WO2018151302A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2018151302A1
WO2018151302A1 PCT/JP2018/005817 JP2018005817W WO2018151302A1 WO 2018151302 A1 WO2018151302 A1 WO 2018151302A1 JP 2018005817 W JP2018005817 W JP 2018005817W WO 2018151302 A1 WO2018151302 A1 WO 2018151302A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
optical system
magnification
state
Prior art date
Application number
PCT/JP2018/005817
Other languages
French (fr)
Japanese (ja)
Inventor
智 西村
Original Assignee
株式会社LighteS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社LighteS filed Critical 株式会社LighteS
Priority to JP2018568658A priority Critical patent/JPWO2018151302A1/en
Publication of WO2018151302A1 publication Critical patent/WO2018151302A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an imaging apparatus for imaging an object or an optical apparatus including an observation apparatus for observing an object. More specifically, the present invention is also referred to as micro imaging or micro observation (hereinafter referred to as micro imaging). ) And macro observation or macro observation (hereinafter also referred to as micro photography) at an overhead observation level.
  • micro imaging or micro observation
  • micro photography macro observation or macro observation
  • an invention in which, when the enlargement switch is pressed, the wire driving device drives the pulling and pulling wire and the moving lens moves back and forth in the longitudinal direction of the insertion portion to change the magnification of the image (for example, (See Patent Document 1).
  • the optical system also has two partial systems, and the second imaging stage of the second partial system allows a higher optical resolution than the second imaging stage of the first partial system.
  • the invention configured as described above is known (for example, see Patent Document 2).
  • the lens assembly provided in the housing changes the magnification of the image between macro and micro magnifications, and in the case of micro magnifications, laser radiation is used instead of white light illumination.
  • the invention is known (see, for example, Patent Document 3).
  • Patent Document 1 does not describe a wide range of magnification changes that covers microscopic photography at a microscope observation level and macro photography at an overhead observation level.
  • the inventions described in Patent Documents 2 and 3 are based on the premise that the captured image is divided by a beam splitter or the like, and the optical system is complicated.
  • the present invention has been invented in view of the situation as described above, and its purpose is to use both a microscopic photography at a microscope observation level and a macro photography at a bird's-eye observation level using a single optical system. It is an object of the present invention to provide an optical device that enables the above.
  • an optical device for photographing or observing a target object, An imaging optical system for forming an image of the object; An image sensor that converts an image formed by the imaging optical system into an electrical signal; Magnification changing means for changing the imaging magnification by the imaging optical system; With The imaging optical system has a plurality of imaging points in the optical axis direction, The magnification changing means switches a magnification of imaging by the imaging optical system by switching which imaging point of the plurality of imaging points in the imaging optical system is to be converted into an electrical signal by the imaging element. It is an optical device characterized by changing.
  • the imaging optical system has a plurality of imaging points in the optical axis direction.
  • the magnification changing unit changes the position of the imaging point of the imaging optical system by changing the position of at least a part of the optical group constituting the imaging optical system in the axial direction. Then, among the plurality of image forming points, an image forming point imaged on the image sensor is changed. This makes it possible to greatly change the magnification of imaging by the imaging optical system by a simple operation of changing the position of at least a part of the optical group constituting the imaging optical system in the axial direction. It is possible to realize a high zoom ratio seamlessly by operation.
  • the image obtained by the electrical signal converted by the imaging element is an erect image with respect to the image formation point where an inverted image is formed among the plurality of image formation points. You may make it further provide the image inversion means which electrically inverts an image.
  • the image obtained by the image inverting means is electrically inverted, so that even when the image formation point imaged on the image sensor is changed. Inconveniences such as the image viewed by the user being reversed upside down can be suppressed, and the optical device can be made easier to use.
  • the magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and the imaging optical system There may be switching means for changing the magnification by switching between a second state in which a macro image of an object with a wide field of view and a low magnification is formed on the image sensor.
  • a real image of the object is formed on the image sensor by the imaging optical system
  • a virtual image of the object is formed by the imaging optical system. You may make it image-form on the said image pick-up element, and may be made into a real image.
  • the first state it is possible to obtain a high-resolution image
  • the second state it is possible to greatly widen the shooting range compared to the first state.
  • an optical device for photographing an object to be photographed, An imaging optical system for forming an image of the object; An image sensor that converts an image formed by the imaging optical system into an electrical signal; Magnification changing means for changing the imaging magnification by the imaging optical system; With The magnification changing means includes a first state in which a real image of an object is formed on the image sensor by the imaging optical system, and a second state in which a virtual image of the object is formed on the image sensor by the imaging optical system.
  • the optical apparatus may further include a switching unit that changes the magnification by switching between and.
  • the magnification changing means exhibits a zoom function by changing the position of at least a part of the optical group constituting the imaging optical system, but the position of the optical group to be moved at that time is used for real image shooting. When it is changed beyond the range, it is possible to take a virtual image. That is, the switching means included in the magnification changing means further changes the position of the predetermined optical group from the limit position of the first state in which the real image of the object is imaged on the image sensor, so that the virtual image of the object is imaged. A second state in which an image is formed above can be set.
  • the switching means switches between the first state and the second state, so that the imaging magnification by the imaging optical system is greatly (discontinuously) added to the normal zoom function. It is possible to change. This makes it possible to seamlessly realize both micro photography having an imaging magnification at the microscope observation level and macro photography having an imaging magnification at the overhead observation level, using a single imaging optical system.
  • the present invention is an optical device for photographing an object to be photographed, An imaging optical system for forming an image of the object; An image sensor that converts an image formed by the imaging optical system into an electrical signal; Magnification changing means for changing the imaging magnification by the imaging optical system; With The magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and a wide-field low-magnification of the object by the imaging optical system.
  • the optical apparatus may include a switching unit that changes the magnification by switching between the second state in which the macro image is formed on the image sensor.
  • the imaging optical system includes an objective optical group including an objective lens and a variable power optical group having a zoom function
  • the switching means includes the variable power optical group and / or the image sensor.
  • the first state and the second state are switched by changing the position of at least one of the variable power optical group having a zoom function and the image pickup element among the optical groups constituting the image pickup optical system. Therefore, since the objective optical group is not positively moved, it is possible to suppress inconveniences such as the objective lens moving during micro photography or the like and coming into contact with an object to be photographed.
  • the switching means may fix the objective optical group when switching between the first state and the second state. Then, when switching between the first state and the second state, since the position of the objective optical group is fixed, the objective lens moves more reliably during the micro-photographing etc. It is possible to prevent inconvenience such as contact with an object.
  • an illuminating unit arranged around the tip of the imaging optical system may be further provided. According to this, in the first state, even when the working distance is small and it is difficult to illuminate the object to be photographed, from the periphery of the tip of the imaging optical system (in some cases, the imaging optical system Illumination light can be irradiated obliquely toward the center direction, and the object to be photographed can be illuminated well.
  • the present invention further comprises a position regulating means for regulating the positional relationship between the imaging optical system and the object to be photographed,
  • the position restricting means has an abutting member disposed so as to abut the surface of the object in front of the front end of the imaging optical system and surround the imaging range of the imaging optical system in the first state. It may be.
  • the abutting member of the position regulating means abuts on the object that is the object to be photographed, so that the object that is the object of photographing is easily arranged near the position where the focus is best. be able to.
  • the contact member is arranged so as to be perpendicular to the optical axis of the imaging optical system, the angle of the object surface is made perpendicular to the optical axis of the imaging optical system by bringing the contact member into contact with the object. Becomes easy. As a result, it is possible to more easily shoot an object with the imaging optical system.
  • the position restricting means may further include a transparent film disposed so as to be in close contact with the surface of the object in the photographing range of the imaging optical system.
  • the front side surface of the contact member of the position restricting means may be disposed 0.5 to 1.5 mm ahead of the position where the focus is best in the first state. Good. According to this, when photographing an object to be photographed, the contact member is first brought into contact with the surface of the object, and then the entire optical device is advanced by 0.5 to 1.5 mm. It is possible to focus. According to this, it is possible to realize a more convenient optical device.
  • the objective optical group and the variable power optical group may be arranged on the same optical axis or on the same optical path. Good. According to this, switching from the first state to the second state or vice versa can be performed more quickly and seamlessly.
  • connection means that enables connection to an optical path of an existing microscope may be further provided.
  • the above-described observation in the present invention can be applied to the observation and photographing functions originally provided in the existing microscope by combining the other existing prepared microscope and the optical device according to the present invention. It is possible to perform complex and synergistic observation and photographing by adding a photographing function.
  • the present invention it is possible to realize an optical apparatus that enables both microscopic photography at a microscope observation level and macro photography at a bird's-eye observation level using a single optical system.
  • FIG. 1 is a schematic configuration diagram of an imaging optical system and an imaging element according to Embodiment 1 of the present invention.
  • 1 is an overview of an entire optical device according to Embodiment 1 of the present invention. It is a 1st example of the image image
  • FIG. 1 is a schematic configuration diagram of an imaging optical system 1a and an imaging element 6 according to the present embodiment.
  • FIG. 1A shows an arrangement of optical elements in a micro imaging mode in which micro imaging of an object to be imaged is imaged on the imaging element 6 by the imaging optical system 1a.
  • FIG. 1B shows the arrangement of the optical elements in the macro imaging mode in which the imaging optical system 1 a forms an image of the object ob to be imaged on the imaging element 6.
  • the micro imaging mode corresponds to the first state of the present invention.
  • the macro imaging mode corresponds to the second state of the present invention.
  • the micro imaging mode in the present embodiment may be realized by forming a real image of the object to be imaged on the image sensor 6.
  • the macro imaging mode may be realized by forming a virtual image of the object ob to be imaged on the image sensor 6 to form a real image.
  • the micro image formation of the object ob is an image formation by a real image of the object ob
  • the macro image formation of the object ob is an image formation by a virtual image of the object ob.
  • the imaging optical system 1a in the present embodiment includes an objective lens 2, an imaging lens 3, a variable power lens 4, and a relay lens 5.
  • Each of the objective lens 2, the imaging lens 3, the variable power lens 4, and the relay lens 5 may be configured by a single lens or a lens group in which a plurality of lenses are combined.
  • Good hereinafter, for the sake of simplicity, for example, the objective lens 2 is also referred to as the objective lens 2 when it is constituted by a lens group).
  • the magnification of the objective lens 2 may be about 4 to 40 times, for example.
  • the working distance can be set to a value with good operability.
  • the diameter of the objective lens 2 is ⁇ 25 mm.
  • a high-resolution imaging device 6 called 4K (vertical and horizontal resolution of about 4000 ⁇ 2000 pixels), 8K (vertical and horizontal resolution of about 8000 ⁇ 4000 pixels), or the like is used. Even in such a case, a sufficiently bright image can be taken.
  • the image pickup device 6 may be a C-MOS type having a size corresponding to 1/2 inch to 1 inch and a resolution corresponding to 2K (vertical and horizontal resolution of about 2000 ⁇ 1000 pixels). It should be noted that the specifications of the objective lens 2 and the image sensor 6 shown here are merely examples, and are not intended to limit the values shown.
  • micro imaging of the object to be imaged is imaged on the image sensor 6. More specifically, a micro image (intermediate image) formed by the objective lens 2 and the imaging lens 3 is further imaged as a micro image on the image sensor 6 by the variable power lens 4 and the relay lens 5.
  • the image formed on the image sensor 6 is an erect image, and it is possible to obtain a magnification and resolution equivalent to those of a conventional erecting microscope or an inverted microscope.
  • the macro imaging of the object to be imaged is imaged on the image sensor 6. More specifically, a macro image of a micro image (intermediate image) formed by the objective lens 2 and the imaging lens 3 is imaged on the image sensor 6 by the variable power lens 4 and the relay lens 5.
  • the image formed on the image sensor 6 is an inverted image, and the distance between the object to be imaged and the objective lens 2 is significantly larger than that in the first state shown in FIG. It is set large. Further, the magnification is low, and it is possible to perform overhead view photography similar to conventional endoscopic photography.
  • the relay lens 5 is moved when shifting from the micro imaging mode shown in FIG. 1 (a) to the macro imaging mode shown in FIG. 1 (b). I am letting.
  • the micro imaging mode can be shifted to the macro imaging mode without changing the position of the objective lens 2, and the tip of the objective lens 2 is placed on the object to be imaged in front of the objective lens 2. Inconvenience such as contact can be prevented.
  • the optical elements of the micro imaging mode of FIG. 1A and the macro imaging mode of FIG. 1B are arranged on the same optical axis or on the same optical path, in the macro imaging mode. It is possible to quickly and seamlessly switch from overhead observation to microscopic observation in the micro imaging mode and vice versa.
  • the objective lens 2 and / or the imaging lens 3 constitute an objective optical group.
  • the variable power lens 4 and / or the relay lens 5 constitute a variable power optical group.
  • the object ob is captured as an erect image on the image sensor 6, and in FIG. 1B is illustrated as an inverted image on the image sensor 6, but these are WD (working) of the objective lens.
  • the image formation state can be reversed between the erect image and the inverted image by the lens optical system design of the distance) variable power lens and the image forming lens.
  • the image picked up by the image pickup device 6 can be easily flipped electronically on the screen or a rotated image can be obtained, and there is no problem in observation on the screen or on the image pickup monitor.
  • the image formation state may occur multiple times and may change between micro image formation and macro image formation. Even in the case of macro imaging or micro imaging enlarged by an imaging device having such a high resolution and a wide dynamic range, it is possible to obtain a high-definition image having no practical problem.
  • FIG. 1 there are a plurality of imaging points.
  • the second imaging point is imaged on the image sensor 6.
  • any one of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the imaging element 6 is moved, and any imaging point is on the imaging element 6. It is also possible to change the macro image formation and the micro image formation by changing whether to form an image.
  • one of the micro image and the macro image may be an erect image and the other may be an inverted image.
  • the image processing device 6a is provided, and the image processing device 6a electrically inverts the image when the obtained image is an inverted image.
  • This electrical image adjustment of an upright image or an inverted image can also be realized by visually adjusting the image.
  • the lens optical system design calculates the range of erect image, inverted image or virtual image, and real image from the moving distance range of the variable power lens, and sets the image on the image sensor in advance based on the moving distance of the variable power lens You may do it.
  • it is also possible to automatically detect the switching of an inverted image or an upright image by applying an image contrast measurement method or an upper / lower marker, and adjust the image on the screen to coincide with the observation object ob.
  • FIG. 2A is a front view when the optical device 1 includes the illumination element 9, and FIG. 2B is a side view.
  • the imaging optical system 1 a and the imaging element 6 in the present embodiment are housed in a substantially cylindrical barrel 7.
  • the lens barrel 7 is provided with a focusing ring and a zoom ring (not shown). It is possible to change the focal position of the objective lens 2 by rotating the focusing ring. Further, by rotating the zoom ring, at least the zoom lens 4 and the relay lens 5 are moved to perform the zoom function in the micro imaging mode, and further, the relay lens 5 is moved by rotating the zoom ring. It is possible to switch between the micro imaging mode and the macro imaging mode.
  • the magnification changing means and the switching means are constituted by a mechanism (including a zoom ring) of the lens barrel 7 that moves the variable power lens 4 and / or the relay lens 5.
  • a control board 8 for the image sensor 6 is disposed behind the lens barrel 7. It is possible to supply power from the control board 8 to the image sensor 6 and to receive an output signal from the image sensor 6 and to transmit a signal to an image display device or an image recording device (not shown). .
  • the rotation of the focusing ring and zoom ring in the present embodiment may be performed manually by the user or electrically using an actuator such as a motor.
  • a tapered portion 7 a is formed in front of the lens barrel 7.
  • the tapered portion 7 a is formed at an angle equivalent to the opening angle ⁇ of the numerical aperture (NA) of the objective lens 2.
  • the eight lighting elements 9 as an illumination means consisting of white LED are arrange
  • the illumination element 9 has a light emitting portion directed to the optical axis of the imaging optical system 1a along the inclination of the tapered portion 7a on the tapered portion 7a, and from the outer periphery of the objective lens 2 to the object ob to be imaged. Illumination light can be irradiated obliquely.
  • the illumination element 9 is arranged over the entire circumference in the circumferential direction of the tapered portion 7a formed at the tip of the lens barrel 7, and the angle is equal to the opening angle ⁇ of NA. Illumination was possible obliquely forward toward the optical axis. As a result, even if the working distance of the objective lens 2 is short and the gap between the object to be imaged and the objective lens 2 is narrow, illumination light can be irradiated to the gap. It is possible to acquire a bright image. Moreover, since the illumination element 9 is disposed outside the tapered portion 7a, which is an optically surplus space, the entire apparatus including the illumination element 9 can be made compact.
  • a white LED is used as the illumination element 9, but other elements may be used as a matter of course.
  • a blue LED may be used as the illumination element 9 and used to excite a specific fluorescent protein.
  • the number of lighting elements 9 is eight, but the number is not limited. You may change suitably according to the output of the illumination element 9, and the object ob of the imaging
  • a heater for maintaining the surface of the objective lens 2 at about 37 ° C. may be provided. According to this, when the object to be imaged is a living body, the objective lens 2 can be prevented from being clouded by taking the objective lens 2 into and out of the living body.
  • the optical elements constituting the micro imaging mode capable of performing micro imaging at the microscope observation level and the macro imaging mode capable of performing macro imaging at the overhead observation level are provided. Imaging can be performed while seamlessly switching using imaging optical systems on the same optical axis or on the same optical path.
  • both micro photography and macro photography are made compatible only with the micro imaging mode, there is a limit in resolution particularly in micro photography, and it is difficult to realize an enlargement ratio of about 1: 1 or more with the imaging device 6. It becomes.
  • the number of lenses increases and the aperture becomes small. Inevitably, the configuration of the optical system becomes complicated and large, and the imaging system becomes dark. Or the aberration in micro imaging mode will become large.
  • this embodiment it is possible to increase the resolution to the imaging limit of the imaging optical system 1a.
  • the configuration of the optical device can be simplified and downsized, a handy type optical device that can quickly move to a place where each shooting is necessary can be realized while quickly switching between micro shooting and macro shooting.
  • a bright imaging optical system with a relatively large aperture can be obtained, so that a better image can be acquired.
  • the present invention when the present invention is applied to basic research on living bodies, it becomes possible to simultaneously observe submicron cell characteristics / individuality and cell networks / organ relationships formed in millimeter sizes. That is, in the macro imaging mode, it is possible to observe a network formed by cells competing, competing, and cooperating with each other, and in the micro imaging mode, the individuality of each cell can be observed. This may provide a new understanding of the disease.
  • the micro imaging by the micro imaging mode (submicron unit, corresponding to so-called microscope observation) and the macro by the macro imaging mode are performed without replacing the optical device. Since both photography and the like (in cm) can be performed, it is possible to grasp and evaluate the cell characteristics from an image obtained by micro photography or the like, and it is possible to perform surgery support by macro photography or the like. For example, in advanced clinical medicine in which a catheter is inserted into a blood vessel, a bird's-eye observation is performed by macro photography and the like, and a blood vessel is photographed by micro photography to determine whether the catheter is normally inserted into the blood vessel. For example, it is possible to quickly switch between macro photography and micro photography to provide an image from a new viewpoint and to support surgery.
  • the present invention observes and inspects micro-defects and characteristics on solid surfaces of semiconductors such as metals, semiconductors, and organisms and circuits of semiconductor wafers in micro-imaging mode, and forms macro-images of all or a wide range of defects and characteristics of these individuals. It has high industrial utility value such as observation and inspection in mode.
  • the optical device 1 in the present embodiment can be realized at low cost by using parts that are generally distributed in the market, and the cost is lower than the case where an equivalent function is realized by the existing technology. Can be significantly reduced.
  • the overall configuration of the apparatus is simple and compact, a more convenient observation tool can be realized.
  • observation tools that capture light emission and fluorescence from the living body are widely used.
  • High cost (2) Strict requirements for mice, (3) Light emission Are indispensable, and (4) the temporal and spatial resolution is low.
  • observation tools using a two-photon microscope often only allow invasive imaging of a very limited visual field (several tens of microns) and a limited time (several hours), and are not necessarily directly related to medical treatment. I did not.
  • the optical apparatus in the present embodiment can be expected as an observation tool that complements or replaces the conventional observation tool as described above.
  • FIG. 3A is an image of one cell taken in the micro imaging mode of the optical device 1 according to this example.
  • FIG. 3B is an image of a living tissue imaged in the micro imaging mode.
  • FIG. 3C is an organ image taken in the micro imaging mode.
  • FIG. 4A is an image of the operator taken from a bird's-eye view in the macro imaging mode.
  • FIG. 4B is an image obtained by inserting the optical device 1 into the abdominal cavity and photographing the forceps work in the laparoscopic surgery in the micro imaging mode.
  • both the image that the normal microscope captures as a real image and the image that the normal zoom lens captures as a virtual image are captured on the same optical axis, and a plurality of images formed by the same light are switched.
  • the microscope was able to capture the target of the zoom lens.
  • the size of the microscope was reduced to an unprecedented level, greatly increasing the applicability.
  • the optical device includes a position restriction unit for restricting the relative position of the object to be imaged and the optical device.
  • FIG. 5 shows a schematic diagram of the optical device 1 in the present embodiment.
  • the optical device 1 includes a position restriction unit 10 as position restriction means.
  • the optical device 1 in the present embodiment is the same as that described in the first embodiment, except that the position regulating unit 10 is provided.
  • the position restriction unit 10 includes a cylindrical cylindrical portion 10a that is directly attached to the lens barrel 7, a flat plate-shaped contact portion 10b that is in contact with an object to be imaged, and an opening that is opened at the center of the contact portion 10b. 10c.
  • the contact portion 10b corresponds to the contact member in the present invention.
  • the cylindrical portion 10 a is fixed to the outer periphery of the lens barrel 7.
  • the fixing method is not particularly limited, for example, other than press-fitting and screwing, and may be bonded after fitting.
  • the contact portion 10b is configured to be perpendicular to the optical axis of the imaging optical system 1a in a state where the position restriction unit 10 is attached to the lens barrel 7. Further, the front surface of the contact portion 10b is disposed 0.5 to 1.5 mm ahead of the focus position of the optical device 1 in the micro imaging mode described in the first embodiment. At the time of photographing, the optical device 1 is brought into contact with the object to be photographed as shown in FIG. 6 and pressed with a lighter force.
  • the imaging target is a living body surface
  • the living body surface is in a state of rising by the thickness D at the opening 10c, and adjustment is made so that the living body surface is arranged at a position where the optical device 1 is in focus. It becomes possible.
  • the optical device 1 it is possible to hold the angle of the object to be imaged perpendicular to the optical axis of the imaging optical system 1a by a simple operation of bringing the optical device 1 into contact with the object to be imaged, Further, the surface of the object to be imaged can be easily arranged at a position where the optical device 1 is in focus in the micro imaging mode.
  • the position where the optical device 1 is in focus in the micro imaging mode may be finely adjusted in advance by turning the focusing ring.
  • the contact portion 10b is formed of an annular member having an opening 10c at the center.
  • the shape of the contact portion 10b is not limited to this, and is not particularly limited as long as it surrounds the region to be imaged.
  • it may have a polygonal shape having an opening.
  • the region to be imaged is not surrounded by a single member, but a plurality of members may be arranged so as to surround the region to be imaged.
  • the members do not necessarily have to be arranged without a gap, and may be arranged with a gap therebetween.
  • a substantially annular contact portion may be formed by arranging a plurality of fan-shaped members side by side in an annular shape, or a polygonal contact portion may be formed by arranging rectangular members side by side. May be.
  • the optical device is an example provided with a position restricting unit for restricting the relative position between the object to be imaged and the optical device, and a transparent flexible film is provided at the opening of the position restricting unit.
  • a position restricting unit for restricting the relative position between the object to be imaged and the optical device
  • a transparent flexible film is provided at the opening of the position restricting unit.
  • FIG. 7 shows a schematic diagram of the optical device 1 and the position regulating unit 10 in this embodiment.
  • the optical device 1 includes the position regulating unit 10 as in the second embodiment.
  • a transparent flexible film 10 d is stretched in the opening 10 c of the position regulating unit 10.
  • the flexible film 10d may be, for example, a polyethylene film having a thickness of 10 ⁇ m to 50 ⁇ m, but the thickness and material are not particularly limited.
  • the contact portion 10b provided with the film 10d is brought into contact with, for example, the surface of a living body that is the object to be photographed, the surface of the body 10d is uneven even when the surface of the living body is uneven. Smooth by copying closely.
  • the film 10d has flexibility, as in the second embodiment, at the time of photographing, the optical device 1 is directly brought into contact with the object to be photographed and pressed with a light force so that the surface of the object comes into contact with the contact portion.
  • the magnification of the objective lens 2 may be 20 times, the numerical aperture (NA) may be 0.45, and the working distance may be 35 mm.
  • NA numerical aperture
  • the photographing may be performed by bringing the tip of the objective lens 2 into contact with the flexible film 10d during photographing.
  • the flexible film 10d can be interposed in the space between the object to be imaged and the objective lens 2, and the surface of the living body can be brought into a state close to a liquid immersion state.
  • total reflection due to the difference in refractive index at the interface between the object ob and the air to be imaged and the interface between the air and the objective lens 2 can be suppressed, and a clearer and brighter image can be captured.
  • the angle of the object to be imaged is perpendicular to the optical axis of the imaging optical system 1a by a simple operation of bringing the optical device 1 into contact with the object to be imaged.
  • the surface can be smoothed, and the surface of the object to be photographed can be brought into a liquid immersion state. Thereby, a clear image can be taken more easily.
  • FIG. 8 shows an example of an image photographed by the optical device 1 according to the present embodiment.
  • FIG. 8 is a close-up image of a living body surface in the abdominal cavity in the micro imaging mode. As described above, according to the present invention, it is possible to take a high-magnification biological tissue image more easily and clearly in the micro imaging mode.
  • FIG. 9 is a perspective view of the optical device 11 in the present embodiment.
  • the optical device 11 according to this embodiment includes an objective lens storage unit 12, a main lens barrel 17, and an imaging unit 16.
  • the configuration of the imaging optical system housed in the optical device 11 is basically the same as that described in the first embodiment.
  • the objective lens storage unit 12 stores the objective lens 2 and has an illumination unit 12a at the tip.
  • the main lens barrel 17 includes a rotatable diaphragm ring 13, zoom ring 14, focusing ring 15, and imaging unit 16.
  • the imaging unit 16 houses the imaging device 6 and is connected to an output cable (not shown) so that an image signal of an image formed on the imaging device 6 can be output.
  • the objective lens 2 stored in the objective lens storage unit 12 is fixed and does not move. Further, by rotating the zoom ring 14, the optical element including the variable magnification lens 4 is moved to change the magnification, and at the same time, coarse focus adjustment is performed. Further, by rotating the focusing ring 15, the optical element including the relay lens 5 moves and fine focus adjustment is performed.
  • the total length of the optical device 11 in the front-rear direction is about 200 mm
  • the diameter of the illumination unit 12a at the tip of the objective lens storage unit 12 is about ⁇ 50 mm
  • the diameter of the central portion of the main barrel 17 is about ⁇ 40 mm
  • the imaging unit The diameter of 16 was able to be configured as compact as about ⁇ 45 mm.
  • NA numbererical aperture
  • NA is 0.40, realizing a spatial resolution and brightness five times or more that of a conventional endoscope.
  • FIG. 10 shows a detailed view of the illumination unit 12a in the present embodiment.
  • FIG. 10A is a front view of the illumination unit 12a as viewed from the front
  • FIG. 10B is a side view of the entire objective lens storage unit 12.
  • FIG. 10A the objective lens 2 is exposed at the center of the illumination unit 12a.
  • an outer annular portion 22 a made of a ring-shaped flat plate and an inner annular portion 22 b which is a space between the outer annular portion 22 a and the object lens 2.
  • first LEDs 19 are arranged in an annular shape on the outer ring portion 22a.
  • second LEDs 29 are arranged in an annular shape in the inner annular portion 22b.
  • a wider area can be illuminated by turning on the first LED 19.
  • the micro imaging mode by turning on the second LED 29, it is possible to illuminate a region closer to the objective lens 2 with stronger illumination light, and to shoot at a high magnification with sufficient brightness. ing.
  • the first LED 19 and the second LED 29 may have the same specifications or different specifications. When the first LED 19 and the second LED 29 have different specifications, the outputs of the first LED 19 and the second LED 29 may be changed. Further, the first LED 19 is a white LED and the second LED 29 is a specific wavelength LED, so that normal imaging is possible in the macro imaging mode, fluorescence imaging is possible in the micro imaging mode, etc. The wavelengths of the first LED 19 and the second LED 29 may be changed. Further, for example, by setting the wavelength of the second LED 29 to the infrared region and the imaging element 6 to be an InGaAs photodiode, a transmission image of a thick parenchymal organ can be obtained. It is possible to selectively use unstained and ultra-deep images by infrared absorption / scattering.
  • FIG. 11 shows an image of the optical device 11 in the present embodiment.
  • FIG. 12 shows an image comparing the size of a general macro lens for a single-lens reflex camera with a focal length of 180 mmF2.8 and the optical device 11 in the present embodiment.
  • a macro lens for a single-lens reflex camera having an enlargement ratio of at most about 1: 2 that is actually distributed in the market has a diameter that is more than twice that of the optical device 11 and about 1.5 in total length. Therefore, it can be understood that the optical device 11 according to the present embodiment has high performance and can be miniaturized.
  • FIG. 13 shows an image obtained by photographing the inside of a pig with the optical device 11 in this embodiment.
  • the two images on the left are images taken at a magnification of 100 in the micro imaging mode. As shown by the scale in the figure, it is possible to take a close-up image of a tissue in an area of about 50 ⁇ m.
  • the two images on the right side are images taken in the macro imaging mode, and an organ or the like in an area of about 20 cm can be taken.
  • an optical device having a zoom ratio of about 10000 times can be realized with a relatively simple and inexpensive optical system. .
  • the imaging optical system 1a includes the objective lens 2, the imaging lens 3, the variable power lens 4, and the relay lens 5.
  • the configuration of the imaging optical system 1a in the present invention is not limited to the above.
  • the configuration of the imaging optical system 1a may include, for example, a focus correction lens for performing focus correction in the micro imaging mode.
  • the switching function between the micro imaging mode and the macro imaging mode is realized by moving only the relay lens 5 in the imaging optical system 1a.
  • switching between the micro imaging mode and the macro imaging mode may be realized by moving other components.
  • the relay lens 5 and the image sensor 6 are moved.
  • only the image sensor 6 may be moved.
  • an imaging optical system that switches between the micro imaging mode and the macro imaging mode by moving at least one of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the imaging element 6, It is included in the scope of the present invention.
  • the objective lens 2 is moved to switch between the micro imaging mode and the macro imaging mode, inconveniences such as the objective lens 2 coming into contact with the object to be imaged may occur, but a single optical system is used. By using it, it is possible to sufficiently solve the problem of the present invention that enables both microscopic photography at the microscope observation level and macro photography at the overhead observation level.
  • the configuration of the lens barrel 7 is not limited to that of the above embodiment. It does not necessarily have to have a focusing ring and a zoom ring.
  • the micro imaging mode and the macro imaging mode are switched by moving any of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the image sensor 6, at least the micro imaging Any mechanism that moves the moving lens to switch between the mode and the macro imaging mode may be used. Further, the mechanism does not necessarily need to be configured by a ring and a cam, and may be a mechanism that directly moves a moving lens.
  • the shape of the contact portion 10b is not particularly limited as long as it surrounds the area to be imaged.
  • the region to be imaged is not surrounded by one member, but a plurality of members may be arranged side by side so as to surround the region to be imaged.
  • the members do not necessarily have to be arranged without a gap, and may be arranged with a gap therebetween.
  • the optical apparatus that enables simple micro observation and overhead view photography according to the present invention can perform its function alone as shown in the above-described embodiments.
  • special microscopes when used in combination with many optical microscopes, special microscopes, non-linear photon effect utilizing microscopes, etc., it becomes possible to exert a synergistic effect of both functions.
  • Recent microscopes are considerably subdivided according to their purpose of use, and they are often used in special ways.
  • Various types of microscopes such as a phase contrast microscope, an interference microscope, a polarizing microscope, a fluorescence microscope, a harmonic microscope, a multiphoton microscope, and a Raman microscope are commercially available. All of these microscopes are increasingly used for microscopic observation and state grasping of ultrafine cells, viruses, human tissues, metal tissues, biological compositions, and the like.
  • the macro observation mode grasps a wide range of states, The necessary observation part and measurement part can be specified, and the micro observation mode can be used for fine observation and state grasping.
  • the F and C mount adapters are normally installed in the camera port on the microscope side, the above-described effects can be exhibited only by attaching a mount that matches one of the adapters to the optical apparatus according to the present embodiment. .
  • it is possible to easily perform observation including comparative measurement and dimension measurement by attaching various reticles such as a scale plate, a comparison chart, and a grid line to the mount.
  • filters such as fluorescence, infrared, and contrast to the mount, more versatile and simple observation is possible.
  • FIG. 14 shows an example of the configuration when the optical device according to the present invention is attached to a two-photon microscope as such an example.
  • the direction of the pulsed light emitted from the femtosecond laser 31, which is a light source is controlled by the galvanometer mirror 34 and is focused on the target location of the sample ob by the objective lens 35.
  • the emitted light of approximately 1 ⁇ 2 wavelength generated in the two-photon excitation process and emitted from the sample ob passes through the objective lens 35 and the galvanometer mirror 34, is bent by the beam splitter 32, and is then split by the beam splitter 33.
  • One of the radiated light divided by the beam splitter 33 passes through a filter 36 such as a fluorescent filter and is then detected by a photodetector 37.
  • the other of the radiated light split by the beam splitter 33 is incident on the optical device 1 of the present invention via the mount adapter 38 attached to the camera port of the two-photon microscope 30, the filter 39, and the mount 40.

Abstract

Provided is an optical device with which micro-imaging at a microscope level and macro-imaging at an overhead level, etc., are possible using a single optical system. This optical device captures images of objects and comprises: an imaging optical system 1a for forming images of objects; an imaging element 6 that converts images formed by the imaging optical system 1a into electric signals; and a magnification changing means that changes the imaging magnification of the imaging optical system 1a. The magnification changing means has a switching means that changes the magnification by switching between: a micro image forming mode in which a micro image of the object is formed on the imaging element 6 by the imaging optical system 1a; and a virtual mode in which a virtual image of the object is formed on the imaging element 6 by the imaging optical system 1a.

Description

光学装置Optical device
 本発明は物体を撮影するための撮影装置または、物体を観察するための観察装置を含む光学装置に関し、より具体的には顕微鏡観察レベルのミクロ撮影またはミクロ観察(以下、ミクロ撮影等ともいう。)と、俯瞰観察レベルのマクロ撮影またはマクロ観察(以下、ミクロ撮影等ともいう。)の両方を可能にした光学装置に関するものである。 The present invention relates to an imaging apparatus for imaging an object or an optical apparatus including an observation apparatus for observing an object. More specifically, the present invention is also referred to as micro imaging or micro observation (hereinafter referred to as micro imaging). ) And macro observation or macro observation (hereinafter also referred to as micro photography) at an overhead observation level.
 近年、顕微鏡観察レベルのミクロ撮影等と、俯瞰観察レベルのマクロ撮影等を両立可能な光学装置に対する要望が高まっている。例えば医療現場においては、内視鏡手術で施術すべき部位の評価・決定に加えて、健常部位の評価も合わせて行うことが求められている。すなわち、悪性腫瘍等の判別に加えて切除断端や吻合部のバイアビリティの評価などのための顕微鏡観察とともに、手術操作が行い易い低倍率の俯瞰観察を可能とする観察技術または撮影技術が求められている。 In recent years, there has been a growing demand for optical devices that can achieve both microscopic photography at the microscope observation level and macro photography at the overhead view level. For example, in the medical field, in addition to the evaluation / determination of a site to be treated by endoscopic surgery, it is also required to perform an evaluation of a healthy site. In other words, in addition to the microscopic observation for evaluating the viability of the resected stump and anastomosis in addition to the discrimination of malignant tumors, etc., there is a need for an observation technique or imaging technique that enables a low-magnification overhead observation that is easy to perform a surgical operation. It has been.
 また、基礎研究現場においては、生体へのマルチスケールな病態把握及び光診断のために、従来のごく限られた情報量のバイオイメージングではなく、細胞形質(ミクロ)と、細胞が相互に競合・協力し形成するネットワーク(マクロ)の両者を可視化したいというニーズが高まっている。しかしながら、従来のズーム機能を有する内視鏡は倍率変更の範囲が狭く充分な内容情報の取得を可能としていない。 In addition, in the basic research field, in order to understand multi-scale pathological conditions and photodiagnosis in living bodies, instead of conventional bioimaging with a limited amount of information, cell traits (micro) and cells compete with each other. There is an increasing need to visualize both of the networks (macro) that are formed through cooperation. However, a conventional endoscope having a zoom function has a narrow range of magnification change and does not enable acquisition of sufficient content information.
 上記に関連する技術としては、拡大スイッチを押すことで、ワイヤ駆動装置が押し引きワイヤを駆動し移動レンズが挿入部長手方向に前後に移動し像の倍率を変える発明が公知である(例えば、特許文献1を参照)。また、光学システムが2つの部分システムを有しており、第2の部分システムの第2の結像段は、第1の部分システムの第2の結像段よりも高い光学解像度を可能にするように構成された発明が公知である(例えば、特許文献2を参照)。さらに、ハウジング内に設けられたレンズ組立体が、像の倍率を、マクロ的倍率とミクロ的倍率との間で変化させ、ミクロ的倍率の場合、白色光照明に代えてレーザ放射線が利用される発明が公知である(例えば、特許文献3を参照)。 As a technique related to the above, an invention is known in which, when the enlargement switch is pressed, the wire driving device drives the pulling and pulling wire and the moving lens moves back and forth in the longitudinal direction of the insertion portion to change the magnification of the image (for example, (See Patent Document 1). The optical system also has two partial systems, and the second imaging stage of the second partial system allows a higher optical resolution than the second imaging stage of the first partial system. The invention configured as described above is known (for example, see Patent Document 2). Furthermore, the lens assembly provided in the housing changes the magnification of the image between macro and micro magnifications, and in the case of micro magnifications, laser radiation is used instead of white light illumination. The invention is known (see, for example, Patent Document 3).
 しかしながら、特許文献1に記載の発明においては、顕微鏡観察レベルのミクロ撮影等と俯瞰観察レベルのマクロ撮影等をカバーする広範囲の倍率変更については記載されていない。また、特許文献2及び3に記載の発明においては、ビームスプリッタ等で撮影画像を分割する事を前提としており、光学系が複雑となっている。 However, the invention described in Patent Document 1 does not describe a wide range of magnification changes that covers microscopic photography at a microscope observation level and macro photography at an overhead observation level. The inventions described in Patent Documents 2 and 3 are based on the premise that the captured image is divided by a beam splitter or the like, and the optical system is complicated.
特開平09-56668号公報Japanese Patent Application Laid-Open No. 09-56668 特開2013-80243号公報JP 2013-80243 A 特表2004-501708号公報JP-T-2004-501708
 本発明は、上記のような状況に鑑みて発明されたものであり、その目的は、単一の光学系を用いて、顕微鏡観察レベルのミクロ撮影等と、俯瞰観察レベルのマクロ撮影等の両方を可能にした光学装置を提供することである。 The present invention has been invented in view of the situation as described above, and its purpose is to use both a microscopic photography at a microscope observation level and a macro photography at a bird's-eye observation level using a single optical system. It is an object of the present invention to provide an optical device that enables the above.
 前記の課題を解決するための、本発明にかかる光学装置は、対象である物体を撮影または観察する光学装置であって、
 前記物体の像を結像させるための撮像光学系と、
 前記撮像光学系によって結像された像を電気信号に変換する撮像素子と、
 前記撮像光学系による撮像倍率を変更する倍率変更手段と、
 を備え、
 前記撮像光学系は結像点を光軸方向に複数有しており、
 前記倍率変更手段は、前記撮像光学系における複数の結像点のうち、何れの結像点における像を前記撮像素子によって電気信号に変換するかを切換えることにより、前記撮像光学系による撮像の倍率を変更することを特徴とする光学装置である。
In order to solve the above problems, an optical device according to the present invention is an optical device for photographing or observing a target object,
An imaging optical system for forming an image of the object;
An image sensor that converts an image formed by the imaging optical system into an electrical signal;
Magnification changing means for changing the imaging magnification by the imaging optical system;
With
The imaging optical system has a plurality of imaging points in the optical axis direction,
The magnification changing means switches a magnification of imaging by the imaging optical system by switching which imaging point of the plurality of imaging points in the imaging optical system is to be converted into an electrical signal by the imaging element. It is an optical device characterized by changing.
 ここで、前記撮像光学系は結像点を光軸方向に複数有している。そして、倍率変更手段は、撮像光学系を構成する光学群の少なくとも一部の位置を軸方向に変更させることによって、前記撮像光学系の結像点の位置を変更する。そして、前記複数の結像点のうち、撮像素子上に結像する結像点を変更する。このことにより、撮像光学系を構成する光学群の少なくとも一部の位置を軸方向に変更させるという、簡単な動作により、前記撮像光学系による撮像の倍率を大きく変更することが可能となり、簡単な操作で高い変倍率をシームレスに実現することが可能となる。 Here, the imaging optical system has a plurality of imaging points in the optical axis direction. The magnification changing unit changes the position of the imaging point of the imaging optical system by changing the position of at least a part of the optical group constituting the imaging optical system in the axial direction. Then, among the plurality of image forming points, an image forming point imaged on the image sensor is changed. This makes it possible to greatly change the magnification of imaging by the imaging optical system by a simple operation of changing the position of at least a part of the optical group constituting the imaging optical system in the axial direction. It is possible to realize a high zoom ratio seamlessly by operation.
 また、本発明においては、前記複数の結像点のうち、倒立像が結像される結像点について、前記撮像素子によって変換された電気信号により得られる画像が正立像になるように、前記画像を電気的に反転させる画像反転手段をさらに備えるようにしてもよい。 In the present invention, the image obtained by the electrical signal converted by the imaging element is an erect image with respect to the image formation point where an inverted image is formed among the plurality of image formation points. You may make it further provide the image inversion means which electrically inverts an image.
 これによれば、撮像素子に倒立像が結像される場合には、画像反転手段が得られる画像を電気的に反転させるので、撮像素子に結像する結像点が変更された場合にも、使用者が視認する画像が上下逆転する等の不都合を抑制することができ、光学装置をより使い易くすることが可能である。 According to this, when an inverted image is formed on the image sensor, the image obtained by the image inverting means is electrically inverted, so that even when the image formation point imaged on the image sensor is changed. Inconveniences such as the image viewed by the user being reversed upside down can be suppressed, and the optical device can be made easier to use.
 また、本発明においては、前記倍率変更手段は、前記撮像光学系により前記物体の、狭視野高倍率のミクロ画像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により前記物体の、広視野低倍率のマクロ画像を前記撮像素子上に結像する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有するようにしてもよい。 Further, in the present invention, the magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and the imaging optical system There may be switching means for changing the magnification by switching between a second state in which a macro image of an object with a wide field of view and a low magnification is formed on the image sensor.
 これによれば、ミクロ観察またはミクロ撮影が可能な状態と、マクロ観察またはマクロ撮影が可能な状態とを、より容易に切換えることが可能である。その結果、対象物における微細な構造についての顕微鏡的な観察または撮影と、対象物の全体の状態を把握可能な俯瞰的な観察または撮影とを、迅速または容易に切換えることが可能である。 According to this, it is possible to more easily switch between a state where micro observation or micro photography is possible and a state where macro observation or macro photography is possible. As a result, it is possible to quickly or easily switch between microscopic observation or photographing of a fine structure in the object and bird's-eye observation or photographing capable of grasping the entire state of the object.
 また、本発明においては、第一の状態においては、前記撮像光学系により前記物体の実像が前記撮像素子上に結像され、第二の状態においては、前記撮像光学系により前記物体の虚像が前記撮像素子上に結像され実像化されるようにしてもよい。 In the present invention, in the first state, a real image of the object is formed on the image sensor by the imaging optical system, and in the second state, a virtual image of the object is formed by the imaging optical system. You may make it image-form on the said image pick-up element, and may be made into a real image.
 これによれば、第一の状態においては、高分解能の画像を得ることが可能となるとともに、第二の状態においては第一の状態と比較して撮影範囲を大幅に広げることが可能である。これにより、一つの撮像光学系を用いてより容易に、顕微鏡観察レベルの撮像倍率と分解能を有するミクロ撮影等と、俯瞰観察レベルの撮像倍率を有するマクロ撮影等の両方をシームレスに実現することが可能となる。 According to this, in the first state, it is possible to obtain a high-resolution image, and in the second state, it is possible to greatly widen the shooting range compared to the first state. . As a result, it is possible to more easily seamlessly realize both micro photography having an imaging magnification and resolution at a microscope observation level and macro photography having an imaging magnification at a bird's eye observation level, using a single imaging optical system. It becomes possible.
 前記の課題を解決するための、本発明にかかる光学装置は、撮影対象である物体を撮影する光学装置であって、
 前記物体の像を結像させるための撮像光学系と、
 前記撮像光学系によって結像された画像を電気信号に変換する撮像素子と、
 前記撮像光学系による撮像倍率を変更する倍率変更手段と、
 を備え、
 前記倍率変更手段は、前記撮像光学系により物体の実像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により物体の虚像を前記撮像素子上に結像する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする光学装置であってもよい。
In order to solve the above problems, an optical device according to the present invention is an optical device for photographing an object to be photographed,
An imaging optical system for forming an image of the object;
An image sensor that converts an image formed by the imaging optical system into an electrical signal;
Magnification changing means for changing the imaging magnification by the imaging optical system;
With
The magnification changing means includes a first state in which a real image of an object is formed on the image sensor by the imaging optical system, and a second state in which a virtual image of the object is formed on the image sensor by the imaging optical system. The optical apparatus may further include a switching unit that changes the magnification by switching between and.
 ここで、上記の倍率変更手段は、撮像光学系を構成する光学群の少なくとも一部の位置を変更させることでズーム機能を発揮するが、その際に移動させる光学群の位置を、実像撮影の範囲を超えて変更させた場合には、虚像撮影をすることが可能となる。すなわち、倍率変更手段が有する切換手段が、所定の光学群の位置を、物体の実像を撮像素子上に結像する第一の状態の限界位置からさらに変更することで、物体の虚像を撮像素子上に結像する第二の状態とすることができる。 Here, the magnification changing means exhibits a zoom function by changing the position of at least a part of the optical group constituting the imaging optical system, but the position of the optical group to be moved at that time is used for real image shooting. When it is changed beyond the range, it is possible to take a virtual image. That is, the switching means included in the magnification changing means further changes the position of the predetermined optical group from the limit position of the first state in which the real image of the object is imaged on the image sensor, so that the virtual image of the object is imaged. A second state in which an image is formed above can be set.
 そして、第二の状態においては第一の状態と比較して撮影範囲を大幅に広げることが可能である。よって、本発明においては、切換手段が前記第一の状態と前記第二の状態を切換えることで、撮像光学系による撮像倍率を、通常のズーム機能に加えて、大幅に(不連続的に)変更することが可能である。これにより、一つの撮像光学系を用いて、顕微鏡観察レベルの撮像倍率を有するミクロ撮影等と、俯瞰観察レベルの撮像倍率を有するマクロ撮影等の両方をシームレスに実現することが可能となる。 And in the second state, it is possible to greatly expand the shooting range compared to the first state. Therefore, in the present invention, the switching means switches between the first state and the second state, so that the imaging magnification by the imaging optical system is greatly (discontinuously) added to the normal zoom function. It is possible to change. This makes it possible to seamlessly realize both micro photography having an imaging magnification at the microscope observation level and macro photography having an imaging magnification at the overhead observation level, using a single imaging optical system.
 また、従来のミクロ撮影等においては、倍率が高すぎ、何れの場所を撮影しているのかが分かり難い場合があったが、本発明によれば、マクロ撮影等で撮影場所を確認した後、迅速にミクロ撮影等に切換えるといった使用法が可能となり、ミクロ撮影等の作業効率を大幅にアップさせることが可能となる。 In addition, in conventional micro photography and the like, the magnification is too high and it may be difficult to understand which place is being photographed, but according to the present invention, after confirming the photographing place by macro photography or the like, It is possible to quickly switch to micro photography and the like, and the working efficiency of micro photography can be greatly increased.
 また、本発明は、撮影対象である物体を撮影する光学装置であって、
 前記物体の像を結像させるための撮像光学系と、
 前記撮像光学系によって結像された画像を電気信号に変換する撮像素子と、
 前記撮像光学系による撮像倍率を変更する倍率変更手段と、
 を備え、
 前記倍率変更手段は、前記撮像光学系により前記物体の、狭視野高倍率のミクロ画像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により前記物体の、広視野低倍率のマクロ画像を前記撮像素子上に結像する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする光学装置であってもよい。
The present invention is an optical device for photographing an object to be photographed,
An imaging optical system for forming an image of the object;
An image sensor that converts an image formed by the imaging optical system into an electrical signal;
Magnification changing means for changing the imaging magnification by the imaging optical system;
With
The magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and a wide-field low-magnification of the object by the imaging optical system. The optical apparatus may include a switching unit that changes the magnification by switching between the second state in which the macro image is formed on the image sensor.
 また、本発明においては、前記撮像光学系は、対物レンズを含む対物光学群と、ズーム機能を有する変倍光学群とを含み、前記切換手段は、前記変倍光学群および/または前記撮像素子の位置を変更することにより、前記第一の状態と前記第二の状態とを切換えるようにしてもよい。 In the present invention, the imaging optical system includes an objective optical group including an objective lens and a variable power optical group having a zoom function, and the switching means includes the variable power optical group and / or the image sensor. By changing the position, the first state and the second state may be switched.
 これによれば、撮像光学系を構成する光学群のうち、ズーム機能を有する変倍光学群と撮像素子少なくとも一方の位置を変更することで第一の状態と第二の状態とを切換える。よって、対物光学群を積極的に移動させないので、例えばミクロ撮影等の途中に対物レンズが移動して撮影対象である物体に接触する等の不都合を抑制することができる。 According to this, the first state and the second state are switched by changing the position of at least one of the variable power optical group having a zoom function and the image pickup element among the optical groups constituting the image pickup optical system. Therefore, since the objective optical group is not positively moved, it is possible to suppress inconveniences such as the objective lens moving during micro photography or the like and coming into contact with an object to be photographed.
 また、本発明においては、前記切換手段は、前記第一の状態と前記第二の状態とを切換える際に、前記対物光学群は固定としてもよい。そうすれば、第一の状態と第二の状態とを切換える際には、対物光学群の位置は固定されているので、より確実に、ミクロ撮影等の途中に対物レンズが移動して撮影対象である物体に接触する等の不都合を防止することができる。 In the present invention, the switching means may fix the objective optical group when switching between the first state and the second state. Then, when switching between the first state and the second state, since the position of the objective optical group is fixed, the objective lens moves more reliably during the micro-photographing etc. It is possible to prevent inconvenience such as contact with an object.
 また、本発明においては、前記撮像光学系の先端部の周囲に配置された照明手段をさらに備えるようにしてもよい。これによれば、第一の状態において、ワーキングディスタンスが小さく、撮影対象に照明光を当てることが困難な場合であっても、撮像光学系の先端部の周囲から(場合により、撮像光学系の中心方向に向けて斜めに)照明光を照射することが可能となり、撮影対象を良好に照明することが可能である。 In the present invention, an illuminating unit arranged around the tip of the imaging optical system may be further provided. According to this, in the first state, even when the working distance is small and it is difficult to illuminate the object to be photographed, from the periphery of the tip of the imaging optical system (in some cases, the imaging optical system Illumination light can be irradiated obliquely toward the center direction, and the object to be photographed can be illuminated well.
 また、本発明においては、前記撮像光学系と撮影対象の物体との位置関係を規制する位置規制手段をさらに備え、
 前記位置規制手段は、前記撮像光学系の先端部の前方において前記物体の表面に当接するとともに前記第一の状態における前記撮像光学系の撮影範囲を囲むように配置された当接部材を有するようにしてもよい。
Further, in the present invention, it further comprises a position regulating means for regulating the positional relationship between the imaging optical system and the object to be photographed,
The position restricting means has an abutting member disposed so as to abut the surface of the object in front of the front end of the imaging optical system and surround the imaging range of the imaging optical system in the first state. It may be.
 これによれば、第一の状態においては、位置規制手段の当接部材を撮影対象である物体に当接させることで、撮影対象である物体を容易にピントが最良になる位置付近に配置させることができる。また、当接部材を、撮像光学系の光軸に垂直になるように配置すれば、当接部材を物体に当接させることで物体表面の角度を撮像光学系の光軸に垂直にすることが容易となる。その結果、撮像光学系による物体の撮影をより容易にすることが可能と
なる。
According to this, in the first state, the abutting member of the position regulating means abuts on the object that is the object to be photographed, so that the object that is the object of photographing is easily arranged near the position where the focus is best. be able to. Further, if the contact member is arranged so as to be perpendicular to the optical axis of the imaging optical system, the angle of the object surface is made perpendicular to the optical axis of the imaging optical system by bringing the contact member into contact with the object. Becomes easy. As a result, it is possible to more easily shoot an object with the imaging optical system.
 また、本発明においては、前記位置規制手段は、前記撮像光学系の前記撮影範囲において前記物体の表面に密接させることが可能に配置された透明のフィルムをさらに有するようにしてもよい。これによれば、位置規制手段の当接部材を撮影対象の物体に当接させた際に、前記撮像光学系の前記撮影範囲において、撮影対象である物体の表面を透明のフィルムに密着させることで、物体の表面をより円滑にすることができる。その結果、撮像光学系による物体の表面の撮影をより鮮明にまたは、より容易に行うことができる。 In the present invention, the position restricting means may further include a transparent film disposed so as to be in close contact with the surface of the object in the photographing range of the imaging optical system. According to this, when the contact member of the position regulating means is brought into contact with the object to be imaged, the surface of the object to be imaged is brought into close contact with the transparent film in the imaging range of the imaging optical system. Thus, the surface of the object can be made smoother. As a result, the imaging of the surface of the object by the imaging optical system can be performed more clearly or more easily.
 また、本発明においては、前記位置規制手段の前記当接部材の前側面は、前記第一の状態においてピントが最良となる位置より0.5~1.5mm前方に配置されるようにしてもよい。これによれば、撮影対象である物体の撮影時には、先ず、当接部材を物体の表面に当接させ、さらに、0.5~1.5mmだけ光学装置全体を前進させるという手順で、良好にピント合わせをすることが可能である。これによれば、より使い勝手の良い光学装置を実現することが可能である。 In the present invention, the front side surface of the contact member of the position restricting means may be disposed 0.5 to 1.5 mm ahead of the position where the focus is best in the first state. Good. According to this, when photographing an object to be photographed, the contact member is first brought into contact with the surface of the object, and then the entire optical device is advanced by 0.5 to 1.5 mm. It is possible to focus. According to this, it is possible to realize a more convenient optical device.
 また、本発明においては、前記第一の状態及び前記第二の状態において、前記対物光学群と前記変倍光学群とは同一の光軸上または同一の光路上に配置されるようにしてもよい。これによれば、第一の状態から第二の状態への切換えまたは、その逆の切換えを、さらに迅速にかつシームレスに行うことが可能となる。 In the present invention, in the first state and the second state, the objective optical group and the variable power optical group may be arranged on the same optical axis or on the same optical path. Good. According to this, switching from the first state to the second state or vice versa can be performed more quickly and seamlessly.
 また、本発明においては、既存の顕微鏡の光路への接続を可能とする接続手段をさらに備えるようにしてもよい。これによれば、他に準備された既存の顕微鏡と本発明に係る光学装置とを組み合すことで、元来、既存の顕微鏡に備えられている観察、撮影機能に本発明における上述の観察、撮影機能を加えて複合的、相乗的な観察や撮影を行うことが可能となる。 Further, in the present invention, connection means that enables connection to an optical path of an existing microscope may be further provided. According to this, the above-described observation in the present invention can be applied to the observation and photographing functions originally provided in the existing microscope by combining the other existing prepared microscope and the optical device according to the present invention. It is possible to perform complex and synergistic observation and photographing by adding a photographing function.
 なお、上記した課題を解決する手段は、可能な限り組合せて使用することができる。 In addition, the means for solving the above-described problems can be used in combination as much as possible.
 本発明によれば、単一の光学系を用いて、顕微鏡観察レベルのミクロ撮影等と、俯瞰観察レベルのマクロ撮影等の両方を可能にした光学装置を実現することができる。 According to the present invention, it is possible to realize an optical apparatus that enables both microscopic photography at a microscope observation level and macro photography at a bird's-eye observation level using a single optical system.
本発明の実施例1に係る撮像光学系及び撮像素子の概略構成図である。1 is a schematic configuration diagram of an imaging optical system and an imaging element according to Embodiment 1 of the present invention. 本発明の実施例1に係る光学装置全体の概観図である。1 is an overview of an entire optical device according to Embodiment 1 of the present invention. 本発明の実施例1に係る光学装置で撮影した画像の第1の例である。It is a 1st example of the image image | photographed with the optical apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る光学装置で撮影した画像の第2の例である。It is a 2nd example of the image image | photographed with the optical apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る光学装置全体の概観図である。It is a general-view figure of the whole optical apparatus which concerns on Example 2 of this invention. 本発明の実施例2に係る光学装置の作用について説明するための図である。It is a figure for demonstrating the effect | action of the optical apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る光学装置全体の概観図である。It is a general-view figure of the whole optical apparatus which concerns on Example 3 of this invention. 本発明の実施例3に係る光学装置で撮影した画像の例である。It is an example of the image image | photographed with the optical apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る光学装置全体の斜視図である。It is a perspective view of the whole optical apparatus which concerns on Example 4 of this invention. 本発明の実施例4に係る照明部の詳細な構成を示す図である。It is a figure which shows the detailed structure of the illumination part which concerns on Example 4 of this invention. 本発明の実施例4に係る光学装置全体を示す画像である。It is an image which shows the whole optical apparatus which concerns on Example 4 of this invention. 本発明の実施例4に係る光学装置と一般的なマクロレンズとを比較した画像である。It is the image which compared the optical apparatus which concerns on Example 4 of this invention, and a general macro lens. 本発明の実施例4に係る光学装置で撮影した画像の例である。It is an example of the image image | photographed with the optical apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る光学装置を本発明に係る光学装置を二光子顕微鏡に取り付けた場合の構成例であるIt is a structural example at the time of attaching the optical apparatus which concerns on Example 5 of this invention to the two-photon microscope.
 以下、本発明の実施例について図面に基づいて説明する。以下の実施例に記載されている構成要素の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the following examples are not intended to limit the technical scope of the invention only to those unless otherwise specified.
 <実施例1>
 まず、本発明の実施例1について説明する。図1は本実施例に係る撮像光学系1a及び撮像素子6の概略構成図である。図1(a)は撮像光学系1aによって、撮影対象の物体obのミクロ結像を撮像素子6上に結像させるミクロ結像モードにおける光学素子の配置を示している。図1(b)は撮像光学系1aによって、撮影対象の物体obのマクロ結像を撮像素子6上に結像させるマクロ結像モードにおける光学素子の配置を示している。ここで、ミクロ結像モードは本発明の第一の状態に相当する。マクロ結像モードは本発明の第二の状態に相当する。なお、本実施例におけるミクロ結像モードは、撮影対象の物体obの実像を撮像素子6上に結像させることによって実現されてもよい。また、マクロ結像モードは、撮影対象の物体obの虚像を撮像素子6上に結像させ実像化することによって実現されてもよい。この場合には、物体obのミクロ結像は物体obの実像による結像であり、物体obのマクロ結像は物体obの虚像による結像である。
<Example 1>
First, Example 1 of the present invention will be described. FIG. 1 is a schematic configuration diagram of an imaging optical system 1a and an imaging element 6 according to the present embodiment. FIG. 1A shows an arrangement of optical elements in a micro imaging mode in which micro imaging of an object to be imaged is imaged on the imaging element 6 by the imaging optical system 1a. FIG. 1B shows the arrangement of the optical elements in the macro imaging mode in which the imaging optical system 1 a forms an image of the object ob to be imaged on the imaging element 6. Here, the micro imaging mode corresponds to the first state of the present invention. The macro imaging mode corresponds to the second state of the present invention. Note that the micro imaging mode in the present embodiment may be realized by forming a real image of the object to be imaged on the image sensor 6. Further, the macro imaging mode may be realized by forming a virtual image of the object ob to be imaged on the image sensor 6 to form a real image. In this case, the micro image formation of the object ob is an image formation by a real image of the object ob, and the macro image formation of the object ob is an image formation by a virtual image of the object ob.
 図1に示すように、本実施例における撮像光学系1aは、対物レンズ2、結像レンズ3、変倍レンズ4及びリレーレンズ5を含んでいる。なお、対物レンズ2、結像レンズ3、変倍レンズ4及びリレーレンズ5の各々は、単一のレンズにより構成されてもよいし、複数のレンズが組み合されたレンズ群により構成されてもよい(以下、簡単のため、例えば対物レンズ2がレンズ群により構成される場合も対物レンズ2と称する)。 As shown in FIG. 1, the imaging optical system 1a in the present embodiment includes an objective lens 2, an imaging lens 3, a variable power lens 4, and a relay lens 5. Each of the objective lens 2, the imaging lens 3, the variable power lens 4, and the relay lens 5 may be configured by a single lens or a lens group in which a plurality of lenses are combined. Good (hereinafter, for the sake of simplicity, for example, the objective lens 2 is also referred to as the objective lens 2 when it is constituted by a lens group).
 なお、対物レンズ2の仕様は特に限定されないが、本実施例においては、対物レンズ2の倍率は例えば、4倍から40倍程度であってもよい。対物レンズ2の倍率を上記の程度に設定することで、ワーキングディスタンスを操作性の良い値とすることができる。また、本実施例において対物レンズ2の径はφ25mmとしている。この程度の径の対物レンズ2を用いることで、例えば、4K(縦横解像度約4000×2000画素)、8K(縦横解像度約8000×4000画素)等と称される高解像度対応の撮像素子6を用いた場合でも、充分に明るい画像を撮影することが可能である。なお、撮像光学系1aの後方には、撮像光学系1aによる像を結像させる撮像素子6が備えられている。この撮像素子6としては、C-MOSタイプであり、サイズは1/2インチ~1インチ、解像度は2K(縦横解像度約2000×1000画素)対応程度のものを使用してもよい。なお、ここに示す対物レンズ2及び撮像素子6の仕様は一例にすぎず、示された値に限定する趣旨ではない。 Although the specification of the objective lens 2 is not particularly limited, in the present embodiment, the magnification of the objective lens 2 may be about 4 to 40 times, for example. By setting the magnification of the objective lens 2 to the above level, the working distance can be set to a value with good operability. In this embodiment, the diameter of the objective lens 2 is φ25 mm. By using the objective lens 2 having such a diameter, for example, a high-resolution imaging device 6 called 4K (vertical and horizontal resolution of about 4000 × 2000 pixels), 8K (vertical and horizontal resolution of about 8000 × 4000 pixels), or the like is used. Even in such a case, a sufficiently bright image can be taken. An imaging element 6 that forms an image by the imaging optical system 1a is provided behind the imaging optical system 1a. The image pickup device 6 may be a C-MOS type having a size corresponding to 1/2 inch to 1 inch and a resolution corresponding to 2K (vertical and horizontal resolution of about 2000 × 1000 pixels). It should be noted that the specifications of the objective lens 2 and the image sensor 6 shown here are merely examples, and are not intended to limit the values shown.
 図1(a)に示すミクロ結像モードにおいては、撮像素子6には撮影対象の物体obのミクロ結像が結像される。より詳細には、対物レンズ2及び結像レンズ3により結像されるミクロ結像(中間像)をさらに変倍レンズ4及びリレーレンズ5によって撮像素子6上にミクロ結像として結像させる。この場合には、撮像素子6上に結像される像は正立像となり、従来の正立顕微鏡または倒立顕微鏡と同等の倍率及び解像度を得ることが可能である。 In the micro imaging mode shown in FIG. 1A, micro imaging of the object to be imaged is imaged on the image sensor 6. More specifically, a micro image (intermediate image) formed by the objective lens 2 and the imaging lens 3 is further imaged as a micro image on the image sensor 6 by the variable power lens 4 and the relay lens 5. In this case, the image formed on the image sensor 6 is an erect image, and it is possible to obtain a magnification and resolution equivalent to those of a conventional erecting microscope or an inverted microscope.
 図1(b)に示すマクロ結像モードにおいては、撮像素子6には撮影対象の物体obのマクロ結像が結像される。より詳細には、対物レンズ2及び結像レンズ3により結像されるミクロ結像(中間像)のマクロ結像を、変倍レンズ4及びリレーレンズ5によって撮像素子6上に結像させる。この場合には、撮像素子6上に結像される像は倒立像となり、図1(a)に示す第一の状態と比較して、撮影対象の物体obと対物レンズ2の距離は大幅に大きく設定される。また、倍率は低倍率となり、従来の内視鏡撮影と同様の俯瞰撮影を行うことが可能である。 In the macro imaging mode shown in FIG. 1B, the macro imaging of the object to be imaged is imaged on the image sensor 6. More specifically, a macro image of a micro image (intermediate image) formed by the objective lens 2 and the imaging lens 3 is imaged on the image sensor 6 by the variable power lens 4 and the relay lens 5. In this case, the image formed on the image sensor 6 is an inverted image, and the distance between the object to be imaged and the objective lens 2 is significantly larger than that in the first state shown in FIG. It is set large. Further, the magnification is low, and it is possible to perform overhead view photography similar to conventional endoscopic photography.
 なお、図1から分かるように、本実施例においては、図1(a)に示すミクロ結像モードから図1(b)に示すマクロ結像モードに移行する際に、リレーレンズ5のみを移動させている。これによれば、対物レンズ2の位置を変更せずに、ミクロ結像モードからマクロ結像モードに移行させることができ、対物レンズ2の前方にある撮影対象の物体obに対物レンズ2の先端が接触する等の不都合を防止することができる。また、図1(a)のミクロ結像モードと図1(b)のマクロ結像モードとの光学素子は同一光軸上または同一光路上に配置されているため、マクロ結像モードに於ける俯瞰観察からミクロ結像モードに於ける顕微鏡観察およびその逆の観察が迅速にかつシームレスに切り換えることが可能となる。なお、本実施例において、対物レンズ2および/または結像レンズ3は対物光学群を構成する。変倍レンズ4および/またはリレーレンズ5は変倍光学群を構成する。 As can be seen from FIG. 1, in this embodiment, only the relay lens 5 is moved when shifting from the micro imaging mode shown in FIG. 1 (a) to the macro imaging mode shown in FIG. 1 (b). I am letting. According to this, the micro imaging mode can be shifted to the macro imaging mode without changing the position of the objective lens 2, and the tip of the objective lens 2 is placed on the object to be imaged in front of the objective lens 2. Inconvenience such as contact can be prevented. Further, since the optical elements of the micro imaging mode of FIG. 1A and the macro imaging mode of FIG. 1B are arranged on the same optical axis or on the same optical path, in the macro imaging mode. It is possible to quickly and seamlessly switch from overhead observation to microscopic observation in the micro imaging mode and vice versa. In this embodiment, the objective lens 2 and / or the imaging lens 3 constitute an objective optical group. The variable power lens 4 and / or the relay lens 5 constitute a variable power optical group.
 図1(a)では、物体obが撮像素子6上で正立像として捉えられ、図1(b)では、撮像素子6上で倒立像として例示されているが、これらは対物レンズのWD(ワーキングディスタンス)、変倍レンズや結像レンズのレンズ光学系設計により結像状態は、正立像と倒立像が逆転しうる。しかし、撮像素子6で撮像された像はスクリーン上では電子的に簡単に上下反転したり、回転像を得ることができ、スクリーン上または撮像モニター上での観察において問題となることはない。同様に、レンズ光学系設計によりズーム移動した場合の結像状態は複数回結像が生じ、ミクロ結像、マクロ結像と変化することが考えられるが、いずれの状態であっても、上述したような高解像度および広ダイナミックレンジを有する撮像素子により拡大されたマクロ結像またはミクロ結像であっても実用上全く問題ない高精細度の画像を得ることができる。 In FIG. 1A, the object ob is captured as an erect image on the image sensor 6, and in FIG. 1B is illustrated as an inverted image on the image sensor 6, but these are WD (working) of the objective lens. The image formation state can be reversed between the erect image and the inverted image by the lens optical system design of the distance) variable power lens and the image forming lens. However, the image picked up by the image pickup device 6 can be easily flipped electronically on the screen or a rotated image can be obtained, and there is no problem in observation on the screen or on the image pickup monitor. Similarly, when the zoom is moved by the lens optical system design, the image formation state may occur multiple times and may change between micro image formation and macro image formation. Even in the case of macro imaging or micro imaging enlarged by an imaging device having such a high resolution and a wide dynamic range, it is possible to obtain a high-definition image having no practical problem.
 図1においては、複数回の結像点が存在している。そして、図1(a)においても図1(b)においても、2つ目の結像点が撮像素子6上で結像している。しかしながら、本実施例における撮像光学系1aでは、対物レンズ2、結像レンズ3、変倍レンズ4、リレーレンズ5、撮像素子6のいずれかを移動させ、いずれの結像点が撮像素子6上に結像するかを変更することで、マクロ結像とミクロ結像を変更するようにしてもよい。 In FIG. 1, there are a plurality of imaging points. In FIG. 1A and FIG. 1B, the second imaging point is imaged on the image sensor 6. However, in the imaging optical system 1a in the present embodiment, any one of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the imaging element 6 is moved, and any imaging point is on the imaging element 6. It is also possible to change the macro image formation and the micro image formation by changing whether to form an image.
 なお、本実施例においては上述のように、ミクロ結像、マクロ結像の一方が正立像、他方が倒立像となる場合が考えられる。この様な場合には、ミクロ結像モードまたはマクロ結像モードの一方から他方に移行した場合に、得られる画像が上下逆になってしまい、観察者が画像を見づらくなってしまう場合がある。これに対し、本実施例では画像処理装置6aを有しており、おの画像処理装置6aが、得られる画像が倒立像である場合に画像を電気的に上下反転させることとしている。 In the present embodiment, as described above, one of the micro image and the macro image may be an erect image and the other may be an inverted image. In such a case, when shifting from one of the micro imaging mode or the macro imaging mode to the other, the obtained image may be turned upside down, making it difficult for the observer to see the image. On the other hand, in this embodiment, the image processing device 6a is provided, and the image processing device 6a electrically inverts the image when the obtained image is an inverted image.
 この正立像または倒立像の電気的な画像調整は、画像を目視により調整することでも実現可能である。あるいは、レンズ光学系設計により正立像、倒立像または虚像、実像の範囲を変倍レンズの移動距離範囲により算定し、変倍レンズの移動距離に基づいて撮像素子上の画像を予め切り替えるように設定しても良い。さらには、画像のコントラスト測定法や上下マーカーを付与することにより倒立像または正立像の切り替えを自動的に検出し、スクリーン上の画像を観察対象obと一致するように調整することもできる。 This electrical image adjustment of an upright image or an inverted image can also be realized by visually adjusting the image. Alternatively, the lens optical system design calculates the range of erect image, inverted image or virtual image, and real image from the moving distance range of the variable power lens, and sets the image on the image sensor in advance based on the moving distance of the variable power lens You may do it. Furthermore, it is also possible to automatically detect the switching of an inverted image or an upright image by applying an image contrast measurement method or an upper / lower marker, and adjust the image on the screen to coincide with the observation object ob.
 このように、ミクロ結像、マクロ結像の一方が正立像、他方が倒立像となる場合であっても、スクリーン上の観察画像を観察対象obと常に一致するように正立像の関係に維持することができる。このことで、マクロ結像モードに於ける俯瞰観察からミクロ結像モードへの瞬時切り替えに於ける顕微鏡観察およびその逆の観察を、より迅速かつシームレスに行うことができ、より見やすい画像を得ることが可能となる。 In this way, even when one of micro imaging and macro imaging is an erect image and the other is an inverted image, the observation image on the screen is maintained in the relationship of the erect image so that it always coincides with the observation object ob. can do. This makes it possible to perform more rapid and seamless observation of the microscope in the instantaneous switching from the bird's-eye view in the macro imaging mode to the micro imaging mode and vice versa, and to obtain a more easily viewable image. Is possible.
 次に、図2を用いて、本実施例における光学装置1全体の概観について説明する。図2(a)は光学装置1が照明素子9を備えた場合の正面図を、図2(b)は側面図を示す。図2に示すように、本実施例における撮像光学系1aと撮像素子6は、略円筒状の鏡筒7に収納されている。この鏡筒7には、フォーカシングリング及びズームリング(不図示)が設けられている。フォーカシングリングを回転させることで対物レンズ2の焦点位置を変更することが可能である。また、ズームリングを回転させることで、少なくとも変倍レンズ4及びリレーレンズ5を移動させてミクロ結像モードにおけるズーム機能を発揮させるとともに、さらにズームリングを回転させることでリレーレンズ5を移動させ、ミクロ結像モードとマクロ結像モードの切換えを行うことが可能である。なお、本実施例において倍率変更手段及び切換手段は、変倍レンズ4および/またはリレーレンズ5を移動させる鏡筒7の機構(ズームリングを含む)により構成される。 Next, an overview of the entire optical device 1 in this embodiment will be described with reference to FIG. 2A is a front view when the optical device 1 includes the illumination element 9, and FIG. 2B is a side view. As shown in FIG. 2, the imaging optical system 1 a and the imaging element 6 in the present embodiment are housed in a substantially cylindrical barrel 7. The lens barrel 7 is provided with a focusing ring and a zoom ring (not shown). It is possible to change the focal position of the objective lens 2 by rotating the focusing ring. Further, by rotating the zoom ring, at least the zoom lens 4 and the relay lens 5 are moved to perform the zoom function in the micro imaging mode, and further, the relay lens 5 is moved by rotating the zoom ring. It is possible to switch between the micro imaging mode and the macro imaging mode. In this embodiment, the magnification changing means and the switching means are constituted by a mechanism (including a zoom ring) of the lens barrel 7 that moves the variable power lens 4 and / or the relay lens 5.
 また、本実施例においては、鏡筒7の後方には、撮像素子6の制御基板8が配置されている。この制御基板8から撮像素子6への電力を供給するとともに撮像素子6からの出力信号を受信し、さらに画像表示装置や画像記録装置(不図示)に信号を送信することが可能となっている。なお、本実施例におけるフォーカシングリングやズームリングの回転は、使用者がマニュアルで行ってもよいし、モータ等のアクチュエータを用いて電気的に行ってもよい。 In this embodiment, a control board 8 for the image sensor 6 is disposed behind the lens barrel 7. It is possible to supply power from the control board 8 to the image sensor 6 and to receive an output signal from the image sensor 6 and to transmit a signal to an image display device or an image recording device (not shown). . Note that the rotation of the focusing ring and zoom ring in the present embodiment may be performed manually by the user or electrically using an actuator such as a motor.
 また、本実施例においては、鏡筒7の前方には、テーパ状のテーパ部7aが形成されている。このテーパ部7aは、対物レンズ2の開口数(NA)の開き角θと同等の角度で形成されている。そして、そのテーパ部7aには、白色LEDからなる照明手段としての照明素子9が、テーパ部7aの全周に亘って8個配置されている。この照明素子9へは、制御基板8から電力が供給されている。また、照明素子9は、テーパ部7aに、発光部がテーパ部7aの傾斜に沿って撮像光学系1aの光軸に向けられており、対物レンズ2の外周から撮影対象の物体obに対し、照明光を斜めに照射することが可能となっている。 In the present embodiment, a tapered portion 7 a is formed in front of the lens barrel 7. The tapered portion 7 a is formed at an angle equivalent to the opening angle θ of the numerical aperture (NA) of the objective lens 2. And in the taper part 7a, the eight lighting elements 9 as an illumination means consisting of white LED are arrange | positioned over the perimeter of the taper part 7a. Electric power is supplied from the control board 8 to the illumination element 9. Further, the illumination element 9 has a light emitting portion directed to the optical axis of the imaging optical system 1a along the inclination of the tapered portion 7a on the tapered portion 7a, and from the outer periphery of the objective lens 2 to the object ob to be imaged. Illumination light can be irradiated obliquely.
 本実施例においては、上述のように、鏡筒7の先端に形成されたテーパ部7aの円周方向の全周に亘って照明素子9を配置し、NAの開き角θと同等の角度で斜め前方に光軸に向けて照明可能とした。これにより、例え、対物レンズ2のワーキングディスタンスが短く、撮影対象の物体obと対物レンズ2の間の隙間が狭い場合であっても、その隙間に照明光を照射することが可能となり、充分に明るい画像を取得することが可能である。また、照明素子9を光学的に余剰の空間である、テーパ部7aの外側に配置しているので、照明素子9を含んだ装置全体をコンパクト化することが可能である。 In the present embodiment, as described above, the illumination element 9 is arranged over the entire circumference in the circumferential direction of the tapered portion 7a formed at the tip of the lens barrel 7, and the angle is equal to the opening angle θ of NA. Illumination was possible obliquely forward toward the optical axis. As a result, even if the working distance of the objective lens 2 is short and the gap between the object to be imaged and the objective lens 2 is narrow, illumination light can be irradiated to the gap. It is possible to acquire a bright image. Moreover, since the illumination element 9 is disposed outside the tapered portion 7a, which is an optically surplus space, the entire apparatus including the illumination element 9 can be made compact.
 なお、本実施例においては、照明素子9として白色LEDを用いたが、他の素子を用いてもよいことは当然である。例えば、撮影対象の物体obが生体の場合に、照明素子9として青色LEDを用い、特定の蛍光タンパク質の励起に用いてもよい。この場合には、撮像素子6におけるRGBレイヤーを用いて蛍光を分光し、蛍光タンパクの観察を行うことも可能である。また、本実施例においては、照明素子9の数を8個としたが、この数に限定はされない。照明素子9の出力や撮影対象の物体obに応じて適宜変更しても構わない。 In the present embodiment, a white LED is used as the illumination element 9, but other elements may be used as a matter of course. For example, when the object to be imaged is a living body, a blue LED may be used as the illumination element 9 and used to excite a specific fluorescent protein. In this case, it is also possible to observe the fluorescent protein by spectrally separating the fluorescence using the RGB layer in the image sensor 6. In this embodiment, the number of lighting elements 9 is eight, but the number is not limited. You may change suitably according to the output of the illumination element 9, and the object ob of the imaging | photography object.
 また、本実施例においては、対物レンズ2の表面を37℃程度に維持するヒーターを備えるようにしてもよい。これによれば、撮影対象の物体obが生体である場合に、対物レンズ2を生体内に出し入れすることで、対物レンズ2が曇ってしまうことを抑制できる。 In the present embodiment, a heater for maintaining the surface of the objective lens 2 at about 37 ° C. may be provided. According to this, when the object to be imaged is a living body, the objective lens 2 can be prevented from being clouded by taking the objective lens 2 into and out of the living body.
 以上、説明したように、本実施例によれば、顕微鏡観察レベルのミクロ撮影等を行えるミクロ結像モードと、俯瞰観察レベルのマクロ撮影等を行えるマクロ結像モードとを構成する光学素子とが同一光軸上または同一光路上にある撮像光学系を用いてシームレスに切換えながら撮影を行うことができる。ミクロ結像モードだけで、ミクロ撮影等とマクロ撮影等を両立させる場合には、特にミクロ撮影等における解像度に限界が生じ、撮像素子6と1:1程度以上の拡大率を実現することが困難となる。また、ミクロ結像モードのみを有する一般的な顕微鏡用ズームレンズにおいて、拡大率をミクロ撮影等とマクロ撮影等を両立可能な程度に大きくした場合には、レンズ枚数が増加し、口径を小さくせざるを得なくなることで、光学系の構成が複雑化、大型化するとともに暗い撮像光学系になってしまう。あるいは、ミクロ結像モードにおける収差が大きくなってしまう。 As described above, according to the present embodiment, the optical elements constituting the micro imaging mode capable of performing micro imaging at the microscope observation level and the macro imaging mode capable of performing macro imaging at the overhead observation level are provided. Imaging can be performed while seamlessly switching using imaging optical systems on the same optical axis or on the same optical path. When both micro photography and macro photography are made compatible only with the micro imaging mode, there is a limit in resolution particularly in micro photography, and it is difficult to realize an enlargement ratio of about 1: 1 or more with the imaging device 6. It becomes. In addition, in a general microscope zoom lens having only a micro imaging mode, when the enlargement ratio is increased to such a degree that both micro photography and macro photography can be compatible, the number of lenses increases and the aperture becomes small. Inevitably, the configuration of the optical system becomes complicated and large, and the imaging system becomes dark. Or the aberration in micro imaging mode will become large.
 一方、本実施例においては、撮像光学系1aの結像限界まで解像度を上げることが可能である。また、光学装置の構成を簡略化しコンパクト化できるため、ミクロ撮影等とマクロ撮影等を迅速に切換えつつ、各撮影が必要な場所に迅速に移動可能なハンディタイプの光学装置を実現できる。さらには、比較的大口径で明るい撮像光学系とすることができるので、より良好な画像を取得することが可能となる。 On the other hand, in this embodiment, it is possible to increase the resolution to the imaging limit of the imaging optical system 1a. In addition, since the configuration of the optical device can be simplified and downsized, a handy type optical device that can quickly move to a place where each shooting is necessary can be realized while quickly switching between micro shooting and macro shooting. Furthermore, a bright imaging optical system with a relatively large aperture can be obtained, so that a better image can be acquired.
 なお、本発明を生体の基礎研究に応用した場合には、サブミクロンの細胞形質・個性とミリサイズで形成される細胞ネットワーク・臓器連関を同時に観察することが可能となる。すなわち、マクロ結像モードにおいては、細胞同士が競争・競合・協力しながら構成しているネットワークを観察可能であり、ミクロ結像モードにおいては、各細胞の個性を観察可能である。これにより、新たな疾患理解が得られる可能性がある。 In addition, when the present invention is applied to basic research on living bodies, it becomes possible to simultaneously observe submicron cell characteristics / individuality and cell networks / organ relationships formed in millimeter sizes. That is, in the macro imaging mode, it is possible to observe a network formed by cells competing, competing, and cooperating with each other, and in the micro imaging mode, the individuality of each cell can be observed. This may provide a new understanding of the disease.
 また、本発明を臨床医療に応用し場合には、光学装置の交換を行わずに、ミクロ結像モードによるミクロ撮影等(サブミクロン単位、いわゆる顕微鏡観察などに相当)とマクロ結像モードによるマクロ撮影等(cm単位)を両立できるため、ミクロ撮影等による画像から細胞形質を捉えて評価できるとともに、マクロ撮影等により手術支援を行うことが可能である。例えば、カテーテルを血管中に挿入するような先端的な臨床医療において、マクロ撮影等により俯瞰観察を行うとともに、ミクロ撮影等によって血管を撮影し、カテーテルが正常に血管に挿入されているか否かを確認するなど、マクロ撮影等とミクロ撮影等を迅速に切換えて新たな視点からの画像を提供し、手術をサポートすることが可能となる。 In addition, when the present invention is applied to clinical medicine, the micro imaging by the micro imaging mode (submicron unit, corresponding to so-called microscope observation) and the macro by the macro imaging mode are performed without replacing the optical device. Since both photography and the like (in cm) can be performed, it is possible to grasp and evaluate the cell characteristics from an image obtained by micro photography or the like, and it is possible to perform surgery support by macro photography or the like. For example, in advanced clinical medicine in which a catheter is inserted into a blood vessel, a bird's-eye observation is performed by macro photography and the like, and a blood vessel is photographed by micro photography to determine whether the catheter is normally inserted into the blood vessel. For example, it is possible to quickly switch between macro photography and micro photography to provide an image from a new viewpoint and to support surgery.
 その他、本発明は、ミクロ結像モードで金属、半導体、生物などの個体表面や半導体ウェハの回路における微小欠陥や特性を観察、検査するとともにそれら個体の全体または広範囲の欠陥や特性をマクロ結像モードで観察、検査するなど、産業用の利用価値も高い。 In addition, the present invention observes and inspects micro-defects and characteristics on solid surfaces of semiconductors such as metals, semiconductors, and organisms and circuits of semiconductor wafers in micro-imaging mode, and forms macro-images of all or a wide range of defects and characteristics of these individuals. It has high industrial utility value such as observation and inspection in mode.
 また、本実施例における光学装置1は、一般的に市場で流通しているパーツを用いて低コストで実現することが可能であり、既存技術で同等の機能を実現した場合と比較してコストを著しく低減することが可能である。また、装置全体の構成が簡単でコンパクトであるため、より使い勝手のよい観察ツールを実現できる。 In addition, the optical device 1 in the present embodiment can be realized at low cost by using parts that are generally distributed in the market, and the cost is lower than the case where an equivalent function is realized by the existing technology. Can be significantly reduced. In addition, since the overall configuration of the apparatus is simple and compact, a more convenient observation tool can be realized.
 例えば、創薬における個体観察では、生体内からの発光や蛍光を捉える観察ツールが汎用されているが、(1)高コストである、(2)マウスへの要求条件が厳しい、(3)発光が不可欠である、(4)時間空間解像度が低い等の不都合点があった。また、二光子顕微鏡を用いた観察ツールでは、ごく限られた視野(数十ミクロン程度)、限られた時間(数hr)を侵襲的に撮影できるに過ぎないことが多く、必ずしも医療に充分直結していなかった。本実施例における光学装置は上記のような従来の観察ツールを補完し、あるいは代替する観察ツールとして期待できる。 For example, for individual observation in drug discovery, observation tools that capture light emission and fluorescence from the living body are widely used. (1) High cost, (2) Strict requirements for mice, (3) Light emission Are indispensable, and (4) the temporal and spatial resolution is low. In addition, observation tools using a two-photon microscope often only allow invasive imaging of a very limited visual field (several tens of microns) and a limited time (several hours), and are not necessarily directly related to medical treatment. I did not. The optical apparatus in the present embodiment can be expected as an observation tool that complements or replaces the conventional observation tool as described above.
 図3及び図4には、本発明によって撮影された画像の例を示す。図3(a)は、本実施例に係る光学装置1のミクロ結像モードで撮影した一細胞の画像である。また、図3(b)は、ミクロ結像モードで撮影した生体組織の画像である。図3(c)は、ミクロ結像モードで撮影した臓器の画像である。また、図4(a)は、マクロ結像モードで俯瞰的に撮影した術者の画像である。図4(b)は、光学装置1を腹腔に挿入し、腹腔鏡手術における鉗子作業をミクロ結像モードで撮影した画像である。このように、本実施例によれば倍率の全く異なる画像を単一の光学系を用いて容易に撮影することが可能である。 3 and 4 show examples of images taken by the present invention. FIG. 3A is an image of one cell taken in the micro imaging mode of the optical device 1 according to this example. FIG. 3B is an image of a living tissue imaged in the micro imaging mode. FIG. 3C is an organ image taken in the micro imaging mode. FIG. 4A is an image of the operator taken from a bird's-eye view in the macro imaging mode. FIG. 4B is an image obtained by inserting the optical device 1 into the abdominal cavity and photographing the forceps work in the laparoscopic surgery in the micro imaging mode. As described above, according to the present embodiment, it is possible to easily capture images with completely different magnifications using a single optical system.
 また、ミクロ結像モードにおける質感のある高精細形態情報と、マクロ結像モードにおける大きな形態情報の両方を容易かつ迅速に得ることが可能である。言い換えれば、本実施例においては、通常顕微鏡が実像として捉える像と、通常ズームレンズが虚像として捉える像の両方を同一光軸上に捕捉し、同一光によって結像する複数の像を切換えることにより、顕微鏡にズームレンズの対象捕捉能力を持たせることができた。同時に、顕微鏡を従来にはないレベルで小型化し利用可能性を飛躍的に高めることができた。 Also, it is possible to easily and quickly obtain both high-quality morphological information with a texture in the micro imaging mode and large morphological information in the macro imaging mode. In other words, in this embodiment, both the image that the normal microscope captures as a real image and the image that the normal zoom lens captures as a virtual image are captured on the same optical axis, and a plurality of images formed by the same light are switched. The microscope was able to capture the target of the zoom lens. At the same time, the size of the microscope was reduced to an unprecedented level, greatly increasing the applicability.
<実施例2>
 次に、本発明の実施例2について説明する。本実施例においては、光学装置が、撮影対象の物体と光学装置の相対的な位置規制のための位置規制ユニットを備えた例について説明する。
<Example 2>
Next, a second embodiment of the present invention will be described. In this embodiment, an example will be described in which the optical device includes a position restriction unit for restricting the relative position of the object to be imaged and the optical device.
 図5には、本実施例における光学装置1の概略図を示す。本実施例においては、光学装置1が位置規制手段としての位置規制ユニット10を備えている。図5に示すように、本実施例における光学装置1は、位置規制ユニット10を備えている点の他は、実施例1で説明したものと同等である。位置規制ユニット10は、鏡筒7に直接取り付けられる円筒状の円筒部10aと、撮影対象の物体に当接させる平板状の当接部10b、当接部10bの中央部に開けられた開口部10cを有する。なお、ここで当接部10bは本発明における当接部材に相当する。 FIG. 5 shows a schematic diagram of the optical device 1 in the present embodiment. In the present embodiment, the optical device 1 includes a position restriction unit 10 as position restriction means. As shown in FIG. 5, the optical device 1 in the present embodiment is the same as that described in the first embodiment, except that the position regulating unit 10 is provided. The position restriction unit 10 includes a cylindrical cylindrical portion 10a that is directly attached to the lens barrel 7, a flat plate-shaped contact portion 10b that is in contact with an object to be imaged, and an opening that is opened at the center of the contact portion 10b. 10c. Here, the contact portion 10b corresponds to the contact member in the present invention.
 円筒部10aは鏡筒7の外周に対して固定されている。固定の方法は、例えば圧入、ねじ込み式の他、嵌合の後接着されていてもよく、特に限定されない。本実施例では、当接部10bは、位置規制ユニット10が鏡筒7に取り付けられた状態で、撮像光学系1aの光軸に垂直になるように構成されている。また、当接部10bの前側の面は、実施例1で説明したミクロ結像モードにおいて光学装置1のピントが合う位置より0.5~1.5mm前方に配置される。そして、撮影時には、光学装置1を図6に示すように撮影対象の物体obに当接させ、さらに軽い力で押さえる。そうすると、例えば撮影対象が生体表面である場合には、生体表面が開口部10cにおいて厚みDだけ盛り上がる状態となり、丁度生体表面が光学装置1のピントが合う位置に配置されるように調整することが可能となる。 The cylindrical portion 10 a is fixed to the outer periphery of the lens barrel 7. The fixing method is not particularly limited, for example, other than press-fitting and screwing, and may be bonded after fitting. In the present embodiment, the contact portion 10b is configured to be perpendicular to the optical axis of the imaging optical system 1a in a state where the position restriction unit 10 is attached to the lens barrel 7. Further, the front surface of the contact portion 10b is disposed 0.5 to 1.5 mm ahead of the focus position of the optical device 1 in the micro imaging mode described in the first embodiment. At the time of photographing, the optical device 1 is brought into contact with the object to be photographed as shown in FIG. 6 and pressed with a lighter force. Then, for example, when the imaging target is a living body surface, the living body surface is in a state of rising by the thickness D at the opening 10c, and adjustment is made so that the living body surface is arranged at a position where the optical device 1 is in focus. It becomes possible.
 これによれば、光学装置1を撮影対象の物体obに当接させるという簡単な操作によって、撮影対象の物体obの角度を撮像光学系1aの光軸に垂直に保持することが可能であり、また、撮影対象の物体obの表面をミクロ結像モードにおいて光学装置1のピントが合う位置に容易に配置させることが可能である。ミクロ結像モードにおいて光学装置1のピントが合う位置については予めフォーカシングリングを回すことにより、微調整しておけばよい。本実施例に係る光学装置1においては、さらに、実施例1の図2で説明した照明素子9と併用することで、より簡単な操作で、より明るく、鮮明な画像を取得することが可能となる。 According to this, it is possible to hold the angle of the object to be imaged perpendicular to the optical axis of the imaging optical system 1a by a simple operation of bringing the optical device 1 into contact with the object to be imaged, Further, the surface of the object to be imaged can be easily arranged at a position where the optical device 1 is in focus in the micro imaging mode. The position where the optical device 1 is in focus in the micro imaging mode may be finely adjusted in advance by turning the focusing ring. In the optical device 1 according to the present embodiment, it is possible to acquire a brighter and clearer image with a simpler operation by using the illumination device 9 described in FIG. Become.
 なお、本実施例において当接部10bは、中央に開口部10cを有する円環状の部材により形成されていた。しかしながら、当接部10bの形状はこれに限られず、撮影対象の領域を囲うものであれば、特に限定されない。例えば、開口部を有する多角形の形状を有していても良い。あるいは撮影対象の領域を一部材で囲うものでなく、複数の部材を、撮影対象の領域を囲うように配置したものであってもよい。また、その際には、部材どうしは必ずしも隙間なく並べられる必要はなく、互いに隙間を介して配置されてもよい。例えば、複数の扇子状の部材を円環状に並べて配置することで略円環状の当接部を形成してもよいし、長方形の部材を並べて配置することで多角形状の当接部を形成してもよい。 In the present embodiment, the contact portion 10b is formed of an annular member having an opening 10c at the center. However, the shape of the contact portion 10b is not limited to this, and is not particularly limited as long as it surrounds the region to be imaged. For example, it may have a polygonal shape having an opening. Alternatively, the region to be imaged is not surrounded by a single member, but a plurality of members may be arranged so as to surround the region to be imaged. In this case, the members do not necessarily have to be arranged without a gap, and may be arranged with a gap therebetween. For example, a substantially annular contact portion may be formed by arranging a plurality of fan-shaped members side by side in an annular shape, or a polygonal contact portion may be formed by arranging rectangular members side by side. May be.
<実施例3>
 次に、本発明の実施例3について説明する。本実施例においては、光学装置が、撮影対象の物体と光学装置の相対的な位置規制のための位置規制ユニットを備えた例であって、位置規制ユニットの開口部に透明な可撓牲フィルムが設けられた例について説明する。
<Example 3>
Next, Embodiment 3 of the present invention will be described. In this embodiment, the optical device is an example provided with a position restricting unit for restricting the relative position between the object to be imaged and the optical device, and a transparent flexible film is provided at the opening of the position restricting unit. An example in which is provided will be described.
 図7には、本実施例における光学装置1及び、位置規制ユニット10の概略図を示す。本実施例においては、実施例2と同様に光学装置1が位置規制ユニット10を備えている。そして、位置規制ユニット10の開口部10cには、透明な可撓性フィルム10dが張られている。 FIG. 7 shows a schematic diagram of the optical device 1 and the position regulating unit 10 in this embodiment. In the present embodiment, the optical device 1 includes the position regulating unit 10 as in the second embodiment. A transparent flexible film 10 d is stretched in the opening 10 c of the position regulating unit 10.
 この可撓性フィルム10dは、例えば、厚みが10μm~50μmのポリエチレン製のフィルムであってもよいが、厚み、材質は特に限定されない。このフィルム10dが設けられた当接部10bを、例えば撮影対象の物体obである生体の表面に当接させた場合には、生体の表面に凹凸があるような場合でも、表面がフィルム10dに密着して倣うことで円滑になる。また、フィルム10dは可撓牲を有するので、実施例2と同様、撮影時には、光学装置1を撮影対象の物体obに直接当接させ、軽い力で押さえること
で、物体の表面が当接部10bから若干盛り上がる状態となり、ミクロ結像モードにおいて光学装置1のピントが合う位置に配置されるように調整することが可能となる。なお、本実施例において対物レンズ2の倍率は20倍、開口数(NA)は0.45、ワーキングディスタンス35mmとしてもよい。実験的には、この条件の対物レンズ2を用いた場合に、ミクロ結像モードにおいて最も良好な画像を撮影することができた。
The flexible film 10d may be, for example, a polyethylene film having a thickness of 10 μm to 50 μm, but the thickness and material are not particularly limited. When the contact portion 10b provided with the film 10d is brought into contact with, for example, the surface of a living body that is the object to be photographed, the surface of the body 10d is uneven even when the surface of the living body is uneven. Smooth by copying closely. Further, since the film 10d has flexibility, as in the second embodiment, at the time of photographing, the optical device 1 is directly brought into contact with the object to be photographed and pressed with a light force so that the surface of the object comes into contact with the contact portion. It becomes a state where it rises slightly from 10b, and it can be adjusted to be arranged at a position where the optical device 1 is in focus in the micro imaging mode. In this embodiment, the magnification of the objective lens 2 may be 20 times, the numerical aperture (NA) may be 0.45, and the working distance may be 35 mm. Experimentally, when the objective lens 2 under this condition was used, the best image could be taken in the micro imaging mode.
 また、本実施例においては、撮影時に対物レンズ2の先端を可撓性フィルム10dに当接させて撮影するようにしてもよい。このことで、撮影対象の物体obと対物レンズ2の間の空間に可撓性フィルム10dを介在させることができ、生体の表面を液浸状態に近い状態とすることができる。その結果、撮影対象の物体obと空気の界面及び、空気と対物レンズ2の界面における屈折率の相違による全反射を抑制し、より鮮明で明るい画像を撮影することが可能となる。 Further, in this embodiment, the photographing may be performed by bringing the tip of the objective lens 2 into contact with the flexible film 10d during photographing. Accordingly, the flexible film 10d can be interposed in the space between the object to be imaged and the objective lens 2, and the surface of the living body can be brought into a state close to a liquid immersion state. As a result, total reflection due to the difference in refractive index at the interface between the object ob and the air to be imaged and the interface between the air and the objective lens 2 can be suppressed, and a clearer and brighter image can be captured.
 以上、説明したとおり、本実施例によれば、光学装置1を撮影対象の物体obに当接させるという簡単な操作によって、撮影対象の物体obの角度を撮像光学系1aの光軸に垂直に保持することが可能であり、また、撮影対象の物体obの表面をミクロ結像モードにおいて光学装置1のピントが合う位置に容易に配置させることが可能である。さらに、撮影対象の物体obの表面に凹凸がある場合でも、表面を円滑にすることができ、撮影対象の物体obの表面を液浸状態に近い状態とすることができる。これにより、より容易に鮮明な画像を撮影することができる。本実施例においても、実施例1の図2で説明した照明素子9と併用しても構わない。 As described above, according to the present embodiment, the angle of the object to be imaged is perpendicular to the optical axis of the imaging optical system 1a by a simple operation of bringing the optical device 1 into contact with the object to be imaged. In addition, it is possible to easily hold the surface of the object ob to be imaged at a position where the optical device 1 is in focus in the micro imaging mode. Further, even when the surface of the object to be photographed has irregularities, the surface can be smoothed, and the surface of the object to be photographed can be brought into a liquid immersion state. Thereby, a clear image can be taken more easily. Also in the present embodiment, the lighting element 9 described in FIG.
 図8には、本実施例に係る光学装置1で撮影した画像の例を示す。図8は、ミクロ結像モードで腹腔内における生体表面を近接撮影した画像である。このように、本発明によれば、ミクロ結像モードにおいてより容易且つより鮮明に、高倍率の生体組織の画像を撮影することが可能である。 FIG. 8 shows an example of an image photographed by the optical device 1 according to the present embodiment. FIG. 8 is a close-up image of a living body surface in the abdominal cavity in the micro imaging mode. As described above, according to the present invention, it is possible to take a high-magnification biological tissue image more easily and clearly in the micro imaging mode.
<実施例4>
 次に、本発明の実施例4について説明する。本実施例においては、光学装置を、実際によりコンパクトな鏡筒に収納し、使用し易く構成した場合の例について説明する。
<Example 4>
Next, a fourth embodiment of the present invention will be described. In this embodiment, an example in which the optical device is actually housed in a more compact lens barrel and configured to be easy to use will be described.
 図9は、本実施例における光学装置11の斜視図である。本実施例にける光学装置11は、対物レンズ収納部12、主鏡筒17及び撮像部16を備えている。光学装置11に収納された撮像光学系の構成は基本的に実施例1で説明したものと同等である。対物レンズ収納部12は、対物レンズ2を収納するとともに先端に照明部12aを有している。主鏡筒17は、回転可能な絞り用リング13、ズーム用リング14、フォーカシング用リング15、撮像部16を有している。撮像部16は撮像素子6収納するとともに、不図示の出力ケーブルが接続されており、撮像素子6に結像された画像の画像信号が出力可能となっ
ている。
FIG. 9 is a perspective view of the optical device 11 in the present embodiment. The optical device 11 according to this embodiment includes an objective lens storage unit 12, a main lens barrel 17, and an imaging unit 16. The configuration of the imaging optical system housed in the optical device 11 is basically the same as that described in the first embodiment. The objective lens storage unit 12 stores the objective lens 2 and has an illumination unit 12a at the tip. The main lens barrel 17 includes a rotatable diaphragm ring 13, zoom ring 14, focusing ring 15, and imaging unit 16. The imaging unit 16 houses the imaging device 6 and is connected to an output cable (not shown) so that an image signal of an image formed on the imaging device 6 can be output.
 ここで、対物レンズ収納部12に収納された対物レンズ2は固定されており移動しない。また、ズーム用リング14を回転させることで、変倍レンズ4を含む光学素子が移動して倍率が変更されるとともに、同時に焦点の粗調整が行われる。また、フォーカシング用リング15を回転させることで、リレーレンズ5を含む光学素子が移動して焦点の微調整が行われる。 Here, the objective lens 2 stored in the objective lens storage unit 12 is fixed and does not move. Further, by rotating the zoom ring 14, the optical element including the variable magnification lens 4 is moved to change the magnification, and at the same time, coarse focus adjustment is performed. Further, by rotating the focusing ring 15, the optical element including the relay lens 5 moves and fine focus adjustment is performed.
 本実施例においては、光学装置11の前後方向の全長を約200mm、対物レンズ収納部12の先端の照明部12aの径を約φ50mm、主鏡筒17の中央部分の径を約φ40mm、撮像部16の径を約φ45mmとコンパクトに構成することができた。また、NA(開口数)は0.40であり、従来の内視鏡の5倍以上の空間解像度と明るさを実現している。さらに、2K、4K、8Kレベルの高解像度の撮像素子6に対応可能である。 In this embodiment, the total length of the optical device 11 in the front-rear direction is about 200 mm, the diameter of the illumination unit 12a at the tip of the objective lens storage unit 12 is about φ50 mm, the diameter of the central portion of the main barrel 17 is about φ40 mm, and the imaging unit The diameter of 16 was able to be configured as compact as about φ45 mm. Moreover, NA (numerical aperture) is 0.40, realizing a spatial resolution and brightness five times or more that of a conventional endoscope. Furthermore, it is possible to deal with the high-resolution imaging device 6 of 2K, 4K, and 8K levels.
 図10には、本実施例における照明部12aの詳細図を示す。図10(a)は照明部12aを前方から見た正面図、図10(b)は対物レンズ収納部12全体の側面図である。図10(a)において、照明部12aの中央には対物レンズ2が露出している。対物レンズ2の外側には、リング状の平板からなる外側円環部22aと、外側円環部22aと該物レンズ2の間の空間である内側円環部22bが設けられている。 FIG. 10 shows a detailed view of the illumination unit 12a in the present embodiment. FIG. 10A is a front view of the illumination unit 12a as viewed from the front, and FIG. 10B is a side view of the entire objective lens storage unit 12. FIG. In FIG. 10A, the objective lens 2 is exposed at the center of the illumination unit 12a. Outside the objective lens 2, there are provided an outer annular portion 22 a made of a ring-shaped flat plate and an inner annular portion 22 b which is a space between the outer annular portion 22 a and the object lens 2.
 外側円環部22aには、第1のLED19が、円環状に12個配置されている。また、内側円環部22bには、第2のLED29が、やはり円環状に8個配置されている。そして、マクロ結像モードにおいては第1のLED19を点灯させることでより広い領域を照明することが可能になっている。また、ミクロ結像モードにおいては第2のLED29を点灯させることで、より対物レンズ2に近い領域をより強い照明光で照明し、充分な明るさで高倍率の撮影をすることが可能になっている。 Twelve first LEDs 19 are arranged in an annular shape on the outer ring portion 22a. In addition, eight second LEDs 29 are arranged in an annular shape in the inner annular portion 22b. In the macro imaging mode, a wider area can be illuminated by turning on the first LED 19. Further, in the micro imaging mode, by turning on the second LED 29, it is possible to illuminate a region closer to the objective lens 2 with stronger illumination light, and to shoot at a high magnification with sufficient brightness. ing.
 なお、第1のLED19と第2のLED29は、同じ仕様のものとしてもよいし、異なる仕様のものとしてもよい。第1のLED19と第2のLED29とを異なる仕様のものとする場合には、第1のLED19と第2のLED29の出力を変えてもよい。また、第1のLED19は白色LEDとし、第2のLED29は特定波長のLEDとすることで、マクロ結像モードでは通常撮影を可能とし、ミクロ結像モードでは蛍光撮影を可能にする等、第1のLED19と第2のLED29の波長を変えても構わない。また、例えば、第2のLED29の波長を赤外領域とし、撮像素子6をInGaAsフォトダイオードとすることで、厚みのある実質臓器の透過画像を得ることができ、従来の反射光による画像と、赤外吸収・散乱による無染色・超深部画像とを使い分けることが可能となる。 The first LED 19 and the second LED 29 may have the same specifications or different specifications. When the first LED 19 and the second LED 29 have different specifications, the outputs of the first LED 19 and the second LED 29 may be changed. Further, the first LED 19 is a white LED and the second LED 29 is a specific wavelength LED, so that normal imaging is possible in the macro imaging mode, fluorescence imaging is possible in the micro imaging mode, etc. The wavelengths of the first LED 19 and the second LED 29 may be changed. Further, for example, by setting the wavelength of the second LED 29 to the infrared region and the imaging element 6 to be an InGaAs photodiode, a transmission image of a thick parenchymal organ can be obtained. It is possible to selectively use unstained and ultra-deep images by infrared absorption / scattering.
 図11には、本実施例における光学装置11の画像を示す。また、図12には、一般的な、焦点距離180mmF2.8の一眼レフカメラ用マクロレンズと、本実施例における光学装置11の大きさを比較した画像を示す。図12から分かるように、実際に市場に流通している、拡大率がせいぜい1:2程度の一眼レフカメラ用マクロレンズでも、径は、光学装置11の2倍以上、全長では約1.5倍となるので、本実施に係る光学装置11が高性能で小型化が可能であることが理解できる。 FIG. 11 shows an image of the optical device 11 in the present embodiment. FIG. 12 shows an image comparing the size of a general macro lens for a single-lens reflex camera with a focal length of 180 mmF2.8 and the optical device 11 in the present embodiment. As can be seen from FIG. 12, even a macro lens for a single-lens reflex camera having an enlargement ratio of at most about 1: 2 that is actually distributed in the market has a diameter that is more than twice that of the optical device 11 and about 1.5 in total length. Therefore, it can be understood that the optical device 11 according to the present embodiment has high performance and can be miniaturized.
 図13には、本実施例における光学装置11によって豚の体内を撮影した画像を示す。左側の2つの画像は、ミクロ結像モードで倍率100倍の撮影をした画像である。図中のスケールで示すように、50μm程度の領域の組織を近接撮影することが可能となっている。また、右側の2つの画像は、マクロ結像モードで撮影した画像であり、20cm程度の領域の臓器等を撮影することが可能となっている。このように、本実施例によれば、ミクロ結像モードとマクロ結像モードを併用することで、ズーム比10000倍程度の光学装置を、比較的単純で廉価な光学系で実現することができる。 FIG. 13 shows an image obtained by photographing the inside of a pig with the optical device 11 in this embodiment. The two images on the left are images taken at a magnification of 100 in the micro imaging mode. As shown by the scale in the figure, it is possible to take a close-up image of a tissue in an area of about 50 μm. The two images on the right side are images taken in the macro imaging mode, and an organ or the like in an area of about 20 cm can be taken. Thus, according to the present embodiment, by using both the micro imaging mode and the macro imaging mode, an optical device having a zoom ratio of about 10000 times can be realized with a relatively simple and inexpensive optical system. .
 なお、上記の実施例においては、撮像光学系1aは、対物レンズ2、結像レンズ3、変倍レンズ4、リレーレンズ5から構成された。しかしながら、本発明における撮像光学系1aの構成は上記に限定されるものではない。撮像光学系1aの構成として、例えば、ミクロ結像モードにおける焦点補正をするための焦点補正レンズを含んでもよい。また、変倍レンズ4が、前段と後段に分かれ、別々の動きをする等、各機能を有するレンズの配置が図1とは異なる撮像光学系を用いてもよい。 In the above-described embodiment, the imaging optical system 1a includes the objective lens 2, the imaging lens 3, the variable power lens 4, and the relay lens 5. However, the configuration of the imaging optical system 1a in the present invention is not limited to the above. The configuration of the imaging optical system 1a may include, for example, a focus correction lens for performing focus correction in the micro imaging mode. Further, an imaging optical system in which the arrangement of lenses having each function is different from that shown in FIG.
 また、上記の実施例においては、撮像光学系1aにおいて、リレーレンズ5のみを移動させることでミクロ結像モードとマクロ結像モードの切換え機能を実現した。しかしながら、ミクロ結像モードとマクロ結像モードの切換えは、他の構成要素を移動させることで実現しても構わない。例えば、リレーレンズ5及び撮像素子6を動かす。または、撮像素子6のみを動かすものであってもよい。 In the above embodiment, the switching function between the micro imaging mode and the macro imaging mode is realized by moving only the relay lens 5 in the imaging optical system 1a. However, switching between the micro imaging mode and the macro imaging mode may be realized by moving other components. For example, the relay lens 5 and the image sensor 6 are moved. Alternatively, only the image sensor 6 may be moved.
さらに、対物レンズ2、結像レンズ3、変倍レンズ4、リレーレンズ5、撮像素子6のうちの少なくともいずれか一を動かすことによってミクロ結像モードとマクロ結像モードを切換える撮像光学系も、本発明の範囲に含まれる。対物レンズ2を移動させてミクロ結像モードとマクロ結像モードを切換える場合には、対物レンズ2が撮影対象の物体obに接触する等の不都合が生じる虞があるが、単一の光学系を用いて、顕微鏡観察レベルのミクロ撮影等と、俯瞰観察レベルのマクロ撮影等の両方を可能にするという本発明の課題を充分に解決することが可能である。 Further, an imaging optical system that switches between the micro imaging mode and the macro imaging mode by moving at least one of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the imaging element 6, It is included in the scope of the present invention. When the objective lens 2 is moved to switch between the micro imaging mode and the macro imaging mode, inconveniences such as the objective lens 2 coming into contact with the object to be imaged may occur, but a single optical system is used. By using it, it is possible to sufficiently solve the problem of the present invention that enables both microscopic photography at the microscope observation level and macro photography at the overhead observation level.
 また、鏡筒7の構成についても、上記の実施例のものには限られない。必ずしもフォーカシングリングとズームリングを有するものでなくてよい。対物レンズ2、結像レンズ3、変倍レンズ4、リレーレンズ5、撮像素子6のうちのいずれかを動かすことによってミクロ結像モードとマクロ結像モードを切換える場合には、少なくとも、ミクロ結像モードとマクロ結像モードを切換えるために移動するレンズを移動させる機構があればよい。また、その機構は、必ずしもリングとカムにより構成される必要はなく、移動するレンズを直接リニアに動かす機構であってもよい。 Further, the configuration of the lens barrel 7 is not limited to that of the above embodiment. It does not necessarily have to have a focusing ring and a zoom ring. When the micro imaging mode and the macro imaging mode are switched by moving any of the objective lens 2, the imaging lens 3, the variable power lens 4, the relay lens 5, and the image sensor 6, at least the micro imaging Any mechanism that moves the moving lens to switch between the mode and the macro imaging mode may be used. Further, the mechanism does not necessarily need to be configured by a ring and a cam, and may be a mechanism that directly moves a moving lens.
 なお、本実施例においても当接部10bの形状は、撮影対象の領域を囲うものであれば、特に限定されない。また、撮影対象の領域を一部材で囲うものでなく、複数の部材を、撮影対象の領域を囲うように並べて配置したものであってもよい。また、その際には、部材どうしは必ずしも隙間なく並べられる必要はなく、互いに隙間を介して配置されてもよい。 In the present embodiment, the shape of the contact portion 10b is not particularly limited as long as it surrounds the area to be imaged. Further, the region to be imaged is not surrounded by one member, but a plurality of members may be arranged side by side so as to surround the region to be imaged. In this case, the members do not necessarily have to be arranged without a gap, and may be arranged with a gap therebetween.
<実施例5>
 次に、本発明の実施例5について説明する。本実施例においては、光学装置を、既存の顕微鏡に取り付けることにより、当該顕微鏡の機能を強化する例について説明する。
<Example 5>
Next, a fifth embodiment of the present invention will be described. In the present embodiment, an example will be described in which the function of the microscope is enhanced by attaching the optical device to an existing microscope.
 本発明によるミクロ観察と俯瞰撮影とを簡便に可能とする光学装置は、上述の実施例で示したように、単体でその機能を発揮することが可能である。これに加え、多くの光学顕微鏡や特殊顕微鏡、非線型光子効果利用顕微鏡などと併用することで、双方の機能の相乗的な効果を発揮することが可能となる。 The optical apparatus that enables simple micro observation and overhead view photography according to the present invention can perform its function alone as shown in the above-described embodiments. In addition to this, when used in combination with many optical microscopes, special microscopes, non-linear photon effect utilizing microscopes, etc., it becomes possible to exert a synergistic effect of both functions.
最近の顕微鏡はその利用目的によりかなり細分化され、特殊な使い方をすることも多くなってきている。これらの顕微鏡としては、位相差顕微鏡、干渉顕微鏡、偏光顕微鏡、蛍光顕微鏡、高調波顕微鏡、多光子顕微鏡、ラマン顕微鏡など種々なものが市場化されている。いずれの顕微鏡も、ますますより超微細な細胞、ウイルス、人体組織、金属組織、生物組成などの微細観察、状態把握を行うために用いられるようになってきている。 Recent microscopes are considerably subdivided according to their purpose of use, and they are often used in special ways. Various types of microscopes such as a phase contrast microscope, an interference microscope, a polarizing microscope, a fluorescence microscope, a harmonic microscope, a multiphoton microscope, and a Raman microscope are commercially available. All of these microscopes are increasingly used for microscopic observation and state grasping of ultrafine cells, viruses, human tissues, metal tissues, biological compositions, and the like.
 これらの特殊顕微鏡の多くには記録用カメラポートが具備されており、本発明に係る光学装置を記録用カメラポートにマウントアダプタを用いて取り付けることにより、マクロ観察モードで広範囲の状態を把握し、必要な観察部分、測定部分を特定し、ミクロ観察モードにより微細観察、状態把握を行うといった使い方が可能となる。顕微鏡側のカメラポートには、通常F、Cマウントアダプタが設置されているので、本実施例に係る光学装置にいずれかのアダプタに合致するマウントをとりつけるだけで上述した効果を発揮することができる。さらに、このマウントに目盛板、比較チャート、方眼ラインなどの各種レクチルをとりつけることで比較測定や寸法測定を含む観察を容易に行うことが可能となる。さらに、マウントには、蛍光、赤外、コントラストなどのフィルタを取り付けることで、より多用途で簡便な観察が可能となる。 Many of these special microscopes are equipped with a recording camera port, and by attaching the optical device according to the present invention to the recording camera port using a mount adapter, the macro observation mode grasps a wide range of states, The necessary observation part and measurement part can be specified, and the micro observation mode can be used for fine observation and state grasping. Since the F and C mount adapters are normally installed in the camera port on the microscope side, the above-described effects can be exhibited only by attaching a mount that matches one of the adapters to the optical apparatus according to the present embodiment. . Furthermore, it is possible to easily perform observation including comparative measurement and dimension measurement by attaching various reticles such as a scale plate, a comparison chart, and a grid line to the mount. Furthermore, by attaching filters such as fluorescence, infrared, and contrast to the mount, more versatile and simple observation is possible.
 図14には、このような例として、本発明に係る光学装置を二光子顕微鏡に取り付けた場合の構成例を図示する。二光子顕微鏡30においては、光源であるフェムト秒レーザ31から照射されたパルス光は、ガルバノミラー34にて方向を制御され、対物レンズ35によって試料obの目的箇所に集光される。そして、二光子励起過程で生じ、試料obから放射された略1/2波長の放射光は、対物レンズ35、ガルバノミラー34を通過し、ビームスプリッタ32で屈曲したのち、ビームスプリッタ33で分割される。 FIG. 14 shows an example of the configuration when the optical device according to the present invention is attached to a two-photon microscope as such an example. In the two-photon microscope 30, the direction of the pulsed light emitted from the femtosecond laser 31, which is a light source, is controlled by the galvanometer mirror 34 and is focused on the target location of the sample ob by the objective lens 35. Then, the emitted light of approximately ½ wavelength generated in the two-photon excitation process and emitted from the sample ob passes through the objective lens 35 and the galvanometer mirror 34, is bent by the beam splitter 32, and is then split by the beam splitter 33. The
 ビームスプリッタ33で分割された放射光の一方は、蛍光フィルタ等のフィルタ36を通過した後、フォトディテクタ37で検出される。また、ビームスプリッタ33で分割された放射光の他方は、二光子顕微鏡30のカメラポートに取り付けられたマウントアダプタ38及び、フィルタ等39、マウント40を介して、本発明の光学装置1に入射される。 One of the radiated light divided by the beam splitter 33 passes through a filter 36 such as a fluorescent filter and is then detected by a photodetector 37. The other of the radiated light split by the beam splitter 33 is incident on the optical device 1 of the present invention via the mount adapter 38 attached to the camera port of the two-photon microscope 30, the filter 39, and the mount 40. The
 このような構成においては、フィルタ等39として、蛍光フィルタを取り付けることにより二光子顕微鏡30のフォトディテクタ37による観察と併用し、2画面または多種倍率観察を行うことが可能となる。また、フィルタ等39として赤外線検知フィルタを取り付けることで撮像装置1による熱分布観察が可能となり、二光子顕微鏡30による可視光観察と比較、測定などが可能となる。つまり、より超微細な観察を行う光学顕微鏡において観察部位の特定を容易に行う機能に加え、多種類の観察顕微鏡や倍率顕微鏡を構成することが可能となる。 In such a configuration, by attaching a fluorescent filter as the filter 39 or the like, it is possible to perform two-screen or multi-magnification observation in combination with observation by the photodetector 37 of the two-photon microscope 30. Further, by attaching an infrared detection filter as the filter 39 or the like, it is possible to observe the heat distribution by the imaging device 1 and to compare with the visible light observation by the two-photon microscope 30 and measure. That is, in addition to the function of easily specifying an observation site in an optical microscope that performs ultrafine observation, it is possible to configure a wide variety of observation microscopes and magnification microscopes.
 1、11・・・光学装置
 1a・・・撮像光学系
 2・・・対物レンズ
 3・・・結像レンズ
 4・・・変倍レンズ
 5・・・リレーレンズ
 6・・・撮像素子
 7・・・鏡筒
 8・・・制御基板
 9、19、29・・・照明素子
 10・・・位置規制ユニット
 30・・・二光子顕微鏡 
DESCRIPTION OF SYMBOLS 1, 11 ... Optical apparatus 1a ... Imaging optical system 2 .... Objective lens 3 .... Imaging lens 4 .... Variable magnification lens 5 .... Relay lens 6 .... Imaging element 7 .... -Tube 8 ... Control board 9, 19, 29 ... Illumination element 10 ... Position regulating unit 30 ... Two-photon microscope

Claims (15)

  1.  対象である物体を撮影または観察する光学装置であって、
     前記物体の像を結像させるための撮像光学系と、
     前記撮像光学系によって結像された像を電気信号に変換する撮像素子と、
     前記撮像光学系による撮像倍率を変更する倍率変更手段と、
     を備え、
     前記撮像光学系は結像点を光軸方向に複数有しており、
     前記倍率変更手段は、前記撮像光学系における複数の結像点のうち、何れの結像点における像を前記撮像素子によって電気信号に変換するかを切換えることにより、前記撮像光学系による撮像の倍率を変更することを特徴とする光学装置。
    An optical device for photographing or observing a target object,
    An imaging optical system for forming an image of the object;
    An image sensor that converts an image formed by the imaging optical system into an electrical signal;
    Magnification changing means for changing the imaging magnification by the imaging optical system;
    With
    The imaging optical system has a plurality of imaging points in the optical axis direction,
    The magnification changing means switches a magnification of imaging by the imaging optical system by switching which imaging point of the plurality of imaging points in the imaging optical system is to be converted into an electrical signal by the imaging element. An optical device characterized in that
  2.  前記複数の結像点のうち、倒立像が結像される結像点について、前記撮像素子によって変換された電気信号により得られる画像が正立像になるように、前記画像を電気的に反転させる画像反転手段をさらに備えることを特徴とする、請求項1に記載の光学装置。 Of the plurality of image forming points, the image is electrically inverted so that an image obtained by the electric signal converted by the image sensor becomes an erect image at an image forming point where an inverted image is formed. The optical apparatus according to claim 1, further comprising image inverting means.
  3.  前記倍率変更手段は、前記撮像光学系により前記物体の、狭視野高倍率のミクロ画像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により前記物体の、広視野低倍率のマクロ画像を前記撮像素子上に結像する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする、請求項1または2に記載の光学装置。 The magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and a wide-field low-magnification of the object by the imaging optical system. The optical apparatus according to claim 1, further comprising a switching unit that changes the magnification by switching between a second state in which the macro image is formed on the image sensor.
  4.  前記第一の状態においては、前記撮像光学系により前記物体の実像が前記撮像素子上に結像され、前記第二の状態においては、前記撮像光学系により前記物体の虚像が前記撮像素子上に結像され実像化されることを特徴とする、請求項3に記載の光学装置。 In the first state, a real image of the object is formed on the image sensor by the imaging optical system. In the second state, a virtual image of the object is formed on the image sensor by the imaging optical system. The optical apparatus according to claim 3, wherein the optical apparatus is formed into a real image.
  5.  前記倍率変更手段は、前記撮像光学系により前記物体の実像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により前記物体の虚像を前記撮像素子上に結像して実像化する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする、請求項1または2に記載の光学装置。 The magnification changing unit is configured to form a real image of the object on the image sensor with the imaging optical system, and a real image by forming a virtual image of the object on the image sensor with the imaging optical system. The optical apparatus according to claim 1, further comprising a switching unit that changes the magnification by switching between the second state and the second state.
  6.  撮影対象である物体を撮影する光学装置であって、
     前記物体の像を結像させるための撮像光学系と、
     前記撮像光学系によって結像された画像を電気信号に変換する撮像素子と、
     前記撮像光学系による撮像倍率を変更する倍率変更手段と、
     を備え、
     前記倍率変更手段は、前記撮像光学系により物体の実像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により物体の虚像を前記撮像素子上に結像して実像化する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする光学装置。
    An optical device for photographing an object to be photographed,
    An imaging optical system for forming an image of the object;
    An image sensor that converts an image formed by the imaging optical system into an electrical signal;
    Magnification changing means for changing the imaging magnification by the imaging optical system;
    With
    The magnification changing unit forms a real image by forming a real image of an object on the image sensor with the imaging optical system and a virtual image of the object on the image sensor with the imaging optical system. An optical apparatus comprising switching means for changing the magnification by switching between the second state and the second state.
  7.  撮影対象である物体を撮影する光学装置であって、
     前記物体の像を結像させるための撮像光学系と、
     前記撮像光学系によって結像された画像を電気信号に変換する撮像素子と、
     前記撮像光学系による撮像倍率を変更する倍率変更手段と、
     を備え、
     前記倍率変更手段は、前記撮像光学系により前記物体の、狭視野高倍率のミクロ画像を前記撮像素子上に結像する第一の状態と、前記撮像光学系により前記物体の、広視野低倍率のマクロ画像を前記撮像素子上に結像する第二の状態とを切換えることによって、前記倍率を変更する切換手段を有することを特徴とする光学装置。
    An optical device for photographing an object to be photographed,
    An imaging optical system for forming an image of the object;
    An image sensor that converts an image formed by the imaging optical system into an electrical signal;
    Magnification changing means for changing the imaging magnification by the imaging optical system;
    With
    The magnification changing means includes a first state in which a micro-image of a narrow-field high-magnification image of the object is formed on the imaging element by the imaging optical system, and a wide-field low-magnification of the object by the imaging optical system. An optical apparatus comprising: switching means for changing the magnification by switching between the second state in which the macro image is formed on the image sensor.
  8.  前記撮像光学系は、
     対物レンズを含む対物光学群と、ズーム機能を有する変倍光学群とを含み、
     前記切換手段は、前記変倍光学群および/または前記撮像素子の位置を変更することにより、前記第一の状態と前記第二の状態とを切換えることを特徴とする、請求項3から7のいずれか一項に記載の光学装置。
    The imaging optical system is
    An objective optical group including an objective lens, and a variable magnification optical group having a zoom function,
    8. The switching unit according to claim 3, wherein the switching unit switches between the first state and the second state by changing a position of the variable power optical group and / or the imaging element. The optical apparatus as described in any one.
  9.  前記切換手段は、前記第一の状態と前記第二の状態とを切換える際に、前記対物光学群は固定とすることを特徴とする、請求項8に記載の光学装置。 9. The optical apparatus according to claim 8, wherein the switching unit fixes the objective optical group when switching between the first state and the second state.
  10.  前記撮像光学系の先端部の周囲に配置された照明手段をさらに備えることを特徴とする請求項1から9のいずれか一項に記載の光学装置。 The optical apparatus according to any one of claims 1 to 9, further comprising an illuminating unit arranged around a distal end portion of the imaging optical system.
  11.  前記撮像光学系と撮影対象の物体との位置関係を規制する位置規制手段をさらに備え、
     前記位置規制手段は、前記撮像光学系の先端部の前方において前記物体の表面に当接するとともに前記第一の状態における前記撮像光学系の撮影範囲を囲むように配置された当接部材を有することを特徴とする、請求項3から9のいずれか一項に記載の光学装置。
    A position restricting means for restricting a positional relationship between the imaging optical system and the object to be imaged;
    The position restricting means has an abutting member disposed so as to abut the surface of the object in front of the front end of the imaging optical system and surround the imaging range of the imaging optical system in the first state. The optical device according to any one of claims 3 to 9, wherein
  12.  前記位置規制手段は、前記撮像光学系の前記撮影範囲において前記物体の表面に密着させることが可能に配置された透明のフィルムをさらに有することを特徴とする、請求項11に記載の光学装置。 12. The optical apparatus according to claim 11, wherein the position restricting unit further includes a transparent film disposed so as to be in close contact with the surface of the object in the photographing range of the imaging optical system.
  13.  前記位置規制手段の前記当接部材の前側面は、前記第一の状態においてピントが最良となる位置より0.5~1.5mm前方に配置されることを特徴とする請求項11に記載の光学装置。 12. The front side surface of the contact member of the position restricting means is disposed 0.5 to 1.5 mm ahead of a position where the focus is best in the first state. Optical device.

  14.  前記第一の状態及び前記第二の状態において、前記対物光学群と前記変倍光学群とは同一の光軸上または同一の光路上に配置されることを特徴とする、請求項8または9に記載の光学装置。

    The objective optical group and the variable magnification optical group are arranged on the same optical axis or on the same optical path in the first state and the second state, respectively. An optical device according to 1.
  15.  既存の顕微鏡の光路への接続を可能とする接続手段をさらに備えることを特徴とする、請求項1から14のいずれか一項に記載の光学装置。  The optical apparatus according to claim 1, further comprising a connection unit that enables connection to an optical path of an existing microscope.
PCT/JP2018/005817 2017-02-20 2018-02-19 Optical device WO2018151302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568658A JPWO2018151302A1 (en) 2017-02-20 2018-02-19 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029356 2017-02-20
JP2017-029356 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151302A1 true WO2018151302A1 (en) 2018-08-23

Family

ID=63169500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005817 WO2018151302A1 (en) 2017-02-20 2018-02-19 Optical device

Country Status (2)

Country Link
JP (1) JPWO2018151302A1 (en)
WO (1) WO2018151302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004842A1 (en) * 2020-07-01 2022-01-06 ネッパジーン株式会社 Cell recovery device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051970A (en) * 2000-08-07 2002-02-19 Fuji Photo Optical Co Ltd Hood for endoscope
JP2002119467A (en) * 2000-08-07 2002-04-23 Fuji Photo Optical Co Ltd Endoscope
JP2004138884A (en) * 2002-10-18 2004-05-13 Pentax Corp Method for automatically focusing endoscope
JP2005342299A (en) * 2004-06-04 2005-12-15 Olympus Corp Endoscope apparatus
JP2006235423A (en) * 2005-02-28 2006-09-07 Moritex Corp Magnifying and imaging apparatus
JP2010052344A (en) * 2008-08-29 2010-03-11 Nippon Sherwood Medical Industries Ltd Welding apparatus, tubular body with covered tip, and welding method
JP2014063151A (en) * 2012-08-29 2014-04-10 Canon Inc Microscope illumination optical system and microscope having the same
JP2016161600A (en) * 2015-02-26 2016-09-05 オリンパス株式会社 Microscope, microscope system, autofocusing method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576876B2 (en) * 2004-05-10 2010-11-10 株式会社ニコン Microscope system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051970A (en) * 2000-08-07 2002-02-19 Fuji Photo Optical Co Ltd Hood for endoscope
JP2002119467A (en) * 2000-08-07 2002-04-23 Fuji Photo Optical Co Ltd Endoscope
JP2004138884A (en) * 2002-10-18 2004-05-13 Pentax Corp Method for automatically focusing endoscope
JP2005342299A (en) * 2004-06-04 2005-12-15 Olympus Corp Endoscope apparatus
JP2006235423A (en) * 2005-02-28 2006-09-07 Moritex Corp Magnifying and imaging apparatus
JP2010052344A (en) * 2008-08-29 2010-03-11 Nippon Sherwood Medical Industries Ltd Welding apparatus, tubular body with covered tip, and welding method
JP2014063151A (en) * 2012-08-29 2014-04-10 Canon Inc Microscope illumination optical system and microscope having the same
JP2016161600A (en) * 2015-02-26 2016-09-05 オリンパス株式会社 Microscope, microscope system, autofocusing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004842A1 (en) * 2020-07-01 2022-01-06 ネッパジーン株式会社 Cell recovery device

Also Published As

Publication number Publication date
JPWO2018151302A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US7589839B2 (en) Examination apparatus, fluoroscopy apparatus, examination method, and experimental method
US20160202460A1 (en) 3D Microscopy With Illumination Engineering
JP5691026B2 (en) Illumination and observation equipment
Juškattis et al. Real‐time white light reflection confocal microscopy using a fibre‐optic bundle
JPWO2008047893A1 (en) microscope
JP2013080243A (en) Optical system, utilization method thereof, and method to observe object thereby
JP2015135511A (en) Camera adaptor for medical-optical observation instrument and camera-adaptor combination
US9375136B2 (en) Multi-focal optical component, optical system, and imaging method
JP2016161946A (en) Surgical microscope
JP2006301599A (en) Feeble light imaging optical system, microscopic device equipped with the same and microscopic system equipped with microscopic device
US10222597B2 (en) Medical optical observation instrument and method for contrasting polarization-rotating tissue
US10342433B2 (en) Insitu diagnostic tool for digital pathology
US20160206198A1 (en) Surgical microscope and method for highlighting eye lens pieces
JP2007041510A (en) Observation apparatus and observation system provided with the same
US20120140057A1 (en) Microscope for Measuring Total Reflection Fluorescence
JP2006301523A (en) Medical microscope
WO2018151302A1 (en) Optical device
JP2008102535A (en) Stereo microscope
KR101814061B1 (en) Combination module for endoscope and microscope
EP2140292A2 (en) Optical biopsy device
US7684134B2 (en) Microscope objectives
US20170019575A1 (en) Optical Methods and Devices For Enhancing Image Contrast In the Presence of Bright Background
Tate et al. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer
US10264190B2 (en) Adaptive optical methods and devices for enhancing image contrast in the presence of bright background
JP2019159272A (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753935

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018568658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753935

Country of ref document: EP

Kind code of ref document: A1