WO2018153189A1 - 一种终端与终端之间信道探测的方法、网络侧设备和终端 - Google Patents

一种终端与终端之间信道探测的方法、网络侧设备和终端 Download PDF

Info

Publication number
WO2018153189A1
WO2018153189A1 PCT/CN2018/073448 CN2018073448W WO2018153189A1 WO 2018153189 A1 WO2018153189 A1 WO 2018153189A1 CN 2018073448 W CN2018073448 W CN 2018073448W WO 2018153189 A1 WO2018153189 A1 WO 2018153189A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
subframe
transmission resource
sounding
symbol
Prior art date
Application number
PCT/CN2018/073448
Other languages
English (en)
French (fr)
Inventor
向铮铮
庞继勇
苏宏家
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18757032.0A priority Critical patent/EP3537650B1/en
Publication of WO2018153189A1 publication Critical patent/WO2018153189A1/zh
Priority to US16/547,587 priority patent/US11711249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method for channel sounding between a terminal and a terminal, a network side device, and a terminal.
  • wireless communication technology has experienced the first generation wireless communication system based on analog communication system, and 2G wireless communication represented by global mobile communication system (English full name: Global System for Mobile Communication, English abbreviation: GSM) and IS-95
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 4G wireless communication system The services supported by wireless communication systems have also evolved from initial voice and SMS to wireless high-speed data communication.
  • the communication technology between the terminal and the terminal can realize direct communication between the short-distance terminals without using a third party, thereby sharing the heavy network load of the wireless cellular network, supplementing the existing cellular network architecture and bringing a new profit revenue model. Moreover, based on the natural advantages of short-range communication, the communication technology between the terminal and the terminal can also improve spectrum efficiency, obtain higher throughput performance and lower transmission delay.
  • the service between the terminal and the terminal is broadcast based on the physical layer, and the communication efficiency between the terminal and the terminal is relatively low.
  • the present application describes a method, apparatus and system for channel sounding between a terminal and a terminal.
  • an embodiment of the present application provides a method for channel detection between a terminal and a terminal, where the method includes: when the first terminal needs to communicate with the second terminal, actively sending a resource scheduling request to the network side device, where the resource scheduling is performed. And requesting, by the network side device, a transmission resource that performs channel sounding between the first terminal and the second terminal; and the information about the second terminal is carried in the resource scheduling request, for example, carrying the first terminal At least one of the number, type, identification, and the like of the second terminal to be detected.
  • the network side device After receiving the resource scheduling request of the first terminal, the network side device configures the transmission resource for channel detection for the second terminal; the second terminal sends the sounding reference signal to the first terminal on the transmission resource (English full name: Sounding Reference Signal, English abbreviation: SRS). Thereby, the first terminal performs channel sounding quickly and efficiently, and acquires channel information for communication with the second terminal.
  • the transmission resource English full name: Sounding Reference Signal, English abbreviation: SRS
  • the network side device configures, for the first terminal, a transmission resource for channel sounding; the first terminal sends the sounding control signaling on the transmission resource; the sounding control signaling is used to trigger the second terminal to send Probe reference signal.
  • the transmission resource of the channel sounding is implemented based on a flexible subframe in which both the information of the transmitting end and the information of the receiving end can be transmitted.
  • the flexible subframe may be a self-contained (self-contained) subframe.
  • the subframe includes a first part that is used as a sounding control signaling transmission resource, and is used by the first terminal to transmit the sounding control signaling to the second terminal;
  • the subframe further includes a second part as a sounding reference signal transmission resource, where the second terminal transmits the sounding reference signal to the first terminal;
  • the subframe includes 14 symbols
  • the first part of the subframe is the 1st to 9th symbols, the guard interval is the 10th symbol, and the second part is the 11th to 14th symbols;
  • the first part of the subframe is the 1-10th symbol
  • the guard interval is the eleventh symbol
  • the second part is the 12th-14th symbol.
  • the first part of the subframe is the 1-3th symbol, the guard interval is the fourth symbol, and the second part is the 5-14th symbol;
  • the first part of the subframe is the 1-2th symbol
  • the guard interval is the third symbol
  • the second part is the 4th-14th symbol.
  • the transmission resource of the channel sounding is implemented based on an uplink subframe used for sounding a channel or used to communicate an uplink subframe.
  • the transmission resource of the channel sounding is implemented based on a time slot or a small time slot.
  • the first terminal described above represents the transmitting end in communication
  • the second terminal represents the receiving end in communication
  • the number and type thereof are not limited.
  • the first terminal and the second terminal may be terminals with the same attributes, for example, the neighboring terminals are classified into one attribute group according to the geographical location information, or the terminal of the same service is used according to the service type, or according to the terminal.
  • Type the terminal of the same type is divided into an attribute group, for example, both the vehicle terminal or the mobile terminal, and the terminal of the same attribute group performs channel detection to establish a communication link, which can effectively save signaling overhead.
  • the embodiment of the present application provides a network side device, which may be a base station or a control node.
  • the network side device includes:
  • a transceiver configured to receive a resource scheduling request from the first terminal, where the resource scheduling request is used to request the network side device to allocate a transmission resource for performing channel sounding between the first terminal and the second terminal;
  • the scheduling request carries the information of the second terminal;
  • a processor configured to allocate a transmission resource to the second terminal; the transmission resource includes at least a transmission resource used by the second terminal to send a sounding reference signal.
  • the embodiment of the present application provides a base station, which has the function of implementing the behavior of the base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the base station.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • the embodiment of the present application provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the terminal includes:
  • a transceiver configured to send a resource scheduling request to the network side device, where the resource scheduling request is used to request the network side device to allocate a transmission resource for performing channel sounding between the terminal and another terminal; Carrying information of the other terminal;
  • the transceiver is further configured to receive a sounding reference signal sent by the another terminal on a transmission resource allocated by the network side device;
  • a processor configured to acquire channel information used for communication between the terminal and the another terminal.
  • the terminal can also implement corresponding software implementation through hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication interface.
  • the controller/processor may be used to coordinate resource management and configuration between multiple base stations, and may be used to perform the resource configuration method described in the foregoing embodiments.
  • the memory can be used to store program code and data for the control node.
  • the communication interface is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect.
  • the control node in the above embodiment may also be included.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the above aspects.
  • the channel detection process between the terminal and the terminal is actively triggered by the terminal.
  • the network side device separately configures the detection control signaling of the channel detection between the transmission terminal and the terminal, and the transmission resource of the sounding reference signal, and can be applied in various scenarios and modes, and can quickly and effectively perform the terminal and the terminal. Channel detection between terminals, thereby improving communication efficiency between the terminal and the terminal.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for channel detection according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an uplink/downlink subframe according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a time slot/small time slot according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a configuration of a subframe according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another configuration of a seed frame according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another seed frame according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another resource configuration according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for channel sounding according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another resource configuration according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another method for channel sounding according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another resource configuration according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of another method for channel sounding according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a control node according to an embodiment of the present disclosure.
  • the embodiment of the present application proposes a solution based on the communication system shown in FIG. 1 to improve the terminal between the terminal and the terminal in the communication system. Communication efficiency.
  • the communication between the terminal and the terminal includes D2D (English full name: Device to Device, Chinese full name: device and device), M2M (English full name: Machine to Machine, Chinese full name: machine and machine), UE cooperation (Chinese full name: UE collaboration) and other communication modes.
  • D2D English full name: Device to Device, Chinese full name: device and device
  • M2M English full name: Machine to Machine, Chinese full name: machine and machine
  • UE cooperation Choinese full name: UE collaboration
  • the embodiment of the present application provides a communication system.
  • the communication system includes at least one network side device and a plurality of terminals.
  • the network side device may be a base station as shown in FIG. 1 or a control node connected to the base station, or have a resource configuration, or a resource. Any network-side device that performs scheduling or resource multiplexing decision function is described below for convenience of understanding.
  • an embodiment of the present application provides a communication system 100 .
  • the communication system 100 includes at least one base station (English name: base station, English abbreviation: BS) and a plurality of terminals (English full name: Terminal).
  • the terminal denotes a terminal by T
  • the BS denotes a base station.
  • the plurality of terminals includes at least two terminals that can communicate with each other, such as T4 and T5, T6 and T7 in FIG.
  • the link between two terminals communicating with each other may be referred to as a pair of communication links, and two of the pair of communication links may be the receiving end and the transmitting end of each other.
  • one of the terminals may be At the transmitting end, the other terminal can be the receiving end.
  • the terminal T4 may be a transmitting end
  • the terminal T5 may be a receiving end.
  • each of the terminals may be both a transmitting end and a receiving end.
  • the communication system 100 also includes a terminal that can be used for cellular communication.
  • Cellular communication refers to communication between a terminal and a base station.
  • the terminals T1, T2, and T3 in FIG. 1 perform cellular communication through an access link (English name: access link).
  • the cellular terminal may also have a function of communicating with other terminals.
  • the terminal T1, the terminal T2, and the terminal T3 may also have functions of communicating with other terminals.
  • the terminal T4, the terminal T5, the terminal T6, and the terminal T7 may also have a cellular communication function.
  • the plurality of terminals may all be located under the coverage of the same base station, and the plurality of terminals may be served by the same base station.
  • terminals T1-T7 are both located under the coverage of base station 20 and are served by base station 20.
  • the plurality of terminals in the communication system 100 may also be located under different base station coverage, that is, different terminals may be served by different base stations, and at this time, the communication system 100 may include multiple base stations.
  • the plurality of base stations can be controlled by one control node.
  • multiple base stations can exchange information with each other, and one of the base stations controls as a control node, and the base station as the control node can perform unified resource scheduling according to information sent by other base stations and information obtained and maintained by itself. Management, etc.
  • the BS 60 can be used as a control node.
  • the functions of the control node can also be implemented by other base stations.
  • the embodiments of the present application are not limited.
  • the communication system 100 may be a system of various radio access technologies (radio access technology, English abbreviation: RAT), for example, code division multiple access (English name: code division multiple access, English abbreviation: CDMA), time division multiple access (English full name: time division multiple access, English abbreviation: TDMA), frequency division multiple access (English full name: frequency division multiple access, English abbreviation: FDMA), orthogonal frequency division multiple access ( English full name: orthogonal frequency-division multiple access, English abbreviation: OFDMA), single carrier frequency division multiple access (English full name: single carrier FDMA, English abbreviation: SC-FDMA) and other systems.
  • RAT radio access technology
  • code division multiple access English name: code division multiple access, English abbreviation: CDMA
  • time division multiple access English full name: time division multiple access, English abbreviation: TDMA
  • frequency division multiple access English full name: frequency division multiple access, English abbreviation: FDMA
  • OFDMA orthogonal frequency division
  • the CDMA system can implement, for example, universal terrestrial radio access (English full name: UTRA), CDMA2000 and other wireless technologies.
  • UTRA can include wideband CDMA (wideband CDMA, English abbreviation: WCDMA) technology and other CDMA variant technologies.
  • CDMA2000 can cover transition standards (English full name: interim standard, English abbreviation: IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • the OFDMA system can implement such as Evolved Universal Radio Land Access (English full name: evolved UTRA, E-UTRA), Super Mobile Broadband (English full name: ultra mobile broadband, English abbreviation: UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA and other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS that uses E-UTRA in long-term evolution (long term evolution: LTE) and various versions based on LTE evolution.
  • the communication system 100 can also be applied to the communication technology of the future, and the technical solution provided by the embodiment of the present application is applicable to the communication system that uses the new communication technology, including the communication between the terminal and the terminal.
  • the system architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the base station (for example, the BS 20) is a device deployed in the radio access network to provide a wireless communication function for the terminal.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device with a base station function may be different.
  • an evolved Node B (English full name: evolved NodeB, English abbreviation: eNB or eNodeB)
  • the third generation English full name: 3rd generation, English abbreviation: 3G) system, called Node B (Node B) and so on.
  • Node B Node B
  • the foregoing devices for providing wireless communication functions to terminals are collectively referred to as base stations.
  • the control node is connected to one or more base stations, and may perform unified scheduling on resources in the system, and may allocate resources to the terminal, perform resource reuse decision, or interfere with coordination.
  • the control node may connect a plurality of base stations and allocate resources for a plurality of terminals and cellular terminals covered by the plurality of base stations.
  • the base station may be a Node B in a UMTS system, and the control node may be a network controller.
  • the base station may be a small station, and the control node may be a macro base station that covers the small station.
  • the control node may be a wireless network cross-system cooperative controller or the like, and the base station is a base station in the wireless network, which is not limited in the embodiment of the present application.
  • the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal may also be a mobile station (English name: mobile station, English abbreviation: MS), terminal equipment, or a subscriber unit, a cellular phone, or a smart phone. ), wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld, laptop computer, cordless phone or A wireless local loop (WLL) station, or a machine type communication (MTC) terminal.
  • PDA personal digital assistant
  • modem modem
  • WLL wireless local loop
  • MTC machine type communication
  • the number and types of terminals included in the communication system 100 shown in FIG. 1 are merely examples, and the embodiment of the present application is not limited thereto. For example, it may also include more terminals that communicate with the base station, or more terminals that communicate with each other, which are not described in the drawings for the sake of brevity.
  • the communication system 100 shown in FIG. 1 although the BS 20 and the plurality of terminals T1 to T7 are shown, the communication system 100 may not be limited to include the base station and the terminal, and may also include, for example. Core network devices or devices for carrying virtualized network functions, etc., will be apparent to those of ordinary skill in the art and will not be described in detail herein.
  • the transmission resource of the channel sounding may be configured by the base station, or the related resource may be configured by the control node or other network side device.
  • the transmission resource of the channel detection may be notified to the corresponding terminal, and the so-called notification of the transmission resource of the channel sounding to the terminal means that the terminal can know the allocated
  • the transmission resource of the channel sounding may inform the terminal of the information of the transmission resource of the allocated channel sounding by display or implicitly.
  • the control node may notify the base station that covers the corresponding terminal after transmitting the transmission resource of the channel sounding, and then notify the terminal under the coverage by the base station.
  • FIG. 2 is a schematic diagram of an embodiment of a method for transmitting a sounding reference signal between a terminal and a terminal in a communication system provided by the present application.
  • the terminal when the terminal wants to communicate with one or more other terminals, the terminal, in order to measure the channel with other terminals, actively requests the network side device for the transmission resource of the channel sounding, and triggers the terminal and the terminal.
  • Channel detection process between other terminals The following is an example of a scenario in which a terminal needs to communicate with another terminal.
  • step 100 when the terminal (shown as the first terminal in FIG. 2) needs to communicate with other terminals (represented as the second terminal in FIG. 2), the resource scheduling request is sent to the network side device; the resource scheduling request And a transmission resource for requesting the network side device to allocate channel sounding between the first terminal and the second terminal;
  • the information about the other terminal may be carried in the resource scheduling request, for example, carrying at least one of the number, type, identifier, and the like of other terminals.
  • Step 101 After receiving the resource scheduling request for channel sounding from the first terminal, the network side device configures a transmission resource for performing channel sounding, where the transmission resource may include a required configuration for transmitting the sounding reference signal configured for the second terminal. Transmitting resources, and transmitting, by using downlink control signaling, information about the transmission resources of the foregoing channel sounding to the second terminal.
  • Step 104 The second terminal sends a sounding reference signal to the first terminal on the sounding reference signal transmission resource.
  • the method may further include: after receiving the resource scheduling request from the first terminal, the network side device configures, for the first terminal, a transmission resource for performing channel sounding;
  • the first terminal receives information about the foregoing transmission resource sent by the network side device, and sends detection control signaling on the transmission resource of the channel detection; the detection control signaling is used to trigger the The second terminal sends the sounding reference signal;
  • the first terminal sends a sounding control signaling (sounding control signaling) for triggering the second terminal to send the sounding reference signal on the transmission resource;
  • the sounding control signaling may carry the network side device to configure the second terminal The indication of the sounding reference signal transmission resource.
  • Step 103 The second terminal receives the sounding control signaling from the first terminal; and then performs step 104.
  • the first terminal can obtain channel information for communication between the terminal and the second terminal, so that channel detection can be performed quickly and effectively, a communication channel between the terminal and other terminals is established, and communication efficiency is improved. And resource utilization.
  • the granularity of the transmission resource of the channel detection configured by the network side device for the first terminal or the second terminal includes not only a subframe as shown in FIG. 3, but also Is a slot or mini-slot as shown in Figure 4, which has a smaller number of OFDM symbols, for example only 4 or 6 symbols.
  • the granularity of the transmission resource is mainly described in the form of a subframe, and the principle of the time slot and the small time slot is the same, and details are not described herein again.
  • the transmission resource of the channel sounding allocated by the network side device to the first terminal and the second terminal may be implemented based on a flexible subframe in the flexible subframe.
  • the information of the transmitting end can be transmitted while transmitting the information of the receiving end.
  • the flexible subframe can be a self-contained subframe.
  • a self-contained subframe is a subframe that can perform both uplink transmission and downlink transmission.
  • the uplink transmission and the downlink transmission are generally separated by a guard interval, and are applied to a scenario in which the terminal and the terminal communicate with each other. It consists of three parts: the first part from the sender to the receiver, the guard interval, and the second part from the receiver to the sender.
  • the self-contained subframe may include: a first part, a guard interval, and a second part used by the first terminal to transmit the probe control signaling to the second terminal. The terminal transmits a second portion of the sounding reference signal to the first terminal.
  • the terminal may send sounding control signaling to the other terminal in the first part of the self-contained subframe, and after receiving the sounding control signaling and after the guard interval, the other terminal sends the SRS to the terminal in the second part of the self-contained subframe.
  • the first part of the self-contained subframe includes N1 symbols
  • the guard interval includes N2 symbols
  • the second part includes N3 symbols.
  • the first part, the guard interval, and the number of symbols in the second part can be implemented as follows:
  • the first part of the self-contained subframe is the 1st-9th symbol
  • the guard interval is the 10th symbol
  • the second part is the 11th-14th. symbol
  • the first part of the self-contained subframe is the 1-10th symbol
  • the guard interval is the eleventh symbol
  • the second part is the 12th-14th symbol.
  • the first part of the self-contained subframe is the 1-3st symbol
  • the guard interval is the fourth symbol
  • the second part is the 5th-14th. symbol
  • the first part of the self-contained subframe is the 1-2th symbol
  • the guard interval is the third symbol
  • the second part is the 4th-14th symbol.
  • the first part, the guard interval and the number of symbols of the second part occupying the sub-frame may have other implementation forms. If it is implemented by using a small time slot, the first part may occupy only one symbol, and the second part has only one symbol, and the middle part is protected by a symbol.
  • the terminal T4 in FIG. 1 transmits sounding control signaling in the first part of the self-contained subframe; after receiving the sounding control signaling, the terminal T5 transmits the SRS in the second part of the self-contained subframe; the terminal T4 receives the received After the SRS of the terminal T5, the channel information between the terminal and the terminal T5 can be obtained.
  • the self-contained subframe can perform both the sounding control signaling and the SRS transmission in the same subframe, the channel detection can be performed quickly and effectively, and the communication between the terminal and the terminal is reduced. Transmission delay can improve communication efficiency and resource utilization.
  • the manner of performing channel sounding by using the self-contained subframe to transmit sounding control signaling and SRS information can be implemented in the communication process between the terminal and the terminal.
  • FIG. 8 is a schematic diagram of realizing channel detection between a terminal and a terminal by using a self-contained subframe in a communication resource between the terminal and the terminal.
  • the resources allocated by the network side device to the terminal are as shown in FIG. 8.
  • the communication resource pool used for communication between the terminal and the terminal is divided into multiple subframes, such as F2, F4, F6, F8, and F10.
  • the remaining white sub-frame parts such as F1, F3, F5, etc. are used to transmit other uplink data.
  • F1 ... F10, etc. are a distinguishing symbol for the described object, and may also be identified by any other form of symbol, and have no particular meaning in the present application.
  • the light gray sub-frame portion F2 is a self-contained sub-frame configured to transmit the sounding control signaling and the SRS.
  • the light gray portion of the self-contained sub-frame F2 is used by the terminal to send the sounding control signaling to other terminals.
  • the middle is the guard interval, the black part is used for other terminals to send SRS to the terminal;
  • the light gray sub-frame part F3 is configured for transmitting communication control signaling between the terminal and the terminal, and the dark gray sub-frame parts F6, F8, F10 are used. Communication data between the transmission terminal and the terminal.
  • the channel detecting method between the terminal and the terminal provided in the second embodiment includes:
  • Step 200 When the first terminal needs to communicate with the second terminal, the first terminal sends a resource scheduling request to the network side device, for example, the base station in this embodiment.
  • the network side device for example, the base station in this embodiment.
  • the resource scheduling request is used to notify the base station that the first terminal needs to communicate with the second terminal, or the first terminal needs to trigger another terminal (for example, the second terminal) to perform channel detection between the terminal and the terminal.
  • the transmission resource scheduling request for channel sounding is sent through the transmission resource scheduling request for communication between the terminal and the terminal.
  • Step 201 After receiving the resource scheduling request sent by the first terminal, the base station allocates a transmission resource (for example, a subframe F2) for transmitting sounding control signaling, for transmitting between the first terminal and the second terminal.
  • a transmission resource of communication control signaling for example, subframe F4
  • a transmission resource for example, F6, F8, F10, etc.
  • Step 202 After receiving the downlink control signaling of the base station, the first terminal generates the sounding control signaling and the communication control signaling between the terminal and the terminal according to the indication (in the embodiment, the first terminal and the second terminal The communication control signaling between the terminals), and first transmits the sounding control signaling to the second terminal by using the first transmission portion (light gray portion of F2) of the self-contained subframe.
  • Step 203 The second terminal receives sounding control signaling in the communication resource pool.
  • Step 204 The second terminal sends an SRS to the first terminal after the guard interval (the white portion of the F2), that is, the second transmission portion (the black portion of the F2) of the self-contained subframe, according to the indication of the sounding control signaling;
  • steps 201 to 203 may be omitted, and the second terminal allocates a self-contained subframe for transmitting the SRS, and the second terminal directly goes to the second transmission portion of the self-contained subframe.
  • the terminal sends an SRS.
  • Step 205 After receiving the SRS sent by the second terminal, the first terminal estimates, according to the SRS information, a channel used for communication between the first terminal and the second terminal.
  • Step 206 The first terminal sends, by using the estimated channel, control signaling and communication data for communication between the terminal and the terminal to the second terminal.
  • Step 207 The second terminal receives, on the estimated channel, communication control signaling and communication data that are sent by the second terminal to the second terminal.
  • the first terminal sends the sounding control signaling to the second terminal and receives the SRS sent by the second terminal by using the self-contained subframe, and only uses a small amount of resources, the first terminal and the second terminal.
  • the channel detection process can be completed, the channel condition of the second terminal is obtained, and the communication process between the terminal and the terminal is organically combined, which saves the process, especially when the number of terminals involved in the communication system is large. The advantage is even more obvious.
  • the network side device may configure a dedicated sounding subframe to implement channel sounding between the terminal and the terminal.
  • a resource pool dedicated to sounding is first defined, which is used for channel detection between a terminal and a terminal.
  • the sounding resource pool includes an uplink subframe for transmitting sounding control signaling and a corresponding uplink.
  • the frequency band also includes an uplink subframe dedicated to the terminal to transmit the SRS and a corresponding uplink frequency band.
  • FIG. 10 is a schematic diagram of a transmission resource pool of channel sounding configured by a network side device for a terminal.
  • the transmission resource pool for channel sounding is divided into multiple subframes, such as F2, F4, F6, F8, and F10.
  • the remaining white sub-frame parts such as F1, F3, F5, etc., are used to transmit other uplink sounding data.
  • all symbols in the light gray subframe portions F2 and F4 are configured to transmit sounding control signaling
  • the dark gray subframe portions F6, F8, and F10 are configured to transmit the SRS.
  • one symbol or multiple symbols of the subframes F6, F8 and F10 for transmitting the SRS may be used for transmitting the SRS.
  • the terminal T1 as the receiving end transmits the SRS on one of the symbols, and serves as the terminal of the receiving end.
  • T2 transmits the SRS on another symbol.
  • the network side device is a BS
  • the terminal is a terminal for D2D communication.
  • the specific example below illustrates that the D2D terminal cooperates with the BS to implement channel detection and D2D between multiple terminals.
  • Step 300 When the first terminal needs to trigger another one or several second terminals to send the D2D SRS, the first terminal sends a resource scheduling request in the sounding resource pool.
  • the base station allocates a transmission resource correspondingly used by the first terminal to send sounding control information, and a transmission resource used by the one or more second terminals triggered by the terminal to send the SRS.
  • the first gray subframe F2 in FIG. 10 is the transmission resource allocated by the BS for the first terminal to send sounding control signaling, and the seventh symbol and the eleventh symbol of the first dark subframe F6. That is, the transmission resource allocated by the base station for the two second terminals that are triggered to send the SRS between the terminal and the terminal, and the remaining symbols of the subframe may be used for other triggered receiving terminal terminals between the transmitting terminal and the terminal. SRS.
  • Step 302 The first terminal sends sounding control signaling to the second terminal in the sounding resource pool.
  • Step 303 to step 304 After receiving the sounding control signaling, the second terminal sends an SRS in the corresponding subframe and symbol according to the indication of the sounding control signaling, and the process is similar to the foregoing embodiment. Let me repeat.
  • the foregoing steps 301-303 may be omitted, and the network-side device directly allocates a dedicated probe uplink subframe for transmitting the SRS to the second terminal, and the second terminal directly directs the uplink subframe in the dedicated probe.
  • the first terminal sends an SRS.
  • the scheme provided in this embodiment is configured to configure a dedicated uplink subframe, where the uplink subframe includes multiple sounding symbols, and each of the sounding symbols is dedicated to transmitting the sounding control signaling and receiving the sounding reference signal.
  • the terminal may send the probe control signaling to the multiple terminals, and the other probe symbols of the dedicated probe uplink subframe are set to receive the sounding reference signals returned by the multiple terminals, and the terminal may trigger multiple terminals to perform channel sound detection at the same time.
  • the efficiency of channel sounding based on the method of channel sounding, can quickly establish a communication channel between the terminal and the terminal, thereby further improving communication efficiency and resource utilization.
  • the transmission resource of the channel sounding is implemented by configuring a communication uplink subframe.
  • the resource pool for channel sounding is not specifically defined, but the channel detection is performed based on the resource pool of communication between the existing terminal and the terminal.
  • FIG. 12 shows an example of resource allocation for sounding based on a communication resource pool between an existing terminal and a terminal.
  • the communication resource between the terminal and the terminal includes sub-frames of a light gray part, such as F2 and F4 and dark gray sub-frames. Frames such as F6, F8, F10, etc., and other white sub-frame parts such as F1, F3, F5, etc. are used to transmit other uplink data.
  • the light gray subframe used for communication between the terminal and the terminal is used as a channel sounding transmission resource between the terminal and the terminal.
  • the F6 is used as an example.
  • the dark gray subframe F6 is originally an uplink subframe used by the base station to transmit communication data between the terminal and the terminal.
  • the network side device indicates that the second terminal transmits the uplink subframe of the communication data.
  • the last symbol sends the SRS to the first terminal.
  • the second terminal may also send the SRS in the last symbol or the middle symbol of the subframe, and the number of symbols is not limited to one. It is intended to be illustrative only and not to limit the scope of the application and the embodiments.
  • the network side device is a base station
  • the method for implementing channel detection between the first terminal and the second terminal is as follows:
  • Step 400 The first terminal sends a scheduling request for a sounding resource to the base station.
  • Step 401 When the base station receives the scheduling request, the base station indicates, in the resource pool of the terminal communication between the terminal and the terminal, a subframe that can be used by the second terminal to send the SRS.
  • the second terminal may be in the The last symbol of the subframe F6 transmits an SRS, and the remaining symbols of the subframe F6 are also used for transmission of communication between the first terminal and the second terminal, similar to the uplink SRS.
  • the first terminal is also allocated for transmission.
  • the transmission resource required for the control signaling, such as F2 or F4, and corresponding downlink control signaling is sent to the first terminal.
  • Step 402 After receiving the downlink control signaling sent by the base station, the first terminal generates corresponding sounding control signaling according to the indication of the signaling, and sends the corresponding sounding control signaling to the second terminal.
  • Step 403 to step 404 after receiving the sounding control signaling, the second terminal sends an SRS in the corresponding subframe and symbol according to the indication of the sounding control signaling, which is similar to the foregoing embodiment. Let me repeat.
  • the network side device directly allocates a communication uplink subframe for transmitting the SRS to the second terminal, and the second terminal directly goes to the first uplink in the communication uplink subframe.
  • the terminal sends an SRS.
  • a part of the symbols in the subframe are used for channel detection between the terminal and the terminal by using an uplink subframe that is used for communication between the existing terminal and the terminal.
  • the first terminal The first communication uplink subframe may be used to send the probe control signaling to the terminal, and the second terminal returns the sounding reference signal in one symbol of the second communication uplink subframe, where the symbol may be the last one or more of the second communication uplink subframe.
  • the symbol or the first one or more symbols thereby organically combining the channel detection between the terminal and the terminal and the existing communication between the terminal and the terminal, seamlessly connecting, reducing signaling overhead, and improving the efficiency of establishing the D2D link. Improve communication efficiency and resource utilization.
  • the foregoing sounding control signaling includes at least a sounding trigger indication, and a C-RNTI (Cell Radio Network Temporary Identifier) of the second terminal.
  • a C-RNTI Cell Radio Network Temporary Identifier
  • the indication information or the timing advance for indicating the subframe in which the second terminal sends the SRS may also be included.
  • the first terminal may periodically send, on the transmission resource of the channel sounding, detection control signaling for triggering the second terminal to send the sounding reference signal. This is beneficial to ensure the continuity and timeliness of channel detection between the terminal and the terminal.
  • the first terminal and the second terminal may be terminals with the same attributes, for example, the neighboring terminals are classified into one attribute group according to the geographical location information, or the same service is used according to the service type.
  • the terminal is divided into an attribute group, or the terminal of the same type is divided into an attribute group according to the terminal type, for example, both the vehicle terminal and the mobile terminal.
  • the terminal of the same attribute group performs channel sounding to establish a communication link, which can effectively save signaling overhead.
  • each solution of the method for channel detection between the terminal and the terminal provided by the embodiment of the present application is introduced from the perspective of the interaction between the network elements and the network elements.
  • each network element such as a terminal, a base station, a control node, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 14 is a schematic diagram showing a possible structure of a network side device involved in the above embodiment.
  • the network side device includes at least a transceiver 501, a controller/processor 502.
  • the transceiver 501 receives a resource scheduling request from the first terminal, where the resource scheduling request is used to request the network side device to allocate a transmission resource for performing channel sounding between the first terminal and the second terminal;
  • the request carries the information of the second terminal, where the controller/processor 502 is configured to configure, for the second terminal, a transmission resource for performing channel sounding, and the transmission resource of the channel detection is used by the second terminal to send a sounding reference. signal.
  • the second terminal may be triggered by the first terminal to send the probe control signaling, in which case the controller/processor 502 is further configured to perform channel sounding for the first terminal configuration.
  • the transmission resource of the channel sounding is used by the first terminal to send the sounding control signaling.
  • the functions of the controller/processor 502 described above may be implemented by a circuit or by executing software code by using general hardware.
  • the network side device may include the transceiver 501 and the controller/processor 502 as described above.
  • a memory 503 is included for storing program code that can be executed by the controller/processor 502. The foregoing functions are performed when the controller/processor 502 runs the program code stored in the memory 503.
  • any step requiring processing inside the network side device may be implemented by the above controller/processor 502.
  • the network side device may further include an encoder 5051, a modulator 5052, a demodulator 5054, and a decoder 5053.
  • the encoder 5051 is configured to acquire data/signaling that the network side device is to send to the terminal or other network side device, and encode the data/signaling.
  • the modulator 5052 modulates the encoded data/signaling of the encoder 5051 and transmits it to the transceiver 501, which is transmitted by the transceiver 501 to the terminal or other network side device.
  • the demodulator 5054 is configured to acquire data and signaling sent by the terminal or other network side device to the network side device, and perform demodulation.
  • the decoder 5053 is configured to decode the demodulated data/signaling of the demodulator 5054.
  • the encoder 5051, the modulation 5052, the demodulator 5054, and the decoder 5053 described above may be implemented by a synthesized modem processor 505. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the radio access network e.g., access technologies of LTE and other evolved systems.
  • the network side device may further include a communication interface 504 for supporting communication between the network side device and other network entities. For example, it is used to support communication between a base station and other communication network entities shown in FIG. 1, such as control node 60 and the like.
  • FIG 14 only shows a simplified design of the network side device.
  • the above transceiver 501 may include a transmitter and a receiver, and the network side device may include any number of transceivers, processors, controllers/processors, memories, and/or communication interfaces, and the like.
  • Fig. 15 shows a simplified schematic diagram of one possible design structure of the terminal involved in the above embodiment, which may be one of the terminals T4, T5, T6, T7 as shown in Fig. 1.
  • the terminal is a first terminal (the "first” herein has no special meaning, but is used to distinguish it from other terminals), and the first terminal includes at least a transceiver 601 and a controller/processor 602. .
  • the transceiver 601 is configured to send a resource scheduling request to the network side device, where the resource scheduling request is used to request the network side device to allocate a transmission resource for performing channel sounding between the first terminal and the second terminal;
  • the request carries the information of the second terminal; and then receives the sounding reference signal sent by the second terminal on the transmission resource of the channel sounding;
  • the controller/processor 602 is configured to acquire channel information used for communication between the first terminal and the second terminal.
  • the controller/processor 602 is further configured to instruct the transceiver to send the probe control signaling on the transmission resource, where the probe control signaling is used to trigger the second terminal to send the sounding reference signal.
  • the functions of the controller/processor 602 described above may be implemented by a circuit or by executing software code by a general hardware.
  • the first terminal includes, in addition to the foregoing transceiver 601 and controller/processor 602,
  • a memory 603 can be included for storing program code that can be executed by the controller/processor 602. The foregoing functions are executed when the controller/processor 602 runs the program code stored in the memory 603.
  • the first terminal may further include an encoder 6041, a modulator 6042, a demodulator 6044, and a decoder 6043.
  • the encoder 6041 is configured to acquire data/signaling that the first terminal is to send to the network side device or other terminals, and encode the data/signaling.
  • the modulator 6042 modulates the encoded data/signaling of the encoder 6041 and transmits it to the transceiver 601, and the transceiver 601 transmits it to the network side device or other terminal.
  • the demodulator 6044 is configured to acquire data and signaling sent by the network side device or other terminal to the first terminal, and perform demodulation.
  • the decoder 6043 is configured to decode the demodulated data/signaling of the demodulator 6044.
  • the encoder 6041, the modulator 6042, the demodulator 6044, and the decoder 6043 may be implemented by a synthesized modem processor 604. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the radio access network e.g., access technologies of LTE and other evolved systems.
  • the controller/processor 602 controls and manages the actions of the terminal, so that the respective devices cooperate to implement the steps performed by the terminal in the foregoing method embodiment.
  • the controller/processor 602 may be configured to perform downlink control signaling according to a network side device, such as a base station or a control node, where network control device allocation is included in the downlink control signaling.
  • the transceiver 601 may be instructed to return a sounding reference signal to the transmitting end according to the sounding control signaling sent by the sending end.
  • the controller/processor 602 is configured to support the terminal to perform the content related to terminal processing in FIG. 2 or FIG. 9 or FIG. 11 or FIG. Fig. 16 is a diagram showing the control node involved in the above embodiment.
  • the control node may be the control node 60 shown in FIG.
  • the control node may include a controller/processor 701, a memory 702, and a communication interface 703.
  • the controller/processor 701 can be used to coordinate resource management and configuration between multiple base stations, can be used to perform resource configuration in the foregoing embodiment, and can perform frequency resource multiplexing and decision between communication links. Wait.
  • Memory 702 can be used to store program code and data that can be executed by controller/processor 701.
  • the communication interface 703 is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • the network side device described in the foregoing embodiment of the present application may be the base station as shown in FIG. 10 or the control node as described in FIG.
  • the network side device is a control node
  • its structure and function can refer to the mechanism and function of the base station shown in FIG. 10, which will not be described here.
  • the controller/processor for performing the above base station, terminal, base station or control node of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and the field may be Program gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions (eg, program code).
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal.
  • the processor and the storage medium can also exist as discrete components in the terminal.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,提供了一种信道探测的方法、网络侧设备和终端。该方法公开了第一终端需要与第二终端通信时,向网络侧设备发送资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有所述第二终端的信息;所述第一终端接收所述第二终端发送的探测参考信号,获取所述第一终端与所述第二终端之间用于通信的信道信息。通过本实施例提供的方案,可以快速有效的进行终端与终端之间的信道探测,进而提高终端与终端之间的通信效率。

Description

一种终端与终端之间信道探测的方法、网络侧设备和终端 技术领域
本申请涉及无线通信技术领域,尤其涉及一种终端与终端之间信道探测的方法、网络侧设备和终端。
背景技术
无线通信技术的发展,经历了基于模拟通信系统的第一代无线通信系统,以全球移动通信系统(英文全称:Global System for Mobile Communication,英文缩写:GSM)和IS-95为代表的2G无线通信系统,以宽带码分多址(英文全称:Wideband Code Division Multiple Access,英文缩写:WCDMA)为代表的3G无线通信系统,再到现在已经在全世界广泛商用并且取得巨大成功的长期演进(英文全称:Long Term Evolution,英文缩写:LTE)4G无线通信系统。而无线通信系统支持的业务也从最初的语音、短信,发展到现在支持无线高速数据通信。与此同时,全世界范围内的无线连接数量正在经历持续地高速增长,各种新型无线业务类型也大量涌现,例如物联网、虚拟现实(英文全称:Virtual Reality,英文缩写:VR)等,这些都对下一代无线通信系统提出了更高的要求。
终端与终端之间的通信技术可以实现近距离终端之间不借助第三方而直接进行通信,从而能够分担无线蜂窝网络繁重的网络负荷、补充现有的蜂窝网络架构并带来新的利润收入模式,并且,基于近距离通信的天然优势,终端与终端之间的通信技术还可以提升频谱效率、获得较高的吞吐性能和较低的传输时延。
在现有技术中,终端与终端之间的业务是基于物理层广播的,终端与终端之间的通信效率比较低。
发明内容
本申请描述了一种终端与终端之间的信道探测的方法、装置和系统。
一方面,本申请的实施例提供一种终端与终端之间信道探测的方法,该方法包括:第一终端需要与第二终端通信时,主动向网络侧设备发送资源调度请求,所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;并且在该资源调度请求中携带有第二终端的信息,例如:携带有第一终端拟探测的第二终端的个数、类型、标识等中的至少一个。
网络侧设备在收到第一终端的资源调度请求后,为第二终端配配置进行信道探测的传输资源;第二终端在所述传输资源上,向第一终端发送探测参考信号(英文全称:Sounding Reference Signal,英文缩写:SRS)。由此,第一终端便快速而有效的进行信道探测,获取其与第二终端之间用于通信的信道信息。
可选的,网络侧设备为第一终端配置用于信道探测的传输资源;第一终端在所述传输资源上发送探测控制信令;所述探测控制信令用于触发所述第二终端发送探测参考信号。
在一个可能的设计中,所述信道探测的传输资源基于一种灵活的子帧来实现,该灵活的子帧中既可以传输发送端的信息又可以传输接收端的信息。该灵活的子帧可以是自包含(英文全称:self-contained)子帧。
所述子帧包括作为探测控制信令传输资源的第一部分,用于所述第一终端向所述第二终端传输所述探测控制信令;
所述子帧还包括作为探测参考信号传输资源的第二部分,用于所述第二终端向所述第一终端传输所述探测参考信号;
所述子帧的第一传输部分与第二传输部分之间有保护间隔。
一种实现方式中,所述子帧包含14个符号;
所述子帧的第一部分为第1-9个符号,保护间隔为第10个符号,第二部分为第11-14个符号;
或者,所述子帧的第一部分为第1-10个符号,保护间隔为第11个符号,第二部分为第12-14个符号。
或者,所述子帧的第一部分为第1-3个符号,保护间隔为第4个符号,第二部分为第5-14个符号;
或者,所述子帧的第一部分为第1-2个符号,保护间隔为第3个符号,第二部分为第4-14个符号。通过本实施例提供的方案,由于在同一个子帧内既可以传输探测控制信令的又可以传输探测参考信号的,可以快速而有效的进行信道探测,降低传输时延从而可以提高通信效率和资源利用率。
又一种可能的实现方式中,所述信道探测的传输资源基于用于探测信道的上行子帧或者用于通信上行子帧来实现。
再一种可能的实现方式中,所述信道探测的传输资源基于用于时隙或者小时隙来实现。
另外,上述的第一终端表示通信中的发送端,第二终端表示通信中的接收端,不限定其数量和类型。可选的实施方式中,第一终端和第二终端可以是属性相同的终端,例如按照地理位置信息将邻近的终端分为一个属性组,或者根据业务类型,将相同业务的终端,或者根据终端类型,将相同类型的终端分为一个属性组,例如都是车载终端或者都是手机终端,同一个属性组的终端进行信道探测建立通信链路,能够有效的节省信令开销。
另一方面,本申请实施例提供了网络侧设备,该网络侧设备可以是一种基站,也可以是一种控制节点。
一种实现方式中,所述网络侧设备包括:
收发器,用于接收来自第一终端的资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有第二终端的信息;
处理器,用于为所述第二终端分配传输资源;所述传输资源至少包括用于所述第二终端发送探测参考信号的传输资源。
另一方面,本申请实施例提供了一种基站,该基站具有实现上述方法实际中基 站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者信令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本申请实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。
所述终端的功能可以通过硬件实现,一种实现方式中,所述终端包括:
收发器,用于向网络侧设备发送资源调度请求,所述资源调度请求用于请求所述网络侧设备分配所述终端与另一终端之间进行信道探测的传输资源;所述资源调度请求中携带有所述另一终端的信息;
所述收发器还用于接收所述另一终端在所述网络侧设备分配的传输资源上发送的探测参考信号;
处理器,用于获取所述终端与所述另一终端之间用于通信的信道信息。
所述终端也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
又一方面,本申请实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信接口。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例描述的资源配置方法。存储器可以用于存储控制节点的程序代码和数据。所述通信接口,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。可选地,还可以包括上述实施例中的控制节点。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
根据本申请实施例提供的技术方案,通过终端主动触发终端与终端之间的信道探测过程。进一步,网络侧设备为终端分别配置传输终端与终端之间进行信道探测的探测控制信令和探测参考信号的传输资源,并在各种场景和模式下都可以适用,可以快速有效的进行终端与终端之间的信道探测,进而提高终端与终端之间的通信效率。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本 领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种通信系统示意图;
图2为本申请实施例提供的一种信道探测的方法流程示意图;
图3为本申请实施例提供的一种上/下行子帧的示意图;
图4为本申请实施例提供的一种时隙/小时隙的示意图;
图5为本申请实施例提供的一种子帧的配置示意图;
图6为本申请实施例提供的又一种子帧的配置示意图;
图7为本申请实施例提供的另一种子帧的配置示意图;
图8为本申请实施例提供的另一种资源配置示意图;
图9为本申请实施例提供的另一种信道探测的方法流程示意图;
图10为本申请实施例提供的另一种资源配置示意图;
图11为本申请实施例提供的另一种信道探测的方法流程示意图;
图12为本申请实施例提供的另一种资源配置示意图;
图13为本申请实施例提供的另一种信道探测的方法流程示意图;
图14为本申请实施例提供的一种基站的结构示意图;
图15为本申请实施例提供的一种终端的结构示意图;
图16为本申请实施例提供的一种控制节点的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为了解决现有技术通信系统中终端与终端之间的通信效率低问题,本申请实施例基于图1所示的通信系统中提出了一种解决方案,用以提高通信系统中终端与终端之间的通信效率。
本申请实施例中,终端与终端之间的通信包括D2D(英文全称:Device to Device,中文全称:设备与设备),M2M(英文全称:Machine to Machine,中文全称:机器与机器),UE cooperation(中文全称:UE协作)等通信模式。
本申请实施例提供了一种通信系统。该通信系统包括至少一个网络侧设备和多个终端(Terminal),需要说明的是该网络侧设备可以为如图1所示的基站,或者与基站连接的控制节点,或者具有资源配置,或资源调度,或资源复用决策功能的任何网络侧的设备,为方便理解,下面以基站为例进行说明。如图1所示,本申请实施例提供了一种通信系统100。该通信系统100包括至少一个基站(英文全称:base station,英文缩写:BS)和多个终端(英文全称:Terminal),为方便起见,图中以T表示终端,BS表示基站。该多个终端中包括至少两个可以互相进行通信的终端,例如图1中的T4和T5,T6和T7。两个互相进行通信的终端之间的链路可以称为一对通信链路,一对通信链路中的两个终端可以互为接收端和发送端,在一次传输中,其中一个终端可以为发送端,另一个终端可以为接收端。例如所述终端T4可以为发送端,所述终端T5可以为接收端。若所述两个终端都支持同时收发功能,则所述每 个终端可以同时既为发送端也为接收端。可选的该通信系统100中还包括可以用于蜂窝通信的终端。蜂窝通信是指终端和基站之间进行的通信。例如,在图1中的终端T1,T2,T3通过接入链路(英文全称:access link)进行蜂窝通信。当然,蜂窝终端也可以具有与其它终端通信的功能,例如,终端T1、终端T2、终端T3也可以具有与其它终端通信的功能。类似的,所述终端T4、终端T5和终端T6、终端T7也可以同时具有蜂窝通信功能。
如图1所述的通信系统100中,所述多个终端可以都位于同一个基站的覆盖之下,所述多个终端可以由同一个基站服务。例如,在图1中,终端T1-T7都位于基站20的覆盖下,由基站20服务。
通信系统100中所述多个终端也可以位于不同的基站覆盖之下,即不同终端可以由不同的基站服务,此时通信系统100中可以包括多个基站。所述多个基站可以由一个控制节点进行控制。或者,多个基站之间可以互相进行信息交互,由其中的一个基站作为控制节点进行控制,该作为控制节点的基站可以根据其它基站发送的信息以及自身获得和维护的信息进行统一的资源调度和管理等。例如,在图1中,可以由BS60作为控制节点,当然,也可以由其它基站来实现该控制节点的功能。本申请实施例并不进行限制。
在本申请实施例中,所述通信系统100可以为各种无线接入技术(英文全称:radio access technology,英文缩写:RAT)系统,譬如例如码分多址(英文全称:code division multiple access,英文缩写:CDMA)、时分多址(英文全称:time division multiple access,英文缩写:TDMA)、频分多址(英文全称:frequency division multiple access,英文缩写:FDMA)、正交频分多址(英文全称:orthogonal frequency-division multiple access,英文缩写:OFDMA)、单载波频分多址(英文全称:single carrier FDMA,英文缩写:SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(英文全称:universal terrestrial radio access,英文缩写:UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(英文全称:wideband CDMA,英文缩写:WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(英文全称:interim standard,英文缩写:IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(英文全称:global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(英文全称:evolved UTRA,E-UTRA)、超级移动宽带(英文全称:ultra mobile broadband,英文缩写:UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(英文全称:long term evolution,英文缩写:LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。
此外,所述通信系统100还可以适用于面向未来的通信技术,只要采用新通信技术的通信系统包括终端与终端之间的通信,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例 的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,所述基站(例如BS20)是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(英文全称:evolved NodeB,英文缩写:eNB或者eNodeB),在第三代(英文全称:3rd generation,英文缩写:3G)系统中,称为节点B(Node B)等。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站。
本申请实施例中,所述控制节点连接一个或多个基站,可以对系统中的资源进行统一调度,可以给终端配置资源,进行资源复用决策,或者干扰协调等。在图1所示的通信系统中,所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端和蜂窝终端配置资源。例如,所述基站可以为UMTS系统中的Node B,所述控制节点可以为网络控制器。又例如,所述基站可以为小站,则所述控制节点可以为覆盖所述小站的宏基站。再例如,所述控制节点可以为无线网络跨制式协同控制器等,基站为无线网络中的基站,在本申请实施例中不作限定说明。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以是移动台(英文全称:mobile station,英文缩写:MS)、终端设备(terminal equipment),还可以是用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、或机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端。
需要说明的是,图1所示的通信系统100中所包含的终端的数量和类型仅仅是一种举例,本申请实施例也并不限制于此。譬如,还可以包括更多与基站进行通信的终端,或者包括更多互相之间进行通信的终端,为简明描述,不在附图中一一描述。此外,在如图1所示的通信系统100中,尽管示出了BS20,以及多个终端T1~终端T7,但所述通信系统100可以并不限于包括所述基站和终端,譬如还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这些对于本领域普通技术人员而言是显而易见的,在此不一一详述。
下面结合附图1至16,说明本申请提供的终端与终端之间通信的信道探测技术和相应的装置实施例。在进行终端与终端之间的信道探测的传输资源配置时,可以由基站配置所述信道探测的传输资源,也可以由控制节点或其它网络侧设备配置所述相关资源。所述基站配置所述信道探测的传输资源后,可以将所述配置的信道探测的传输资源通知给相应的终端,所谓的将信道探测的传输资源通知给终端是指使 得终端可以获知所分配的信道探测的传输资源,例如,可以将所述分配的信道探测的传输资源的信息通过显示或者隐式的方式通知给终端。又例如,所述控制节点也可以在配置信道探测的传输资源后,将该信道探测的传输资源通知给覆盖相应终端的基站,再由所述基站通知给覆盖下的终端。
如图2所示,为本申请提供的通信系统中的终端与终端之间的探测参考信号的发送方法实施例示意图。
在本申请实施例中,当终端欲与一个或多个其它终端通信时,该终端为了测量与其它终端之间的信道,会向网络侧设备主动请求信道探测的传输资源,并触发该终端与其它终端之间的信道探测过程。下面以一个终端需要与另外一个终端通信的场景为例进行说明。
具体的,在步骤100,当终端(图2中表示为第一终端)需要与其它终端(图2中表示为第二终端)通信时,向网络侧设备发送资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;
在该资源调度请求中可以携带所述其它终端的信息,例如:携带其它终端的个数、类型、标识等中的至少一个。
步骤101,网络侧设备接收到来自第一终端的信道探测的资源调度请求后,配置进行信道探测的传输资源,所述传输资源可以包括为所述第二终端配置的发送探测参考信号所需的传输资源,并通过下行控制信令将前述信道探测的传输资源的信息发送给所述第二终端。
步骤104,所述第二终端在探测参考信号传输资源上,向该第一终端发送探测参考信号。
可选的,所述方法还可以包括:网络侧设备接收到来自第一终端的资源调度请求后,为第一终端配置进行信道探测的传输资源;
那么,在步骤102,所述第一终端接收网络侧设备发送的前述传输资源的信息,并在所述信道探测的传输资源上发送探测控制信令;所述探测控制信令用于触发所述第二终端发送探测参考信号;
第一终端在传输资源上发送用于触发所述第二终端发送探测参考信号的探测控制信令(sounding控制信令);该探测控制信令中可以携带网络侧设备为所述第二终端配置的探测参考信号传输资源的指示。
步骤103,所述第二终端接收来自第一终端的探测控制信令;之后,再执行步骤104。
由此,该第一终端便可获取其与第二终端之间用于通信的信道信息,从而可以快速而有效的进行信道探测,建立起该终端与其它终端之间的通信信道,提高通信效率和资源利用率。
需要说明的是,在本申请所有实施例中,网络侧设备为第一终端或第二终端配置的信道探测的传输资源的粒度不仅包括如图3所示的子帧(subframe),还有可能是如图4所示的时隙(slot)或者小时隙(mini-slot),它们具有较少数量的OFDM符号数量, 例如只有4个或6个符号。
下面的实施例中,主要以传输资源的粒度为子帧的形式来描述,时隙和小时隙的原理与此相同,不再赘述。如图5所示,在一种实施方式中,所述网络侧设备为第一终端和第二终端分配的信道探测的传输资源可以基于一种灵活的子帧来实现,该灵活的子帧中传输发送端的信息的同时又可以传输接收端的信息。该灵活的子帧可以是self-contained子帧。下面以self-contained子帧为例进行说明,但是该子帧的结构同样适用于其它用于终端与终端之间信道探测的子帧。
self-contained子帧是一种既可以进行上行传输又可以进行下行传输的子帧,上行传输和下行传输之间一般有保护间隔来分开,将其应用到终端与终端之间通信的场景下时,包含三部分:发送端到接收端的第一部分、保护间隔、接收端到发送端的第二部分。例如在前面的实施例中,该self-contained子帧中可以包括:用于所述第一终端向所述第二终端传输探测控制信令的第一部分、保护间隔、以及用于所述第二终端向所述第一终端传输探测参考信号的第二部分。
终端可以在自包含子帧的第一部分向其它终端发送sounding控制信令,其它终端在接收到sounding控制信令并且经过保护间隔后,在自包含子帧的第二部分向所述终端发送SRS。
具体实现中,自包含子帧的第一部分包含N1个符号,保护间隔包含N2个符号,第二部分包括N3个符号。
以自包含子帧包含14个符号为例,其第一部分,保护间隔,第二部分的符号数可以有如下几种实现方式:
如图6所示,在以下行为主的子帧格式中,所述自包含子帧的第一部分为第1-9个符号,保护间隔为第10个符号,第二部分为第11-14个符号;
或者,所述自包含子帧的第一部分为第1-10个符号,保护间隔为第11个符号,第二部分为第12-14个符号。
如图7所示,在以上行为主的子帧格式中,所述自包含子帧的第一部分为第1-3个符号,保护间隔为第4个符号,第二部分为第5-14个符号;
或者,所述自包含子帧的第一部分为第1-2个符号,保护间隔为第3个符号,第二部分为第4-14个符号。
此处仅为举例,第一部分,保护间隔和第二部分所占自包含子帧的符号数还可以有其他实现形式。如果其采用小时隙来实现的时候,第一部分可能只占用一个符号,第二部分也只有一个符号,中间通过一个符号做保护间隔。
例如图1中的终端T4在自包含子帧的第一部分发送sounding控制信令;终端T5收到该sounding控制信令之后,在自包含子帧的第二部分发送的SRS;终端T4收到来自终端T5的SRS后便可获取其与终端T5之间的信道信息。
通过本实施例提供的方案,由于self-contained子帧在同一个子帧内既可以进行sounding控制信令传输又可以进行SRS传输,可以快速而有效的进行信道探测,降低终端与终端之间通信的传输时延从而可以提高通信效率和资源利用率。
在一种可能的实施例中,利用自包含子帧传输sounding控制信令和SRS信息完 成信道探测的方式可以在终端与终端之间的通信过程中实现。
参见图8和图9,为在终端与终端之间的通信资源中利用自包含子帧实现终端与终端之间的信道探测的示意图。
网络侧设备为终端分配的资源如图8所示:用于终端与终端之间通信的通信资源池被划分为多个子帧,如F2,F4,F6,F8,F10。其余的白色的子帧部分如F1、F3、F5等用于传输其他的上行数据。F1……F10等是对所描述对象一种区分符号,也可以用其它任何形式的符号来标识,在本申请文件中不具有特别限定的含义。
其中,浅灰色的子帧部分F2为自包含子帧,其配置用于传输探测控制信令和SRS,该自包含子帧F2中的浅灰色部分用于终端向其他终端发送探测控制信令,中间为保护间隔,黑色部分用于其他终端向终端发送SRS;浅灰色的子帧部分F3配置用于传输终端与终端之间的通信控制信令,深灰色的子帧部分F6、F8、F10用于传输终端与终端之间的通信数据。
本实施例中的自包含子帧的结构和传输的内容如前一实施例中所述,在此不再赘述。
如图9所示,本实施例二提供的终端与终端之间的信道探测方法,包括:
步骤200,第一终端需要与第二终端进行通信时,第一终端先向网络侧设备,例如本实施例中的基站,发送资源调度请求;
该资源调度请求用于告知基站所述第一终端需要与第二终端通信,或者所述第一终端需要触发其他终端(例如,第二终端)进行终端与终端之间的信道探测。
在本实施例中,信道探测的传输资源调度请求是通过所述的终端与终端之间通信的传输资源调度请求一并发送的。
步骤201,基站收到第一终端发送的资源调度请求后,会为其分配用于传输sounding控制信令的传输资源(例如子帧F2),用于传输第一终端与第二终端之间的通信控制信令的传输资源(例如子帧F4),以及用于传输第一终端与第二终端之间通信数据的传输资源(例如F6,F8,F10等),并且生成下行控制信令发送给第一终端;
步骤202,第一终端在收到基站的下行控制信令后,根据其指示生成sounding控制信令和终端与终端之间的通信控制信令(在本实施例中,为第一终端与第二终端之间的通信控制信令),并且利用自包含子帧的第一传输部分(F2的浅灰色部分)先将sounding控制信令发送给第二终端。
步骤203,第二终端在通信资源池中收到sounding控制信令;
步骤204,第二终端根据sounding控制信令的指示在保护间隔(F2的白色部分)后,即在自包含子帧的第二传输部分(F2的黑色部分)向第一终端发送SRS;
需要说明的是:上述步骤201~203也可省略,直接由网络侧设备为第二终端分配传输SRS的自包含子帧,第二终端在该自包含子帧的第二传输部分直接向第一终端发送SRS。
步骤205,第一终端在收到第二终端发送的SRS后,根据该SRS信息估算第一终端与第二终端之间用于通信的信道;
步骤206,第一终端通过估算出来的信道,向第二终端发送终端与终端之间进行通信的控制信令以及通信数据;
步骤207,第二终端在所述估算出来的信道上接收第二终端发送给第二终端的通信控制信令以及通信数据。
因此,在本申请实施例中,利用自包含子帧,第一终端向第二终端发送探测控制信令并接收第二终端发送的SRS,仅耗用少量的资源,第一终端与第二终端之间就能完成信道探测过程,获得第二终端的信道情况,并且与终端与终端之间的通信过程有机结合,节省了流程,尤其是当通信系统中涉及到的终端数量庞大时,这种优势更为明显。
在另一种实施例中,网络侧设备可以配置专属的探测子帧来实现终端与终端之间的信道探测。
在本实施例中,首先定义专门用于sounding的资源池,其用于终端与终端之间的信道探测,该sounding资源池中包含了用于发送sounding控制信令的上行子帧以及对应的上行频带,同时也包含了专门用于终端发送SRS的上行子帧以及对应的上行频带。图10是网络侧设备为终端配置的信道探测的传输资源池的示意图。信道探测的传输资源池被划分为多个子帧,如F2,F4,F6,F8,F10。其余的白色的子帧部分如F1、F3、F5等用于传输其他的上行探测数据。其中,浅灰色的子帧部分F2和F4中的全部符号都配置用于传输探测控制信令,深灰色的子帧部分F6、F8、F10配置用于传输SRS。
需要说明的是,用于传输SRS的子帧F6,F8和F10的一个符号或者多个符号都可以用于传输SRS,例如,作为接收端的终端T1在其中一个符号上传输SRS,作为接收端的终端T2在另一个符号上传输SRS。
具体的流程参见图11,本实施例中,假设网络侧设备是BS,终端是用于D2D通信的终端,下面通过具体的例子说明D2D终端与BS协同实现多个终端之间的信道探测和D2D通信的实施例。
步骤300,当第一终端需要触发其他一个或者若干个第二终端发送D2D SRS时,第一终端会在sounding资源池中发送资源调度请求。
与上一实施例不同之处在于,在步骤301,基站分配相应地用于第一终端发送sounding控制信息的传输资源以及用于该终端所触发的一个或者多个第二终端发送SRS的传输资源(例如图10中的第一个灰色子帧F2即为BS分配的用于第一终端发送sounding控制信令的传输资源,第一个深色子帧F6的第7个符号和第11个符号即为基站分配的用于被触发的两个第二终端发送终端与终端之间的SRS的传输资源,该子帧的其余符号可以用于其他被触发的接收端终端发送终端与终端之间的SRS。)
步骤302,第一终端在sounding资源池中向第二终端发送sounding控制信令;
步骤303~步骤304,第二终端在收到sounding控制信令后,会根据该sounding控制信令的指示在对应的子帧及符号处发送SRS,该过程与前述实施例相类似,在此不再赘述。
需要说明的是,本实施例中,上述步骤301~303也可省略,直接由网络侧设备 为第二终端分配传输SRS的专属探测上行子帧,第二终端在该专属探测上行子帧直接向第一终端发送SRS。
通过本实施例提供的方案,通过配置专属的探测上行子帧,该上行子帧包括多个探测符号,每一个探测符号都专用于进行探测控制信令的发送和探测参考信号的接收,因此在同一时刻内,终端可以向多个终端发送探测控制信令,该专属探测上行子帧的其他探测符号设置于接收多个终端返回的探测参考信号,终端可以同时触发多个终端进行信道探测,提高了信道探测的效率,基于此信道探测的方法,终端与终端之间可以快速建立起通信的信道,由此进一步提高了通信的效率和资源利用率。
在一种实施方式中,所述信道探测的传输资源通过配置通信上行子帧来实现。
本实施例中,不再专门定义用于进行信道探测的资源池,而是基于现有的终端与终端之间通信的资源池来进行信道探测。
图12给出了基于已有的终端与终端之间的通信资源池进行sounding的资源分配示例,终端与终端之间的通信资源包括浅灰色部分的子帧,如F2和F4和深灰色的子帧如F6、F8、F10等等,其余的白色的子帧部分如F1、F3、F5等用于传输其他的上行数据。其中,又将浅灰色的用于终端与终端通信的子帧用作终端与终端之间的信道探测传输资源。
以F6为例,深灰色子帧F6原本是基站指示的用于传输终端与终端之间通信数据的上行子帧,本申请实施例中,网络侧设备指示第二终端传输通信数据的上行子帧的最后一个符号向第一终端发送SRS,当然,在其他实施方式中,第二终端也可以在该子帧的最后一个符号或者中间的符号发送SRS,且符号的数量也不限制为一个,此处仅为举例说明,并不以此限定本申请的保护范围和实施例方式。
具体的流程参见图13,本实施例中,假设网络侧设备为基站,第一终端与第二终端之间实现信道探测的方法如下:
步骤400,第一终端向基站发送sounding资源的调度请求;
步骤401,当基站收到上述调度请求时,基站会在系统现有的终端与终端通信的资源池中指示出能被第二终端用于发送SRS的子帧(例如:第二终端可以在该子帧F6的最后一个符号发送SRS,该子帧F6的其余符号还是用于第一终端与第二终端之间的通信的传输,和上行SRS类似),可选的,也分配第一终端传输sounding控制信令所需的传输资源,例如F2或者F4,并生成相应地下行控制信令发送给第一终端。
步骤402,第一终端在收到基站发送的下行控制信令之后,根据该信令的指示生成相应地sounding控制信令并发送给第二终端。
步骤403~步骤404,第二终端在收到sounding控制信令后,会根据该sounding控制信令的指示在对应的子帧及符号处发送SRS,该过程与前述实施例相类似,在此不再赘述。
需要说明的是,本实施例中,上述步骤401~403也可省略,直接由网络侧设备为第二终端分配传输SRS的通信上行子帧,第二终端在该通信上行子帧直接向第一终端发送SRS。
通过本实施例提供的方案,通过利用现有的终端与终端之间进行通信的上行子帧,将该子帧中的一部分符号用于终端与终端之间的信道探测,具体的,第一终端可以利用第一通信上行子帧向终端发送探测控制信令,第二终端在第二通信上行子帧的一个符号返回探测参考信号,该符号可以是第二通信上行子帧的最后一个或多个符号或者最前一个或多个符号,由此将终端与终端之间的信道探测和终端与终端之间已有的通信有机结合,无缝连接,减少信令开销,提高了D2D链路建立的效率,提高通信效率和资源利用率。
前述sounding控制信令至少包含sounding触发指示、第二终端的C-RNTI(Cell Radio Network Temporary Identifier,小区无线临时标识)。可选的,还可以包括用于指示第二终端发送SRS的子帧的指示信息或者时间提前量。
可选的,在上述三种实施例中,所述第一终端可以周期性的在所述信道探测的传输资源上发送用于触发第二终端发送探测参考信号的探测控制信令。这样有利于保证终端与终端之间信道探测的持续性和及时性。
可选的,在上述三种实施例中,第一终端和第二终端可以是属性相同的终端,例如按照地理位置信息将邻近的终端分为一个属性组,或者根据业务类型,将相同业务的终端分为一个属性组,或者根据终端类型,将相同类型的终端分为一个属性组,例如都是车载终端或者都是手机终端。同一个属性组的终端进行信道探测建立通信链路,能够有效的节省信令开销。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的终端与终端之间信道探测的方法的各方案进行了介绍。可以理解的是,各个网元,例如终端、基站,控制节点等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图14示出了上述实施例中所涉及的网络侧设备的一种可能的结构示意图。该网络侧设备至少包括收发器501,控制器/处理器502。所述收发器501接收来自第一终端的资源调度请求,所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述调度请求中携带有第二终端的信息;所述控制器/处理器502用于为所述第二终端配置进行信道探测的传输资源,该信道探测的传输资源用于所述第二终端发送探测参考信号。
在一种可选的实施例中,可以由第一终端触发第二终端发送探测控制信令,在此种情况下,控制器/处理器502还用于为所述第一终端配置进行信道探测的传输资源,所述信道探测的传输资源用于所述第一终端发送探测控制信令。
关于传输资源的格式以及分配的方式可以参见前面方法实施例中的描述。
上述控制器/处理器502的功能可以通过电路实现也可以通过通用硬件执行软 件代码实现,当采用后者时,网络侧设备除了包括前述的收发器501和控制器/处理器502外,还可以包括存储器503,该存储器503用于存储可被控制器/处理器502执行的程序代码。当控制器/处理器502运行存储器503存储的程序代码时就执行前述功能。
除了上述功能外,图2或图9或图11或图13中由网络侧设备执行的步骤中,凡是需要网络侧设备内部进行处理的步骤都可以由上述控制器/处理器502来实现。
进一步地,网络侧设备还可以包括编码器5051、调制器5052、解调器5054和解码器5053。编码器5051用于获取网络侧设备将要发给终端或者其他网络侧设备的数据/信令,并对该数据/信令进行编码。调制器5052对编码器5051编码后的数据/信令进行调制后传递给收发器501,由收发器501发送给终端或者其他网络侧设备。
解调器5054用于获取终端或者其他网络侧设备发送给本网络侧设备的数据/信令,并进行解调。解码器5053用于对解调器5054解调后的数据/信令进行解码。
上述编码器5051、调制5052、解调器5054和解码器5053可以由合成的调制解调处理器505来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
所述网络侧设备还可以包括通信接口504,用于支持该网络侧设备与其他网络实体之间进行通信。例如,用于支持基站与图1中示出的其他通信网络实体间进行通信,例如控制节点60等。
可以理解的是,图14仅仅示出了网络侧设备的简化设计。在实际应用中,上述收发器501可以包括发射器和接收器,网络侧设备可以包含任意数量的收发器,处理器,控制器/处理器,存储器,和/或通信接口等。
图15示出了上述实施例中所涉及的终端的一种可能的设计结构的简化示意图,所述终端可以是如图1所示中的终端T4、T5、T6、T7中的一个。为方便描述,假设该终端为第一终端(此处的“第一”并无特别的含义,只是用于区别于其它终端),该第一终端至少包括收发器601和控制器/处理器602。
收发器601用于向网络侧设备发送资源调度请求,所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有第二终端的信息;然后,接收所述第二终端在信道探测的传输资源上发送的探测参考信号;
控制器/处理器602,用于获取所述第一终端与所述第二终端之间用于通信的信道信息。
所述控制器/处理器602,还用于指示所述收发器在所述传输资源上发送探测控制信令;所述探测控制信令用于触发所述第二终端发送所述探测参考信号。
关于传输资源的格式以及分配的方式可以参见前面方法实施例中的描述。
上述控制器/处理器602的功能可以通过电路实现也可以通过通用硬件执行软件代码实现,当采用后者实现时,第一终端除了包括前述的收发器601和控制器/处理器602外,还可以包括存储器603,该存储器603用于存储可被控制器/处理器602执行的程序代码。当控制器/处理器602运行存储器603存储的程序代码时就执行前 述功能。
进一步地,第一终端还可以包括编码器6041、调制器6042、解调器6044和解码器6043。编码器6041用于获取第一终端将要发给网络侧设备或者其他终端的数据/信令,并对该数据/信令进行编码。调制器6042对编码器6041编码后的数据/信令进行调制后传递给收发器601,由收发器601发送给网络侧设备或者其他终端。
解调器6044用于获取网络侧设备或者其他终端发送给第一终端的数据/信令,并进行解调。解码器6043用于对解调器6044解调后的数据/信令进行解码。
上述编码器6041、调制器6042、解调器6044和解码器6043可以由合成的调制解调处理器604来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器602对终端的动作进行控制管理,以使各个器件配合实现上述方法实施例中终端执行的步骤。例如,若所述终端为发送端,所述控制器/处理器602可以用于根据网络侧设备,如基站或控制节点下发的下行控制信令(该下行控制信令中包括网络侧设备分配的用于两个终端之间进行信道探测的传输资源),指示所述收发器601在网络侧设备分配的传输资源上,向第二终端发送探测控制信令。若所述终端为接收端终端,则可以根据发送端发送的探测控制信令,指示收发器601向发送端返回探测参考信号。作为示例,控制器/处理器602用于支持终端执行图2或图9或图11或图13中涉及终端处理的内容。图16示出了上述实施例中涉及到的控制节点的示意图。所述控制节点可以为图1所示的控制节点60。控制节点可以包括控制器/处理器701,存储器702以及通信接口703。所述控制器/处理器701可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例进行资源配置,并可以进行通信链路之间的频率资源复用的及决策等。存储器702可以用于存储可被控制器/处理器701执行的程序代码和数据。所述通信接口703,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
本申请上述实施例所述的网络侧设备,该网络侧设备可以为图10所述的基站,或如图16所述的控制节点。当网络侧设备为控制节点时,其结构和功能可以参考图10所示基站的机构和功能,此处不再描述。
用于执行本申请上述基站,终端、基站或控制节点的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令(例如,程序代码)的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而 使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于终端中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (24)

  1. 一种终端与终端之间信道探测的方法,其特征在于,包括:
    第一终端需要与第二终端通信时,向网络侧设备发送资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有所述第二终端的信息;
    所述第一终端接收所述第二终端在所述网络侧设备分配的传输资源上发送的探测参考信号,获取所述第一终端与所述第二终端之间用于通信的信道信息。
  2. 如权利要求1所述的信道探测的方法,其特征在于,所述第一终端向网络侧设备发送资源调度请求之后,还包括:
    所述第一终端接收所述网络侧设备发送的所述传输资源的信息,并在所述传输资源上发送探测控制信令;所述探测控制信令用于触发所述第二终端发送所述探测参考信号。
  3. 如权利要求2所述的信道探测的方法,其特征在于,所述传输资源为一个子帧;
    所述子帧中包括用于所述第一终端传输所述探测控制信令的第一部分;以及
    用于所述第二终端传输所述探测参考信号的第二部分;
    所述子帧的第一部分与第二部分之间有保护间隔。
  4. 如权利要求2所述的信道探测方法,其特征在于,所述传输资源至少包括第一子帧和第二子帧;
    所述第一子帧用于所述第一终端传输所述探测控制信令;
    所述第二子帧用于所述第二终端传输所述探测参考信号;
    所述第一子帧与第二子帧为不同的子帧。
  5. 如权利要求2所述的信道探测方法,其特征在于,所述传输资源为时隙或小时隙,所述小时隙包含的符号数小于一个时隙包含的符号数;所述时隙或小时隙至少包括第一符号和第二符号;
    所述第一符号用于所述第一终端传输所述探测控制信令;
    所述第二符号用于所述第二终端传输所述探测参考信号;
    所述第一符号与第二符号为不同的符号。
  6. 如权利要求2至5中任一项所述的信道探测的方法,其特征在于,所述探测控制信令至少包括探测触发指示、第二终端的小区无线临时标识。
  7. 如权利要求2至5中任一项所述的信道探测方法,其特征在于,探测控制信 令是周期性地发送的。
  8. 一种终端与终端之间信道探测的方法,其特征在于,所述方法包括:
    网络侧设备接收来自第一终端的资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有第二终端的信息;
    网络侧设备为所述第二终端分配传输资源;所述传输资源中至少包括用于所述第二终端发送探测参考信号的传输资源。
  9. 如权利要求8所述的信道探测的方法,其特征在于,所述传输资源还包括用于所述第一终端发送探测控制信令的传输资源。
  10. 如权利要求9所述的信道探测的方法,其特征在于,所述传输资源为一个子帧;
    所述子帧包括用于第一终端传输所述探测控制信令的第一部分;以及用于第二终端传输所述探测参考信号的第二部分;
    所述子帧的第一部分与第二部分之间有保护间隔。
  11. 如权利要求9所述的信道探测的方法,其特征在于,所述传输资源至少包括第一子帧和第二子帧;
    所述第一子帧用于所述第一终端传输所述探测控制信令;
    所述第二子帧用于所述第二终端传输所述探测参考信号;
    所述第一子帧与第二子帧为不同的子帧。
  12. 如权利要求9所述的信道探测的方法,其特征在于,所述网络侧设备配置的传输资源为时隙或小时隙,所述小时隙包含的符号数小于一个时隙包含的符号数;所述时隙或小时隙至少包括第一符号和第二符号;
    所述第一符号用于所述第一终端传输所述探测控制信令;
    所述第二符号用于所述第二终端传输所述探测参考信号;
    所述第一符号与第二符号为不同的符号。
  13. 一种终端,其特征在于,包括:
    收发器,用于向网络侧设备发送资源调度请求,所述资源调度请求用于请求所述网络侧设备分配所述终端与另一终端之间进行信道探测的传输资源;所述资源调度请求中携带有所述另一终端的信息;
    所述收发器还用于接收所述另一终端在所述网络侧设备分配的传输资源上发送的探测参考信号;
    处理器,用于获取所述终端与所述另一终端之间用于通信的信道信息。
  14. 如权利要求13所述的终端,其特征在于,所述收发器还用于接收所述网络侧设备发送的所述传输资源的信息;
    所述处理器,还用于指示所述收发器在所述传输资源上发送探测控制信令;所述探测控制信令用于触发所述另一终端发送所述探测参考信号。
  15. 如权利要求14所述的终端,其特征在于,所述传输资源为一个子帧;
    所述子帧包括用于第一终端传输所述探测控制信令的第一部分;以及用于第二终端传输所述探测参考信号的第二部分;
    所述子帧的第一部分与第二部分之间有保护间隔。
  16. 如权利要求14所述的终端,其特征在于,所述传输资源至少包括第一子帧和第二子帧;
    所述第一子帧用于所述终端传输所述探测控制信令;
    所述第二子帧用于所述另一终端传输所述探测参考信号;
    所述第一子帧与第二子帧为不同的子帧。
  17. 如权利要求14所述的终端,其特征在于,所述传输资源为时隙或小时隙,所述小时隙包含的符号数小于一个时隙包含的符号数;所述时隙或小时隙至少包括第一符号和第二符号;
    所述第一符号用于所述终端传输所述探测控制信令;
    所述第二符号用于所述另一终端传输所述探测参考信号;
    所述第一符号与第二符号为不同的符号。
  18. 如权利要求14至17中任一项所述的终端,其特征在于,所述收发器发送的探测控制信令至少包括探测触发指示、所述另一终端的小区无线临时标识。
  19. 如权利要求14至17中任一项所述的终端,其特征在于,探测控制信令是周期性地发送的。
  20. 一种网络侧设备,其特征在于,包括:
    收发器,用于接收来自第一终端的资源调度请求;所述资源调度请求用于请求所述网络侧设备分配所述第一终端与第二终端之间进行信道探测的传输资源;所述资源调度请求中携带有第二终端的信息;
    处理器,用于为所述第二终端分配传输资源;所述传输资源至少包括用于所述第二终端发送探测参考信号的传输资源。
  21. 如权利要求20所述的网络侧设备,其特征在于,所述传输资源还包括用于 所述第一终端发送探测控制信令的传输资源。
  22. 如权利要求21所述的网络侧设备,其特征在于,所述传输资源为一个子帧;
    所述子帧包括用于第一终端传输所述探测控制信令的第一部分;以及用于第二终端传输所述探测参考信号的第二部分;
    所述子帧的第一部分与第二部分之间有保护间隔。
  23. 如权利要求21所述的网络侧设备,其特征在于,所述传输资源至少包括第一子帧和第二子帧;
    所述第一子帧用于所述第一终端传输所述探测控制信令;
    所述第二子帧用于所述第二终端传输所述探测参考信号;
    所述第一子帧与第二子帧为不同的子帧。
  24. 如权利要求21所述的网络侧设备,其特征在于,所述传输资源为时隙或小时隙,至少包括第一符号和第二符号;
    所述第一符号用于所述第一终端传输所述探测控制信令;
    所述第二符号用于所述第二终端传输所述探测参考信号;
    所述第一符号与第二符号为不同的符号。
PCT/CN2018/073448 2017-02-23 2018-01-19 一种终端与终端之间信道探测的方法、网络侧设备和终端 WO2018153189A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18757032.0A EP3537650B1 (en) 2017-02-23 2018-01-19 Method for channel sounding between terminals, network side device, and terminal
US16/547,587 US11711249B2 (en) 2017-02-23 2019-08-22 Method for performing channel sounding between terminals, network side device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710100989.7A CN108471345B (zh) 2017-02-23 2017-02-23 一种终端与终端之间信道探测的方法、网络侧设备和终端
CN201710100989.7 2017-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/547,587 Continuation US11711249B2 (en) 2017-02-23 2019-08-22 Method for performing channel sounding between terminals, network side device, and terminal

Publications (1)

Publication Number Publication Date
WO2018153189A1 true WO2018153189A1 (zh) 2018-08-30

Family

ID=63252376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073448 WO2018153189A1 (zh) 2017-02-23 2018-01-19 一种终端与终端之间信道探测的方法、网络侧设备和终端

Country Status (4)

Country Link
US (1) US11711249B2 (zh)
EP (1) EP3537650B1 (zh)
CN (1) CN108471345B (zh)
WO (1) WO2018153189A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006728A1 (zh) * 2017-07-06 2019-01-10 北京小米移动软件有限公司 物联网设备之间建立快速连接的方法、装置及设备
CN115024015A (zh) * 2020-03-23 2022-09-06 Oppo广东移动通信有限公司 一种通信控制方法及其相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000245A1 (zh) * 2011-06-28 2013-01-03 中兴通讯股份有限公司 用户设备传输数据的控制方法和系统
CN103036663A (zh) * 2012-12-06 2013-04-10 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN103067132A (zh) * 2012-12-28 2013-04-24 华为技术有限公司 信道探测方法、通信方法、终端及系统
CN103781126A (zh) * 2012-10-18 2014-05-07 中国移动通信集团公司 长期演进系统中的设备间通信方法及长期演进基站
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156293A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
US9893859B2 (en) * 2007-10-30 2018-02-13 Texas Instruments Incorporated Transmission of sounding reference signal and scheduling request in single carrier systems
KR101441147B1 (ko) * 2008-08-12 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
EP2634939A4 (en) * 2010-10-28 2016-12-07 Lg Electronics Inc METHOD AND DEVICE FOR TRANSMITTING A SOUND REFERENCE SIGNAL
EP2667524A4 (en) * 2011-01-23 2017-10-25 LG Electronics Inc. Method and apparatus for transmitting an uplink signal by a relay in a wireless communication system
CN103457690B (zh) 2012-05-31 2017-11-03 中兴通讯股份有限公司 探测参考信号的传输方法、装置及系统和用户设备
KR20140032545A (ko) * 2012-08-31 2014-03-17 삼성전자주식회사 상향링크 제어 채널 자원이 동적으로 변하는 무선통신 시스템에서 사운딩 운용 방법 및 장치
CN107026724B (zh) * 2016-02-02 2021-09-24 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备
WO2018151340A1 (ko) * 2017-02-15 2018-08-23 엘지전자(주) 무선 통신 시스템에서 단말 간 채널을 측정하는 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000245A1 (zh) * 2011-06-28 2013-01-03 中兴通讯股份有限公司 用户设备传输数据的控制方法和系统
CN103781126A (zh) * 2012-10-18 2014-05-07 中国移动通信集团公司 长期演进系统中的设备间通信方法及长期演进基站
CN103036663A (zh) * 2012-12-06 2013-04-10 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN103067132A (zh) * 2012-12-28 2013-04-24 华为技术有限公司 信道探测方法、通信方法、终端及系统
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537650A4 *

Also Published As

Publication number Publication date
CN108471345B (zh) 2021-04-20
EP3537650A1 (en) 2019-09-11
EP3537650B1 (en) 2024-08-07
EP3537650A4 (en) 2020-04-15
CN108471345A (zh) 2018-08-31
US11711249B2 (en) 2023-07-25
US20190379508A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US9974077B2 (en) System and method for communicating resource allocation for D2D
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2016163206A1 (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
US20130022010A1 (en) Method and Apparatus for Managing Inter-Cell Interference for Device-to-Device Communications
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
US12082185B2 (en) Pending SR cancellation method and apparatus
CN114731729B (zh) 协作传输方法、设备及系统
CN117255414A (zh) 用于调度资源分配的装置和方法
CN113810964A (zh) 一种通信方法及设备
US11711249B2 (en) Method for performing channel sounding between terminals, network side device, and terminal
CN114631374A (zh) 一种数据传输方法及装置
JP2020533863A (ja) 信号送信方法、関連する装置及びシステム
KR102586481B1 (ko) 무선 통신 방법 및 무선 통신 디바이스
CN114556793A (zh) 上行传输方法及通信装置
EP3142438A1 (en) Method for inter-device communications, base station, and user equipment
US20220394710A1 (en) Resource indication method, resource determining method, and related apparatus
WO2022056725A1 (zh) 信道反馈方法、终端设备和网络设备
US20210400711A1 (en) Methods, radio nodes and computer readable media for enhanced grant skipping
CN108270533B (zh) 传输上行测量参考信号的方法、装置和系统
US20230276464A1 (en) Methods and apparatuses for a sidelink resource re-evaluation procedure
WO2024159782A1 (en) Candidate cell configuration for ltm
WO2024159788A1 (en) Dci based indication for ue
WO2023123080A1 (zh) 侧行通信方法和设备
WO2022110072A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024032293A1 (en) Wireless communication method, user equipment, and base station background of disclosure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018757032

Country of ref document: EP

Effective date: 20190603

NENP Non-entry into the national phase

Ref country code: DE