WO2018151438A1 - Aerogel surface-modified with catechol-based compound, and preparation method therefor - Google Patents

Aerogel surface-modified with catechol-based compound, and preparation method therefor Download PDF

Info

Publication number
WO2018151438A1
WO2018151438A1 PCT/KR2018/001122 KR2018001122W WO2018151438A1 WO 2018151438 A1 WO2018151438 A1 WO 2018151438A1 KR 2018001122 W KR2018001122 W KR 2018001122W WO 2018151438 A1 WO2018151438 A1 WO 2018151438A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
catechol
solvent
wet gel
based compound
Prior art date
Application number
PCT/KR2018/001122
Other languages
French (fr)
Korean (ko)
Inventor
박종남
김현홍
김현중
김강용
안병욱
노동균
Original Assignee
에스케이씨 주식회사
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사, 울산과학기술원 filed Critical 에스케이씨 주식회사
Publication of WO2018151438A1 publication Critical patent/WO2018151438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • Aerogel is a 3D reticulated nano skeleton structure, and due to its low dielectric constant, low thermal conductivity and high surface area, it is expected to be widely used as an anti-reflective coating film, flat panel display panel, and sensor. have.
  • Aerogels are prepared by removing the internal solvent from the wet gel synthesized through the sol-gel reaction of the precursor, wherein the solvent is removed under supercritical conditions and under atmospheric pressure. It is divided into methods. However, the method of removing the solvent under supercritical conditions has limited its use due to the high cost of the high temperature and high pressure process, and thus, a study on the method of removing the solvent under the atmospheric pressure has been conducted.
  • Korean Patent Publication No. 2009-0053348 discloses trimethylchlorosilane.
  • Nano-functional silica using silylating agents such as trimethylchlorosilane (TMCS) A method of making an airgel thin film is disclosed. However, the method is dangerous because the reaction properties of the silylating agent is high, and toxic gas is generated when the reaction is carried out.
  • TMCS trimethylchlorosilane
  • silylating agents such as trimethylchlorosilane (TMCS) are used in the preparation of the airgel, expensive silylating agents are not only used in excess, but also dangerous because of the occurrence of chlorine gas and subsequent corrosion during surface modification. There is a problem in that additional costs are incurred, and the incidence of vice versa is high.
  • TMCS trimethylchlorosilane
  • an airgel surface modified with a catechol family compound is provided.
  • preparing a wet gel using the sol-gel reaction of the nano-skeletal precursor comprising mixing the wet gel with a polar solvent to replace the solvent in the wet gel with the polar solvent; Modifying the surface of the nanoskeleton by mixing the wet gel substituted with the polar solvent with a catechol-based compound; The surface modified Washing the wet gel with crab 1 organic solvent; Replacing the solvent in the washed wet gel with a system 2 organic solvent; And drying the wet gel substituted with the second organic solvent at 0 ° C. to 20 ° C., wherein the surface-modified airgel with the catechol-based compound is provided.
  • the airgel surface-modified with the catechol-based compound according to the embodiment has an environmentally friendly, wide surface area, high porosity and low thermal conductivity, and can also lower the manufacturing cost by using a relatively inexpensive catechol-based compound.
  • the manufacturing method of the airgel it is possible to synthesize the aerosol at atmospheric pressure conditions, not the conventional supercritical conditions, it is possible to manufacture the airgel safely and economically.
  • Example 1 is a SEM photograph of a silica airgel surface-modified with urushiol prepared in Example 1.
  • FIG. 2 is a SEM photograph of the surface-modified silica airgel with TBC prepared in Example 2.
  • FIG. 3 is an SEM photograph of silica airgel surface-modified with dopamine and TBC prepared in Example 3.
  • FIG. 3 is an SEM photograph of silica airgel surface-modified with dopamine and TBC prepared in Example 3.
  • FIG. 4 is an SEM image of the surface-modified silica airgel with dopamine, TBC and hexylamine prepared in Example 4.
  • FIG. Specific Contents for Carrying Out the Invention hereinafter, an airgel and a method of manufacturing the same according to one embodiment will be described in detail.
  • Airgel An airgel according to one embodiment is an airgel surface-modified with a catechol-based compound.
  • the surface of the modified airgel may be hydrophobic.
  • the catechol-based compound may be a compound having a catechol group. That is, the catechol-based compound may include catechol and derivatives thereof.
  • the catechol group refers to a group in which a hydroxyl group (-OH) is substituted at an ortho position of the benzene ring.
  • the catechol group may be a 1,2-dihydroxybenzene group.
  • the catechol-based compound is catechol, 4-tert-butylcatechol (4-tert-butylcatechol (TBC), urushiol (urushiol), dopamine (dopamine), alizarin (alizarin), tannic acid (tannic acid) ), Pyrogallol, gallic acid, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. It may include, but is not limited thereto.
  • the airgel may include one or more selected from the group consisting of silica, titania and alumina.
  • the airgel may be a silica airgel, but is not limited thereto.
  • the airgel surface-modified with the catechol-based compound is a porous material and has a reticulated skeletal structure.
  • the surface area of the airgel is 300 to l, 500 m 2 / g.
  • the surface area of the airgel may be 300 to 1,200 m 2 / g, 300 to 1,000 m 2 / g, or 300 to 600 m 2 / g, but is not limited thereto.
  • the surface area of the airgel is in the above range, it is advantageous to exhibit high porosity, low density and low thermal conductivity.
  • the volume of the voids formed in the airgel may be 0.01 to 100 cmVg. Specifically, the volume of the voids formed in the airgel may be 0.1 to 5 cm 3 / g, but is not limited thereto. When the volume of the voids formed in the airgel is in the above range, it is advantageous to exhibit high porosity, low density and low thermal conductivity.
  • the average diameter of the pores formed in the airgel may be 12 to 100 nm. phrase In volume, the average diameter of the pores formed in the airgel may be 12 to 70 nm, 12 to 50 nm, or 15 to 100 nm, but is not limited thereto.
  • the porosity of the airgel may be 60% or more. Specifically, the porosity of the airgel may be 70% or more, but is not limited thereto. When the porosity of the airgel is in the above range, it is advantageous to show the effect of low density and low thermal conductivity.
  • Thermal conductivity of the airgel is 15 to 65 mW / m. It may be K. Specifically, the thermal conductivity of the airgel is 15 to 60 mW / m. It may be K. More specifically, the thermal conductivity of the airgel is 15 to 50 mW / m. It may be K, but is not limited thereto.
  • the airgel may be surface modified with a catechol-based compound without using a silylating agent such as trimethylchlorosilane to maintain the skeleton of the nanostructure. That is, the airgel may have a nano coating layer of the catechol-based compound, wherein the average thickness of the nano coating layer may be 1 to 100 nm, or 1 to 50 nm.
  • Method for preparing airgel includes: preparing a wet gel using a sol-gel reaction of a nano-skeletal precursor; Mixing the wet gel with the polar solvent to replace the solvent in the wet gel with the polar solvent; Modifying the surface of the nanoskeleton by mixing the wet gel and the catechol-based compound substituted with the polar solvent; Washing the surface modified wet gel with a crab 1 organic solvent; Replacing the solvent in the washed wet gel with a second organic solvent; And drying the wet gel substituted with the second organic solvent at 0 ° C. to 200 ° C.
  • the wet gel is prepared using the sol-gel reaction of the nano-skeletal precursor.
  • the solution containing the nano-skeletal precursor may comprise the step of aging at 25 ° C to 60 ° C for 6 to 48 hours. This is a step of synthesizing the wet gel having a reticulated skeletal structure using the sol-gel reaction of the nano-skeletal precursor.
  • the sol-gel reaction is caused by hydrolysis, condensation, and coagulation of grown particles by a catalyst of a metal alkoxide precursor, and is a reaction to form a gel having a porous skeletal structure through aging.
  • the nano-skeletal precursor may include at least one selected from d-Cso metal alkoxides and silicate compounds.
  • the nano-skeletal precursor is tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (tetraethyl orthosilicate; TEOS), titanium tetraisopropoxide (TTIP), titanium tetrabutoxide, aluminum tri-sec-butoxide and sodium silicate It may include one or more selected from the group, but is not limited thereto.
  • TMOS tetramethyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • TTIP titanium tetraisopropoxide
  • titanium tetrabutoxide aluminum tri-sec-butoxide and sodium silicate It may include one or more selected from the group, but is not limited thereto.
  • the wet gel and the polar solvent are mixed to replace the solvent in the wet gel with the polar solvent. This is a preliminary step for catechol surface treatment, to remove residual precursors and catalysts, and to substitute solvent conditions for surface treatment inside and outside the gel.
  • the polar solvent may be a polar protic solvent or a polar aprotic solvent.
  • the polar protic solvent may include one or more selected from the group consisting of water, ethanol, methanol, and isopropanol, but is not limited thereto.
  • the polar aprotic solvent is acetone, propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran (THF), ethyl acetate, chloroform, methylene chloride, dimethylformamide and dimethyl sulfoxide (DMSO), but may include one or more selected from the group consisting of, but is not limited thereto.
  • the wet gel substituted with the polar solvent and the catechol-based compound are mixed to modify the surface of the nano backbone. This is because of the wet gel with the reticular skeletal structure.
  • the surface is modified with a catechol series compound. At this time, the surface of the modified airgel becomes hydrophobic.
  • catechol-based compound Specific types and properties of the catechol-based compound are as described above in the airgel.
  • the catechol-based compound may be added in an amount of 0.005 to 5 mmol / ml, more specifically, 0.01 to 2 mmol / ml.
  • the surface of the porous airgel may be hydrophobic and may be advantageous in increasing physical strength.
  • an amine compound may be added together.
  • the amine-based compound may include one or more selected from the group consisting of primary amine-based compounds and diamine-based compounds, but is not limited thereto.
  • the amine-based compound is nucleosilamine, octylamine (1- octylamine), dodecylamine (dodecylamine), nuxadecylamine (hexadecylamine), octadecylamine (Octadecylamine), oleylamine (Oleylamine), -tri Oxatridecanediamine (4,7,10-Trioxa-l, 13-tridecanediamine) and nucleomethylenediamine
  • It may include one or more selected from the group consisting of (hexamethylenediamine), but is not limited thereto.
  • the first organic solvent is ethanol, propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran (THF), acetone, ethyl acetate, isopropanol, methane, chloroform, methylene chloride, dimethylform It may include one or more selected from the group consisting of amide and dimethyl sulfoxide (DMSO), but is not limited thereto.
  • the solvent in the washed wet gel is then replaced with a second organic solvent. This is to minimize the shrinkage of the skeleton due to capillary pressure at atmospheric pressure by substituting the solvent in the wet gel with a second organic solvent having a low surface tension.
  • the second organic solvent may be an organic solvent having a low surface tension.
  • the surface tension of the second organic solvent may be 50 dyn / cm or less. More specifically, the surface tension of the second organic solvent may be 10 to 35 dyn / cm. More specifically, the surface tension of the second organic solvent may be 10 to 20 dyn / cm.
  • the second organic solvent may include one or more selected from the group consisting of nucleic acid, pentane, heptane, isopropanol, chloroform, methylene chloride, ether, acetone and tetrahydrofuran (THF), but It is not limited.
  • the wet gel substituted with the second organic solvent is dried at 0 ° C. to 200 ° C.
  • the final aerogel can be obtained by removing the internal solvent from the wet gel through the drying. Removal of the solvent is possible at atmospheric pressure, not the supercritical conditions conventionally performed.
  • the components, surface area, pore volume, average diameter, porosity and thermal conductivity of the final airgel obtained by the above method are as described in the above airgel.
  • the manufacturing method of the surface-modified airgel it is possible to synthesize under normal pressure conditions, and because it uses a relatively inexpensive catechol-based compound, the cost is reduced, and can be manufactured safely.
  • the manufacturing method of the surface-modified airgel can be produced environmentally friendly airgel because it uses a catechol-based compound.
  • the method for preparing the surface modified airgel is characterized in that it does not use a silylating agent such as trimethylchlorosilane (TMCS).
  • TMCS trimethylchlorosilane
  • the silylating agent is used in the method for preparing the surface-modified airgel, since the reaction property of the silylating agent is high and dangerous and toxic gas such as chlorine gas is generated when reacting, the additional cost is required in designing the reaction product. May occur.
  • the manufacturing method of the surface-modified airgel according to the embodiment may have the advantage that it is eco-friendly and economical, and no side reaction occurs. EXAMPLES Hereinafter, although an Example demonstrates further in detail, it is not limited to these ranges.
  • TEOS tetraethylorthosilicate
  • ethane ethane
  • water 36% hydrochloric acid 2.8!
  • a wet gel was prepared by adding 30% ammonium hydroxide aqueous solution.
  • the prepared wet gel was aged at 50 ° C. for 48 hours, crushed, and washed with a small amount of ethanol.
  • the wet gel and propylene glycol monomethyl ether acetate (PGMEA) were combined to replace the solvent in the wet gel with PGMEA.
  • the wet gel substituted with PGMEA was placed in 20 ml of a mixed solution of urushiol and PGMEA, and the surface of the nanoskeleton was modified for 24 hours.
  • the surface modified wet gel was washed with PGMEA and heat treated at 10 CTC for 12 hours.
  • the solvent in the wet gel was substituted with nucleic acid and dried at 60 ° C. to obtain a surface modified silica airgel.
  • Example 2 Preparation of Surface-Modified Silica Aerogels with TBC
  • TEOS 2.3 g
  • TEOS 10 ml of ethanol, 1.3 ml of water, and 2.8 ⁇ of 36% hydrochloric acid
  • a 30% aqueous ammonium hydroxide solution was added to prepare a wet gel.
  • the prepared wet gel was aged at 50 ° C. for 48 hours, crushed and washed with a small amount of ethanol.
  • the wet gel and PGMEA by mixing The solvent in the wet gel was replaced with PGMEA.
  • the wet gel substituted with PGMEA was added to 20 ml of a mixed solution of 4-tert-butylcatechol (TBC) and PGMEA at pH 8, and the surface of the nanoskeleton was modified for 24 hours.
  • TBC 4-tert-butylcatechol
  • a wet gel was prepared by mixing 6.6 ml of a silica silicate solution with a silica content of 5 weight «3 ⁇ 4 and 3.3 ⁇ 1.15 M hydrochloric acid as an acid catalyst, and then aging at 50 ° C. for 48 hours. After breaking up the wet gel, the solvent in the wet gel was replaced with water by mixing with water. The wet gel substituted with water was added 40 ml of ethane in which 4 mg of dopamine and 3.5 mg of TBC were dissolved, followed by surface modification for 12 hours. The surface modified wet gel was washed with ethane and the solvent in the wet gel was substituted with isopropanol and nucleic acid. After drying at 60 ° C to obtain a surface-modified silica airgel.
  • Example 4 Preparation of Silica Aerogel Surface Modified with Dopamine, TBC, and Nucleylamine
  • a wet gel was prepared by mixing 6.6 ml of a sodium silicate solution with a silica content of 5% by weight and 3.3 ⁇ of 1.15 M hydrochloric acid as an acid catalyst, and then aging at 50 ° C. for 48 hours. After breaking up the wet gel, the solvent in the wet gel was replaced with water by mixing with water. The wet gel substituted with water, ethanol dissolved in 1.3 mg of dopamine and 5.8 mg of TBC were added to a mixed solution of 40 ml and 0.11 ml of nucleosilamine, followed by surface modification for 12 hours. Proceeded.
  • the thermal conductivity of the airgel prepared in Example 4 and Comparative Example 1 was measured by an instrument (C—Therm Thermal Conductivity Analyzer) based on the Modified Transient Plane Source (MTPS) method. The results are shown in Table 1 below.
  • Examples 1 to 4 has a larger surface area than Comparative Example 1, a large volume of the pores and a long average diameter of the pores have a high porosity, it was confirmed that the thermal conductivity is also excellent.
  • FIGS. 1 to 4 showing SEM images of Examples 1 to 4.

Abstract

Disclosed are aerogel surface-modified with a catechol-based compound, and a preparation method therefor, the aerogel having a large surface area, high porosity, and low thermal conductivity, and being economical and eco-friendly.

Description

【명세세  [Specifications
【발명의 설명】 카테콜 계열 화합물로 표면 개질된 에어로젤 및 이의 제조방법 【기술분야】 이하 구현예들은 표면적이 넓고 공극률이 높으며 열전도율이 낮을 뿐만 아니 라 경제적이며 친환경적인, 카테콜 계열 화합물로 표면 개질된 에어로젤 및 이의 제 조방법에 관한 것이다. 【배경기술】  Description of the Invention Aerogels Surface-Modified with Catechol-Based Compounds and Manufacturing Methods Thereof The embodiments are surface-modified with catechol-based compounds that are economical and environmentally friendly as well as having a large surface area, high porosity and low thermal conductivity. It relates to an airgel and a manufacturing method thereof. Background Art
에어로젤 (aerogel)은 3차원의 망상형 나노 골격을 가진 구조로서, 낮은 유전 율, 낮은 열전도율 및 높은 표면적의 특성으로 인하여, 반사 방지 코팅막, 평판 디스 플레이 패널, 센서 등으로 다양하게 웅용될 것으로 기대되고 있다.  Aerogel is a 3D reticulated nano skeleton structure, and due to its low dielectric constant, low thermal conductivity and high surface area, it is expected to be widely used as an anti-reflective coating film, flat panel display panel, and sensor. have.
에어로젤은 전구체의 졸―젤 반응 (sol-gel reaction)을 통해 합성된 습윤 젤에 서 내부 용매를 제거함으로써 제조되는데, 이때 용매를 제거하는 방법은 초임계적 조건에서 제거하는 방법과 상압 조건에서 제거하는 방법으로 구분된다. 그러나 초 임계적 조건에서 용매를 제거하는 방법은 고온 고압의 공정에 따른 높은 비용으로 인해 그 용도가 제한되므로 상압 조건에서 용매를 제거하는 방법에 대한 연구가 진 행되어 왔다.  Aerogels are prepared by removing the internal solvent from the wet gel synthesized through the sol-gel reaction of the precursor, wherein the solvent is removed under supercritical conditions and under atmospheric pressure. It is divided into methods. However, the method of removing the solvent under supercritical conditions has limited its use due to the high cost of the high temperature and high pressure process, and thus, a study on the method of removing the solvent under the atmospheric pressure has been conducted.
일례로, 대한민국 공개특허 제 2009-0053348 호는 트리메틸클로로실란 For example, Korean Patent Publication No. 2009-0053348 discloses trimethylchlorosilane.
(trimethylchlorosilane; TMCS)과 같은 실릴화제를 이용하예 나노—기능성 실리카 에어로젤 박막을 제조하는 방법을 개시하고 있다. 그러나, 상기 방법은 실릴화제의 반웅성이 높아 위험하며, 반웅할 때 유독한 가스가 발생하는 문제가 있다. Nano-functional silica using silylating agents such as trimethylchlorosilane (TMCS) A method of making an airgel thin film is disclosed. However, the method is dangerous because the reaction properties of the silylating agent is high, and toxic gas is generated when the reaction is carried out.
따라서 에어로젤의 특성을 유지하면서도 나노 구조체의 골격을 유지하여 작 업성과 물성을 동시에 향상시킬 수 있는 새로운 코팅법을 이용한 에어로젤의 개발 이 요구되고 있다.  Therefore, there is a need for the development of aerogels using a new coating method that can maintain the skeleton of the nanostructure while improving the workability and physical properties simultaneously.
【발명의 내용】 [Content of invention]
【해결하고자하는과제】  [Task to be solved]
에어로젤의 제조시에 트리메틸클로로실란 (TMCS)과 같은 실릴화제를 이용하 는 경우, 값비싼 실릴화제가 과량으로 사용될 뿐만 아니라, 표면 개질시 염소 가스 및 그에 따른 부식이 발생하기 때문에 위험하며, 반웅기를 설계함에 있어 추가적인 비용이 들고, 부반웅 발생율이 높다는 문제가 있다.  When silylating agents such as trimethylchlorosilane (TMCS) are used in the preparation of the airgel, expensive silylating agents are not only used in excess, but also dangerous because of the occurrence of chlorine gas and subsequent corrosion during surface modification. There is a problem in that additional costs are incurred, and the incidence of vice versa is high.
따라서 이하 구현예들을 통해, 상압 조건에서 합성 가능하고 경제적이고 친 환경적이면서도 표면적이 넓고 공극률이 높으며 열전도율이 낮은, 카테콜 계열 화합 물로 표면 개질된 에어로젤 및 이의 제조방법을 제공하고자 한다.  Therefore, through the following embodiments, it is possible to provide an airgel and a method of manufacturing the surface-modified catechol-based compound, which can be synthesized under normal pressure, economical and environmentally friendly, wide surface area, high porosity, low thermal conductivity.
【과제의 해결 수단】  [Measures of problem]
일 구현예에 따르면, 카테콜 (catechol) 계열 화합물로 표면 개질된 에어로젤 이 제공된다.  According to one embodiment, an airgel surface modified with a catechol family compound is provided.
또한, 일 구현예 따르면, 나노 골격 전구체의 졸-젤 반웅을 이용하여 습윤 젤을 제조하는 단계; 상기 습윤 젤과 극성 용매를 흔합하여 상기 습윤 젤 내의 용매 를 상기 극성 용매로 치환하는 단계; 상기 극성 용매로 치환된 상기 습윤 젤과 카테 콜 계열 화합물을 흔합하여 나노 골격의 표면을 개질하는 단계; 상기 표면 개질된 습윤 젤을 게 1 유기 용매로 세척하는 단계; 상기 세척된 습윤 젤 내의 용매를 계 2 유기 용매로 치환하는 단계; 및 상기 제 2 유기 용매로 치환된 상기 습윤 젤을 0°C 내지 20C C에서 건조시키는 단계;를 포함하는, 카테콜 계열 화합물로 표면 개질된 에어로젤의 제조방법이 제공된다. Further, according to one embodiment, preparing a wet gel using the sol-gel reaction of the nano-skeletal precursor; Mixing the wet gel with a polar solvent to replace the solvent in the wet gel with the polar solvent; Modifying the surface of the nanoskeleton by mixing the wet gel substituted with the polar solvent with a catechol-based compound; The surface modified Washing the wet gel with crab 1 organic solvent; Replacing the solvent in the washed wet gel with a system 2 organic solvent; And drying the wet gel substituted with the second organic solvent at 0 ° C. to 20 ° C., wherein the surface-modified airgel with the catechol-based compound is provided.
【발명의 효과】  【Effects of the Invention】
상기 일 구현예에 따른 카테콜 계열 화합물로 표면 개질된 에어로젤은, 친환 경적이면서도 넓은 표면적, 높은 공극률 및 낮은 열전도율을 가지며, 또한 비교적 저렴한 카테콜 계열 화합물을사용함으로써 제조 단가를 낮출 수 있다.  The airgel surface-modified with the catechol-based compound according to the embodiment has an environmentally friendly, wide surface area, high porosity and low thermal conductivity, and can also lower the manufacturing cost by using a relatively inexpensive catechol-based compound.
나아가, 상기 에어로젤의 제조방법에 따르면, 종래의 초임계 조건이 아닌 상 압 조건에서 에어로졸을 합성 가능하므로 안전하면서도 경제적으로 에어로젤을 제 조할 수 있다.  Furthermore, according to the manufacturing method of the airgel, it is possible to synthesize the aerosol at atmospheric pressure conditions, not the conventional supercritical conditions, it is possible to manufacture the airgel safely and economically.
【도면의 간단한설명】 【Brief Description of Drawings】
도 1은 실시예 1에서 제조된 우루시올로 표면 개질된 실리카 에어로젤의 SEM사진이다.  1 is a SEM photograph of a silica airgel surface-modified with urushiol prepared in Example 1.
도 2는 실시예 2에서 제조된 TBC로 표면 개질된 실리카 에어로젤의 SEM 사진이다.  FIG. 2 is a SEM photograph of the surface-modified silica airgel with TBC prepared in Example 2. FIG.
도 3은 실시예 3에서 제조된 도파민과 TBC로 표면 개질된 실리카 에어로젤 의 SEM사진이다.  FIG. 3 is an SEM photograph of silica airgel surface-modified with dopamine and TBC prepared in Example 3. FIG.
도 4는 실시예 4에서 제조된 도파민, TBC 및 핵실아민 (hexylamine)으로 표 면 개질된 실리카 에어로젤의 SEM사진이다. 【발명을실시하기 위한구체적인 내용】 이하 일 구현예에 따른 에어로젤 및 이의 제조방법을 구체적으로 설명한다. 에어로젤 일 구현예에 따른 에어로젤은, 카테콜 (catechol) 계열 화합물로 표면 개질된 에어로젤이다. FIG. 4 is an SEM image of the surface-modified silica airgel with dopamine, TBC and hexylamine prepared in Example 4. FIG. Specific Contents for Carrying Out the Invention Hereinafter, an airgel and a method of manufacturing the same according to one embodiment will be described in detail. Airgel An airgel according to one embodiment is an airgel surface-modified with a catechol-based compound.
상기 개질된 에어로젤의 표면은 소수성 (hydrophobic)일 수 있다. 상기 카테콜 계열 화합물은 카테콜기를 갖는 화합물일 수 있다. 즉, 상기 카 테콜 계열 화합물은 카테콜 및 이의 유도체를 포함할 수 있다.  The surface of the modified airgel may be hydrophobic. The catechol-based compound may be a compound having a catechol group. That is, the catechol-based compound may include catechol and derivatives thereof.
상기 카테콜기는 벤젠고리의 오르쏘 (ortho) 위치에 각각 하이드록실기 (-OH) 가 치환된 그룹을 의미한다. 예를 들어, 상기 카테콜기는 1,2-다이하이드록시벤젠 그룹일 수 있다.  The catechol group refers to a group in which a hydroxyl group (-OH) is substituted at an ortho position of the benzene ring. For example, the catechol group may be a 1,2-dihydroxybenzene group.
구체적으로, 상기 카테콜 계열 화합물은 카테콜, 4-tert-부틸카테콜 (4-tert- butylcatechol; TBC), 우루시을 (urushiol), 도파민 (dopamine), 알리자린 (alizarin), 타 닌산 (tannic acid), 파이로갈를 (pyrogallol), 갈산 (gallic acid), 에피갈로카테킨 (epigallocatechin), 에피카테킨 갈레이트 (epicatechin gallate) 및 에피갈로카테킨 갈레이트 (epigallocatechin gallate)로 이루어진 군으로부터 선택된 1종 이상을 포함 할 수 있으나, 이에 한정되는 것은 아니다. 상기 카테콜 계열 화합물로 에어로젤의 표면이 개질됨으로써, 상기 에어로젤 의 표면이 소수성을 띄게 되어 상압 건조시 나노 골격체의 구조를 유지시켜 줌으로 써, 높은 공극를, 낮은 밀도 및 낮은 열전도율의 효과를 가질 수 있다. 상기 에어로젤은 실리카, 티타니아 (titania) 및 알루미나로 이루어진 군으로부 터 선택된 1종 이상을 포함할 수 있다. 예를 들어, 상기 에어로젤은 실리카 에어로 젤일 수 있으나, 이에 한정되는 것은 아니다. 상기 카테콜 계열 화합물로 표면 개질된 에어로젤은 다공성 물질로서, 망상 형 골격 구조를 가진다. 상기 에어로젤의 표면적은 300 내지 l,500 m2/g이다. 구체적으로, 상기 에어 로젤의 표면적은 300 내지 1,200 m2/g, 300 내지 1,000 m2/g, 또는 300 내지 600 m2/g일 수 있으나, 이에 한정되는 것은 아니다. 상기 에어로젤의 표면적이 상기 범 위일 때, 높은 공극률, 낮은 밀도 및 낮은 열전도율을 나타내는데 유리하다. 상기 에어로젤에 형성된 공극의 부피는 0.01 내지 lO cmVg일 수 있다. 구체 적으로, 상기 에어로젤에 형성된 공극의 부피는 0.1 내지 5 cm3/g 일 수 있으나, 이 에 한정되는 것은 아니다. 상기 에어로젤에 형성된 공극의 부피가 상기 범위일 때, 높은 공극률, 낮은 밀도 및 낮은 열전도율을 나타내는데 유리하다. 상기 에어로젤에 형성된 공극의 평균 직경은 12 내지 100 nm일 수 있다. 구 체적으로, 상기 에어로젤에 형성된 공극의 평균 직경은 12 내지 70 nm, 12 내지 50 nm, 또는 15 내지 100 nm일 수 있으나, 이에 한정되는 것은 아니다. 상기 에어로 젤에 형성된 공극의 평균 직경이 상기 범위일 때, 높은 공극률, 낮은 밀도 및 낮은 열전도율을 나타내는데 유리하다. 상기 에어로젤의 공극률은 60% 이상일 수 있다. 구체적으로, 상기 에어로젤 의 공극를은 70% 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 에어로젤의 공극률이 상기 범위일 때, 낮은 밀도 및 낮은 열전도율의 효과를 나타내는데 유리하 다. 상기 에어로젤의 열전도율은 15 내지 65 mW/m. K일 수 있다. 구체적으로, 상기 에어로젤의 열전도율은 15 내지 60 mW/m . K일 수 있다. 더욱 구체적으로, 상 기 에어로젤의 열전도율은 15 내지 50 mW/m. K일 수 있으나, 이에 한정되는 것은 아니다ᅳ 상기 에어로젤의 열전도율이 상기 범위일 때, 우수한 단열 효과를 나타내는 데 유리하다. 또한, 상기 에어로젤은 트리메틸클로로실란과 같은 실릴화제를 사용하지 않 고 카테콜 계열 화합물로 표면 개질되어 나노 구조체의 골격을 유지할 수 있다. 즉 상기 에어로젤은 카테콜 계열 화합물의 나노 코팅층을 가질 수 있으며, 이때 상기 나노코팅층의 평균 두께는 1 내지 100 nm, 또는 1 내지 50 nm일 수 있다. 에어로젤의 제조방법 일 구현예에 따른 카테콜 계열 화합물로 표면 개질된 에어로젤을 제조하는 방법은, 나노 골격 전구체의 졸-젤 반응을 이용하여 습윤 젤을 제조하는 단계; 상기 습윤 젤과 극성 용매를 흔합하여 상기 습윤 젤 내의 용매를 상기 극성 용매로 치환 하는 단계; 상기 극성 용매로 치환된 상기 습윤 젤과 카테콜 계열 화합물을 흔합하 여 나노 골격의 표면을 개질하는 단계; 상기 표면 개질된 습윤 젤을 게 1 유기 용매 로 세척하는 단계; 상기 세척된 습윤 젤 내의 용매를 제 2 유기 용매로 치환하는 단 계; 및 상기 제 2 유기 용매로 치환된 상기 습윤 젤을 0°C 내지 200°C에서 건조시키 는 단계;를 포함한다. 먼저, 상기 나노 골격 전구체의 졸-젤 반웅을 이용하여 습윤 젤을 제조한다. 이때, 나노 골격 전구체를 포함한 용액을 25 °C 내지 60°C에서 6 내지 48 시간 동안 숙성시키는 단계를 포함할 수 있다. 이는 상기 나노 골격 전구체의 졸-젤 반웅을 이용하여 망상형의 골격 구조를 가진 습윤 젤을 합성하는 단계이다. Specifically, the catechol-based compound is catechol, 4-tert-butylcatechol (4-tert-butylcatechol (TBC), urushiol (urushiol), dopamine (dopamine), alizarin (alizarin), tannic acid (tannic acid) ), Pyrogallol, gallic acid, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. It may include, but is not limited thereto. By modifying the surface of the airgel with the catechol-based compound, the surface of the airgel becomes hydrophobic, thereby maintaining the structure of the nano-skeleton during atmospheric drying, thereby having high voids, low density, and low thermal conductivity. have. The airgel may include one or more selected from the group consisting of silica, titania and alumina. For example, the airgel may be a silica airgel, but is not limited thereto. The airgel surface-modified with the catechol-based compound is a porous material and has a reticulated skeletal structure. The surface area of the airgel is 300 to l, 500 m 2 / g. Specifically, the surface area of the airgel may be 300 to 1,200 m 2 / g, 300 to 1,000 m 2 / g, or 300 to 600 m 2 / g, but is not limited thereto. When the surface area of the airgel is in the above range, it is advantageous to exhibit high porosity, low density and low thermal conductivity. The volume of the voids formed in the airgel may be 0.01 to 100 cmVg. Specifically, the volume of the voids formed in the airgel may be 0.1 to 5 cm 3 / g, but is not limited thereto. When the volume of the voids formed in the airgel is in the above range, it is advantageous to exhibit high porosity, low density and low thermal conductivity. The average diameter of the pores formed in the airgel may be 12 to 100 nm. phrase In volume, the average diameter of the pores formed in the airgel may be 12 to 70 nm, 12 to 50 nm, or 15 to 100 nm, but is not limited thereto. When the average diameter of the pores formed in the aerogel is in the above range, it is advantageous to exhibit high porosity, low density and low thermal conductivity. The porosity of the airgel may be 60% or more. Specifically, the porosity of the airgel may be 70% or more, but is not limited thereto. When the porosity of the airgel is in the above range, it is advantageous to show the effect of low density and low thermal conductivity. Thermal conductivity of the airgel is 15 to 65 mW / m. It may be K. Specifically, the thermal conductivity of the airgel is 15 to 60 mW / m. It may be K. More specifically, the thermal conductivity of the airgel is 15 to 50 mW / m. It may be K, but is not limited thereto. When the thermal conductivity of the airgel is within the above range, it is advantageous to exhibit excellent heat insulating effect. In addition, the airgel may be surface modified with a catechol-based compound without using a silylating agent such as trimethylchlorosilane to maintain the skeleton of the nanostructure. That is, the airgel may have a nano coating layer of the catechol-based compound, wherein the average thickness of the nano coating layer may be 1 to 100 nm, or 1 to 50 nm. Method for preparing airgel A method for preparing an airgel surface-modified with a catechol-based compound according to an embodiment includes: preparing a wet gel using a sol-gel reaction of a nano-skeletal precursor; Mixing the wet gel with the polar solvent to replace the solvent in the wet gel with the polar solvent; Modifying the surface of the nanoskeleton by mixing the wet gel and the catechol-based compound substituted with the polar solvent; Washing the surface modified wet gel with a crab 1 organic solvent; Replacing the solvent in the washed wet gel with a second organic solvent; And drying the wet gel substituted with the second organic solvent at 0 ° C. to 200 ° C. First, the wet gel is prepared using the sol-gel reaction of the nano-skeletal precursor. At this time, the solution containing the nano-skeletal precursor may comprise the step of aging at 25 ° C to 60 ° C for 6 to 48 hours. This is a step of synthesizing the wet gel having a reticulated skeletal structure using the sol-gel reaction of the nano-skeletal precursor.
상기 졸-젤 반웅은 금속 알콕사이드 전구체의 촉매에 의한 가수분해, 축합 및 성장한 입자의 웅집에 의해 일어나며, 숙성 과정을 통해 다공성의 골격 구조를 가진 젤을 형성하는 반웅이다.  The sol-gel reaction is caused by hydrolysis, condensation, and coagulation of grown particles by a catalyst of a metal alkoxide precursor, and is a reaction to form a gel having a porous skeletal structure through aging.
상기 나노 골격 전구체는 d-Cso 금속 알콕시화물 및 실리케이트계 화합물 중에서 선택된 1종 이상을 포함할 수 있다.  The nano-skeletal precursor may include at least one selected from d-Cso metal alkoxides and silicate compounds.
예를 들어, 상기 나노 골격 전구체는 테트라메틸오르쏘실리케이트 (tetramethyl orthosilicate; TMOS), 테트라에틸오르쏘실리케이트 (tetraethyl orthosilicate; TEOS), 티타늄 테트라이소프로폭사이드 (titanium tetraisopropoxide; TTIP), 티타늄 테트라부톡사이드 (titanium tetrabutoxide), 알루미늄 트리 -sec-부특 사이드 (aluminum tri-sec-butoxide) 및 소듐 실리케이트 (sodium silicate)로 이루어 진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 다음으로, 상기 습윤 젤과 극성 용매를 흔합하여 상기 습윤 젤 내의 용매를 상기 극성 용매로 치환한다. 이는 카테콜 표면 처리를 위한 전단계로서, 잔여 전구 체와 촉매를 제거하며, 젤 내외부의 표면 처리를 위한 용매 조건으로 치환하는 것이 다. For example, the nano-skeletal precursor is tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (tetraethyl orthosilicate; TEOS), titanium tetraisopropoxide (TTIP), titanium tetrabutoxide, aluminum tri-sec-butoxide and sodium silicate It may include one or more selected from the group, but is not limited thereto. Next, the wet gel and the polar solvent are mixed to replace the solvent in the wet gel with the polar solvent. This is a preliminary step for catechol surface treatment, to remove residual precursors and catalysts, and to substitute solvent conditions for surface treatment inside and outside the gel.
상기 극성 용매는 극성 양성자성 용매 또는 극성 비양성자성 용매일 수 있 다.  The polar solvent may be a polar protic solvent or a polar aprotic solvent.
구체적으로, 상기 극성 양성자성 용매는 물, 에탄올, 메탄올 및 이소프로판올 로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.  Specifically, the polar protic solvent may include one or more selected from the group consisting of water, ethanol, methanol, and isopropanol, but is not limited thereto.
또한, 상기 극성 비양성자성 용매는 아세톤, 프로필렌글리콜 모노메틸에테르 아세테이트 (propylene glycol monomethyl ether acetate; PGMEA), 테트라하이드로 퓨란 (THF), 에틸 아세테이트, 클로로포름, 메틸렌 클로라이드, 디메틸포름아마이드 및 디메틸설폭사이드 (DMSO)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.  In addition, the polar aprotic solvent is acetone, propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran (THF), ethyl acetate, chloroform, methylene chloride, dimethylformamide and dimethyl sulfoxide ( DMSO), but may include one or more selected from the group consisting of, but is not limited thereto.
이어서, 상기 극성 용매로 치환된 상기 습윤 젤과 카테콜 계열 화합물을 흔 합하여 나노 골격의 표면을 개질한다. 이는 망상형의 골격 구조를 가진 습윤 젤의 표면이 카테콜 계열 화합물로 개질되는 단계이다. 이때, 개질된 에어로젤의 표면은 소수성 (hydrophobic)을 띄게 된다. Subsequently, the wet gel substituted with the polar solvent and the catechol-based compound are mixed to modify the surface of the nano backbone. This is because of the wet gel with the reticular skeletal structure. The surface is modified with a catechol series compound. At this time, the surface of the modified airgel becomes hydrophobic.
상기 카테콜 계열 화합물의 구체적인 종류 및 특성은 앞서 에어로젤에서 설 명한 바와 같다.  Specific types and properties of the catechol-based compound are as described above in the airgel.
상기 카테콜 계열 화합물은 0.005 내지 5 mmol/ml, 보다 구체적으로, 0.01 내지 2 mmol/ml 함량으로 첨가될 수 있다.  The catechol-based compound may be added in an amount of 0.005 to 5 mmol / ml, more specifically, 0.01 to 2 mmol / ml.
상기 카테콜 계열 화합물의 함량이 상기 범위일 경우, 다공성 에어로젤의 표 면이 소수성을 띄고, 물리적 강도를 증대시키는데 유리할 수 있다. 상기 카테콜 계열 화합물 첨가시, 아민 계열 화합물을 함께 첨가할 수 있다. 구체적으로, 상기 아민 계열 화합물은 1차 아민 계열 화합물 및 다이아민 계열 화합 물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것 은 아니다.  When the content of the catechol-based compound is within the above range, the surface of the porous airgel may be hydrophobic and may be advantageous in increasing physical strength. When the catechol compound is added, an amine compound may be added together. Specifically, the amine-based compound may include one or more selected from the group consisting of primary amine-based compounds and diamine-based compounds, but is not limited thereto.
더욱 구체적으로, 상기 아민 계열 화합물은 핵실아민, 옥틸아민 (1- octylamine), 도데실아민 (dodecylamine), 핵사데실아민 (hexadecylamine), 옥타데실 아민 (Octadecylamine), 올레일아민 (Oleylamine), -트리옥사트리데케인다이아민 (4,7,10-Trioxa-l,13-tridecanediamine) 및 핵사메틸렌다이아민 More specifically, the amine-based compound is nucleosilamine, octylamine (1- octylamine), dodecylamine (dodecylamine), nuxadecylamine (hexadecylamine), octadecylamine (Octadecylamine), oleylamine (Oleylamine), -tri Oxatridecanediamine (4,7,10-Trioxa-l, 13-tridecanediamine) and nucleomethylenediamine
(hexamethylenediamine)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. It may include one or more selected from the group consisting of (hexamethylenediamine), but is not limited thereto.
상기 카테콜 계열 화합물에 아민 계열 화합물을 함께 첨가할 경우, 소수성의 얇은 개질 막을 형성하고, 카테콜 계열 화합물과의 고분자화를 통하여 개질 막의 내 구성을 높이는데 유리하다. 다음으로, 상기 표면 개질된 습윤 젤을 게 1 유기 용매로 세척한다. 이는 미 반웅 개질제와 그 밖의 유기물을 제거하는 단계이다. When an amine compound is added to the catechol compound, it is advantageous to form a hydrophobic thin modified film and to increase the durability of the modified film through polymerization with the catechol compound. Next, the surface modified wet gel is washed with crab 1 organic solvent. This is the step of removing the counter reaction modifier and other organics.
상기 제 1 유기 용매는, 에탄올, 프로필렌글리콜 모노메틸에테르 아세테이트 (propylene glycol monomethyl ether acetate; PGMEA), 테트라하이드로퓨란 (THF), 아세톤, 에틸 아세테이트, 이소프로판올, 메탄을, 클로로포름, 메틸렌 클로라이드, 디 메틸포름아마이드 및 디메틸설폭사이드 (DMSO)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 이어서, 상기 세척된 습윤 젤 내의 용매를 제 2 유기 용매로 치환한다. 이는 낮은 표면 장력을 갖는 제 2 유기 용매로 습윤 젤 내의 용매를 치환함으로써, 상압 건조시 모세압으로 인한 골격의 수축을 최소화하기 위함이다.  The first organic solvent is ethanol, propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran (THF), acetone, ethyl acetate, isopropanol, methane, chloroform, methylene chloride, dimethylform It may include one or more selected from the group consisting of amide and dimethyl sulfoxide (DMSO), but is not limited thereto. The solvent in the washed wet gel is then replaced with a second organic solvent. This is to minimize the shrinkage of the skeleton due to capillary pressure at atmospheric pressure by substituting the solvent in the wet gel with a second organic solvent having a low surface tension.
상기 제 2 유기 용매는 표면장력이 낮은 유기 용매일 수 있다. 구체적으로, 상기 제 2 유기 용매의 표면 장력은 50 dyn/cm 이하일 수 있다. 더욱 구체적으로, 상기 제 2 유기 용매의 표면 장력은 10 내지 35 dyn/cm일 수 있다. 보다 더 구체적 으로, 상기 제 2 유기 용매의 표면 장력은 10 내지 20 dyn/cm일 수 있다.  The second organic solvent may be an organic solvent having a low surface tension. Specifically, the surface tension of the second organic solvent may be 50 dyn / cm or less. More specifically, the surface tension of the second organic solvent may be 10 to 35 dyn / cm. More specifically, the surface tension of the second organic solvent may be 10 to 20 dyn / cm.
상기 제 2 유기 용매의 표면장력이 상기 범위일 때, 상압 건조시 모세압으로 인한 골격의 수축을 최소화하는데 유리하다.  When the surface tension of the second organic solvent is in the above range, it is advantageous to minimize the shrinkage of the skeleton due to capillary pressure at atmospheric pressure.
예를 들어, 상기 제 2 유기 용매는 핵산, 펜탄, 헵탄, 이소프로판올, 클로로포 름, 메틸렌 클로라이드, 에테르, 아세톤 및 테트라하이드로퓨란 (THF)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 마지막으로, 상기 제 2 유기 용매로 치환된 상기 습윤 젤을 0°C 내지 200 °C 에서 건조시킨다. For example, the second organic solvent may include one or more selected from the group consisting of nucleic acid, pentane, heptane, isopropanol, chloroform, methylene chloride, ether, acetone and tetrahydrofuran (THF), but It is not limited. Finally, the wet gel substituted with the second organic solvent is dried at 0 ° C. to 200 ° C.
상기 건조를 통해 상기 습윤 젤에서 내부 용매를 제거함으로써 최종 에어로 젤을 얻을 수 있다. 상기 용매의 제거는 종래에 수행하였던 초임계 조건이 아닌 상 압조건에서 가능하다. 상기 방법으로 수득된 최종 에어로젤의 구성 성분, 표면적, 공극의 부피, 공 극의 평균 직경, 공극률 및 열전도율은, 앞서의 에어로젤에서 설명된 바와 같다. 이상의 표면 개질된 에어로젤의 제조방법에 따르면, 상압 조건에서 합성이 가능하고, 비교적 저렴한 카테콜 계열 화합물을 사용하므로 비용이 절감되며, 안전 하게 제조할 수 있다. 또한, 상기 표면 개질된 에어로젤의 제조방법은 카테콜 계열 화합물을사용하므로 친환경적인 에어로젤의 제조가 가능하다. 특히, 상기 표면 개질된 에어로젤의 제조방법은 트리메틸클로로실란 (TMCS) 과 같은 실릴화제를 사용하지 않는다는 점에 특징이 있다. 만약 상기 표면 개질된 에어로젤을 제조하는 방법에 실릴화제를 사용하는 경우, 실릴화제의 반웅성이 높아 위험하고 반웅할 때 염소 가스 등 유독한 가스가 발생하기 때문에, 반웅기를 설계함 에 있어 추가적인 비용이 발생할 수 있다. 그러나 상기 구현예에 따른 표면 개질된 에어로젤의 제조방법은 친환경적이고 경제적이며, 부반웅이 일어나지 않는다는 이점 을 가질 수 있다. 【실시예】 이하, 실시예에 의하여 더욱 상세하게 설명하나, 이들 범위로 한정되는 것은 아니다. 실시예 1: 우루시올로표면 개질된실리카에어로젤의 제조 The final aerogel can be obtained by removing the internal solvent from the wet gel through the drying. Removal of the solvent is possible at atmospheric pressure, not the supercritical conditions conventionally performed. The components, surface area, pore volume, average diameter, porosity and thermal conductivity of the final airgel obtained by the above method are as described in the above airgel. According to the manufacturing method of the surface-modified airgel, it is possible to synthesize under normal pressure conditions, and because it uses a relatively inexpensive catechol-based compound, the cost is reduced, and can be manufactured safely. In addition, the manufacturing method of the surface-modified airgel can be produced environmentally friendly airgel because it uses a catechol-based compound. In particular, the method for preparing the surface modified airgel is characterized in that it does not use a silylating agent such as trimethylchlorosilane (TMCS). If the silylating agent is used in the method for preparing the surface-modified airgel, since the reaction property of the silylating agent is high and dangerous and toxic gas such as chlorine gas is generated when reacting, the additional cost is required in designing the reaction product. May occur. However, the manufacturing method of the surface-modified airgel according to the embodiment may have the advantage that it is eco-friendly and economical, and no side reaction occurs. EXAMPLES Hereinafter, although an Example demonstrates further in detail, it is not limited to these ranges. Example 1 Preparation of Surface Modified Silica Aerogels with Urushiol
테트라에틸오르쏘실리케이트 (TEOS) 4.7 g, 에탄을 10 ml, 물 1.3 ml 및 36% 염산 2.8 ! 흔합하고, 10분간 가수분해 과정을 거친 후, 30% 수산화암모늄 수용 액 를 첨가하여, 습윤 젤을 제조하였다. 제조된 습윤 젤을 50°C에서 48시간 동 안 숙성시키고 파쇄한 다음, 소량의 에탄올을 이용하여 세척하였다. 상기 습윤 젤과 프로필렌글리콜 모노메틸에테르 아세테이트 (PGMEA)를 흔합하여, 상기 습윤 젤 내 의 용매를 PGMEA로 치환하였다. 상기 PGMEA로 치환된 습윤 젤을, 우루시올과 PGMEA의 흔합 용액 20 ml에 넣고, 24시간 동안 나노 골격의 표면을 개질하였다. 상기 표면 개질된 습윤 젤을 PGMEA로 세척하고, 10CTC에서 12시간 동안 열처리하 였다. 상기 습윤 젤 내의 용매를 핵산으로 치환하고, 60°C에서 건조시켜, 표면 개질 된 실리카 에어로젤을 얻었다. 실시예 2: TBC로표면 개질된실리카에어로젤의 제조 4.7 g of tetraethylorthosilicate (TEOS), 10 ml of ethane, 1.3 ml of water and 36% hydrochloric acid 2.8! After mixing and undergoing hydrolysis for 10 minutes, a wet gel was prepared by adding 30% ammonium hydroxide aqueous solution. The prepared wet gel was aged at 50 ° C. for 48 hours, crushed, and washed with a small amount of ethanol. The wet gel and propylene glycol monomethyl ether acetate (PGMEA) were combined to replace the solvent in the wet gel with PGMEA. The wet gel substituted with PGMEA was placed in 20 ml of a mixed solution of urushiol and PGMEA, and the surface of the nanoskeleton was modified for 24 hours. The surface modified wet gel was washed with PGMEA and heat treated at 10 CTC for 12 hours. The solvent in the wet gel was substituted with nucleic acid and dried at 60 ° C. to obtain a surface modified silica airgel. Example 2 Preparation of Surface-Modified Silica Aerogels with TBC
TEOS 4.7 g, 에탄올 10 ml, 물 1.3 ml 및 36% 염산 2.8 ^를 흔합하고, 10 분간 가수분해 과정을 거친 후, 30% 수산화암모늄 수용액 를 첨가하여, 습윤 젤을 제조하였다. 제조된 습윤 젤을 50°C에서 48시간 동안 숙성시키고 파쇄한 다음ᅳ 소량의 에탄올을 이용하여 세척하였다. 상기 습윤 젤과 PGMEA를 흔합하여 상기 습윤 젤 내의 용매를 PGMEA로 치환하였다. 상기 PGMEA로 치환된 습윤 젤을, pH 8의 4-tert-부틸카테콜 (TBC)과 PGMEA의 흔합 용액 20 ml에 넣고, 24시간 동안 나노 골격의 표면을 개질하였다. 상기 표면 개질된 습윤 젤을 PGMEA로 세척하고, 세척된 습윤 젤 내의 용매를 핵산으로 치환하였다. 이후 60°C에서 건조시켜 표면 개질된 실리카 에어로젤을 얻었다. 실시예 3: 도파민과 TBC로표면 개질된실리카에어로젤의 제조 4.7 g of TEOS, 10 ml of ethanol, 1.3 ml of water, and 2.8 ^ of 36% hydrochloric acid were mixed, hydrolyzed for 10 minutes, and then a 30% aqueous ammonium hydroxide solution was added to prepare a wet gel. The prepared wet gel was aged at 50 ° C. for 48 hours, crushed and washed with a small amount of ethanol. The wet gel and PGMEA by mixing The solvent in the wet gel was replaced with PGMEA. The wet gel substituted with PGMEA was added to 20 ml of a mixed solution of 4-tert-butylcatechol (TBC) and PGMEA at pH 8, and the surface of the nanoskeleton was modified for 24 hours. The surface modified wet gel was washed with PGMEA and the solvent in the washed wet gel was replaced with nucleic acid. After drying at 60 ° C to obtain a surface-modified silica airgel. Example 3 Preparation of Surface-Modified Silica Aerogels with Dopamine and TBC
실리카 함량이 5 중량 «¾인 소듐 실리케이트 용액 6.6 ml와 산촉매로서 1.15 M 염산 3.3 ^를 흔합한 후, 50°C에서 48시간 동안 숙성시켜 습윤 젤을 제조하였 다. 상기 습윤 젤을 파쇄한 후, 물과 흔합하여 상기 습윤 젤 내의 용매를 물로 치환 하였다. 상기 물로 치환된 습윤 젤을, 도파민 4 mg과 TBC 3.5 mg이 녹아 있는 에 탄을 40 ml에 넣고, 12시간 동안 표면 개질올 진행하였다. 상기 표면 개질된 습윤 젤을 에탄을로 세척하고, 이소프로판올과 핵산을 이용하여 상기 습윤 젤 내의 용매 를 치환하였다. 이후 60°C에서 건조시켜 표면 개질된 실리카 에어로젤을 얻었다. 실시예 4 : 도파민, TBC 및 핵실아민으로 표면 개질된 실리카 에어로젤의 제 조 A wet gel was prepared by mixing 6.6 ml of a silica silicate solution with a silica content of 5 weight «¾ and 3.3 ^ 1.15 M hydrochloric acid as an acid catalyst, and then aging at 50 ° C. for 48 hours. After breaking up the wet gel, the solvent in the wet gel was replaced with water by mixing with water. The wet gel substituted with water was added 40 ml of ethane in which 4 mg of dopamine and 3.5 mg of TBC were dissolved, followed by surface modification for 12 hours. The surface modified wet gel was washed with ethane and the solvent in the wet gel was substituted with isopropanol and nucleic acid. After drying at 60 ° C to obtain a surface-modified silica airgel. Example 4 Preparation of Silica Aerogel Surface Modified with Dopamine, TBC, and Nucleylamine
실리카 함량이 5 중량 %인 소듐 실리케이트 용액 6.6 ml와 산촉매로서 1.15 M 염산 3.3 ^를 흔합한 후, 50°C에서 48시간 동안 숙성시켜 습윤 젤을 제조하였 다. 상기 습윤 젤을 파쇄한 후, 물과 흔합하여 상기 습윤 젤 내의 용매를 물로 치환 하였다. 상기 물로 치환된 습윤 젤을, 도파민 1.3 mg과 TBC 5.8 mg이 녹아 있는 에탄을 40 ml 및 핵실아민 0.11 ml의 흔합 용액에 넣고, 12시간동안 표면 개질을 진행하였다. 상기 표면 개질된 습윤 젤을 에탄을로 세척하고, 이소프로판올과 핵산 을 이용하여 상기 습윤 젤 내의 용매를 치환하였다. 이후 60°C에서 건조시켜 표면 개질된 실리카 에어로젤을 얻었다. 비교예 1: 카테콜 계열 화합물로표면 개질되지 않은실리카에어로젤의 제조 실리카 함량이 5 중량 %인 소듐 실리케이트 용액 6.6 ml와 산촉매로서 1.15 M 염산 3.3 峰 흔합한 후, 50°C에서 48시간 동안 숙성시켜 습윤 젤을 제조하였 다. 상기 습윤 젤을 파쇄한 후, 물과 흔합하여 상기 습윤 젤 내의 용매를 물로 치환 하였다. 상기 표면 개질된 습윤 젤을 에탄올로 세척하고, 이소프로판올과 핵산을 이 용하여 상기 습윤 젤 내의 용매를 치환하였다. 이후 6CTC에서 건조시켜 최종 에어 로젤을 얻었다. 평가예 1: 에어로젤의 표면적 A wet gel was prepared by mixing 6.6 ml of a sodium silicate solution with a silica content of 5% by weight and 3.3 ^ of 1.15 M hydrochloric acid as an acid catalyst, and then aging at 50 ° C. for 48 hours. After breaking up the wet gel, the solvent in the wet gel was replaced with water by mixing with water. The wet gel substituted with water, ethanol dissolved in 1.3 mg of dopamine and 5.8 mg of TBC were added to a mixed solution of 40 ml and 0.11 ml of nucleosilamine, followed by surface modification for 12 hours. Proceeded. The surface modified wet gel was washed with ethane and the solvent in the wet gel was substituted with isopropanol and nucleic acid. After drying at 60 ° C to obtain a surface-modified silica airgel. Comparative Example 1 Preparation of Silica Aerogels Surface-Modified with Catechol-Based Compounds After mixing 6.6 ml of sodium silicate solution with a silica content of 5% by weight with 3.3 rank of 1.15 M hydrochloric acid as an acid catalyst, the mixture was aged at 50 ° C. for 48 hours. Wet gels were prepared. After breaking up the wet gel, the solvent in the wet gel was replaced with water by mixing with water. The surface modified wet gel was washed with ethanol and the solvent in the wet gel was substituted using isopropanol and nucleic acid. Then dried at 6CTC to obtain the final airgel. Evaluation Example 1 Surface Area of Airgel
상기 실시예 1 내지 4 및 비교예 1에서 제조된 에어로젤의 표면적을 BET(Brunauer, Emmett and Teller) 방법을 통해 측정하였다. 그 결과를 하기 표 1 에 나타내었다. 평가예 2: 에어로젤에 형성된 공극의 부피  The surface area of the airgel prepared in Examples 1 to 4 and Comparative Example 1 was measured by the BET (Brunauer, Emmett and Teller) method. The results are shown in Table 1 below. Evaluation example 2: volume of voids formed in the airgel
상기 실시예 1 내지 4 및 비교예 1에서 제조된 에어로젤에 형성된 공극의 부피를 BET 방법을 통해 측정하였다. 그 결과를 하기 표 1에 나타내었다. 평가예 3: 에어로젤에 형성된 공극의 평균직경 상기 실시예 1 내지 4 및 비교예 1에서 제조된 에어로젤에 형성된 공극의 평균 직경을 BET 방법을 통해 측정하였다. 그 결과를 하기 표 1에 나타내었다. 평가예 4: 에어로젤의 열전도율 The volume of the pores formed in the airgel prepared in Examples 1 to 4 and Comparative Example 1 was measured by the BET method. The results are shown in Table 1 below. Evaluation example 3: average diameter of the space | gap formed in an airgel The average diameter of the pores formed in the airgel prepared in Examples 1 to 4 and Comparative Example 1 was measured by the BET method. The results are shown in Table 1 below. Evaluation Example 4: Thermal Conductivity of Airgel
상기 실시예 4 및 비교예 1에서 제조된 에어로젤의 열전도율을 MTPS(Modified Transient Plane Source) 방법에 기반한 기기 (C— Therm Thermal Conductivity Analyzer)를 통해 측정하였다. 그 결과를 하기 표 1에 나타내었다.  The thermal conductivity of the airgel prepared in Example 4 and Comparative Example 1 was measured by an instrument (C—Therm Thermal Conductivity Analyzer) based on the Modified Transient Plane Source (MTPS) method. The results are shown in Table 1 below.
【표 1】 Table 1
Figure imgf000017_0001
상기 표 1에서 보는 바와 같이, 실시예 1 내지 4는 비교예 1에 비해 표면적 이 넓고, 공극의 부피가 크고 공극의 평균 직경이 길어서 공극률이 높으며, 열전도 율 또한 우수하다는 것을 확인할 수 있었다.
Figure imgf000017_0001
As shown in Table 1, Examples 1 to 4 has a larger surface area than Comparative Example 1, a large volume of the pores and a long average diameter of the pores have a high porosity, it was confirmed that the thermal conductivity is also excellent.
또한, 실시예 1 내지 4의 SEM 사진을 나타낸 도 1 내지 4를 통해 공극이 존재하는 표면 개질된 에어로젤을 확인할 수 있었다.  In addition, the surface-modified airgel in which the pores exist can be confirmed through FIGS. 1 to 4 showing SEM images of Examples 1 to 4. FIG.

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
카테콜 (catechol) 계열 화합물로 표면 개질된 에어로젤.  Aerogels surface modified with catechol family compounds.
【청구항 2】 [Claim 2]
거 U항에 있어서,  In U,
상기 개질된 에어로젤의 표면이 소수성 (hydrophobic)인, o에어로젤. O Airgel, wherein the surface of the modified airgel is hydrophobic.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 카테콜 계열 화합물이 카테콜기를 갖는 화합물인, 에어로젤.  An airgel, wherein the catechol-based compound is a compound having a catechol group.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 카테콜 계열 화합물이 카테콜, 4-tert-부틸카테콜 (4-tert- butylcatechol; TBC), 우루시올 (urushiol), 도파민 (dopamine), 알리자린 (alizarin), 타 닌산 (tannic acid), 파이로갈를 (pyrogallol), 갈산 (gallic acid), 에피갈로카테킨 (epigallocatechin), 에피카테킨 갈레이트 (epicatechin gallate) 및 에피갈로카테킨 갈레이트 (epigallocatechin gallate)로 이루어진 군으로부터 선택된 1종 이상을 포함 하는, 에어로젤. The catechol-based compound is catechol, 4-tert-butylcatechol (4-tert-butylcatechol (TBC), urushiol (urushiol), dopamine (dopamine), alizarin (alizarin), tannic acid (tannic acid), pyro Aerogels comprising at least one member selected from the group consisting of galrogalol, gallic acid, epigallocatechin, epicatechin gallate and epigallocatechin gallate .
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 에어로젤이 실리카, 티타니아 (titania) 및 알루미나로 이루어진 군으로부 터 선택된 1종 이상을 포함하는, 에어로젤.  The airgel comprises one or more selected from the group consisting of silica, titania and alumina.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 에어로젤의 표면적이 300 내지 1,500 m2/g인, 에어로젤. An airgel having a surface area of 300 to 1500 m 2 / g.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 에어로젤에 형성된 공극의 평균 직경이 12 내지 100 nm인, 에어로젤.  The average diameter of the pores formed in the airgel is 12 to 100 nm, an airgel.
【청구항 8】 [Claim 8]
나노 골격 전구체의 졸-젤 반웅을 이용하여 습윤 젤을 제조하는 단계;  Preparing a wet gel using a sol-gel reaction of the nano-skeletal precursor;
상기 습윤 젤과 극성 용매를 흔합하여 상기 습윤 젤 내의 용매를 상기 극성 용매로 치환하는 단계;  Mixing the wet gel with the polar solvent to replace the solvent in the wet gel with the polar solvent;
상기 극성 용매로 치환된 상기 습윤 젤과 카테콜 계열 화합물을 흔합하여 나 노 골격의 표면을 개질하는 단계;  Mixing the wet gel substituted with the polar solvent with a catechol-based compound to modify a surface of a nano skeleton;
상기 표면 개질된 습윤 젤을 제 1 유기 용매로 세척하는 단계;  Washing the surface modified wet gel with a first organic solvent;
상기 세척된 습윤 젤 내의 용매를 제 2 유기 용매로 치환하는 단계; 및 상기 제 2 유기 용매로 치환된 상기 습윤 젤을 0°C 내지 200°C에서 건조시키 는 단계;를 포함하는, 카테콜 계열 화합물로 표면 개질된 에어로젤의 제조방법. Replacing the solvent in the washed wet gel with a second organic solvent; And And drying the wet gel substituted with the second organic solvent at 0 ° C. to 200 ° C., wherein the surface-modified airgel with the catechol-based compound is prepared.
【청구항 9】 [Claim 9]
제 8항에 있어서,  The method of claim 8,
상기 나노 골격 전구체는 d-Czo 금속 알콕시화물 및 실리케이트계 화합물 중에서 선택된 1종 이상을 포함하는, 에어로젤의 제조방법.  The nano-skeletal precursor comprises at least one selected from d-Czo metal alkoxide and silicate-based compound, a method for producing an airgel.
【청구항 10】 [Claim 10]
제 8항에 있어서,  The method of claim 8,
상기 나노 골격 전구체는 테트라메틸오르쏘실리케이트 (tetramethyl orthosilicate; TMOS), 테트라에틸오르쏘실리케이트 (tetraethyl orthosilicate; TEOS), 티타늄 테트라이소프로폭사이드 (titanium tetraisopropoxide; TTIP), 티타늄 테트라부록사이드 (titanium tetrabutoxide), 알루미늄 트리 -sec-부특사이드 (aluminum tri— sec— butoxide) 및 소듐 실리케이트 (sodium silicate)로 이루어진 군 으로부터 선택된 1종 이상을 포함하는, 에어로젤의 제조방법.  The nano-skeletal precursors are tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), titanium tetraisopropoxide (TTIP), titanium tetrabutoxide (titanium tetrabutoxide) A process for producing an airgel, comprising at least one member selected from the group consisting of aluminum tri-sec-butoxide and sodium silicate.
【청구항 11】 [Claim 11]
제 8항에 있어서,  The method of claim 8,
상기 극성 용매는 극성 양성자성 용매 또는 극성 비양성자성 용매이고, 상기 극성 양성자성 용매는 물, 에탄올, 메탄올 및 이소프로판올로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 상기 극성 비양성자성 용매는 아세톤, 프로필렌글리콜 모노메틸에테르 아세 테이트 (propylene glycol monomethyl ether acetate; PGMEA), 테트라하이드로퓨란 (THF), 에틸 아세테이트, 클로로포름, 메틸렌 클로라이드, 디메틸포름아마이드 및 디메틸설폭사이드 (DMSO)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 에 어로젤의 제조방법. The polar solvent is a polar protic solvent or a polar aprotic solvent, the polar protic solvent comprises at least one selected from the group consisting of water, ethanol, methanol and isopropanol, The polar aprotic solvents include acetone, propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran (THF), ethyl acetate, chloroform, methylene chloride, dimethylformamide and dimethylsulfoxide (DMSO A method for producing an aerogel, comprising one or more selected from the group consisting of.
【청구항 12] [Claim 12]
제 8항에 있어서,  The method of claim 8,
상기 카테콜 계열 화합물이 카테콜기를 갖는 화합물인, 에어로젤의 제조방법.  The catechol-based compound is a compound having a catechol group, a method for producing an airgel.
【청구항 13] [Claim 13]
제 8항에 있어서,  The method of claim 8,
상기 카테콜 계열 화합물이 카테콜, 4-tert-부틸카테콜 (4-tert- butylcatechol; TBC), 우루시올 (urushiol), 도파민 (dopamine), 알리자린 (alizarin), 타 닌산 (tannic acid), 파이로갈를 (pyrogallol), 갈산 (gallic acid), 에피갈로카테킨 (epigallocatechin), 에피카테킨 갈레이트 (epicatechin gallate) 및 에피갈로카테킨 갈레이트 (epigallocatechin gallate)로 이루어진 군으로부터 선택된 1종 이상을 포함 하는, 에어로젤의 제조방법.  The catechol-based compound is catechol, 4-tert-butylcatechol (4-tert-butylcatechol (TBC), urushiol (urushiol), dopamine (dopamine), alizarin (alizarin), tannic acid (tannic acid), pyro Aerogels comprising at least one member selected from the group consisting of galrogalol, gallic acid, epigallocatechin, epicatechin gallate and epigallocatechin gallate Manufacturing method.
【청구항 14] [Claim 14]
거 18항에 있어서,  According to claim 18,
상기 게 1 유기 용매가 에탄올, 프로필렌글리콜 모노메틸에테르 아세테이트 (propylene glycol monomethyl ether acetate; PGMEA), 테트라하이드로퓨란 (THF), 아세톤, 에틸 아세테이트, 이소프로판올, 메탄올, 클로로포름, 메틸렌 클로라이드, 디 메틸포름아마이드 및 디메틸설폭사이드 (DMSO)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 에어로젤의 제조방법. The Crab 1 organic solvent is ethanol, propylene glycol monomethyl ether acetate. (propylene glycol monomethyl ether acetate; PGMEA), tetrahydrofuran (THF), acetone, ethyl acetate, isopropanol, methanol, chloroform, methylene chloride, dimethylformamide and dimethyl sulfoxide (DMSO) Comprising, airgel production method.
【청구항 15] [Claim 15]
제 8항에 있어서,  The method of claim 8,
상기 제 2 유기 용매의 표면 장력이 50 dyn/cm 이하인, 에어로젤의 제조방  The manufacturing method of an airgel whose surface tension of the said 2nd organic solvent is 50 dyn / cm or less.
【청구항 16] [Claim 16]
거 115항에 있어서,  According to clause 115,
상기 제 2 유기 용매가 핵산, 펜탄, 헵탄, 이소프로판올, 클로로포름, 메틸렌 클로라이드, 에테르, 아세톤 및 테트라하이드로퓨란 (THF)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 에어로젤의 제조방법.  And the second organic solvent comprises at least one selected from the group consisting of nucleic acid, pentane, heptane, isopropanol, chloroform, methylene chloride, ether, acetone and tetrahydrofuran (THF).
【청구항 17】 [Claim 17]
거 18항에 있어서,  According to claim 18,
상기 에어로젤의 표면적이 300 내지 1,500 m2/g인, 에어로젤의 제조방법. The surface area of the airgel is 300 to 1,500 m 2 / g, airgel manufacturing method.
【청구항 18】 [Claim 18]
제 8항에 있어서, 상기 에어로젤에 형성된 공극의 평균 직경이 12 내지 100 nm인, 에어로젤의 제조방법. The method of claim 8, The average diameter of the pores formed in the airgel is 12 to 100 nm, a method for producing an airgel.
PCT/KR2018/001122 2017-02-15 2018-01-25 Aerogel surface-modified with catechol-based compound, and preparation method therefor WO2018151438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0020592 2017-02-15
KR1020170020592A KR101870958B1 (en) 2017-02-15 2017-02-15 Aerogel surface-modified with catechol-based compounds and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018151438A1 true WO2018151438A1 (en) 2018-08-23

Family

ID=62805937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001122 WO2018151438A1 (en) 2017-02-15 2018-01-25 Aerogel surface-modified with catechol-based compound, and preparation method therefor

Country Status (3)

Country Link
KR (1) KR101870958B1 (en)
TW (1) TWI705852B (en)
WO (1) WO2018151438A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452262A (en) * 2020-11-19 2021-03-09 浙江工业大学 Preparation method and application of dopamine/silicon dioxide composite aerogel
CN112473573A (en) * 2020-11-19 2021-03-12 浙江工业大学 Pd (II) -DA-SiO2Preparation method and application of composite aerogel
US20210347646A1 (en) * 2019-11-18 2021-11-11 Gabrielle Sabrina Rey Melanized Aerogel
CN115369651A (en) * 2021-05-20 2022-11-22 盐城工学院 Surface porous strong-adhesion modified fiber and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259242B1 (en) * 2019-09-06 2021-05-31 세종대학교산학협력단 Organogel, xerogel comprising catechol deratives and methods for preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172378A (en) * 2011-02-21 2012-09-10 Tokuyama Corp Aerogel and heat insulator using aerogel
KR20150118248A (en) * 2014-04-11 2015-10-22 가톨릭대학교 산학협력단 Fabrication of Polydopamine Coated Monodisperse Polydimethylsiloxane Microsphere
CN105038500A (en) * 2015-07-08 2015-11-11 当涂县科辉商贸有限公司 Urushiol-modified aerosil super thermal-insulation heat-preserving paint and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026424A1 (en) * 2015-08-10 2017-02-16 国立大学法人京都大学 Porous particle, method for producing porous particle, and block copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172378A (en) * 2011-02-21 2012-09-10 Tokuyama Corp Aerogel and heat insulator using aerogel
KR20150118248A (en) * 2014-04-11 2015-10-22 가톨릭대학교 산학협력단 Fabrication of Polydopamine Coated Monodisperse Polydimethylsiloxane Microsphere
CN105038500A (en) * 2015-07-08 2015-11-11 当涂县科辉商贸有限公司 Urushiol-modified aerosil super thermal-insulation heat-preserving paint and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEWANDOWSKI, D.: "SBA-15 Mesoporous Silica Modified with Gallic Acid and Evaluation of Its Cytotoxic Activity", PLOS ONE, vol. 10, no. 7, 7 July 2015 (2015-07-07), pages e0132541, XP055536992 *
LI, F.: "Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating", ACS NANO, vol. 10, no. 2, 5 February 2016 (2016-02-05), pages 2910 - 2921, XP055536989 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210347646A1 (en) * 2019-11-18 2021-11-11 Gabrielle Sabrina Rey Melanized Aerogel
CN112452262A (en) * 2020-11-19 2021-03-09 浙江工业大学 Preparation method and application of dopamine/silicon dioxide composite aerogel
CN112473573A (en) * 2020-11-19 2021-03-12 浙江工业大学 Pd (II) -DA-SiO2Preparation method and application of composite aerogel
CN115369651A (en) * 2021-05-20 2022-11-22 盐城工学院 Surface porous strong-adhesion modified fiber and preparation method and application thereof
CN115369651B (en) * 2021-05-20 2023-12-05 盐城工学院 Surface porous strong adhesion modified fiber and preparation method and application thereof

Also Published As

Publication number Publication date
TW201831229A (en) 2018-09-01
KR101870958B1 (en) 2018-06-25
TWI705852B (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2018151438A1 (en) Aerogel surface-modified with catechol-based compound, and preparation method therefor
Hu et al. Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure
EP3305726B1 (en) Method for preparing metal oxide-silica composite aerogel
KR101434273B1 (en) Method for Preparing Surface-Modified Aerogel
Shi et al. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process
Li et al. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure
EP3357864A1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
KR100785521B1 (en) Method for preparing surface-modified aerogel and surface-modified aerogel therefrom
Li et al. Characteristics of ambient-pressure-dried aerogels synthesized via different surface modification methods
TW201223868A (en) Aerogel and method for manufacture thereof
US11279622B2 (en) Method for producing silica aerogel and silica aerogel produced thereby
JP6507838B2 (en) Aerogel, method of producing aerogel and airgel film
CN103333358A (en) Reusable low-cost silica aerogel oil-absorbing sponge and preparation method thereof
EP3778712B1 (en) Method for synthesizing prehydrolyzed polysilicate
KR20110125773A (en) Manufacturing method of hydrophobic silica aerogel and hydrophobic silica aerogel manufactured therefrom
WO2019069412A1 (en) Coating solution, method for producing coating film, and coating film
WO2008038935A1 (en) Method of fabricating superhydrophobic silica chain powders
WO2019069404A1 (en) Coating liquid, coating film production method, and coating film
EP3385225B1 (en) Method for manufacturing silica aerogel
WO2020209131A1 (en) Coating liquid, composite material, and coating film
WO2023226710A1 (en) Method for preparing silicon dioxide aerogel or composite product thereof
KR101227065B1 (en) Aerogel and Preparation Method Thereof
JP5035819B2 (en) Method for forming porous silica film and coating solution for forming porous silica used therefor
KR102117617B1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared by using the same
WO2020208756A1 (en) Composite material, sheet, and heat insulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754227

Country of ref document: EP

Kind code of ref document: A1