WO2018152991A1 - 一种应用于多模终端的天线选择方法及多模终端 - Google Patents

一种应用于多模终端的天线选择方法及多模终端 Download PDF

Info

Publication number
WO2018152991A1
WO2018152991A1 PCT/CN2017/089208 CN2017089208W WO2018152991A1 WO 2018152991 A1 WO2018152991 A1 WO 2018152991A1 CN 2017089208 W CN2017089208 W CN 2017089208W WO 2018152991 A1 WO2018152991 A1 WO 2018152991A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission module
antenna
antennas
transmission
signal quality
Prior art date
Application number
PCT/CN2017/089208
Other languages
English (en)
French (fr)
Inventor
龙星宇
黄建仁
蓝元皓
许浩维
钟延宗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780012485.8A priority Critical patent/CN108702170B/zh
Publication of WO2018152991A1 publication Critical patent/WO2018152991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present application relates to the field of information technology, and in particular, to an antenna selection method and a multimode terminal applied to a multimode terminal.
  • Multiple-mode terminals are equipped with multiple antennas and multiple transmission modules capable of transmitting and receiving signals through antennas, such as transmission modules using any of the following communication systems: Global System for Mobile Communications (global system of mobile communication, GSM), Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMax), Wireless Local Area Networks (WLAN), Bluetooth (Bluetooth) Etc., for example, a transmission module corresponding to a primary carrier in a carrier aggregation scenario, a transmission module corresponding to a secondary carrier, and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • Bluetooth Bluetooth
  • one way is to fixedly configure one antenna for each transmission module, and if the signal of the antenna configured by the transmission module that does not perform the data transmission task is better, the data transmission is being performed.
  • the signal of the transmission module antenna of the task is poor, the antenna is unevenly distributed and affects the communication quality.
  • the other way is to configure a transmission module to select the best antenna. In this way, other transmission modules cannot select the antenna, and Uneven distribution of antennas affects communication quality.
  • the embodiment of the present application provides an antenna selection method and a multimode terminal applied to a multimode terminal, which are used to solve the problem that the communication quality is affected due to uneven antenna allocation.
  • an embodiment of the present application provides an antenna selection method applied to a multimode terminal, where the multimode terminal includes: at least two transmission modules and at least two antennas; and the at least two transmission modules are configured to The signal can be transmitted and received by one of the at least two antennas separately; the method includes:
  • one of the multimode terminals is selected as an execution body of the antenna selection method, and the transmission module allocates an antenna to other transmission modules in the multimode terminal.
  • the transmission module is assisted by other transmission modules to select an antenna, which improves the balance of the multi-mode terminal antenna distribution and reduces the influence of the antenna configuration process on the communication quality.
  • the first transmission module determines signal quality of the transceiver signals of the at least two antennas, including:
  • the first transmission module measures the at least two in a system and a frequency band adopted by the first transmission module
  • the signal quality of the antenna's transmit and receive signals.
  • the first transmission module determines signal quality of the transceiver signals of the at least two antennas, including:
  • the first transmission module measures signal quality of the at least two antenna transceiving signals in a system and a frequency band adopted by the first transmission module;
  • the first antenna is any one of antennas other than the antenna currently used by the first transmission module;
  • the second transmission module is a transmission module that uses the first antenna to transmit and receive signals, the The signal compensation value between the second transmission module and the first transmission module is determined based on a difference between a frequency band used by the second transmission module and the first transmission module and a communication system.
  • the above design compensates for the influence of the operating frequency band and the system difference on the signal quality of the antenna used when the signal quality of the signals transmitted and received by the respective antennas is sorted.
  • the first transmission module allocates an antenna to the at least two transmission modules according to a priority ranking result of the at least two transmission modules and a signal quality corresponding to the at least two antennas respectively.
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the third transmission module.
  • the signal quality is well assigned to the transmission module with high priority, and the communication quality of the transmission module with high priority is ensured.
  • the first transmission module determines a signal quality of the transceiver signals of the at least two antennas, and determines a priority ranking result of the at least two transmission module selection antennas; the first transmission The module allocates antennas to the at least two transmission modules according to the priority ranking result of the at least two transmission modules and the signal quality corresponding to the at least two antennas respectively, including:
  • the first transmission module measures, in a format and a frequency band adopted by the fourth transmission module, a signal quality of each antenna of the at least two antennas that is not involved in the allocation;
  • the first transmission module allocates an antenna with the best signal quality among the antennas that are not involved in the allocation of the at least two antennas to the fourth transmission module.
  • the first transmission module measures the signal quality of the four antennas in the system of the highest priority transmission module and the operating frequency band, and assigns the antenna with the highest signal quality to the transmission module with the highest priority, and then switches the first transmission module.
  • the signal quality of the remaining antennas is measured in the format of the transmission module with the second highest priority and the working frequency band, and the antenna with the highest signal quality among the remaining antennas is allocated to the transmission module with the second highest priority, and so on. Thereby improving the accuracy of measuring the antenna signal.
  • the method before the first transmission module determines that the at least two transmission modules select the priority ranking result of the antenna, the method further includes:
  • the first transmission module receives, by the at least one transmission module of the at least two transmission modules, a notification message for notifying the reallocation antenna that is sent by the at least one transmission module.
  • the first transmission module executes the allocation antenna when receiving the notification message of the other transmission module.
  • the method before the assigning the antennas to the at least two transmission modules according to the priority ranking result of the at least two transmission modules and the signal quality corresponding to the at least two antennas respectively.
  • the method also includes:
  • the first transmission module determines, according to the priority ranking result, a transmission module that includes the highest priority among the at least one transmission module.
  • the transmission module having the highest priority is included in the at least one transmission module in the determination transmission notification message, and the signal measurement is performed for all the antennas.
  • the method further includes:
  • the first transmission module performs measurement on a signal quality of an antenna transceiving signal used by a transmission module having a lower priority than the first priority; the first priority is in a priority corresponding to the at least one transmission module respectively Highest priority
  • the first transmission module allocates an antenna to the at least one transmission module according to a priority of the at least one transmission module and a signal quality of an antenna used by a transmission module having a lower priority than the first priority.
  • the antenna used by the transmission module with the highest priority does not participate in the allocation, thereby improving the communication quality of the transmission module with higher priority due to antenna switching. reduce.
  • the first transmission module determines signal quality of the transceiving signals of the at least two antennas, and determines a prioritization result of the at least two transmission module selection antennas; and according to the at least The priority ranking result of the two transmission modules and the signal quality corresponding to the at least two antennas respectively are respectively allocated antennas for the at least two transmission modules, including:
  • the first transmission module measures the signal quality of the second antenna transceiving signal currently used by the fifth transmission module with the highest priority, and measures the at least two antennas one by one in the system and the frequency band adopted by the first transmission module. a signal quality of a signal transmitted and received by another antenna other than the second antenna;
  • the first transmission module When measuring a third antenna whose signal quality is higher than that of the second antenna, the first transmission module allocates the third antenna to the fifth transmission module, and allocates an antenna currently used by the fifth transmission module A transmission module having the highest priority except the fifth transmission module is given.
  • the first transmission module 1 performs an allocation operation when determining that there is an antenna having better signal quality than an antenna used by the first transmission module having the highest priority in determining the measured antenna, Antennas with better signal quality are assigned to the highest priority transmission module. Therefore, the highest priority transmission module will always switch to the best antenna, and the old antenna will be regarded as the second best antenna, which is assigned to the next highest priority. Transmission module, and so on.
  • the determining, by the at least two transmission modules, the priority ranking results of the antennas including:
  • the first transmission module sorts the priorities of the pre-configured at least two transmission module selection antennas to obtain a priority ranking result
  • the first transmission module determines its own priority-related information, and receives priority-related information respectively sent by other transmission modules of the at least two transmission modules; the priority-related information includes service information currently processed by the transmission module. And/or signal quality of the received and received signals; the first transmission module determines a prioritization result of the at least two transmission module selection antennas based on the priority related information respectively corresponding to the at least two transmission modules.
  • the signal quality of the service information and/or the transceiving signal is transmitted between the plurality of transmission modules, so that the priority ranking result of the transmission module can be determined.
  • the embodiment of the present application provides a multimode terminal, where the multimode terminal includes a memory, a processor, at least two transmission modules, and at least two antennas; and the at least two antennas are used for transmitting and receiving signals.
  • the at least two transmission modules are configured to be capable of transceiving signals through one of the at least two antennas;
  • the memory is configured to store program code
  • the processor is configured to execute the program code stored in the memory, specifically, to control the first one of the at least two transmission modules to perform the following operations:
  • the at least two transmission modules are configured to transmit and receive signals based on an antenna allocated by the first transmission module.
  • the processor is specifically configured to: when controlling, by the first transmission module, the signal quality of determining the transmit and receive signals of the at least two antennas:
  • the processor when controlling the first transmission module to perform signal quality determining the transceiving signals of the at least two antennas, specifically for controlling the first transmission module to perform:
  • the first antenna is any one of antennas other than the antenna currently used by the first transmission module;
  • the second transmission module is a transmission module that uses the first antenna to transmit and receive signals, the The signal compensation value between the second transmission module and the first transmission module is determined based on a difference between a frequency band used by the second transmission module and the first transmission module and a communication system.
  • the processor controls the first transmission module to perform a priority ranking result according to the at least two transmission modules, and a signal quality corresponding to the at least two antennas respectively
  • the first transmission module is controlled to perform:
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the third transmission module.
  • the processor controls the first transmission module to determine signal quality of the transmit and receive signals of the at least two antennas, and determines a priority order of the at least two transmission modules to select antennas a result
  • the first transmission module is specifically configured to control when the antennas are respectively assigned to the at least two transmission modules according to the priority ranking result of the at least two transmission modules and the signal quality corresponding to the at least two antennas respectively
  • the first transmission module performs:
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the fourth transmission module.
  • the processor is further configured to control the first transmission module to receive before the first transmission module determines that the at least two transmission modules select the priority ranking result of the antenna. a notification message sent by at least one of the at least two transmission modules, except for the first transmission module, for notifying the reassignment antenna.
  • the processor controls, according to the priority ranking result of the at least two transmission modules, the signal quality corresponding to the at least two antennas respectively Before the at least two transmission modules allocate the antennas, the first transmission module is further configured to determine, according to the priority ranking result, that the at least one transmission module includes the transmission module with the highest priority.
  • the processor is further configured to control the first transmission module to execute:
  • the first priority is the highest priority among the priorities corresponding to the at least one transmission module respectively;
  • the processor controls the first transmission module to determine signal quality of the transmit and receive signals of the at least two antennas, and determines a priority order of the at least two transmission modules to select antennas And the specific transmission is used to control the first transmission according to the priority ranking result of the at least two transmission modules and the signal quality respectively corresponding to the at least two antennas respectively.
  • the third antenna When the third antenna whose signal quality is higher than the second antenna is measured, the third antenna is allocated to the fifth transmission module, and the antenna currently used by the fifth transmission module is allocated to the fifth The highest priority transmission module outside the transmission module.
  • the processor is specifically configured to control the first transmission module to perform when the first transmission module determines that the at least two transmission modules select the priority ranking result of the antenna:
  • the priority-related information includes service information currently processed by the at least two transmission modules and And/or a signal quality of the received and received signals; determining a prioritization result of the at least two transmission module selection antennas based on the priority related information respectively corresponding to the at least two transmission modules.
  • a central control module is also included;
  • the processor is further configured to control, by the central control module, a priority ranking result of the at least two transmission module selection antennas to be sent to the first transmission module.
  • an embodiment of the present application provides an antenna selection apparatus applied to a multimode terminal, the apparatus having a function of implementing the behavior of the first transmission module in the above first example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides a computer readable storage medium, where the software program stores a software program, and the software program can implement the foregoing method when being read and executed by one or more processors.
  • FIG. 1 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a multimode terminal according to an embodiment of the present application.
  • FIG. 3A is a flowchart of an antenna selection method according to Embodiment 1 of the present application.
  • FIG. 3B is a schematic flowchart of an antenna selection method according to Embodiment 1 of the present application.
  • FIG. 4A is a flowchart of an antenna selection method according to Embodiment 2 of the present application.
  • FIG. 4B is a schematic flowchart of an antenna selection method according to Embodiment 2 of the present application.
  • FIG. 5A is a flowchart of an antenna selection method according to Embodiment 3 of the present application.
  • FIG. 5B is a schematic flowchart of an antenna selection method according to Embodiment 3 of the present application.
  • FIG. 6A is a flowchart of an antenna selection method according to Embodiment 4 of the present application.
  • FIG. 6B is a schematic flowchart of an antenna selection method according to Embodiment 4 of the present application.
  • FIG. 7A is a schematic diagram of a message transmission architecture including a central control module according to an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a message transmission architecture not including a central control module according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first transmission module according to an embodiment of the present application.
  • the terminal device 100 includes a radio frequency circuit 110, a processor 120, and a memory 130 and an antenna 140.
  • the memory 130 can be used to store software programs and data, and the processor 120 executes various functional applications and data processing of the terminal device 100 by running software programs and data stored in the memory 130.
  • the memory 130 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, a flash memory device, or other volatile solid state storage device or the like.
  • the processor 120 is a control center of the terminal device 100, utilizing various interfaces and lines
  • the circuit connects the various parts of the entire terminal device, performs various functions and processing data of the terminal device 100 by running or executing software programs and/or data stored in the memory 130, thereby performing overall monitoring of the terminal device 100.
  • the processor 120 may include one or more general purpose processors, and may also include one or more digital signal processors (English: Digital Signal Processor, DSP for short) for performing related operations.
  • Radio frequency circuit 110 can be coupled to antenna 140.
  • the antenna 140 may include a plurality of components, and the components of the terminal device 100 are coupled together by a bus 150.
  • the bus 150 is indicated by a thick line in FIG. 1. The connection manner between other components is merely illustrative and is not cited. Limited.
  • the bus 150 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 1, but it does not mean that there is only one bus or one type of bus.
  • the terminal device 100 further includes a transmission module 160, which is a module in the terminal device 100 that can separately transmit or receive signals using an antenna, that is, can interact with the antenna 140 through the radio frequency circuit 110.
  • a plurality of transmission modules may be included in the terminal device 100.
  • the transmission module 160 may be a baseband chip, a Bluetooth communication chip, a WIFI communication chip, or the like.
  • One of the hardware communication chips may include a plurality of transmission modules, or a plurality of hardware communication chips may be combined into one transmission module, which is not specifically limited herein.
  • the transmission module may be a transmission module using any of the following communication systems: global system of mobile communication (GSM), total access communication system (TACS), and wideband code division multiple access system (Wideband Code) Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA), Code Division Multiple Access 2000 (CDMA 2000), Time Division-Synchronous Code Division Multiple Access (TD-) SCDMA), Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMax), Wireless Local Area Networks (WLAN), Bluetooth, etc.
  • GSM global system of mobile communication
  • TACS total access communication system
  • WCDMA wideband code division multiple access system
  • CDMA Code Division Multiple Access
  • CDMA 2000 Code Division Multiple Access 2000
  • TD- Time Division-Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • Bluetooth etc.
  • the transmission module may also include, but is not limited to, a main set of a primary card (main mode, which refers to a communication system such as LTE), or a diversity of a primary card (main mode), or a primary set of a secondary card (submodule), Or the diversity of the secondary card (submodule), the primary carrier of the primary card (master mode), the subcarrier diversity of the secondary card (submodule), the CDMA primary set of SVLTE, the CDMA diversity of SVLTE, the LTE primary set of SVLTE, or LTE diversity of SVLTE.
  • the transmission module is not specifically limited in the embodiment of the present application, as long as the module capable of receiving or transmitting signals by using the antenna alone is applicable to the embodiment of the present application.
  • the terminal device of the embodiment of the present application may be an electronic device including an antenna, including but not limited to a personal computer, a server computer, a handheld or laptop device, and a mobile device (such as a mobile phone, a mobile phone, a tablet computer, a personal digital assistant, and a media).
  • a device for communicating by an antenna such as a player, a consumer computer, a small computer, a mainframe computer, or the like, uses an antenna selection scheme of the multimode terminal provided by the embodiment of the present application.
  • Each transmission module can only select the better one on the two antennas. If the third antenna is better, Unable to switch past. For example, there are 4 antennas on the mobile phone, and the transmission module 1 performs good or bad judgment on 2 antennas, and selects an antenna with good signal quality as the communication antenna from the two antennas.
  • the main body other than the transmission module 1 can only use the pre-configured antenna, or passively squeezed to the antenna with poor signal quality, and cannot judge and select the antenna by itself.
  • each transmission module can determine or select the signal quality of the antenna in turn. For example, after the high-priority transmission module selects the best antenna from all the antennas, the secondary-priority transmission module selects the second best antenna among the remaining multiple antennas, and so on according to the priority of the transmission module.
  • the method of rotation requires that all transmission modules select the antenna once, and the antenna configuration time will be lengthened, resulting in The transmission module that has chosen to pass the antenna (such as a high-priority transmission module) has to wait a long time to perform the second antenna selection process. In a fast-moving scenario, if the current signal fluctuates drastically, the high-priority transmission module may not be able to switch antennas and disconnect.
  • the antenna may cause a transmission module to measure the antenna.
  • the other transmission module steals the antenna, and even multiple transmission modules select the same antenna at the same time, resulting in confusion of the antenna configuration.
  • the embodiment of the present application proposes an antenna selection method and apparatus applied to a multimode terminal, and selects one transmission module in the multimode terminal as an execution body of the antenna selection method, and the transmission module is a multimode terminal.
  • the transmission module distributes the antenna.
  • the transmission module is assisted by other transmission modules to select an antenna, which improves the balance of the multi-mode terminal antenna distribution and reduces the influence of the antenna configuration process on the communication quality.
  • the multi-mode terminal includes four transmission modules and four antennas as an example. Referring to FIG. 2, the antenna selection scheme applied to the multi-mode terminal according to the embodiment of the present application is specifically described.
  • the multimode terminal shown in FIG. 2 includes transmission modules 1 to 4, and antennas 0 to 3.
  • the transmission module 1 serves as a main body for performing antenna selection, and not only selects an antenna for itself, but also allocates an antenna for other transmission modules.
  • the transmission module 1 measures the signal quality of the four antennas transmitted and received in the system and the frequency band used by the transmission module 1, and allocates antennas for the four transmission modules according to the signal quality of the four antennas and the priority of the four transmission modules.
  • 3A and 3B are schematic diagrams showing the process of allocating an antenna of the transmission module 1 according to Embodiment 1 of the present application.
  • the priority of the transmission module that performs the antenna selection scheme is not limited, and may be the transmission module with the highest priority, the transmission module with the lowest priority, and of course, the transmission module with other priorities.
  • the transmission module 1 measures the signal quality of the four antenna transmit and receive signals in a format and a frequency band used by the transmission module 1.
  • the transmission module 1 sorts the signal quality of the measured and received signals of the four antennas.
  • the sorting result is shown in FIG. 3B, and antenna 3>antenna 2>antenna 0>antenna 4.
  • the transmission module 1 allocates 4 antennas to 4 transmission modules according to the priority ranking result.
  • the transmission module 1 determines that the current priority is the transmission module 1, so that the antenna 3 with the highest signal quality is allocated to the transmission module 1.
  • the priority of the transmission module is the transmission module 2, so that the antenna 2 with the second-lowest signal quality is assigned to the transmission module 2.
  • antenna 0 is assigned to transmission module 3
  • antenna 1 with the worst signal quality is assigned to transmission module 4 with the lowest priority, as shown in Fig. 3B.
  • different antennas may have different capabilities of the supported frequency bands. Some transmission modules may only use part of the antennas instead of all antennas. Therefore, when selecting an antenna for a transmission module, it is necessary to The choice of antennas that meet the frequency band requirements of the transmission module. For example, the antenna 2 does not support the frequency band used by the transmission module 2.
  • the transmission module 1 allocates an antenna for the transmission module 2
  • the transmission module 2 is the other three antennas except the antenna 2 (the transmission module 2 has the second highest priority).
  • the antenna is allocated, for example, the antenna 0 of the four antennas other than the antenna 2 with poor signal quality is assigned to the transmission module 2.
  • the transmission module 1 Since the transmission modules may have different frequency bands and communication systems, the transmission module 1 is in itself.
  • the signal quality of the antenna received and received signals measured by the adopted system and the frequency band is different from the signal quality of the same antenna transmitted and received by another transmission module measured in its own system and frequency band.
  • the antenna with the best signal quality measured by the transmission module 1 in its own system and frequency band is the antenna 3, and the transmission module 1 distributes the antenna 3 to the transmission module 2 (assuming that the transmission module 2 has the highest priority). Since the system and the operating frequency band of the transmission module 2 are different from the system and the operating frequency band of the transmission module 1, when the transmission module 2 uses the antenna 3, the signal quality of the transceiving signal is not good.
  • the format of the transmission module 1 and the difference between the working frequency band and the standard transmission mode of the target transmission module and the operation can be obtained in advance, and the working frequency band and the standard between the transmission modules are compensated when the signal quality of the transmission and reception signals of the four antennas are sorted.
  • the transmission module 1 measures the signal quality of the four antennas for transmitting and receiving signals in the system adopted by the transmission module 1 and the working frequency band; and corresponding to the measured antennas other than the antenna currently used by the transmission module 1
  • the signal quality is as follows:
  • the antenna used by the transmission module 1 is the antenna 0, the antenna used by the transmission module 2 is the antenna 1, the antenna used by the transmission module 3 is the antenna 2, and the antenna used by the transmission module 4 is the antenna 3. Then, based on the signal compensation value between the transmission module 2 and the transmission module 1, the signal quality corresponding to the antenna 1 is compensated to obtain the compensated signal quality of the antenna 1; based on the transmission module 3 and the transmission The signal compensation value between the modules 1 is compensated for the signal quality corresponding to the antenna 2, and the signal quality of the compensated antenna 2 is obtained; based on the signal compensation value between the transmission module 4 and the transmission module 1, for the antenna 3 The corresponding signal quality is compensated to obtain the compensated signal quality of the antenna 3.
  • the signal quality of the antenna 0, the compensated signal quality of the antenna 1, the compensated signal quality of the antenna 2, and the compensated signal quality of the antenna 3 are sorted. Assume that the signal quality ranking results of the compensated four antennas are: antenna 3>antenna 2>antenna 1>antenna 0, so that the transmission module 1 determines that the current priority is the highest for the transmission module 1, thereby allocating the antenna 3 with the highest signal quality.
  • the priority of the four transmission modules is the transmission module 2, so that the transmission module 1 assigns the antenna 2 with the second best signal quality to the transmission module 2.
  • the antenna 1 is assigned to the transmission module 3, and the antenna 0 with the worst signal quality is assigned to the transmission module 4 having the lowest priority.
  • the transmission module 1 that performs the antenna selection scheme allocates the antenna with better signal quality to the priority when the antenna with better signal quality than the antenna used by the transmission module with the highest priority is found after measuring the two antennas.
  • the highest transmission module assigns the old antenna used by the highest priority transmission module to the transmission module with the second highest priority, and so on.
  • FIG. 4A and FIG. 4B are schematic diagrams showing the flow of an antenna allocated by the transmission module 1 according to Embodiment 2 of the present application.
  • the antenna used by the transmission module 1 is the antenna
  • the antenna used by the transmission module 2 is the antenna 1
  • the antenna used by the transmission module 3 is the antenna 2
  • the antenna used by the transmission module 4 is the antenna 3.
  • the priority of the transmission module that performs the antenna selection scheme is not limited, and may be the transmission module with the highest priority, the transmission module with the lowest priority, and of course, the transmission module with other priorities.
  • the transmission module 1 selects two antennas for measurement, and obtains signal quality of the selected two antennas. Among the two antennas selected, the antenna 0 used by the transmission module 1 having the highest priority is included.
  • the transmission module 1 measures the signal quality of the antenna 0 and antenna 2 transmission signals in the system and frequency band adopted by itself, thereby obtaining the signal quality of the antenna 0 and the antenna 1.
  • the transmission module 1 compares the signal quality of the two antennas.
  • the transmission module 1 allocates antennas for four transmission modules according to the comparison result. For example, after comparing the signal quality of the antenna 2 and the antenna 0 in step S402, determining that the signal quality of the antenna 2 is higher than the signal quality of the antenna 0, assigning the antenna 2 to the transmission module 1 having the highest priority, the transmission module 1 is The antenna 0 used is assigned to the transmission module 2 of the second highest priority, and so on, the antenna 1 originally used by the transmission module 2 is assigned to the transmission module 3, and the transmission module 4 uses the antenna 3.
  • the antenna 1 is assigned to the transmission module 1 with the highest priority, and the transmission module 1 is transmitted.
  • the originally used antenna 0 is assigned to the transmission module 2 of the second highest priority, and so on. Since the antenna 1 originally used by the transmission module 2 has been allocated to the transmission module 1 and cannot be allocated to the transmission module 3, the transmission module 3 and the transmission module 4 also use the original antenna, that is, the transmission module 3 uses the antenna 2, and the transmission module 4 uses Antenna 3. As shown in Figure 4B.
  • the transmission module 1 allocates antennas to the four transmission modules according to the comparison result, and determines whether the measurement is performed for the four antennas. If the determination is yes, the process ends. If the determination is no, the process continues. Execute S401.
  • the transmission module 1 selects one antenna from the antennas other than the antenna 0 and the antenna 1 to perform measurement. .
  • the transmission module 1 selects the signal quality of the measurement antenna 2, and if it is determined that the signal quality of the antenna 2 is higher than that of the antenna 0 (after the measurement and allocation for the antenna 0 and the antenna 1 is performed, the antenna of the transmission module 1 with the highest priority is currently used).
  • the antenna 2 is assigned to the transmission module 1, and the antenna 0 originally used by the transmission module 1 is assigned to the transmission module 2 of the second highest priority, and so on. If it is determined that the signal quality of the antenna 2 is lower than the signal quality of the antenna 0, the operation of allocating the antennas for the four transmission modules is not performed this time.
  • the transmission module 1 performs an allocation operation to allocate an antenna with better signal quality to the antenna that determines that the measured antenna has better signal quality than the antenna used by the transmission module with the highest priority.
  • the transmission module with the highest priority therefore, the transmission module with the highest priority will always switch to the best antenna, and the old antenna of the last time can be regarded as the second best antenna, assigned to the transmission module with the second highest priority, and so on.
  • different antennas may have different capabilities of the supported frequency bands. Some transmission modules may only use part of the antennas instead of all antennas. Therefore, when selecting an antenna for a transmission module, it is necessary to The choice of antennas that meet the frequency band requirements of the transmission module. For example, the antenna 0 does not support the frequency band used by the transmission module 2. When the transmission module 1 needs to allocate the old antenna 0 originally used by the transmission module 1 to the transmission module 2 with the second highest priority, the antenna originally used by the transmission module 1 can be used.
  • the antenna used by the transmission module 3 is allocated to the transmission module 2, so that the antenna is allocated for the transmission module 2, and the frequency band that does not satisfy the transmission module 2 is skipped. antenna.
  • the transmission module 1 measures the signal quality of the four antennas in the system of the highest priority transmission module and the operating frequency band, and assigns the antenna with the highest signal quality to the transmission module with the highest priority, and then the transmission module 1 switches to the priority.
  • the system of the second highest transmission module and the signal quality of the remaining antennas are measured in the working frequency band, and the antenna with the highest signal quality among the remaining antennas is assigned to the transmission module with the second highest priority, and so on.
  • FIG. 5A and FIG. 5B are schematic diagrams showing the flow of an antenna allocated by the transmission module 1 according to Embodiment 3 of the present application.
  • the transmission module 1 serves as an execution body of a selection antenna for assisting other transmission modules, and other transmission modules serve as a helper body.
  • the transmission module 1 determines that it is the transmission module with the highest priority, and the transmission module 1 separately measures the signal quality of the four antennas in the system and the frequency band adopted by itself.
  • the transmission module 1 sorts the signal quality of the four antennas according to the signal quality of each antenna.
  • the transmission module 1 allocates an antenna with the best signal quality (such as the antenna 3) to the transmission module 1. See Figure 5B.
  • the transmission module 1 switches to the format of the transmission module 2 (the transmission module with the second highest priority) and the signal quality of the other three antennas except the antenna 3 respectively.
  • the transmission module 1 determines that the signal quality ranking results of the other three antennas except the antenna 3 are: antenna 0 > antenna 2 > antenna 1.
  • the transmission module 1 allocates the antenna 0 with the best signal quality among the three antennas to the transmission module 2, and so on. See the example results shown in Figure 5B for the distribution results.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the transmission module 1 determines that a scene change occurs by itself, or receives at least one of the other three transmission modules to perform antenna measurement and allocation after transmitting a notification message for notifying the reassignment antenna when a scene change occurs.
  • Scene changes include, but are not limited to, cell handover, voice call, and the like.
  • one way may be that the execution body configures all antennas to participate in measurement and allocation regardless of which help subject receives the notification message for notifying the reallocation of the antenna.
  • FIG. 6A a schematic flowchart of a transmission module 1 for distributing an antenna according to Embodiment 4 of the present application is shown.
  • a transmission module for notifying the reallocation of the antenna is transmitted to the transmission module 1 when the scenario is changed, as an example.
  • the transmission module 1 receives the notification message sent by the transmission module 2 for notifying the reassignment antenna.
  • the transmission module 1 switches to the format of the transmission module 2 and measures the signal quality of the four antennas in the working frequency band.
  • the system of the helper body and the working frequency band may be pre-configured in the execution entity (transport module 1), or may be a system in which the helper body (transport module 2) can use the notification message when transmitting the notification message to the transmission module 1 and The working frequency band is sent to the transmission module 1.
  • the transmission module 1 sorts the signal quality of the four antennas to obtain a sort result.
  • the transmission module 1 allocates antennas according to the ordering result of the signal quality of the four antennas and the priority of the four transmission modules for the four transmission modules. Assuming that the signal quality of the four antennas is ranked as follows: antenna 3 > antenna 2 > antenna 0 > antenna 1, the transmission module 1 assigns the antenna 3 with the best signal quality to the transmission module 1 with the highest priority, and the signal quality is second. The antenna 2 is assigned to the transmission module 2 of the second highest priority, and so on, the antenna 0 is assigned to the transmission module 3, and the antenna 1 is assigned to the transmission module 4.
  • FIG. 6B a schematic flowchart of a transmission module 1 for distributing an antenna according to Embodiment 4 of the present application is shown.
  • a transmission module for notifying the reallocation of the antenna is transmitted to the transmission module 1 when the scenario is changed, as an example.
  • the antenna used in the transmission module 1 is the antenna 0, the antenna used in the transmission module 2 is the antenna 1, the antenna used in the transmission module 3 is the antenna 2, and the antenna used in the transmission module 4 is the antenna 3.
  • the transmission module 1 receives the notification message sent by the transmission module 2 for notifying the reassignment antenna.
  • the transmission module 1 determines that the priority of the transmission module 2 is lower than that of the transmission module 1, and determines that the antenna 0 currently used by the transmission module 1 does not participate in measurement and allocation.
  • the transmission module 1 switches to the system of the transmission module 2 and measures the signal quality of the other three antennas except the antenna 0 in the working frequency band.
  • the system of the helper body and the working frequency band may be pre-configured in the execution entity (transport module 1), or may be a system in which the helper body (transport module 2) can use the notification message when transmitting the notification message to the transmission module 1 and The working frequency band is sent to the transmission module 1.
  • the transmission module 1 sorts the signal quality of the other three antennas to obtain a sort result.
  • the transmission module 1 allocates antennas to the three transmission modules according to the ranking results of the signal qualities of the other three antennas. Assuming that the signal quality of the other three antennas is ordered as follows: antenna 3 > antenna 2 > antenna 1, the transmission module 1 assigns the antenna 3 with the best signal quality to the transmission module 2 with the second highest priority, and the antenna 2 to the transmission module. 3. The antenna 1 is assigned to the transmission module 4.
  • the transmission module 1 before the transmission module 1 switches to the mode of the transmission module 2 and the signal quality of the four antennas in the working frequency band, the transmission module 1 further receives the notification that the transmission module 3 sends when the scene changes, for notifying the reallocation. Antenna notification message. After the transmission module 1 assigns the antenna 3 with the best signal quality to the transmission module 2 with the second highest priority, the transmission module 1 switches to the system of the transmission module 3 and measures two other antennas except the antenna 0 and the antenna 3 in the working frequency band. The signal quality of the antenna. The transmission module 1 sorts the signal qualities of the other two antennas to obtain a sort result.
  • the transmission module 1 assigns the antenna 2 with better signal quality to the transmission module 3.
  • the antenna 1 is assigned to the transmission module 4.
  • the transmission module 1 switches to the transmission module.
  • the signal quality of all antennas is measured in the system of 2 and the operating frequency band; the transmission module 1 assigns the antennas with the best signal quality among all the antennas to the transmission module 2.
  • the antennas are then sequentially allocated in accordance with the priority order of the remaining unassigned antenna transmission modules.
  • the priority of the transmission module selection antenna involved in any embodiment of the present application may be determined by, but not limited to, any of the following methods:
  • the first possible implementation pre-store the priority of 4 transmission modules in each transmission module.
  • Each of the four transmission modules can transmit its own service information or signal quality to the central control module in the event of a service change or a scene change.
  • the priority control result of the transmission module is determined by the central control module based on the service information or signal quality of each transmission module, and then the ranking result is sent to the transmission module 1. Therefore, the transmission module 1 receives the priority ranking result of the four transmission module selection antennas sent by the central control module.
  • the transmission module 1 performs an antenna allocation operation after receiving the priority ranking result sent by the central control module.
  • the transmission module 1 performs an antenna allocation operation after receiving the priority ranking result sent by the central control module.
  • the four transmission modules can transmit the signal quality of their own service information or transceiving signals to the central control module in the event of a service change or a scene change.
  • the central control module sends the service information corresponding to the four transmission modules or the signal quality of the transmission and reception signals to the transmission module 1.
  • the transmission module 1 receives the service information corresponding to the four transmission modules sent by the central control module or the signal quality of the transceiving signal, and then determines each transmission module based on the service information corresponding to the four transmission modules or the signal quality of the transceiving signal. Prioritize and sort to get sorted results.
  • the transmission module 1 determines the priority of each transmission module based on the service information corresponding to the service information of the four transmission modules or the signal quality of the transmission and reception signals, and sorts and obtains the ranking result, and then performs For the antenna allocation operation, refer to Embodiment 1 to Embodiment 4 for specific operations.
  • the transmission module 1 determines its own priority-related information, and receives priority-related information respectively sent by the other three transmission modules; the priority-related information includes service information currently processed by the transmission module and/or a signal for transmitting and receiving signals.
  • the transmission module 1 determines the priority ranking result of the selection antennas of the four transmission modules based on the priority related information corresponding to the four transmission modules.
  • the transmission module 1 performs an antenna allocation operation each time after determining the priority ranking result.
  • the priority ranking result of the transmission module can also be pre-configured in the central control module.
  • the transmission module can send a message notification to the central control module when a service change or a scene change occurs, and then the priority of the transmission module is determined by the central control module.
  • the sort result is sent to the transmission module 1.
  • the transmission module 1 performs the antenna allocation operation after receiving the priority ranking result sent by the central control module.
  • the transmission module 1 performs the antenna allocation operation after receiving the priority ranking result sent by the central control module.
  • the foregoing second, third, and fifth possible implementations are applicable to the case where the central control module is configured in the multimode terminal.
  • the fourth possible implementation is applicable to the case where the central control module is not configured in the multimode terminal.
  • FIG. 7B For the specific architecture, refer to FIG. 7B.
  • FIG. 8 is a structural diagram of a unit of a first transmission module used for antenna selection in at least two transmission modules included in a multimode terminal according to an embodiment of the present invention.
  • the first transmission module includes:
  • a measuring unit 801 configured to determine signal quality of the at least two antenna transceiving signals
  • a determining unit 802 configured to determine a priority ranking result of the at least two transmission modules to select an antenna
  • the allocating unit 803 is configured to allocate an antenna to the at least two transmission modules according to a priority ranking result of the at least two transmission modules and a signal quality corresponding to the at least two antennas respectively.
  • the measuring unit 801 when determining the signal quality of the transmit and receive signals of the at least two antennas, specifically And measuring the signal quality of the at least two antenna transceiving signals in a system and a frequency band used by the first transmission module.
  • the measuring unit 801 is configured to measure signal quality of the at least two antenna transceiving signals in a format and a frequency band used by the first transmission module;
  • the first transmission module further includes: a compensation unit 804, configured to separately perform signal quality corresponding to the measured antennas other than the antenna currently used by the first transmission module:
  • the first antenna is any one of antennas other than the antenna currently used by the first transmission module;
  • the second transmission module is a transmission module that uses the first antenna to transmit and receive signals, the The signal compensation value between the second transmission module and the first transmission module is determined based on a difference between a frequency band used by the second transmission module and the first transmission module and a communication system.
  • the allocating unit 803 is specifically configured to:
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the third transmission module.
  • the measuring unit 801 is further configured to determine, according to a priority ranking result of the at least two transmission modules, a fourth transmission module having the highest priority among the transmission modules of the currently unassigned antenna; in the fourth transmission The system used in the module and the signal quality of the signal transmitted and received by each antenna of the at least two antennas that are not involved in the allocation;
  • the allocating unit 803 is specifically configured to allocate an antenna with the best signal quality among the antennas that are not involved in the allocation of the at least two antennas to the fourth transmission module.
  • the first transmission module further includes a receiving unit 805: configured to receive the at least two transmission modules before the determining unit 802 determines a priority ranking result of the at least two transmission module selection antennas And a notification message sent by the at least one transmission module other than the first transmission module to notify the reallocation antenna.
  • a receiving unit 805 configured to receive the at least two transmission modules before the determining unit 802 determines a priority ranking result of the at least two transmission module selection antennas And a notification message sent by the at least one transmission module other than the first transmission module to notify the reallocation antenna.
  • the allocating unit 803 is further configured to allocate an antenna to the at least two transmission modules according to a priority ranking result of the at least two transmission modules and a signal quality corresponding to the at least two antennas respectively.
  • the transmission module including the highest priority among the at least one transmission module is determined according to the priority ranking result.
  • the measuring unit 801 is further configured to determine, according to the priority ranking result, that the at least one transmission module does not include a transmission module with the highest priority; and that the transmission module that has a lower priority than the first priority Measuring, by using the signal quality of the antenna transceiver signal, the first priority is the highest priority among the priorities corresponding to the at least one transmission module respectively;
  • the allocating unit 803 is further configured to allocate an antenna to the at least one transmission module according to a priority of the at least one transmission module and a signal quality of an antenna used by a transmission module having a lower priority than the first priority.
  • the measuring unit 801 is further configured to measure a signal quality of a second antenna transceiving signal currently used by the fifth transmission module with the highest priority, and one by one in a format and a frequency band used by the first transmission module. Measuring a signal quality of the antenna transmit and receive signals of the at least two antennas other than the second antenna;
  • the allocating unit 803 is further configured to: when the measuring unit 801 measures a third antenna whose signal quality is higher than the second antenna, assign the third antenna to the fifth transmission module, and The antenna currently used by the five transmission modules is assigned to the transmission module having the highest priority except the fifth transmission module.
  • the determining unit 802 is specifically configured to sort the priorities of the pre-configured at least two transmission module selection antennas to obtain a priority ranking result.
  • the receiving unit 805 is further configured to receive a priority ranking result of the at least two transmission module selection antennas sent by the central control module.
  • the determining unit 802 is further configured to use the priority related information of the first transmission module, where the receiving unit is further configured to receive priority related information sent by the other transmission modules of the at least two transmission modules;
  • the priority-related information includes service information currently processed by the transmission module and/or signal quality of the transceiving signal; the determining unit 802 determines the at least two transmissions based on priority-related information respectively corresponding to the at least two transmission modules The module selects the priority ordering result of the antenna.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the first transmission module may be a baseband chip, a Bluetooth communication chip, a WIFI communication chip, or the like.
  • the hardware implementation of the terminal device can also refer to FIG. 1 and its related description. Specifically:
  • the memory 130 is configured to store program code
  • the processor 120 is configured to execute the program code stored by the memory 130, specifically for controlling the first one of the at least two transmission modules to perform the following operations:
  • the at least two transmission modules are configured to transmit and receive signals based on an antenna allocated by the first transmission module.
  • the processor 120 is configured to: when the first transmission module is configured to perform signal quality determination of the transmit and receive signals of the at least two antennas, specifically:
  • the processor 120 is specifically configured to control the first transmission module to perform when the first transmission module is configured to determine a signal quality of the at least two antennas:
  • the first antenna is any one of antennas other than the antenna currently used by the first transmission module;
  • the second transmission module is a transmission module that uses the first antenna to transmit and receive signals, the The signal compensation value between the second transmission module and the first transmission module is determined based on a difference between a frequency band used by the second transmission module and the first transmission module and a communication system.
  • the processor 120 is configured to perform according to the at least two transmission modules after controlling the first transmission module
  • the priority ranking result and the signal quality corresponding to the at least two antennas are respectively allocated to the at least two transmission modules, specifically for controlling the first transmission module to perform:
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the third transmission module.
  • the processor 120 is configured to determine, by the first transmission module, a signal quality of the transceiver signals of the at least two antennas, and determine a priority ranking result of the at least two transmission module selection antennas;
  • the first transmission module allocates an antenna to the at least two transmission modules according to the priority ranking result of the at least two transmission modules and the signal quality respectively corresponding to the at least two antennas, specifically, the first transmission module is configured to control the A transmission module performs:
  • An antenna having the best signal quality among the antennas not participating in the allocation among the at least two antennas is allocated to the fourth transmission module.
  • the processor 120 is further configured to control the first transmission module to receive the at least one before receiving the first transmission module to determine a priority ranking result of the at least two transmission module selection antennas.
  • the processor 120 is configured to control the first transmission module according to the priority ranking result of the at least two transmission modules, and the signal quality corresponding to the at least two antennas respectively are at least two Before the transmission module allocates the antenna, the first transmission module is further configured to determine, according to the priority ranking result, a transmission module that includes the highest priority among the at least one transmission module.
  • the processor 120 is further configured to control the first transmission module to perform:
  • the first priority is the highest priority among the priorities corresponding to the at least one transmission module respectively;
  • the processor 120 is configured to determine, by the first transmission module, a signal quality of the transceiver signals of the at least two antennas, and determine a priority ranking result of the at least two transmission modules to select an antenna; and Determining, by the first transmission module, the execution of the first transmission module according to the priority ranking result of the at least two transmission modules and the signal quality respectively corresponding to the at least two antennas are respectively allocated to the at least two transmission modules:
  • the processor 120 is specifically configured to control the first transmission module to perform when the first transmission module determines that the at least two transmission modules select the priority ranking result of the antenna:
  • the priority-related information includes service information currently processed by the at least two transmission modules and And/or a signal quality of the received and received signals; determining a prioritization result of the at least two transmission module selection antennas based on the priority related information respectively corresponding to the at least two transmission modules.
  • the central control module is further included;
  • the processor 120 is further configured to control, by the central control module, the priority ranking result of the at least two transmission module selection antennas to be sent to the first transmission module.
  • the embodiment of the present application further provides a computer storage medium, where the software program stores a software program, and the software program can implement the method provided by the foregoing embodiment when being read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种应用于多模终端的天线选择方法及多模终端,用于解决由于天线分配不均而影响通信质量的问题。所述多模终端包括:至少两个传输模块以及至少两个天线;所述至少两个传输模块被配置为能够单独通过所述至少两个天线中的一个天线收发信号;所述方法包括:所述至少两个传输模块中的第一传输模块确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线。

Description

一种应用于多模终端的天线选择方法及多模终端
本申请要求在2017年2月25日提交中国专利局、申请号为201710105090.4、发明名称为“一种多模终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种应用于多模终端的天线选择方法及多模终端。
背景技术
随着无线通信技术的发展,出现了多模终端,多模终端中配置了多个天线以及多个能够通过天线收发信号的传输模块,比如采用以下任一通信制式的传输模块:全球移动通信系统(global system of mobile communication,GSM)、长期演进(Long Term Evolution,LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMax)、无线局域网(Wireless Local Area Networks,WLAN)、蓝牙(Bluetooth)等等,再比如在载波聚合场景中的主载波对应的传输模块,以及副载波对应的传输模块等等。
目前在针对多模终端中各个传输模块选择天线时,一种方式是针对每个传输模块固定配置一个天线,如果未执行数据传输任务的传输模块配置的天线的信号较好,而正在执行数据传输任务的传输模块天线的信号较差的时候,导致天线分配不均,影响通信质量;另一种方式是配置一个传输模块能够选择最佳天线,这样来说其它传输模块无法选择天线,也会由于天线分配不均而影响通信质量。
发明内容
本申请实施例提供了一种应用于多模终端的天线选择方法及多模终端,用于解决由于天线分配不均而影响通信质量的问题。
第一方面,本申请实施例提供了一种应用于多模终端的天线选择方法,所述多模终端包括:至少两个传输模块以及至少两个天线;所述至少两个传输模块被配置为能够单独通过所述至少两个天线中的一个天线收发信号;所述方法包括:
所述至少两个传输模块中的第一传输模块确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并
根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线。
上述方案中,选择多模终端中的一个传输模块作为天线选择方法的执行主体,通过该传输模块为多模终端中其他传输模块分配天线。通过一个传输模块协助其它传输模块选择天线,提高了多模终端天线分配的均衡性,并降低了天线配置过程对通信质量的影响。
在一种可能的设计中,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,包括:
所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个 天线收发信号的信号质量。上述设计中,提供了一种简单有效的测量天线收发信号的信号质量的方式。
在一种可能的设计中,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,包括:
所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
上述设计,在对各个天线的收发信号的信号质量进行排序时去补偿传输模块之间由于工作频段以及制式差异带来的对使用天线的信号质量的影响。
在一种可能的设计中,所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
所述第一传输模块根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
上述设计中,将信号质量好的分配给优先级高的传输模块,保证了优先级高的传输模块的通信质量。
在一种可能的设计中,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
所述第一传输模块根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;
所述第一传输模块在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
所述第一传输模块将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
上述设计中,第一传输模块在优先级最高的传输模块的制式以及工作频段下测量4个天线的信号质量,将信号质量最高的天线分配给优先级最高的传输模块,然后第一传输模块切换到优先级次高的传输模块的制式以及工作频段下测量剩余的天线的信号质量,将剩余的天线中信号质量最高的天线分配给优先级次高的传输模块,依此类推。从而提高了测量天线信号的准确性。
在一种可能的设计中,所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果之前,所述方法还包括:
所述第一传输模块接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。上述设计中,第一传输模块在收到其它传输模块通知消息时,再执行分配天线。
在一种可能的设计中,所述根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,所述方法还包括:
所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
上述设计中,在确定发送通知消息中的所述至少一个传输模块中包括优先级最高的传输模块,针对所有的天线执行信号测量。
在一种可能的设计中,所述方法还包括:
所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;
所述第一传输模块针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
所述第一传输模块根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
上述设计,在确定未收到优先级最高的传输模块发送的通知消息,则优先级最高的传输模块所使用的天线不参与分配,从而提高了优先级高的传输模块由于天线切换导致的通信质量降低。
在一种可能的设计中,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
所述第一传输模块测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
在测量到信号质量高于第二天线的第三天线时,所述第一传输模块将所述第三天线分配给所述第五传输模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
上述设计中,其中,由于每一次,第一传输模块1在确定测量的天线中存在比优先级最高的第一传输模块所使用的天线的信号质量更好的天线时,则执行分配操作,将信号质量更好的天线分配给优先级最高的传输模块,因此,优先最高的传输模块永远都会切换到最佳天线,而上一次的旧天线就可视为次佳天线,分配给优先级次高的传输模块,依此类推。
在一种可能的设计中,所述确定所述至少两个传输模块选择天线的优先级排序结果,包括:
所述第一传输模块将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果;或者,
所述第一传输模块接收中控模块发送的所述至少两个传输模块选择天线的优先级排序结果;或者,
所述第一传输模块确定自身的优先级相关信息,以及接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括传输模块当前处理的业务信息和/或收发信号的信号质量;所述第一传输模块基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
上述设计中,多个传输模块之间通过消息传递业务信息和/或收发信号的信号质量,从而能够确定传输模块的优先级排序结果。
第二方面,本申请实施例提供了一种多模终端,所述多模终端包括存储器、处理器、至少两个传输模块以及至少两个天线;所述至少两个天线用于收发信号,所述至少两个传输模块被配置为能够单独通过所述至少两个天线中的一个天线收发信号;
所述存储器,用于存储程序代码;
所述处理器,用于执行所述存储器存储的程序代码,具体用于控制所述所述至少两个传输模块中的第一传输模块执行如下操作:
确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并
根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线;
所述至少两个传输模块,用于基于所述第一传输模块分配的天线收发信号。
在一种可能的设计中,所述处理器,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于:
控制所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量。
在一种可能的设计中,所述处理器,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于控制所述第一传输模块执行:
在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
在一种可能的设计中,所述处理器,在控制所述第一传输模块执行根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
在一种可能的设计中,所述处理器,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;
在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
在一种可能的设计中,所述处理器,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果之前,还用于控制所述第一传输模块接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。
在一种可能的设计中,所述处理器,在控制所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,还用于控制所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
在一种可能的设计中,所述处理器,还用于控制所述第一传输模块执行:
根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;
针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
在一种可能的设计中,所述处理器,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
在测量到信号质量高于第二天线的第三天线时,将所述第三天线分配给所述第五传输模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
在一种可能的设计中,所述处理器,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果时,具体用于控制所述第一传输模块执行:
将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果;或者,
确定自身的优先级相关信息,以及接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括所述至少两个传输模块当前处理的业务信息和/或收发信号的信号质量;基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
在一种可能的设计中,还包括中控模块;
所述处理器,还用于控制所述中控模块向所述第一传输模块发送所述至少两个传输模块选择天线的优先级排序结果。
第二方面,本申请实施例提供了一种应用于多模终端的天线选择装置,该装置具有实现上述第一方面实例中第一传输模块行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储软件程序,所述软件程序在被一个或多个处理器读取并执行时可实现上述方法。
附图说明
图1为本申请实施例提供的终端设备结构示意图;
图2为本申请实施例提供的多模终端结构示意图;
图3A为本申请实施例一提供的天线选择方法流程图;
图3B为本申请实施例一提供的天线选择方法流程示意图;
图4A为本申请实施例二提供的天线选择方法流程图;
图4B为本申请实施例二提供的天线选择方法流程示意图;
图5A为本申请实施例三提供的天线选择方法流程图;
图5B为本申请实施例三提供的天线选择方法流程示意图;
图6A为本申请实施例四提供的天线选择方法流程图;
图6B为本申请实施例四提供的天线选择方法流程示意图;
图7A为本申请实施例提供的包括中控模块的消息传输架构示意图;
图7B为本申请实施例提供的不包括中控模块的消息传输架构示意图;
图8为本申请实施例提供的第一传输模块结构示意图。
具体实施方式
参考图1所示,为本申请实施例应用的终端设备的硬件结构示意图。如图1所示,终端设备100包括射频电路110、处理器120以及存储器130以及天线140。存储器130可用于存储软件程序以及数据,处理器120通过运行存储在存储器130的软件程序以及数据,从而执行终端设备100的各种功能应用以及数据处理。存储器130可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件等。处理器120是终端设备100的控制中心,利用各种接口和线 路连接整个终端设备的各个部分,通过运行或执行存储在存储器130内的软件程序和/或数据,执行终端设备100的各种功能和处理数据,从而对终端设备100进行整体监控。处理器120可以包括一个或多个通用处理器,还可以包括一个或多个数字信号处理器(英文:Digital Signal Processor,简称:DSP),用于执行相关操作。射频电路110可以耦合到天线140。天线140可以包括多个,终端设备100的各个组件通过总线150耦合在一起,总线150在图1中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线150可以分为地址总线、数据总线、控制总线等。为便于表示,图1中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。终端设备100还包括传输模块160,传输模块160为终端设备100中可以单独使用天线来发射或接收信号的模块,即可以通过射频电路110与天线140交互。终端设备100中可以包括多个传输模块。作为示例,传输模块160可以是基带芯片、蓝牙通信芯片、WIFI通信芯片等。其中一个硬件通信芯片中可以包括多个传输模块,或多个硬件通信芯片共同组成为一个传输模块,在此不作具体限定。
传输模块可以是采用以下任一通信制式的传输模块:全球移动通信系统(global system of mobile communication,GSM)、全入网通信系统(Total Access Communication System,TACS)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址系统(Code Division Multiple Access,CDMA)、码分多址2000系统(CDMA 2000)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、长期演进(Long Term Evolution,LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMax)、无线局域网(Wireless Local Area Networks,WLAN)、蓝牙(Bluetooth)等等通信制式,随着通信技术的不断发展,还可以支持新增的其它类型的通信制式。传输模块还可以但不仅限于包括:主卡(主模,是指一种通信制式,比如LTE)的主集、或者主卡(主模)的分集、或者副卡(副模)的主集、或者副卡(副模)的分集、主卡(主模)的副载波主集、副卡(副模)的副载波分集、SVLTE的CDMA主集、SVLTE的CDMA分集、SVLTE的LTE主集或者SVLTE的LTE分集。本申请实施例中对传输模块不作具体限定,只要能够单独使用天线来接收或者发送信号的模块均适用于本申请实施例。
本申请实施例的终端设备可以是包括天线的电子设备,包括但不限于个人计算机、服务器计算机、手持式或膝上型设备、移动设备(比如手机、移动电话、平板电脑、个人数字助理、媒体播放器等等)、消费型电子设备、小型计算机、大型计算机,等通过天线通信的设备使用本申请实施例提供的多模终端的天线选择方案。
以手机为例,现有中无论手机上总共有多少个天线,但只有两个天线参与选择,每个传输模块只能在两个天线上选择比较好的一方,若第三个天线比较好也无法切换过去。比如手机上有4个天线,传输模块1对其中2个天线来执行好坏判断,从这两个天线中选择信号质量好的天线作为通信天线。除传输模块1以外的其他主体只能使用预先配置好的天线,或被动地被排挤到使用信号质量差的天线,无法自行判断与选择好天线。
若要让多个传输模块都能享受到多天线选择的收益,可以让每个传输模块轮流对天线的信号质量进行判断或选择。例如高优先级的传输模块从所有天线选择出最佳天线后,次优先级的传输模块再在剩下的多个天线中选择出次佳天线,根据传输模块的优先级以此类推。但轮流的方法需要所有传输模块都选择一次天线,天线配置的时间会被拉长,造成已 选择过天线的传输模块(如高优先级的传输模块)要等很久才能执行第二次天线选择的流程。在快速移动场景下,如果当前信号波动剧烈,会导致高优先级的传输模块来不及切换天线而发生断连。
而若采用多传输模块任意切换天线,可能会造成一个传输模块测量天线时,被别的传输模块抢走该天线,甚至造成多个传输模块同时选择同一个天线,导致天线配置混乱。
基于此,本申请实施例提出了一种应用于多模终端的天线选择方法及装置,选择多模终端中的一个传输模块作为天线选择方法的执行主体,通过该传输模块为多模终端中其他传输模块分配天线。通过一个传输模块协助其它传输模块选择天线,提高了多模终端天线分配的均衡性,并降低了天线配置过程对通信质量的影响。
另外需要说明的是,本申请的描述中的“多个”,是指“两个或两个以上”。在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面以多模终端包括4个传输模块以及4个天线为例,参见图2所示,对本申请实施例提供的应用于多模终端的天线选择方案进行具体描述。图2所示的多模终端中包括传输模块1~4,以及天线0~3。其中,传输模块1作为执行天线选择的主体,不仅为自身选择天线,也为其它传输模块分配天线。
实施例一
传输模块1在传输模块1所采用的制式以及频段下测量上述4个天线收发信号的信号质量,并根据4个天线的信号质量以及4个传输模块的优先级,为4个传输模块分配天线。
参见图3A和3B所示为本申请实施例一提供的传输模块1分配天线的流程示意图。
其中,假设传输模块1的优先级>传输模块2的优先级>传输模块3的优先级>传输模块4。在实施例一中不限定执行天线选择方案的传输模块的优先级,可以为优先级最高的传输模块,也可以是优先级最低的传输模块,当然还可以是其它优先级的传输模块。
S301,传输模块1在所述传输模块1所采用的制式以及频段下测量上述4个天线收发信号的信号质量。
S302,传输模块1针对测量得到的4个天线的收发信号的信号质量进行排序。排序结果参见图3B所示,天线3>天线2>天线0>天线4。
S303,传输模块1根据优先级排序结果将4个天线分配给4个传输模块。
具体的,传输模块1确定当前优先级最高为传输模块1,从而将信号质量最高的天线3分配给传输模块1。传输模块中优先级次高为传输模块2,从而将信号质量次佳的天线2分配给所述传输模块2。以此类推,天线0分配给传输模块3,信号质量最差的天线1分配给优先级最低的传输模块4,参见图3B所示。
本申请实施例中,不同的天线可能存在所支持的频段能力的差别,某些传输模块可能只能使用部分天线,而非全部天线,因此,在为某个传输模块选择天线时,需要从能满足该传输模块的频段要求的天线中选择。比如,天线2不支持传输模块2采用的频段,传输模块1在为传输模块2分配天线时,从除天线2以外的其它3个天线中为传输模块2(传输模块2的优先级次高)分配天线,比如将4个天线中除天线2以外的信号质量次佳的天线0分配给传输模块2。
因为不同的传输模块之间可能有频段以及通信制式的差异,因此传输模块1在其自身 所采用的制式以及频段下测量得到的天线收发信号的信号质量,与另一传输模块在其自身所采用的制式以及频段下测量得到的同一天线收发信号的信号质量会有差异。例如,传输模块1在自身制式及频段下测量得到信号质量最好的天线为天线3,传输模块1将天线3分配至传输模块2(假设传输模块2的优先级最高)。由于传输模块2的制式及工作频段与传输模块1的制式及工作频段不同,造成传输模块2使用天线3时,收发信号的信号质量并不好。
因此,可以预先获取传输模块1的制式以及工作频段与目标传输模块的制式以及工作之间差距,在针对4个天线的收发信号的信号质量进行排序时去补偿传输模块之间由于工作频段以及制式差异带来的对使用天线的信号质量的影响。
具体的,所述传输模块1在传输模块1所采用的制式以及工作频段下测量上述4个天线收发信号的信号质量;针对测量得到的除所述传输模块1当前使用的天线以外的其它天线对应的信号质量均执行如下操作:
基于所述传输模块i与所述传输模块1之间的信号补偿值,针对第j天线对应的信号质量进行补偿,得到补偿后的第j天线的信号质量;其中,所述传输模块i与所述传输模块1之间的信号补偿值,预先基于所述传输模块i与所述传输模块1之间所采用频段以及通信制式的差异确定;第j天线是传输模块i当前所使用的天线。
比如,传输模块1采用的天线为天线0,传输模块2采用的天线为天线1,传输模块3采用的天线为天线2,传输模块4采用的天线为天线3。则基于所述传输模块2与所述传输模块1之间的信号补偿值,针对天线1对应的信号质量进行补偿,得到补偿后的天线1的信号质量;基于所述传输模块3与所述传输模块1之间的信号补偿值,针对天线2对应的信号质量进行补偿,得到补偿后的天线2的信号质量;基于所述传输模块4与所述传输模块1之间的信号补偿值,针对天线3对应的信号质量进行补偿,得到补偿后的天线3的信号质量。将天线0的信号质量、补偿后的天线1的信号质量、补偿后的天线2的信号质量、补偿后的天线3的信号质量进行排序。假设经过补偿后的4个天线的信号质量排序结果为:天线3>天线2>天线1>天线0,从而传输模块1确定当前优先级最高为传输模块1,从而将信号质量最高的天线3分配给传输模块1。4个传输模块中优先级次高为传输模块2,从而传输模块1将信号质量次佳的天线2分配给所述传输模块2。以此类推,天线1分配给传输模块3,信号质量最差的天线0分配给优先级最低的传输模块4。
实施例二
执行天线选择方案的传输模块1在测量完两个天线后,发现有信号质量比优先级最高的传输模块所使用的天线更好的天线时,将发现的信号质量更好的天线分配给优先级最高的传输模块,将优先级最高的传输模块所采用的旧天线分配给优先级次高的传输模块,以此类推。
参见图4A和图4B所示为本申请实施例二提供的传输模块1分配天线的流程示意图。
假设传输模块1的优先级>传输模块2的优先级>传输模块3的优先级>传输模块4。比如,传输模块1采用的天线为天线0,传输模块2采用的天线为天线1,传输模块3采用的天线为天线2,传输模块4采用的天线为天线3。在实施例一中不限定执行天线选择方案的传输模块的优先级,可以为优先级最高的传输模块,也可以是优先级最低的传输模块,当然还可以是其它优先级的传输模块。
S401,所述传输模块1选择两个天线进行测量,得到选择的两个天线的信号质量。其中选择的两个天线中包括优先级最高的传输模块1所采用的天线0。
比如,传输模块1在自身采用的制式和频段下测量天线0和天线2传输信号的信号质量,从而得到天线0和天线1的信号质量。
S402,所述传输模块1比较两个天线的信号质量。
S403,所述传输模块1根据比较结果为4个传输模块分配天线。比如,经过步骤S402比较天线2和天线0的信号质量后,确定天线2的信号质量高于天线0的信号质量,则将天线2分配给优先级最高的传输模块1,则将传输模块1原来使用的天线0分配给优先级次高的传输模块2,以此类推,传输模块2原来使用的天线1分配给传输模块3,传输模块4使用天线3。
再比如,经过步骤S402比较天线0和天线1的信号质量后,确定天线0的信号质量低于天线1的信号质量,则将天线1分配给优先级最高的传输模块1,则将传输模块1原来使用的天线0分配给优先级次高的传输模块2,依此类推。由于传输模块2原来使用的天线1已经分配给传输模块1,无法分配给传输摸块3,因此传输模块3和传输模块4还使用原来的天线,即传输模块3采用天线2,传输模块4采用天线3。如图4B所示。
S404,在执行完步骤S403所述传输模块1根据比较结果为4个传输模块分配天线后,确定是否针对4个天线均执行了测量,若确定为是,流程结束,若确定为否,则继续执行S401。
比如,以仅针对天线0和天线1执行完测量及分配,其它天线均为执行测量为例,所述传输模块1再从4个天线除天线0和天线1以外的天线中选择一个天线执行测量。比如,传输模块1选择测量天线2的信号质量,若确定天线2的信号质量高于天线0(经过针对天线0和天线1执行完测量及分配后,优先级最高的传输模块1当前采用的天线为天线0)的信号质量,则将天线2分配给传输模块1,并将传输模块1原来使用的天线0分配给优先级次高的传输模块2,以此类推。若确定天线2的信号质量低于天线0的信号质量,则此次不执行为4个传输模块分配天线的操作。
其中,由于每一次,传输模块1在确定测量的天线中存在比优先级最高的传输模块所使用的天线的信号质量更好的天线时,则执行分配操作,将信号质量更好的天线分配给优先级最高的传输模块,因此,优先最高的传输模块永远都会切换到最佳天线,而上一次的旧天线就可视为次佳天线,分配给优先级次高的传输模块,依此类推。
本申请实施例中,不同的天线可能存在所支持的频段能力的差别,某些传输模块可能只能使用部分天线,而非全部天线,因此,在为某个传输模块选择天线时,需要从能满足该传输模块的频段要求的天线中选择。比如,天线0不支持传输模块2采用的频段,传输模块1在需要将传输模块1原来使用的旧天线0分配给优先级次高的传输模块2时,则可以将传输模块1原来使用的天线0分配给传输模块3(优先级次于传输模块2),而将传输模块3使用的天线分配给传输模块2,从而在为传输模块2分配天线,跳过不满足传输模块2的频段要求的天线。
实施例三
传输模块1在优先级最高的传输模块的制式以及工作频段下测量4个天线的信号质量,将信号质量最高的天线分配给优先级最高的传输模块,然后传输模块1切换到优先级 次高的传输模块的制式以及工作频段下测量剩余的天线的信号质量,将剩余的天线中信号质量最高的天线分配给优先级次高的传输模块,依此类推。
参见图5A和图5B所示为本申请实施例三提供的传输模块1分配天线的流程示意图。其中,传输模块1作为协助其他传输模块的选择天线的执行主体,其他传输模块作为求助主体。
假设传输模块1的优先级>传输模块2的优先级>传输模块3的优先级>传输模块4。
S501,传输模块1确定自身为优先级最高的传输模块,则传输模块1在自身所采用的制式以及频段下分别测量上述4个天线的信号质量。
S502,传输模块1根据每个天线的信号质量对4个天线的信号质量进行排序。
假设排序结果为天线3>天线2>天线0>天线1。
S503,传输模块1将信号质量最佳的天线(比如天线3)分配给传输模块1。参见图5B所示。
S504,传输模块1切换到传输模块2(优先级次高的传输模块)的制式以及工作频段下分别测量除天线3以外的其它3个天线的信号质量。传输模块1确定除天线3以外的其它3个天线的信号质量排序结果为:天线0>天线2>天线1。
S505,传输模块1将3个天线中信号质量最佳的天线0分配给传输模块2,依次类推。分配结果参见图5B所示的示例结果。
实施例四:
所述传输模块1确定自身发生场景变化,或者接收到其它3个传输模块中的至少一个传输模块在发生场景变化时发送的用于通知重新分配天线的通知消息后,执行天线测量以及分配。场景变化包括但不仅限于:发生小区切换、发生语音通话等。
在执行天线测量以及分配时,一种方式可以是:无论接收到哪个求助主体发送的用于通知重新分配天线的通知消息,执行主体配置所有的天线均参与测量及分配。
参见图6A所示,本申请实施例四提供的传输模块1分配天线的流程示意图。
假设传输模块1的优先级>传输模块2的优先级>传输模块3的优先级>传输模块4。以优先级次高的传输模块在场景变化时向传输模块1发送用于通知重新分配天线的通知消息为例进行说明。
S601A,传输模块1接收到传输模块2发送的用于通知重新分配天线的通知消息。
S602A,传输模块1切换到传输模块2的制式以及工作频段下测量4个天线的信号质量。
其中,求助主体的制式以及工作频段可以预先配置在执行主体(传输模块1)中,还可以是,求助主体(传输模块2)在向传输模块1发送通知消息时,可以将自身采用的制式以及工作频段发送给传输模块1。
S603A,传输模块1对所述4个天线的信号质量进行排序得到排序结果。
S604A,传输模块1根据4个天线的信号质量的排序结果以及4个传输模块的优先级为4个传输模块分配天线。假设4个天线的信号质量排序为:天线3>天线2>天线0>天线1,则传输模块1将信号质量最好的天线3分配给优先级最高的传输模块1,将信号质量次好的天线2分配给优先级次高的传输模块2,依此类推,天线0分配给传输模块3,天线1分配给传输模块4。
在执行天线测量以及分配时,另一种可以方式是:若求助主体优先级较低,可保留高优先级主体当前使用的天线不进行代理测量,只测量以及排序剩下的天线,并从中选出信号质量好的天线给求助主体。若求助主体优先级较高,可让所有天线参与代理测量,从中选出好天线给求助主体。
参见图6B所示,本申请实施例四提供的传输模块1分配天线的流程示意图。
假设传输模块1的优先级>传输模块2的优先级>传输模块3的优先级>传输模块4。以优先级次高的传输模块在场景变化时向传输模块1发送用于通知重新分配天线的通知消息为例进行说明。传输模块1采用的天线为天线0,传输模块2采用的天线为天线1,传输模块3采用的天线为天线2,传输模块4采用的天线为天线3。
S601B,传输模块1接收到传输模块2发送的用于通知重新分配天线的通知消息。
S602B,传输模块1确定传输模块2的优先级低于传输模块1,确定传输模块1当前采用的天线0不参与测量及分配。
S603B,传输模块1切换到传输模块2的制式以及工作频段下测量除天线0以外的其它3个天线的信号质量。
其中,求助主体的制式以及工作频段可以预先配置在执行主体(传输模块1)中,还可以是,求助主体(传输模块2)在向传输模块1发送通知消息时,可以将自身采用的制式以及工作频段发送给传输模块1。
S604B,传输模块1对所述其它3个天线的信号质量进行排序得到排序结果。
S605B,传输模块1根据其它3个天线的信号质量的排序结果为3个传输模块分配天线。假设其它3个天线的信号质量排序为:天线3>天线2>天线1,则传输模块1将信号质量最好的天线3分配给优先级次高的传输模块2,将天线2分配给传输模块3,天线1分配给传输模块4。
可选地,在步骤S603B传输模块1切换到传输模块2的制式以及工作频段下测量4个天线的信号质量之前,传输模块1还接收到传输模块3在场景变化时发送的用于通知重新分配天线的通知消息。则传输模块1将信号质量最好的天线3分配给优先级次高的传输模块2之后,传输模块1切换到传输模块3的制式以及工作频段下测量除天线0以及天线3以外的其它2个天线的信号质量。传输模块1对所述其它2个天线的信号质量进行排序得到排序结果。假设其它2个天线的信号质量排序为:天线2>天线1,由于传输模块3的优先级高于传输模块4的优先级,则传输模块1将信号质量较好的天线2分配给传输模块3,将天线1分配给传输模块4。
另外,若传输模块2是4个传输模块中优先级最高的传输模块,并且传输模块1接收到传输模块2发送的用于通知重新分配天线的通知消息,从而传输模块1切换到所述传输模块2的制式以及工作频段下测量所有天线的信号质量;传输模块1将所有天线中信号质量最好的天线分配给所述传输模块2。然后按照剩余的未分配天线的传输模块的优先级先后顺序,依次分配天线。
本申请的任一实施例中涉及的传输模块选择天线的优先级可以通过但不仅限于如下任一方式确定:
第一种可能的实现方式:预先存储在每个传输模块中4个传输模块的优先级。
第二种可能的实现方式:
4个传输模块中每个传输模块可以在发生业务变更或者场景变化等情况下将自身的业务信息或者信号质量发送给中控模块。由中控模块基于每个传输模块的业务信息或者信号质量确定传输模块的优先级排序结果,然后将排序结果发送给传输模块1。从而所述传输模块1接收中控模块发送的所述4个传输模块选择天线的优先级排序结果。
在上述第二种可能的实现方式下,传输模块1每次在接收到中控模块发送的优先级排序结果后,执行天线分配操作,具体操作可以参见实施例1至实施例4。
第三种可能的实现方式:
4个传输模块可以在发生业务变更或者场景变化等情况下将自身的业务信息或者收发信号的信号质量发送给中控模块。中控模块将4个传输模块分别对应的业务信息或者收发信号的信号质量发送给传输模块1。传输模块1接收到由中控模块发送的4个传输模块分别对应的业务信息或者收发信号的信号质量,然后基于4个传输模块分别对应的业务信息或者收发信号的信号质量,确定每个传输模块的优先级,并排序得到排序结果。
在上述第三种可能的实现方式下,传输模块1每次基于4个传输模块分别对应的业务信息或者收发信号的信号质量,确定每个传输模块的优先级,并排序得到排序结果后,执行天线分配操作,具体操作可以参见实施例1至实施例4。
第四种可能的实现方式:
所述传输模块1确定自身的优先级相关信息,以及接收其它3个传输模块分别发来的优先级相关信息;所述优先级相关信息包括传输模块当前处理的业务信息和/或收发信号的信号质量;所述传输模块1基于所述4个传输模块分别对应的优先级相关信息确定所述4个传输模块选择天线的优先级排序结果。
在上述第四种可能的实现方式下,传输模块1每次确定优先级排序结果后,执行天线分配操作,具体操作可以参见实施例1至实施例4。
第五种可能的实现方式:
传输模块的优先级排序结果还可以预先配置在中控模块中,传输模块可以在发生业务变更或者场景变化等情况下,发送消息通知给中控模块,然后由中控模块将传输模块的优先级排序结果发送给传输模块1。
在上述第五种可能的实现方式下,传输模块1每次接收到中控模块发送的优先级排序结果后,执行天线分配操作,具体操作可以参见实施例1至实施例4。
上述第二种、第三种以及第五种可能的实现方式适用于在多模终端中配置有中控模块的情况,具体架构可以参见图7A所示。上述第四种可能的实现方式适用于在多模终端中不配置有中控模块的情况,具体架构可以参见图7B所示。
图8为本发明实施例提供的多模终端包括的至少两个传输模块中,用于天线选择的第一传输模块的单元结构图。
该第一传输模块包括:
测量单元801,用于确定所述至少两个天线收发信号的信号质量;
确定单元802,用于确定所述至少两个传输模块选择天线的优先级排序结果;
分配单元803,用于根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线。
可选地,测量单元801,在确定所述至少两个天线的收发信号的信号质量时,具体用 于:在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量。
可选地,所述测量单元801,具体用于在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
所述第一传输模块还包括:补偿单元804,用于所述针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
可选地,所述分配单元803,具体用于:
根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
可选地,所述测量单元801,还用于根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
所述分配单元803,具体用于将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
可选地,所述第一传输模块还包括接收单元805:用于在所述确定单元802确定所述至少两个传输模块选择天线的优先级排序结果之前,接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。
可选地,所述分配单元803,还用于在根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
可选地,所述测量单元801,还用于根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
所述分配单元803,还用于根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
可选地,所述测量单元801,还用于测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
所述分配单元803,还用于在所述测量单元801测量到信号质量高于第二天线的第三天线时,将所述第三天线分配给所述第五传输模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
可选地,所述确定单元802,具体用于将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果。
可选地,所述接收单元805,还用于接收中控模块发送的所述至少两个传输模块选择天线的优先级排序结果。
所述确定单元802,还用于所述第一传输模块的优先级相关信息,所述接收单元,还用于接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括传输模块当前处理的业务信息和/或收发信号的信号质量;所述确定单元802基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。采用硬件实现时,第一传输模块可以是基带芯片、蓝牙通信芯片、WIFI通信芯片等。
该终端设备的硬件实现还可参考图1及其相关描述。具体为:
所述存储器130,用于存储程序代码;
所述处理器120,用于执行所述存储器130存储的程序代码,具体用于控制所述所述至少两个传输模块中的第一传输模块执行如下操作:
确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并
根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线;
所述至少两个传输模块,用于基于所述第一传输模块分配的天线收发信号。
可选地,所述处理器120,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于:
控制所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量。
可选地,所述处理器120,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于控制所述第一传输模块执行:
在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
可选地,所述处理器120,在控制所述第一传输模块执行根据所述至少两个传输模块 的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
可选地,所述处理器120,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;
在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
可选地,所述处理器120,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果之前,还用于控制所述第一传输模块接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。
可选地,所述处理器120,在控制所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,还用于控制所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
可选地,所述处理器120,还用于控制所述第一传输模块执行:
根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;
针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
可选地,所述处理器120,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
在测量到信号质量高于第二天线的第三天线时,将所述第三天线分配给所述第五传输 模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
可选地,所述处理器120,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果时,具体用于控制所述第一传输模块执行:
将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果;或者,
确定自身的优先级相关信息,以及接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括所述至少两个传输模块当前处理的业务信息和/或收发信号的信号质量;基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
可选地,还包括中控模块;
所述处理器120,还用于控制所述中控模块向所述第一传输模块发送所述至少两个传输模块选择天线的优先级排序结果。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述实施例提供的方法。所述计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种应用于多模终端的天线选择方法,其特征在于,所述多模终端包括:至少两个传输模块以及至少两个天线;所述至少两个传输模块被配置为能够单独通过所述至少两个天线中的一个天线收发信号;所述方法包括:
    所述至少两个传输模块中的第一传输模块确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并
    根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线。
  2. 如权利要求1所述的方法,其特征在于,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,包括:
    所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量。
  3. 如权利要求2所述的方法,其特征在于,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,包括:
    所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
    针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
    基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
    其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
    所述第一传输模块根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
    将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
  5. 如权利要求1所述的方法,其特征在于,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
    所述第一传输模块根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;
    所述第一传输模块在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
    所述第一传输模块将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
  6. 如权利要求5所述的方法,其特征在于,所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果之前,所述方法还包括:
    所述第一传输模块接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。
  7. 如权利要求6所述的方法,其特征在于,所述根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,所述方法还包括:
    所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;
    所述第一传输模块针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
    所述第一传输模块根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
  9. 如权利要求1所述的方法,其特征在于,所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线,包括:
    所述第一传输模块测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
    在测量到信号质量高于第二天线的第三天线时,所述第一传输模块将所述第三天线分配给所述第五传输模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
  10. 如权利要求1~9任一种所述的方法,其特征在于,所述确定所述至少两个传输模块选择天线的优先级排序结果,包括:
    所述第一传输模块将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果;或者,
    所述第一传输模块接收中控模块发送的所述至少两个传输模块选择天线的优先级排序结果;或者,
    所述第一传输模块确定自身的优先级相关信息,以及接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括传输模块当前处理的业务信息和/或收发信号的信号质量;所述第一传输模块基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
  11. 一种多模终端,其特征在于,所述多模终端包括存储器、处理器、至少两个传输 模块以及至少两个天线;所述至少两个天线用于收发信号,所述至少两个传输模块被配置为能够单独通过所述至少两个天线中的一个天线收发信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于执行所述存储器存储的程序代码,具体用于控制所述所述至少两个传输模块中的第一传输模块执行如下操作:
    确定所述至少两个天线收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并
    根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线;
    所述至少两个传输模块,用于基于所述第一传输模块分配的天线收发信号。
  12. 如权利要求11所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于:
    控制所述第一传输模块在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量。
  13. 如权利要求12所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块执行确定所述至少两个天线的收发信号的信号质量时,具体用于控制所述第一传输模块执行:
    在所述第一传输模块所采用的制式以及频段下测量所述至少两个天线收发信号的信号质量;
    针对测量得到的除所述第一传输模块当前使用的天线以外的其它天线对应的信号质量分别执行:
    基于第二传输模块与所述第一传输模块之间的信号补偿值,针对第一天线对应的信号质量进行补偿,得到补偿后的第一天线的信号质量;
    其中,所述第一天线为除所述第一传输模块当前使用的天线以外的其它天线中任一天线;所述第二传输模块为使用所述第一天线收发信号的传输模块,所述第二传输模块与所述第一传输模块之间的信号补偿值是:基于所述第二传输模块与所述第一传输模块之间所采用频段以及通信制式的差异确定得到的。
  14. 如权利要求12或13所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块执行根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
    根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第三传输模块;
    将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第三传输模块。
  15. 如权利要求11所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
    根据所述至少两个传输模块的优先级排序结果确定当前未分配天线的传输模块中优先级最高的第四传输模块;
    在所述第四传输模块所采用的制式以及频段下测量至少两个天线中未参与分配的每个天线收发信号的信号质量;
    将所述至少两个天线中未参与分配的天线中信号质量最佳的天线分配给所述第四传输模块。
  16. 如权利要求15所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果之前,还用于控制所述第一传输模块接收到所述至少两个传输模块中除所述第一传输模块以外的至少一个传输模块发送的用于通知重新分配天线的通知消息。
  17. 如权利要求16所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线之前,还用于控制所述第一传输模块根据所述优先级排序结果确定所述至少一个传输模块中包括优先级最高的传输模块。
  18. 如权利要求17所述的多模终端,其特征在于,所述处理器,还用于控制所述第一传输模块执行:
    根据所述优先级排序结果确定所述至少一个传输模块中不包括优先级最高的传输模块;
    针对优先级低于第一优先级的传输模块所使用的天线收发信号的信号质量进行测量;所述第一优先级为所述至少一个传输模块分别对应的优先级中的最高优先级;
    根据所述至少一个传输模块的优先级以及优先级低于第一优先级的传输模块所使用的天线的信号质量分别为所述至少一个传输模块分配天线。
  19. 如权利要求11所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块确定所述至少两个天线的收发信号的信号质量,以及确定所述至少两个传输模块选择天线的优先级排序结果;并根据所述至少两个传输模块的优先级排序结果以及所述至少两个天线分别对应的信号质量分别为所述至少两个传输模块分配天线时,具体用于控制所述第一传输模块执行:
    测量优先级最高的第五传输模块当前使用的第二天线收发信号的信号质量,并在所述第一传输模块所采用的制式以及频段下逐一测量所述至少两个天线中除所述第二天线以外的其它天线收发信号的信号质量;
    在测量到信号质量高于第二天线的第三天线时,将所述第三天线分配给所述第五传输模块,以及将所述第五传输模块当前使用的天线分配给除所述第五传输模块以外优先级最高的传输模块。
  20. 如权利要求11~19任一种所述的多模终端,其特征在于,所述处理器,在控制所述第一传输模块确定所述至少两个传输模块选择天线的优先级排序结果时,具体用于控制所述第一传输模块执行:
    将预配置的所述至少两个传输模块选择天线的优先级进行排序,得到优先级排序结果;或者,
    确定自身的优先级相关信息,以及接收所述至少两个传输模块中其它传输模块分别发来的优先级相关信息;所述优先级相关信息包括所述至少两个传输模块当前处理的业务信 息和/或收发信号的信号质量;基于所述至少两个传输模块分别对应的优先级相关信息确定所述至少两个传输模块选择天线的优先级排序结果。
  21. 如权利要求11至19任一项所述的多模终端,其特征在于,还包括中控模块;
    所述处理器,还用于控制所述中控模块向所述第一传输模块发送所述至少两个传输模块选择天线的优先级排序结果。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储软件程序,所述软件程序在被一个或多个处理器读取并执行时可实现权利要求1至10任一项提供的方法。
PCT/CN2017/089208 2017-02-25 2017-06-20 一种应用于多模终端的天线选择方法及多模终端 WO2018152991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780012485.8A CN108702170B (zh) 2017-02-25 2017-06-20 一种应用于多模终端的天线选择方法及多模终端

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710105090.4 2017-02-25
CN201710105090 2017-02-25

Publications (1)

Publication Number Publication Date
WO2018152991A1 true WO2018152991A1 (zh) 2018-08-30

Family

ID=63252321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089208 WO2018152991A1 (zh) 2017-02-25 2017-06-20 一种应用于多模终端的天线选择方法及多模终端

Country Status (2)

Country Link
CN (1) CN108702170B (zh)
WO (1) WO2018152991A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077344A1 (zh) * 2019-10-23 2021-04-29 华为技术有限公司 天线切换方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267255B (zh) * 2019-06-12 2022-03-18 Oppo广东移动通信有限公司 注册网络方法和装置、电子设备、计算机可读存储介质
CN111989868B (zh) * 2020-07-14 2023-08-29 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307727A1 (en) * 2012-05-21 2013-11-21 Qualcomm Incorporated Devices, methods, and systems for antenna switching based on look-back
CN103460619A (zh) * 2011-02-22 2013-12-18 高通股份有限公司 载波聚合中的上行链路发射天线选择
CN105580285A (zh) * 2013-09-27 2016-05-11 高通股份有限公司 具有天线选择的多流通信
CN106849987A (zh) * 2017-01-20 2017-06-13 深圳市金立通信设备有限公司 一种天线切换控制方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460619A (zh) * 2011-02-22 2013-12-18 高通股份有限公司 载波聚合中的上行链路发射天线选择
US20130307727A1 (en) * 2012-05-21 2013-11-21 Qualcomm Incorporated Devices, methods, and systems for antenna switching based on look-back
CN105580285A (zh) * 2013-09-27 2016-05-11 高通股份有限公司 具有天线选择的多流通信
CN106849987A (zh) * 2017-01-20 2017-06-13 深圳市金立通信设备有限公司 一种天线切换控制方法及终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077344A1 (zh) * 2019-10-23 2021-04-29 华为技术有限公司 天线切换方法及装置
CN113099734A (zh) * 2019-10-23 2021-07-09 华为技术有限公司 天线切换方法及装置
CN113099734B (zh) * 2019-10-23 2022-10-11 华为技术有限公司 天线切换方法及装置

Also Published As

Publication number Publication date
CN108702170A (zh) 2018-10-23
CN108702170B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US20220015103A1 (en) Communication method and apparatus
US10764758B2 (en) Dynamic spectrum sharing for wireless local area networks
JP7179062B2 (ja) ハンドオーバー方法、端末およびネットワーク側装置
CN110602806A (zh) 一种接入wifi网络的方法及装置
US20200195396A1 (en) Interference coordination in communication systems with dynamic spectrum management
JP2018518088A (ja) スペクトル協調装置と方法、無線通信システムにおける装置と方法
US20210315046A1 (en) Configuration Method and Device
WO2018152991A1 (zh) 一种应用于多模终端的天线选择方法及多模终端
US20240040581A1 (en) Method and Device for Determining Resources and Storage Medium
CN108632895B (zh) 一种降低多无线技术共存干扰的方法、装置和设备
WO2019095225A1 (zh) 资源指示方法、用户设备、网络设备及计算机存储介质
US10003566B2 (en) Method and apparatus for assigning a logical address in a communication system
US10064097B2 (en) Interface shaping for virtual interfaces
CN111757318B (zh) 一种通信方法和装置
JP2023106484A (ja) マルチ送信及び受信点(マルチtrp)強化
KR20110046895A (ko) 다중 네트워크 인터페이스를 구비한 이동 단말의 네트워크 인터페이스 매핑 방법
CN112055985A (zh) 用于调度多个活动带宽部分的单阶段下行链路控制信息设计
US20220330305A1 (en) Transmission resource adjustment method and device
US10869280B2 (en) Managing coverage areas provided by densely-arranged wireless endpoint devices with directional antennas
JP5786937B2 (ja) スケジューリング方法およびタスク処理方法
US11943171B2 (en) Assigning physical block resources
CN112312567B (zh) 蓝牙定位方法、装置、计算机设备和存储介质
CN117336667A (zh) 一种感知系统、方法、装置及存储介质
JP2017103545A (ja) 無線通信システム、基地局装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897739

Country of ref document: EP

Kind code of ref document: A1