WO2018151369A1 - Bulk heterojunction solar cell and manufacturing method therefor - Google Patents

Bulk heterojunction solar cell and manufacturing method therefor Download PDF

Info

Publication number
WO2018151369A1
WO2018151369A1 PCT/KR2017/002615 KR2017002615W WO2018151369A1 WO 2018151369 A1 WO2018151369 A1 WO 2018151369A1 KR 2017002615 W KR2017002615 W KR 2017002615W WO 2018151369 A1 WO2018151369 A1 WO 2018151369A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
active layer
sns
bulk heterojunction
heterojunction solar
Prior art date
Application number
PCT/KR2017/002615
Other languages
French (fr)
Korean (ko)
Inventor
박진호
정재학
트롱윈탐윈
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2018151369A1 publication Critical patent/WO2018151369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bulk heterojunction solar cell and a method for manufacturing the same, and more particularly, to a hybrid bulk heterojunction solar cell containing SnS 2 nanoparticles and a method for manufacturing the same.
  • an organic solar cell is formed by stacking an ITO layer, a transparent electrode, on a glass substrate, depositing a p-type organic material used as a charge transport layer and an active layer for charge transport, and generating a built-in electric field.
  • the n-type organic material for the stacked structure may be used to effectively transfer charges generated by absorbing light above the energy gap of an organic material.
  • the hole transport layer uses organic materials lower than the work function of ITO used as the anode, and the electron transport layer uses organic materials having a work function larger than aluminum (Al) used as the cathode to facilitate the transport of electrons. It is configured to be.
  • a general organic solar cell manufacturing process is as follows. After ITO is deposited on the glass substrate by sputtering, patterning is performed. Subsequently, after cleaning the substrate, depending on the type of organic material to be deposited, the organic material thin film is deposited by evaporation, and in the case of polymer, spin coating or screen printing is performed. To be deposited. Afterwards, aluminum is mainly used as a back electrode and is deposited by evaporation.
  • CdSe cadmium selenide
  • PbS lead sulfide
  • CdS cadmium sulfide
  • CdS cadmium selenide
  • PbS lead sulfide
  • CdS cadmium sulfide
  • cadmium (Cd), lead (Pb) and indium (In), etc. have a significant impact on the supply of renewable energy due to toxic or lack of resources.
  • the present invention is to solve a number of problems including the above problems, to provide a bulk heterojunction solar cell having a high light absorption, non-toxic, low cost, excellent photoelectric conversion efficiency using abundant materials and a method of manufacturing the same. It is.
  • the foregoing problem has been presented by way of example, and the scope of the present invention is not limited by this problem.
  • a bulk heterojunction solar cell is provided.
  • SnS 2 Tin Disulfide
  • P3HT Poly (3-hexylthiophene-2,5-diyl)
  • PCPDTBT Poly [2,6-
  • the SnS 2 and P3HT or SnS 2 and PCPDTBT may be a weight ratio of 6: 4 to 8: 2.
  • a bulk heterojunction solar cell includes a substrate; A first electrode layer formed on the substrate; A transport layer formed on the first electrode layer; An active layer formed on the transport layer; And an electrode layer formed on the active layer, wherein the active layer is formed of an electron acceptor material and an electron donor material, and the electron acceptor material is SnS 2 (Tin Disulfide), and the electron donor material is P3HT (Poly ( 3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]), but the electron acceptor material and the electron donor material may be mixed to have a weight ratio of 6: 4 to 8: 2.
  • a method of manufacturing a bulk heterojunction solar cell includes forming an active layer on a substrate having a transparent electrode by using a hot-injection method, wherein the active layer is an electron receiving material.
  • the electron donor material has a weight ratio of 6: 4 to 8: 2, and the electron acceptor material includes Sn Disulfide (SnS 2 ) nanoparticles, and the electron donor material is P3HT (Poly (3-hexylthiophene).
  • PCPDTBT Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene)- alt-4,7 (2,1,3-benzothiadiazole)]).
  • the step of forming the active layer the first mixture is heated to a temperature range of 110 °C to 130 °C, supplying nitrogen (nitrogen), 190 °C to 210 °C of Heating up to a temperature range; And rapidly injecting a second mixture into the first mixture after the step of increasing the temperature.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a bulk heterojunction solar cell according to an embodiment of the present invention.
  • TEM 2 is a result of analyzing the active layer of a bulk heterojunction solar cell according to an embodiment of the present invention with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • FIG. 1 is a cross-sectional view schematically showing the structure of a bulk heterojunction solar cell according to an embodiment of the present invention.
  • a bulk heterojunction solar cell 100 may include a substrate 10, a first electrode layer 20, a transport layer 30, an active layer 40, and a second electrode layer 50. ) May be included.
  • the substrate 10 may be, for example, any one of a glass, a wafer, and a flexible substrate.
  • the first electrode layer 20 is a transparent electrode through which the electrode is transparent, and an ITO layer having a specific gravity of 90% indium oxide (In 2 O 3 ) and 10% tin oxide (SnO 2 ) may be used.
  • an ITO layer having a specific gravity of 90% indium oxide (In 2 O 3 ) and 10% tin oxide (SnO 2 ) may be used.
  • the present invention is not limited thereto, and carbon nanotubes may be coated or PEDOT may be used.
  • the work function of the first electrode layer 20 is 5.1 eV, 4.75 eV, 4.3 eV, and the first electrode layer 20 is formed on the substrate 10 by using any one of electron beam deposition, vacuum evaporation, and sputtering methods. Can be formed on.
  • the transport layer 30 may use, for example, PEDOT: PSS, which is a high concentration conductive polymer, and may be understood as a buffer layer.
  • the transport layer 30 may be used as an electrode layer instead of the first electrode layer 20, but may be used as a transport layer for holes generated in the active layer 40 in the present invention.
  • the transport layer 30 is formed by a spin coating method, and the work function is 5.2 eV to 5.3 eV.
  • the active layer 40 is formed on the substrate 10 having a transparent electrode by using a hot-injection method, and by absorbing light, electrons of the highest occupied molecular orbital (HOMO) are attracted to the LUMO (lowest unoccupied molecular). orbital) to form an exciton.
  • the active layer 40 has a thickness of about 140 nm to 150 nm. If the thickness of the active layer 40 is less than 140 nm, the efficiency of the bulk heterojunction solar cell is not high because there are few electron-hole pairs excited by the absorbed light.
  • the thickness of the active layer 40 is greater than 150nm, the thickness of the absorber layer 40 is too thick, so the movement path between electrons and holes is long, so that recombination occurs a lot, the efficiency of the bulk heterojunction solar cell is reduced. .
  • the path should be formed so that the electrons and holes separated in the active layer 40 can move to the electrode without being short-circuited. At this time, even within the electron donor material and the electron acceptor material, the movement speed of holes and electrons should be fast enough.
  • the active layer 40 separates electrons and holes from excitons generated by absorbing light, and as an electron donor material,
  • an electron donor material For example, P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b) ; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]
  • P3HT Poly (3-hexylthiophene-2,5-diyl)
  • PCPDTBT Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b) ; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)
  • LUMO is lower than the electron donor material.
  • SnS 2 Tin Disulfide nanoparticles
  • the exciton generated by absorbing light from the electron donor material moves to the interface of the electron acceptor and then passes the electron to the electron acceptor to separate the electron and the hole pair.
  • SnS 2 (Tin Disulfide) used as electron acceptor in active layer 40 is P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4) , 4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]) These two materials mix well together. At this time, the weight ratio of the electron receiving material and the electron donor material must satisfy 6: 4 to 8: 2 to improve the efficiency of transmitting and receiving electrons according to light absorption.
  • the weight ratio of the electron acceptor material and the electron donor material is 7: 3, the optimum efficiency is obtained. That is, the SnS 2 and the P3HT or the SnS 2 and the PCPDTBT may satisfy a weight ratio of 6: 4 to 8: 2.
  • the second electrode layer 50 may be formed on the active layer 40 using a vacuum evaporator method.
  • the second electrode layer 50 may include, for example, aluminum (Al) metal.
  • PEDOT: PSS polyethylenedioxythiophene doped with polystyrene-sulfonic acid
  • the spin coating condition was carried out at a speed of 4000rpm for about 30sec.
  • the SnS 2 used in the active layer is then mixed by mixing the first mixture and the second mixture in a flask having two openings using a hot-injection method. Nanoparticles were formed.
  • the first mixture was rapidly reacted by injecting the second mixture containing OLA and TAA (thioacetamide).
  • the reaction was carried out in a nitrogen atmosphere, and reacted for about 12 hours and then cooled to room temperature.
  • the mixture was centrifuged at a rate of 10000 rpm for about 10 minutes using a mixture of chlorobenzene and ethanol.
  • the chlorobenzene and ethanol were used to disperse SnS 2 nanoparticles (SnS 2 : P3HT), and after repeated centrifugation, washed repeatedly to give SnS 2 Nanoparticles were prepared.
  • SnS 2 After the nanoparticles were prepared, the drying process was performed at about 140 ° C. for about 30 minutes.
  • the prepared sample was subjected to ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy (PL), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), transmission electron microscopy (TEM) and HR-TEM.
  • the analysis was performed.
  • the wjsfalfeh and open voltage characteristics of bulk heterojunction solar cell samples were analyzed using sampCurrent density-voltage (J-V) and solar simulator (Keithley 69911).
  • the electron donor material of the active layer was changed from P3HT to PCPDTBT, and SnS 2 nanoparticles (SnS 2 : PCPDTBT) were prepared in the same manner as described above to analyze current density and absorption rate.
  • TEM 2 is a result of analyzing the active layer of a bulk heterojunction solar cell according to an embodiment of the present invention with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • SnS 2 nanoparticle is shown to clarify the lattice pattern, distorted hexagonal shape of SnS 2 nano Since no dislocations exist in the particles, it was confirmed that the prepared SnS 2 nanoparticles were very crystalline.
  • the size of SnS 2 nanoparticles is calculated based on 100 particles in a TEM image, and has a size distribution of about 3 nm to 8 nm and an average of about 5.2 nm. Particles were found to be the most distributed.
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • FIG. 3 the crystal structure of SnS 2 nanoparticles was analyzed by XRD.
  • diffraction peaks were observed at 2theta values of 17 °, 30 °, 51 °, and 60 °, and JCPDS.
  • card No. According to 0-040-1466, the SnS 2 nanoparticles of the present invention were found to have hexagonal structures having (002), (100), (110, and (200) crystal faces, respectively, in the diffraction peaks.
  • the hexagonal structure is clearly shown in (b) of FIG. 2 as a result of analysis by HR-TEM.
  • FIG. 3 (b) is a result of analyzing the optical properties of SnS 2 nanoparticle by UV-vis and PL spectroscopy, SnS 2 nano-particles shows a light absorption rate in accordance with various reaction times of from 1 hour to 13 hours. Absorption of SnS 2 nanoparticles at a reaction time of about 9 hours and a wavelength of about 440 nm was red-shifted relative to the bulk value. The bandgap of the SnS 2 nanoparticles reacted for 9 hours is about 2.8 eV, which is about 0.4 eV larger than the bulk value. This seems to be due to the quantum size effect.
  • the bulk heterojunction solar cell sample of Example 1 has an active layer thickness of about 146 nm, an open voltage of 0.55 V, and a short circuit current of 1.18 mA / cm 2.
  • FF was 0.61, and the photoelectric conversion efficiency was 0.39%, which was higher than that of Comparative Examples 1 to 4.
  • the short circuit current increases as the thickness of the active layer decreases, and the absorption of photons becomes higher as the thickness of the active layer becomes thinner.
  • the short-circuit current decreases, which seems to decrease with increasing recombination rate before each electron-hole pair is collected at the electrode. In other words, when the thick active layer is moved to collect electrons or holes, the path is long and the possibility of recombination due to defects is increased.
  • Example 1 is a sample of a bulk heterojunction solar cell with an active layer containing SnS 2 nanoparticles (SnS 2 : P3HT), and Example 2 is provided with an active layer containing SnS 2 nanoparticles (SnS 2 : PCPDTBT) Bulk heterojunction solar cell sample.
  • the sample of Example 1 and the sample of Example 2 differ only in the electron donor material, and it can be seen that the sample of Example 2 using PCPDTBT as the electron donor material has a higher current density than the sample of Example 1 using P3HT. there was.
  • the bandgap of PCPDTBT is 1.4eV, which is a relatively lower bandgap polymer than the bandgap 2eV of P3HT.
  • the sample of Example 2 using PCPDTBT has a higher absorption rate in the visible light spectrum than the sample of Example 1 using P3HT and the sample of Comparative Example 5 using SnS 2 only. It seems to have improved.
  • the present invention may form an active layer by mixing P3HT and PCPDTBT with SnS 2 , which is an electron accepting material, as an electron donor material.
  • SnS 2 which is an electron accepting material
  • the bulk heterojunction solar cell including the active layer may have a photoelectric conversion efficiency of up to 0.77% under AM 1.5G conditions.
  • the active layer thickness of the present invention affects the number of photons absorbed by the active layer and improves the penetration path for carrier transport and collection.
  • SnS 2 nanoparticles as electron accepting materials, it is possible to form improved device properties after altering the insulating surface ligand of the SnS 2 particles.
  • the inclusion of low bandgap polymers in the device structure can increase light absorption in the active layer to further improve device performance.
  • a bulk heterojunction solar cell having excellent light absorption characteristics, non-toxicity, low cost, and improving the photoelectric conversion efficiency can be realized by forming an absorption layer using abundant materials.

Abstract

The present invention provides: a bulk heterojunction solar cell in which SnS2 (tin disulfide), which is used as an electron acceptor material, and poly(3-hexylthiophene-2,5-diyl) (P3HT) or poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), which serves as an electron donor, are mixed, wherein the weight ratio of SnS2 and P3HT or SnS2 and PCPDTBT is 6:4 to 8:2; and a manufacturing method therefor.

Description

벌크 이종 접합 태양전지 및 이의 제조방법Bulk heterojunction solar cell and manufacturing method thereof
본 발명은 벌크 이종 접합 태양전지 및 이의 제조방법에 대한 것으로서, 더 상세하게는 SnS2 나노 파티클을 함유하는 하이브리드 벌크 이종 접합 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a bulk heterojunction solar cell and a method for manufacturing the same, and more particularly, to a hybrid bulk heterojunction solar cell containing SnS 2 nanoparticles and a method for manufacturing the same.
유기물이 광전도성, 광전압 그리고 광전지 효과 등을 가지고 있다는 것은 오랫동안 알려져 왔으며, 이러한 특성은 주로 사진현상과 건식인쇄에 사용되었다. 유기 박막 태양전지에 관한 연구는 1958년 Kearns와 Calvin에 의해 처음 연구되기 시작하였는데, 마그네슘 프타로시아닌(MgPh) 디스크 위에 공기 산화된 테트라메틸-p-페닐렌디아민(TMPD)를 캐스팅(casting)해서 유기 이종 접합 태양전지가 만들어진 것이 최초이다. It has long been known that organics have photoconductivity, photovoltaic and photovoltaic effects, and these properties have been used primarily for photographic and dry printing. Work on organic thin film solar cells was first studied by Kearns and Calvin in 1958, casting air oxidized tetramethyl-p-phenylenediamine (TMPD) onto magnesium phthalocyanine (MgPh) disks. This is the first time that organic heterojunction solar cells have been made.
그러나 당시에는 유기태양광전지에 대한 주위의 기술적 환경이 제대로 갖추어지지 않았기 때문에 효율이 좋지 못하여 유기 태양광 전지의 개발에 있어 한계가 있었다. 이후에 많은 연구개발이 진행되어 왔지만, 아직도 수명이 긴 유기 태양전지는 개발되지 못한 실정이다.However, since the technical environment around the organic photovoltaic cell was not properly prepared at that time, the efficiency was not good and there was a limit in the development of the organic photovoltaic cell. After a lot of research and development has been progressed, the organic solar cell is still a long life has not been developed.
일반적으로 유기 태양전지는 유리기판 위에 투명전극인 ITO층을 적층하고 전하수송을 위한 전하수송층 그리고 활성층(active layer)으로 사용되는 p형 유기물이 증착되고, 빌트-인(built-in) 전기장의 생성을 위한 n형 유기물이 적층된 구조이다. 유기물의 에너지 갭 이상의 빛을 흡수하여 생성된 전하들을 효과적으로 전달하기 위하여 정공전달층과 전자전달층이 사용되기도 한다.In general, an organic solar cell is formed by stacking an ITO layer, a transparent electrode, on a glass substrate, depositing a p-type organic material used as a charge transport layer and an active layer for charge transport, and generating a built-in electric field. The n-type organic material for the stacked structure. A hole transport layer and an electron transport layer may be used to effectively transfer charges generated by absorbing light above the energy gap of an organic material.
정공전달층은 양극으로 사용되는 ITO의 일함수(work function)보다 낮은 유기물을 사용하고, 전자전달층은 음극으로 사용되는 알루미늄(Al)보다 일함수가 큰 유기물을 사용함으로써 전자의 수송을 원활히 할 수 있도록 구성되어진다.The hole transport layer uses organic materials lower than the work function of ITO used as the anode, and the electron transport layer uses organic materials having a work function larger than aluminum (Al) used as the cathode to facilitate the transport of electrons. It is configured to be.
일반적인 유기 태양전지의 제조 공정은 다음과 같다. 유리기판 위에 스퍼터링(sputtering)을 통해 ITO를 증착한 후 패터닝(patterning)을 수행한다. 이후에 기판세정 과정을 거친 후 증착할 유기물의 종류에 따라 단분자일 경우는 유기물 박막을 증발증착(evaporation) 방법으로 증착하고, 고분자일 경우 스핀 코팅(spin coating) 또는 스크린 프린팅(screen printing) 방법으로 증착한다. 이후에 이면전극으로는 주로 알루미늄이 많이 사용되며 증발증착 방법으로 증착된다.A general organic solar cell manufacturing process is as follows. After ITO is deposited on the glass substrate by sputtering, patterning is performed. Subsequently, after cleaning the substrate, depending on the type of organic material to be deposited, the organic material thin film is deposited by evaporation, and in the case of polymer, spin coating or screen printing is performed. To be deposited. Afterwards, aluminum is mainly used as a back electrode and is deposited by evaporation.
최근에 카드뮴셀라나이드(CdSe), 리드설파이드(PbS) 및 카드뮴설파이드(CdS) 등과 같은 다양한 크기와 모양을 갖는 무기물 나노파티클을 사용하여 벌크 이종 접합 태양전지를 개발하고 있다. 그러나 카드뮴(Cd), 납(Pb) 및 인듐(In) 등은 독성이 있거나 자원의 부족 등으로 인해 신재생에너지 공급에 중요한 영향을 미치게 된다.Recently, bulk heterojunction solar cells have been developed using inorganic nanoparticles having various sizes and shapes, such as cadmium selenide (CdSe), lead sulfide (PbS), and cadmium sulfide (CdS). However, cadmium (Cd), lead (Pb) and indium (In), etc. have a significant impact on the supply of renewable energy due to toxic or lack of resources.
또한, 풀러렌(fullerene)과 같은 반도체 물질을 사용한 벌크 이종 접합 태양전지는 장파장 대역에서 광전류가 작고, 표면 모폴로지(surface morphology)가 좋지 않아 광전변환효율(Power Conversion Efficiency, 이하 PCE)이 낮은 문제점이 있다.In addition, bulk heterojunction solar cells using semiconductor materials such as fullerenes have a problem of low photocurrent in the long wavelength band and poor surface morphology, resulting in low power conversion efficiency (PCE). .
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 높은 광 흡수율, 무독성, 값이 저렴하고, 풍부한 재료를 사용하여 광전변환효율이 우수한 벌크 이종 접합 태양전지 및 이의 제조방법을 제공하는 것이다. 전술한 과제는 예시적으로 제시되었고, 본 발명의 범위가 이러한 과제에 의해서 제한되는 것은 아니다.The present invention is to solve a number of problems including the above problems, to provide a bulk heterojunction solar cell having a high light absorption, non-toxic, low cost, excellent photoelectric conversion efficiency using abundant materials and a method of manufacturing the same. It is. The foregoing problem has been presented by way of example, and the scope of the present invention is not limited by this problem.
본 발명의 일 관점에 따르면, 벌크 이종 접합 태양전지가 제공된다. 상기 벌크 이종 접합 태양전지는 SnS2(Tin Disulfide)가 전자 받게 물질로 사용하고, 전자 주게로 작용하는 P3HT (Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])가 혼합되되, 상기 SnS2와 P3HT 또는 SnS2와 PCPDTBT는 6:4 내지 8:2의 중량비일 수 있다.According to one aspect of the invention, a bulk heterojunction solar cell is provided. In the bulk heterojunction solar cell, SnS 2 (Tin Disulfide) is used as an electron accepting material, and P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6-) acts as an electron donor. (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]) Although mixed, the SnS 2 and P3HT or SnS 2 and PCPDTBT may be a weight ratio of 6: 4 to 8: 2.
본 발명의 다른 관점에 따르면, 벌크 이종 접합 태양전지가 제공된다. 상기 벌크 이종 접합 태양전지는 기판; 상기 기판 상에 형성된 제 1 전극층; 상기 제 1 전극층 상에 형성된 수송층; 상기 수송층 상에 형성된 활성층; 및 상기 활성층 상에 형성된 전극층;을 포함하고, 상기 활성층은 전자 받게 물질과 전자 주게 물질로 이루어져 있으며, 상기 전자 받게 물질은 SnS2(Tin Disulfide)을 사용하고, 상기 전자 주게 물질은 P3HT(Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT(Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])을 사용하되, 상기 전자 받게 물질과 상기 전자 주게 물질이 6:4 내지 8:2의 중량비를 갖도록 혼합될 수 있다.According to another aspect of the present invention, a bulk heterojunction solar cell is provided. The bulk heterojunction solar cell includes a substrate; A first electrode layer formed on the substrate; A transport layer formed on the first electrode layer; An active layer formed on the transport layer; And an electrode layer formed on the active layer, wherein the active layer is formed of an electron acceptor material and an electron donor material, and the electron acceptor material is SnS 2 (Tin Disulfide), and the electron donor material is P3HT (Poly ( 3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]), but the electron acceptor material and the electron donor material may be mixed to have a weight ratio of 6: 4 to 8: 2.
본 발명의 또 다른 관점에 따르면, 벌크 이종 접합 태양전지의 제조방법이 제공된다. 상기 벌크 이종 접합 태양전지의 제조방법은 핫-인젝션(hot-injection) 방법을 이용하여 투명전극을 구비하는 기판 상에 활성층(active layer)을 형성하는 단계;를 포함하고, 상기 활성층은 전자 받게 물질과 전자 주게 물질이 6:4 내지 8:2의 중량비를 가지며, 상기 전자 받게 물질은 SnS2(Tin Disulfide) 나노 파티클(nano particle)을 포함하며, 상기 전자 주게 물질은 P3HT(Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT(Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])을 포함할 수 있다.According to another aspect of the present invention, a method of manufacturing a bulk heterojunction solar cell is provided. The method of manufacturing a bulk heterojunction solar cell includes forming an active layer on a substrate having a transparent electrode by using a hot-injection method, wherein the active layer is an electron receiving material. And the electron donor material has a weight ratio of 6: 4 to 8: 2, and the electron acceptor material includes Sn Disulfide (SnS 2 ) nanoparticles, and the electron donor material is P3HT (Poly (3-hexylthiophene). -2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene)- alt-4,7 (2,1,3-benzothiadiazole)]).
상기 벌크 이종 접합 태양전지의 제조방법에 있어서, 상기 활성층을 형성하는 단계는, 제 1 혼합물을 110℃ 내지 130℃의 온도범위까지 가열하고, 질소(nitrogen)를 공급하고, 190℃ 내지 210℃의 온도범위까지 승온하는 단계; 및 상기 승온하는 단계 이후에 상기 제 1 혼합물에 제 2 혼합물을 빠르게 주입하여 반응시키는 단계;를 포함할 수 있다.In the method of manufacturing a bulk heterojunction solar cell, the step of forming the active layer, the first mixture is heated to a temperature range of 110 ℃ to 130 ℃, supplying nitrogen (nitrogen), 190 ℃ to 210 ℃ of Heating up to a temperature range; And rapidly injecting a second mixture into the first mixture after the step of increasing the temperature.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 높은 광 흡수율, 무독성, 값이 저렴하고, 풍부한 재료를 사용하여 광전변환효율이 우수한 벌크 이종 접합 태양전지 및 이의 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention made as described above, it is possible to implement a bulk heterojunction solar cell and a manufacturing method thereof having high photoelectric conversion efficiency by using a high light absorption, non-toxicity, low cost, and abundant materials. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 구조를 개략적으로 도시한 단면도이다.1 is a cross-sectional view schematically showing the structure of a bulk heterojunction solar cell according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층을 투과전자현미경(TEM)으로 분석한 결과이다.2 is a result of analyzing the active layer of a bulk heterojunction solar cell according to an embodiment of the present invention with a transmission electron microscope (TEM).
도 3은 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층을 X선 회절(XRD) 및 X선 광전자분광법(XPS)으로 분석한 결과이다.3 is a result of analyzing the active layer of the bulk heterojunction solar cell according to an embodiment of the present invention by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).
도 4는 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층 두께에 따른 전류밀도 및 광전변환효율을 분석한 결과이다.4 is a result of analyzing the current density and the photoelectric conversion efficiency according to the thickness of the active layer of the bulk heterojunction solar cell according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 전류전압 특성 및 광흡수 스펙트럼을 분석한 결과이다.5 is a result of analyzing the current voltage characteristics and the light absorption spectrum of the bulk heterojunction solar cell according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and the following embodiments are intended to complete the disclosure of the present invention, the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, the components may be exaggerated or reduced in size in the drawings for convenience of description.
도 1은 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 구조를 개략적으로 도시한 단면도이다.1 is a cross-sectional view schematically showing the structure of a bulk heterojunction solar cell according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지(100)는 기판(10), 제 1 전극층(20), 수송층(30), 활성층(40) 및 제 2 전극층(50)을 포함할 수 있다. 기판(10)은 예를 들어, 유리(glass), 웨이퍼(wafer) 및 플렉서블(flexible) 기판 중 어느 하나를 사용할 수 있다.Referring to FIG. 1, a bulk heterojunction solar cell 100 according to an embodiment of the present invention may include a substrate 10, a first electrode layer 20, a transport layer 30, an active layer 40, and a second electrode layer 50. ) May be included. The substrate 10 may be, for example, any one of a glass, a wafer, and a flexible substrate.
제 1 전극층(20)은 투명하면서 전극이 통하는 투명전극으로서, 일반적으로 90%의 산화인듐(In2O3)과 10%의 산화주석(SnO2) 비중을 갖는 ITO층을 사용할 수 있다. 그러나 이에 한정되지는 않으며, 탄소나노튜브를 코팅하거나, PEDOT 등을 사용할 수도 있다. 제 1 전극층(20)의 일함수는 5.1eV, 4.75eV, 4.3eV이며, 제 1 전극층(20)은 전자빔 증착, 진공증발증착 및 스퍼터링(sputtering) 방법 중 어느 하나를 이용하여 기판(10) 상에 형성될 수 있다.The first electrode layer 20 is a transparent electrode through which the electrode is transparent, and an ITO layer having a specific gravity of 90% indium oxide (In 2 O 3 ) and 10% tin oxide (SnO 2 ) may be used. However, the present invention is not limited thereto, and carbon nanotubes may be coated or PEDOT may be used. The work function of the first electrode layer 20 is 5.1 eV, 4.75 eV, 4.3 eV, and the first electrode layer 20 is formed on the substrate 10 by using any one of electron beam deposition, vacuum evaporation, and sputtering methods. Can be formed on.
수송층(30)은 예를 들어, 고농도 전도성 고분자인 PEDOT:PSS를 사용할 수 있으며, 버퍼층(buffer layer)으로 이해될 수 있다. 수송층(30)은 제 1 전극층(20) 대신에 전극층으로 이용될 수도 있으나, 본 발명에서 활성층(40)에서 생성된 정공의 수송층으로 이용될 수 있다. 수송층(30)은 스핀 코팅(spin coating) 방법으로 형성되며, 일함수는 5.2eV 내지 5.3eV이다.The transport layer 30 may use, for example, PEDOT: PSS, which is a high concentration conductive polymer, and may be understood as a buffer layer. The transport layer 30 may be used as an electrode layer instead of the first electrode layer 20, but may be used as a transport layer for holes generated in the active layer 40 in the present invention. The transport layer 30 is formed by a spin coating method, and the work function is 5.2 eV to 5.3 eV.
활성층(40)은 핫-인젝션(hot-injection) 방법을 이용하여 투명전극을 구비하는 기판(10) 상에 형성되며, 빛을 흡수함으로써 HOMO(highest occupied molecular orbital)의 전자가 LUMO(lowest unoccupied molecular orbital)로 전이되어 여기자를 형성하게 된다. 활성층(40)의 전도도에 따라 다소 차이가 있기는 하지만, 약 140㎚ 내지 150㎚의 두께로 형성한다. 만약, 활성층(40)의 두께가 140㎚ 미만일 경우, 흡수된 빛에 의해 여기되는 전자-정공 쌍이 적어 벌크 이종 접합 태양전지의 효율이 높지 않다. 반면에, 활성층(40)의 두께가 150㎚ 초과일 경우, 흡수층(40)의 두께가 너무 두꺼워서 전자와 정공의 이동 경로가 길어져 재결합이 많이 발생하게 됨에 따라 벌크 이종 접합 태양전지의 효율이 떨어지게 된다.The active layer 40 is formed on the substrate 10 having a transparent electrode by using a hot-injection method, and by absorbing light, electrons of the highest occupied molecular orbital (HOMO) are attracted to the LUMO (lowest unoccupied molecular). orbital) to form an exciton. Although somewhat different depending on the conductivity of the active layer 40, the active layer 40 has a thickness of about 140 nm to 150 nm. If the thickness of the active layer 40 is less than 140 nm, the efficiency of the bulk heterojunction solar cell is not high because there are few electron-hole pairs excited by the absorbed light. On the other hand, when the thickness of the active layer 40 is greater than 150nm, the thickness of the absorber layer 40 is too thick, so the movement path between electrons and holes is long, so that recombination occurs a lot, the efficiency of the bulk heterojunction solar cell is reduced. .
이 경우, 활성층(40)과 전극계면에서의 손실을 최소화해야 할 뿐만 아니라, 활성층(40) 내부에서 분리된 전자와 정공이 단락되지 않고 전극으로 이동할 수 있도록 경로의 형성이 이루어져야 한다. 이 때, 전자 주게 물질과 전자 받게 물질 내부에서도 정공과 전자의 이동속도가 충분히 빨라야 한다. In this case, not only the loss in the active layer 40 and the electrode interface should be minimized, but also the path should be formed so that the electrons and holes separated in the active layer 40 can move to the electrode without being short-circuited. At this time, even within the electron donor material and the electron acceptor material, the movement speed of holes and electrons should be fast enough.
이를 해결하기 위해서, 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지(100)에서 활성층(40)은 빛을 흡수하여 생성된 여기자에서 전자와 정공을 분리하는데, 전자 주게 물질(donor material)로는 예를 들어, P3HT (Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])를 사용할 수 있다. 전자 받게 물질(acceptor material)로는 LUMO가 전자 주게 물질보다 낮은 다른 종류로서, 예를 들어, SnS2(Tin Disulfide) 나노 파티클(nano particle)을 사용할 수 있다. 즉, 전자 주게 물질에서 빛을 흡수하여 생성된 여기자는 전자 받게 물질의 경계면까지 이동한 후 전자 받게 물질로 전자를 넘겨줌으로써 전자와 정공 쌍이 분리된다.In order to solve this problem, in the bulk heterojunction solar cell 100 according to an embodiment of the present invention, the active layer 40 separates electrons and holes from excitons generated by absorbing light, and as an electron donor material, For example, P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b) ; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]) may be used. As the acceptor material, LUMO is lower than the electron donor material. For example, SnS 2 (Tin Disulfide) nanoparticles may be used. That is, the exciton generated by absorbing light from the electron donor material moves to the interface of the electron acceptor and then passes the electron to the electron acceptor to separate the electron and the hole pair.
활성층(40)에서 전자 받게 물질로 사용되는 SnS2(Tin Disulfide)는 전자 주게 물질로 사용되는 P3HT (Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])와 같이 사용되는데, 이 두 물질은 각각 잘 섞인다. 이 때, 전자 받게 물질과 전자 주게 물질의 중량비가 6:4 내지 8:2를 만족해야 광흡수에 따른 전자를 주고 받는 효율이 향상된다. 본 발명에서는 전자 받게 물질과 전자 주게 물질의 중량비가 7:3일 때, 최적의 효율을 보인다. 즉, 상기 SnS2와 상기 P3HT 또는 상기 SnS2와 상기 PCPDTBT는 6:4 내지 8:2의 중량비를 만족할 수 있다.SnS 2 (Tin Disulfide) used as electron acceptor in active layer 40 is P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4) , 4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]) These two materials mix well together. At this time, the weight ratio of the electron receiving material and the electron donor material must satisfy 6: 4 to 8: 2 to improve the efficiency of transmitting and receiving electrons according to light absorption. In the present invention, when the weight ratio of the electron acceptor material and the electron donor material is 7: 3, the optimum efficiency is obtained. That is, the SnS 2 and the P3HT or the SnS 2 and the PCPDTBT may satisfy a weight ratio of 6: 4 to 8: 2.
제 2 전극층(50)은 진공증발증착(evaporator) 방법을 이용하여 활성층(40) 상에 형성될 수 있다. 제 2 전극층(50)은 예를 들어, 알루미늄(Al) 금속을 포함할 수 있다.The second electrode layer 50 may be formed on the active layer 40 using a vacuum evaporator method. The second electrode layer 50 may include, for example, aluminum (Al) metal.
한편, 본 발명의 실시예에 의한 벌크 이종 접합 태양전지의 제조방법에 대해서는 하기 실험예 및 도 2 내지 도 5를 참조하여 구체적으로 설명한다.On the other hand, a method of manufacturing a bulk heterojunction solar cell according to an embodiment of the present invention will be described in detail with reference to the following experimental example and FIGS.
이하, 본 발명의 이해를 돕기 위해서 상술한 기술적 사상을 적용한 실험예를 설명한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예에 의해서 한정되는 것은 아니다.Hereinafter, an experimental example to which the above-described technical concept is applied will be described to help understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
발명의 실험예에 의한 샘플로서, ITO가 코팅된 유리기판 상에 스핀코팅 방법을 이용하여 PEDOT:PSS(polyethylenedioxythiophene doped with polystyrene-sulfonic acid)를 약 70㎚ 내외로 형성하였다. 여기서, 스핀코팅 조건은 약 30sec 동안 4000rpm의 속도로 진행되었다. 이후에 핫-인젝션(hot-injection) 방법을 이용하여 2개의 개구를 구비하는 플라스크에 제 1 혼합물과 제 2 혼합물을 혼합하여 활성층에 사용되는 SnS2 나노 파티클을 형성하였다. 여기서, SnCl4(anhydrous tin(IV) chloride)와 OLA(oleylamine)를 함유하는 상기 제 1 혼합물을 넣은 후, 110℃ 내지 130℃의 온도범위까지 가열하고, 질소(nitrogen)를 공급하고, 190℃ 내지 210℃의 온도범위까지 승온하였다. As a sample according to the experimental example of the present invention, PEDOT: PSS (polyethylenedioxythiophene doped with polystyrene-sulfonic acid) was formed at about 70 nm on a glass substrate coated with ITO by using a spin coating method. Here, the spin coating condition was carried out at a speed of 4000rpm for about 30sec. The SnS 2 used in the active layer is then mixed by mixing the first mixture and the second mixture in a flask having two openings using a hot-injection method. Nanoparticles were formed. Here, after putting the first mixture containing SnCl 4 (anhydrous tin (IV) chloride) and OLA (oleylamine), and heated to a temperature range of 110 ℃ to 130 ℃, supplying nitrogen (nitrogen), 190 ℃ It heated up to the temperature range of 210 degreeC.
승온이 완료된 후 상기 제 1 혼합물에 OLA와 TAA(thioacetamide)를 함유하는 상기 제 2 혼합물을 빠르게 주입하여 반응시켰다. 상기 반응과정은 질소 분위기에서 진행되었으며, 약 12시간 정도 반응시킨 후 상온으로 냉각하였다. 마지막으로 클로로벤젠(chlorobenzene)과 에탄올(ethanol) 혼합물을 이용하여 약 10분 동안 10000rpm의 속도로 원심분리하였다. 상기 클로로벤젠과 에탄올은 SnS2 나노 파티클(SnS2:P3HT)을 분산시키기 위해 사용하였으며, 원심분리가 종료된 후 반복적으로 세척하여 SnS2 나노 파티클을 제조하였다. After the temperature increase, the first mixture was rapidly reacted by injecting the second mixture containing OLA and TAA (thioacetamide). The reaction was carried out in a nitrogen atmosphere, and reacted for about 12 hours and then cooled to room temperature. Finally, the mixture was centrifuged at a rate of 10000 rpm for about 10 minutes using a mixture of chlorobenzene and ethanol. The chlorobenzene and ethanol were used to disperse SnS 2 nanoparticles (SnS 2 : P3HT), and after repeated centrifugation, washed repeatedly to give SnS 2 Nanoparticles were prepared.
또한, SnS2 나노 파티클을 제조한 후 약 140℃에서 건조과정을 약 30분간 진행하였다. 건조가 종료된 후 PEDOT:PSS이 형성된 기판 상에 상기 SnS2 나노 파티클을 드롭(drop)시켜 활성층을 형성하였다. 이후에 진공증발증착 방법을 이용하여 상기 활성층 상에 약 100㎚ 두께의 알루미늄 전극을 형성하여 벌크 이종 접합 태양전지 샘플을 제조하였다.In addition, SnS 2 After the nanoparticles were prepared, the drying process was performed at about 140 ° C. for about 30 minutes. SnS 2 on the PEDOT: PSS formed substrate after drying Nano particles were dropped to form an active layer. Thereafter, an aluminum electrode having a thickness of about 100 nm was formed on the active layer by using a vacuum evaporation method to prepare a bulk heterojunction solar cell sample.
제조된 샘플을 Ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy(PL), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), transmission electron microscopy(TEM) 및 HR-TEM 등을 이용하여 활성층에 대한 분석을 수행하였다. sampCurrent density-voltage(J-V)와 solar simulator (Keithley 69911)를 이용하여 벌크 이종 접합 태양전지 샘플의 wjsfalfeh와 개방전압 특성을 분석하였다.The prepared sample was subjected to ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy (PL), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), transmission electron microscopy (TEM) and HR-TEM. The analysis was performed. The wjsfalfeh and open voltage characteristics of bulk heterojunction solar cell samples were analyzed using sampCurrent density-voltage (J-V) and solar simulator (Keithley 69911).
또한, 본 발명의 다른 실시예로서, 활성층의 전자 주게 물질을 P3HT에서 PCPDTBT로 변경하고, 상술한 바와 동일한 방법으로 SnS2 나노 파티클(SnS2:PCPDTBT)을 제조하여 전류밀도와 흡수율을 분석하였다.In another embodiment of the present invention, the electron donor material of the active layer was changed from P3HT to PCPDTBT, and SnS 2 nanoparticles (SnS 2 : PCPDTBT) were prepared in the same manner as described above to analyze current density and absorption rate.
한편, 이와 비교하기 위하여, 활성층 제조공정시 스핀 코팅 조건을 제어함으로써 활성층의 두께가 각각 다른 벌크 이종 접합 태양전지를 제조하여 전류밀도와 광전변환효율을 측정하였다.On the other hand, in comparison with this, by controlling the spin coating conditions in the active layer manufacturing process, a bulk heterojunction solar cell having a different thickness of the active layer was manufactured to measure current density and photoelectric conversion efficiency.
도 2는 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층을 투과전자현미경(TEM)으로 분석한 결과이다.2 is a result of analyzing the active layer of a bulk heterojunction solar cell according to an embodiment of the present invention with a transmission electron microscope (TEM).
도 2의 (a)와 (b)를 참조하면, TEM과 HR-TEM으로 SnS2 나노 파티클을 분석한 결과로서, SnS2 나노 파티클은 격자 무늬가 명확하게 보이고, 왜곡된 육각형 모양의 SnS2 나노 파티클 안에 전위가 존재하지 않기 때문에, 제조된 SnS2 나노 파티클이 매우 결정성을 가짐을 확인되었다.Referring to FIG. 2 (a) and (b), as was analyzed and SnS 2 nanoparticle by TEM and HR-TEM, SnS 2 nanoparticle is shown to clarify the lattice pattern, distorted hexagonal shape of SnS 2 nano Since no dislocations exist in the particles, it was confirmed that the prepared SnS 2 nanoparticles were very crystalline.
도 2의 (c)를 참조하면, SnS2 나노 파티클을 TEM 이미지에서 100개의 입자를 기준으로 크기(size)를 계산한 것으로서, 약 3㎚ 내지 8㎚의 크기 분포를 가지며, 평균 약 5.2㎚의 입자가 가장 많이 분포하는 것으로 확인되었다.Referring to (c) of FIG. 2, the size of SnS 2 nanoparticles is calculated based on 100 particles in a TEM image, and has a size distribution of about 3 nm to 8 nm and an average of about 5.2 nm. Particles were found to be the most distributed.
도 3은 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층을 X선 회절(XRD) 및 X선 광전자분광법(XPS)으로 분석한 결과이다.3 is a result of analyzing the active layer of the bulk heterojunction solar cell according to an embodiment of the present invention by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).
도 3을 참조하면, XRD로 SnS2 나노 파티클의 결정구조를 분석한 것으로서, 도 3의 (a)는 2theta 값이 17°, 30°, 51° 및 60°에서 회절피크가 나타났으며, JCPDS card No. 0-040-1466에 따르면, 본 발명의 SnS2 나노 파티클은 상기 회절피크에서 각각 (002), (100), (110 및 (200) 결정면을 갖는 육방정(hexagonal) 구조를 갖는 것으로 확인되었다. 상기 육방정 구조는 HR-TEM으로 분석한 결과인 도 2의 (b)에서 분명하게 보여준다.Referring to FIG. 3, the crystal structure of SnS 2 nanoparticles was analyzed by XRD. In FIG. 3 (a), diffraction peaks were observed at 2theta values of 17 °, 30 °, 51 °, and 60 °, and JCPDS. card No. According to 0-040-1466, the SnS 2 nanoparticles of the present invention were found to have hexagonal structures having (002), (100), (110, and (200) crystal faces, respectively, in the diffraction peaks. The hexagonal structure is clearly shown in (b) of FIG. 2 as a result of analysis by HR-TEM.
도 3의 (b)는 UV-vis과 PL spectroscopy로 SnS2 나노 파티클의 광학 특성을 분석한 결과로서, SnS2 나노 파티클은 1시간 내지 13시간의 다양한 반응 시간에 따른 광흡수율을 보여준다. 약 9시간의 반응시간과 약 440㎚의 파장대에서 SnS2 나노 파티클의 흡수는 벌크(bulk) 값 대비 레드-쉬프트(red-shifted) 되었다. 9시간동안 반응된 SnS2 나노 파티클의 밴드갭은 약 2.8eV이며, 벌크 값 대비 약 0.4eV 큰 값이다. 이는 양자 크기 효과에 따른 것으로 보여진다. 나노 결정의 강한 양자는 양자 효율이 높은 광 발광으로 밝혀졌으며, 방출 피크와 흡수 피크는 크기가 조정 가능하다. 그러므로 본 발명의 SnS2 나노 파티클은 광학 특성이 개선된 것으로 볼 수 있으며, LED, Solar cell 등에 적용될 수 있음을 알 수 있다.Of Figure 3 (b) is a result of analyzing the optical properties of SnS 2 nanoparticle by UV-vis and PL spectroscopy, SnS 2 nano-particles shows a light absorption rate in accordance with various reaction times of from 1 hour to 13 hours. Absorption of SnS 2 nanoparticles at a reaction time of about 9 hours and a wavelength of about 440 nm was red-shifted relative to the bulk value. The bandgap of the SnS 2 nanoparticles reacted for 9 hours is about 2.8 eV, which is about 0.4 eV larger than the bulk value. This seems to be due to the quantum size effect. Strong quantum nanocrystals have been found to be photoluminescent with high quantum efficiency, and the emission and absorption peaks are adjustable in size. Therefore, the SnS 2 nanoparticles of the present invention can be seen that the optical properties are improved, it can be applied to LED, Solar cell and the like.
도 3의 (c)는 XPS로 SnS2 나노 파티클의 화학조성을 분석한 것으로서, 조사된 스펙트럼을 살펴보면, 나노결정에서 주로 Sn, S 및 C 피크가 나타난 것으로 확인된 것으로 보아 SnS2 나노 파티클이 안정적으로 형성되어 있음을 확인할 수 있다.3 (c) is an analysis of the chemical composition of the SnS 2 nanoparticles by XPS, looking at the irradiated spectrum, it was confirmed that the Sn, S and C peaks were found mainly in the nanocrystals SnS 2 nanoparticles are stable It can be confirmed that it is formed.
도 4는 본 발명의 일 실시예에 따른 벌크 이종 접합 태양전지의 활성층 두께에 따른 전류밀도 및 광전변환효율을 분석한 결과이다.4 is a result of analyzing the current density and the photoelectric conversion efficiency according to the thickness of the active layer of the bulk heterojunction solar cell according to an embodiment of the present invention.
도 4의 (a)를 참조하면, 스핀-캐스팅(spin-casting)의 속도를 1000rpm 내지 5000rpm으로 다양하게 조절함으로써 SnS2 나노 파티클을 함유하는 활성층(SnS2:P3HT=7:3)의 두께를 제어한 결과이다. 상기 스핀 속도가 증가할수록 활성층의 두께는 점점 감소함을 확인할 수 있다.Referring to (a) of FIG. 4, the thickness of the active layer (SnS 2 : P3HT = 7: 3) containing SnS 2 nanoparticles is adjusted by varying the speed of spin-casting from 1000 rpm to 5000 rpm. The result of control. As the spin speed increases, the thickness of the active layer gradually decreases.
실험예Experimental Example 활성층 두께(㎚)Active layer thickness (nm) Voc(V)Voc (V) Jsc(㎃/㎠)Jsc (㎃ / ㎠) FF(fill factor)FF (fill factor) 광전변환효율(%)Photoelectric conversion efficiency (%)
비교예 1Comparative Example 1 161161 0.560.56 0.460.46 0.590.59 0.150.15
비교예 2Comparative Example 2 153153 0.550.55 0.550.55 0.610.61 0.180.18
실시예 1Example 1 146146 0.550.55 1.181.18 0.610.61 0.390.39
비교예 3Comparative Example 3 131131 0.550.55 0.620.62 0.580.58 0.190.19
비교예 4Comparative Example 4 127127 0.570.57 0.750.75 0.590.59 0.250.25
표 1, 도 4의 (b) 및 (c)를 참조하면, 실시예 1의 벌크 이종 접합 태양전지 샘플은 활성층의 두께가 약 146㎚이며, 개방전압이 0.55V, 단락전류가 1.18㎃/㎠이고, FF(fill factor)가 0.61이었으며, 이 때, 광전변환효율은 0.39%로 비교예 1 내지 비교예 4 대비 더 높았다.Referring to Table 1 and FIGS. 4B and 4C, the bulk heterojunction solar cell sample of Example 1 has an active layer thickness of about 146 nm, an open voltage of 0.55 V, and a short circuit current of 1.18 mA / cm 2. FF was 0.61, and the photoelectric conversion efficiency was 0.39%, which was higher than that of Comparative Examples 1 to 4.
이는 활성층의 두께가 감소할수록 단락전류가 더 증가함을 알 수 있고, 광자(photons)의 흡수가 활성층의 두께가 얇을수록 높아진다는 것을 알 수 있다. 반면에, 활성층의 두께가 증가할수록 단락전류가 감소하는데, 이는 전자-정공 쌍이 전극에서 각각 수집되기 전에 재결합률(recombination rate)의 증가에 따라 감소하는 것으로 보여진다. 즉, 두꺼운 활성층은 전자 또는 정공이 수집되기 위해 이동되어 질 때, 경로가 길어져 결함 등에 의해 재결합 가능성이 높아지기 때문이다.It can be seen that the short circuit current increases as the thickness of the active layer decreases, and the absorption of photons becomes higher as the thickness of the active layer becomes thinner. On the other hand, as the thickness of the active layer increases, the short-circuit current decreases, which seems to decrease with increasing recombination rate before each electron-hole pair is collected at the electrode. In other words, when the thick active layer is moved to collect electrons or holes, the path is long and the possibility of recombination due to defects is increased.
도 5는 본 발명의 실시예들에 따른 벌크 이종 접합 태양전지의 전류전압 특성 및 광흡수 스펙트럼을 분석한 결과이다.5 is a result of analyzing the current voltage characteristics and the light absorption spectrum of the bulk heterojunction solar cell according to the embodiments of the present invention.
도 5의 (a)를 참조하면, 활성층의 종류를 각각 서로 다르게 제조한 벌크 이종 접합 태양전지의 전류밀도와 광흡수 스펙트럼을 분석한 결과이다. 실시예 1은 SnS2 나노 파티클(SnS2:P3HT)을 함유하는 활성층을 구비한 벌크 이종 접합 태양전지 샘플이며, 실시예 2는 SnS2 나노 파티클(SnS2:PCPDTBT)을 함유하는 활성층을 구비한 벌크 이종 접합 태양전지 샘플이다. 실시예 1의 샘플과 실시예 2의 샘플은 전자 주게 물질만 서로 다른 것으로서, 전자 주게 물질로서 PCPDTBT를 사용한 실시예 2의 샘플이 P3HT를 사용한 실시예 1의 샘플보다 전류밀도가 더 큰 것을 확인할 수 있었다. PCPDTBT의 밴드갭이 1.4eV로 P3HT의 밴드갭 2eV보다 상대적으로 더 낮은 밴드갭 폴리머이다. 도 5의 (b)를 참조하면, PCPDTBT를 사용한 실시예 2의 샘플은 P3HT를 사용한 실시예 1의 샘플과 SnS2만 사용한 비교예 5 샘플 보다 가시광 스펙트럼에서 흡수율이 더 높기 때문에 광에 대한 수집력을 개선한 것으로 보여진다. Referring to Figure 5 (a), it is the result of analyzing the current density and light absorption spectrum of the bulk heterojunction solar cell manufactured by different types of active layers, respectively. Example 1 is a sample of a bulk heterojunction solar cell with an active layer containing SnS 2 nanoparticles (SnS 2 : P3HT), and Example 2 is provided with an active layer containing SnS 2 nanoparticles (SnS 2 : PCPDTBT) Bulk heterojunction solar cell sample. The sample of Example 1 and the sample of Example 2 differ only in the electron donor material, and it can be seen that the sample of Example 2 using PCPDTBT as the electron donor material has a higher current density than the sample of Example 1 using P3HT. there was. The bandgap of PCPDTBT is 1.4eV, which is a relatively lower bandgap polymer than the bandgap 2eV of P3HT. Referring to FIG. 5B, the sample of Example 2 using PCPDTBT has a higher absorption rate in the visible light spectrum than the sample of Example 1 using P3HT and the sample of Comparative Example 5 using SnS 2 only. It seems to have improved.
상술한 바와 같이, 본 발명은 전자 주게 물질로서 P3HT와 PCPDTBT를 전자 받게 물질인 SnS2와 혼합하여 활성층을 형성할 수 있다. 상기 활성층을 구비하는 벌크 이종 접합 태양전지는 AM 1.5G 조건에서 최대 0.77%의 광전변환효율 특성을 가질 수 있다.As described above, the present invention may form an active layer by mixing P3HT and PCPDTBT with SnS 2 , which is an electron accepting material, as an electron donor material. The bulk heterojunction solar cell including the active layer may have a photoelectric conversion efficiency of up to 0.77% under AM 1.5G conditions.
또한, 본 발명의 활성층 두께는 활성층에 의해 흡수된 광자의 수에 영향을 미치고, 캐리어 수송 및 수집을 위한 침투 경로를 개선시켰다. 전자 받게 물질로서 SnS2 나노 파티클을 사용하면, SnS2 입자의 절연 표면 리간드를 변경 한 후에 향상된 소자 특성을 형성할 수 있다. 디바이스 구조에 저 밴드갭 폴리머를 포함시킴으로써 활성층 내의 광 흡수를 증가시켜 소자 성능을 더욱 개선할 수 있다.In addition, the active layer thickness of the present invention affects the number of photons absorbed by the active layer and improves the penetration path for carrier transport and collection. By using SnS 2 nanoparticles as electron accepting materials, it is possible to form improved device properties after altering the insulating surface ligand of the SnS 2 particles. The inclusion of low bandgap polymers in the device structure can increase light absorption in the active layer to further improve device performance.
따라서, 광흡수 특성이 우수하고, 무독성이며, 값이 저렴하고, 풍부한 재료를 사용하여 흡수층을 형성함에 따라 광전변환효율을 개선한 벌크 이종 접합 태양전지를 구현할 수 있다.Therefore, a bulk heterojunction solar cell having excellent light absorption characteristics, non-toxicity, low cost, and improving the photoelectric conversion efficiency can be realized by forming an absorption layer using abundant materials.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (4)

  1. SnS2(Tin Disulfide)가 전자 받게 물질로 사용하고, 전자 주게로 작용하는 P3HT (Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])가 혼합되되, 상기 SnS2와 P3HT 또는 SnS2와 PCPDTBT는 6:4 내지 8:2의 중량비인 것을 특징으로 하는,SnS 2 (Tin Disulfide) is used as an electron acceptor, and P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis-) acts as an electron donor. (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]), but the SnS 2 and P3HT or SnS 2 and PCPDTBT is characterized in that the weight ratio of 6: 4 to 8: 2,
    벌크 이종 접합 태양전지.Bulk heterojunction solar cell.
  2. 기판;Board;
    상기 기판 상에 형성된 제 1 전극층;A first electrode layer formed on the substrate;
    상기 ITO층 상에 형성된 수송층;A transport layer formed on the ITO layer;
    상기 수송층 상에 형성된 활성층; 및An active layer formed on the transport layer; And
    상기 활성층 상에 형성된 제 2 전극층;A second electrode layer formed on the active layer;
    을 포함하고,Including,
    상기 활성층은 전자 받게 물질과 전자 주게 물질로 이루어져있으며, 상기 전자 받게 물질은 SnS2(Tin Disulfide)을 사용하고, 상기 전자 주게 물질은 P3HT(Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT(Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])을 사용하되, 상기 전자 받게 물질과 상기 전자 주게 물질이 6:4 내지 8:2의 중량비를 갖도록 혼합되는 것을 특징으로 하는,The active layer is composed of an electron acceptor material and an electron donor material, and the electron acceptor material is SnS 2 (Tin Disulfide), and the electron donor material is P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1 , 3-benzothiadiazole)]), wherein the electron acceptor material and the electron donor material are mixed to have a weight ratio of 6: 4 to 8: 2,
    벌크 이종 접합 태양전지.Bulk heterojunction solar cell.
  3. 핫-인젝션(hot-injection) 방법을 이용하여 투명전극을 구비하는 기판 상에 활성층(active layer)을 형성하는 단계;를 포함하고,Forming an active layer on a substrate having a transparent electrode using a hot-injection method;
    상기 활성층은 전자 받게 물질과 전자 주게 물질이 6:4 내지 8:2의 중량비를 가지며, The active layer has a weight ratio of the electron acceptor material and the electron donor material of 6: 4 to 8: 2,
    상기 전자 받게 물질은 SnS2(Tin Disulfide) 나노 파티클(nano particle)을 포함하며, 상기 전자 주게 물질은 P3HT(Poly(3-hexylthiophene-2,5-diyl)) 또는 PCPDTBT(Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)])을 포함하는 것을 특징으로 하는,The electron acceptor material includes Sn Disulfide (SnS 2 ) nanoparticles, and the electron donor material is P3HT (Poly (3-hexylthiophene-2,5-diyl)) or PCPDTBT (Poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b '] dithiophene) -alt-4,7 (2,1,3-benzothiadiazole)]) Characterized in that,
    벌크 이종 접합 태양전지의 제조방법.Method of manufacturing bulk heterojunction solar cell.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 활성층을 형성하는 단계는, Forming the active layer,
    제 1 혼합물을 110℃ 내지 130℃의 온도범위까지 가열하고, 질소(nitrogen)를 공급하고, 190℃ 내지 210℃의 온도범위까지 승온하는 단계; 및 Heating the first mixture to a temperature range of 110 ° C. to 130 ° C., supplying nitrogen and raising the temperature to a temperature range of 190 ° C. to 210 ° C .; And
    상기 승온하는 단계 이후에 상기 제 1 혼합물에 제 2 혼합물을 빠르게 주입하여 반응시키는 단계;Reacting by rapidly injecting a second mixture into the first mixture after the temperature raising step;
    를 포함하는 것을 특징으로 하는,Characterized in that it comprises a,
    벌크 이종 접합 태양전지의 제조방법.Method of manufacturing bulk heterojunction solar cell.
PCT/KR2017/002615 2017-02-20 2017-03-10 Bulk heterojunction solar cell and manufacturing method therefor WO2018151369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170022501A KR101942008B1 (en) 2017-02-20 2017-02-20 Bulk hetero-junction solar cell and manufacturing the same
KR10-2017-0022501 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151369A1 true WO2018151369A1 (en) 2018-08-23

Family

ID=63170683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002615 WO2018151369A1 (en) 2017-02-20 2017-03-10 Bulk heterojunction solar cell and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101942008B1 (en)
WO (1) WO2018151369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297371B1 (en) * 2019-10-25 2021-09-01 경북대학교 산학협력단 Electron transport material for solar cell comprising nickel-graphite core-shell nanoparticles, bulk heterojunction solar cell comprising same, and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100028755A (en) * 2008-09-05 2010-03-15 포항공과대학교 산학협력단 Photovoltaic device using semiconductor nanocrystals
KR101168227B1 (en) * 2010-02-18 2012-07-30 한국화학연구원 Fabrication Method of Nanostructured Inorganic-Organic Heterojunction Solar Cells
KR20130138486A (en) * 2012-06-11 2013-12-19 성균관대학교산학협력단 Organic solar cell and preparing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060229B1 (en) * 2008-12-12 2011-08-29 포항공과대학교 산학협력단 Photoelectric conversion device using quantum dot dendrimer
KR101230401B1 (en) * 2011-03-02 2013-02-07 한국화학연구원 Inorganic semiconductor Sensitized Photovoltaic Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100028755A (en) * 2008-09-05 2010-03-15 포항공과대학교 산학협력단 Photovoltaic device using semiconductor nanocrystals
KR101168227B1 (en) * 2010-02-18 2012-07-30 한국화학연구원 Fabrication Method of Nanostructured Inorganic-Organic Heterojunction Solar Cells
KR20130138486A (en) * 2012-06-11 2013-12-19 성균관대학교산학협력단 Organic solar cell and preparing method of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAN, F.: "Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cellss", NANOSCALE RESEARCH LETTERS, vol. 6, 2011, pages 1, XP055535486 *
TRUONG, N. T. N.: "Synthesis and Char Nanocrystals for Hybrid Bulk Hetero-Junct Electron.", MATER. LETT., vol. 12, 2016, pages 2 *

Also Published As

Publication number Publication date
KR20180096168A (en) 2018-08-29
KR101942008B1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5649954B2 (en) Articles configured as photovoltaic cells
US20150228415A1 (en) Solar cell having light-absorbing structure
CN102884648A (en) All-solid-state heterojunction solar cell
CN102834929A (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
Li et al. Improved photovoltaic performance of heterostructured tetrapod‐shaped CdSe/CdTe nanocrystals using C60 interlayer
JP6005785B1 (en) Photoelectric conversion element and manufacturing method thereof
US10229952B2 (en) Photovoltaic cell and a method of forming a photovoltaic cell
KR101666745B1 (en) Organic solar cell and method for manufacturing the same
CN106256029B (en) Organic solar cell and method for manufacturing same
KR20160002634A (en) Organic photovoltaic cell and method for manufacturing the same
KR20160047022A (en) Preparation of Triple layered core shell nano particles and a sollar cell comprising the same
WO2015167230A1 (en) Solar cell and manufacturing method therefor
Adhikari et al. Structural, optical, electrochemical and photovoltaic studies of spider web like silver indium diselenide quantum dots synthesized by ligand mediated colloidal sol-gel approach
JP4120362B2 (en) Organic solar cells
Nam et al. Efficiency enhancement in organic solar cells by configuring hybrid interfaces with narrow bandgap PbSSe nanocrystals
KR20150080296A (en) Core-shell type nanocomposites included fullerene particle using barrier layer of hole transport layer and preparation method thereof, and solar cell comprising the same
KR20130094719A (en) Organic heterojunction solar cell in a space including an electrically active layer and having vertical segregation
JP2011119676A (en) Organic photoelectric conversion element
Zhou et al. High-efficiency organic photovoltaic cells with an antimony quantum sheet modified hole extraction layer
KR20180113299A (en) Hole transfer material and photovoltaic device comprising the same
WO2018151369A1 (en) Bulk heterojunction solar cell and manufacturing method therefor
Dinh et al. Study of nanostructured polymeric composites used for organic light emitting diodes and organic solar cells
KR101495764B1 (en) Inverted organic solar cell containing quantum dot single layer in electron transfer layer and method for fabricating the same
KR101960614B1 (en) Conjugated Polymers containing 3-methylene thiophene carboxylate and benzodithiophene and the organic solar cells using them
WO2011052567A1 (en) Organic photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896386

Country of ref document: EP

Kind code of ref document: A1