WO2018153221A1 - 传输网络中业务服务质量的控制方法、设备及系统 - Google Patents

传输网络中业务服务质量的控制方法、设备及系统 Download PDF

Info

Publication number
WO2018153221A1
WO2018153221A1 PCT/CN2018/074376 CN2018074376W WO2018153221A1 WO 2018153221 A1 WO2018153221 A1 WO 2018153221A1 CN 2018074376 W CN2018074376 W CN 2018074376W WO 2018153221 A1 WO2018153221 A1 WO 2018153221A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
parameter
target
network
pipe
Prior art date
Application number
PCT/CN2018/074376
Other languages
English (en)
French (fr)
Inventor
胡勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018153221A1 publication Critical patent/WO2018153221A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5051Service on demand, e.g. definition and deployment of services in real time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, device, and system for controlling service quality in a transport network.
  • Network Slice is a logical network used to support specific use cases. It can be end-to-end (E2E) including the entire network, or part of the network function can be shared among multiple network slices.
  • E2E end-to-end
  • 5G fifth generation is the key technology for the differential network transmission needs.
  • the transmission network characteristics of different network slices are not the same, and the network slices are required to be isolated from each other without affecting each other.
  • the network slice of the Augmented Reality (AR)/Virtual Reality (VR) service requires large bandwidth and low latency services
  • the network slice of the Internet of Things (IOT) service requires massive terminal connection. Into, but the bandwidth is small, there is no requirement for delay. Therefore, how to provide different quality of service (QOS), such as large bandwidth, low latency, etc., is an urgent problem to be solved.
  • QOS quality of service
  • the QOS control is Per Service Per User (PSPU), that is, by mapping different services to bearers of different QOS parameters. Implement different processing.
  • the QOS parameter carried by the 3rd Generation Partnership Project (3GPP) is a QOS category indicator code, which classifies QOS delay, jitter, packet loss, and priority.
  • the QOS parameters include QOS Class Identifier (QCI), Allocation Retention Priority (ARP), and bandwidth.
  • the transport network only has the Differentiated Services Code Point (DSCP) in the Internet Protocol (IP) header to indicate the priority class.
  • DSCP Differentiated Services Code Point
  • the packet data gateway (Public) Data NetWork Gateway (PGW) maps to DSCP according to QCI when sending a message to the Public Data NetWork (PDN), so that the transport network can perform different priority scheduling according to the corresponding DSCP for different QCI services.
  • PGW Packet Data Gateway
  • the critical services in the future 5G transmission network such as remote surgery, remote operation, etc., need to provide guaranteed bandwidth and guaranteed delay.
  • the transmission network can only perform different priority scheduling according to DSCP, and cannot provide guaranteed bandwidth and guaranteed delay. That is to say, the QOS technology of the existing transmission network cannot guarantee the QOS of services in the future 5G transmission network.
  • the embodiments of the present application provide a method, a device, and a system for controlling service quality in a transmission network, which can guarantee QOS of services in a transmission network of a future network.
  • the embodiment of the present application provides the following technical solutions:
  • an embodiment of the present application provides a method for controlling a service quality QOS in a transport network, where the method includes: the policy entity receives a pipe identifier ID from a software custom network SDN controller, where the pipe ID is used to identify a transmission pipeline established between the data center and the second data center to meet the target QOS parameter requirement; the policy entity binding the correspondence between the pipeline ID and the parameter of the target service, the parameter including the Internet Protocol IP quintuple or service type The policy entity sends the correspondence to the user plane UP function entity in the network slice where the target service is located; or the policy entity sends the correspondence relationship to the application APP server in the network slice.
  • the SDN controller can establish a transmission pipeline between the first data center and the second data center to meet the target QOS parameter requirement and generate a corresponding pipeline ID; the policy entity can receive the pipeline ID from the SDN controller. And the corresponding relationship between the pipe ID and the parameter of the target service is bound, and the corresponding relationship is sent to the UP function entity and the APP server, so that the UP function entity and the APP server can obtain the service data of the target service according to the service data.
  • the IP packet is analyzed, so that not only the QOS of the service in the future 5G transmission network can be guaranteed, but also the problem that the SDN forwarding node recognizes the performance degradation caused by the service flow, such as the problem of low efficiency, can be avoided.
  • the method before the policy entity receives the pipe ID from the SDN controller, the method further includes: the policy entity receiving the first indication message from the slice management node, indicating that the policy entity is in the first data center and the first Establishing a transmission pipeline between the data centers, the first indication message includes a service type of the target service, and a link DL parameter between the first data center and the second data center; and the service entity according to the target service a type and a local configuration policy, determining that a transmission pipeline that satisfies the target QOS parameter requirement is established between the first data center and the second data center; the policy entity sends a second indication message to the SDN controller, the second indication message Include the DL parameter and the target QOS parameter, indicating that the SDN controller establishes a transmission pipeline between the first data center and the second data center to meet the target QOS parameter requirement according to the DL parameter and the target QOS parameter. Based on the solution, a transmission pipeline that satisfies the target QOS parameter requirement can be established between the first data
  • the target QOS parameter is a QOS parameter of the target service; or the target QOS parameter is a QOS parameter determined according to a service type of the target service; or the target QOS parameter is according to the local configuration
  • the QOS parameters determined by the strategy are a QOS parameter of the target service; or the target QOS parameter is a QOS parameter determined according to a service type of the target service; or the target QOS parameter is according to the local configuration
  • the QOS parameters determined by the strategy is a QOS parameter of the target service.
  • the first indication message further carries a slice ID of a network slice where the target service is located; and the policy entity sends the corresponding relationship to an UP function entity in a network slice where the target service is located; or, the policy Before the entity sends the correspondence to the APP server in the network slice, the method further includes: determining, by the policy entity, the network slice corresponding to the slice ID. Based on the solution, the policy entity can determine the network slice where the target service is located. Therefore, the policy entity can send the corresponding relationship to the UP function entity or the APP server in the network slice where the target service is located.
  • the method further includes: the policy entity acquiring the IP quintuple. Based on this scheme, since the policy entity can obtain
  • the policy entity obtains the IP quintuple, including: the policy entity obtains the IP quintuple carried in the first indication message; or the policy entity acquires the IP quintuple, including: the policy entity receives IP quintuple from the APP server. Based on this scheme, the policy entity can obtain the IP quintuple.
  • the correspondence relationship is used by the UP function entity or the APP server to determine the parameter of the target service according to the service data of the target service, and determine the pipe ID according to the parameter and the corresponding relationship, and according to the pipeline
  • the transmission pipe corresponding to the ID sends service data.
  • the UP function entity and the APP server can determine the parameter of the target service according to the service data after acquiring the service data of the target service, and according to the The corresponding relationship between the parameter and the storage determines the pipe ID corresponding to the target service, and then selects the previously established transmission pipe according to the pipe ID to perform routing, that is, the SDN forwarding node does not need to analyze each service packet according to the service IP packet, so that not only the protection can be guaranteed.
  • the QOS of the service in the future 5G transmission network; and the problem that the SDN forwarding node recognizes the performance degradation caused by the service flow, such as the problem of low efficiency, can be avoided.
  • the embodiment of the present application provides a method for controlling a service quality QOS in a transmission network, where the method includes: acquiring, by the first network device, service data of a target service; and determining, by the first network device, the target service according to the service data.
  • a parameter the parameter includes an Internet Protocol IP quintuple or a service type; the first network device determines a pipe ID corresponding to the target service according to the parameter and a pre-stored correspondence between the pipe ID of the target service and the parameter.
  • the pipe ID is used to identify a transmission pipeline established between the first data center and the second data center that meets the target QOS parameter requirement; the first network device sends the service data and the pipe ID to the egress SDN forwarding node, the pipe The ID is used by the egress SDN forwarding node to determine the transmission pipeline, and the service data is sent to the second network device by using the transmission pipeline, where the egress SDN forwarding node is the first SDN forwarding node that transmits the service data in the transmission network;
  • the first network device is an application APP server, and the second network device is a user plane UP function. Thereof; or, for the first network device UP function entity, the second network server device that APP.
  • the UP function entity and the APP server can determine the parameter of the target service according to the service data after acquiring the service data of the target service, and according to the The corresponding relationship between the parameter and the storage determines the pipe ID corresponding to the target service, and then selects the previously established transmission pipe according to the pipe ID to perform routing, that is, the SDN forwarding node does not need to analyze each service packet according to the service IP packet, so that not only the protection can be guaranteed.
  • the QOS of the service in the future 5G transmission network; and the problem that the SDN forwarding node recognizes the performance degradation caused by the service flow, such as the problem of low efficiency, can be avoided.
  • the first network device determines the parameter of the target service according to the service data, including: the first network device detects the IP quintuple of the service data; and if the first network device detects the IP five a tuple, the first network device determines that the parameter of the target service includes the IP quintuple; if the first network device does not detect the IP quintuple, the first network device identifies the service type of the service data, and determines the target
  • the parameters of the business include the type of business. Based on the scheme, the first network device can determine the parameters of the target service.
  • the method further includes the first network device receiving and storing the correspondence from the policy entity. In this way, after the first network device determines the parameter of the target service according to the service data, the pipe ID corresponding to the target service may be determined according to the parameter and the stored correspondence.
  • an embodiment of the present application provides a policy entity, where the policy entity has a function of implementing a policy entity behavior in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides a policy entity, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the policy entity In operation, the processor executes the computer-executed instructions stored in the memory to enable the policy entity to perform the control method of the service QOS in the transport network according to any of the above first aspects.
  • an embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the policy entity, when executed on a computer, to enable the computer to perform any one of the foregoing first aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the control method of the service QOS in the transmission network of any of the above first aspects.
  • the embodiment of the present application provides a first network device, where the first network device has a function of implementing behavior of the first network device in the foregoing method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a first network device, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when When the first network device is in operation, the processor executes the computer-executed instructions stored in the memory to cause the first network device to perform the control method of the service QOS in the transport network according to any one of the foregoing second aspects.
  • the embodiment of the present application provides a computer readable storage medium for storing computer software instructions used by the first network device, when the computer is running on a computer, so that the computer can execute the second aspect The control method of the service QOS in the transmission network of any one.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the control method of the service QOS in the transmission network according to any one of the foregoing second aspects.
  • the embodiment of the present application provides a control system for transmitting a service QOS in a network, where the system includes: a first network device and a policy entity; and the policy entity is configured to receive a pipeline from a software custom network SDN controller.
  • An identifier ID the pipeline ID is used to identify a transmission pipeline established between the first data center and the second data center that meets the target QOS parameter requirement; and the correspondence between the pipeline ID and the parameter of the target service is bound, where the parameter includes
  • the Internet Protocol IP quintuple or service type is sent to the first network device in the network slice where the target service is located; the first network device is configured to obtain service data of the target service, and determine according to the service data.
  • the pipe ID is determined according to the parameter and the corresponding relationship, and the service data is sent according to the transmission pipe corresponding to the pipe ID.
  • the first network device is the first network device described in any of the above aspects.
  • the policy entity is a policy entity as described in any of the above aspects.
  • 1 is a schematic diagram of QOS decomposition of an existing EPC network
  • FIG. 2 is a schematic diagram 1 of a control system for a service QOS in a transmission network according to an embodiment of the present application;
  • FIG. 3 is a second schematic diagram of a control system for a service QOS in a transmission network according to an embodiment of the present application
  • FIG. 4 is a third schematic diagram of a control system for a service QOS in a transmission network according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart 1 of a method for controlling a service QOS in a transmission network according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram 1 of a policy entity according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram 2 of a policy entity according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 3 of a policy entity according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 4 of a policy entity according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 1 of a first network device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram 2 of a first network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 3 of a first network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 4 of a first network device according to an embodiment of the present application.
  • the words “first” and “second” are used to distinguish the same or similar items whose functions and functions are substantially the same.
  • the words “first”, “second”, etc. do not limit the quantity and order of execution.
  • the “first” of the first data center and the “second” of the second data center in the embodiment of the present application are only used to distinguish different data centers.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the control system 20 of the service QOS in the transmission network includes a first data center, a second data center, a policy entity, and a Software Defined Network (Software Defined Network).
  • SDN Software Defined Network
  • the first data center includes a User Plane (UP) functional entity and a Control Plane (CP) functional entity, and a CP functional entity and an UP functional entity form a packet switched (PS) core
  • the second data center includes an application (APP) server; the transmission network is located between the first data center and the second data center, and includes a plurality of SDN forwarding nodes, such as a small circle in the cloud in FIG.
  • the slice management node is configured to deploy a network slice for the target service in the network slice deployment phase, including deploying the UP function entity and the CP function entity in the network slice in the first data center, and deploying the network slice in the second data center.
  • APP server The policy entity is configured to assist the SDN controller to establish a transmission pipeline that meets the target QOS parameter requirement for the target service, and bind the correspondence between the pipe identifier (Identifier, ID) and the parameter of the target service, and send the correspondence to the network slice.
  • the UP function entity and/or the APP server, wherein the parameters of the target service include an Internet Protocol (IP) quintuple of the target service or a service type of the target service.
  • IP Internet Protocol
  • the UP function entity or the APP server is configured to obtain service data of the target service when the network slice runs, and determine a parameter of the target service according to the service data; and according to the parameter of the target service and the pipeline ID corresponding to the target service stored in advance Corresponding relationship between the parameters of the target service, determining the pipe ID corresponding to the target service; and then sending the service data and the pipe ID to the egress SDN forwarding node, where the pipe ID is used by the egress SDN forwarding node to determine the transmission pipe of the transmission target service, and the transmission is performed through the transmission
  • the pipeline sends service data to the APP server or the UP function entity, and the egress SDN forwarding node is the first SDN forwarding node that transmits service data in the transport network.
  • control system 20 of the service QOS in the transmission network shown in FIG. 2 is shared by the PS cores of different network slices, and the case of APP server isolation is taken as an example.
  • the network slice in the control system 20 may also be other situations.
  • each network slice has an independent PS core and an APP server; or, as shown in FIG. 4, sliced in the same network.
  • the type of the network slice is not specifically limited in the embodiment of the present application.
  • control system 20 of the service QOS in the foregoing transmission network may be applied to the future 5G network and other networks in the future, which is not specifically limited in this embodiment of the present application.
  • the first data center, the second data center, the CP function entity, the UP function entity, the policy entity, the SDN controller, the slice management node, the APP server, etc. in the control system 20 of the service QOS in the foregoing transport network only Is a name, the name does not limit the device itself.
  • Other names may be used, and the embodiment of the present application does not specifically limit this.
  • the CP functional entity may also be replaced with a CP function or a CP
  • the UP functional entity may also be replaced with an UP function or UP
  • the policy entity policy may also be replaced with a control function (Policy Control Function, PCF). Entity, etc., hereby make a unified explanation, the details are not described below.
  • first data center, the second data center, the CP function entity, the UP function entity, the policy entity, the SDN controller, the slice management node, the APP server, etc. in the control system 20 of the service QOS in the foregoing transport network are excluded.
  • the functions in the embodiments of the present application may be provided with other functions, which are not specifically limited in this embodiment of the present application.
  • the first data center and the second data center may have other functions in addition to the function of the service data transmission, which is not specifically limited in this embodiment of the present application.
  • the CP function entity, the UP function entity, the policy entity, the SDN controller, the slice management node, or the APP server in FIG. 2 to FIG. 4 may be implemented by one physical device or may be The physical device is implemented in common, which is not specifically limited in this embodiment of the present application. That is, it can be understood that the CP function entity, the UP function entity, the policy entity, the SDN controller, the slice management node, or the APP server in the embodiment of the present application may be a logical function module in the physical device, or may be It is a logical function module which is composed of a plurality of physical devices, which is not specifically limited in this embodiment of the present application.
  • the CP function entity, the UP function entity, the policy entity, the SDN controller, the slice management node, or the APP server in FIG. 2 to FIG. 4 can be implemented by the communication device in FIG. 5.
  • a hardware structure diagram of a communication device 50 includes at least one processor 501, a communication bus 502, a memory 503, and at least one communication interface 504.
  • the processor 501 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 502 can include a path for communicating information between the components described above.
  • Communication interface 504 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 503 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 503 is used to store application code for executing the solution of the present application, and is controlled by the processor 501 for execution.
  • the processor 501 is configured to execute the application code stored in the memory 503, thereby implementing the method for implementing data conversion in the cloud data center described in the above embodiments.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 50 may include multiple processors, such as processor 501 and processor 508 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 50 can also include an output device 505 and an input device 506.
  • Output device 505 is in communication with processor 501 and can display information in a variety of ways.
  • the output device 505 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 506 is in communication with processor 501 and can accept user input in a variety of ways.
  • input device 506 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the communication device 50 described above may be a general communication device or a dedicated communication device.
  • the communication device 50 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet, a wireless terminal device, an embedded device, or the like in FIG. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of communication device 50.
  • FIG. 6 is a schematic flowchart of a method for controlling a service QOS in a transmission network according to an embodiment of the present application.
  • the interaction between the slice management node, the policy entity, the SDN controller, the SDN forwarding node, the CP function entity, the UP function entity, and the APP server is taken as an example, including the following steps:
  • the network slice deployment stage the slice management node deploys the network slice for the target service, including deploying the UP function entity and the CP function entity in the network slice in the first data center, and deploying the APP server in the network slice in the second data center.
  • the slice management node After the network slice deployment is completed, the slice management node sends a first indication message to the policy entity, so that the policy entity receives the first indication message.
  • the first indication message includes a slice ID of a network slice where the target service is located, a service type of the target service, and a link (Data Center Link, DL) parameter between the first data center and the second data center, indicating that the policy entity is in the first
  • a transmission pipeline is established between a data center and a second data center.
  • the DL parameter may be, for example, a number or a location of the first data center and the second data center, and is used to identify which two data centers should be established between the two data centers.
  • the service type may be, for example, an AR/VR service, or an IOT service or the like.
  • the first indication message may further carry the QOS parameter of the target service, where the QOS reference may include parameters such as bandwidth, delay, and reliability, which are not specifically limited in this embodiment of the present application.
  • the IP address of the service is provided in the network slice design in advance. Therefore, the first indication message may also carry the IP quintuple of the target service, which is not specifically limited in this embodiment.
  • the IP quintuple includes a source IP address, a source port, a destination IP address, a destination port, and a transport layer protocol.
  • the policy entity determines, according to the service type of the target service and the local configuration policy, that the transmission pipeline that meets the target QOS parameter requirement is allowed to be established in the first data center and the second data center.
  • the local configuration policy means that the operator can configure a local policy on the policy entity, that is, for what service and under what QOS requirements (for example, the delay is 10ms), the transmission network needs special protection.
  • the transmission network is required to perform special protection, which is specifically required to establish a transmission pipeline that meets the requirements of the target QOS parameter, and is uniformly described herein, and details are not described herein.
  • the target QOS parameter in the embodiment of the present application may be the QOS parameter of the target service carried in the foregoing first indication message; or may be a QOS parameter determined according to the service type of the target service, for example, mapping according to the service type.
  • the default QOS parameter; or the QOS parameter determined according to the local configuration policy, such as the QOS parameter required by the local configuration policy, is not specifically limited in this embodiment of the present application.
  • the policy entity may determine, according to the service type of the target service and the local configuration policy, that only the connection of the network link between the first data center and the second data center is completed, and the transmission network is not required to perform special protection, that is, A transmission pipeline that meets the requirements of the target QOS parameter is established in the first data center and the second data center.
  • the processing manner in this case is consistent with the DSCP processing mechanism in the existing IP packet, and details are not described herein again.
  • the policy entity sends a second indication message to the SDN controller, so that the SDN controller receives the second indication message, where the second indication message includes a DL parameter and a target QOS parameter, indicating that the SDN controller is in the first data center according to the DL parameter.
  • a transmission pipeline is established with the second data center to meet the target QOS parameter requirements.
  • the SDN controller establishes a transmission pipeline that meets the target QOS parameter requirement between the first data center and the second data center according to the DL parameter and the target QOS parameter, and generates a pipeline ID.
  • the SDN controller stores the global network topology of the transport network and the processing capability of each SDN forwarding node, and then, according to the DL parameter and the target QOS parameter, the node load is used to indicate the SDN forwarding node to establish a transmission through the southbound interface of the SDN. pipeline.
  • the path that meets the delay requirement can be selected. Realize time delay protection.
  • bandwidth resource reservation is performed on each SDN forwarding node of the selected path by using a resource reservation algorithm, and bandwidth guarantee can be implemented.
  • the SDN controller can generate a unique pipe ID for identifying the transmission pipes established in the first data center and the second data center that meet the target QOS parameter requirements.
  • the SDN controller sends a pipe ID to the policy entity, so that the policy entity receives the pipe ID.
  • the policy entity binds the correspondence between the pipe ID and the parameter of the target service, where the parameter includes an IP quintuple or a service type.
  • the IP quintuple may be the IP quintuple carried in the first indication message; or may be dynamically configured when the service is activated, that is, step S1 in FIG. 6
  • the APP server sends the IP quintuple of the target service to the policy entity when the target service is activated, which is not specifically limited in this embodiment.
  • a certain service flow may be a wild IP quintuple, which is not specifically limited in this embodiment of the present application.
  • step S1 there is no necessary sequence of execution between the foregoing step S1 and the above steps S602-S606, and step S1 may be performed first, and then steps S602-S606 may be performed; or steps S602-S606 may be performed first, and then step S1 is performed. It is also possible to perform step S1 and steps S602-S606 at the same time, which is not specifically limited in the embodiment of the present application.
  • the policy entity determines a network slice corresponding to the slice ID.
  • the policy entity After the policy entity determines the network slice corresponding to the slice ID, the policy entity performs the following processing for the uplink service data and the downlink service data respectively:
  • the policy entity sends the correspondence to the UP function entity in the network slice by using the CP function entity in the network slice, so that the UP function entity receives and stores the corresponding relationship.
  • the UP function entity may receive service data sent by the user equipment.
  • the S611a and the UP functional entity determine the parameters of the target service according to the service data of the target service.
  • the UP function entity determines the parameter of the target service according to the service data of the target service, and specifically includes:
  • the UP function entity detects an IP quintuple of the service data of the target service; if detected, the UP function entity determines that the parameter of the target service includes the IP quintuple; if not, the UP function entity identifies the service type of the service data, And determine the parameters of the target business including the type of business.
  • the UP function entity can identify the service type of the target service according to the Deep Packet Inspection (DPI) function and the service characteristics of the target service.
  • DPI Deep Packet Inspection
  • the UP function entity may also identify the service type of the target service in other manners, which is not specifically limited in this embodiment of the present application.
  • the S612a and the UP function entity determine the pipe ID corresponding to the target service according to the parameter and the corresponding relationship between the pipe ID corresponding to the target service and the parameter.
  • the UP functional entity can detect the IP quintuple of the target service after acquiring the service data of the target service. That is, the parameter of the target service may be determined to include the IP quintuple of the target service, and then the pipe ID corresponding to the target service may be determined according to the correspondence between the pipe ID and the IP quintuple of the target service; The relationship between the pipe ID and the service type of the target service, after the UP function entity obtains the service data of the target service, the IP quintuple of the target service is not detected, and the service type of the target service needs to be continuously recognized, that is, It can be determined that the parameter of the target service includes the service type of the target service, and the pipe ID corresponding to the target service can be determined according to the correspondence between the pipe ID and the service type of the target service.
  • the UP function entity sends the service data and the pipe ID corresponding to the target service to the SDN forwarding node 1, so that the SDN forwarding node 1 receives the service ID and the pipe ID corresponding to the target service, and the pipe ID is used by the SDN forwarding node 1 to determine the transmission.
  • a transmission pipeline of the target service and transmits the service data to the APP server in the network slice through the transmission pipeline.
  • the SDN forwarding node 1 is the first SDN forwarding node that transmits the service data of the target service in the transmission network.
  • the network service header (NSH) header field defined by the Internet Engineering Task Force (IETF) may be used in the message header of the service data to carry the pipe ID, which is consistent with the service chain implementation technology. This embodiment of the present application does not specifically limit this.
  • the SDN forwarding node 1 determines a transmission pipeline for transmitting the target service according to the pipe ID.
  • the SDN forwarding node 1 sends the service data to the APP server through the transmission pipeline, so that the APP server receives the service data.
  • the SDN forwarding node 1 determines the transmission pipeline of the transmission target service according to the pipeline ID
  • other SDN forwarding nodes in the transmission pipeline may directly transmit according to the transmission pipeline, and the pipeline ID does not need to be identified, and the specific transmission may be referred to. The way is not repeated here.
  • the foregoing step S601 is in the network slice deployment phase; the foregoing steps S602-S609a are in the service activation phase, both of which are signaling flows, and no user data flows participate; the above steps S610a-S615a are in the network slice running phase, The user's data stream, that is, the participation of the user's data stream.
  • Scenario B For downlink service data, perform the following steps:
  • S609b The policy entity sends the correspondence to the APP server in the network slice, so that the APP server receives and stores the correspondence.
  • S611b and the APP server determine the parameters of the target service according to the service data of the target service.
  • the APP determines the parameters of the target service according to the service data of the target service, and specifically includes:
  • the APP server detects an IP quintuple of the service data of the target service; if detected, the APP server determines that the parameter of the target service includes the IP quintuple; if not detected, the APP server identifies the service type of the service data, and determines the target
  • the parameters of the business include the type of business.
  • the APP server determines the pipe ID corresponding to the target service according to the parameter and the corresponding relationship between the pipe ID corresponding to the target service and the parameter.
  • the APP server can detect the IP quintuple of the target service after acquiring the service data of the target service. That is, the parameter of the target service may be determined to include the IP quintuple of the target service, and then the pipe ID corresponding to the target service may be determined according to the correspondence between the pipe ID and the IP quintuple of the target service; if the binding is After the corresponding relationship between the pipe ID and the service type of the target service, the APP server cannot detect the IP quintuple of the target service after acquiring the service data of the target service, and needs to continue to identify the service type of the target service, that is, The parameter of the target service may be determined to include the service type of the target service, and the pipe ID corresponding to the target service may be determined according to the correspondence between the pipe ID and the service type of the target service.
  • the APP server sends the service data and the pipe ID corresponding to the target service to the SDN forwarding node n, so that the SDN forwarding node n receives the service ID and the pipe ID corresponding to the target service, and the pipe ID is used by the SDN forwarding node to determine the transmission target.
  • the transmission pipeline of the service and sends the service data to the APP server through the transmission pipeline.
  • the SDN forwarding node n is the first SDN forwarding node that transmits the service data of the target service in the transmission network.
  • the NSH header field defined by the IETF may be used in the message header of the service data to carry the pipe ID, which is consistent with the service chain implementation technology, which is not specifically limited in this embodiment of the present application.
  • the SDN forwarding node n determines a transmission pipeline for transmitting the target service according to the pipe ID.
  • the SDN forwarding node n sends the service data to the UP function entity in the network slice through the transmission pipeline, so that the UP function entity receives the service data, and forwards the service data to the corresponding user equipment, as shown in FIG. 6.
  • the SDN forwarding node n determines the transmission pipeline of the transmission target service according to the pipeline ID
  • other SDN forwarding nodes in the transmission pipeline may directly transmit according to the transmission pipeline, and the pipeline ID does not need to be identified, and may refer to the existing transmission. The way is not repeated here.
  • step S601 is in the network slice deployment phase; the foregoing steps S602-S609b are in the service activation phase, both of which are signaling flows, and no user data flows participate; the above steps S610b-S614b are in the network slice running phase, The user's data stream, that is, the participation of the user's data stream.
  • the target service in the embodiment shown in FIG. 6 may be the service in the network slice shown in FIG. 4, that is, the service with different QOS requirements in the same network slice, or may be FIG. 2 or FIG. 3
  • the services in the network slice shown, that is, the services in different network slices, are not specifically limited in this embodiment.
  • an SDN controller may establish a transmission pipeline between a first data center and a second data center that meets a target QOS parameter requirement and generate a corresponding The pipe ID; the policy entity can receive the pipe ID from the SDN controller, and then bind the correspondence between the pipe ID and the parameter of the target service, and send the corresponding relationship to the UP function entity and the APP server, so that the UP function entity and the APP server
  • the parameter of the target service may be determined according to the service data, and the pipe ID corresponding to the target service is determined according to the corresponding relationship between the parameter and the stored, and then the previously established transmission pipe is selected according to the pipe ID.
  • the SDN forwarding node is not required to analyze each service packet according to the service IP packet, so that not only the QOS of the service in the future 5G transmission network can be guaranteed, but also the performance degradation caused by the SDN forwarding node to identify the service flow can be avoided. For example, the problem of lower efficiency.
  • the actions of the policy entities in the foregoing S603, S604, S607, S608, S609a, and S609b may be performed by the processor 501 in the computer device 500 shown in FIG. 5, by calling the application code stored in the memory 503. There are no restrictions on this.
  • the action of the UP function entity in the above-mentioned S610a, S611a, S612a, and S613a can be performed by the processor 501 in the computer device 500 shown in FIG. 5, and the application code stored in the memory 503 is called, which is not used in this embodiment of the present application. Any restrictions.
  • the actions of the APP server in the foregoing S610b, S611b, S612b, and S613b may be performed by the processor 501 in the computer device 500 shown in FIG. 5 by calling the application code stored in the memory 503. limit.
  • each network element such as a policy entity or an APP server or an UP function entity, in order to implement the above functions, includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • a policy entity such as a policy entity or an APP server or an UP function entity
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may perform a function module division on a policy entity or an APP server or an UP function entity according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one.
  • Processing module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the policy entity 70 involved in the above embodiment.
  • the policy entity 70 includes a receiving module 701, a binding module 702, and a sending module 703.
  • the receiving module 701 is configured to receive a pipe ID from the SDN controller, where the pipe ID is used to identify a transmission pipe established between the first data center and the second data center that meets the target QOS parameter requirement.
  • the binding module 702 is configured to bind the correspondence between the pipe ID and the parameter of the target service, where the parameter includes an IP quintuple or a service type.
  • the sending module 703 is configured to send the corresponding relationship to the UP function entity in the network slice where the target service is located; or the sending module 703 is configured to send the corresponding relationship to the APP server in the network slice.
  • the policy entity 70 may further include a determining module 704 .
  • the receiving module 701 is further configured to: before receiving the pipe ID from the SDN controller, receive a first indication message from the slice management node, and instruct the policy entity 70 to establish a transmission pipeline between the first data center and the second data center, where
  • the first indication message includes a service type of the target service and a DL parameter between the first data center and the second data center.
  • the determining module 704 is configured to determine, according to the service type of the target service and the local configuration policy, that a transmission pipeline that meets the target QOS parameter requirement is established between the first data center and the second data center.
  • the sending module 703 is further configured to send a second indication message to the SDN controller, where the second indication message includes a DL parameter and a target QOS parameter, and indicates that the SDN controller is in the first data center and the second data center according to the DL parameter and the target QOS parameter. Establish a transmission pipeline that meets the requirements of the target QOS parameters.
  • the target QOS parameter is a QOS parameter of the target service; or the target QOS parameter is a QOS parameter determined according to a service type of the target service; or the target QOS parameter is a QOS parameter determined according to the local configuration policy.
  • the first indication message further carries a slice ID of a network slice where the target service is located.
  • the determining module 704 is further configured to: before the sending module 703 sends the corresponding relationship to the UP function entity in the network slice where the target service is located; or before the sending module 703 sends the corresponding relationship to the APP server in the network slice, determine the slice ID. Corresponding network slice.
  • the policy entity 70 may further include an obtaining module 705 .
  • the obtaining module 705 is configured to obtain an IP quintuple before the binding module 702 binds the correspondence between the pipe ID and the parameter of the target service, if the parameter includes the IP quintuple.
  • the obtaining module 705 is specifically configured to: obtain an IP quintuple carried in the first indication message; or the acquiring module 705 is specifically configured to: receive an IP quintuple from the APP server.
  • the corresponding relationship is used by the UP function entity or the APP server to determine the parameter of the target service according to the service data of the target service, determine the pipe ID according to the parameter and the corresponding relationship, and send the service data according to the transmission pipe corresponding to the pipe ID.
  • FIG. 10 shows a possible structural diagram of the policy entity 100 involved in the foregoing embodiment.
  • the policy entity 100 includes a processing module 1001 and a communication module 1002.
  • the processing module 1001 can be used to perform operations performed by the binding module 702 in FIG. 7 to FIG. 9, or perform operations performed by the determining module 704 in FIG. 8 and FIG. 9, or execute the obtaining module 705 in FIG. The action performed.
  • the communication module 1002 can be used to perform the operations that can be performed by the receiving module 701 and the sending module 703 in FIG. 7 to FIG. 9 .
  • FIG. 7 to FIG. 9 For details, refer to the embodiments shown in FIG. 7 to FIG. 9 , and details are not described herein again.
  • the policy entity is presented in the form of dividing each functional module corresponding to each function, or the policy entity is presented in the form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • policy entity 70 or policy entity 100 may take the form shown in FIG.
  • the receiving module 701, the binding module 702, and the sending module 703 in FIG. 7 can be implemented by the processor 501 and the memory 503 of FIG. 5.
  • the receiving module 701, the binding module 702, and the sending module 703 can pass The processor 501 is configured to execute the application code stored in the memory 503, and the embodiment of the present application does not impose any limitation thereon.
  • the receiving module 701, the binding module 702, the sending module 703, and the determining module 704 in FIG. 8 may be implemented by the processor 501 and the memory 503 of FIG. 5, specifically, the receiving module 701, the binding module 702, The sending module 703 and the determining module 704 can be executed by calling the application code stored in the memory 503 by the processor 501, which is not limited in this embodiment.
  • the receiving module 701, tied The fixed module 702, the sending module 703, the determining module 704, and the obtaining module 705 can be executed by the processor 501 to call the application code stored in the memory 503, which is not limited in this embodiment.
  • the processing module 1001 and the communication module 1002 in FIG. 10 may be implemented by the processor 501 and the memory 503 of FIG. 5.
  • the processing module 1001 and the communication module 1002 may be called by the processor 501 in the memory 503.
  • the stored application code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the policy entity provided by the embodiment of the present application can be used to perform the control method of the service QOS in the foregoing transmission network. Therefore, the technical solution can be obtained by referring to the foregoing method embodiment.
  • FIG. 11 shows a possible structural diagram of the first network device 110, and the first network device 110 includes: an obtaining module 1101, a determining module 1102, and a sending Module 1103.
  • the obtaining module 1101 is configured to obtain service data of a target service.
  • the determining module 1102 is configured to determine, according to the service data, a parameter of the target service, where the parameter includes an IP quintuple or a service type.
  • the determining module 1102 is further configured to determine, according to the parameter and the corresponding relationship between the pipeline ID and the parameter corresponding to the target service, the pipe ID corresponding to the target service, where the pipe ID is used to identify the first data center and the second data center.
  • the sending module 1103 is configured to send service data to the egress SDN forwarding node, where the message header carries a pipe ID, where the pipe ID is used by the egress SDN forwarding node to determine a transmission pipe, and is sent to the second network device by using the transmission pipe.
  • Service data, the egress SDN forwarding node is the first SDN forwarding node that transmits service data in the transmission network.
  • the first network device 110 in the embodiment of the present application may be the APP server as described above, and the second network device is the UP function entity as described above; or the first network device 110 in the embodiment of the present application may be The UP function entity as described above, the second network device is the APP server as described above, which is not specifically limited in this embodiment of the present application.
  • the determining module 1102 determines the parameter of the target service according to the service data, and specifically includes: detecting an IP quintuple of the service data; and if detecting the IP quintuple, determining the parameter of the target service includes the IP quintuple; The IP quintuple is not detected, the service type of the service data is identified, and the parameters of the target service are determined to include the service type.
  • the first network device 110 may further include a receiving module 1104 and a storage module 1105.
  • the receiving module 1104 is configured to receive a correspondence from a policy entity.
  • the storage module 1105 is configured to store the correspondence.
  • FIG. 13 is a schematic diagram showing a possible structure of the first network device 130 involved in the foregoing embodiment, where the first network device 130 includes: a processing module 1301 and Communication module 1302.
  • the processing module 1301 can be used to perform the operations that the obtaining module 1101 and the determining module 1102 can perform in FIG. 11 to FIG. 12 .
  • the communication module 1302 can be used to perform the operations that can be performed by the sending module 1103 in FIG. 11 to FIG. 12, or the operations that can be performed by the receiving module 1104 in FIG. 14, and can be specifically referred to the embodiment shown in FIG. 11 to FIG.
  • the first network device 130 may further include a storage module 1303.
  • the storage module 1303 can be used to perform the operations that can be performed by the storage module 1105 in FIG. 12 .
  • FIG. 12 the embodiment shown in FIG. 12 , and details are not described herein again.
  • the first network device is presented in the form of dividing each functional module corresponding to each function, or the policy entity is presented in a form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • the first network device 110 or the first network device 130 may take the form shown in FIG.
  • the obtaining module 1101, the determining module 1102, and the sending module 1103 in FIG. 11 may be implemented by the processor 501 and the memory 503 of FIG. 5.
  • the obtaining module 1101, the determining module 1102, and the sending module 1103 may pass the processor.
  • the 501 is executed by calling the application code stored in the memory 503, and the embodiment of the present application does not impose any limitation on this.
  • the obtaining module 1101, the determining module 1102, the sending module 1103, the receiving module 1104, and the storage module 1105 in FIG. 12 may be implemented by the processor 501 and the memory 503 of FIG. 5, specifically, the acquiring module 1101 and the determining module.
  • the transmitting module 1103, the receiving module 1104, and the storage module 1105 may be executed by the processor 501 to call the application code stored in the memory 503.
  • the embodiment of the present application does not impose any limitation.
  • the processing module 1301 and the communication module 1302 can be executed by calling the application code stored in the memory 503 by the processor 501, which is not used by the embodiment of the present application. Any restrictions.
  • the processing module 1301, the communication module 1302, and the storage module 1303 in FIG. 14 may be implemented by the processor 501 and the memory 503 of FIG. 5.
  • the processing module 1301, the communication module 1302, and the storage module 1303 may pass The processor 501 is configured to execute the application code stored in the memory 503, and the embodiment of the present application does not impose any limitation thereon.
  • the first network device provided by the embodiment of the present application can be used to perform the foregoing method for controlling the service QOS in the transmission network. Therefore, the technical solutions that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了传输网络中业务服务质量的控制方法、设备及系统,能够保障未来5G传输网络中业务的QOS。方法包括:策略实体接收来自软件自定义网络SDN控制器的管道标识ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;所述策略实体绑定所述管道ID和所述目标业务的参量的对应关系,所述参量包括网际协议IP五元组或者业务类型所述策略实体向所述目标业务所在的网络切片中的用户面UP功能实体发送所述对应关系;或者,所述策略实体向所述网络切片中的应用APP服务器发送所述对应关系。本申请适用于通信技术领域。

Description

传输网络中业务服务质量的控制方法、设备及系统
本申请要求于2017年2月23日提交中国专利局、申请号为201710100710.5、发明名称为“传输网络中业务服务质量的控制方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及传输网络中业务服务质量的控制方法、设备及系统。
背景技术
网络切片(Network Slice)是一个用于支持特定用例的逻辑网络,可以端到端((End to End,E2E)的包括整个网络,也可以部分网络功能在多个网络切片中共享,是满足未来第五代(5th generation,5G)传输网络差异化需求的关键技术。
通常,不同网络切片的传输网络特征并不相同,且要求网络切片之间相互隔离,互不影响。如增强实现(Augmented Reality,AR)/虚拟实现(Virtual Reality,VR)业务的网络切片要求大带宽、低时延业务;物联网((Internet Of Things,IOT)业务的网络切片要求支持海量终端接入,但带宽小,对时延没要求。因此,如何提供不同的服务质量(Quality of Service,QOS),比如大带宽、低时延等,是目前亟待解决的问题。
现有演进分组核心(Evolved Packet Core,EPC)网络的QOS技术中,QOS控制都是每用户每业务(Per Service Per User,PSPU),即通过将不同业务映射到不同QOS参数的承载上,以实现不同的处理。其中,承载的QOS参数就是第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)定义的QOS类别指示码,将QOS的时延、抖动、丢包、优先级进行分类。从分组交换(Packet Switched,PS)核心网和无线空口看,QOS参数包括QOS分类识别码(QOS Class Identifier,QCI)、分配保持优先级(Allocation Retention Priority,ARP)和带宽。而传输网络只有网际协议(Internet Protocol,IP)报头中的差分服务代码点(Differentiated Services Code Point,DSCP)标示优先级类别,因此,如图1所示,在EPC网络中,分组数据网关(Public Data NetWork Gateway,PGW)在向公共数据网(Public Data NetWork,PDN)发送消息时,会根据QCI映射成DSCP,这样传输网络对于不同的QCI业务,能根据对应的DSCP进行不同优先级调度,满足传输网络的QOS需求。
然而,未来5G传输网络中的关键性(Critical)业务,如远程手术、远程操作等需要提供保障的带宽和保障的时延,若将现有传输网络的QOS技术应用到未来5G传输网络中,传输网络只能根据DSCP进行不同优先级调度,并不能提供保障的带宽和保障的时延。也就是说,现有传输网络的QOS技术并不能保障未来5G传输网络中业务的QOS。
发明内容
本申请实施例提供传输网络中业务服务质量的控制方法、设备及系统,能够保障未来网络的传输网络中业务的QOS。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种传输网络中业务服务质量QOS的控制方法,该方法包 括:策略实体接收来自软件自定义网络SDN控制器的管道标识ID,该管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;策略实体绑定该管道ID和该目标业务的参量的对应关系,该参量包括网际协议IP五元组或者业务类型;策略实体向该目标业务所在的网络切片中的用户面UP功能实体发送该对应关系;或者,该策略实体向该网络切片中的应用APP服务器发送该对应关系。基于该方法,由于SDN控制器可以在第一数据中心和第二数据中心之间建立一条满足目标QOS参数要求的传输管道并生成相应的管道ID;策略实体可以接收来自SDN控制器的管道ID,进而绑定管道ID和目标业务的参量的对应关系,并将该对应关系发送给UP功能实体和APP服务器,使得UP功能实体和APP服务器在获取到目标业务的业务数据之后,可以根据该业务数据确定目标业务的参量,并根据该参量和存储的对应关系确定目标业务对应的管道ID,进而根据管道ID选择之前建立的传输管道进行路由,即不需要SDN转发节点对每个消息包都根据业务IP包进行分析,因此不仅可以保障未来5G传输网络中业务的QOS;而且可以避免SDN转发节点识别业务流所带来的性能下降的问题,比如效率较低的问题。
在一种可能的设计中,在策略实体接收来自SDN控制器的管道ID之前,还包括:策略实体接收来自切片管理节点的第一指示消息,指示该策略实体在该第一数据中心和该第二数据中心之间建立传输管道,该第一指示消息包括该目标业务的业务类型、以及该第一数据中心和该第二数据中心之间的链路DL参数;策略实体根据该目标业务的业务类型以及本地配置策略,确定允许在该第一数据中心和该第二数据中心之间建立满足该目标QOS参数要求的传输管道;策略实体向SDN控制器发送第二指示消息,该第二指示消息包括该DL参数和该目标QOS参数,指示该SDN控制器根据该DL参数和该目标QOS参数在该第一数据中心和该第二数据中心之间建立一条满足该目标QOS参数要求的传输管道。基于该方案,可以为目标业务在第一数据中心和该第二数据中心之间建立一条满足目标QOS参数要求的传输管道。
在一种可能的设计中,该目标QOS参数为该目标业务的QOS参数;或者,该目标QOS参数为根据该目标业务的业务类型确定的QOS参数;或者,该目标QOS参数为根据该本地配置策略确定的QOS参数。
在一种可能的设计中,该第一指示消息还携带该目标业务所在网络切片的切片ID;在策略实体向该目标业务所在的网络切片中的UP功能实体发送该对应关系;或者,该策略实体向该网络切片中的APP服务器发送该对应关系之前,还包括:策略实体确定该切片ID对应的网络切片。基于该方案,由于策略实体可以确定目标业务所在的网络切片,因此,策略实体可以向目标业务所在的网络切片中的UP功能实体或者APP服务器发送该对应关系。
在一种可能的设计中,若该参量包括IP五元组,在策略实体绑定该管道ID和该目标业务的参量的对应关系之前,还包括:策略实体获取该IP五元组。基于该方案,由于策略实体可以获取
在一种可能的设计中,策略实体获取该IP五元组,包括:策略实体获取第一指示消息中携带的IP五元组;或者,策略实体获取该IP五元组,包括:策略实体接收来自APP服务器的IP五元组。基于该方案,策略实体可以获取到IP五元组。
在一种可能的设计中,该对应关系用于UP功能实体或者APP服务器在根据该目标业务的业务数据确定该目标业务的参量之后,根据该参量和该对应关系确定管道ID,并根据该管道ID对应的该传输管道发送业务数据。基于该方案,在策略实体将对应关系发送给UP功能实 体和APP服务器之后,UP功能实体和APP服务器在获取到目标业务的业务数据之后,可以根据该业务数据确定目标业务的参量,并根据该参量和存储的对应关系确定目标业务对应的管道ID,进而根据管道ID选择之前建立的传输管道进行路由,即不需要SDN转发节点对每个消息包都根据业务IP包进行分析,因此不仅可以保障未来5G传输网络中业务的QOS;而且可以避免SDN转发节点识别业务流所带来的性能下降的问题,比如效率较低的问题。
第二方面,本申请实施例提供一种传输网络中业务服务质量QOS的控制方法,该方法包括:第一网络设备获取目标业务的业务数据;第一网络设备根据该业务数据,确定该目标业务的参量,该参量包括网际协议IP五元组或者业务类型;第一网络设备根据该参量以及预先存储的该目标业务对应的管道标识ID和该参量的对应关系,确定该目标业务对应的管道ID,该管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;第一网络设备向出口SDN转发节点发送该业务数据和该管道ID,该管道ID用于该出口SDN转发节点确定该传输管道,并通过该传输管道向第二网络设备发送该业务数据,该出口SDN转发节点为该传输网络中传输该业务数据的第一个SDN转发节点;其中,该第一网络设备为应用APP服务器,该第二网络设备为用户面UP功能实体;或者,该第一网络设备为该UP功能实体,该第二网络设备为该APP服务器。基于该方案,在策略实体将对应关系发送给UP功能实体和APP服务器之后,UP功能实体和APP服务器在获取到目标业务的业务数据之后,可以根据该业务数据确定目标业务的参量,并根据该参量和存储的对应关系确定目标业务对应的管道ID,进而根据管道ID选择之前建立的传输管道进行路由,即不需要SDN转发节点对每个消息包都根据业务IP包进行分析,因此不仅可以保障未来5G传输网络中业务的QOS;而且可以避免SDN转发节点识别业务流所带来的性能下降的问题,比如效率较低的问题。
在一种可能的设计中,第一网络设备根据该业务数据,确定该目标业务的参量,包括:第一网络设备检测该业务数据的IP五元组;若第一网络设备检测到该IP五元组,第一网络设备确定该目标业务的参量包括该IP五元组;若第一网络设备检测不到该IP五元组,第一网络设备识别该业务数据的业务类型,并确定该目标业务的参量包括该业务类型。基于该方案,第一网络设备可以确定目标业务的参量。
在一种可能的设计中,该方法还包括:第一网络设备接收并存储来自策略实体的该对应关系。这样,在第一网络设备根据业务数据确定目标业务的参量之后,可以根据该参量和存储的对应关系确定目标业务对应的管道ID。
第三方面,本申请实施例提供一种策略实体,该策略实体具有实现上述方法实施例中策略实体行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种策略实体,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该策略实体运行时,该处理器执行该存储器存储的该计算机执行指令,以使该策略实体备执行如上述第一方面任意一项的传输网络中业务QOS的控制方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述策略实体所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的传输网络中业务QOS的控制方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行 时,使得计算机可以执行上述第一方面中任意一项的传输网络中业务QOS的控制方法。
另外,第三方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第七方面,本申请实施例提供一种第一网络设备,该第一网络设备具有实现上述方法实施例中第一网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第八方面,本申请实施例提供一种第一网络设备,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该第一网络设备运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第一网络设备执行如上述第二方面任意一项的传输网络中业务QOS的控制方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述第一网络设备所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的传输网络中业务QOS的控制方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的传输网络中业务QOS的控制方法。
另外,第七方面至第十方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,本申请实施例提供一种传输网络中业务QOS的控制系统,该系统包括:第一网络设备和策略实体;该策略实体,用于接收来自软件自定义网络SDN控制器的管道标识ID,该管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;绑定该管道ID和该目标业务的参量的对应关系,该参量包括网际协议IP五元组或者业务类型;向该目标业务所在的网络切片中的第一网络设备发送该对应关系;该第一网络设备,用于获取目标业务的业务数据,并根据该业务数据确定目标业务的参量之后,根据该参量和该对应关系确定管道ID,并根据该管道ID对应的传输管道发送业务数据。
在一种可能的设计中,该第一网络设备为上述任一方面所述的第一网络设备。
在一种可能的设计中,该策略实体为上述任一方面所述的策略实体。
其中,第十一方面中任一种设计方式所带来的技术效果可参见第一方面和第二方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为现有EPC网络的QOS分解示意图;
图2为本申请实施例提供的传输网络中业务QOS的控制系统示意图一;
图3为本申请实施例提供的传输网络中业务QOS的控制系统示意图二;
图4为本申请实施例提供的传输网络中业务QOS的控制系统示意图三;
图5为本申请实施例提供的通信设备的硬件示意图;
图6为本申请实施例提供的传输网络中业务QOS的控制方法流程示意图一;
图7为本申请实施例提供的策略实体的结构示意图一;
图8为本申请实施例提供的策略实体的结构示意图二;
图9为本申请实施例提供的策略实体的结构示意图三;
图10为本申请实施例提供的策略实体的结构示意图四;
图11为本申请实施例提供的第一网络设备的结构示意图一;
图12为本申请实施例提供的第一网络设备的结构示意图二;
图13为本申请实施例提供的第一网络设备的结构示意图三;
图14为本申请实施例提供的第一网络设备的结构示意图四。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“/”表示或的意思,例如,A/B可以表示A或B;“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。比如,本申请实施例中的第一数据中心的“第一”和第二数据中心中的“第二”仅用于区分不同的数据中心。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,为本申请实施例提供的传输网络中业务QOS的控制系统20,该控制系统20包括第一数据中心、第二数据中心、策略实体、软件自定义网络(Software Defined Network,SDN)控制器和切片管理节点。其中,第一数据中心包括用户面(User Plane,UP)功能实体和控制面(Control Plane,CP)功能实体,一个CP功能实体和一个UP功能实体组成一个分组交换(packet switched,PS)核(Core);第二数据中心包括应用(Application,APP)服务器;传输网络位于第一数据中心和第二数据中心之间,包括多个SDN转发节点,如图2中云中的小圈圈。
具体的,切片管理节点用于在网络切片部署阶段为目标业务部署网络切片,包括在第一数据中心部署网络切片中的UP功能实体和CP功能实体、以及在第二数据中心部署网络切片中的APP服务器。策略实体用于协助SDN控制器为目标业务建立满足目标QOS参数要求的传输管道,并绑定管道标识(Identifier,ID)和目标业务的参量的对应关系,将该对应关系发送给网络切片中的UP功能实体和/或APP服务器,其中,该目标业务的参量包括目标业务的网际协议(Internet Protocol,IP)五元组或者目标业务的业务类型。UP功能实体或者APP服务器用于在网络切片运行时,获取目标业务的业务数据,并根据该业务数据,确定目标业务的参量;并根据目标业务的参量以及预先存储的目标业务对应的管道ID和目标业务的参量的对应关系,确定目标业务对应的管道ID;进而向出口SDN转发节点发送业务数据和管道ID,该管道ID用于出口SDN转发节点确定传输目标业务的传输管道,并通过该传输管道向APP服务器或者UP功能实体发送业务数据,该出口SDN转发节点为传输网络中传输业务数据的第一个SDN转发节点。其中,通过该控制系统20进行传输网络中业务QOS控制的方法可 参考下述方法实施例,在此不再赘述。
需要说明的是,图2中所示的传输网络中业务QOS的控制系统20以不同网络切片的PS核共享,APP服务器隔离的情况为例进行示意。当然,该控制系统20中的网络切片也可能是其他情况,比如,如图3所示,每个网络切片有独立的PS核和APP服务器;或者,如图4所示,在同一个网络切片内,也存在不同QOS要求的业务,本申请实施例对网络切片的类型不作具体限定。
具体的,上述传输网络中业务QOS的控制系统20可以应用于未来的5G网络以及未来其它的网络,本申请实施例对此不作具体限定。
需要说明的是,上述传输网络中业务QOS的控制系统20中的第一数据中心、第二数据中心、CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点、APP服务器等仅是一个名字,名字对设备本身不构成限定。在未来的5G网络以及未来其它的网络中,第一数据中心、第二数据中心、CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点、APP服务器所对应的网元或实体也可以是其他的名字,本申请实施例对此不作具体限定。例如,该CP功能实体还有可能被替换为CP功能或者CP,该UP功能实体还有可能被替换为UP功能或者UP;该策略实体策略还有可能被替换为控制功能(Policy Control Function,PCF)实体,等等,在此进行统一说明,以下不再赘述。
需要说明的是,上述传输网络中业务QOS的控制系统20中的第一数据中心、第二数据中心、CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点、APP服务器等除了具备本申请实施例中的功能,还可能具备其他的功能,本申请实施例对此不作具体限定。比如,第一数据中心和第二数据中心除了具备业务数据传输的功能之外,还可能具备其他的功能,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例图2至图4中的CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点或者APP服务器等,可能由一个实体设备实现,也可能由多个实体设备共同实现,本申请实施例对此不作具体限定。即,可以理解的是,本申请实施例中的CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点或者APP服务器等,都可能是实体设备内的一个逻辑功能模块,也可能是由多个实体设备组成的一个逻辑功能模块,本申请实施例对此不作具体限定。
例如,如图5所示,图2至图4中的CP功能实体、UP功能实体、策略实体、SDN控制器、切片管理节点或者APP服务器等可以通过图5中的通信设备来实现。
如图5所示,为本申请实施例提供的一种通信设备50的硬件结构示意图,该包括至少一个处理器501,通信总线502,存储器503以及至少一个通信接口504。
处理器501可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线502可包括一通路,在上述组件之间传送信息。
通信接口504,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器503可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其 他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器503用于存储执行本申请方案的应用程序代码,并由处理器501来控制执行。处理器501用于执行存储器503中存储的应用程序代码,从而实现上述实施例中所述的在云数据中心中实现数据转换的方法。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备50可以包括多个处理器,例如图5中的处理器501和处理器508。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备50还可以包括输出设备505和输入设备506。输出设备505和处理器501通信,可以以多种方式来显示信息。例如,输出设备505可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备506和处理器501通信,可以以多种方式接受用户的输入。例如,输入设备506可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备50可以是一个通用通信设备或者是一个专用通信设备。在具体实现中,通信设备50可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图5中类似结构的设备。本申请实施例不限定通信设备50的类型。
下面将结合图2至图4所示的传输网络中业务QOS的控制系统20和图5所示的通信设备50对本申请实施例提供的传输网络中业务QOS的控制方法进行具体阐述。
如图6所示,为本申请实施例提供的传输网络中业务QOS的控制方法流程示意图。以切片管理节点、策略实体、SDN控制器、SDN转发节点、CP功能实体、UP功能实体和APP服务器之间的交互为例进行说明,包括如下步骤:
S601、网络切片部署阶段,切片管理节点为目标业务部署网络切片,包括在第一数据中心部署网络切片中的UP功能实体和CP功能实体、以及在第二数据中心部署网络切片中的APP服务器。
其中,切片部署的具体实现可参考现有的方案,本申请实施例在此不再赘述。
S602、网络切片部署完成之后,切片管理节点向策略实体发送第一指示消息,以使得策略实体接收该第一指示消息。该第一指示消息包括目标业务所在网络切片的切片ID、目标业务的业务类型、以及第一数据中心和第二数据中心之间的链路(Data Center Link,DL)参数,指示策略实体在第一数据中心和第二数据中心之间建立传输管道。
其中,DL参数例如可以是第一数据中心和第二数据中心的编号或位置,用于标识应该在哪两个数据中心之间建立传输管道。
业务类型例如可以是AR/VR业务,或者IOT业务等。
可选的,第一指示消息还可以携带目标业务的QOS参数,该QOS参考可以包括带宽、时延、可靠性等参数,本申请实施例对此不作具体限定。
可选的,对于静态配置的业务,业务的IP地址预先在网络切片设计中已经提供,因此第一指示消息还可以携带目标业务的IP五元组,本申请实施例对此不作具体限定。其中,IP五元组包括源IP地址,源端口,目的IP地址,目的端口和传输层协议。
S603、策略实体根据目标业务的业务类型以及本地配置策略,确定允许在第一数据中心和第二数据中心建立满足目标QOS参数要求的传输管道。
其中,本地配置策略是指运营商可以在策略实体上配置一个本地策略,即对于什么业务以及在什么样的QOS要求下(如时延在10ms),则需要传输网络进行特殊保障。
例如:1)配置AR/VR业务需要传输网络进行特殊保障;
2)配置视频业务,且时延在10ms,带宽在100M以上,需要传输网络进行特殊保障。
需要说明的是,本申请实施例中,需要传输网络进行特殊保障,具体是指需要建立满足目标QOS参数要求的传输管道,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中的目标QOS参数可以是上述第一指示消息中携带的目标业务的QOS参数;或者,可以是根据目标业务的业务类型确定的QOS参数,比如根据业务类型映射到缺省的QOS参数;或者,可以是根据本地配置策略确定的QOS参数,比如本地配置策略要求的QOS参数,本申请实施例对此不作具体限定。
可选的,策略实体根据目标业务的业务类型以及本地配置策略,还可以确定仅完成第一数据中心和第二数据中心之间网络链路的连接,不需要传输网络进行特殊保障,即不需要在第一数据中心和第二数据中心建立满足目标QOS参数要求的传输管道,该情况下的处理方式与现有IP包中的DSCP处理机制保持一致,在此不再赘述。
S604、策略实体向SDN控制器发送第二指示消息,以使得SDN控制器接收第二指示消息,该第二指示消息包括DL参数和目标QOS参数,指示SDN控制器根据DL参数在第一数据中心和第二数据中心之间建立一条满足目标QOS参数要求的传输管道。
S605、SDN控制器根据DL参数和目标QOS参数在第一数据中心和第二数据中心之间建立一条满足目标QOS参数要求的传输管道,并生成管道ID。
具体的,SDN控制器中存储了传输网络的全局网络拓扑和每个SDN转发节点的处理能力,进而可以根据DL参数和目标QOS参数,结合节点负荷通过SDN的南向接口指示SDN转发节点建立传输管道。比如,对于时延敏感的业务,通过在多条路径中计算每个SDN转发节点的转发时延以及SDN转发节点与SDN转发节点之间的传输时延,从而选择满足时延要求的路径,可以实现时延保障。或者,对于选定的路径,通过资源预留算法,在选定路径的每个SDN转发节点上都进行带宽资源预留,可以实现带宽保障。具体传输管道建立的实现可参考现有的方案,本申请实施例在此不再赘述。
在传输管道建立完成之后,SDN控制器可以生成唯一的管道ID,该管道ID用于标识在第一数据中心和第二数据中心建立的满足目标QOS参数要求的传输管道。
S606、SDN控制器向策略实体发送管道ID,以使得策略实体接收该管道ID。
S607、策略实体绑定管道ID和目标业务的参量的对应关系,该参量包括IP五元组或者业务类型。
其中,当该参量包括IP五元组时,该IP五元组可能是第一指示消息中携带的IP五元组;也可能是业务激活时才动态配置的,即如图6中的步骤S1所示,APP服务器在目标业务激活时,将该目标业务的IP五元组发送给策略实体,本申请实施例对此不作具体限定。
需要说明的是,对于一个切片,某个业务流可以是通配的IP五元组,本申请实施例对此不作具体限定。
需要说明的是,上述步骤S1和上述步骤S602-S606之间没有必然的执行先后顺序,可以先执行步骤S1,再执行步骤S602-S606;也可能是先执行步骤S602-S606,再执行步骤S1;还可能是同时执行步骤S1和步骤S602-S606,本申请实施例对此不作具体限定。
S608、策略实体确定切片ID对应的网络切片。
在策略实体确定切片ID对应的网络切片之后,策略实体针对上行业务数据和下行业务数据分别做如下处理:
场景A、针对上行业务数据,执行如下步骤:
S609a、策略实体通过网络切片中的CP功能实体向网络切片中的UP功能实体发送该对应关系,以使得UP功能实体接收并存储该对应关系。
S610a、当目标业务所在的网络切片运行时,UP功能实体获取目标业务的业务数据。
如图6所示,UP功能实体可以接收用户设备发送的业务数据。
S611a、UP功能实体根据目标业务的业务数据,确定目标业务的参量。
可选的,UP功能实体根据目标业务的业务数据,确定目标业务的参量,具体可以包括:
UP功能实体检测目标业务的业务数据的IP五元组;若检测到,UP功能实体确定目标业务的参量包括该IP五元组;若检测不到,UP功能实体识别该业务数据的业务类型,并确定目标业务的参量包括该业务类型。
其中,UP功能实体可以根据深度报文检测(Deep Packet Inspection,DPI)功能,结合目标业务的业务特征,来识别目标业务的业务类型。当然,UP功能实体也可以通过其他方式识别目标业务的业务类型,本申请实施例对此不作具体限定。
S612a、UP功能实体根据该参量以及预先存储的目标业务对应的管道ID和该参量的对应关系,确定目标业务对应的管道ID。
通常,对于目标业务,若绑定的是管道ID和该目标业务的IP五元组的对应关系,则UP功能实体在获取到目标业务的业务数据之后,可以检测到目标业务的IP五元组,也就是说,可以确定目标业务的参量包括目标业务的IP五元组,进而可以根据管道ID和该目标业务的IP五元组的对应关系,确定目标业务对应的管道ID;若绑定的是管道ID和该目标业务的业务类型的对应关系,则UP功能实体在获取到目标业务的业务数据之后,检测不到目标业务的IP五元组,需要继续识别目标业务的业务类型,也就是说,可以确定目标业务的参量包括目标业务的业务类型,进而可以根据管道ID和该目标业务的业务类型的对应关系,确定目标业务对应的管道ID。
S613a、UP功能实体向SDN转发节点1发送业务数据和目标业务对应的管道ID,以使得SDN转发节点1接收该业务数据和目标业务对应的管道ID,该管道ID用于SDN转发节点1确定传输目标业务的传输管道,并通过该传输管道向网络切片中的APP服务器发送业务数据。 其中,SDN转发节点1为传输网络中传输目标业务的业务数据的第一个SDN转发节点。
具体的,可以在业务数据的消息头中利用因特网工程任务组(Internet Engineering Task Force,IETF)定义的网络服务包头(Network Service Header,NSH)头域来携带管道ID,与业务链实现技术一致,本申请实施例对此不作具体限定。
S614a、SDN转发节点1根据管道ID确定传输目标业务的传输管道。
S615a、SDN转发节点1通过该传输管道向APP服务器发送业务数据,以使得APP服务器接收该业务数据。
具体的,在SDN转发节点1根据管道ID确定传输目标业务的传输管道之后,该传输管道中的其他SDN转发节点可以直接按照传输管道传输,不需要再识别管道ID,具体可参考现有的传输方式,在此不再赘述。
其中,上述步骤S601是处于网络切片部署阶段;上述步骤S602-S609a是处于业务激活阶段,均是信令流,没有用户的数据流的参与;上述步骤S610a-S615a是处于网络切片运行阶段,是用户的数据流,也就是说有用户的数据流的参与。
场景B、针对下行业务数据,执行如下步骤:
S609b、策略实体向网络切片中的APP服务器发送该对应关系,以使得APP服务器接收并存储该对应关系。
S610b、当目标业务所在的网络切片运行时,APP服务器获取目标业务的业务数据。
S611b、APP服务器根据目标业务的业务数据,确定目标业务的参量。
可选的,APP服务器根据目标业务的业务数据,确定目标业务的参量,具体可以包括:
APP服务器检测目标业务的业务数据的IP五元组;若检测到,APP服务器确定目标业务的参量包括该IP五元组;若检测不到,APP服务器识别该业务数据的业务类型,并确定目标业务的参量包括该业务类型。
S612b、APP服务器根据该参量以及预先存储的目标业务对应的管道ID和该参量的对应关系,确定目标业务对应的管道ID。
通常,对于目标业务,若绑定的是管道ID和该目标业务的IP五元组的对应关系,则APP服务器在获取到目标业务的业务数据之后,可以检测到目标业务的IP五元组,也就是说,可以确定目标业务的参量包括目标业务的IP五元组,进而可以根据管道ID和该目标业务的IP五元组的对应关系,确定目标业务对应的管道ID;若绑定的是管道ID和该目标业务的业务类型的对应关系,则APP服务器在获取到目标业务的业务数据之后,检测不到目标业务的IP五元组,需要继续识别目标业务的业务类型,也就是说,可以确定目标业务的参量包括目标业务的业务类型,进而可以根据管道ID和该目标业务的业务类型的对应关系,确定目标业务对应的管道ID。
S613b、APP服务器向SDN转发节点n发送业务数据和目标业务对应的管道ID,以使得SDN转发节点n接收该业务数据和目标业务对应的管道ID,该管道ID用于SDN转发节点n确定传输目标业务的传输管道,并通过该传输管道向APP服务器发送业务数据。其中,SDN转发节点n为传输网络中传输目标业务的业务数据的第一个SDN转发节点。
具体的,可以在业务数据的消息头中利用IETF定义的NSH头域来携带管道ID,与业务链实现技术一致,本申请实施例对此不作具体限定。
S614b、SDN转发节点n根据管道ID确定传输目标业务的传输管道。
S615b、SDN转发节点n通过该传输管道向网络切片中的UP功能实体发送业务数据,以使得UP功能实体接收该业务数据,并将该业务数据转发给相应的用户设备,如图6所示。
具体的,在SDN转发节点n根据管道ID确定传输目标业务的传输管道之后,该传输管道中的其他SDN转发节点可以直接按照传输管道传输,不需要再识别管道ID,具体可参考现有的传输方式,在此不再赘述。
至此,传输网络中业务QOS的控制方法流程结束。
其中,上述步骤S601是处于网络切片部署阶段;上述步骤S602-S609b是处于业务激活阶段,均是信令流,没有用户的数据流的参与;上述步骤S610b-S614b是处于网络切片运行阶段,是用户的数据流,也就是说有用户的数据流的参与。
需要说明的是,图6所示的实施例中的目标业务可能是图4所示的网络切片中的业务,即同一个网络切片内存在不同QOS要求的业务,也可能是图2或者图3所示的网络切片中的业务,即不同网络切片中的业务,本申请实施例对此不作具体限定。其中,对于图4所示的场景中的每个业务,均可以按照图6所示的传输网络中业务QOS的控制方法进行处理,从而保障传输网络选择正确的管道路径。
本申请实施例提供了传输网络中业务QOS的控制方法,基于该方法,由于SDN控制器可以在第一数据中心和第二数据中心之间建立一条满足目标QOS参数要求的传输管道并生成相应的管道ID;策略实体可以接收来自SDN控制器的管道ID,进而绑定管道ID和目标业务的参量的对应关系,并将该对应关系发送给UP功能实体和APP服务器,使得UP功能实体和APP服务器在获取到目标业务的业务数据之后,可以根据该业务数据确定目标业务的参量,并根据该参量和存储的对应关系确定目标业务对应的管道ID,进而根据管道ID选择之前建立的传输管道进行路由,即不需要SDN转发节点对每个消息包都根据业务IP包进行分析,因此不仅可以保障未来5G传输网络中业务的QOS;而且可以避免SDN转发节点识别业务流所带来的性能下降的问题,比如效率较低的问题。
其中,上述S603、S604、S607、S608、S609a和S609b中策略实体的动作可以由图5所示的计算机设备500中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S610a、S611a、S612a和S613a中UP功能实体的动作可以由图5所示的计算机设备500中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S610b、S611b、S612b和S613b中APP服务器的动作可以由图5所示的计算机设备500中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如策略实体或者APP服务器或者UP功能实体为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对策略实体或者APP服务器或者UP功能实体进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图7示出了上述实施例中所涉及的策略实体70的一种可能的结构示意图。该策略实体70包括接收模块701、绑定模块702和发送模块703。
接收模块701,用于接收来自SDN控制器的管道ID,该管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道。
绑定模块702,用于绑定管道ID和目标业务的参量的对应关系,该参量包括IP五元组或者业务类型。
发送模块703,用于向目标业务所在的网络切片中的UP功能实体发送该对应关系;或者,发送模块703,用于向网络切片中的APP服务器发送该对应关系。
可选的,如图8所示,该策略实体70还可以包括确定模块704。
接收模块701,还用于在接收来自SDN控制器的管道ID之前,接收来自切片管理节点的第一指示消息,指示策略实体70在第一数据中心和第二数据中心之间建立传输管道,该第一指示消息包括目标业务的业务类型、以及第一数据中心和第二数据中心之间的DL参数。
确定模块704,用于根据目标业务的业务类型以及本地配置策略,确定允许在第一数据中心和第二数据中心之间建立满足目标QOS参数要求的传输管道。
发送模块703,还用于向SDN控制器发送第二指示消息,第二指示消息包括DL参数和目标QOS参数,指示SDN控制器根据DL参数和目标QOS参数在第一数据中心和第二数据中心之间建立一条满足目标QOS参数要求的传输管道。
可选的,上述目标QOS参数为目标业务的QOS参数;或者,上述目标QOS参数为根据目标业务的业务类型确定的QOS参数;或者,上述目标QOS参数为根据本地配置策略确定的QOS参数。
可选的,第一指示消息还携带目标业务所在网络切片的切片ID。
其中,确定模块704,还用于在发送模块703向目标业务所在的网络切片中的UP功能实体发送对应关系之前;或者,发送模块703向网络切片中的APP服务器发送对应关系之前,确定切片ID对应的网络切片。
可选的,如图9所示,策略实体70还可以包括获取模块705。
其中,获取模块705,用于若参量包括IP五元组,在绑定模块702绑定管道ID和目标业务的参量的对应关系之前,获取IP五元组。
进一步的,获取模块705,具体用于:获取第一指示消息中携带的IP五元组;或者,获取模块705,具体用于:接收来自APP服务器的IP五元组。
可选的,对应关系用于UP功能实体或者APP服务器在根据目标业务的业务数据确定目标业务的参量之后,根据参量和对应关系确定管道ID,并根据管道ID对应的传输管道发送业务数据。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能 描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图10示出了上述实施例中所涉及的策略实体100的一种可能的结构示意图,该策略实体100包括:处理模块1001和通信模块1002。其中,该处理模块1001可用于执行图7至图9中绑定模块702所能执行的操作,或者执行图8与图9中确定模块704所执行的操作,或者执行图9中获取模块705所执行的操作。该通信模块1002可用于执行图7至图9中接收模块701和发送模块703所能执行的操作,具体可参考图7至图9所示的实施例,本申请实施例在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该策略实体以对应各个功能划分各个功能模块的形式来呈现,或者,该策略实体以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到策略实体70或者策略实体100可以采用图5所示的形式。比如,图7中的接收模块701、绑定模块702和发送模块703可以通过图5的处理器501和存储器503来实现,具体的,接收模块701、绑定模块702和发送模块703可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图8中的接收模块701、绑定模块702、发送模块703和确定模块704可以通过图5的处理器501和存储器503来实现,具体的,接收模块701、绑定模块702、发送模块703和确定模块704可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图9中的接收模块701、绑定模块702、发送模块703、确定模块704和获取模块705可以通过图5的处理器501和存储器503来实现,具体的,接收模块701、绑定模块702、发送模块703、确定模块704和获取模块705可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图10中的处理模块1001和通信模块1002可以通过图5的处理器501和存储器503来实现,具体的,处理模块1001和通信模块1002可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的策略实体可用于执行上述传输网络中业务QOS的控制方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
比如,在采用对应各个功能划分各个功能模块的情况下,图11示出了第一网络设备110的一种可能的结构示意图,该第一网络设备110包括:获取模块1101、确定模块1102和发送模块1103。
获取模块1101,用于获取目标业务的业务数据。
确定模块1102,用于根据业务数据,确定目标业务的参量,该参量包括IP五元组或者业务类型。
确定模块1102,还用于根据参量以及预先存储的目标业务对应的管道ID和参量的对应关系,确定目标业务对应的管道ID,该管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道。
发送模块1103,用于向出口SDN转发节点发送业务数据,该业务数据的消息头中携带管道ID,该管道ID用于出口SDN转发节点确定传输管道,并通过该传输管道向第二网络设备发送业务数据,该出口SDN转发节点为传输网络中传输业务数据的第一个SDN转发节点。
其中,本申请实施例中的第一网络设备110可以为如上所述的APP服务器,第二网络设备为如上所述的UP功能实体;或者,本申请实施例中的第一网络设备110可以为如上所述的UP功能实体,第二网络设备为如上所述的APP服务器,本申请实施例对此不作具体限定。
可选的,确定模块1102根据业务数据,确定目标业务的参量,具体可以包括:检测业务数据的IP五元组;若检测到IP五元组,确定目标业务的参量包括IP五元组;若检测不到IP五元组,识别业务数据的业务类型,并确定目标业务的参量包括业务类型。
可选的,如图12所示,第一网络设备110还可以包括接收模块1104和存储模块1105。
接收模块1104,用于接收来自策略实体的对应关系。
存储模块1105,用于存储该对应关系。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图13示出了上述实施例中所涉及的第一网络设备130的一种可能的结构示意图,该第一网络设备130包括:处理模块1301和通信模块1302。其中,该处理模块1301可用于执行图11至图12中获取模块1101和确定模块1102所能执行的操作。该通信模块1302可用于执行图11至图12中发送模块1103所能执行的操作,或者执行图14中接收模块1104所能执行的操作,具体可参考图11至图12所示的实施例,本申请实施例在此不再赘述。可选的,如图14所示,第一网络设备130还可以包括存储模块1303。其中,该存储模块1303可用于执行图12中存储模块1105所能执行的操作,具体可参考图12所示的实施例,本申请实施例在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该第一网络设备以对应各个功能划分各个功能模块的形式来呈现,或者,该策略实体以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到第一网络设备110或者第一网络设备130可以采用图5所示的形式。比如,图11中的获取模块1101、确定模块1102和发送模块1103可以通过图5的处理器501和存储器503来实现,具体的,获取模块1101、确定模块1102和发送模块1103可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图12中的获取模块1101、确定模块1102、发送模块1103、接收模块1104和存储模块1105可以通过图5的处理器501和存储器503来实现,具体的,获取模块1101、确定模块1102、发送模块1103、接收模块1104和存储模块1105可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图13中的处理模块1301和通信模块1302
可以通过图5的处理器501和存储器503来实现,具体的,处理模块1301和通信模块1302可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此 不作任何限制。或者,比如,图14中的处理模块1301、通信模块1302和存储模块1303可以通过图5的处理器501和存储器503来实现,具体的,处理模块1301、通信模块1302和存储模块1303可以通过由处理器501来调用存储器503中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的第一网络设备可用于执行上述传输网络中业务QOS的控制方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种传输网络中业务服务质量QOS的控制方法,其特征在于,所述方法包括:
    策略实体接收来自软件自定义网络SDN控制器的管道标识ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;
    所述策略实体绑定所述管道ID和所述目标业务的参量的对应关系,所述参量包括网际协议IP五元组或者业务类型;
    所述策略实体向所述目标业务所在的网络切片中的用户面UP功能实体发送所述对应关系;或者,所述策略实体向所述网络切片中的应用APP服务器发送所述对应关系。
  2. 根据权利要求1所述的方法,其特征在于,在所述策略实体接收来自SDN控制器的管道ID之前,还包括:
    所述策略实体接收来自切片管理节点的第一指示消息,指示所述策略实体在所述第一数据中心和所述第二数据中心之间建立传输管道,所述第一指示消息包括所述目标业务的业务类型、以及所述第一数据中心和所述第二数据中心之间的链路DL参数;
    所述策略实体根据所述目标业务的业务类型以及本地配置策略,确定允许在所述第一数据中心和所述第二数据中心之间建立满足所述目标QOS参数要求的传输管道;
    所述策略实体向所述SDN控制器发送第二指示消息,所述第二指示消息包括所述DL参数和所述目标QOS参数,指示所述SDN控制器根据所述DL参数和所述目标QOS参数在所述第一数据中心和所述第二数据中心之间建立一条满足所述目标QOS参数要求的传输管道。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标QOS参数为所述目标业务的QOS参数;
    或者,所述目标QOS参数为根据所述目标业务的业务类型确定的QOS参数;
    或者,所述目标QOS参数为根据所述本地配置策略确定的QOS参数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一指示消息还携带所述目标业务所在网络切片的切片ID;
    在所述策略实体向所述目标业务所在的网络切片中的UP功能实体发送所述对应关系;或者,所述策略实体向所述网络切片中的APP服务器发送所述对应关系之前,还包括:所述策略实体确定所述切片ID对应的所述网络切片。
  5. 根据权利要求2-4任意一项所述的方法,其特征在于,若所述参量包括所述IP五元组,在所述策略实体绑定所述管道ID和所述目标业务的参量的对应关系之前,还包括:
    所述策略实体获取所述IP五元组。
  6. 根据权利要求5所述的方法,其特征在于,所述策略实体获取所述IP五元组,包括:所述策略实体获取所述第一指示消息中携带的所述IP五元组;
    或者,所述策略实体获取所述IP五元组,包括:所述策略实体接收来自所述APP服务器的所述IP五元组。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述对应关系用于所述UP功能实体或者所述APP服务器在根据所述目标业务的业务数据确定所述目标业务的参量之后,根据所述参量和所述对应关系确定所述管道ID,并根据所述管道ID对应的所述传输管道发送所述业务数据。
  8. 一种传输网络中业务服务质量QOS的控制方法,其特征在于,所述方法包括:
    第一网络设备获取目标业务的业务数据;
    所述第一网络设备根据所述业务数据,确定所述目标业务的参量,所述参量包括网际协议IP五元组或者业务类型;
    所述第一网络设备根据所述参量以及预先存储的所述目标业务对应的管道标识ID和所述参量的对应关系,确定所述目标业务对应的管道ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;
    所述第一网络设备向出口SDN转发节点发送所述业务数据和所述管道ID,所述管道ID用于所述出口SDN转发节点确定所述传输管道,并通过所述传输管道向第二网络设备发送所述业务数据,所述出口SDN转发节点为所述传输网络中传输所述业务数据的第一个SDN转发节点;其中,所述第一网络设备为应用APP服务器,所述第二网络设备为用户面UP功能实体;或者,所述第一网络设备为所述UP功能实体,所述第二网络设备为所述APP服务器。
  9. 根据权利要求8所述的方法,其特征在于,所述第一网络设备根据所述业务数据,确定所述目标业务的参量,包括:
    所述第一网络设备检测所述业务数据的所述IP五元组;
    若所述第一网络设备检测到所述IP五元组,所述第一网络设备确定所述目标业务的参量包括所述IP五元组;
    若所述第一网络设备检测不到所述IP五元组,所述第一网络设备识别所述业务数据的所述业务类型,并确定所述目标业务的参量包括所述业务类型。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收并存储来自策略实体的所述对应关系。
  11. 一种策略实体,其特征在于,所述策略实体包括:接收模块、绑定模块和发送模块;
    所述接收模块,用于接收来自软件自定义网络SDN控制器的管道标识ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;
    所述绑定模块,用于绑定所述管道ID和所述目标业务的参量的对应关系,所述参量包括网际协议IP五元组或者业务类型;
    所述发送模块,用于向所述目标业务所在的网络切片中的用户面UP功能实体发送所述对应关系;或者,所述发送模块,用于向所述网络切片中的应用APP服务器发送所述对应关系。
  12. 根据权利要求11所述的策略实体,其特征在于,所述策略实体还包括确定模块;
    所述接收模块,还用于在所述接收来自SDN控制器的管道ID之前,接收来自切片管理节点的第一指示消息,指示所述策略实体在所述第一数据中心和所述第二数据中心之间建立传输管道,所述第一指示消息包括所述目标业务的业务类型、以及所述第一数据中心和所述第二数据中心之间的链路DL参数;
    所述确定模块,用于根据所述目标业务的业务类型以及本地配置策略,确定允许在所述第一数据中心和所述第二数据中心之间建立满足所述目标QOS参数要求的传输管道;
    所述发送模块,还用于向所述SDN控制器发送第二指示消息,所述第二指示消息包括所述DL参数和所述目标QOS参数,指示所述SDN控制器根据所述DL参数和所述目标QOS参数在所述第一数据中心和所述第二数据中心之间建立一条满足所述目标QOS参数要求的传输管道。
  13. 根据权利要求12所述的策略实体,其特征在于,所述第一指示消息还携带所述目标业务所在网络切片的切片ID;
    所述确定模块,还用于在所述发送模块向所述目标业务所在的网络切片中的UP功能实体发送所述对应关系之前;或者,所述发送模块向所述网络切片中的APP服务器发送所述对应关系之前,确定所述切片ID对应的所述网络切片。
  14. 根据权利要求12或13所述的策略实体,其特征在于,所述策略实体还包括获取模块;
    所述获取模块,用于若所述参量包括所述IP五元组,在所述绑定模块绑定所述管道ID和所述目标业务的参量的对应关系之前,获取所述IP五元组。
  15. 根据权利要求14所述的策略实体,其特征在于,所述获取模块,具体用于:获取所述第一指示消息中携带的所述IP五元组;
    或者,所述获取模块,具体用于:接收来自所述APP服务器的所述IP五元组。
  16. 根据权利要求11-15任一项所述的策略实体,其特征在于,所述对应关系用于所述UP功能实体或者所述APP服务器在根据所述目标业务的业务数据确定所述目标业务的参量之后,根据所述参量和所述对应关系确定所述管道ID,并根据所述管道ID对应的所述传输管道发送所述业务数据。
  17. 第一网络设备,其特征在于,所述第一网络设备包括:获取模块、确定模块和发送模块;
    所述获取模块,用于获取目标业务的业务数据;
    所述确定模块,用于根据所述业务数据,确定所述目标业务的参量,所述参量包括网际协议IP五元组或者业务类型;
    所述确定模块,还用于根据所述参量以及预先存储的所述目标业务对应的管道标识ID和所述参量的对应关系,确定所述目标业务对应的管道ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;
    所述发送模块,用于向出口SDN转发节点发送所述业务数据和所述管道ID,所述管道ID用于所述出口SDN转发节点确定所述传输管道,并通过所述传输管道向第二网络设备发送所述业务数据,所述出口SDN转发节点为所述传输网络中传输所述业务数据的第一个SDN转发节点。
  18. 根据权利要求17所述的第一网络设备,其特征在于,所述确定模块根据所述业务数据,确定所述目标业务的参量,包括:
    检测所述业务数据的所述IP五元组;
    若检测到所述IP五元组,确定所述目标业务的参量包括所述IP五元组;
    若检测不到所述IP五元组,识别所述业务数据的所述业务类型,并确定所述目标业务的参量包括所述业务类型。
  19. 根据权利要求17或18所述的第一网络设备,其特征在于,所述第一网络设备还包括接收模块和存储模块;
    所述接收模块,用于接收来自策略实体的所述对应关系;
    所述存储模块,用于存储所述对应关系。
  20. 根据权利要求17-19任一项所述的第一网络设备,其特征在于,所述第一网络设备为应用APP服务器,所述第二网络设备为用户面UP功能实体;或者,所述第一网络设备为所述UP功能实体,所述第二网络设备为所述APP服务器。
  21. 一种策略实体,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述策略实体运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述策略实体执行如权利要求1-7中任意一项所述的传输网络中业务服务质量QOS的控制方法。
  22. 一种第一网络设备,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一网络设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一网络设备执行如权利要求8-10任意一项所述的传输网络中业务服务质量QOS的控制方法。
  23. 一种传输网络中业务服务质量QOS的控制系统,其特征在于,所述系统包括:第一网络设备和策略实体;
    所述策略实体,用于接收来自软件自定义网络SDN控制器的管道标识ID,所述管道ID用于标识在第一数据中心和第二数据中心之间建立的满足目标QOS参数要求的传输管道;绑定所述管道ID和所述目标业务的参量的对应关系,所述参量包括网际协议IP五元组或者业务类型;向所述目标业务所在的网络切片中的第一网络设备发送所述对应关系;
    所述第一网络设备,用于获取所述目标业务的业务数据,并根据所述业务数据确定所述目标业务的参量之后,根据所述参量和所述对应关系确定所述管道ID,并根据所述管道ID对应的所述传输管道发送所述业务数据。
  24. 根据权利要求23所述的系统,其特征在于,所述第一网络设备为如权利要求17-20任一项所述的第一网络设备或者如权利要求22所述的第一网络设备。
  25. 根据权利要求23或24所述的系统,其特征在于,所述策略实体为如权利要求11-16任一项所述的策略实体或者如权利要求21所述的策略实体。
PCT/CN2018/074376 2017-02-23 2018-01-27 传输网络中业务服务质量的控制方法、设备及系统 WO2018153221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710100710.5 2017-02-23
CN201710100710.5A CN108471629B (zh) 2017-02-23 2017-02-23 传输网络中业务服务质量的控制方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2018153221A1 true WO2018153221A1 (zh) 2018-08-30

Family

ID=63252400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074376 WO2018153221A1 (zh) 2017-02-23 2018-01-27 传输网络中业务服务质量的控制方法、设备及系统

Country Status (2)

Country Link
CN (1) CN108471629B (zh)
WO (1) WO2018153221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915670A (zh) * 2022-04-12 2022-08-16 中国人民解放军战略支援部队信息工程大学 一种支持多种协议共存的网络切片实现方法与装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050361B (zh) * 2018-10-12 2023-07-25 中国移动通信有限公司研究院 一种报文传送方法、装置及系统
KR102641254B1 (ko) * 2019-01-08 2024-02-29 삼성전자 주식회사 무선 통신 시스템에서 종단 간 네트워크를 제어하는 관리 장치 및 방법
WO2021072717A1 (zh) * 2019-10-17 2021-04-22 Oppo广东移动通信有限公司 通信方法、通信设备及存储介质
CN113438159B (zh) * 2020-03-23 2023-04-18 华为技术有限公司 分段路由策略的传输方法及装置、网络传输系统
CN113872998A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 建立管道的方法及装置
CN114157600A (zh) * 2020-09-07 2022-03-08 华为技术有限公司 一种转发报文的方法、设备和系统
CN112134964B (zh) * 2020-10-28 2023-10-10 武汉绿色网络信息服务有限责任公司 控制器分配方法、计算机设备、存储介质及网络业务系统
CN114826916A (zh) * 2021-01-28 2022-07-29 阿里巴巴集团控股有限公司 数据传输方法、设备、系统及计算机存储介质
CN115226163A (zh) * 2021-04-20 2022-10-21 华为技术有限公司 一种通信方法及装置
CN113596840A (zh) * 2021-07-30 2021-11-02 成都卫士通信息产业股份有限公司 一种业务处理方法、装置以及相关设备
CN114301831B (zh) * 2021-12-10 2023-07-07 中国联合网络通信集团有限公司 一种业务传输方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954226A (zh) * 2015-07-28 2015-09-30 上海斐讯数据通信技术有限公司 一种基于SDN的支持QoS的通信隧道建立方法及系统
CN105577500A (zh) * 2014-10-16 2016-05-11 杭州华三通信技术有限公司 Vxlan与隧道的关联方法及装置
CN105992297A (zh) * 2015-02-12 2016-10-05 电信科学技术研究院 基于sdn的连接管理、转发控制方法及相关设备
US20160301603A1 (en) * 2015-04-10 2016-10-13 Kulcloud Integrated routing method based on software-defined network and system thereof
CN106068628A (zh) * 2014-03-17 2016-11-02 华为技术有限公司 用于管理用于配置网络的策略和/或资源的装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064637A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 保证操作维护数据流服务质量的方法
CN101594289A (zh) * 2008-05-28 2009-12-02 华为技术有限公司 实现区分服务流量工程的方法及设备
CN102469087A (zh) * 2010-11-17 2012-05-23 中兴通讯股份有限公司 一种实现服务质量控制的方法和系统
US9210615B2 (en) * 2012-09-17 2015-12-08 Brocade Communications Systems, Inc. Method and system for elastic and resilient 3G/4G mobile packet networking for subscriber data flow using virtualized switching and forwarding
CN104243345B (zh) * 2013-06-08 2018-05-15 中国移动通信集团公司 一种基于业务类型的流量调度方法、系统和设备
JPWO2015029420A1 (ja) * 2013-08-26 2017-03-02 日本電気株式会社 通信システムにおける通信装置、通信方法、制御装置および管理装置
CN103841022B (zh) * 2014-03-12 2017-04-05 华为技术有限公司 用于建立隧道的方法及装置
CN104518993A (zh) * 2014-12-29 2015-04-15 华为技术有限公司 云化网络通信路径的分配方法、装置及系统
CN104618194B (zh) * 2015-02-15 2018-03-20 新华三技术有限公司 软件定义网络报文监控方法和sdn控制器、交换设备
WO2016141509A1 (en) * 2015-03-06 2016-09-15 Zte Corporation Method and system for establishing and managing multi-domain virtual tunnel (mvt)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068628A (zh) * 2014-03-17 2016-11-02 华为技术有限公司 用于管理用于配置网络的策略和/或资源的装置和方法
CN105577500A (zh) * 2014-10-16 2016-05-11 杭州华三通信技术有限公司 Vxlan与隧道的关联方法及装置
CN105992297A (zh) * 2015-02-12 2016-10-05 电信科学技术研究院 基于sdn的连接管理、转发控制方法及相关设备
US20160301603A1 (en) * 2015-04-10 2016-10-13 Kulcloud Integrated routing method based on software-defined network and system thereof
CN104954226A (zh) * 2015-07-28 2015-09-30 上海斐讯数据通信技术有限公司 一种基于SDN的支持QoS的通信隧道建立方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915670A (zh) * 2022-04-12 2022-08-16 中国人民解放军战略支援部队信息工程大学 一种支持多种协议共存的网络切片实现方法与装置
CN114915670B (zh) * 2022-04-12 2023-10-24 中国人民解放军战略支援部队信息工程大学 一种支持多种协议共存的网络切片实现方法与装置

Also Published As

Publication number Publication date
CN108471629A (zh) 2018-08-31
CN108471629B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2018153221A1 (zh) 传输网络中业务服务质量的控制方法、设备及系统
US10148492B2 (en) Data center bridging network configuration and management
CN111682952B (zh) 针对体验质量度量的按需探测
US9705815B2 (en) Graph database for services planning and configuration in network services domain
EP3016323B1 (en) Service transmission path determination method, device and system
US9634928B2 (en) Mesh network of simple nodes with centralized control
US9584369B2 (en) Methods of representing software defined networking-based multiple layer network topology views
US11528239B2 (en) Time-sensitive networking communication method and apparatus for configuring virtual switching node
CN109362085B (zh) 通过openflow数据平面在云计算机中实现epc
JP2022506176A (ja) サービスベースのアーキテクチャを使用する電気通信ネットワークコアにおけるサービスプロキシ機能を提供するための方法、システム、およびコンピュータ読取可能媒体
WO2018214506A1 (zh) 一种选择路径的方法及装置
EP3140964B1 (en) Implementing a 3g packet core in a cloud computer with openflow data and control planes
CN109586938B (zh) 实例业务拓扑的生成方法及装置
WO2019056949A1 (zh) 业务重定向方法及装置
US20140241247A1 (en) Implementing a 3g packet core in a cloud computer with openflow data and control planes
US11463346B2 (en) Data processing method, device, and system
WO2018121295A1 (zh) 一种异构多协议栈方法、装置及系统
WO2019056953A1 (zh) 业务服务质量的检测方法、设备及系统
WO2017133477A1 (zh) 业务流传输方法、装置及系统
WO2019061169A1 (zh) 一种基于混合资源的路由选路方法、装置和服务器
US11558491B2 (en) Information-centric networking over 5G or later networks
WO2018223825A1 (zh) 数据流的处理方法和设备
WO2018121178A1 (zh) 一种资源调整方法、装置和系统
WO2020135238A1 (zh) 一种规划路径的方法、装置和系统
WO2015196923A1 (zh) 一种发送信息的方法和网络装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758028

Country of ref document: EP

Kind code of ref document: A1