方式中,所称的第一试剂为终止子试剂,即反应底物,包括A、T、C和G碱基类似物,具体地,所称的碱基类似物即终止子的结构为A/T/C/G-终止基团-连接单元-发光基团,即,所称的第一试剂为包含A-终止基团-连接单元-发光基团的试剂(下称A试剂)、包含T-终止基团-连接单元-发光基团的试剂(下称T试剂)、包含C-终止基团-连接单元-发光基团的试剂(下称C试剂)和/或包含G-终止基团-连接单元-发光基团的试剂(下称G试剂)。其中的终止基团为光和/或化学可断裂基团,通过连接单元(linker)使底物带有发光基团。
在一个具体例子中,四种终止子所带的发光基团是一样的结构或者被激发时发出一样颜色的可检测光,四种碱基类似物分别盛放在不同的试剂瓶中。序列测定时,依次加入A、T、C和G终止子中的一种,每四种终止子反应称为一个循环。盛放不同终止子的试剂瓶通过三通阀、第一阀与反应装置连接。
以下结合图4来说明本发明的一个例子中,上述试剂的添加过程。
在图4中,试剂1为A试剂,试剂2为T试剂,试剂3为C试剂,试剂4为G试剂。在进行延伸反应时,三通阀V1上电,三通阀V2-V8关闭,端口1连通A试剂,连通槽21连通端口1和公共口0,驱动组件50使A试剂经三通阀V1和第一阀20进入反应装置40内进行反应,在旋转转子前,三通阀V1关闭,端口1连通缓冲液,驱动组件50使缓冲液流经三通阀V1和第一阀20。在后续需更换添加的T试剂、C试剂、G试剂和/或其它试剂时,旋转转子使连通槽21连通公共口0和对应的端口即可,并按照上述的过程进行。
在某些实施方式中,第二生化反应包括基团切除。
具体地,添加不同结构的终止子到反应装置40内时,需将上一结构的终止子上的发光基团切除后再添加另一结构的终止子。例如,请结合上述例子,在添加完A试剂到反应装置40内时,可利用发光装置(如激光器)发出激发光至反应装置40,以激发发光基团发出荧光,并利用成像装置拍照以采集荧光,并形成图像以进行序列测定。拍照完成后,需将A试剂的发光基团切除后再添加其它试剂。进一步地,在该例子中,试剂5为切除用的试剂(下称切除试剂)。
拍照完成后,当添加切除试剂时,旋转转子,使连通槽21连通端口5和公共口0,三通阀V5上电,三通阀V1-V4和V6-V8关闭,端口5连通切除试剂,驱动组件50使切除试剂经三通阀V5和第一阀20进入反应装置40内进行切除反应,在旋转转子前,三通阀V5关闭,端口5连通缓冲液,驱动组件50使缓冲液流经三通阀V5和第一阀20。
在某些实施方式中,延伸反应利用连接酶和/或聚合酶进行。
在某些实施方式中,第二生化反应包括加帽。
具体地,所称的加帽主要为保护基团切除后暴露出来的基团/键。在一个例子中,第一生化反应包括延伸反应,第二生化反应包括基团切除,通过光和/或化学切除可断裂基团后,暴露出来的基团为巯基,通过加帽如通过加入烷基化试剂,能够保护巯基不被氧化。
请结合上述例子,进一步地,在该例子中,试剂6为加帽所添加的试剂(下称加帽试剂)。当添加加帽试剂时,旋转转子,使连通槽21连通端口6和公共口0,三通阀V6上电,三通阀V1-V5和V7-V8关闭,端口6连通加帽试剂,驱动组件50使加帽试剂经三通阀V6和第一阀20进入反应装置40内进行加帽反应,在旋转转子前,三通阀V6关闭,端口6连通缓冲液,驱动组件50使缓冲液流经三通阀V6和第一阀20。
需要指出的是,在某些实施方式中,第一试剂可包括对序列测定中的生化反应没影响的试剂,此时,在该试剂经第二阀和第一阀20进入反应装置40后,并在旋转转子前,并不需要用冲液或缓冲液流经第二阀和第一阀20,如此,可节省序列测定反应的时间。
在某些实施方式中,驱动组件50包括泵,泵通过反应装置40连通公共口。
如此,使用泵可实现对试剂和缓冲液的驱动,控制方法简单易行。
具体地,在本发明示例中,泵包括第一泵51和第二泵52,第一泵51通过第一单元41连通其中一个第一阀20的公共口,第二泵52通过第二单元42连通另一个第一阀20的公共口,利用第一泵51使第一试剂和第一缓冲液依次经第二阀30和第一阀20进入第一单元41,利用第二泵52使第一试剂和第一缓冲液依次经第二阀30和第一阀20进入第二单元42。
如此,利用第一泵51和第二泵52可分别实现将第一阀20输出的剂液输入至第一单元41和/或第二单元42,方便操作。
具体地,第一泵51和第二泵52分别管道连接第一单元41和第二单元42,例如,通过软管连接。
第一泵51通过第一单元41连通其中一个第一阀20的公共口,第二泵52通过第二单元42连通另外一个第一阀20的公共口,工作时,第一泵51向第一单元41提供负压,以使第一单元41获取第一试剂和/或与第一阀20的端口连接的其它剂(包括缓冲液和/或其它试剂)进行生化反应和/或清洗,在第一单元41获取完剂液后,第一泵51停止提供负压。
第一泵51使什么剂液进入第一单元41,取决于:1)连通槽21连通哪个端口;和2)对于与连通槽21连通的那个端口(下称连通端口),与连通端口连接的三通阀使连通端口与哪种剂液连通。例如,请结合图4,连通槽21连通端口1,与端口1连接的三 通阀V1使端口1与试剂1连通,则第一泵51提供负压时,试剂1经三通阀V1和第一阀20进入第一单元41。
类似地,第二泵52的运行可参第一泵51的运行。
进一步地,在某些实施方式中,驱动组件50还包括第四阀53、第五阀54和废液瓶55。第四阀53管道连接于第一泵51和第一单元41之间,同时还管道连接废液瓶55。第五阀54管道连接于第二泵52和第二单元42之间,同时还管道连接废液瓶55。
第一泵51经第四阀53连通第一单元41或废液瓶55,从而第一泵51抽取第一单元41内已经完成序列测定反应的废液后,可以向废液瓶55注射废液,从而使得第一泵51进行下一次向第一单元41提供负压,以进行序列测定反应。第五阀54与第四53结构相同设置,在此不再赘述。在一些例子中,第四阀53和第五阀54均可为三通阀。
在某些实施方式中,流体装置100包括控制单元,控制单元电连接阀体组件10和驱动组件50以控制阀体组件10和驱动组件50运行。
如此,可实现阀体组件10和驱动组件50的自动化控制,进而提高效率。
具体地,在本发明示例中,控制单元电连接第一阀20、第二阀30、第三阀31和驱动组件50,以控制第一阀20、第二阀30、第三阀31和驱动组件50运行。控制单元可以是包括单片机、计算机处理器、或中央控制处理器等装置,利用控制单元控制第一阀20、三通阀V1-V8和驱动组件运行,实现流体装置100自动运行,提高效率。
在某些实施方式中,请结合图2和图4,多个端口分布呈圆形,公共口与圆形同心设置。
如此,呈圆形分布的多个端口和公共口与圆形同心设置保证了旋转转子时连通槽21与对应的端口和公共口连通的准确性。
在某些实施方式中,请结合图2和图4,连通槽21呈线形。如此,可减少剂液在连通槽21内流动路径,进而实现保证快速测序。
具体地,呈线形的连通槽21,能够以较短的路径连通位于连通槽21两端的端口和公共口。在本发明示例中,线形为直线形。
请参图10,本发明实施方式的一种序列测定系统300,对序列测定反应进行控制,序列测定反应包括第一生化反应,第一生化反应采用第一试剂11在反应装置40上进行。
序列测定系统300包括控制装置302和流体装置100,控制装置302连接流体装置100,流体装置100包括阀体组件10和驱动组件50。
阀体组件10包括第一阀20和第二阀30,第一阀20和反应装置40连接,第一阀20包括可连通的定子和转子,第一阀20具有公共口,定子上具有多个端口,转子上具有连通槽21,通过转动转子可以使公共口和至少一个端口通过连通槽21连通,多个端口 包括第一端口22,第二阀30可连接第一端口22、第一试剂11和/或第一缓冲液60,控制装置302用于:
使第一端口22通过连通槽21和公共口连通;
使第二阀30连通第一试剂11和第一端口22;
利用驱动组件50使第一试剂11依次经第二阀30和第一阀20进入反应装置40,以进行第一生化反应;
在旋转转子之前,使第二阀30连通第一缓冲液60和第一端口22;
利用驱动组件50使第一缓冲液60依次流经第二阀30和第一阀20。
上述序列测定系统300中,在旋转转子前,使第一缓冲液60流入第一阀20,使得连通槽21中的液体在旋转转子前被第一缓冲液60替代,或者说,在第一阀20的转子旋转之前,利用对目标序列测定反应无影响的第一缓冲液60代替了连通槽21中的第一试剂11,避免了在转子旋转过程中连通槽21中原有的试剂被带到定子和转子的连接界面的其它位置,进而回避了切换不同试剂时交叉污染的风险。
需要说明的是,上述任一实施方式和实施例中的对序列测定反应进行控制的方法的技术特征和有益效果的解释和说明也适用于本实施方式的序列测定系统300,为避免冗余,在此不再详细展开。
在某些实施方式中,序列测定反应包括第二生化反应,第二生化反应采用第二试剂12在反应装置40上进行,阀体组件10包括第三阀31,多个端口包括第二端口23,第三阀31可连接第二端口23、第二试剂12和/或第二缓冲液,控制装置302用于:
旋转转子使连通槽21连通第二端口23和公共口;
使第三阀31连通第二试剂12和第二端口23;
利用驱动组件50使第二试剂12依次经第三阀31和第一阀20进入反应装置40,以进行第二生化反应;
在旋转转子之前,使第三阀31连通第二缓冲液和第二端口23;
利用驱动组件50使第二缓冲液依次流经第三阀31和第一阀20。
在某些实施方式中,第一生化反应包括延伸反应。
在某些实施方式中,第二生化反应包括基团切除。
在某些实施方式中,延伸反应利用连接酶和/或聚合酶进行。
在某些实施方式中,第二生化反应包括加帽。
在某些实施方式中,驱动组件50包括泵,泵通过反应装置40连通公共口。
在某些实施方式中,流体装置100包括控制单元,控制装置302连接控制单元,控制单元电连接阀体组件10和驱动组件50以控制阀体组件10和驱动组件50运行。
具体地,控制单元可接收控制装置302的控制信号,并根据控制信号对阀体组件10、驱动组件50和流体装置100的其它部件进行控制。如此,这样能够将控制装置302的部分功能由控制单元来执行实现,减少了控制装置302的载荷。在某些实施方式中,控制单元和控制装置302可集成在一个部件、模块或装置中,以提高序列测定系统300的集成度,降低成本。
在某些实施方式中,多个端口分布呈圆形,公共口与圆形同心设置。
在某些实施方式中,连通槽21呈线形。
请参图10,本发明实施方式提供一种对序列测定反应进行控制的装置302,装置302包括:
存储装置304,用于存储数据,数据包括计算机可执行程序;
处理器306,用于执行计算机可执行程序,执行计算机可执行程序包括完成上述任一实施方式的方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读存储介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读存储介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个 计算机可读取存储介质中。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (21)

  1. 一种对序列测定反应进行控制的方法,其特征在于,所述序列测定反应包括第一生化反应,所述第一生化反应采用第一试剂在反应装置上进行,利用序列测定系统对所述序列测定反应进行控制,
    所述序列测定系统包括流体装置,所述流体装置包括阀体组件和驱动组件,
    所述阀体组件包括第一阀和第二阀,所述第一阀和所述反应装置连接,所述第一阀包括可连通的定子和转子,所述第一阀具有公共口,所述定子上具有多个端口,所述转子上具有连通槽,通过转动所述转子可以使所述公共口和至少一个所述端口通过所述连通槽连通,所述多个端口包括第一端口,所述第二阀可连接所述第一端口、所述第一试剂和/或第一缓冲液,所述方法包括步骤:
    使所述第一端口通过所述连通槽和所述公共口连通;
    使所述第二阀连通所述第一试剂和所述第一端口;
    利用所述驱动组件使所述第一试剂依次经所述第二阀和所述第一阀进入所述反应装置,以进行所述第一生化反应;
    在旋转所述转子之前,使所述第二阀连通所述第一缓冲液和所述第一端口;
    利用所述驱动组件使所述第一缓冲液依次流经所述第二阀和所述第一阀。
  2. 如权利要求1所述的方法,其特征在于,所述序列测定反应包括第二生化反应,所述第二生化反应采用第二试剂在所述反应装置上进行,所述阀体组件包括第三阀,所述多个端口包括第二端口,所述第三阀可连接所述第二端口、所述第二试剂和/或第二缓冲液,所述方法包括步骤:
    旋转所述转子使所述连通槽连通所述第二端口和所述公共口;
    使所述第三阀连通所述第二试剂和所述第二端口;
    利用所述驱动组件使所述第二试剂依次经所述第三阀和所述第一阀进入所述反应装置,以进行所述第二生化反应;
    在旋转所述转子之前,使所述第三阀连通所述第二缓冲液和所述第二端口;
    利用所述驱动组件使所述第二缓冲液依次流经所述第三阀和所述第一阀。
  3. 如权利要求1所述的方法,其特征在于,所述第一生化反应包括延伸反应。
  4. 如权利要求2所述的方法,其特征在于,所述第二生化反应包括基团切除。
  5. 如权利要求3所述的方法,其特征在于,所述延伸反应利用连接酶和/或聚合酶进行。
  6. 如权利要求4所述的方法,其特征在于,所述第二生化反应包括加帽。
  7. 如权利要求1所述的方法,其特征在于,所述驱动组件包括泵,所述泵通过所 述反应装置连通所述公共口。
  8. 如权利要求1所述的方法,其特征在于,所述流体装置包括控制单元,所述控制单元电连接所述阀体组件和所述驱动组件以控制所述阀体组件和所述驱动组件运行。
  9. 如权利要求1所述的方法,其特征在于,所述多个端口分布呈圆形,所述公共口与所述圆形同心设置。
  10. 如权利要求1所述的方法,其特征在于,所述连通槽呈线形。
  11. 一种序列测定系统,对序列测定反应进行控制,其特征在于,所述序列测定反应包括第一生化反应,所述第一生化反应采用第一试剂在反应装置上进行,
    所述序列测定系统包括控制装置和流体装置,所述控制装置连接所述流体装置,所述流体装置包括阀体组件和驱动组件,
    所述阀体组件包括第一阀和第二阀,所述第一阀和所述反应装置连接,所述第一阀包括可连通的定子和转子,所述第一阀具有公共口,所述定子上具有多个端口,所述转子上具有连通槽,通过转动所述转子可以使所述公共口和至少一个所述端口通过所述连通槽连通,所述多个端口包括第一端口,所述第二阀可连接所述第一端口、所述第一试剂和/或第一缓冲液,所述控制装置用于:
    使所述第一端口通过所述连通槽和所述公共口连通;
    使所述第二阀连通所述第一试剂和所述第一端口;
    利用所述驱动组件使所述第一试剂依次经所述第二阀和所述第一阀进入所述反应装置,以进行所述第一生化反应;
    在旋转所述转子之前,使所述第二阀连通所述第一缓冲液和所述第一端口;
    利用所述驱动组件使所述第一缓冲液依次流经所述第二阀和所述第一阀。
  12. 如权利要求11所述的系统,其特征在于,所述序列测定反应包括第二生化反应,所述第二生化反应采用第二试剂在所述反应装置上进行,所述阀体组件包括第三阀,所述多个端口包括第二端口,所述第三阀可连接所述第二端口、所述第二试剂和/或第二缓冲液,所述控制装置用于:
    旋转所述转子使所述连通槽连通所述第二端口和所述公共口;
    使所述第三阀连通所述第二试剂和所述第二端口;
    利用所述驱动组件使所述第二试剂依次经所述第三阀和所述第一阀进入所述反应装置,以进行所述第二生化反应;
    在旋转所述转子之前,使所述第三阀连通所述第二缓冲液和所述第二端口;
    利用所述驱动组件使所述第二缓冲液依次流经所述第三阀和所述第一阀。
  13. 如权利要求11所述的系统,其特征在于,所述第一生化反应包括延伸反应。
  14. 如权利要求12所述的系统,其特征在于,所述第二生化反应包括基团切除。
  15. 如权利要求13所述的系统,其特征在于,所述延伸反应利用连接酶和/或聚合酶进行。
  16. 如权利要求14所述的系统,其特征在于,所述第二生化反应包括加帽。
  17. 如权利要求11所述的系统,其特征在于,所述驱动组件包括泵,所述泵通过所述反应装置连通所述公共口。
  18. 如权利要求11所述的系统,其特征在于,所述流体装置包括控制单元,所述控制装置连接所述控制单元,所述控制单元电连接所述阀体组件和所述驱动组件以控制所述阀体组件和所述驱动组件运行。
  19. 如权利要求11所述的系统,其特征在于,所述多个端口分布呈圆形,所述公共口与所述圆形同心设置。
  20. 如权利要求11所述的系统,其特征在于,所述连通槽呈线形。
  21. 一种对序列测定反应进行控制的装置,包括:
    存储单元,用于存储数据,所述数据包括计算机可执行程序;
    处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成如权利要求1-10任一项所述的方法。
PCT/CN2018/077387 2017-02-22 2018-02-27 对序列测定反应进行控制的方法、装置和系统 WO2018153377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710098314.3 2017-02-22
CN201710098314.3A CN108456748B (zh) 2017-02-22 2017-02-22 对序列测定反应进行控制的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2018153377A1 true WO2018153377A1 (zh) 2018-08-30

Family

ID=63220796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077387 WO2018153377A1 (zh) 2017-02-22 2018-02-27 对序列测定反应进行控制的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN108456748B (zh)
WO (1) WO2018153377A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904206A (zh) * 2019-12-18 2020-03-24 深圳市真迈生物科技有限公司 液路系统、生物分子分析系统及核酸序列测定系统
CN114682310B (zh) * 2020-12-31 2023-12-05 深圳市真迈生物科技有限公司 液路系统、测序系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370617A (zh) * 2010-10-01 2013-10-23 牛津纳米孔技术有限公司 利用纳米孔的生物化学分析设备
WO2015187868A2 (en) * 2014-06-05 2015-12-10 Illumina, Inc. Systems and methods including a rotary valve for at least one of smaple preparation or sample analysis
CN105199949A (zh) * 2015-09-15 2015-12-30 深圳市瀚海基因生物科技有限公司 基因测序的流体控制装置
CN206553527U (zh) * 2017-02-22 2017-10-13 深圳市瀚海基因生物科技有限公司 序列测定系统
CN206553528U (zh) * 2017-02-22 2017-10-13 深圳市瀚海基因生物科技有限公司 序列测定控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69302692T2 (de) * 1992-07-06 1996-10-02 Beckman Instruments Inc Flüssigkeitsversorgungssystem mit Mehrwegventil
CN1245218A (zh) * 1998-08-19 2000-02-23 中国人民解放军军事医学科学院放射医学研究所 一种固相逐个碱基核酸分析方法和仪器
CN102707078B (zh) * 2012-05-24 2013-09-25 中国科学院北京基因组研究所 用于dna测序仪的试剂供应系统及控制方法
CN105733936B (zh) * 2014-12-12 2017-11-17 深圳华大基因研究院 基因测序仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370617A (zh) * 2010-10-01 2013-10-23 牛津纳米孔技术有限公司 利用纳米孔的生物化学分析设备
WO2015187868A2 (en) * 2014-06-05 2015-12-10 Illumina, Inc. Systems and methods including a rotary valve for at least one of smaple preparation or sample analysis
CN105199949A (zh) * 2015-09-15 2015-12-30 深圳市瀚海基因生物科技有限公司 基因测序的流体控制装置
CN206553527U (zh) * 2017-02-22 2017-10-13 深圳市瀚海基因生物科技有限公司 序列测定系统
CN206553528U (zh) * 2017-02-22 2017-10-13 深圳市瀚海基因生物科技有限公司 序列测定控制系统

Also Published As

Publication number Publication date
CN108456748A (zh) 2018-08-28
CN108456748B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
Modi et al. The Illumina sequencing protocol and the NovaSeq 6000 system
WO2021120651A1 (zh) 液路系统、生物分子分析系统及核酸序列测定系统
CN206553528U (zh) 序列测定控制系统
CN110441472B (zh) 具有集成歧管的流动池
WO2018153377A1 (zh) 对序列测定反应进行控制的方法、装置和系统
CN114682310B (zh) 液路系统、测序系统和方法
US20230285963A1 (en) Systems and related sample loading manifold assemblies
US20220298567A1 (en) Method for controlling base sequence determination, base sequence determination system and control device
CN206553527U (zh) 序列测定系统
WO2021055353A1 (en) Systems and related pump manifold assemblies
WO2018214816A1 (zh) 对序列测定反应进行控制的方法、装置和系统
CN211848007U (zh) 液路系统、生物分子分析系统及核酸序列测定系统
US20220339621A1 (en) Valve assemblies and related systems
WO2023082063A1 (zh) 液路系统、基因测序仪和试剂回收方法
EP3342878B1 (en) Method for controlling base sequence determination reaction, base sequence determination system and control device
WO2022068681A1 (zh) 流动路径选择阀、系统、方法、存储介质及应用
Ratanawimarnwong et al. Simultaneous Injection Effective Mixing Flow Analysis (SIEMA): Its Development and Application Mini-Review
AU2019351966A1 (en) System and method for sequestered wash buffered reuse
RU2813058C1 (ru) Системы и соответствующие узлы коллектора насосов
US11426723B2 (en) System and method for sequestered wash buffered reuse
RU2800867C2 (ru) Система и способ для изолирования и повторного использования буферного раствора при промывке
Beckett et al. Nanopore Sequencing for Mixed Samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757461

Country of ref document: EP

Kind code of ref document: A1