WO2018153154A1 - 显示装置及其驱动方法、显示系统及其显示方法 - Google Patents

显示装置及其驱动方法、显示系统及其显示方法 Download PDF

Info

Publication number
WO2018153154A1
WO2018153154A1 PCT/CN2017/117404 CN2017117404W WO2018153154A1 WO 2018153154 A1 WO2018153154 A1 WO 2018153154A1 CN 2017117404 W CN2017117404 W CN 2017117404W WO 2018153154 A1 WO2018153154 A1 WO 2018153154A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
color
display
pixel unit
optical film
Prior art date
Application number
PCT/CN2017/117404
Other languages
English (en)
French (fr)
Inventor
李亚坤
王明超
封宾
孙鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/072,343 priority Critical patent/US11455965B2/en
Publication of WO2018153154A1 publication Critical patent/WO2018153154A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2358/00Arrangements for display data security
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • At least one embodiment of the present disclosure provides a display device, a driving method thereof, a display system, and a display method thereof.
  • the current display anti-peeping technology basically follows the way of making the viewing angle small so that people within a certain viewing angle cannot see the displayed information, but reducing the viewing angle also makes the user receive a certain amount during normal viewing. Restriction, and the effect of anti-peeping can not be achieved within a certain range of angles of view, so this anti-peeping technology can not achieve the real anti-peeping secret security effect, and can not fully meet the consumer's use needs.
  • At least one embodiment of the present disclosure provides a display device including: a display panel including a plurality of pixel units; a first optical film located on the display panel; wherein at least one of the pixel units includes a first color sub-pixel a unit, the first color sub-pixel unit includes at least a display sub-pixel unit of a first color and an interfering sub-pixel unit of the first color, the first optical film including a display for transmitting the first color a first sub-optical film unit of light emitted by the sub-pixel unit and a second sub-optical film unit for transmitting light emitted by the interfering sub-pixel unit of the first color, and the first sub-optical film unit and the The second sub-optical film unit is disposed such that polarization states of light emitted from the first sub-optical film unit and the second sub-optical film unit are different from each other.
  • the first sub-optical film unit is for making transmitted light unpolarized light
  • the second sub-optical film unit is for making transmitted light polarized light
  • the second sub-optical film unit is configured to make transmitted light linearly polarized.
  • the first sub-optical film unit is for making transmitted light to be first polarized light
  • the second sub-optical film unit is for making transmitted light
  • the second polarized light has different polarization directions of the first polarized light and the second polarized light.
  • the first polarized light and the second polarized light are both linearly polarized light, or both the first polarized light and the second polarized light are Circularly polarized light.
  • a polarization direction of the first polarized light and the second Polarization directions of polarized light are substantially perpendicular to each other, or in a case where the first polarized light and the second polarized light are circularly polarized light, a polarization direction of the first polarized light and a polarization direction of the second polarized light Opposite each other.
  • the display sub-pixel unit of the first color and the interfering sub-pixel unit of the first color are in phase with each other in the longitudinal direction or the lateral direction of the display panel adjacent.
  • the display device may further include a driving circuit connected to the sub-pixel unit, wherein the driving circuit is configured to control the display sub-pixel unit of the first color and the first The gray scale of the display of the interfering sub-pixel unit of one color.
  • the driving circuit is configured to cause display gray scale of the display sub-pixel unit of the first color and display gray of the interfering sub-pixel unit of the first color
  • the steps are complementary to each other.
  • the display gray scale of the interference sub-pixel unit of the first color has a first fixed value; or the display gray scale of the interference sub-pixel unit of the first color And a difference between the display gray levels of the interference sub-pixel units of the first color has a second fixed value.
  • At least one of the pixel units further includes at least one other color sub-pixel unit other than the first color sub-pixel unit.
  • At least one of the sub-pixel units of other colors includes a display sub-pixel unit and an interfering sub-pixel unit corresponding to a color thereof;
  • the first optical film includes Corresponding to the sub-optical film unit disposed by the display sub-pixel unit and the interfering sub-pixel unit, respectively, such that a polarization state of light passing through the display sub-pixel unit and the first optical film and via the disturber The polarization states of the light of the pixel unit and the first optical film are different from each other.
  • At least one embodiment of the present disclosure further provides a display system comprising: any one of the above display devices; glasses; wherein the glasses are configured to transmit light emitted through a display sub-pixel unit of a first color of the display panel, And blocking light emitted by the interfering sub-pixel unit of the first color of the display panel.
  • At least one embodiment of the present disclosure further provides a driving method of a display device according to any of the above, comprising: driving a display sub-pixel unit of the first color in the display panel for forming the first a display image of a color; driving the interfering sub-pixel unit of the first color in the display panel to form an interference image of the first color.
  • the display image and the interference image are complementary images.
  • At least one embodiment of the present disclosure further provides a display method of the above display system, comprising: controlling a display sub-pixel unit of the first color in the display panel for forming a display image of the first color; Interfering sub-pixel units of the first color in the display panel are used to form an interference image of the first color; blocking the interference image of the first color by the glasses and causing display of the first color The image is transmitted.
  • FIG. 1 is a schematic cross-sectional structural view of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a working principle of a display device according to an embodiment of the present disclosure
  • FIG. 2a is a schematic structural diagram of a pixel unit of an A area in a display device according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of another pixel unit of the A area in the display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another pixel unit of the A area in the display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structural view of another display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display system according to an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure provides a display device and a method of driving the same, a display system, and a display method thereof.
  • the display device includes a display panel and a first optical film on the display panel.
  • the display panel includes a plurality of pixel units including at least a display sub-pixel unit of a first color and an interfering sub-pixel unit of a first color, the first optical film including a display sub-pixel for transmitting the first color a first sub-optical film unit of light emitted by the unit and a second sub-optical film unit for transmitting light emitted by the interfering sub-pixel unit of the first color, and the first sub-optical film unit and the second sub-optical film unit are set to The polarization states of the light emitted from the first sub-optic film unit and the second sub-optic film unit are made different from each other.
  • each pixel unit includes at least a display sub-pixel unit of a first color and an interfering sub-pixel unit of a first color.
  • the display device for example, for a voyeur.
  • the display device for example, for a voyeur.
  • the content of the user can see the image that is desired to be displayed, so that the display device and the corresponding display system can function as anti-peeping; and such a design structure can prevent the viewing angle of the display device while preventing the voyeurism.
  • the display sub-pixel unit of the first color and the interfering sub-pixel unit of the first color in each pixel unit may be collectively used as a first color sub-pixel. Pixel unit.
  • the "first color” only represents the division of different color sub-pixel units in each pixel unit, and the colors of the light emitted by the sub-pixel units represented by the "first color” in different pixel units may also be different.
  • each pixel unit includes three color sub-pixel units of red, green, and blue.
  • the first color sub-pixel unit in the first pixel unit may be a red sub-pixel unit, and the first color sub-pixel in the second pixel unit.
  • the unit may be a green sub-pixel unit, the first color sub-pixel unit in the third pixel unit may be a blue sub-pixel unit, and the like.
  • the color of the first color sub-pixel unit in different pixel units is the same as an example, for example, in a pixel unit in the display panel.
  • One color sub-pixel unit represents a red sub-pixel unit as an example, and the first color sub-pixel unit in other pixel units also represents a red sub-pixel unit.
  • the light emitted by the display sub-pixel unit of the first color and the light emitted by the interfering sub-pixel unit of the first color are in two polarization states, for example, by providing light that can be filtered out of the interfering sub-pixel unit or only receiving the display sub-pixel unit.
  • the special viewing device of light (such as the glasses 300 provided in the embodiments of the present disclosure below) allows the user to normally receive the displayed image without being affected by the interfering image.
  • FIG. 1 is a schematic cross-sectional view of a display device according to an embodiment of the present disclosure, and the cross-sectional direction may be perpendicular to a direction in which the display device is located.
  • the display device includes a display panel 100 and a first optical film 200 on the display panel 100.
  • the display panel 100 includes a plurality of pixel units (not shown in FIG. 1 , referring to FIG. 2 The area A), these pixel units are arranged in an array.
  • each pixel unit includes, for example, RGB three primary color sub-pixel units, and the RGB sub-pixel units are arranged, for example, in the same row or in the same column, or arranged in a ⁇ manner.
  • Each of the pixel units includes a display sub-pixel unit 112 of a first color (eg, one of red, green, and blue) and an interfering sub-pixel unit 111 of a first color, the first optical film 200 including a first color for transmitting a first sub-optical film unit 210 that displays light emitted by the sub-pixel unit 112 and a second sub-optical film unit 220 that transmits light emitted by the interfering sub-pixel unit 111 of the first color, and the first sub-optical film unit 210 and The second sub-optical film unit 220 is disposed such that polarization states of light emitted from the first sub-optical film unit 210 and the second sub-optical film unit 220 are different from each other.
  • a display sub-pixel unit 112 of a first color eg, one of red, green, and blue
  • the first optical film 200 including a first color for transmitting a first sub-optical film unit 210 that displays light emitted by the sub-pixel unit
  • the sub-pixel unit of each color for example, the first color sub-pixel unit 110 is not limited to the display sub-pixel unit 112 including only one first color, for example.
  • a first color interfering sub-pixel unit 111 which may further include a plurality of first color display sub-pixel units 112 and a first color interfering sub-pixel unit 111.
  • the first color sub-pixel unit 110 includes an interference sub-pixel unit 111 that can emit a first color of light for displaying an interference image and a display sub-pixel unit 112 that can emit a first color of light for displaying the display image
  • the first sub-optical film unit 210 is disposed on the display sub-pixel unit 112 of the first color
  • the second sub-optical film unit 220 is disposed on the interfering sub-pixel unit 111 of the first color, so that the pixel unit can be used.
  • the lights for displaying the two images have different polarization states for achieving the technical effect of avoiding voyeurism.
  • the polarization states of the light emitted by the first sub-optical film unit 210 and the second sub-optical film unit 220 are different for achieving the technical effect of anti-peeping, but the polarization state of the light. Since the arrangement of the first optical film 200 can be variously selected, and the polarization state of the light is also variously selected, such as linear polarization or circular polarization, etc.; and the polarization directions of light between different polarization states are also different, for example, different lines.
  • the polarization directions between the polarized lights have an angle, and the polarization directions of the different circularly polarized lights are opposite to each other (ie, the directions of rotation of the left-handed circularly polarized light and the right-handed circularly polarized light are opposite to each other) and the like.
  • both the first sub-optical film unit and the second sub-optical film unit are configured such that the transmitted light is linearly polarized light, for example, a line of different polarization states transmitted by the first sub-optical film unit and the second sub-optical film unit
  • the polarization directions of the polarized light are substantially perpendicular to each other.
  • the first sub-optical film unit is arranged such that the polarization direction of the transmitted light (symbol in Figure 1) ) along the direction perpendicular to the paper.
  • the polarization states of the light emitted by the first sub-optical film unit and the second sub-optical film unit are different, for example, at least two cases may be included: the first sub-optical film unit and the second sub-optical The light emitted by the film unit is polarized light; or, the light emitted by one of the first sub-optical film unit and the second sub-optical film unit is polarized light, for example, the light emitted by the second sub-optical film unit is polarized light.
  • light emitted from the first sub-optical film unit 210 and the second sub-optical film unit 220 in the first optical film 200 has two polarization states, respectively. .
  • the first sub-optical film unit is configured to make the transmitted light be the first polarized light
  • the second sub-optical film unit is configured to make the transmitted light the second polarized light Light
  • the first polarized light and the second polarized light have different polarization directions.
  • the light emitted by the display panel is unpolarized light, that is, the light emitted from the first color sub-pixel unit 110 is unpolarized light
  • the first optical film 200 can be used as a polarizing plate to change the polarization state of the unpolarized light, for example.
  • the first sub-optical film unit 210 and the second sub-optical film unit 220 have structures having different polarization functions.
  • the first sub-optical film unit 210 is such that the transmitted light is the first polarized light
  • the second sub-optical film unit 220 is such that the transmitted light is the second polarized light
  • the polarization directions of the first polarized light and the second polarized light are different.
  • the polarization states of the light emitted by the two are different.
  • the type of the polarized light is not limited as long as the two The direction of polarization of the transmitted light is different.
  • the first polarized light is one of linearly polarized light and circularly polarized light
  • the second polarized light is the other of linearly polarized light and circularly polarized light.
  • the polarization direction of the first polarized light and the polarization direction of the second polarized light are substantially perpendicular to each other.
  • the polarization directions of the first polarized light and the second polarized light are perpendicular to each other.
  • At least one embodiment of the present disclosure is not limited to being strictly perpendicular to the polarization direction of the light transmitted through the first sub-optic film unit 210 and the polarization direction of the light transmitted through the second sub-optic film unit 220.
  • the two polarization directions may be It varies within a certain angular range (for example, 0 to 10 degrees) based on vertical (angle of 90 degrees).
  • the angle between the polarization direction of the light transmitted through the first sub-optic film unit 210 and the polarization direction of the light transmitted through the second sub-optic film unit 220 may be about 80 to 100 degrees, and further about 85 degrees. ⁇ 95 degrees.
  • the polarization direction of the first polarized light and the polarization direction of the second polarized light may be opposite to each other.
  • the user can also filter out the second polarized light through a special observation device (for example, the glasses 300 provided in the following embodiments of the present disclosure), so that the image composed of the first polarized light can be observed, so that the user can receive normally.
  • the display device has an anti-spy function by displaying an image without being affected by the interfering image.
  • the first sub-optical film unit is used to make the transmitted light unpolarized light
  • the second sub-optical film unit is used to make the transmitted light polarized.
  • FIG. 2 is a schematic diagram of the working principle of a display device according to an embodiment of the present disclosure. Illustratively, as shown in FIG. 2, the outgoing light of the first sub-optical film unit 210 is unpolarized light and the outgoing light of the second sub-optical film unit 220 is polarized light.
  • the light provided by the first color sub-pixel unit 110 is unpolarized light
  • the second sub-optical film unit 220 located on the interfering sub-pixel unit 111 of the first color is a polarization structure
  • the display sub-pixel unit is located at the first color.
  • the first sub-optical film unit 210 on 112 is a non-polarized structure.
  • the interference image formed by the light emitted from the interference sub-pixel unit 111 of the first color can interfere with the display image composed of the light emitted from the display sub-pixel unit 112 of the first color, thereby preventing voyeurism; and, for display
  • the polarization states of the light of the two images are different, so that the polarized light constituting the interference image can be removed and at least partially transmitted through the light constituting the display image by, for example, a corresponding device (for example, the glasses 300 having the polarizing plate shown in FIG. 4).
  • a corresponding device for example, the glasses 300 having the polarizing plate shown in FIG. 4
  • the first sub-optical film unit may be disposed such that the transmitted light is polarized light
  • the second sub-optical film unit may be disposed such that the transmitted light is unpolarized light.
  • the user can see through the glasses 300 that all of the polarized light passing through the first sub-optic film unit and the second sub-optical film are transmitted. Part of the light of the unit, while the glasses 300 can filter other light that passes through the second sub-optic film unit.
  • the entire polarized light transmitted through the first sub-optical film unit and the partial light transmitted through the second sub-optical film unit can be configured to form a display image.
  • the other light transmitted through the second sub-optical film unit constitutes an interference image, and thus, the display image provided by the pixel unit may also cause interference to the naked-eye user.
  • the design of the gray scales of the display sub-pixel unit and the interfering sub-pixel unit can be selected according to actual needs, and embodiments of the present disclosure are not limited herein.
  • the pixel Sub-pixel units of other colors in the unit may not be limited.
  • the light emitted by the sub-pixel units of other colors has the same polarization state (ie, does not function as, for example, anti-peeping).
  • the light of the two polarization states emitted by the first color sub-pixel unit may also cause the display image provided by the pixel unit to interfere with the naked eye user.
  • each pixel unit does not limit other structures in the pixel unit other than the first color sub-pixel unit.
  • each pixel unit further includes at least one other color sub-pixel unit other than the first color sub-pixel unit.
  • At least one of the sub-pixel units of the other color includes a display sub-pixel unit and an interfering sub-pixel unit corresponding to a color thereof;
  • the first optical film includes respectively a sub-optical film unit disposed corresponding to the display sub-pixel unit and the interfering sub-pixel unit such that a polarization state of light rays passing through the display sub-pixel unit and the first optical film and via the interference sub-pixel
  • the polarization states of the light of the unit and the second optical film are different from each other.
  • the sub-pixel units of other colors in the pixel unit have the same structure as the first color sub-pixel unit to enhance the interference capability of the interfering image provided by the entire pixel unit to the naked-eye user.
  • each pixel unit may further include a second color (eg, the other of red, green, and blue) sub-pixel units 120, and second
  • the color sub-pixel unit 120 includes a display sub-pixel unit 122 of a second color and an interfering sub-pixel unit 121 of a second color
  • the first optical film 200 further includes light for transmitting the display sub-pixel unit 122 of the second color a third sub-optical film unit 230 and a fourth sub-optical film unit 240 for transmitting light emitted by the interfering sub-pixel unit 121 of the second color
  • the third sub-optical film unit 230 and the fourth sub-optical film unit 240 are disposed
  • the polarization states of the light emitted from the third sub-optic film unit 230 and the fourth sub-optic film unit 240 are made different from each other.
  • each pixel unit may further include a third color (eg, another one of red, green, and blue) sub-pixel unit 130, and a third
  • the color sub-pixel unit 130 includes a display sub-pixel unit 132 of a third color and an interfering sub-pixel unit 131 of a third color; the first optical film 200 further includes light for transmitting the display sub-pixel unit 132 of the third color.
  • a display sub-pixel unit of a first color, a display sub-pixel unit of a second color, or a display of a third color is represented by a display sub-pixel unit. a pixel unit; an interfering sub-pixel unit of a first color, an interfering sub-pixel unit of a second color, and an interfering sub-pixel unit of a third color in an interfering sub-pixel unit.
  • each pixel unit may be, for example, three colors.
  • Sub-pixel units of are respectively a first color sub-pixel unit 110, a second color sub-pixel unit 120, and a third color sub-pixel unit 130, and each color sub-pixel unit includes one
  • the display sub-pixel unit and one interference sub-pixel unit for example, the first color sub-pixel unit 110 includes an interference sub-pixel unit 111 of a first color and a display sub-pixel unit 112 of a first color.
  • the display sub-pixel unit and the interfering sub-pixel unit in one of the color sub-pixel units of the pixel unit may be adjacently disposed, for example,
  • the display sub-pixel unit of the first color and the interfering sub-pixel unit of the first color may be in a longitudinal direction on the display panel (for example, a direction parallel to the plane of the display panel and perpendicular to the plane of the paper shown in FIG. 2) or a lateral direction ( For example, shown in FIG.
  • the interference sub-pixel unit may not be limited to the adjacent arrangement as long as the sub-pixel unit of the same color includes the corresponding display sub-pixel unit and the interference sub-pixel unit, and since the size of the display unit is small, even if the sub-pixel unit and the interference are displayed
  • the sub-pixel units are not adjacently arranged, and the display effect may not be affected, and the anti-spy function of the display device is not affected.
  • FIG. 2a is a schematic structural diagram of a pixel unit of an A area in a display device according to an embodiment of the present disclosure.
  • the arrangement direction of the first color sub-pixel unit 110, the second color sub-pixel unit 120, and the third color sub-pixel unit 130 is taken as a horizontal direction.
  • the display sub-pixel unit and the interfering sub-pixel unit in each color sub-pixel unit may be, for example, laterally arranged, for example, the display sub-pixel unit 112 of the first color and the interfering sub-pixel of the first color in the first color sub-pixel unit 110
  • the arrangement direction of the cells 111 is laterally adjacent.
  • the specific arrangement of different color sub-pixel units in each pixel unit is not limited.
  • FIG. 2b is a schematic structural diagram of another pixel unit of the A area in the display device provided by the embodiment of the present disclosure.
  • the arrangement direction of the first color sub-pixel unit 110, the second color sub-pixel unit 120, and the third color sub-pixel unit 130 is taken as a horizontal direction.
  • the display sub-pixel unit and the interfering sub-pixel unit in each color sub-pixel unit may be longitudinally arranged, for example, the display sub-pixel unit 112 of the first color and the interfering sub-pixel of the first color in the first color sub-pixel unit 110
  • the arrangement direction of the cells 111 is vertically adjacent.
  • FIG. 2c is a schematic structural diagram of another pixel unit of the A area in the display device provided by the embodiment of the present disclosure.
  • the arrangement direction of the first color sub-pixel unit 110, the second color sub-pixel unit 120, and the third color sub-pixel unit 130 in the embodiment shown in FIG. 2b is, for example, a lateral direction.
  • the display sub-pixel unit and the interfering sub-pixel unit in each color sub-pixel unit in the pixel unit may be, for example, non-adjacently arranged.
  • the display device may further include a driving circuit (eg, an integrated circuit chip or the like) connected to the sub-pixel unit, and the driving circuit may be configured to control each color sub-pixel unit in the pixel unit.
  • the gray scale is displayed, for example, the driving circuit is configured to control the display gray scale of the display sub-pixel unit of the first color and the interfering sub-pixel unit of the first color.
  • the number of gray scales can be controlled according to requirements. For example, for a 16-bit system, a total of 128 gray scales from 0 to 127 can be used. For a 32-bit system, a total of 256 gray scales from 0 to 255 can be used, for example, displays in each color.
  • the display gray levels in the pixel unit and the interfering sub-pixel unit may be complementary to each other, whereby the display image and the interference image are complementary images.
  • the complement may be a fixed value of the display gray scales in the display sub-pixel unit and the interfering sub-pixel unit.
  • the setting may be 256 levels (ie, 0 to 255), for example, the gray level of the first color display sub-pixel unit is 56 and the gray level of the first color interference sub-pixel unit is 200, and the first color display sub-pixel
  • the average gray level of the first color light emitted by both the unit and the first color interfering sub-pixel unit is 128, and the second color displays the average of the second color light emitted by both the sub-pixel unit and the second color interfering sub-pixel unit.
  • the gray scale is 128, and the average gray scale of the third color light emitted by the third color display sub-pixel unit and the third color interference sub-pixel unit is 128, and the first to third colors provided by each pixel unit as a whole
  • white light is generated, that is, the entire display surface of the display device is displayed in white (complementary image), and the voyeur cannot obtain any information, but the user can receive only the first to third colors in each pixel unit through the corresponding device.
  • the light emitted by the sub-pixel unit can normally view the image that is actually desired to be displayed, thereby providing a technical effect against sneak.
  • the gray scales of the light emitted by the interfering sub-pixel unit and the display sub-pixel unit in each pixel unit do not need to be complementary to each other in order to cause the display image and the interference image to be mixed. Interference can be achieved as long as it can be reached so that the displayed image cannot be effectively recognized by the naked eye.
  • the display gray level of the interfering sub-pixel unit of the first color has a first fixed value; or the display gray level of the interfering sub-pixel unit of the first color and the interfering sub-pixel of the first color
  • the difference in the gray scale of the display of the unit has a second fixed value.
  • the grayscale of the interference sub-pixel unit of the first color in the pixel unit may be selected as a first fixed value, for example, the first fixed value may be selected to be 100; or
  • the gray level of the interfering sub-pixel unit may be equal to the gray level of the display sub-pixel unit plus (or minus) a second fixed value, for example, the second fixed value may be 50, and when the value obtained by adding 50 is greater than 255 Then, the value of 255 can be further subtracted as the gray scale of the interference sub-pixel unit.
  • the design of the display gray scale of the interference sub-pixels of the other colors in the pixel unit may refer to the design manner of the interference sub-pixel unit of the first color, and the embodiments of the present disclosure are not described herein.
  • the technical solution can be applied to a variety of display panels.
  • an example of the display panel is a liquid crystal display panel including an array substrate and a counter substrate which are opposed to each other to form a liquid crystal cell in which a liquid crystal material is filled.
  • the opposite substrate is, for example, a color film substrate.
  • the pixel electrode of each pixel unit of the array substrate is used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the liquid crystal display panel includes a first polarizer on one side of the array substrate and a second polarizer on a side of the opposite substrate.
  • polarization directions of the first polarizer and the second polarizer are substantially perpendicular to each other, and the first polarizer
  • the sheet and the second polarizer are combined with the liquid crystal layer to realize display, whereby the light emitted from the opposite substrate is linearly polarized light, and the linearly polarized light has the same polarization direction as that of the second polarizer.
  • the first optical film is disposed on the opposite substrate of the liquid crystal display device on the outer side (ie, the display side) of the second polarizer, and the first optical film corresponds to each display.
  • the portion of the sub-pixel unit does not have optical rotation, and the portion corresponding to each of the interfering sub-pixel units has optical rotation, and the polarization direction of the polarized light emitted therefrom can be further rotated by 90 degrees; for example, the first optical film can pass
  • the liquid crystal cell comprises two transparent substrates and a liquid crystal layer sandwiched between the two transparent substrates, and transparent electrodes are respectively disposed on the two transparent substrates on the portions where the optical rotation is required, the transparent electrodes
  • a driving voltage may be applied to deflect liquid crystal molecules in the liquid crystal layer to rotate the polarization direction of light transmitted through the liquid crystal layer.
  • the display panel is an organic light emitting diode (OLED) display device in which a stack of organic light emitting materials is formed on the array substrate, and a pixel electrode of each pixel unit is used as an anode or a cathode for driving the organic light emitting material to emit light.
  • OLED organic light emitting diode
  • the light emitted by the OLED display device is natural light.
  • the first optical film is located, for example, on the exit side of the OLED display device, and the first optical film corresponds to a portion of each display sub-pixel unit such that the light is emitted.
  • the light has a first polarization direction
  • the portion corresponding to each of the interfering sub-pixel units causes the emitted light to have a second polarization direction, the first polarization direction and the second polarization direction being substantially perpendicular to each other.
  • the first optical film may also be realized by a liquid crystal cell including two transparent substrates and a liquid crystal layer sandwiched between the two transparent substrates, and a polarizing plate is disposed on the light incident side of the liquid crystal cell. .
  • a transparent electrode is disposed on the two transparent substrates at a portion where optical rotation is required, and a driving voltage can be applied to the transparent electrode to deflect liquid crystal molecules in the liquid crystal layer, thereby rotating the polarization direction of the light transmitted through the liquid crystal layer.
  • the display panel is an electronic paper display device, wherein the array substrate included in the display panel is formed with an electronic ink layer, and the pixel electrode of each pixel unit serves as a charged micro in the application of driving electronic ink.
  • the voltage at which the particles move to perform the display operation is usually, the light emitted from the electronic paper display device is natural light, and the first optical film can also be realized by the above liquid crystal cell.
  • At least one embodiment of the present disclosure provides a display system including the display device and glasses described above; the glasses are configured to allow light emitted by a display sub-pixel of a first color in the display device to pass, but not allowed Light emitted by the interfering sub-pixels of the first color of the display device passes.
  • a second optical film may be disposed on the lens, and the second optical film may be, for example, a polarizing plate, and the polarization structure thereof may be different from the polarization structure of the first sub-optical film unit disposed on the display sub-pixel unit of the first color. Same or similar.
  • the configuration relationship between the polarization structure of the glasses and the first color sub-pixel unit can also be applied to the second color sub-pixel unit and the third color sub-pixel unit.
  • FIG. 3 is a schematic cross-sectional structural view of another display device according to an embodiment of the present disclosure, wherein an odd number Listed as interfering sub-pixel units, the direction of polarization of the light emerging from it is parallel to the paper surface (using Indicates that the even number is displayed as a sub-pixel unit, and the polarization direction of the light emitted therefrom is perpendicular to the paper surface. Express). For example, as shown in FIG.
  • the display sub-pixel unit of the display device and the light emitted by the interfering sub-pixel unit and transmitted through the first optical film 200 enter the eyes of the user. Since the light includes the interference image displayed by the interference sub-pixel unit to display the interference image and the display image displayed by the display sub-pixel unit, the interference image and the display image simultaneously enter the human eye so that the display image cannot be distinguished, thereby It can be used to prevent peeks from people who are not wearing glasses.
  • FIG. 4 is a schematic structural diagram of a display system according to an embodiment of the present disclosure.
  • the polarization state of the light emitted in the interfering sub-pixel unit transmitted through the first optical film 200 in the display device does not match the polarization structure of the glasses, so that it is blocked by the glasses 300, and this portion of the light is blocked.
  • the formed interference image does not enter the human eye 400; and the polarization state of the light emitted by the display sub-pixel unit transmitted by the first optical film 200 matches the polarization structure of the glasses, so the portion of the light is formed
  • the display image can be normally received by the human eye 400.
  • the first color sub-pixel unit is taken as an example, wherein the first sub-optical film is set from the first sub-optical film.
  • the light emitted from the unit is the first polarized light
  • the light emitted from the second sub-optical film unit is the second polarized light
  • the polarization states of the first polarized light and the second polarized light are different.
  • the first polarized light and the second polarized light are linearly polarized light.
  • the first polarized light is formed by transmitting the light emitted by the display sub-pixel unit 112 of the first color through the first sub-optical film unit 210, the first polarized light is used to constitute a display image; and the second polarized light is an interference sub-pixel of the first color.
  • the light emitted by the unit 111 is transmitted through the second sub-optic film unit 220, and the second polarized light is used to constitute an interference image.
  • the polarization direction of the polarization structure of the glasses 300 matches the polarization direction of the first polarized light, and the first polarized light can pass through the glasses 300 to display a display image to the eye 400, and the second polarized light cannot pass through the glasses 300.
  • the user wearing the glasses 300 can see the display image composed of the first polarized light without seeing the interference image composed of the second polarized light, so the user wearing the glasses 300 is not affected by the interference image. Accordingly, the user who does not wear the glasses 300 can see the interference image, so that the display image cannot be distinguished, so that the display device has an anti-spy effect.
  • the second optical film on the corresponding glasses has a polarizing plate, and the polarization direction of the light transmitted through the polarizing plate and the polarization direction of the linearly polarized light emitted from the interfering sub-pixel unit of the display device are substantially mutually Vertically, the light emitted from the interfering sub-pixel unit will be filtered, and the portion of the unpolarized light emitted by the display sub-pixel unit of the display device that is the same as the polarization direction of the polarizer can be transmitted for viewing by the user.
  • the polarization structures of the first sub-optical film unit and the second sub-optical film unit may be such that the polarization direction of the transmitted first polarized light is different from the polarization direction of the second polarized light, preferably such that the polarization direction of the first polarized light is perpendicular to The polarization direction of the second polarized light.
  • the polarization structure on the glasses allows the polarization direction of the transmitted light to be exactly the same as the polarization direction of the first polarized light, the first polarized light will pass through the glasses and the second polarized light. It will be completely blocked by the glasses, which will improve the display and anti-peep effect of the display system.
  • the first polarized light and the second polarized light may be circularly polarized light, for example, by using the first optical film layer to further include a quarter wave plate for linearly polarized light. It is converted into circularly polarized light to realize that the first polarized light and the second polarized light are circularly polarized light.
  • the structures of the first sub-optical film unit and the second sub-optical film unit are such that the polarization direction of the transmitted first polarized light is opposite to the polarization direction of the second polarized light (ie, the direction of rotation is opposite), and the glasses
  • the upper polarization structure may also include a quarter wave plate to convert the incident circularly polarized light into linearly polarized light, and then pass through a linear polarizing plate (transmitting light is a linearly polarized polarizing plate) so that the display image can be The user sees and the interference image is not seen by the user.
  • the first polarized light will pass through the glasses and the second polarized light will be completely blocked by the glasses, so that the display and the anti-peep effect of the display system can also be improved.
  • At least one embodiment of the present disclosure provides a driving method of a display device according to any of the foregoing embodiments, the method comprising: driving a display sub-pixel unit of a first color in a display panel for displaying a display image of a first color Driving an interference sub-pixel unit of a first color in the display panel for displaying an interference image of the first color.
  • the driving of the sub-pixel units of other colors in the pixel unit for example, the display sub-pixel unit and the interfering sub-pixel unit in the second color sub-pixel unit and the third color sub-pixel unit may also be consistent with the driving method of the first color sub-pixel unit .
  • the specific structure of the display device in the driving method in at least one embodiment of the present disclosure may refer to related content in the foregoing embodiment (with respect to the embodiment of the display device), and the embodiments of the present disclosure are not described herein again.
  • each color sub-pixel can be driven by a driving circuit connected to the sub-pixel unit.
  • the driving circuit may drive a display sub-pixel unit of a first color in the display panel for forming a display image of the first color and driving the interfering sub-pixel unit of the first color in the display panel for forming the first color Interference image.
  • the display gray level of the display image of the first color and the interference image of the first color may be controlled by controlling, for example, a data voltage of the driving circuit, for example, the display image of the first color and the interference image of the first color are complementary images, The interference effect of the interference image of the first color on the color display image of the first color is achieved.
  • the display grayscale of the first color formed by the display sub-pixel unit of the first color and the interference color of the first color formed by the interfering sub-pixel unit of the first color may be controlled. So that the display image of the first color and the interference image of the first color are complementary to each other, and the display gray scale between the respective display image and the interference image in the second color sub-pixel unit and the third color sub-pixel unit is also controlled. Correspondingly complementary, all the images obtained by superimposing the interference image and the display image are displayed in white, that is, the display device is displayed as a white screen, which can play an anti-peeping effect.
  • At least one embodiment of the present disclosure further provides a display method of the display system in the above embodiment, the method may include the steps of: controlling a display sub-pixel unit of a first color in the display panel to display a display image of the first color;
  • the interference sub-pixel unit of the first color in the display panel is controlled to display an interference image of the first color; the interference image of the first color is blocked by the glasses and the display image of the first color is transmitted.
  • the method is also applicable to sub-pixel units of other colors in the pixel unit, that is, the glasses can display the display image displayed by the display sub-pixel unit of each color sub-pixel unit in the pixel unit and block the interference of each color sub-pixel unit in the pixel unit.
  • the interference image displayed by the sub-pixel unit Thereby, while the mixed image composed of the interference image and the display image interferes with the voyeur, the user wearing the dedicated device (for example, the glasses 300 in the above embodiment) can normally view the display image.
  • At least one embodiment of the present disclosure provides a display device and a driving method thereof, a display system, and a display method thereof, and may have at least one of the following beneficial effects:
  • At least one embodiment of the present disclosure provides a display device that can simultaneously display display images and interference images composed of light of different polarization states to interfere with a voyeur, thereby preventing voyeurism and preventing voyeurism. Limited by perspective.
  • the display device may select that the display sub-pixel unit in the pixel unit has a complementary relationship with the gray scale of the interfering sub-pixel unit, for example, to form an interference with the display image.
  • At least one embodiment of the present disclosure provides a display system including dedicated glasses that, in cooperation with the display device of any of the foregoing embodiments, allows a user to receive a display image without being affected by an interference image. And does not limit the user's viewing angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种显示装置及其驱动方法、显示系统及其显示方法。该显示装置包括显示面板(100),该显示面板(100)包括多个像素单元并且其上设置有第一光学膜片(200);至少一个像素单元包括第一颜色子像素单元(110),第一颜色子像素单元(110)包括至少第一颜色的显示子像素单元(112)和第一颜色的干扰子像素单元(111),第一光学膜片(200)包括用于透射第一颜色的显示子像素单元(112)发出的光的第一子光学膜单元(210)和用于透射第一颜色的干扰子像素单元(111)发出的光的第二子光学膜单元(220),从第一子光学膜单元(210)和第二子光学膜单元(220)发出的光的偏振状态彼此不同。该显示装置可同时得到显示图像和干扰图像,在具有防偷窥作用的同时不会限制视角。

Description

显示装置及其驱动方法、显示系统及其显示方法
本申请要求于2017年2月22日递交的中国专利申请第201710095416.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例提供一种显示装置及其驱动方法、显示系统及其显示方法。
背景技术
随着显示器的大尺寸化及其视角的拓展,如何防止显示器被偷窥造成的信息的丢失已经越来越受到消费者的关注。当前的显示器防偷窥技术基本上都是遵从将视角做小,从而使得一定视角范围内的人无法看到显示的信息的方式,但是减小视角的同时也会使用户在正常观看时受到一定的限制,而且在一定的视角范围内仍然无法实现防偷窥的效果,因此这种的防偷窥技术仍无法实现真正意义上的防偷窥保密效用,尚不能全面满足消费者的使用需求。
发明内容
本公开至少一实施例提供一种显示装置,包括:显示面板,包括多个像素单元;位于所述显示面板上的第一光学膜片;其中,至少一个所述像素单元包括第一颜色子像素单元,所述第一颜色子像素单元包括至少第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元,所述第一光学膜片包括用于透射所述第一颜色的显示子像素单元发出的光的第一子光学膜单元和用于透射所述第一颜色的干扰子像素单元发出的光的第二子光学膜单元,并且所述第一子光学膜单元和所述第二子光学膜单元设置为使得从所述第一子光学膜单元和所述第二子光学膜单元发出的光的偏振状态彼此不同。
例如,在本公开至少一个实施例提供的显示装置中,所述第一子光学 膜单元用于使得透过光为非偏振光,并且所述第二子光学膜单元用于使得透过光为偏振光。
例如,在本公开至少一个实施例提供的显示装置中,所述第二子光学膜单元用于使得透过光为线偏振光。
例如,在本公开至少一个实施例提供的显示装置中,所述第一子光学膜单元用于使得透过光为第一偏振光,并且所述第二子光学膜单元用于使得透过光为第二偏振光,所述第一偏振光和所述第二偏振光的偏振方向不同。
例如,在本公开至少一个实施例提供的显示装置中,所述第一偏振光和所述第二偏振光都为线偏振光,或者所述第一偏振光和所述第二偏振光都为圆偏振光。
例如,在本公开至少一个实施例提供的显示装置中,在所述第一偏振光和所述第二偏振光为线偏振光的情况,所述第一偏振光的偏振方向和所述第二偏振光的偏振方向彼此基本垂直,或者在所述第一偏振光和所述第二偏振光为圆偏振光的情况,所述第一偏振光的偏振方向和所述第二偏振光的偏振方向彼此相反。
例如,在本公开至少一个实施例提供的显示装置中,所述第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元在所述显示面板的纵向方向或横向方向上彼此相邻。
例如,本公开至少一个实施例提供的显示装置,还可以包括与所述子像素单元连接的驱动电路,其中,所述驱动电路配置为控制所述第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元的显示灰阶。
例如,在本公开至少一个实施例提供的显示装置中,所述驱动电路配置为使得所述第一颜色的显示子像素单元的显示灰阶和所述第一颜色的干扰子像素单元的显示灰阶彼此互补。
例如,在本公开至少一个实施例提供的显示装置中,所述第一颜色的干扰子像素单元的显示灰阶具有第一固定值;或者所述第一颜色的干扰子像素单元的显示灰阶和所述第一颜色的干扰子像素单元的显示灰阶之差具有第二固定值。
例如,在本公开至少一个实施例提供的显示装置中,至少一个所述像素单元还包括除所述第一颜色子像素单元之外的至少一个其它颜色的子像 素单元。
例如,在本公开至少一个实施例提供的显示装置中,所述其它颜色的子像素单元中的至少一个包括对应其颜色的显示子像素单元和干扰子像素单元;所述第一光学膜片包括分别对应于所述显示子像素单元和所述干扰子像素单元设置的子光学膜单元以使得经由所述显示子像素单元和所述第一光学膜片的光线的偏振状态和经由所述干扰子像素单元和所述第一光学膜片的光线的偏振状态彼此不同。
本公开至少一实施例还提供一种显示系统,包括:上述任一的显示装置;眼镜;其中,所述眼镜配置为透过所述显示面板的第一颜色的显示子像素单元发射的光,并且阻挡所述显示面板的第一颜色的干扰子像素单元发射的光。
本公开至少一实施例还提供一种根据上述任一所述的显示装置的驱动方法,包括:驱动所述显示面板中的所述第一颜色的显示子像素单元以用于形成所述第一颜色的显示图像;驱动所述显示面板中的所述第一颜色的干扰子像素单元以用于形成所述第一颜色的干扰图像。
例如,在本公开至少一个实施例提供的驱动方法中,所述显示图像和所述干扰图像为互补图像。
本公开至少一实施例还提供上述的显示系统的显示方法,包括:控制所述显示面板中的所述第一颜色的显示子像素单元以用于形成所述第一颜色的显示图像;控制所述显示面板中的所述第一颜色的干扰子像素单元以用于形成所述第一颜色的干扰图像;通过所述眼镜阻挡所述第一颜色的干扰图像并使得所述第一颜色的显示图像透过。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的一种显示装置的横截面结构示意图;
图2为本公开一个实施例提供的一种显示装置的工作原理示意图;
图2a为图2所示本公开一个实施例提供的显示装置中A区域的一种像素单元的结构示意图;
图2b为图2所示本公开一个实施例提供的显示装置中A区域的另一种像素单元的结构示意图;
图2c为图2所示本公开一个实施例提供的显示装置中A区域的另一种像素单元的结构示意图;
图3为本公开一个实施例提供的另一种显示装置的横截面结构示意图;以及
图4为本公开一个实施例提供的一种显示系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开的至少一个实施例提供了一种显示装置及其驱动方法、显示系统及其显示方法。该显示装置包括显示面板以及位于该显示面板上的第一光学膜片。该显示面板包括多个像素单元,至少一个像素单元包括至少第一颜色的显示子像素单元和第一颜色的干扰子像素单元,该第一光学膜片包括用于透射第一颜色的显示子像素单元发出的光的第一子光学膜单元和用于透射第一颜色的干扰子像素单元发出的光的第二子光学膜单元,并且第一子光学膜单元和第二子光学膜单元设置为使得从第一子光学膜单元和第二子光学膜单元发出的光的偏振状态彼此不同。下面,以每个像素单元 包括至少第一颜色的显示子像素单元和第一颜色的干扰子像素单元为例进行说明。在显示面板的每个像素单元的位置,第一颜色的显示子像素单元发出的光和第一颜色的干扰子像素单元发出的光同时由该显示装置提供给用户,例如对于偷窥者而言,在裸眼状态下因同时接受两种光而无法分辨由第一颜色的显示子像素单元提供的内容(希望显示的图像),而使用者则可以通过仅接受由第一颜色的显示子像素单元提供的内容而看到希望显示的图像,从而该显示装置以及相应的显示系统可以起到防偷窥的作用;而且此种设计结构,在起到防止偷窥作用的同时可以不限制显示装置的视角。
需要说明的是,在本公开至少一个实施例提供的显示装置中,可以将每个像素单元中的第一颜色的显示子像素单元和第一颜色的干扰子像素单元总体作为一个第一颜色子像素单元。而且“第一颜色”仅代表对每个像素单元中的不同颜色子像素单元的划分,在不同像素单元中“第一颜色”所代表的子像素单元所发出的光的颜色也可以不同。以每个像素单元包括红、绿、蓝三种颜色子像素单元为例,第一像素单元中的第一颜色子像素单元可以为红色子像素单元,第二像素单元中的第一颜色子像素单元可以为绿色子像素单元,第三像素单元中的第一颜色子像素单元可以为蓝色子像素单元,等等。
为便于对本公开技术方案进行说明,在本公开至少一个实施例中,以不同像素单元中的第一颜色子像素单元的颜色相同为例进行说明,例如以显示面板中的一个像素单元中的第一颜色子像素单元代表红色子像素单元为例,其它像素单元中的第一颜色子像素单元也都代表红色子像素单元。
第一颜色的显示子像素单元发出的光和第一颜色的干扰子像素单元发出的光为两种偏振状态,例如通过配备可以过滤掉干扰子像素单元提供的光或者只接收显示子像素单元提供的光的特殊观察装置(例如本公开下述实施例中提供的眼镜300),可使得用户可以正常接收显示图像而不受干扰图像的影响。
本公开至少一个实施例提供了一种显示装置,图1为本公开一个实施例提供的一种显示装置的横截面结构示意图,该横截面的方向可以为垂直于显示装置所在面的方向。例如,如图1所示,该显示装置包括显示面板100和位于显示面板100上的第一光学膜片200,显示面板100中包括多个像素单元(图1中未示出,参考图2中的区域A),这些像素单元按照阵列 排布,为了实现显示,每个像素单元例如包括RGB三原色子像素单元,RGB子像素单元例如排列在同一行或同一列中,或者按照Δ方式排列等。
每个像素单元包括第一颜色(例如红色、绿色和蓝色之一)的显示子像素单元112和第一颜色的干扰子像素单元111,第一光学膜片200包括用于透射第一颜色的显示子像素单元112发出的光的第一子光学膜单元210和用于透射第一颜色的干扰子像素单元111发出的光的第二子光学膜单元220,并且第一子光学膜单元210和第二子光学膜单元220设置为使得从第一子光学膜单元210和第二子光学膜单元220发出的光的偏振状态彼此不同。
例如,在如图1所示的实施例中,在每个像素单元中,每种颜色的子像素单元例如第一颜色子像素单元110不限于只包括例如一个第一颜色的显示子像素单元112和一个第一颜色的干扰子像素单元111,还可以包括多个第一颜色的显示子像素单元112和第一颜色的干扰子像素单元111。只要第一颜色子像素单元110中包括可以发射用于显示干扰图像的光的第一颜色的干扰子像素单元111和可以发射用于显示显示图像的光的第一颜色的显示子像素单元112,而且第一颜色的显示子像素单元112上对应设置有第一子光学膜单元210并且第一颜色的干扰子像素单元111上对应设置有第二子光学膜单元220,即可使得像素单元可以用于形成显示图像和干扰图像,用于显示该两种图像的光具有不同的偏振状态以用于实现避免偷窥的技术效果。
需要说明的是,在本公开至少一个实施例中,第一子光学膜单元210和第二子光学膜单元220出射的光的偏振状态不同用于实现防偷窥的技术效果,但是光的偏振状态因第一光学膜片200的设置可以有多种选择,并且光的偏振状态也有多种选择例如线偏振或圆偏振等;而且不同偏振状态之间的光的偏振方向也有所不同,例如不同线偏振光之间的偏振方向存在夹角,不同圆偏振光的偏振方向之间彼此相反(即左旋圆偏振光与右旋圆偏振光的旋向彼此相反)等。
为便于对本公开的内容进行说明,选取其中的一种情况对下述的实施例进行说明。例如,第一子光学膜单元和第二子光学膜单元都配置为使得透过光为线偏振光,例如,第一子光学膜单元和第二子光学膜单元透过的不同偏振状态的线偏振光的偏振方向相互基本垂直。以如图1所示的显示 装置的横截面为参考,即例如透过第一光学膜片的光为线偏振光,且第二子光学膜单元设置为使得透过光线的偏振方向(图1中的符号
Figure PCTCN2017117404-appb-000001
)沿着平行于纸面方向,第一子光学膜单元设置为使得透过光线的偏振方向(图1中的符号
Figure PCTCN2017117404-appb-000002
)沿着垂直于纸面方向。
在本公开至少一个实施例中,第一子光学膜单元和第二子光学膜单元出射的光的偏振状态不同,例如至少可以包括以下两种情况:第一子光学膜单元和第二子光学膜单元出射的光都为偏振光;或者,第一子光学膜单元和第二子光学膜单元其中之一出射的光为偏振光,例如第二子光学膜单元出射的光为偏振光。
例如,在本公开至少一个实施例中,例如图1所示,第一光学膜片200中的第一子光学膜单元210和第二子光学膜单元220中出射的光分别具有两种偏振状态。
例如,在本公开至少一个实施例提供的显示装置中,第一子光学膜单元用于使得透过光为第一偏振光,并且第二子光学膜单元用于使得透过光为第二偏振光,第一偏振光和第二偏振光的偏振方向不同。例如,显示面板所发出的光为非偏振光,即第一颜色子像素单元110中出射的光为非偏振光,第一光学膜片200例如可以作为偏振片,改变非偏振光的偏振状态,其中例如第一子光学膜单元210和第二子光学膜单元220具有不同偏振功能的结构。例如,第一子光学膜单元210使得透过光为第一偏振光,第二子光学膜单元220使得透过光为第二偏振光,第一偏振光和第二偏振光的偏振方向不同,从而使得两者出射的光的偏振状态不同。
在本公开至少一个实施例中,在第一子光学膜单元210和第二子光学膜单元220使得透过光都为偏振光的情况下,对该偏振光的类型不做限制,只要两者透过光的偏振方向不同即可。例如,在本公开至少一个实施例中,第一偏振光为线偏振光和圆偏振光中的一种,第二偏振光为线偏振光和圆偏振光中的另一种。
例如,在本公开至少一个实施例中,在第一偏振光和第二偏振光都为线偏振光的情况,第一偏振光的偏振方向和第二偏振光的偏振方向彼此基本垂直。例如,第一偏振光和第二偏振光的偏振方向彼此垂直。本公开至少一个实施例对透过第一子光学膜单元210的光线的偏振方向和透过第二子光学膜单元220的光线的偏振方向之间不限于为严格垂直,上述两个偏 振方向可以在以垂直(夹角为90度)为基准的一定角度范围(例如0~10度)内变化。例如,透过第一子光学膜单元210的光线的偏振方向和透过第二子光学膜单元220的光线的偏振方向之间的夹角可以约为80度~100度,进一步约为85度~95度。
例如,在本公开至少一个实施例中,在第一偏振光和第二偏振光为圆偏振光的情况,第一偏振光的偏振方向和第二偏振光的偏振方向可以彼此相反。如此,用户通过特殊观察装置(例如本公开下述实施例中提供的眼镜300),也可以过滤掉第二偏振光,从而可以观察由第一偏振光构成的图像,即可使得用户可以正常接收显示图像而不受干扰图像的影响,显示装置具有防窥功能。
例如,在本公开至少一个实施例中,第一子光学膜单元用于使得透过光为非偏振光,并且第二子光学膜单元用于使得透过光为偏振光。图2为本公开一个实施例提供的一种显示装置的工作原理示意图。示例性的,如图2所示,以第一子光学膜单元210的出射光线为非偏振光而第二子光学膜单元220的出射光线为偏振光进行说明。例如,第一颜色子像素单元110提供的光线为非偏振光,而位于第一颜色的干扰子像素单元111上的第二子光学膜单元220为偏振结构,位于第一颜色的显示子像素单元112上的第一子光学膜单元210为非偏振结构。由此,第一颜色的干扰子像素单元111出射的光构成的干扰图像可以对第一颜色的显示子像素单元112出射的光构成的显示图像进行干扰,从而防止偷窥;而且,由于用于显示两种图像的光的偏振状态不同,所以可以通过例如相应的设备(例如图4所示的具有偏振片的眼镜300)将构成干扰图像的偏振光去除并至少部分地透过构成显示图像的光,从而可以向用户提供正常的显示图像。
需要说明的是,在本公开至少一个实施例中,第一子光学膜单元可以设置为使得透过光为偏振光,并且第二子光学膜单元可以设置为使得透过光为非偏振光。以配备有相应的设备(例如图4所示的具有偏振片的眼镜300)为例,用户通过眼镜300可以看到透过第一子光学膜单元的全部偏振光和透过第二子光学膜单元的部分光,同时,眼镜300可以过滤透过第二子光学膜单元的其它光。例如,通过对显示子像素单元和干扰子像素单元的灰阶的设计,可以使得透过第一子光学膜单元的全部偏振光和透过第二子光学膜单元的部分光共同构成显示图像,而透过第二子光学膜单元的其 它光构成干扰图像,如此,也可以使得像素单元提供的显示图像对裸眼用户产生干扰。对显示子像素单元和干扰子像素单元的灰阶的设计可以根据实际需求进行选择,本公开的实施例在此不做限制。
需要说明的是,在本公开至少一个实施例中,只要每个像素单元中的一种颜色的子像素单元中包括有对应其颜色的显示子像素单元和干扰子像素单元即可,而该像素单元中其它颜色的子像素单元可以不受限定。以像素单元中包含有上述实施例中的第一颜色子像素单元110为例,在其它颜色的子像素单元发出的光具有相同的偏振状态(即不会起到例如防偷窥的作用)的情况下,第一颜色子像素单元发出的两种偏振状态的光,也可以使得像素单元提供的显示图像对裸眼用户产生干扰。
本公开的至少一个实施例对像素单元中除第一颜色子像素单元之外的其它结构不做限制。例如,在本公开至少一个实施例中,每个像素单元还包括除第一颜色子像素单元之外的至少一个其它颜色的子像素单元。例如,在本公开所提供的至少一个实施例中,所述其他颜色的子像素单元中的至少一个包括对应其颜色的显示子像素单元和干扰子像素单元;所述第一光学膜片包括分别对应于所述显示子像素单元和所述干扰子像素单元设置的子光学膜单元以使得经由所述显示子像素单元和所述第一光学膜片的光线的偏振状态和经由所述干扰子像素单元和所述第二光学膜片的光线的偏振状态彼此不同。例如,像素单元中的其它颜色的子像素单元具有与第一颜色子像素单元同样的结构,以提升整个像素单元提供的干扰图像对裸眼用户的干扰能力。
例如,在本公开至少一个实施例中,如图1和图2所示,每个像素单元还可以进一步包括第二颜色(例如红色、绿色和蓝色中另一个)子像素单元120,第二颜色子像素单元120包括第二颜色的显示子像素单元122和第二颜色的干扰子像素单元121;第一光学膜片200还包括用于透射第二颜色的显示子像素单元发122出的光的第三子光学膜单元230和用于透射第二颜色的干扰子像素单元121发出的光的第四子光学膜单元240,并且第三子光学膜单元230和第四子光学膜单元240设置为使得从第三子光学膜单元230和第四子光学膜单元240发出的光的偏振状态彼此不同。
例如,在本公开至少一个实施例中,如图1和图2所示,每个像素单元还可以包括第三颜色(例如红色、绿色和蓝色中再另一个)子像素单元 130,第三颜色子像素单元130包括第三颜色的显示子像素单元132和第三颜色的干扰子像素单元131;第一光学膜片200还包括用于透射第三颜色的显示子像素单元132发出的光的第五子光学膜单元250和用于透射第三颜色的干扰子像素单元131发出的光的第六子光学膜单元260,并且第五子光学膜单元250和第六子光学膜单元260设置为使得从第五子光学膜单元250和第六子光学膜单元260发出的光的偏振状态彼此不同。
需要说明的是,第一颜色子像素单元、第二颜色子像素单元和第三颜色子像素单元上的第一光学膜片的结构是可以相同的,例如各颜色显示子像素单元上的子光学膜单元的偏振结构可以相同,各颜色干扰子像素单元上的子光学膜单元的偏振结构可以相同。为便于对本公开的技术方案进行解释,在本公开中的一些实施例中,以显示子像素单元表示第一颜色的显示子像素单元、第二颜色的显示子像素单元或第三颜色的显示子像素单元;以干扰子像素单元表示第一颜色的干扰子像素单元、第二颜色的干扰子像素单元和第三颜色的干扰子像素单元。
每个像素单元中的子像素单元数量及颜色的设置可以根据具体需求有多种设计方式。为便于对本公开的实施例中的技术方案进行说明,在本公开的所有实施例中,选取一种像素单元的设置方式进行说明,例如图2所示,每个像素单元例如可以由三种颜色(例如红、绿、蓝等)的子像素单元构成,分别为第一颜色子像素单元110、第二颜色子像素单元120和第三颜色子像素单元130,每种颜色子像素单元分别包括一个显示子像素单元和一个干扰子像素单元,例如第一颜色子像素单元110包括第一颜色的干扰子像素单元111和第一颜色的显示子像素单元112。
例如,在本公开至少一个实施例提供的显示装置中,在其中的一些实施例中,像素单元中某一种颜色子像素单元中的显示子像素单元和干扰子像素单元可以相邻设置,例如第一颜色的显示子像素单元和第一颜色的干扰子像素单元在显示面板上可以为纵向方向(例如图2所示的与显示面板所在面平行且与纸面垂直的方向)或者横向方向(例如图2所示的与显示面板所在面平行且与纸面平行的方向)上彼此相邻设置;例如在一些实施例中,每个像素单元中的各颜色子像素单元中的显示子像素单元和干扰子像素单元可以不限于相邻排列,只要同一颜色的子像素单元包括相应的显示子像素单元和干扰子像素单元即可,而且由于显示单元的尺寸很小,即 便显示子像素单元和干扰子像素单元未相邻排列也可以不影响显示效果,并且不会影响显示装置的防窥功能。
例如,在本公开至少一个实施例中,图2a为图2所示本公开一个实施例提供的显示装置中A区域的一种像素单元的结构示意图。例如图2a所示,其中以第一颜色子像素单元110、第二颜色子像素单元120和第三颜色子像素单元130的排列方向作为横向。各颜色子像素单元中的显示子像素单元和干扰子像素单元例如可以为横向排列的,例如第一颜色子像素单元110中的第一颜色的显示子像素单元112和第一颜色的干扰子像素单元111的排列方向为横向相邻排列。
在本公开至少一个实施例中,对不同颜色子像素单元在每个像素单元中的具体排布不做限制。
例如,在本公开至少一个实施例中,图2b为图2所示本公开一个实施例提供的显示装置中A区域的另一种像素单元的结构示意图。例如图2b所示,其中以第一颜色子像素单元110、第二颜色子像素单元120和第三颜色子像素单元130的排列方向作为横向。各颜色子像素单元中的显示子像素单元和干扰子像素单元例如可以为纵向排列的,例如第一颜色子像素单元110中的第一颜色的显示子像素单元112和第一颜色的干扰子像素单元111的排列方向为纵向相邻排列。
例如,在本公开至少一个实施例中,图2c为图2所示本公开一个实施例提供的显示装置中A区域的另一种像素单元的结构示意图。例如图2c所示,其中,其中以例如图2b中所示实施例中的第一颜色子像素单元110、第二颜色子像素单元120和第三颜色子像素单元130的排列方向作为横向。像素单元中的各颜色子像素单元中的显示子像素单元和干扰子像素单元例如可以为非相邻排列的。
例如,在本公开提供的至少一个实施例中,该显示装置还可以包括与子像素单元连接的驱动电路(例如集成电路芯片等),该驱动电路可以配置为控制像素单元中各颜色子像素单元中的显示灰阶,例如驱动电路配置为控制第一颜色的显示子像素单元和第一颜色的干扰子像素单元的显示灰阶。显示灰阶的级数可以根据需求控制,例如对于16位系统可以采用0~127共128级灰阶,对于32位的系统可以采用0~255共256级灰阶,例如各颜色中的显示子像素单元和干扰子像素单元中的显示灰阶可以彼此互补, 由此显示图像和干扰图像为互补图像。
例如,在本公开至少一个实施例中,互补可以为显示子像素单元和干扰子像素单元中的显示灰阶之和为一个定值。例如,该定值可以为256级(即0~255),例如第一颜色显示子像素单元的灰阶为56和第一颜色干扰子像素单元的灰阶为200,则第一颜色显示子像素单元和第一颜色干扰子像素单元二者发出的第一颜色光的平均灰阶为128,同样第二颜色显示子像素单元和第二颜色干扰子像素单元二者发出的第二颜色光的平均灰阶为128,第三颜色显示子像素单元和第三颜色干扰子像素单元二者发出的第三颜色光的平均灰阶为128,则每个像素单元整体提供的第一至第三颜色的光混合后产生白光,即显示装置的整个显示面为显示白色(互补图像),偷窥者不能获得任何信息,然而用户则可以通过相应的设备仅接受到每个像素单元中第一至第三颜色的显示子像素单元发出的光,可以正常观看实际希望显示的图像,从而可以起到防偷窥的技术效果。
在需要说明的是,在本公开至少一个实施例中,每个像素单元中的干扰子像素单元和显示子像素单元发出的光的灰阶并非需要彼此互补才能使得显示图像和干扰图像混合而造成干扰,只要能够到达使得显示图像不能被裸眼有效识别即可。
例如,在本公开至少一个实施例中,第一颜色的干扰子像素单元的显示灰阶具有第一固定值;或者第一颜色的干扰子像素单元的显示灰阶和第一颜色的干扰子像素单元的显示灰阶之差具有第二固定值。例如,对于0~255灰阶设置而言,可以选择使得像素单元中的第一颜色的干扰子像素单元的灰阶为第一固定值,例如,该第一固定值可以选择为100;或者,干扰子像素单元的灰阶可以等于显示子像素单元的灰阶加上(或减去)某一个第二固定值,例如该第二固定值可以为50,当加上50所得到的值大于255时,则可以将再减去255的值作为干扰子像素单元的灰阶。例如,像素单元中的其它颜色的干扰子像素的显示灰阶的设计可以参考上述第一颜色的干扰子像素单元的设计方式,本公开的实施例在此不做赘述。
在本公开至少一个实施例中,其技术方案可以适用于多种的显示面板。
例如,该显示面板的一个示例为液晶显示面板,包括阵列基板和对置基板,二者彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。该对置 基板例如为彩膜基板。阵列基板的每个像素单元的像素电极用于施加电场对液晶材料的旋转的程度进行控制从而进行显示操作。通常地,液晶显示面板包括位于阵列基板一侧的第一偏光片以及位于对置基板一侧的第二偏光片,通常第一偏光片和第二偏光片的偏振方向彼此基本垂直,第一偏光片和第二偏光片配合液晶层以实现显示,由此从对置基板上出射的光为线偏振光,该线偏振光的偏振方向与第二偏光片的偏振方向相同。在本发明的一个实施例中,例如第一光学膜片例如设置在液晶显示装置的对置基板上,位于第二偏光片的外侧(即显示侧),该第一光学膜片对应于各个显示子像素单元的部分不具有旋光性,而对应于各个干扰子像素单元的部分则具有旋光性,可以将其出射的偏振光的偏振方向再旋转90度;例如,该第一光学膜片可以通过液晶盒实现,该液晶盒包括两个透明基板以及夹置在两个透明基板之间的液晶层,在需要实现旋光作用的部分在两个透明基板上相应地设置有透明电极,该透明电极上可以施加驱动电压以偏转液晶层中的液晶分子,从而对透过液晶层的光的偏振方向进行旋转。
例如,该显示面板的另一个示例为有机发光二极管(OLED)显示装置,其中,阵列基板上形成有机发光材料的叠层,每个像素单元的像素电极作为阳极或阴极用于驱动有机发光材料发光以进行显示操作。通常OLED显示装置出射的光为自然光,在本发明的一个实施例中,例如第一光学膜片例如位于OLED显示装置出射侧,该第一光学膜片对应于各个显示子像素单元的部分使得出射的光具有第一偏振方向,而对应于各个干扰子像素单元的部分则使得出射的光具有第二偏振方向,第一偏振方向与第二偏振方向彼此基本垂直。例如,该第一光学膜片也可以通过液晶盒实现,该液晶盒包括两个透明基板以及夹置在两个透明基板之间的液晶层,另外在该液晶盒的光入射侧设置有偏光片。在需要实现旋光作用的部分在两个透明基板上相应地设置有透明电极,该透明电极上可以施加驱动电压以偏转液晶层中的液晶分子,从而对透过液晶层的光的偏振方向进行旋转。
例如,该显示面板的再一个示例为电子纸显示装置,其中,该显示面板所包括的阵列基板上形成有电子墨水层,每个像素单元的像素电极作为用于施加驱动电子墨水中的带电微颗粒移动以进行显示操作的电压。通常电子纸显示装置出射的光为自然光,同样该第一光学膜片同样可以通过上述液晶盒实现。
本公开至少一个实施例提供了一种显示系统,该显示系统包括以上所述的显示装置和眼镜;该眼镜配置为允许显示装置中的第一颜色的显示子像素发射的光通过,但是不允许显示装置的第一颜色的干扰子像素发射的光通过。例如,该眼镜上可以设置第二光学膜片,该第二光学膜片例如可以为偏振片,其偏振结构可以与第一颜色的显示子像素单元上设置的第一子光学膜单元的偏振结构相同或相近。同样,该眼镜的偏振结构与第一颜色子像素单元之间所对应的配置关系也可以适用于第二颜色子像素单元和第三颜色子像素单元。
例如,在本公开至少一个实施例中,该显示系统未配备上述的眼镜而只包括上述的显示装置,图3为本公开一个实施例提供的另一种显示装置的横截面结构示意图,其中奇数列为干扰子像素单元,从其出射的光的偏振方向平行于纸面(用
Figure PCTCN2017117404-appb-000003
表示),偶数列为显示子像素单元,从其出射的光的偏振方向垂直于纸面用
Figure PCTCN2017117404-appb-000004
表示)。例如图3所示,在用户未配备眼镜(即“裸眼”)的情况下,显示装置的显示子像素单元和干扰子像素单元发出且经由第一光学膜片200透射的光都会进入用户的眼睛,由于这些光包括由干扰子像素单元发射的光以显示的干扰图像和由显示子像素单元发射的光以显示的显示图像,干扰图像和显示图像同时进入人眼从而无法分辨该显示图像,从而可以起到防止未佩戴眼镜的人进行偷窥。
例如,在本公开至少一个实施例中,该显示系统配备有上述的眼镜,图4为本公开一个实施例提供的一种显示系统的结构示意图。例如图4所示,显示装置中经由第一光学膜片200透射的干扰子像素单元中所发射的光的偏振状态与该眼镜的偏振结构不匹配,所以会被眼镜300遮挡,而此部分光所形成的干扰图像不会进入人眼400;而由第一光学膜片200透射的显示子像素单元中所发射的光的偏振状态与该眼镜的偏振结构相匹配,所以此部分光所形成的显示图像可以被人眼400正常接收。
为便于更为具体地解释显示装置在上述显示系统中的工作原理,在本公开至少一个实施例的示例中,以第一颜色子像素单元为例进行说明,其中设定从第一子光学膜单元中发出的光为第一偏振光,从第二子光学膜单元中发出的光为第二偏振光,该第一偏振光和第二偏振光的偏振状态不同。
例如,在本示例中,如图4所示,第一偏振光和第二偏振光为线偏振光。第一偏振光为第一颜色的显示子像素单元112发出的光经过第一子光 学膜单元210透射形成,第一偏振光用于构成显示图像;第二偏振光为第一颜色的干扰子像素单元111发出的光经过第二子光学膜单元220透射形成,第二偏振光用于构成干扰图像。眼镜300的偏振结构的偏振方向与第一偏振光的偏振方向相匹配,则第一偏振光可以透过眼镜300以向眼睛400显示显示图像,并且第二偏振光不能透过眼镜300。如此,佩戴该眼镜300的用户可以看到由第一偏振光构成的显示图像而不会看到由第二偏振光构成的干扰图像,所以佩戴该眼镜300的用户不会受到干扰图像的影响,相应地,未佩戴该眼镜300的用户会看到该干扰图像,从而不能分辨出显示图像,使得该显示装置具有防窥作用。
对于图2所示的情形,相应的眼镜上的第二光学膜具有偏振片,透过该偏振片的光的偏振方向与从显示装置的干扰子像素单元出射的线偏振光的偏振方向彼此基本垂直,由此从干扰子像素单元出射的光将会被过滤,而显示装置的显示子像素单元出射的非偏振光中与该偏振片偏振方向相同的部分可以透过以供用户观看。
第一子光学膜单元和第二子光学膜单元的偏振结构可使得透过的第一偏振光的偏振方向与第二偏振光的偏振方向不同,优选为使得第一偏振光的偏振方向垂直于第二偏振光的偏振方向。例如,在偏振方向相互垂直的情况下,例如眼镜上的偏振结构允许透过光的偏振方向与第一偏振光的偏振方向完全相同,则第一偏振光会全部透过眼镜并且第二偏振光会被眼镜完全阻挡,从而提高显示系统的显示和防窥的效果。
例如,在本公开至少一个实施例中,第一偏振光和第二偏振光可以为圆偏振光,例如通过将第一光学膜层还可以包括四分之一波片,用于将线偏振光转换为圆偏振光,以实现第一偏振光和第二偏振光为圆偏振光。在此情况下,第一子光学膜单元和第二子光学膜单元的结构只要使得透过的第一偏振光的偏振方向与第二偏振光的偏振方向相反(即旋转方向相反),而且眼镜上的偏振结构也可以包括四分之一波片,以将入射的圆偏振光转换为线偏振光,然后通过线偏振片(透过光为线偏振光的偏振片)以使得显示图像可以被用户看到,而干扰图像不会被用户看到。在上述优选条件下,第一偏振光会全部透过眼镜并且第二偏振光会被眼镜完全阻挡,从而也可以实现提高显示系统的显示和防窥的效果。
本公开至少一个实施例提供一种根据前述任一实施例中的显示装置 的驱动方法,该方法包括:驱动显示面板中的第一颜色的显示子像素单元以用于显示第一颜色的显示图像;驱动显示面板中的第一颜色的干扰子像素单元以用于显示第一颜色的干扰图像。像素单元中的其它颜色的子像素单元例如第二颜色子像素单元和第三颜色子像素单元中的显示子像素单元和干扰子像素单元的驱动也可以与第一颜色子像素单元的驱动方法一致。例如,本公开至少一个实施例中的驱动方法中的显示装置的具体化结构可以参考前述实施例(关于显示装置的实施例)中的相关内容,本公开的实施例在此不再赘述。
例如,在本公开至少一个实施例所提供的驱动方法中,可以通过与子像素单元连接的驱动电路对各颜色子像素进行驱动。例如,该驱动电路可以驱动显示面板中的第一颜色的显示子像素单元以用于形成第一颜色的显示图像并且驱动显示面板中的第一颜色的干扰子像素单元以用于形成第一颜色的干扰图像。同时可以通过控制驱动电路的例如数据电压以控制第一颜色的显示图像和第一颜色的干扰图像的显示灰阶,例如使得第一颜色的显示图像和第一颜色的干扰图像为互补图像,以实现第一颜色的干扰图像对第一颜的色显示图像的干扰作用。例如,在本实施例的一个示例中,可以控制第一颜色的显示子像素单元形成的第一颜色的显示图像和第一颜色的干扰子像素单元形成的第一颜色的干扰图像的显示灰阶以使得第一颜色的显示图像和第一颜色的干扰图像之间彼此互补,并且控制第二颜色子像素单元和第三颜色子像素单元中各自的显示图像和干扰图像之间的显示灰阶也相应互补,则所有的干扰图像和显示图像叠加后得到的图像显示为白色,即显示装置显示为白色画面,可以起到防偷窥作用。
本公开至少一个实施例还提供一种上述实施例中的显示系统的显示方法,该方法可以包括如下步骤:控制显示面板中的第一颜色的显示子像素单元以显示第一颜色的显示图像;控制显示面板中的所述第一颜色的干扰子像素单元以显示第一颜色的干扰图像;通过眼镜阻挡所述第一颜色的干扰图像并使得所述第一颜色的显示图像透过。该方法同样适用于像素单元中其它颜色的子像素单元,即该眼镜可以透过像素单元中各颜色子像素单元的显示子像素单元显示的显示图像并且阻挡像素单元中各颜色子像素单元的干扰子像素单元显示的干扰图像。由此在干扰图像和显示图像组成的混合图像对偷窥者形成干扰的同时,配戴专用设备(例如上述实施例中 的眼镜300)的用户可以正常观看显示图像。
本公开至少一个实施例提供一种显示装置及其驱动方法、显示系统及其显示方法,并且可以具有以下至少一项有益效果:
(1)本公开至少一个实施例提供一种显示装置,该显示装置可以同时显示由不同偏振状态光线构成的显示图像和干扰图像以对偷窥者进行干扰,从而防止偷窥,并且防止偷窥的效果不受视角限制。
(2)在本公开至少一个实施例提供的显示装置中,显示装置可以选择像素单元中的显示子像素单元与干扰子像素单元的灰阶具有例如互补等关系以对显示图像形成干扰。
(3)本公开至少一个实施例提供一种显示系统,该显示系统包括专用的眼镜,与前述任一实施例中的显示装置相配合,可以使用户接收显示图像而不会受到干扰图像的影响,并且不会对用户的观看视角进行限制。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种显示装置,包括:
    显示面板,包括多个像素单元;
    位于所述显示面板上的第一光学膜片;
    其中,至少一个所述像素单元包括第一颜色子像素单元,所述第一颜色子像素单元包括所述第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元,
    所述第一光学膜片包括用于透射所述第一颜色的显示子像素单元发出的光的第一子光学膜单元和用于透射所述第一颜色的干扰子像素单元发出的光的第二子光学膜单元,并且所述第一子光学膜单元和所述第二子光学膜单元设置为使得从所述第一子光学膜单元和所述第二子光学膜单元发出的光的偏振状态彼此不同。
  2. 根据权利要求1所述的显示装置,其中,所述第一子光学膜单元用于使得透过光为非偏振光,并且所述第二子光学膜单元用于使得透过光为偏振光。
  3. 根据权利要求2所述的显示装置,其中,所述第二子光学膜单元用于使得透过光为线偏振光。
  4. 根据权利要求1所述的显示装置,其中,所述第一子光学膜单元用于使得透过光为第一偏振光,并且所述第二子光学膜单元用于使得透过光为第二偏振光,所述第一偏振光和所述第二偏振光的偏振方向不同。
  5. 根据权利要求4所述的显示装置,其中,所述第一偏振光和所述第二偏振光都为线偏振光,或者所述第一偏振光和所述第二偏振光都为圆偏振光。
  6. 根据权利要求5所述的显示装置,其中,在所述第一偏振光和所述第二偏振光都为线偏振光的情况,所述第一偏振光的偏振方向和所述第二偏振光的偏振方向彼此基本垂直,或者在所述第一偏振光和所述第二偏振光为圆偏振光的情况,所述第一偏振光的偏振方向和所述第二偏振光的偏振方向彼此相反。
  7. 根据权利要求1-6中任一所述的显示装置,其中,所述第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元在所述显示面板的纵向 方向或横向方向上彼此相邻。
  8. 根据权利要求1-7中任一所述的显示装置,还包括与所述子像素单元连接的驱动电路,其中,所述驱动电路配置为控制所述第一颜色的显示子像素单元和所述第一颜色的干扰子像素单元的显示灰阶。
  9. 根据权利要求8所述的显示装置,其中,所述驱动电路配置为使得所述第一颜色的显示子像素单元的显示灰阶和所述第一颜色的干扰子像素单元的显示灰阶彼此互补。
  10. 根据权利要求8所述的显示装置,其中,
    所述第一颜色的干扰子像素单元的显示灰阶具有第一固定值;或者
    所述第一颜色的干扰子像素单元的显示灰阶和所述第一颜色的干扰子像素单元的显示灰阶之差具有第二固定值。
  11. 根据权利要求1-10中任一所述的显示装置,其中,至少一个所述像素单元还包括除所述第一颜色子像素单元之外的至少一个其它颜色的子像素单元。
  12. 根据权利要求11所述的显示装置,其中,所述其它颜色的子像素单元中的至少一个包括对应其颜色的显示子像素单元和干扰子像素单元;
    所述第一光学膜片包括分别对应于所述显示子像素单元和所述干扰子像素单元设置的子光学膜单元以使得经由所述显示子像素单元和所述第一光学膜片的光线的偏振状态和经由所述干扰子像素单元和所述第一光学膜片的光线的偏振状态彼此不同。
  13. 一种显示系统,包括:
    权利要求1-12中任一项所述的显示装置;
    眼镜;
    其中,所述眼镜配置为透过所述显示面板的所述第一颜色的显示子像素单元发射的光,并且阻挡所述显示面板的所述第一颜色的干扰子像素单元发射的光。
  14. 一种根据权利要求1-12任一所述的显示装置的驱动方法,包括:
    驱动所述显示面板中的所述第一颜色的显示子像素单元以用于形成所述第一颜色的显示图像;
    驱动所述显示面板中的所述第一颜色的干扰子像素单元以用于形成所述第一颜色的干扰图像。
  15. 根据权利要求14所述的驱动方法,其中,所述显示图像和所述干扰图像为互补图像。
  16. 一种根据权利要求13所述的显示系统的显示方法,包括:
    控制所述显示面板中的所述第一颜色的显示子像素单元以用于形成所述第一颜色的显示图像;
    控制所述显示面板中的所述第一颜色的干扰子像素单元以用于形成所述第一颜色的干扰图像;
    通过所述眼镜阻挡所述第一颜色的干扰图像并使得所述第一颜色的显示图像透过。
PCT/CN2017/117404 2017-02-22 2017-12-20 显示装置及其驱动方法、显示系统及其显示方法 WO2018153154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/072,343 US11455965B2 (en) 2017-02-22 2017-12-20 Display device and driving method thereof, display system and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710095416.XA CN108459429B (zh) 2017-02-22 2017-02-22 显示装置及其驱动方法、显示系统及其显示方法
CN201710095416.X 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018153154A1 true WO2018153154A1 (zh) 2018-08-30

Family

ID=63222074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117404 WO2018153154A1 (zh) 2017-02-22 2017-12-20 显示装置及其驱动方法、显示系统及其显示方法

Country Status (3)

Country Link
US (1) US11455965B2 (zh)
CN (1) CN108459429B (zh)
WO (1) WO2018153154A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646945B (zh) * 2019-09-29 2021-11-12 京东方科技集团股份有限公司 显示装置及显示方法
CN114615490B (zh) * 2020-12-08 2023-07-14 军事科学院系统工程研究院网络信息研究所 偏振同步调制的隐藏式防窥安全显示方法
CN115955869B (zh) * 2022-12-28 2024-01-02 惠科股份有限公司 显示面板及显示装置
CN115843199B (zh) * 2023-02-20 2023-05-02 惠科股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338936A (zh) * 2010-07-22 2012-02-01 群康科技(深圳)有限公司 显示器以及电子装置
CN102651819A (zh) * 2011-02-23 2012-08-29 宏碁股份有限公司 防窥方法及3d立体显示装置
US20130076785A1 (en) * 2011-09-27 2013-03-28 Chunghwa Picture Tubes, Ltd. Anti-peeping display system
CN103235441A (zh) * 2013-04-22 2013-08-07 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及显示器件
CN104122705A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
CN105182637A (zh) * 2015-10-13 2015-12-23 武汉华星光电技术有限公司 具有防偷窥功能的显示系统及其驱动方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407772B (zh) * 2005-03-17 2013-09-01 Koninkl Philips Electronics Nv 自動立體顯示裝置及其濾色器
CN102707487B (zh) * 2012-06-04 2014-11-19 青岛海信电器股份有限公司 透明显示装置及具有透明显示装置的电子设备
KR102041152B1 (ko) * 2013-05-22 2019-11-07 엘지디스플레이 주식회사 영상표시장치
CN103676301A (zh) * 2013-12-27 2014-03-26 京东方科技集团股份有限公司 一种显示装置及显示系统
KR20160112067A (ko) * 2015-03-17 2016-09-28 삼성디스플레이 주식회사 광 변조 장치를 포함하는 광학 장치 및 그 구동 방법
CN104865736A (zh) * 2015-06-12 2015-08-26 苏州云远网络技术有限公司 一种防窥视液晶显示器套件
CN106292099A (zh) * 2016-10-10 2017-01-04 南京中电熊猫液晶显示科技有限公司 防窥液晶显示面板及其工作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338936A (zh) * 2010-07-22 2012-02-01 群康科技(深圳)有限公司 显示器以及电子装置
CN102651819A (zh) * 2011-02-23 2012-08-29 宏碁股份有限公司 防窥方法及3d立体显示装置
US20130076785A1 (en) * 2011-09-27 2013-03-28 Chunghwa Picture Tubes, Ltd. Anti-peeping display system
CN103235441A (zh) * 2013-04-22 2013-08-07 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及显示器件
CN104122705A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
CN105182637A (zh) * 2015-10-13 2015-12-23 武汉华星光电技术有限公司 具有防偷窥功能的显示系统及其驱动方法

Also Published As

Publication number Publication date
US11455965B2 (en) 2022-09-27
CN108459429A (zh) 2018-08-28
US20210210032A1 (en) 2021-07-08
CN108459429B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
TWI426300B (zh) 顯示裝置
US10134362B2 (en) Display device, driving method thereof, manufacturing method thereof and anti-peeping display system
WO2018153154A1 (zh) 显示装置及其驱动方法、显示系统及其显示方法
US9075263B2 (en) Display apparatus
CN105182637B (zh) 具有防偷窥功能的显示系统及其驱动方法
CN101206331B (zh) 液晶显示装置及其制造方法
US8339331B2 (en) Electro-optical device and electronic apparatus
CN106444184A (zh) 双面显示装置、系统及显示方法
US9325979B2 (en) 3D display method and 3D display device having increased viewing angle
US10627641B2 (en) 3D display panel assembly, 3D display device and driving method thereof
US10120234B2 (en) Liquid crystal display apparatus
CN104656330A (zh) 液晶显示装置及其制造方法
TW200900802A (en) Liquid crystal display device
US7359013B2 (en) Display capable of selectively displaying two-dimensional and three-dimensional images
TW201527799A (zh) 顯示器
CN104011586A (zh) 多层图像显示装置和方法
WO2017118224A1 (zh) 视角定向光源装置及显示装置
TW201341915A (zh) 可切換二維與三維顯示模式之顯示裝置
US20120026586A1 (en) Display device and phase retardation film
US20180341149A1 (en) Transparent liquid crystal display panel and display device comprising the same
US11340473B2 (en) 3D display panel, ME1HOD for driving same, and display apparatus
US10804339B2 (en) Naked-eye three-dimensional display device
CN106842649A (zh) 显示基板及其制作方法、显示面板和显示装置
WO2016150055A1 (zh) 显示装置及显示系统
CN105572890B (zh) 一种显示装置及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897293

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17897293

Country of ref document: EP

Kind code of ref document: A1